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Abstract

Zero-shot and few-shot learning techniques
offer promising solutions for addressing data
scarcity in Natural Language Processing (NLP),
particularly in under-resourced languages such
as Arabic and code-switching scenarios. Tradi-
tional supervised deep learning methods often
struggle in such contexts due to their depen-
dence on extensive labeled data. In this pa-
per, we propose a novel approach that utilizes
zero-shot and few-shot learning methodologies
for cross-lingual classification tasks, focusing
on Named Entity Recognition (NER) in Ara-
bic texts and sentiment analysis in both Arabic
and code-switched Arabic-English data. We
introduce two approaches, employing Pattern
Exploiting Training (PET) and Better-few-shot
learning in language models (LM-BFF), which
demonstrate versatility across diverse classifi-
cation tasks. Subsequently, we conduct com-
prehensive evaluations on NER and sentiment
analysis tasks, showcasing the superior perfor-
mance of LM-BFF, surpassing previous tech-
niques by 1.5% fl-score in sentiment analy-
sis of code-switched data. This study empha-
sizes the importance of zero and few-shot learn-
ing methodologies in overcoming data scarcity
challenges in Arabic NLP and code-switching
research, thereby advancing NLP capabilities
in under-resourced linguistic contexts.

1 Introduction

Conventional supervised deep learning models in
Natural Language Processing (NLP) traditionally
rely on large annotated datasets for training, a
requirement that becomes particularly challeng-
ing in under-resourced languages like Arabic and
complex linguistic environments such as code-
switching. Code-switching, the act of fluidly alter-
nating between languages within a conversation, is
a common phenomenon in multilingual communi-
ties. However, research on NLP for code-switching
and Arabic lags behind that of well-resourced lan-

guages like English. This lack of data for code-
switching and Arabic presents a significant hurdle
for developing robust NLP models. However, ad-
dressing these challenges has led to the exploration
of innovative learning paradigms such as zero-shot
and few-shot learning (Xian et al., 2017). Zero-
shot learning involves training a model to recog-
nize classes that it has never seen during training,
while few-shot learning focuses on learning from a
limited number of examples per class (Wang et al.,
2019). These approaches alleviate the need for
extensive labeled data, making them particularly
suitable for resource-constrained scenarios. De-
spite their efficacy, challenges persist in effectively
addressing the complexities of code-switching and
under-resourced languages (Balam, 2021). To
bridge this gap, one widely used approach is trans-
fer learning, where knowledge gained from one
task or domain is utilized to improve performance
on another task or domain (Brownlee, 2017). In
scenarios with limited annotated data traditional
transfer learning methods may not suffice. Herein
lies the relevance of techniques like Knowledge
Distillation and Auxiliary Language Model Train-
ing (Prottasha et al., 2022). Knowledge Distilla-
tion involves transferring knowledge from a large,
well-trained model (teacher) to a smaller model
(student), enabling the student model to generalize
better in data-scarce environments (Hinton et al.,
2015). Similarly, Auxiliary Language Model Train-
ing leverages data and annotations from related
tasks or languages to enhance performance on the
target task (Zhang et al., 2020). These methods
reduce the burden of data annotation and extend
the applicability of deep learning models. Our
study investigates zero-shot and few-shot learning
methodologies for Arabic NLP tasks, particularly
focusing on Named Entity Recognition (NER) and
Sentiment Analysis. NER involves identifying and
categorizing entities such as names, locations, and
organizations within text, while sentiment analysis



aims to understand the expressed sentiment, pro-
viding valuable insights (Li et al., 2020; Tan et al.,
2023). We explore zero-shot and few-shot learning
techniques as flexible solutions for classification
tasks in under-resourced languages like Arabic and
code-switching contexts. Utilizing transfer learn-
ing, notably through approaches such as Pattern
Exploiting Training (PET) (Schick and Schiitze,
2020a,b) and Better-few-shot learning in language
models (LM-BFF) (Gao et al., 2020), we elaborate
on our methodology, adapting these techniques to
our tasks, and assess their performance on both
monolingual Arabic and code-switched Arabic-
English data. Through our evaluation, we demon-
strate significant performance improvements, par-
ticularly with LM-BFF, highlighting the potential
of these approaches in addressing data limitations
and advancing NLP in diverse linguistic environ-
ments.

