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Abstract001

Zero-shot and few-shot learning techniques002
offer promising solutions for addressing data003
scarcity in Natural Language Processing (NLP),004
particularly in under-resourced languages such005
as Arabic and code-switching scenarios. Tradi-006
tional supervised deep learning methods often007
struggle in such contexts due to their depen-008
dence on extensive labeled data. In this pa-009
per, we propose a novel approach that utilizes010
zero-shot and few-shot learning methodologies011
for cross-lingual classification tasks, focusing012
on Named Entity Recognition (NER) in Ara-013
bic texts and sentiment analysis in both Arabic014
and code-switched Arabic-English data. We015
introduce two approaches, employing Pattern016
Exploiting Training (PET) and Better-few-shot017
learning in language models (LM-BFF), which018
demonstrate versatility across diverse classifi-019
cation tasks. Subsequently, we conduct com-020
prehensive evaluations on NER and sentiment021
analysis tasks, showcasing the superior perfor-022
mance of LM-BFF, surpassing previous tech-023
niques by 1.5% f1-score in sentiment analy-024
sis of code-switched data. This study empha-025
sizes the importance of zero and few-shot learn-026
ing methodologies in overcoming data scarcity027
challenges in Arabic NLP and code-switching028
research, thereby advancing NLP capabilities029
in under-resourced linguistic contexts.030

1 Introduction031

Conventional supervised deep learning models in032

Natural Language Processing (NLP) traditionally033

rely on large annotated datasets for training, a034

requirement that becomes particularly challeng-035

ing in under-resourced languages like Arabic and036

complex linguistic environments such as code-037

switching. Code-switching, the act of fluidly alter-038

nating between languages within a conversation, is039

a common phenomenon in multilingual communi-040

ties. However, research on NLP for code-switching041

and Arabic lags behind that of well-resourced lan-042

guages like English. This lack of data for code- 043

switching and Arabic presents a significant hurdle 044

for developing robust NLP models. However, ad- 045

dressing these challenges has led to the exploration 046

of innovative learning paradigms such as zero-shot 047

and few-shot learning (Xian et al., 2017). Zero- 048

shot learning involves training a model to recog- 049

nize classes that it has never seen during training, 050

while few-shot learning focuses on learning from a 051

limited number of examples per class (Wang et al., 052

2019). These approaches alleviate the need for 053

extensive labeled data, making them particularly 054

suitable for resource-constrained scenarios. De- 055

spite their efficacy, challenges persist in effectively 056

addressing the complexities of code-switching and 057

under-resourced languages (Balam, 2021). To 058

bridge this gap, one widely used approach is trans- 059

fer learning, where knowledge gained from one 060

task or domain is utilized to improve performance 061

on another task or domain (Brownlee, 2017). In 062

scenarios with limited annotated data traditional 063

transfer learning methods may not suffice. Herein 064

lies the relevance of techniques like Knowledge 065

Distillation and Auxiliary Language Model Train- 066

ing (Prottasha et al., 2022). Knowledge Distilla- 067

tion involves transferring knowledge from a large, 068

well-trained model (teacher) to a smaller model 069

(student), enabling the student model to generalize 070

better in data-scarce environments (Hinton et al., 071

2015). Similarly, Auxiliary Language Model Train- 072

ing leverages data and annotations from related 073

tasks or languages to enhance performance on the 074

target task (Zhang et al., 2020). These methods 075

reduce the burden of data annotation and extend 076

the applicability of deep learning models. Our 077

study investigates zero-shot and few-shot learning 078

methodologies for Arabic NLP tasks, particularly 079

focusing on Named Entity Recognition (NER) and 080

Sentiment Analysis. NER involves identifying and 081

categorizing entities such as names, locations, and 082

organizations within text, while sentiment analysis 083
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aims to understand the expressed sentiment, pro-084

