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ABSTRACT

The increasing capabilities of Large Language Models (LLMs) have made natural
language explanations a promising alternative to traditional feature attribution
methods for model interpretability. However, while these explanations may seem
plausible, they can fail to reflect the model’s underlying reasoning faithfully. The
idea of faithfulness is critical for assessing the alignment between the explanation
and the model’s true decision-making mechanisms. Although several faithfulness
metrics have been proposed, they lack a unified evaluation framework. To address
this limitation, we introduce CAUSAL DIAGNOSTICITY, a new evaluation frame-
work for comparing faithfulness metrics in natural language explanations. Our
framework extends the idea of diagnosticity to the faithfulness metrics for natural
language explanations by using model editing to generate faithful and unfaithful ex-
planation pairs. We introduce a benchmark consisting of three tasks: fact-checking,
analogy, and object counting, and evaluate a diverse set of faithfulness metrics,
including post-hoc explanation-based and chain-of-thought (CoT)-based methods.
Our results show that while CC-SHAP significantly outperforms other metrics,
there is substantial room for improvement. This work lays the foundation for future
research in developing more faithful natural language explanations, highlighting
the need for improved metrics and more reliable interpretability methods in LLMs.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have opened up new possibilities in terms
of explainability. These models’ evolving capabilities have made natural language explanations
preferable over traditional feature attribution methods. Additionally, most LLMs can provide expla-
nations for their predictions without much additional cost (Wei et al.,[2022). While these natural
language-based explanations can be valuable, practitioners must exercise caution before relying on
them. Despite appearing plausible, these explanations may not accurately reflect the model’s inner
reasoning mechanism, potentially leading practitioners astray (Turpin et al.l 2023).

The idea of faithfulness aims to assess how accurately explanations reflect the true reasoning mech-
anism of the model. While numerous methods have been proposed to measure faithfulness for
natural language-based explanations, they are criticized for not adequately considering the model’s
inner workings, relying instead on simplistic consistency measures (Parcalabescu & Frankl, 2023)).
Furthermore, while many faithfulness metrics have been developed, currently there are no reliable
evaluation frameworks for comparing them. To address this gap in the field, we introduce a new
evaluation framework, CAUSAL DIAGNOSTICITY, along with a new benchmark for comparing
various faithfulness metrics. Our framework extends the notion of diagnosticity (Chan et al., 2022b)),
which measures how often a faithfulness metric favors faithful explanations over unfaithful ones, and
applies it to faithfulness metrics for natural language explanations. We investigate model editing
approaches for causally generating faithful and unfaithful explanation pairs and evaluate diagnosticity
through three tasks. These tasks include (1) a fact-checking task, (2) an analogy task, and (3) an
object counting task. Figure [T|shows an overview of our framework. We evaluate a diverse set of
faithfulness metrics, including post-hoc explanation-based and chain-of-thought (CoT)-based met-
rics: Counterfactual Edits (Atanasova et al.,|2023)), Simulatability, metrics based on corrupting CoT
explanations (Lanham et al.| 2023)), and CC-SHAP (Parcalabescu & Frankl 2023)). Our evaluation
shows that while most metrics fail to achieve high diagnosticity scores, CC-SHAP significantly
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outperforms the others, though there is still room for improvement in developing better metrics.

Our key contributions are:

* A new framework for evaluating faithfulness metrics for natural language explanations

* A new dataset with three tasks for evaluating these metrics

* A comprehensive evaluation of prominent faithfulness metrics to guide practitioners in

selecting the most reliable metrics

By offering a test bed for evaluating faithfulness
metrics for natural language explanations, this
study exposes the limitations of existing met-
rics and highlights the need for improved ones.
In this role, our work serves as the first step in
a broader research initiative aimed at develop-
ing more faithful natural language explanations.
With a test bed in place and an assessment of the
current state of existing metrics, future research
should focus on developing better faithfulness
metrics and, subsequently, models that generate
more faithful explanations.

2 BACKGROUND

Faithfulness Faithfulness measures the ex-
tent to which explanations reflect the true rea-
soning mechanisms of models. Formally, let
My denote a LLM parameterized by 0, oper-
ating on a token set )V such that My(t") =
o, where t" = (t, ), ... ¢} ) and t =
(UM LN, ) s L € V), Ny and Noy
represent the input and output sequence lengths.
The input and output sequences can take many
forms. For the simplest case t" = x and

Is Rihanna
singer?
No, Rihanna is a

lawyer, not
singer.

g2 f

2. EXPLANATION GENERATION

—
Rihanna is a ole
lawyer.

Rihanna is a
researcher.

