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Abstract

We introduce an augmentation framework that001
utilizes belief state annotations to match turns002
from various dialogues and forms new syn-003
thetic dialogues in a bottom-up manner. Un-004
like other augmentation strategies, it operates005
with as few as five examples. Our augmenta-006
tion strategy yields significant improvements007
when both adapting a DST model to a new do-008
main, and when adapting a language model to009
the DST task, on evaluations with TRADE and010
TOD-BERT models. Further analysis shows011
that our model performs better on seen values012
during training, and it is also more robust to013
unseen values even though we do not use any014
external dataset for augmentation. We con-015
clude that exploiting belief state annotations016
enhances dialogue augmentation and results017
improved models in n-shot training scenarios.018

1 Introduction019

Task-oriented dialogue (TOD) agents are the next-020

generation user interface and are slated to replace021

browsing static websites. However, a key bottle-022

neck in fielding such agents practically concerns023

data availability. As current state-of-the-art meth-024

ods require ample amounts of annotated data, data025

augmentation is growing in importance (Feng026

et al., 2021). Most augmentation methods in natu-027

ral language processing (NLP) target written forms028

of text — passages, news articles, etc. — which029

operate with word- or sentence-level permutations030

of the original text data, synthesizing new text (Liu031

et al., 2020; Wei and Zou, 2019; Yu et al., 2018;032

Xie et al., 2017; Kobayashi, 2018). These methods033

do not exploit the structure of conversational data034

in its entirety. We study augmenting task-oriented035

dialogues, a specific form of conversational data.036

A TOD aims to accomplish a task through ex-037

changes between a user and an agent, accounting038

for the user’s preferences. Within TOD, dialogue039

state tracking (DST) is a fundamental task, which040

Figure 1: Scenario with two dialogues from train booking
domain. Dialogue snippets, SA&SB , have the same dialogue
function and the new dialogue created by replacing them and
inserting proper slot values is still coherent end to end.

aims to detect these preferences in a given dialogue. 041

For this task, each pair of utterances in a dialogue 042

is annotated with slot-label and slot-value pairs (cf. 043

Figure 1: train-destination: “Cambridge”) and a 044

belief state. Here, a belief state can be equated as 045

an attribute–value store that gives the final values 046

of each slot label (attribute) after an utterance. 047

There have been several attempts to augment 048

conversational data in the literature. Quan and 049

Xiong (2019) up-sample the data through word or 050

sentence level modifications, following standard 051

text augmentation techniques in NLP such as syn- 052

onym substitution, back-translation, or paraphras- 053

ing. Kurata et al. (2016) perturb embeddings of 054

single utterances and decode similarly functioned 055

synthetic utterances. Gao et al. (2020) create an 056

end-to-end pipeline that finds the utterances with 057

similar dialogue functions and trains a paraphras- 058

ing model. Most related to our method, CoCo (Li 059
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et al., 2021) trains a conditional user–utterance060