viding valuable insights (Li et al., 2020; Tan et al.,085

2023). We explore zero-shot and few-shot learning086

techniques as flexible solutions for classification087

tasks in under-resourced languages like Arabic and088

code-switching contexts. Utilizing transfer learn-089

ing, notably through approaches such as Pattern090

Exploiting Training (PET) (Schick and Schütze,091

2020a,b) and Better-few-shot learning in language092

models (LM-BFF) (Gao et al., 2020), we elaborate093

on our methodology, adapting these techniques to094

our tasks, and assess their performance on both095

monolingual Arabic and code-switched Arabic-096

English data. Through our evaluation, we demon-097

strate significant performance improvements, par-098

ticularly with LM-BFF, highlighting the potential099

of these approaches in addressing data limitations100

and advancing NLP in diverse linguistic environ-101

ments.102

2 Related Work103

Advancements in zero-shot and few-shot learning104

within language processing have been notable, par-105

ticularly with the emergence of large-scale lan-106

guage models like GPT-3. These models have107

been evaluated on a wide range of tasks, includ-108

ing machine translation, question answering, and109

text summarization in many languages, including110

English, Spanish, French, and many others. While111

these models excel in various tasks, their extensive112

size poses usability challenges and environmental113

concerns. GPT-3 comprises 175 billion parameters,114

prompting researchers to explore alternative ap-115

proaches to achieve comparable performance with-116

out such extensive models. Some are developing117

models with reduced parameter counts to maintain118

high-performance levels, enhancing model accessi-119

bility and sustainability (Brown et al., 2020).120

Addressing these limitations, alternative meth-121

ods are actively explored. PET (Pattern Exploit-122

ing Training) addresses the limitations of using123

large language models (LLMs) by using cloze124

questions and verbalizers to create large training125

datasets without extensive manual labeling that al-126

lows the model to infer the label from the context127

(Schick and Schütze, 2020a,b). This bridges the128

gap between supervised and unsupervised learn-129

ing. PET’s effectiveness is shown on various tasks130

within SuperGLUE, demonstrating its versatility131

(Schick and Schütze, 2020a,b). iPET, an iterative132

variant of PET, improves on PET by continuously133

learning from its mistakes. It trains on a dataset 134

that grows with each training cycle, focusing on ar- 135

eas where the model previously struggled (Schick 136

and Schütze, 2020a,b). 137

Another noteworthy approach is LM-BFF (better 138

few-shot fine-tuning) which efficiently fine-tunes 139

LLMs with minimal data. Unlike traditional meth- 140

ods, it uses prompts and task demonstrations dur- 141

ing fine-tuning, achieving good results on few-shot 142

tasks (e.g., sentiment analysis, question answering) 143

in various languages while requiring less computa- 144

tion (Gao et al., 2020). This makes LM-BFF partic- 145

ularly useful for situations with limited labeled data 146

or for deploying LLMs on resource-constrained de- 147

vices. 148

Another method that was introduced is BitFit. 149

BitFit is a method for fine-tuning LLMs like GPT. 150

It works by modifying only a small part of the 151

model, specifically the bias terms, to achieve a spe- 152

cific task (Zaken et al., 2021). This makes BitFit 153

more efficient and requires less memory than tradi- 154

tional fine-tuning methods. Even with this limited 155

modification, BitFit can achieve accuracy compara- 156

ble to traditional methods, especially when there is 157

not a lot of data available for training (Zaken et al., 158

2021). 159

Another research paper focused on the Arabic 160

zero-shot few-shot learning problem. The research 161

introduces a self-training method for Arabic se- 162

quence labeling tasks that utilize unlabeled dialec- 163

tal data to improve performance on Named Entity 164

Recognition (NER) and Part-of-Speech (POS) tag- 165

ging (Khalifa et al., 2021). This method achieves 166

state-of-the-art accuracy on various Arabic datasets, 167

demonstrating its effectiveness in handling limited 168

labeled data and diverse dialects (Khalifa et al., 169

2021). 170

Another approach addresses the problem of zero- 171

shot NLU for code-switching (mixing languages) 172

using multilingual code-switching data augmenta- 173

tion (Krishnan et al., 2021). By randomly translat- 174

ing English text into various languages and using 175

multilingual datasets, the research explores how 176

code-switching improves performance in languages 177

like Hindi and Turkish (Krishnan et al., 2021). This 178

method, especially effective for languages distant 179

from English, achieves higher intent accuracy and 180

slot F1 scores (Krishnan et al., 2021). 181
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3 Methodology182