2 Related Work

Advancements in zero-shot and few-shot learning
within language processing have been notable, par-
ticularly with the emergence of large-scale lan-
guage models like GPT-3. These models have
been evaluated on a wide range of tasks, includ-
ing machine translation, question answering, and
text summarization in many languages, including
English, Spanish, French, and many others. While
these models excel in various tasks, their extensive
size poses usability challenges and environmental
concerns. GPT-3 comprises 175 billion parameters,
prompting researchers to explore alternative ap-
proaches to achieve comparable performance with-
out such extensive models. Some are developing
models with reduced parameter counts to maintain
high-performance levels, enhancing model accessi-
bility and sustainability (Brown et al., 2020).
Addressing these limitations, alternative meth-
ods are actively explored. PET (Pattern Exploit-
ing Training) addresses the limitations of using
large language models (LLMs) by using cloze
questions and verbalizers to create large training
datasets without extensive manual labeling that al-
lows the model to infer the label from the context
(Schick and Schiitze, 2020a,b). This bridges the
gap between supervised and unsupervised learn-
ing. PET’s effectiveness is shown on various tasks
within SuperGLUE, demonstrating its versatility
(Schick and Schiitze, 2020a,b). iPET, an iterative
variant of PET, improves on PET by continuously

learning from its mistakes. It trains on a dataset
that grows with each training cycle, focusing on ar-
eas where the model previously struggled (Schick
and Schiitze, 2020a,b).

Another noteworthy approach is LM-BFF (better
few-shot fine-tuning) which efficiently fine-tunes
LLMs with minimal data. Unlike traditional meth-
ods, it uses prompts and task demonstrations dur-
ing fine-tuning, achieving good results on few-shot
tasks (e.g., sentiment analysis, question answering)
in various languages while requiring less computa-
tion (Gao et al., 2020). This makes LM-BFF partic-
ularly useful for situations with limited labeled data
or for deploying LLMs on resource-constrained de-
vices.

Another method that was introduced is BitFit.
BitFit is a method for fine-tuning LLMs like GPT.
It works by modifying only a small part of the
model, specifically the bias terms, to achieve a spe-
cific task (Zaken et al., 2021). This makes BitFit
more efficient and requires less memory than tradi-
tional fine-tuning methods. Even with this limited
modification, BitFit can achieve accuracy compara-
ble to traditional methods, especially when there is
not a lot of data available for training (Zaken et al.,
2021).

Another research paper focused on the Arabic
zero-shot few-shot learning problem. The research
introduces a self-training method for Arabic se-
quence labeling tasks that utilize unlabeled dialec-
tal data to improve performance on Named Entity
Recognition (NER) and Part-of-Speech (POS) tag-
ging (Khalifa et al., 2021). This method achieves
state-of-the-art accuracy on various Arabic datasets,
demonstrating its effectiveness in handling limited
labeled data and diverse dialects (Khalifa et al.,
2021).

Another approach addresses the problem of zero-
shot NLU for code-switching (mixing languages)
using multilingual code-switching data augmenta-
tion (Krishnan et al., 2021). By randomly translat-
ing English text into various languages and using
multilingual datasets, the research explores how
code-switching improves performance in languages
like Hindi and Turkish (Krishnan et al., 2021). This
method, especially effective for languages distant
from English, achieves higher intent accuracy and
slot F1 scores (Krishnan et al., 2021).



3 Methodology

We explored the effectiveness of applying zero-
shot and few-shot learning techniques to Arabic
and code-switching data, a domain often under-
represented in NLP research. To address this gap,
we implemented and customized two existing tech-
niques, Pattern Exploiting Training (PET) and Bet-
ter Few-Shot Fine-tuning for Language Models
(LM-BFF), to accommodate the unique linguistic
complexities of Arabic and code-switching. Our
objective was to overcome the challenges posed by
limited labeled data and enhance their performance
in this specific domain. Our approach involved fine-
tuning PET using Pattern-Verbalizer Pairs (PVPs)
optimized for Arabic and code-switching, while
LM-BFF underwent adjustments to effectively han-
dle the diverse linguistic structures inherent in these
languages.