1. MODEL EDITING

faithful explanation

Rihanna is a lawyer, not
singer. —

unfaithful explanation

Faithfulness
Measurement

3. DIAGNOSTICITY EVALUATION

Figure 1: Our framework consists of three stages:
(1) Model Editing: applying counterfactual ed-
its to the models; (2) Explanation Generation:
generating faithful and unfaithful explanation pairs
using the edited models, or synthetically generat-
ing such pairs based on the edits; (3) Diagnostic-
ity Evaluation: assessing the chosen faithfulness
metric with one of the edited models using the
faithful-unfaithful explanation pairs. Diagnostic
faithfulness metrics should assign a higher faith-
fulness score to the faithful explanation than to the
unfaithful one.

t°" = y where (x,y) is an input and output

pair for any task. With a proper prompt pro-

vided, the output can take the form t°* = y @ e for post-hoc explanations or t°" = & @ y for
chain-of-thought (CoT) explanations, where € is the explanation and & represents the concatenation
of two sequences.

Based on these definitions, we define a faithfulness metric F as a scalar valued function:

F(x,y,€,0)=s ey
where s € R represents the level of faithfulness of the explanation €, for the given input-output
pair (x, y) and the model parameterized by . While explanations can take different forms, such as
importance scores, here we focus on text-based explanations.

2.1 FAITHFULNESS METRICS

In this study, we focus on seven prominent faithfulness metrics: (1) Counterfactual Edits (Atanasova
et al.;,2023), (2) Simulatability, metrics based on corrupting CoT explanations (Lanham et al., 2023)
(including (3) Early Answering, (4) Adding Mistakes, (5) Paraphrasing, and (6) Filler Tokens), and
(7) CC-SHAP (Parcalabescu & Frank, 2023). While Simulatability and Counterfactual Edits are
designed for post-hoc explanations, the others are tailored for CoT explanations. Notably, CC-SHAP
is applicable to both types of explanations.

Counterfactual Edits |Atanasova et al.| (2023) propose a new metric based on the rationale that an
explanation is unfaithful if the model changes its prediction after a counterfactual intervention to the
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input, while the explanation fails to reflect the intervention. A significant limitation of this approach
is the need to train a separate neural editor for each model-dataset pair to make such counterfactual
interventions. Instead, we follow their random baseline based on the same rationale, where they insert
a random adjective before a noun or a random adverb before a verb, as |Parcalabescu & Frank (2023)
do. In this approach, an explanation is considered unfaithful if the prediction changes after word
insertion and the explanation fails to mention the inserted words.

Simulatability Simulatability is based on measuring the predictiveness of explanations regarding
the label (Doshi-Velez & Kim||2017; Hase & Bansal,|2020; Hase et al., |2020; Wiegrefte et al.,|2020;
Chan et al.} 2022a)). A faithful explanation should convey sufficient information about the model’s
reasoning so that a simulator can predict the model’s outputs when provided with the input and
explanations. We follow (Chan et al.|(2022a)’s definition of simulatability as 15 (y; | @i, e;) — 1s(y; |
x;), where 15(b | a) is the accuracy of S in predicting b given a.

Corrupting CoT |Lanham et al.|(2023)) focus on the unfaithfulness of Chain-of-Thought (CoT)
explanations. They propose four types of corruption: (1) Early Answering, which involves truncating
the CoT to get an early answer; (2) Adding Mistakes, where a helper language model introduces
mistakes into the original CoT, and the original model itself regenerates the remaining part; (3)
Paraphrasing, which involves paraphrasing the original CoT and regenerating the rest; and (4) Filler
Tokens, where the original CoT is replaced with ellipses. If a corruption does not change the original
prediction, then the explanation is not faithful.

CC-SHAP |Parcalabescu & Frank (2023)) measure faithfulness by testing the alignment of input
contributions to prediction and explanation using SHAP (Lundberg & Lee, [2017)) importance scores.
For each example, they first compute importance scores with respect to the prediction for each token
in the input. Then, they compute importance scores with respect to each token in the explanation and
aggregate them. Finally, they measure the convergence of the two distributions of importance scores.
Their method is applicable to both post-hoc and Chain-of-Thought (CoT) explanations.

2.2 MODEL EDITING

In our framework for evaluating faithfulness metrics, we use model editing approaches to generate
faithful-unfaithful explanation pairs by modifying specific facts within LLMs. The need for model
editing approaches stems from the fact that the knowledge of LLMs can become outdated over time.
For example, after a new election, they might present outdated knowledge about the head of a state.
An array of model editing methods has been proposed to address this problem in a feasible way,
allowing LLMs to stay up-to-date without altering unrelated knowledge (Cohen et al., 2024; |Zhang
et al., 2024; Patil et al [2023} |Geva et al., 2023} |Gupta et al., [2023} [Hartvigsen et al., [2023} [Hase
et al., 2023} Tan et al., |2024; [Yu et al., [2023; Zheng et al., [2023; Meng et al.,[2022; Mitchell et al.,
2022)). Such techniques operate on knowledge triplets consisting of subject s, object o, and relation
r. For instance, they can update (s = Donald Trump, r = is the president of, o = the United States)
to (s = Joe Biden, r = is the president of, 0 = the United States) while keeping other information
unchanged. In this study, we explore two model editing methods: (1) MEMIT (Meng et al., |2023)),
a locate-then-edit approach, which enables successful bulk edits, and (2) In-Context Knowledge
Editing, a memory-based alternative,(Zheng et al., [2023]).