We explored the effectiveness of applying zero-183

shot and few-shot learning techniques to Arabic184

and code-switching data, a domain often under-185

represented in NLP research. To address this gap,186

we implemented and customized two existing tech-187

niques, Pattern Exploiting Training (PET) and Bet-188

ter Few-Shot Fine-tuning for Language Models189

(LM-BFF), to accommodate the unique linguistic190

complexities of Arabic and code-switching. Our191

objective was to overcome the challenges posed by192

limited labeled data and enhance their performance193

in this specific domain. Our approach involved fine-194

tuning PET using Pattern-Verbalizer Pairs (PVPs)195

optimized for Arabic and code-switching, while196

LM-BFF underwent adjustments to effectively han-197

dle the diverse linguistic structures inherent in these198

languages.199

3.1 Pattern Exploiting Training (PET)200

PET tackles the challenge of limited labeled data201

by offering two approaches for model creation:202

the base PET model and its iterative variant, iPET.203

The first approach that we used is PET. PET lever-204

ages human-provided knowledge through Pattern-205

Verbalizer Pairs (PVPs). PVPs consist of cloze-206

style questions that specifically target the task at207

hand. These questions are crafted using patterns208

designed to guide the model towards the relevant209

information within the data. For instance, a pat-210

tern for sentiment analysis might be "The movie211

was [MASK]. Overall, it was [MASK] experience."212

Here, the model would predict the missing senti-213

ment words ("wonderful" and "positive") based on214

the context of the sentence.215

PET goes beyond simple cloze questions by in-216

corporating two key elements: ensembles of mod-217

els and unlabeled data. First, PET utilizes an218

ensemble of Masked Language Models (MLMs).219

These individual models are trained on the cloze-220

question transformed data, allowing them to learn221

task-specific patterns. During a subsequent knowl-222

edge distillation step, the models learn from each223

other, collectively improving their performance.224

Second, PET leverages unlabeled data to further225

enhance its capabilities. This unlabeled data is226

transformed using the same patterns as the labeled227

data, providing additional context for the models228

during training. This process helps mitigate the229

risk of overfitting on the limited labeled data.230

The second approach we employed is iterative231

PET (iPET) to address the challenge of zero-shot 232

learning, where labeled data for some classes might 233

be entirely absent. iPET tackles the scenario where 234

even labeled data for some classes might be entirely 235

absent. In iPET, we employ multiple generations 236

of models. The first generation trains solely on 237

patterns and unlabeled data, establishing a base- 238

line performance. Subsequent generations leverage 239

the previous generation’s predictions on unlabeled 240

data to create a new training dataset. These new 241

training dataset are then used to progressively ex- 242

pand the original training dataset and refine the 243

model’s understanding of the task across genera- 244

tions. By utilizing PET’s patterns, training strategy, 245

and using iPET, we aimed to make PET more ef- 246

fective for the unique challenges posed by Arabic 247

and code-switching data. 248

3.2 Better Few-Shot Fine-tuning for 249

Language Models (LM-BFF) 250

The third approach that we used is LM-BFF which 251

stands as a novel approach in NLP, particularly 252

tailored to tasks necessitating effective adapta- 253

tion with limited labeled data. The main idea of 254

LM-BFF lies in its ability to leverage large pre- 255

trained language models, such as BERT or GPT, 256

and fine-tune them for specific downstream tasks. 257

This methodology introduces three distinctive fine- 258

tuning strategies, each catering to varying degrees 259

of labeled data availability and task complexity. 260

The first approach, conventional fine-tuning, fol- 261

lows the traditional paradigm of adapting the pre- 262

trained model parameters to the target task using 263

labeled data. For instance, in a sentiment analysis 264

task, the model can fine-tune its parameters in order 265

to recognize small sentiment cues in text snippets, 266

thereby enhancing its predictive accuracy. 267

LM-BFF offers innovative solutions for tasks 268

with scarce labeled data. It uses prompt tuning, 269

a method that uses natural language prompts to 270

guide predictions, enabling effective generaliza- 271

tion to tasks with minimal labeled data. This ap- 272

proach is particularly useful in sentiment analysis 273

tasks, where prompts like "The next sentence is? 274

[MASK] The food was great" can guide the model 275

to make accurate predictions. LM-BFF also intro- 276

duces prompt tuning with demonstrations, which 277

adds an additional layer of supervision during fine- 278

tuning. Demonstrations showcase correct behavior, 279

aiding the model in making more informed pre- 280

dictions. This enhances its ability to generalize 281

effectively, even in scenarios with sparse labeled 282
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data. In sentiment analysis, for instance, "The next283