generation model, then generates synthetic turns by061

modifying belief states using a rule-based system062

and conditioning the model on the modified belief063

state. Gritta et al. (2021) create a working graph of064

TOD datasets where each edge is a dialogue act and065

create synthetic dialogues by traversing alternative066

paths; however, their framework requires user acts067

to work with. Critically, none of the above tech-068

niques exploit the belief state annotations of TODs069

within an n-shot scenario.070

In contrast, dialogue belief state annotations071

guide our approach to an effective n-shot augmen-072

tation method. We observe that the belief state iden-073

tifies the specific slots that each turn-pair discusses.074

As such, belief states can be used as a proxy to075

represent dialogue function. Our method exploits076

this. For example, after exchanging two turn-pairs077

that serve the same dialogue function in two source078

dialogues, dialogue coherency should be preserved,079

if discounting necessary changes to slot values (Fig-080

ure 1). Motivated by this, we delexicalize and store081

each turn-pair with their dialogue function to effec-082

tively construct new dialogues from scratch.083

We evaluate our framework with MultiWOZ,084

a multi-domain dialogue dataset (Budzianowski085

et al., 2018). Each of its 10,000 dialogues is an-086

notated with its turn belief states, system acts, and087

turn slots. We experiment using both the previ-088

ous state-of-the-art (SOTA) recurrent TRADE (Wu089

et al., 2019) model and the transformer-based TOD-090

BERT (Wu et al., 2020b) model. Our framework091

significantly increases n-shot performance, both092

when adapting a DST model to a new domain and093

when adapting a language model to the DST task.094

A fine-grained analysis of evaluation results reveals095

that models finetuned on synthetic data become ro-096

bust to previously unseen slot values, and recognize097

seen values better. The latter aspect accounts for098

the majority of the performance gain.099

2 Related Work100

2.1 Dialogue State Tracking101

Previous DST models cumulatively keep track of102

utterances to obtain dialogue states (Williams and103

Young, 2007; Thomson and Young, 2010; Wang104

and Lemon, 2013). Lei et al. (2018) introduced105

Sequicity to generate belief spans as an interme-106

diate process and improve the performance on the107

end task. Zhong et al. (2018) proposed to use a108

unique module for each slot, which improves the109

tracking of unseen slot values. The majority of 110

these systems relied on an in-domain vocabulary 111

and they were all evaluated on a single domain. 112

Ramadan et al. (2018) proposed to jointly train the 113

domain and state tracker using multiple bi-LSTMs 114

and allowed the learned parameters to be shared 115

across domains; whereas Rastogi et al. (2017) used 116

a multi-domain approach using bi-GRU where the 117

dialogue states are defined as distributions over a 118

candidate set derived from dialogue history. 119

We use two base models in this paper. The first 120

one, TRADE, was proposed by Wu et al. (2019). It 121

implements an encoder–decoder architecture and 122

applies a copy mechanism that helps to overcome 123

out of vocabulary (OOV) challenges. The sec- 124

ond one, TOD-BERT (Wu et al., 2020b), a task- 125

oriented dialogue model following the transformer 126

paradigm. It is pretrained using 9 TOD datasets 127

with a contrastive objective function. 128

2.2 Few-shot Dialogue State Tracking 129

Many papers focus on the low-resource scenario 130

in the DST field aiming to generate comparable 131

results between low- and rich-resource settings. 132

Existing studies invariably categorize into two ap- 133

proaches to address the low-resource challenge: (1) 134

optimization functions aimed to exploit the smaller 135

amounts of data, or (2) augmentation of the target 136

data. 137

Few-shot Models and Techniques. Some ap- 138

proaches in the first class of solutions benefit 139

from the recent transformer trend. One such 140

study finetunes the GPT-2 model and reports n- 141

shot slot-filling and intent recognition results on 142

the SNIPS dataset (Madotto et al., 2020). They 143

achieve promising results compared to baselines 144

with fewer shots. TOD-BERT reports results on 145

four downstream tasks in the full- and low-resource 146

settings (Wu et al., 2020b). Another line of research 147

tries to address the problem without transformers. 148

Span-ConverRT re-defines the slot-filling problem 149

as turn-based span extraction that helps greatly in 150

the few-shot setting (Coope et al., 2020). Huang 151

et al. (2020) use the model agnostic meta-learning 152

(MAML) algorithm to adapt to new domains and 153

show that it can outperform traditional methods 154

with fewer data. Coach (Liu et al., 2020), on the 155

other hand, breaks the slot-filling task into two com- 156

ponents: a first slot entity detection task, followed 157

by an entity type prediction task. 158
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Data Augmentation for the Few-shot Setting.159