3.1 Pattern Exploiting Training (PET)

PET tackles the challenge of limited labeled data
by offering two approaches for model creation:
the base PET model and its iterative variant, iPET.
The first approach that we used is PET. PET lever-
ages human-provided knowledge through Pattern-
Verbalizer Pairs (PVPs). PVPs consist of cloze-
style questions that specifically target the task at
hand. These questions are crafted using patterns
designed to guide the model towards the relevant
information within the data. For instance, a pat-
tern for sentiment analysis might be "The movie
was [MASK]. Overall, it was [MASK] experience."
Here, the model would predict the missing senti-
ment words ("wonderful” and "positive") based on
the context of the sentence.

PET goes beyond simple cloze questions by in-
corporating two key elements: ensembles of mod-
els and unlabeled data. First, PET utilizes an
ensemble of Masked Language Models (MLMs).
These individual models are trained on the cloze-
question transformed data, allowing them to learn
task-specific patterns. During a subsequent knowl-
edge distillation step, the models learn from each
other, collectively improving their performance.
Second, PET leverages unlabeled data to further
enhance its capabilities. This unlabeled data is
transformed using the same patterns as the labeled
data, providing additional context for the models
during training. This process helps mitigate the
risk of overfitting on the limited labeled data.

The second approach we employed is iterative

PET (iPET) to address the challenge of zero-shot
learning, where labeled data for some classes might
be entirely absent. iPET tackles the scenario where
even labeled data for some classes might be entirely
absent. In iPET, we employ multiple generations
of models. The first generation trains solely on
patterns and unlabeled data, establishing a base-
line performance. Subsequent generations leverage
the previous generation’s predictions on unlabeled
data to create a new training dataset. These new
training dataset are then used to progressively ex-
pand the original training dataset and refine the
model’s understanding of the task across genera-
tions. By utilizing PET’s patterns, training strategy,
and using iPET, we aimed to make PET more ef-
fective for the unique challenges posed by Arabic
and code-switching data.

3.2 Better Few-Shot Fine-tuning for
Language Models (LM-BFF)

The third approach that we used is LM-BFF which
stands as a novel approach in NLP, particularly
tailored to tasks necessitating effective adapta-
tion with limited labeled data. The main idea of
LM-BFF lies in its ability to leverage large pre-
trained language models, such as BERT or GPT,
and fine-tune them for specific downstream tasks.
This methodology introduces three distinctive fine-
tuning strategies, each catering to varying degrees
of labeled data availability and task complexity.
The first approach, conventional fine-tuning, fol-
lows the traditional paradigm of adapting the pre-
trained model parameters to the target task using
labeled data. For instance, in a sentiment analysis
task, the model can fine-tune its parameters in order
to recognize small sentiment cues in text snippets,
thereby enhancing its predictive accuracy.
LM-BFF offers innovative solutions for tasks
with scarce labeled data. It uses prompt tuning,
a method that uses natural language prompts to
guide predictions, enabling effective generaliza-
tion to tasks with minimal labeled data. This ap-
proach is particularly useful in sentiment analysis
tasks, where prompts like "The next sentence is?
[MASK] The food was great" can guide the model
to make accurate predictions. LM-BFF also intro-
duces prompt tuning with demonstrations, which
adds an additional layer of supervision during fine-
tuning. Demonstrations showcase correct behavior,
aiding the model in making more informed pre-
dictions. This enhances its ability to generalize
effectively, even in scenarios with sparse labeled



data. In sentiment analysis, for instance, "The next
sentence is? [MASK] The food was great. The
next sentence is? negative The film was awful"
thus this helps the model to understand what labels
it is expected to predict and in what context.

4 Evaluation & Results

To address Arabic Named Entity Recognition, we
employed the ANERcorp dataset, which provides
curated Arabic text for training purposes (Bena-
jiba et al., 2007). For Arabic sentiment analy-
sis, we utilized the ArSATwitter dataset, contain-
ing annotated tweets for sentiment classification
(Saad, 2019). Additionally, for English-Arabic
code-switching sentiment analysis, we relied on
the ArEnSA dataset, an in-house dataset offering
a diverse range of mixed Arabic-English text from
platforms such as Twitter and YouTube.