sentence is? [MASK] The food was great. The284

next sentence is? negative The film was awful"285

thus this helps the model to understand what labels286

it is expected to predict and in what context.287

4 Evaluation & Results288

To address Arabic Named Entity Recognition, we289

employed the ANERcorp dataset, which provides290

curated Arabic text for training purposes (Bena-291

jiba et al., 2007). For Arabic sentiment analy-292

sis, we utilized the ArSATwitter dataset, contain-293

ing annotated tweets for sentiment classification294

(Saad, 2019). Additionally, for English-Arabic295

code-switching sentiment analysis, we relied on296

the ArEnSA dataset, an in-house dataset offering297

a diverse range of mixed Arabic-English text from298

platforms such as Twitter and YouTube.299

4.1 PET Method Evaluation300

To evaluate the first approach (PET), we optimized301

hyperparameters such as pre-trained models, learn-302

ing rates, gradient accumulation steps, reproducible303

seeds, and mappings, testing alternative values for304

enhanced performance. Initially, default hyperpa-305

rameters were used, including a learning rate of306

1.00E-05, gradient accumulation steps of 1, and a307

seed of 13. Subsequent tests explored alternative308

values. Additionally, the training datasets consisted309

of only 10 rows to evaluate our few-shot results.310

4.1.1 Pre-trained Model311

We started with evaluating different pre-trained312

models (roberta-base, albert-base-v2, arabert-base,313

arabert-twitter-base) which showed that arabert-314

twitter-base excelled, especially on Arabic tasks as315

shown in Table 1. This is likely due to its training316

on 60 million Arabic tweets, leading to a 10% im-317

provement in understanding human-like sentences318

compared to arabert-base (Antoun et al.). It even319

performed well on the ArEnSA dataset, demon-320

strating strong multilingual capabilities.

Table 1: Comparison of Different Models on Each
Dataset (PET)

Model ANERCorp ArSATwitter ArEnSA
F1-Score Acc F1-Score Acc F1-Score Acc

roberta-base 0.158 0.192 0.539 0.540 0.333 0.356
albert-base-v2 0.098 0.223 0.438 0.521 0.412 0.488
arabert-base 0.210 0.281 0.528 0.544 0.365 0.469
arabert-twitter-base 0.294 0.369 0.728 0.729 0.504 0.534

321

4.1.2 Hyperparameters 322

After fine-tuning a pre-trained model, we optimized 323

multiple hyperparameters (learning rate, gradient 324

accumulation steps, random seed) on our three 325

datasets to find the best combination that maxi- 326

mizes performance. This achieved an accuracy of 327

0.371 and an F1-score of 0.359 for ANERCorp 328

(learning rate: 2.00E-05, gradient accumulation 329

steps: 1, random seed: 21), an F1-score of 0.735 330

and accuracy of 0.735 for ArSATwitter (learning 331

rate: 1.00E-05, gradient accumulation steps: 2, 332

random seed: 13), and an accuracy of 0.631 and 333

an F1-score of 0.584 for ArEnSA (learning rate: 334

5.00E-05, gradient accumulation steps: 1, random 335

seed: 13). 336

4.1.3 Verbalizer 337

PET’s performance relies on the verbalizer, which 338

connects target labels to the model’s vocabulary. 339

The verbalizer should accurately capture the seman- 340

tic meaning of labels while the model understands 341

them. Using a larger verbalizer can improve per- 342

formance by mapping multiple labels to a single 343

category, capturing synonyms and linguistic vari- 344

ations. Significant improvements were observed 345

across all datasets, with ANERCorp’s F1-score and 346

accuracy increasing significantly. ArEnSA saw 347

the most significant boost, reaching an F1-score of 348

0.610 and an accuracy of 0.638. Even ArSATwitter, 349

which already performed well, benefited, achieving 350

an F1-score of 0.748 and an accuracy of 0.749 as 351

shown in Table 2. These results emphasize the im- 352

portance of a rich verbalizer in PET for improved 353

performance across various tasks.

Table 2: Comparison Small and Large Verbalizer on
Each Dataset (PET)

Verbalizer Dataset
ANERCorp ArSATwitter ArEnSA

F1-Score Acc F1-Score Acc F1-Score Acc
Small 0.359 0.371 0.735 0.735 0.584 0.631
Large 0.390 0.445 0.748 0.749 0.610 0.638

354

4.1.4 Patterns 355

We then focused on pattern exploration. Patterns 356

act as instructions for the model, influencing how 357

it interprets and predicts labels in specific language 358

contexts. We began with a single pattern to es- 359

tablish a baseline, but the choice of patterns sig- 360

nificantly impacts the model’s ability to perform 361

well. There are three main pattern categories: null, 362

prompt, and punctuation patterns. 363
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Figure 1: F1-Score for ANERCorp

Figure 2: F1-Score for ArSATwitter

Figure 3: F1-Score for ArEnSA

Figure 4: Comparative F1-Score across Datasets Featur-
ing 18 Distinct Patterns Ranging from 0-1 Null Patterns,
2-3 Prompt Patterns, and 4-17 Punc Patterns. The analy-
sis extends to C1-C10 and explores the top 4 individual
patterns in various combinations.