Other studies, like our approach, focus on augmen-160

tation to improve few-shot performance. Quan and161

Xiong (2019) adopt four techniques for augmen-162

tation: synonym substitution, stop-word deletion,163

translation and paraphrasing at sentence level. Ku-164

rata et al. (2016) start by pretraining a dialogue165

encoder–decoder, and then perturb the dialogue166

representations to back-decode synthetic dialogues.167

Another study by Jalalvand et al. (2018) trains a168

logistic regression model on the small target data to169

detect the most informative n-grams and then find170

related samples from an out-of-domain corpus. Yin171

et al. (2020) propose a reinforcement learning set-172

ting, alternating learning between a generator and173

a state tracker to discover augmentation policies174

that benefit the end task. Two separate studies try175

to solve the OOV problem by enriching dialogue176

slot values with other values (Song et al., 2020;177

Summerville et al., 2020).178

Campagna et al. (2020) create an abstract dia-179

logue model by defining domain templates through180

manual observations and then generate augmented181

data using these templates. Their model improves182

the zero-shot performance, but requires manual183

work for each new domain.184

Three studies use dialogue annotations during185

the augmentation process. PARG matches turns of186

a task-oriented dialogue by their dialogue state to187

create pairs for paraphrase generation (Gao et al.,188

2020), they then jointly train the paraphrase genera-189

tor with the end task outperforming other dialogue190

augmentation baselines. The low-resource setting191

defined by PARG is still required to be large enough192

to train a neural paraphrase model from scratch,193

thus limiting its applicability to emerging domains194

with little data. Moreover, they do not model the195

interaction of a turn-pair with the next turn-pairs;196

as such a paraphrased utterance may be noisy, re-197

peating a slot on the next turn. Gritta et al. (2021)198

create graph representations of dialogue datasets199

where each edge corresponds to a dialogue act by200

the user or system. They then extract alternative201

dialogues. However, they experiment only using202

full data settings. Additionally, their framework203

presumes the dialogue states are specific to each ut-204

terance, but for MultiWOZ (among other datasets)205

dialogue states harbor information from a pair of206

system–user utterances. Lastly, Li et al. (2021)207

train a conditional user-utterance generation model208

on a large labeled dataset, then generate synthetic209

dialogues by mutating the belief states through a 210

rule-based system. This method is also limited as it 211

requires enough data to train a conditional genera- 212

tion model, an unrealistic requirement for few-shot 213

training. 214

3 Method 215

Our method leverages a simple hypothesis, visual- 216

ized in Figure 1: that the function of a pair of turns 217

in a dialogue can be defined by its slots, and its 218

interactions with its previous and next turn-pairs. 219

The example has two turn-pairs: Sa from Dialogue 220

A and Sb from Dialogue B. The turn-pair belief 221

states that precede both Sa and Sb are composed 222

of the same set of slot labels. The same holds for 223

the belief states of turn-pairs following Sa and Sb. 224

Their function in the dialogue is the same. We hy- 225

pothesize the interchange of these pairs of turns 226

(after changing the values according to the parent 227

dialogue state) maintains a coherent dialogue. Our 228

observations on the MultiWOZ dataset showed that 229

this is true to a large extent for task-oriented dia- 230

logues because the belief state history represents 231

the ongoing topic, and slot labels of the next turn 232

give hints about the system acts. 233

Our framework implements this hypothesis in 234

three steps. In Step 1 (§ 3.1), we create turn-pair 235

templates by delexicalizing each pair (replacing 236

slot values with their respective slot label), then 237

storing each template with the previous, current, 238

and next pair’s belief states (cf. Figure 2). We also 239

mine a dictionary of possible slot label–value pairs 240

to be used in filling generated templates. In Step 2 241

(§ 3.2) we create dialogue templates by combining 242

these pairs constrained such that two consecutive 243

pairs’ dialogue functions do not break coherency. 244

We do this combination in a breadth-first manner, 245

best visualized as a tree where each node is a turn- 246

pair template, and every string of nodes from root 247

to leaf is a dialogue template (cf. Figure 3). Finally 248

in Step 3 (§ 3.3), we create final synthetic dialogues 249

by filling the slot labels in the dialogue templates 250

(cf. Figure 4) using the mined dictionary. 251

3.1 Step 1: Turn-pair Template Generation 252

Figure 2 depicts a sample turn-pair template that 253

our framework generates. Each turn-pair template 254

in our framework consists of a pair of turns: a 255

system turn and a user turn. Our templates con- 256

sist of pairs of turns, simply because consecutive 257

turns (system–user) share the same dialogue state 258
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Figure 2: Sample turn-pair template (bottom, pink) and the
original dialogue it is extracted from (top, green). The subject
template is composed of four elements: 1) delexicalized turn
utterances, and the belief state of 2) current, 3) past, and 4)
next turns in the original dialogue.

annotation. Each turn-pair template consists of a259

delexicalized pair of turns and a dialogue function260

formed as the combination of the previous, current,261

and next turn belief states.262

During delexicalization we follow (Hou et al.,263

2018) to replace each slot value with “[slot-name]”.264

Since MultiWOZ 2.1 does not provide indices for265

slot values, we manually find each value by search-266

ing in the turn-pair. This brings up several prob-267

lems where two slots might have the same value268

or where some categorical values might not show269

up in the text (e.g. hotel-internet: {“dontcare”,270

“yes”, “no”}). We filter out templates with the same271

values for different labels and leave the values for272

the categorical labels the same, assuming that they273

are independent of changes in other values. How-274

ever, unlike non-categorical ones, we are limited275

from enriching the values of such slot types in our276

last step, surface realization, when we fill in our277

templates.278

Each dialogue in MultiWOZ usually starts with279

a salutation and ends with a farewell. To distin-280

guish these starting–ending pairs, we define two281

exception cases: (1) If a template’s turn-pair comes282

from the beginning of a dialogue, we set its previ-283

ous belief state as null (start state), (2) if it comes284

from the ending of a dialogue we set its next belief285

state as null (end state). We use these two cases286

later in template generation to generate coherent287

dialogues from start to end.288

Figure 3: In our framework, dialogue templates are generated
through adding proper turn-pair templates in a chain structure.
The chains form a tree, which covers every possible dialogue
template as a path from root to a leaf node.

3.2 Step 2: Dialogue Template Generation 289

We generate each dialogue template by combining 290

a set of turn-pair templates. We form our dialogue 291

templates using a tree structure where each node 292

corresponds to a turn-pair template, and a chain 293

of nodes starting from a root and ending with a 294

leaf is a dialogue template (Figure 3). We start 295

by defining a root node and setting its belief state 296

as null. Initially, we ignore the next belief state 297

condition and add every template whose previous 298

belief state is null — such turns are legitimate con- 299

versation starters (roots). At each level, we mark 300

every newly-added node as an active node. Then 301

after each level, we iterate through active nodes 302

and expand each node with the set of eligible tem- 303

plates. Two conditions need to be met to append 304

Template B to the tail of Template A: (1) B’s belief 305

state slots should be met by A’s next belief state 306

slots and (2) A’s belief state slots should be met by 307

B’s past belief state slots. We continue adding tem- 308

plates until there are no active nodes. Eventually, 309

we end up with a tree structure where each con- 310

nected node represents a turn-pair and each path 311

from the root to a leaf node is a unique dialogue 312

template. We discard paths whose leaf nodes do 313

not have null as the next belief state. This ensures 314

that the dialogue template has a valid ending. 315

3.3 Step 3: Surface Realization 316

We now fill in the delexicalized dialogue templates. 317

Using the slot–value dictionary extracted in Step 1, 318

we fill each dialogue with every possible slot value 319

combination thus effectively sourcing synthetic 320
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Figure 4: The last step in our framework, surface realization,
utilizes the dictionary of slot label and slot values obtained
from the original dialogues in Step 1, populating the templates
with every permutation of possible values of each slot.