4.1 PET Method Evaluation

To evaluate the first approach (PET), we optimized
hyperparameters such as pre-trained models, learn-
ing rates, gradient accumulation steps, reproducible
seeds, and mappings, testing alternative values for
enhanced performance. Initially, default hyperpa-
rameters were used, including a learning rate of
1.00E-05, gradient accumulation steps of 1, and a
seed of 13. Subsequent tests explored alternative
values. Additionally, the training datasets consisted
of only 10 rows to evaluate our few-shot results.

4.1.1 Pre-trained Model

We started with evaluating different pre-trained
models (roberta-base, albert-base-v2, arabert-base,
arabert-twitter-base) which showed that arabert-
twitter-base excelled, especially on Arabic tasks as
shown in Table 1. This is likely due to its training
on 60 million Arabic tweets, leading to a 10% im-
provement in understanding human-like sentences
compared to arabert-base (Antoun et al.). It even
performed well on the ArEnSA dataset, demon-
strating strong multilingual capabilities.

Table 1: Comparison of Different Models on Each
Dataset (PET)

Model ANERCorp ArSATwitter ArEnSA
F1-Score | Acc | Fl-Score | Acc | Fl-Score | Acc
roberta-base 0.158 0.192 0.539 0.540 0.333 0.356
albert-base-v2 0.098 0.223 0.438 0.521 0.412 0.488
arabert-base 0.210 0.281 0.528 0.544 0.365 0.469
arabert-twitter-base 0.294 0.369 0.728 0.729 0.504 0.534

4.1.2 Hyperparameters

After fine-tuning a pre-trained model, we optimized
multiple hyperparameters (learning rate, gradient
accumulation steps, random seed) on our three
datasets to find the best combination that maxi-
mizes performance. This achieved an accuracy of
0.371 and an Fl-score of 0.359 for ANERCorp
(learning rate: 2.00E-05, gradient accumulation
steps: 1, random seed: 21), an F1-score of 0.735
and accuracy of 0.735 for ArSATwitter (learning
rate: 1.00E-05, gradient accumulation steps: 2,
random seed: 13), and an accuracy of 0.631 and
an Fl-score of 0.584 for ArEnSA (learning rate:
5.00E-05, gradient accumulation steps: 1, random
seed: 13).

4.1.3 Verbalizer

PET’s performance relies on the verbalizer, which
connects target labels to the model’s vocabulary.
The verbalizer should accurately capture the seman-
tic meaning of labels while the model understands
them. Using a larger verbalizer can improve per-
formance by mapping multiple labels to a single
category, capturing synonyms and linguistic vari-
ations. Significant improvements were observed
across all datasets, with ANERCorp’s F1-score and
accuracy increasing significantly. ArEnSA saw
the most significant boost, reaching an F1-score of
0.610 and an accuracy of 0.638. Even ArSATwitter,
which already performed well, benefited, achieving
an Fl-score of 0.748 and an accuracy of 0.749 as
shown in Table 2. These results emphasize the im-
portance of a rich verbalizer in PET for improved
performance across various tasks.

Table 2: Comparison Small and Large Verbalizer on
Each Dataset (PET)

Verbalizer Dataset
ANERCorp ArSATwitter ArEnSA
F1-Score | Acc | F1-Score | Acc | F1-Score | Acc
Small 0.359 0.371 0.735 0.735 0.584 0.631
Large 0.390 0.445 0.748 0.749 0.610 0.638

4.1.4 Patterns

We then focused on pattern exploration. Patterns
act as instructions for the model, influencing how
it interprets and predicts labels in specific language
contexts. We began with a single pattern to es-
tablish a baseline, but the choice of patterns sig-
nificantly impacts the model’s ability to perform
well. There are three main pattern categories: null,
prompt, and punctuation patterns.
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Figure 3: F1-Score for ArEnSA

Figure 4: Comparative F1-Score across Datasets Featur-
ing 18 Distinct Patterns Ranging from 0-1 Null Patterns,
2-3 Prompt Patterns, and 4-17 Punc Patterns. The analy-
sis extends to C1-C10 and explores the top 4 individual
patterns in various combinations.