Table 3: Top 4 Patterns Results for each Dataset and
Best Combination (PET)

Top 4 Patterns Dataset
ANERCorp ArSATwitter ArEnSA

F1-Score Acc F1-Score Acc F1-Score Acc
P0 0.541 0.575 0.760 0.760 0.658 0.697
P1 0.538 0.561 0.751 0.752 0.653 0.700
P2 0.530 0.561 0.750 0.750 0.653 0.687
P3 0.509 0.528 0.748 0.749 0.647 0.681

Best Combination 0.545 0.568 0.762 0.762 0.660 0.698

While prompt patterns have shown success in364

other languages, we focused more on punctuation365

patterns due to challenges in designing effective366

prompts for complex Arabic sentences. We tested367

a total of 18 patterns (2 null, 2 prompt, and 14368

punctuation) for each dataset. The top four per-369

forming patterns from each dataset are highlighted370

in Table 3. An example, for null patterns, is "x371

[MASK]" and for prompt patterns, is "[MASK]372

?
�
é
�
®K. A�Ë@

�
éÊÒm.

Ì'@ x" and for punctuation patterns, is373

"x? [MASK]" where x represents the input sen-374

tence and [MASK] represents the label that the375

model will predict.376

To further refine our approach, we went beyond 377

individual patterns and explored combinations. We 378

selected the top four patterns from all 18 tested (in- 379

cluding null, prompt, and punctuation) and tested 380

every possible combination. The best combination 381

became the foundation for further testing. This 382

meticulous selection ensures the chosen patterns ef- 383

fectively guide the model for superior performance. 384

For a visual representation of how pattern se- 385

lection affects performance, see Figure 4. This 386

figure shows scatter plots for F1-score across three 387

datasets, encompassing the results of all 18 indi- 388

vidual patterns and all combinations of the top four 389

patterns. This visualization helps us understand the 390

impact of both individual patterns and their combi- 391

nations on the model’s ability to adapt and perform 392

well in various NLP tasks. 393

4.1.5 PET with Different Sizes 394

After determining optimal hyperparameters and 395

pattern combinations, we explore how training 396

dataset size affects PET models, crucial for un- 397

derstanding adaptability and scalability. Previous 398

tests used a fixed size of 10 rows, but expanding to 399

10-100 rows shows how dataset size impacts PET’s 400

efficacy. This reveals PET’s performance on larger 401

datasets, insights into generalization, and captur- 402

ing task nuances. Systematically increasing data 403

size provides valuable insights into PET’s robust- 404

ness, revealing performance trends and potential 405

limitations. Figures 5 and 3 visualize these trends.

Figure 5: F1-Score for Different Sizes
(PET)

406

4.2 iPET Method Evaluation 407

Secondly, we evaluate iPET. iPET, an extension 408

of standard PET, employs an iterative training pro- 409

cess with multiple model generations, each trained 410

on datasets of increasing sizes. The methodology 411

excels in distilling knowledge across generations, 412

enabling subsequent models to benefit from col- 413

lective insights. We will now explore how iPET 414

performs in comparison with PET and see how it 415
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performs with different generation sizes, zero-shot,416

and different training dataset sizes417

4.2.1 Different Generations418

iPET builds on PET by training multiple gener-419

ations of models on increasingly larger datasets.420

This iterative process lets each generation benefit421

from the knowledge of previous ones. We com-422

pared iPET’s performance to PET’s across differ-423

ent generation sizes, zero-shot learning tasks, and424

various training dataset sizes.425

The evaluation involved four generation sizes426

with a fixed training dataset size. As expected,427

both F1-score and accuracy metrics consistently428

improved with more generations as shown in Table429

4. This highlights the effectiveness of iPET’s itera-430

tive refinement, where each generation builds upon431

the accumulated knowledge. This is particularly432

evident in the ANERCorp dataset, where metrics433

significantly improved across generations. This434

demonstrates the model’s ability to learn and adapt435

through successive iterations.