augmented dialogues (Figure 4). This final step321

returns a set of task-oriented dialogues, suitable322

for training (or fine-tuning) a learning system (cf.323

Appendix A for sample dialogues).324

4 Experiments325

4.1 Dataset, Models and Evaluation326

We conduct experiments on MultiWOZ, a well-327

known dataset in the DST field. When compared328

to its counterparts like WOZ (Wen et al., 2017),329

DSTC2 (Henderson et al., 2014) and Restaurant-330

8k (Coope et al., 2020), MultiWOZ is the richest,331

combining several domains with a variety of slot332

labels and values. MultiWOZ is a multi-domain333

dialogue dataset that covers 10,000 dialogues be-334

tween clerks and tourists, each annotated with turn335

belief states, system acts, and turn slots. Following336

prior works (Wu et al., 2019, 2020a) we conduct337

our experiments on 5 of 7 domains leaving hospi-338

tal and police domains out as the sample quantity339

is very low in validation and test sets of these do-340

mains.341

We wish to assess how fine-tuning with our aug-342

mented data affects model performance. We ex-343

periment with the TRADE and TOD-BERT mod-344

els (Wu et al., 2020a, 2019) to assess whether their345

base performance can be improved using our aug-346

mentation framework. For both models, we follow347

the fine-tuning experiments done by (Wu et al.,348

2019): we train a base model on four domains and349

then fine-tune this model with small sets of ran-350

domly sampled data from the remaining left-out351

target domain (5- or 10-shots). We compare this352

against the scenario where we apply our augmenta-353

tion framework on the small set before fine-tuning.354

Due to space limitations, we present results only for 355

the subset of the restaurant, taxi, and hotel domains 356

in TOD-BERT. These three domains cover almost 357

every unique slot in the MultiWOZ dataset, and 358

is thus representative. We conduct an additional 359

experiment for TOD-BERT, training/testing with 360

data from all domains in several few shot settings 361

(20-, 40-, and 80-shot). 362

We evaluate TRADE using the metrics proposed 363

by Wu et al. (2019): Slot Accuracy and Joint Accu- 364

racy. Slot Accuracy measures the proportion of cor- 365

rectly predicted slot values; while Joint Accuracy 366

is more coarse-grained, measuring the correctly 367

predicted turn dialogue states. To predict a turn 368

dialogue state correctly means that all its contained 369

slot values are predicted correctly. Also, when a 370

slot is not mentioned in the utterance the ground 371

truth for that slot becomes None. This results in 372

utterances having ground truth slot values which 373

mostly consist of the value None. We observe that 374

in our few-shot experiments, unlike TRADE, TOD- 375

BERT model returns predictions consisting only 376

of None values. We believe that the discrepancy is 377

attributable to TRADE’s copy mechanism, which 378

the TOD-BERT model lacks. To better assess the 379

contribution of our augmentation approach, we use 380

Active Slot Accuracy (Dingliwal et al., 2021) for 381

the TOD-BERT experiments, which is the accuracy 382

of slot value predictions for all non-None values. 383

4.2 Implementation and Training Settings 384

We adjust our training settings to facilitate a fair 385

comparison among the models trained on differ- 386

ent data sizes (original versus augmented). For 387

the TRADE model, we use the default hyperpa- 388

rameter settings reported in the original paper. For 389

TOD-BERT, we change the training batch size to 390

4 and the evaluation batch size to 8, the develop- 391

ment set evaluation frequency to 1 evaluation per 392

200 steps, set the terminating condition to early 393

stopping bounded by maximum number of steps. 394

For our augmented fine-tuning model training, we 395

fine-tune the base model on synthetic data for N /2 396

steps, followed by fine-tuning on the mixture of 397

original and synthetic data for another N /2 steps. 398

We perform this mixing of original samples in the 399

latter part of fine-tuning to ensure that the model 400

is exposed to a diverse set of samples, while not 401

significantly deviating from the original distribu- 402

tion. This is conceptually similar to the notion of 403

experience replay in reinforcement learning. 404
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Hotel Taxi Restaurant Attraction Train
Joint Slot Joint Slot Joint Slot Joint Slot Joint Slot

1. Base Model (BM) trained on other 4 domains 0.12 0.64 0.60 0.73 0.12 0.54 0.18 0.54 0.22 0.49
2. BM fine tuned with 1% data (8̃0 dialogues) 0.21 0.76 0.61 0.75 0.21 0.77 0.43 0.74 0.61 0.91

5-Shot Augmentation on Target Domain
3. BM fine-tuned with 5 samples 0.12 0.65 0.59 0.75 0.12 0.58 0.25 0.59 0.25 0.66
4. BM fine-tuned with augmented samples 0.12 0.67* 0.58 0.75 0.13 0.62* 0.26 0.61 0.31* 0.77*

10-Shot Augmentation on Target Domain
5. BM fine-tuned with 10 samples 0.14 0.68 0.60 0.76 0.13 0.63 0.30 0.63 0.37 0.81
6. BM fine-tuned with augmented samples 0.15 0.69 0.60 0.76 0.16* 0.70* 0.32* 0.66* 0.39 0.83

Table 1: Evaluation results of TRADE model. The first row shows the zero shot results; the second row, the finetuning with 1%
data ( 80 dialogues) for comparison with n-shot results. Each figure is an average of 10 runs. Bolded numbers in each section
shows the best performance within that section. “*” indicates statistically significant results with 95% confidence.

Figure 5: Effects of the augmentation ratio on TRADE model by domain. The dashed blue line represents the performance of
fine-tuning with 1% of full data (∼80 dialogues) for comparison as a pseudo upper bound [Note y-axis scales differ per chart].

Active Slot F1 Restaurant Taxi Hotel
5-Shot

3’. Original 0.16 0.0065 0.20
4’. Augmented 0.19* 0.0078 0.22*

10-Shot
5’. Original 0.20 0.010 0.18
6’. Augmented 0.22* 0.013* 0.23*

Table 2: TOD-BERT evaluation results over the individual
restaurant, taxi and hotel domains, averaged over 10 runs.Best
performance within each shot level are bolded; statistical
significance (p ≥ 95%) is starred.