Table 3: Top 4 Patterns Results for each Dataset and
Best Combination (PET)

Top 4 Patterns Dataset
ANERCorp ArSATwitter ArEnSA
F1-Score | Acc | Fl-Score | Acc | Fl-Score | Acc
PO 0.541 0.575 0.760 | 0.760 | 0.658 0.697
P1 0.538 0.561 0.751 0.752 | 0.653 0.700
P2 0.530 | 0.561 0.750 | 0.750 | 0.653 0.687
P3 0.509 0.528 0.748 0.749 | 0.647 0.681
Best Combination 0.545 0.568 0.762 | 0.762 | 0.660 0.698

While prompt patterns have shown success in
other languages, we focused more on punctuation
patterns due to challenges in designing effective
prompts for complex Arabic sentences. We tested
a total of 18 patterns (2 null, 2 prompt, and 14
punctuation) for each dataset. The top four per-
forming patterns from each dataset are highlighted
in Table 3. An example, for null patterns, is "'x
[MASK]" and for prompt patterns, is ""[MASK]
42, L)l et Ix" and for punctuation patterns, is

"x? [MASK]'" where x represents the input sen-
tence and [MASK] represents the label that the
model will predict.

To further refine our approach, we went beyond
individual patterns and explored combinations. We
selected the top four patterns from all 18 tested (in-
cluding null, prompt, and punctuation) and tested
every possible combination. The best combination
became the foundation for further testing. This
meticulous selection ensures the chosen patterns ef-
fectively guide the model for superior performance.

For a visual representation of how pattern se-
lection affects performance, see Figure 4. This
figure shows scatter plots for F1-score across three
datasets, encompassing the results of all 18 indi-
vidual patterns and all combinations of the top four
patterns. This visualization helps us understand the
impact of both individual patterns and their combi-
nations on the model’s ability to adapt and perform
well in various NLP tasks.

4.1.5 PET with Different Sizes

After determining optimal hyperparameters and
pattern combinations, we explore how training
dataset size affects PET models, crucial for un-
derstanding adaptability and scalability. Previous
tests used a fixed size of 10 rows, but expanding to
10-100 rows shows how dataset size impacts PET’s
efficacy. This reveals PET’s performance on larger
datasets, insights into generalization, and captur-
ing task nuances. Systematically increasing data
size provides valuable insights into PET’s robust-
ness, revealing performance trends and potential
limitations. Figures 5 and 3 visualize these trends.
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4.2 iPET Method Evaluation

Secondly, we evaluate iPET. iPET, an extension
of standard PET, employs an iterative training pro-
cess with multiple model generations, each trained
on datasets of increasing sizes. The methodology
excels in distilling knowledge across generations,
enabling subsequent models to benefit from col-
lective insights. We will now explore how iPET
performs in comparison with PET and see how it



performs with different generation sizes, zero-shot,
and different training dataset sizes

4.2.1 Different Generations

iPET builds on PET by training multiple gener-
ations of models on increasingly larger datasets.
This iterative process lets each generation benefit
from the knowledge of previous ones. We com-
pared iPET’s performance to PET’s across differ-
ent generation sizes, zero-shot learning tasks, and
various training dataset sizes.

The evaluation involved four generation sizes
with a fixed training dataset size. As expected,
both F1-score and accuracy metrics consistently
improved with more generations as shown in Table
4. This highlights the effectiveness of iPET’s itera-
tive refinement, where each generation builds upon
the accumulated knowledge. This is particularly
evident in the ANERCorp dataset, where metrics
significantly improved across generations. This
demonstrates the model’s ability to learn and adapt
through successive iterations.