Table 4: Comparison Between iPET Generations

iPET Generations Dataset
ANERCorp ArSATwitter ArEnSA

F1-Score Acc F1-Score Acc F1-Score Acc
G1 0.526 0.544 0.758 0.758 0.655 0.698
G2 0.586 0.614 0.753 0.753 0.672 0.713
G3 0.596 0.631 0.753 0.753 0.694 0.730
G4 0.602 0.636 0.767 0.768 0.691 0.715

436

4.2.2 iPET Zero-shot437

In zero-shot learning, iPET utilizes iterative knowl-438

edge accumulation to predict unseen classes with-439

out labeled examples. It draws on insights from440

previous generations to generalize to unfamiliar441

linguistic contexts. By employing the best pattern442

combination identified earlier, iPET demonstrates443

adaptability to evolving language, achieving pos-444

itive results across all datasets: ANERCorp with445

an F1-score of 0.270 and accuracy of 0.307, Ar-446

SATwitter with an F1-score of 0.584 and accuracy447

of 0.655, and ArEnSA with an F1-score of 0.320448

and accuracy of 0.405. These results underscore449

iPET’s versatility and potential for handling unseen450

class challenges in NLP tasks.451

4.3 LM-BFF Method Evaluation452

Following the PET methodology, we adopted a453

parallel approach to optimize LM-BFF for our ob-454

jectives, focusing on adjusting hyperparameters to455

match the unique characteristics of various datasets.456

This involved investigating key parameters such as457

learning rate, gradient accumulation steps, and seed 458

values, starting with default settings of 1.00E-05, 459

1, 13, and 16 rows per label for training size. Ini- 460

tial tests assessed performance across datasets with 461

these defaults, followed by further experiments to 462

refine these values for enhanced flexibility and effi- 463

ciency. This iterative process ensured LM-BFF’s 464

robustness and adaptability in different scenarios. 465

4.3.1 Hyperparameters 466

For the third approach, we concentrated on optimiz- 467

ing LM-BFF’s hyperparameters, including learning 468

rate, gradient accumulation steps, and random seed 469

value, to achieve optimal performance for each 470

dataset. The model was iteratively adjusted to im- 471

prove flexibility and efficiency. The pre-trained 472

model, arabert-twitter-base, was chosen for its ef- 473

fectiveness on Arabic datasets. Hyperparameter 474

tuning yielded promising results, with F1-scores 475

of 0.613 and 0.626 for ANERCorp (learning rate: 476

5.00E-05, gradient accumulation steps: 1, random 477

seed: 13), 0.775 and 0.775 for ArSATwitter (learn- 478

ing rate: 5.00E-05, gradient accumulation steps: 1, 479

random seed: 42), and 0.697 and 0.714 for ArEnSA 480

(learning rate: 2.00E-05, gradient accumulation 481

steps: 1, random seed: 13). 482

4.3.2 Types 483

Using LM-BFF, we tested three methods for model 484

creation: prompts with demonstrations, prompts 485

alone, and traditional fine-tuning, each addressing 486

sequence classification tasks differently. Compar- 487

ing results across datasets, "prompts with demon- 488

strations" consistently outperformed others, with 489

F1-scores listed in Table 5. Though "prompts 490

alone" showed a slight improvement over fine- 491

tuning, the difference was minimal. Traditional 492

fine-tuning exhibited notably lower performance, 493

emphasizing the effectiveness of incorporating 494

prompts, especially those with demonstrations, for 495

optimal sequence classification performance with 496

LM-BFF.

Table 5: Comparison of Different Types on Each Dataset
(LM-BFF)

Types Dataset
ANERCorp ArSATwitter ArEnSA

F1-Score Acc F1-Score Acc F1-Score Acc
Prompt-demo 0.613 0.626 0.779 0.775 0.697 0.714

Prompt 0.620 0.622 0.773 0.767 0.690 0.688
Fine Tune 0.586 0.598 0.730 0.730 0.673 0.677

497
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4.3.3 LM-BFF with Different Sizes498

We conducted experiments on LM-BFF’s perfor-499

mance with different dataset sizes, using three con-500

figurations: 8, 16, and 32 rows per label. Results501

showed consistent improvements in performance502

as training data size increased, indicating a clear503

trend in the model’s handling as shown in Table 6.