Active Slot F1 20-shot 40-shot 80-shot
Original samples 0.10 0.16 0.21

Our augmented samples 0.16* 0.21* 0.24*

Table 3: TOD-BERT evaluation results over all domains,
averaging 10 runs. Best performance within each shot level
are bolded; statistical significance (p ≥ 95%) is starred.

4.3 Results405

TRADE Experiments (Table 1). We report the406

significance of results with 95% confidence along407

with averages over 10 runs. Our framework can408

sustain the model performance in all five domains,409

and significantly improves over baseline (Row 1) in410

either the 5- (Row 4) or 10-shot (Row 6) scenarios411

in four of the five domains, where most results are412

statistically significant at the p ≥ 0.95 level. These413

results also greatly improve over fine-tuning using414

just 5 or 10 target domain samples (compare Row415

3 against 4, and Row 5 against 6). Overall, apply-416

ing our augmentation framework yields a macro- 417

averaged improvement of 3.2% slot accuracy and 418

1.5% joint accuracy. As a pseudo-upper bound, 419

we compare our method against fine-tuning over 420

80 shots (roughly 1% of the target domain data, 421

represented by Row 2), and see that our approach 422

significantly closes this performance gap. 423

The exception is the taxi domain where the aug- 424

mented data does not result in significant change. 425

We believe this is due to taxi domain slots hav- 426

ing higher variety in values than in other domain 427

slots. This results in many OOV values in the test 428

set. The TRADE model, thanks to its copy mech- 429

anism, adapts well to these OOV with fewer data. 430

The fact that the performance of the base model 431

fine-tuned with 1% of data is already reached by 432

fine-tuning the same model within a 5-shot sce- 433

nario (compare Row 2 and Row 1’s taxi column) 434

supports our claim. 435

TOD-BERT Experiments (Tables 2 and 3). 436

With TOD-BERT, we examine our framework’s 437

effect on both domain and task adaptation. 438

· Table 2 shows results for domain adaptation, and 439

the figures are comparable to the those in Table 1 440

for TRADE. We number the rows with primes (′) 441

to imply the comparable results from the TRADE 442

experiments. We follow the same setting as above 443

for TRADE (train on 4 other domains, test on target 444

domain). We observe uniformly improved results 445
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Recall Unseen Values Seen Values
All-domains

Original 0.1 e-3 0.24
Augmented 0.2 e-3 0.28
Restaurant

Original 1.5 e-3 0.20
Augmented 2.3 e-3 0.26

Taxi
Original 6.3 e-3 0.16

Augmented 6.8 e-3 0.21
Hotel

Original 0.5 e-3 0.30
Augmented 1.0 e-3 0.32

Table 4: TOD-BERT evaluation results, subdivided between
on seen and unseen values, averaged over 10 runs, with best
results per section in bold.

Error type Original Synthetic
restaurant-food 2,041 1,675

restaurant-pricerange 1,210 603
restaurant-name 1,133 1,061
restaurant-area 853 480

restaurant-book day 743 335
restaurant-book people 740 212
restaurant-book time 1,119 347

Table 5: Fine-grained restaurant domain errors, for the origi-
nal and augmented TRADE model, classified by slot type.