Table 4: Comparison Between iPET Generations

iPET Generations Dataset
ANERCorp ArSATwitter ArEnSA
Fl-Score | Acc | Fl-Score | Acc | F1-Score | Acc
Gl 0.526 0.544 0.758 0.758 0.655 0.698
G2 0.586 0.614 0.753 0.753 0.672 0.713
G3 0.596 0.631 0.753 0.753 0.694 | 0.730
G4 0.602 | 0.636 0.767 0.768 0.691 0.715

4.2.2 iPET Zero-shot

In zero-shot learning, iPET utilizes iterative knowl-
edge accumulation to predict unseen classes with-
out labeled examples. It draws on insights from
previous generations to generalize to unfamiliar
linguistic contexts. By employing the best pattern
combination identified earlier, iPET demonstrates
adaptability to evolving language, achieving pos-
itive results across all datasets: ANERCorp with
an F1-score of 0.270 and accuracy of 0.307, Ar-
SATwitter with an F1-score of 0.584 and accuracy
of 0.655, and ArEnSA with an F1-score of 0.320
and accuracy of 0.405. These results underscore
iPET’s versatility and potential for handling unseen
class challenges in NLP tasks.

4.3 LM-BFF Method Evaluation

Following the PET methodology, we adopted a
parallel approach to optimize LM-BFF for our ob-
jectives, focusing on adjusting hyperparameters to
match the unique characteristics of various datasets.
This involved investigating key parameters such as

learning rate, gradient accumulation steps, and seed
values, starting with default settings of 1.00E-05,
1, 13, and 16 rows per label for training size. Ini-
tial tests assessed performance across datasets with
these defaults, followed by further experiments to
refine these values for enhanced flexibility and effi-
ciency. This iterative process ensured LM-BFF’s
robustness and adaptability in different scenarios.

4.3.1 Hyperparameters

For the third approach, we concentrated on optimiz-
ing LM-BFF’s hyperparameters, including learning
rate, gradient accumulation steps, and random seed
value, to achieve optimal performance for each
dataset. The model was iteratively adjusted to im-
prove flexibility and efficiency. The pre-trained
model, arabert-twitter-base, was chosen for its ef-
fectiveness on Arabic datasets. Hyperparameter
tuning yielded promising results, with F1-scores
of 0.613 and 0.626 for ANERCorp (learning rate:
5.00E-05, gradient accumulation steps: 1, random
seed: 13), 0.775 and 0.775 for ArSATwitter (learn-
ing rate: 5.00E-05, gradient accumulation steps: 1,
random seed: 42), and 0.697 and 0.714 for ArEnSA
(learning rate: 2.00E-05, gradient accumulation
steps: 1, random seed: 13).

4.3.2 Types

Using LM-BFF, we tested three methods for model
creation: prompts with demonstrations, prompts
alone, and traditional fine-tuning, each addressing
sequence classification tasks differently. Compar-
ing results across datasets, "prompts with demon-
strations" consistently outperformed others, with
Fl-scores listed in Table 5. Though "prompts
alone" showed a slight improvement over fine-
tuning, the difference was minimal. Traditional
fine-tuning exhibited notably lower performance,
emphasizing the effectiveness of incorporating
prompts, especially those with demonstrations, for
optimal sequence classification performance with
LM-BFF.

Table 5: Comparison of Different Types on Each Dataset
(LM-BFF)

Types Dataset
ANERCorp ArSATwitter ArEnSA
F1-Score | Acc F1-Score | Acc F1-Score | Acc
Prompt-demo | 0.613 0.626 0.779 0.775 | 0.697 0.714
Prompt 0.620 0.622 0.773 0.767 | 0.690 0.688
Fine Tune 0.586 0.598 0.730 0.730 | 0.673 0.677




4.3.3 LM-BFF with Different Sizes

We conducted experiments on LM-BFF’s perfor-
mance with different dataset sizes, using three con-
figurations: 8, 16, and 32 rows per label. Results
showed consistent improvements in performance
as training data size increased, indicating a clear
trend in the model’s handling as shown in Table 6.