Table 6: Comparison of Different Sizes for Each Dataset
(LM-BFF)

Sizes Dataset
ANERCorp ArSATwitter ArEnSA

F1-Score Acc F1-Score Acc F1-Score Acc
num_labels× 8 0.568 0.579 0.733 0.742 0.523 0.524
num_labels× 16 0.613 0.626 0.775 0.775 0.697 0.714
num_labels× 32 0.670 0.686 0.819 0.819 0.730 0.744

504

4.3.4 Patterns505

Figure 6: F1-Score for Different Templates

Table 7: Top 4 Templates Results for each Dataset (LM-
BFF)

Top 4 Templates Dataset
ANERCorp ArSATwitter ArEnSA

F1-Score Acc F1-Score Acc F1-Score Acc
T0 0.665 0.661 0.783 0.783 0.783 0.787
T1 0.655 0.672 0.780 0.780 0.779 0.789
T2 0.653 0.667 0.771 0.771 0.771 0.776
T3 0.650 0.673 0.769 0.770 0.755 0.763

LM-BFF uses templates like PET prompts to506

understand data, combining them with demonstra-507

tions. The same 18 templates, including null,508

prompt, and punctuation patterns, were used in509

PET experiments. Prompt patterns significantly510

improved performance compared to PET.511

Figure 6 depicts the performance metrics associ-512

ated with 18 templates, offering insights into how513

templates influence model behavior in sequence 514

classification tasks. The top-performing templates 515

for each dataset are outlined in Table 7, displaying 516

their respective F1-scores and accuracies. These 517

findings underscore the adaptability of LM-BFF 518

and highlight the pivotal role of templates in refin- 519

ing its behavior for NLP tasks. 520

4.3.5 LM-BFF Zero-shot 521

LM-BFF demonstrates remarkable versatility in 522

NLP tasks, particularly in zero-shot scenarios, 523

where it encounters unseen classes using input pat- 524

terns and verbalizers. Its prompt-based approach 525

allows users to expand its capabilities without fine- 526

tuning for each new class, relying on learned pat- 527

terns for predictions. Table 8 illustrates the impact 528

of top templates on zero-shot performance across 529

datasets, underscoring the significance of template 530

selection for optimal results.

Table 8: Zero-shot Results on different Templates and
Traditional Fine Tuning (LM-BFF)

Zero-shot Dataset
ANERCorp ArSATwitter ArEnSA

F1-Score Acc F1-Score Acc F1-Score Acc
T0 0.243 0.327 0.686 0.686 0.172 0.312
T1 0.129 0.229 0.392 0.522 0.296 0.358
T2 0.235 0.307 0.594 0.606 0.226 0.334
T3 0.287 0.384 0.635 0.649 0.240 0.342

531

4.4 Final Results 532

Table 9: Comparison between different methods

Line Examples Methods Dataset
ANERCorp ArSATwitter ArEnSA

F1-Score Acc F1-Score Acc F1-Score Acc
1

T= 0

unsupervised 0.180 0.226 0.375 0.471 0.259 0.304
2 Fine-tuning 0.156 0.207 0.550 0.553 0.302 0.401
3 LM −BFFprompt−demo 0.287 0.384 0.686 0.686 0.296 0.358
4 iPET 0.269 0.307 0.584 0.655 0.320 0.406
5

T= 10

supervised 0.166 0.187 0.470 0.501 0.480 0.566
6 Fine-tuning 0.295 0.314 0.691 0.691 0.599 0.604
7 LM −BFFprompt−demo 0.410 0.453 0.693 0.706 0.729 0.747
8 PET 0.545 0.568 0.762 0.762 0.660 0.698
9

T= 100

supervised 0.149 0.221 0.624 0.625 0.677 0.697
10 Fine-tuning 0.638 0.646 0.819 0.829 0.815 0.820
11 LM −BFFprompt−demo 0.650 0.666 0.830 0.850 0.820 0.826
12 PET 0.651 0.707 0.780 0.780 0.716 0.746
13

T= 500

supervised 0.459 0.495 0.757 0.757 0.833 0.839
14 Fine-tuning 0.689 0.696 0.881 0.881 0.855 0.859
15 LM −BFFprompt−demo 0.683 0.693 0.893 0.893 0.864 0.868
16 PET 0.707 0.727 0.870 0.870 0.845 0.851
17

T= 1000

supervised 0.575 0.633 0.877 0.877 0.865 0.869
18 Fine-tuning 0.700 0.708 0.904 0.904 0.863 0.864
19 LM −BFFprompt−demo 0.702 0.712 0.914 0.914 0.875 0.878
20 PET 0.752 0.765 0.905 0.905 0.873 0.878
21 Full Dataset Previous SOTA 0.860 NA NA 0.970 0.860 NA