over the few shot fine-tuned models, as we did for446

TRADE, proving agnostic feature of our frame-447

work.448

· Table 3 shows results for task adaptation. Here,449

the TOD-BERT model has no familiarity with the450

DST task at all, thus fine-tuning is an adaptation to451

the task itself. This is a more challenging scenario.452

Again, we see uniform improvement, especially453

marked for the lower-shot scenarios (20- and 40-).454

The results for both are consist and in favor of455

our framework. Our framework helps in both cases:456

(1) LM adaptation to a new task (e.g. DST), and457

(2) LM adaptation to a new task-oriented dialogue458

domain (e.g. restaurant).459

4.4 How Does Augmentation Improve460

Performance?461

To study the reason behind the performance gain by462

augmentation, we dispart our test set samples into463

two groups: samples with unique values that do not464

show up during training, and samples with values465

seen during training. We then evaluate the TOD-466

BERT model trained with original and synthetic467

data on these two separate groups, cf. Table 4.468

The results suggest that although, augmentation in-469

creases robustness to unseen values in all domains,470

the largest part of the contribution is on seen val-471

ues. This is expected since our framework uses the 472

same set of values as in small original dialogue set 473

during surface realization 474

Note that for the “All-domains” section in the 475

table the improvement on unseen values is smaller 476

compared to domain-specific sections (Restaurant, 477

Taxi, Hotel), this is because, in the former, the 478

model learns DST task from scratch thus exploiting 479

seen-values to learn the task overweighs to gener- 480

alizing over unseen values. Whereas for the latter, 481

robustness to unseen values gets higher learning 482

priority since the model is already familiar with the 483

DST task from training on other 4 domains. 484

This analysis shows that our framework helps 485

the model to exploit slots that have a bounded value 486

pool with less unique values while also making it 487

robust to unseen values for slots with broader value 488

pools. 489

4.5 Effect of Augmentation Ratio 490

We run our framework with several different aug- 491

mentation ratios in both the 5 and 10 shot cases 492

to inspect if the synthetic data amount affects the 493

results proportionally. Figure 5 shows the results 494

for the TRADE model in all 5 domains. Our frame- 495

work increases the results steadily compared to 496

base fine-tuning, and the amount of synthetic data 497

affects the results proportionally in almost every 498

case except the taxi domain as explained before (cf. 499

Section 4.3). 500

4.6 Fine-grained Error Analysis 501

4.6.1 Slot-type Errors 502

Apart from performance in evaluation metrics we 503

also analyze the error rates of the TRADE model in 504

each specific slot type in the restaurant domain and 505

compare results with and without our framework. 506

Table 5 shows the results. Our framework consis- 507

tently reduces error rates in every single slot type. 508

The drop in the error rate is least remarkable for the 509

name and food slots, we believe this is because the 510

challenge in these slots is most largely unknown 511

vocabulary words. Our framework enriches the di- 512

alogue templates with values from the original set. 513

Thus it is less helpful for those slots suffering from 514

the unknown slot value problem and shows more 515

significant improvements on slots with arguably 516

more isolated vocabulary (e.g. Book-day: 1, 2, 3, 517

etc. or price range: cheap, moderate, expensive). 518

To support the significance of results on fine- 519

grained slot error types, we use McNemar’s test 520

7



Hotel Taxi Restaurant Attraction Train
Joint Slot Joint Slot Joint Slot Joint Slot Joint Slot

5 Shot Augmentation on Target Domain
BM fine-tuned with CoCo 0.12 0.66 0.60 0.75 0.13 0.62 0.24 0.58 0.27 0.69

BM fine-tuned with our framework 0.12 0.67 0.58 0.75 0.13 0.62 0.26 0.61 0.31 0.77
10 Shot Augmentation on Target Domain

BM fine-tuned with CoCo 0.15 0.68 0.61 0.75 0.16 0.67 0.31 0.64 0.39 0.82
BM fine-tuned with our framework 0.15 0.69 0.60 0.76 0.16 0.70 0.32 0.66 0.39 0.83

Table 6: Evaluation results of TRADE model comparing our augmentation framework to the upperbound CoCo model pre-trained
on full training data (including target domain).

Active Slot F1 Restaurant Taxi Hotel
5 Shot
CoCo 0.17 0.0047 0.21
Ours 0.19 0.0078 0.22

10 Shot
CoCo 0.22 0.0114 0.21
Ours 0.22 0.0132 0.23

Table 7: Evaluation results of TOD-BERT model comparing
our augmentation framework to the upperbound CoCo model
pre-trained on full training data (including target domain).

(α = 0.01) upon creating the confusion matrix521

between our framework and original fine-tuning.522

The results suggest that synthetic data fine-tuning523

shows statistically significant improvements over524

the original data fine-tuning, with p < α.525

4.7 Comparison against CoCo Model526

To better locate the position of our framework in the527

literature we repeat target domain experiments us-528

ing another dialogue augmentation method: CoCo.529

However, CoCo is a learning-based approach that530

requires rich amounts of data, so it is unfair to531

expect it to learn from only a few shots (5/10).532

Instead, we use the pretrained weights that are pro-533

vided by the original CoCo paper and treat it as an534

upper bound because it is trained on the full training535

data (including the target domain for leave-one-out536

experiments) whereas our framework uses only the537

provided few dialogues during augmentation.538

Tables 6 and 7 give the results for TRADE and539

TOD-BERT, respectively. Despite the advanta-540

geous standing of CoCo, our framework outper-541

forms CoCo in all domains for the TOD-BERT542

model and shows either superior or comparable543

results on TRADE.544

4.8 Effect of Template Generation545

We conduct an ablation study to show the contri-546

bution of our novel dialogue template generation547

idea by re-running the TOD-BERT target domain548

experiments for hotel and restaurant domains with549

Active Slot F1 Restaurant Hotel
5 Shot

Full pipeline 0.183 0.255
Only SR 0.157 0.250
10 Shot

Full pipeline 0.198 0.258
Only SR 0.237 0.243

Table 8: TOD-BERT target domain experiments comparing
full pipeline (first row) against only surface realization (second
row). Each number corresponds to an average of 3 runs.

a simpler baseline, where we use only the origi- 550

nal n dialogues as templates and perform surface 551

realization. 552

The results in Table 8 show that template gener- 553

ation improves results compared to only perform- 554

ing surface realization in most of the cases. Our 555

template generation strategy offers higher diversity 556

to the samples but it might bring up noisy sam- 557

ples along, whereas only surface realization is less 558

noisy but lacks the diversity that novel templates 559

contribute. 560

5 Conclusion 561

We introduced a task-oriented dialogue augmenta- 562

tion framework that exploits embedded informa- 563

tion in dialogue states. We experimented on the 564

MultiWOZ dataset using both the TRADE model 565

as representative of sequential models and TOD- 566

BERT, a transformer-based BERT model adapted 567

for task-oriented dialogues. Evaluation results sug- 568

gest that our framework improve the performance 569

when adapting a DST model to a new, unseen do- 570

main and also when adapting an LM to the DST 571

task. Empirical analysis shows that although our 572

augmentation increases performance on unseen val- 573

ues, a large portion of its boost comes from per- 574

formance on seen values. We conclude that our 575

framework consistently improves the few-shot per- 576

formance over the DST task and can open doors for 577

many other TOD tasks in limited data scenarios. 578
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and Matthew Henderson. 2020. Span-ConveRT:597
Few-shot span extraction for dialog with pretrained598
conversational representations. In Proceedings of599
the 58th Annual Meeting of the Association for Com-600
putational Linguistics, pages 107–121, Online. As-601
sociation for Computational Linguistics.602