Table 6: Comparison of Different Sizes for Each Dataset
(LM-BFF)

Sizes Dataset

ANERCorp ArSATwitter ArEnSA
F1-Score | Acc F1-Score | Acc F1-Score | Acc
num_labels x 8 | 0.568 0.579 0.733 0.742 | 0.523 0.524
num_labels x 16 | 0.613 0.626 0.775 0.775 | 0.697 0.714
num_labels x 32 | 0.670 0.686 0.819 0.819 | 0.730 0.744
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Figure 6: F1-Score for Different Templates

Table 7: Top 4 Templates Results for each Dataset (LM-
BFF)

Top 4 Templates Dataset
ANERCorp ArSATwitter ArEnSA
F1-Score | Acc | F1-Score | Acc | Fl-Score | Acc
TO 0.665 0.661 0.783 | 0.783 0.783 0.787
T1 0.655 0.672 0.780 | 0.780 0.779 0.789
T2 0.653 0.667 0.771 0.771 0.771 0.776
T3 0.650 | 0.673 | 0.769 | 0.770 0.755 0.763

LM-BFF uses templates like PET prompts to
understand data, combining them with demonstra-
tions. The same 18 templates, including null,
prompt, and punctuation patterns, were used in
PET experiments. Prompt patterns significantly
improved performance compared to PET.

Figure 6 depicts the performance metrics associ-
ated with 18 templates, offering insights into how

templates influence model behavior in sequence
classification tasks. The top-performing templates
for each dataset are outlined in Table 7, displaying
their respective F1-scores and accuracies. These
findings underscore the adaptability of LM-BFF
and highlight the pivotal role of templates in refin-
ing its behavior for NLP tasks.

4.3.5 LM-BFF Zero-shot

LM-BFF demonstrates remarkable versatility in
NLP tasks, particularly in zero-shot scenarios,
where it encounters unseen classes using input pat-
terns and verbalizers. Its prompt-based approach
allows users to expand its capabilities without fine-
tuning for each new class, relying on learned pat-
terns for predictions. Table 8§ illustrates the impact
of top templates on zero-shot performance across
datasets, underscoring the significance of template
selection for optimal results.

Table 8: Zero-shot Results on different Templates and
Traditional Fine Tuning (LM-BFF)

Zero-shot Dataset
ANERCorp ArSATwitter ArEnSA
F1-Score | Acc | Fl-Score | Acc | Fl-Score | Acc
TO 0.243 0.327 0.686 0.686 0.172 0.312
Tl 0.129 0.229 0.392 0.522 0.296 0.358
T2 0.235 0.307 0.594 0.606 0.226 0.334
T3 0.287 0.384 0.635 0.649 0.240 0.342

4.4 Final Results

Table 9: Comparison between different methods

Line Examples Methods Dataset
ANERCorp ArSATwitter ArEnSA

Fl-Score  Acc  Fl-Score  Acc  Fl-Score  Acc
1 unsupervised 0.180 0.226 0.375 0.471 0.259 0.304
2 T=0 Fine-tuning 0.156 0.207 0.550 0.553 0.302 0.401
3 LM — BF Fyrompt—demo 0.287  0.384 0.686 0.686 0296  0.358
4 iPET 0.269 0.307 0.584 0.655 0.320  0.406
5 supervised 0.166 0.187 0.470 0.501 0.480 0.566
6 T=10 Fine-tuning 0.295 0.314 0.691 0.691 0.599 0.604
7 LM — BF Fprompt—demo 0410 0453 0.693 0706 0729  0.747
8 PET 0.545 0.568 0.762 0.762  0.660  0.698
9 supervised 0.149 0.221 0.624 0.625 0.677 0.697
10 T= 100 Fine-tuning 0.638 0.646 0.819 0.829 0.815 0.820
11 LM = BF Fprompt—demo~ 0.650  0.666  0.830  0.850  0.820  0.826
12 PET 0.651 0.707 0.780 0.780 0.716 0.746
13 supervised 0.459 0.495 0.757 0.757 0.833 0.839
14 T= 500 Fine-tuning 0.689 0.696 0.881 0.881 0.855 0.859
15 LM — BFF,,, emo 0.683 0.693 0.893 0.893  0.864  0.868
16 PET 0.707 0.727 0.870 0.870 0.845 0.851
17 supervised 0.575 0.633 0.877 0.877 0.865 0.869
18 T= 1000 Fine-tuning 0.700  0.708 0.904 0.904  0.863 0.864
19 LM — BF Fprompt—demo 0.702 0.712 0.914 0.914  0.875 0.878
20 PET 0.752  0.765 0.905 0.905 0.873 0.878
21 Full Dataset Previous SOTA 0.860 NA NA 0.970  0.860 NA