In the final stages of evaluating the methods, we 533

did an exhaustive investigation focused on identi- 534

fying optimal templates and patterns for PET and 535

LM-BFF techniques which can all be seen in Table 536

9. By meticulously selecting suitable templates 537

and patterns for each dataset, the study achieved 538

remarkable results, surpassing the previously es- 539

tablished state-of-the-art (SOTA) results for the 540

7



ArEnSA dataset. The comparative analysis in-541

corporated results from fine-tuning with Arabert-542

twitter, which consistently delivered optimal out-543

comes. Notably, the LM-BFF approach outper-544

formed PET and traditional fine-tuning in zero-shot545

learning for ANERCorp and ArSATwitter datasets,546

achieving F1-scores of 0.287 and 0.686 for ANER-547

Corp and ArSATwitter, respectively. Conversely,548

the ArEnSA PET method exhibited superior perfor-549

mance with an F1-score of 0.320 and an accuracy550

of 0.406.551

In few-shot learning scenarios, PET demon-552

strated significant performance with limited data,553

achieving an F1-score of 0.545 and an accuracy554

of 0.568 for ANERCorp, and an F1-score and ac-555

curacy of 0.762 for ArSATwitter. The LM-BFF556

method proved optimal for ArEnSA, reaching an557

F1-score of 0.729 and an accuracy of 0.747. Upon558

expanding the training dataset to 100 and 500559

rows, PET yielded peak performances for AN-560

ERCorp, while LM-BFF showed superior results561

for ArSATwitter and ArEnSA datasets. Remark-562

ably, employing the LM-BFF method with a dataset563

size of 1000 instances yielded significant improve-564

ments, surpassing previous SOTA benchmarks for565

ArEnSA, achieving an F1-score of 0.875 and an566

accuracy of 0.878. Although falling slightly short567

for ANERCorp and ArSATwitter, the outcomes re-568

mained remarkably close to the SOTA benchmarks,569

showcasing the potential of the methods even with570

limited resources.571

5 Conclusion and Future Work572

In conclusion, our paper underscores the effective-573

ness of zero-shot and few-shot learning methods,574

notably PET and LM-BFF, in bolstering NLP mod-575

els’ adaptability to novel domains and tasks with576

minimal supervision. Through our exploration fo-577

cused on Arabic language processing and code-578

switching challenges, we achieved significant ad-579

vancements, surpassing previous benchmarks on580

the ArEnSA dataset.581

Specifically, our experiments yielded notable re-582

sults including an F1-score of 0.752 for the ANER583

dataset, an accuracy and F1-score of 0.914 for the584

ArSaTwitter dataset, and an impressive F1-score585

of 0.875 for the code-switched ArEnSA dataset,586

surpassing previous benchmarks by 1.5%.587

Looking ahead, addressing computational con-588

straints, refining linguistic techniques tailored for589

Arabic, exploring multilingual embeddings, and590

mitigating information loss from sentence trunca- 591

tion emerge as critical areas for future inquiry. By 592

advancing research in these domains, we aim to 593

propel Arabic NLP forward and cultivate robust nat- 594

ural language processing models capable of adeptly 595

navigating diverse linguistic landscapes. 596

6 Limitations 597

The limitations of our study encompass several key 598

challenges that influenced our approach and find- 599

ings. Firstly, our reliance on Google Colab for con- 600

ducting experiments posed significant constraints 601

due to memory limitations and intermittent GPU 602

availability. These factors resulted in delays and 603

inefficiencies, particularly affecting the pace and 604

reliability of our experimentation process. Despite 605

these challenges, utilizing Colab was deemed nec- 606

essary over local execution due to its practicality, 607

albeit at the expense of optimal resource utilization. 608

Secondly, The complexity of Arabic and code- 609

switched data presents significant challenges in de- 610

veloping effective patterns and verbalizers. Craft- 611

ing precise mappings that balance specificity and 612

generality is crucial for model robustness across di- 613

verse linguistic contexts. Existing pre-trained mod- 614

els have limitations in handling code-switching and 615

limited labeled data, highlighting the need for im- 616

proved multilingual embeddings and specialized 617

pre-training techniques tailored to Arabic’s linguis- 618

tic characteristics. 619

Moreover, The model’s ability to understand 620

context was compromised by truncating input sen- 621

tences, causing potential information loss. This 622

compromise, while necessary for computational 623

feasibility, could also reduce the accuracy of the 624

models in predicting labels. These limitations sug- 625

gest the need for future research to improve zero 626

and few-shot learning techniques in cross-lingual 627

classification tasks. 628
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