Saket Dingliwal, Shuyang Gao, Sanchit Agarwal,603
Chien-Wei Lin, Tagyoung Chung, and Dilek604
Hakkani-Tur. 2021. Few shot dialogue state track-605
ing using meta-learning. In Proceedings of the 16th606
Conference of the European Chapter of the Associ-607
ation for Computational Linguistics: Main Volume,608
pages 1730–1739, Online. Association for Computa-609
tional Linguistics.610

Steven Y. Feng, Varun Gangal, Jason Wei, Sarath Chan-611
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-612
uard Hovy. 2021. A survey of data augmentation613
approaches for NLP. In Findings of the Association614
for Computational Linguistics: ACL-IJCNLP 2021,615
pages 968–988, Online. Association for Computa-616
tional Linguistics.617

Silin Gao, Yichi Zhang, Zhijian Ou, and Zhou Yu.618
2020. Paraphrase augmented task-oriented dialog619
generation. In Proceedings of the 58th Annual Meet-620
ing of the Association for Computational Linguistics,621
pages 639–649, Online. Association for Computa-622
tional Linguistics.623

Milan Gritta, Gerasimos Lampouras, and Ignacio Ia-624
cobacci. 2021. Conversation graph: Data augmen-625
tation, training, and evaluation for non-deterministic626
dialogue management. Transactions of the Associa-627
tion for Computational Linguistics, 9:36–52.628

Matthew Henderson, Blaise Thomson, and Jason629
Williams. 2014. The Second Dialog State Tracking630
Challenge. Technical report.631

Yutai Hou, Yijia Liu, Wanxiang Che, and Ting Liu.632
2018. Sequence-to-sequence data augmentation for633
dialogue language understanding. In Proceedings of634
the 27th International Conference on Computational635

Linguistics, pages 1234–1245, Santa Fe, New Mex- 636
ico, USA. Association for Computational Linguis- 637
tics. 638

Yi Huang, Junlan Feng, Min Hu, Xiaoting Wu, Xiaoyu 639
Du, and Shuo Ma. 2020. Meta-Reinforced Multi- 640
Domain State Generator for Dialogue Systems. Pro- 641
ceedings of the 58th Annual Meeting of the Asso- 642
ciation for Computational Linguistics, pages 7109– 643
7118. 644

Shahab Jalalvand, Andrej Ljolje, and Srinivas Banga- 645
lore. 2018. Automatic data expansion for customer- 646
care spoken language understanding. CoRR, 647
abs/1810.00670. 648

Sosuke Kobayashi. 2018. Contextual augmentation: 649
Data augmentation by words with paradigmatic re- 650
lations. In Proceedings of the 2018 Conference of 651
the North American Chapter of the Association for 652
Computational Linguistics: Human Language Tech- 653
nologies, Volume 2 (Short Papers), pages 452–457, 654
New Orleans, Louisiana. Association for Computa- 655
tional Linguistics. 656

Gakuto Kurata, Bing Xiang, and Bowen Zhou. 2016. 657
Labeled Data Generation with Encoder-decoder 658
LSTM for Semantic Slot Filling. 659

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun 660
Ren, Xiangnan He, and Dawei Yin. 2018. Sequicity: 661
Simplifying Task-oriented Dialogue Systems with 662
Single Sequence-to-Sequence Architectures. In Pro- 663
ceedings of the 56th Annual Meeting of the Associa- 664
tion for Computational Linguistics (Volume 1: Long 665
Papers), volume 1, pages 1437–1447, Stroudsburg, 666
PA, USA. Association for Computational Linguis- 667
tics. 668

Shiyang Li, Semih Yavuz, Kazuma Hashimoto, Jia 669
Li, Tong Niu, Nazneen Rajani, Xifeng Yan, Yingbo 670
Zhou, and Caiming Xiong. 2021. Coco: Control- 671
lable counterfactuals for evaluating dialogue state 672
trackers. In International Conference on Learning 673
Representations. 674

P. Liu, X. Wang, C. Xiang, and W. Meng. 2020. A 675
survey of text data augmentation. In 2020 Interna- 676
tional Conference on Computer Communication and 677
Network Security (CCNS), pages 191–195. 678

Zihan Liu, Genta Indra Winata, Peng Xu, and Pas- 679
cale Fung. 2020. Coach: A coarse-to-fine approach 680
for cross-domain slot filling. In Proceedings of the 681
58th Annual Meeting of the Association for Compu- 682
tational Linguistics, pages 19–25, Online. Associa- 683
tion for Computational Linguistics. 684

Andrea Madotto, Zihan Liu, Zhaojiang Lin, and Pas- 685
cale Fung. 2020. Language models as few-shot 686
learner for task-oriented dialogue systems. 687

Jun Quan and Deyi Xiong. 2019. Effective data aug- 688
mentation approaches to end-to-end task-oriented di- 689
alogue. 2019 International Conference on Asian 690
Language Processing (IALP), pages 47–52. 691