In the final stages of evaluating the methods, we
did an exhaustive investigation focused on identi-
fying optimal templates and patterns for PET and
LM-BFF techniques which can all be seen in Table
9. By meticulously selecting suitable templates
and patterns for each dataset, the study achieved
remarkable results, surpassing the previously es-
tablished state-of-the-art (SOTA) results for the



ArEnSA dataset. The comparative analysis in-
corporated results from fine-tuning with Arabert-
twitter, which consistently delivered optimal out-
comes. Notably, the LM-BFF approach outper-
formed PET and traditional fine-tuning in zero-shot
learning for ANERCorp and ArSATwitter datasets,
achieving F1-scores of 0.287 and 0.686 for ANER-
Corp and ArSATwitter, respectively. Conversely,
the ArEnSA PET method exhibited superior perfor-
mance with an F1-score of 0.320 and an accuracy
of 0.406.

In few-shot learning scenarios, PET demon-
strated significant performance with limited data,
achieving an F1-score of 0.545 and an accuracy
of 0.568 for ANERCorp, and an F1-score and ac-
curacy of 0.762 for ArSATwitter. The LM-BFF
method proved optimal for ArEnSA, reaching an
F1-score of 0.729 and an accuracy of 0.747. Upon
expanding the training dataset to 100 and 500
rows, PET yielded peak performances for AN-
ERCorp, while LM-BFF showed superior results
for ArSATwitter and ArEnSA datasets. Remark-
ably, employing the LM-BFF method with a dataset
size of 1000 instances yielded significant improve-
ments, surpassing previous SOTA benchmarks for
ArEnSA, achieving an F1-score of 0.875 and an
accuracy of 0.878. Although falling slightly short
for ANERCorp and ArSATwitter, the outcomes re-
mained remarkably close to the SOTA benchmarks,
showcasing the potential of the methods even with
limited resources.

5 Conclusion and Future Work

In conclusion, our paper underscores the effective-
ness of zero-shot and few-shot learning methods,
notably PET and LM-BFF, in bolstering NLP mod-
els’ adaptability to novel domains and tasks with
minimal supervision. Through our exploration fo-
cused on Arabic language processing and code-
switching challenges, we achieved significant ad-
vancements, surpassing previous benchmarks on
the ArEnSA dataset.

Specifically, our experiments yielded notable re-
sults including an F1-score of 0.752 for the ANER
dataset, an accuracy and F1-score of 0.914 for the
ArSaTwitter dataset, and an impressive F1-score
of 0.875 for the code-switched ArEnSA dataset,
surpassing previous benchmarks by 1.5%.

Looking ahead, addressing computational con-
straints, refining linguistic techniques tailored for
Arabic, exploring multilingual embeddings, and

mitigating information loss from sentence trunca-
tion emerge as critical areas for future inquiry. By
advancing research in these domains, we aim to
propel Arabic NLP forward and cultivate robust nat-
ural language processing models capable of adeptly
navigating diverse linguistic landscapes.

6 Limitations

The limitations of our study encompass several key
challenges that influenced our approach and find-
ings. Firstly, our reliance on Google Colab for con-
ducting experiments posed significant constraints
due to memory limitations and intermittent GPU
availability. These factors resulted in delays and
inefficiencies, particularly affecting the pace and
reliability of our experimentation process. Despite
these challenges, utilizing Colab was deemed nec-
essary over local execution due to its practicality,
albeit at the expense of optimal resource utilization.

Secondly, The complexity of Arabic and code-
switched data presents significant challenges in de-
veloping effective patterns and verbalizers. Craft-
ing precise mappings that balance specificity and
generality is crucial for model robustness across di-
verse linguistic contexts. Existing pre-trained mod-
els have limitations in handling code-switching and
limited labeled data, highlighting the need for im-
proved multilingual embeddings and specialized
pre-training techniques tailored to Arabic’s linguis-
tic characteristics.

Moreover, The model’s ability to understand
context was compromised by truncating input sen-
tences, causing potential information loss. This
compromise, while necessary for computational
feasibility, could also reduce the accuracy of the
models in predicting labels. These limitations sug-
gest the need for future research to improve zero
and few-shot learning techniques in cross-lingual
classification tasks.
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