9

https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.12
https://doi.org/10.18653/v1/2020.acl-main.11
https://doi.org/10.18653/v1/2020.acl-main.11
https://doi.org/10.18653/v1/2020.acl-main.11
https://doi.org/10.18653/v1/2020.acl-main.11
https://doi.org/10.18653/v1/2020.acl-main.11
https://aclanthology.org/2021.eacl-main.148
https://aclanthology.org/2021.eacl-main.148
https://aclanthology.org/2021.eacl-main.148
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2021.findings-acl.84
https://doi.org/10.18653/v1/2020.acl-main.60
https://doi.org/10.18653/v1/2020.acl-main.60
https://doi.org/10.18653/v1/2020.acl-main.60
https://doi.org/10.1162/tacl_a_00352
https://doi.org/10.1162/tacl_a_00352
https://doi.org/10.1162/tacl_a_00352
https://doi.org/10.1162/tacl_a_00352
https://doi.org/10.1162/tacl_a_00352
https://aclanthology.org/C18-1105
https://aclanthology.org/C18-1105
https://aclanthology.org/C18-1105
https://www.aclweb.org/anthology/2020.acl-main.636
https://www.aclweb.org/anthology/2020.acl-main.636
https://www.aclweb.org/anthology/2020.acl-main.636
http://arxiv.org/abs/1810.00670
http://arxiv.org/abs/1810.00670
http://arxiv.org/abs/1810.00670
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.21437/Interspeech.2016-727
https://doi.org/10.21437/Interspeech.2016-727
https://doi.org/10.21437/Interspeech.2016-727
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://doi.org/10.18653/v1/P18-1133
https://openreview.net/forum?id=eom0IUrF__F
https://openreview.net/forum?id=eom0IUrF__F
https://openreview.net/forum?id=eom0IUrF__F
https://openreview.net/forum?id=eom0IUrF__F
https://openreview.net/forum?id=eom0IUrF__F
https://doi.org/10.1109/CCNS50731.2020.00049
https://doi.org/10.1109/CCNS50731.2020.00049
https://doi.org/10.1109/CCNS50731.2020.00049
https://doi.org/10.18653/v1/2020.acl-main.3
https://doi.org/10.18653/v1/2020.acl-main.3
https://doi.org/10.18653/v1/2020.acl-main.3
http://arxiv.org/abs/2008.06239
http://arxiv.org/abs/2008.06239
http://arxiv.org/abs/2008.06239


Osman Ramadan, Paweł Budzianowski, and Milica692
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A Sample Synthetic Dialogues793

We showcase two synthetic dialogues generated794

with our framework, cf. Table 9, by merging tem-795

plates from 2 and 3 different dialogues respectively.796

Our framework can generate multi-domain dia-797

logues following the original dialogues’ belief state.798

For instance, the first half of the left-hand side di-799

alogue includes slots from the restaurant domain,800

while the second half has slots from the train do-801

main. The right-hand side dialogue on the other802

hand combines slots from domains: train (from803

two different dialogues) and hotel (from another804

third dialogue). Although both dialogues seem co-805

herent in shape, the latter has a redundancy where806

the system request the day information after the807

user already stated it. This is because of a missing808

annotation where the train-day slot in the belief809

state of the third turn is missing. These kinds of810

annotations unavoidable but negligible because it811

recaptures a misunderstanding by the agent which812

is observed in real dialogues frequently.813
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Speaker Turn
User

I am coming to town and looking for a good Span-
ish restaurant to try near the town center. Do you
have any suggestions ?

Agent
The Spanish restaurant near center is Wagamama.
The address is 36 saint Andrews street .

User
I’ll be needing a table for 4 at 5p.m. this next Mon-
day , can you help ?

Agent
Here is your reference number 6huyuygs is there
anything else I can do for you?

User
Yes I need to find a train to Cambridge from Kings
Lynn.

Agent
When would you like to travel ?

User
Tuesday morning at 9 am

Agent
train tr3447 leaves Kings Lynn at 09:11. Would
you like to reserve a ticket ?

User
Yes please. Make a booking for the same number
of people .

Agent
Okay, the booking was successful , the total fee is
58.8 gbp payable at the station . reference number
is : fz6dqhqt. Anything else i can help you with?

User
That is all i needed today.

Speaker Turn
User

I am looking for a train to Cambridge that departs after 10:45.
Agent

What day would you like to travel?
User

I’ll be travelling on a Wednesday.
Agent

Where would you be departing from?
User

I will be leaving Norwich.
Agent

On what day will you be leaving?
User

I will be leaving on Wednesday.
Agent

It is 18.88 pounds per ticket. How many tickets would you like to
purchase?

User
Just 2 tickets please and thank you.

Agent
Your ticket has been reserved . Total fee is 18.88 gbp, payable at the
station. Reference number zm5k0a4q. Can i help you with anything
else today?

User
Can you book Acorn guest house for 7 people starting on Wednesday
for 4 nights, please ?

Agent
Thank you so much for reserving my train ticket. I have the informa-
tion for Acorn guest house you requested.

Would you like me to reserve it for you ?
User

Yes. I need the reference number.
Agent

The booking was successful. your reference number is dtkw11yu
User

That is all I needed today, thank you for your help.

Table 9: Sample synthetic dialogues generated by our framework. (L) Dialogue in restaurant domain generated by 2 different
original dialogues. (R) Dialogue in train domain generated by 3 different original dialogues.
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