3 METHOD

Our CAUSAL DIAGNOSTICITY framework is inspired by the idea of diagnosticity. We begin by
summarizing the idea of diagnosticity in which was introduced by |(Chan et al.| (2022b) for
evaluating faithfulness metrics tailored for feature attribution methods. Next, in@ we introduce
CAUSAL DIAGNOSTICITY, describing how it builds on diagnosticity and extends it to natural
language explanations in a causal manner by incorporating edited models.

3.1 DIAGNOSTICITY

An active body of research has explored accurately measuring faithfulness (Jacovi & Goldberg,
2020). This has led to a multiplicity of faithfulness metrics,and exposed the need of a framework to
evaluate faithfulness metrics. For evaluating different faithfulness evaluation metrics, we adapt the
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notion of diagnosticity proposed by [Chan et al.|(2022b)). Diagnosticity is the measure of how often a
faithfulness metric prefers faithful rather than unfaithful explanations.

Following the notation used by |Chan et al.|(2022b)), formally we denote “u is more faithful than v as
u > v, given that v and v are explanations, regardless of their form (e.g., text, heatmap). Additionally,
we denote the statement “J considers u more faithful than v” as « >z v. Then, the diagnosticity of
the metric F is defined as:

D(F) = P(u =5 v|u > v) 2

Based on estimates in |Chan et al.|(2022b), we use the following formula to calculate diagnosticity:

D(F) ~ S 1w -5 v) 3)

|Z| (uL ’Ui)EZ
where Z is a dataset consisting of pairs (u;, v;) of faithful explanations (u;) and unfaithful explana-
tions (v;) which correspond to input-output pairs (x;, y;).

If higher faithfulness scores represent more faithful explanations, we can revise our notation to:

DF =g D VF (i 9i0) > F (0w 9:,0)) @
(ui,vi)EZ

3.2 CAUSAL DIAGNOSTICITY

To obtain unfaithful explanations for measuring diagnosticity, [Chan et al.| (2022b) use random
feature attribution scores. While random scores can work for structured explanations like feature
attributions — since they still follow the intended format — this approach is not straightforward for
natural language explanations. Random text cannot function as a meaningful explanation and cannot
ensure unfaithfulness in a coherent way.

To address this limitation, we introduce CAUSAL DIAGNOSTICITY, a framework for evaluating
faithfulness metrics through diagnosticity, by generating unfaithful explanations using model editing
methods. In CAUSAL DIAGNOSTICITY, unfaithful explanations are produced by modifying a
model’s internal knowledge. For example, consider the capitalOf relation with the query “Is
Paris the capital of France?” and a model that correctly associates this question to the knowledge
(s = Paris, r = is the capital of, 0 = France). By altering the model’s internal knowledge, we create
two variations where the subject s is replaced with Berlin or London. Both modified models should
answer “No” to the original question but for different reasons: “No, because Berlin is the capital
of France.” and “No, because London is the capital of France.” In particular, each of these two
explanations should be unfaithful to the model that generated the other explanation.

Formally, let y; be the prediction for the input x; while 8 and ¢ be the parameters of the altered

models. O generates the explanation &; and ¢ generates the explanation =,. Then we modify
diagnosticity definition as follows:

(€:,6.)€EZ

Models 6 and ¢ are edited such that &; is faithful to 6, while =, is unfaithful to 6. Depending on the
scenario, 6 and @ can be used interchangeably. Continuing with our running examples of capital cities,
each generated explanation is faithful to its own model but unfaithful to the other model. In these
cases, either model can be used to compute Equation [5|by swapping &; and ¢, as the faithfulness
dichotomy holds regardless. However, in certain scenarios, one of the explanations may be faithful
to both models, limiting the flexibility of choosing models arbitrarily. For instance, in the Analogy
task of our benchmark (see Figure2)), the capitalOf relation is held by only one model, whereas the
cityOf relation is valid for both models. As a result, the corresponding explanation is faithful to both



Under review as a conference paper at ICLR 2025

Is Rihanna a singer?

Fill in the blank: Athens is to Greece like Paris isto ___
(A) Tonga (B) France

[YRihanna is a researcher. 'Lja r.:-she Cabialbiiiancels
[YParis is a city in France.
0 7
No, No, Rihanna is a lawyer, J B, B FEns B c_ity i .F’?”Ce*
. as Athens is a city in
not singer.
Greece.
®, ) . €) ®. °) (y, ©)
(a) Fact Check (b) Analogy
How many of them are fruit? apple, dog, grape Are all of them are fruit? apple, dog, grape
(A)2(B)3 (A) yes (B) no
[Yapple is a fruit. [Tapple is a fruit.
[Ydog is an animal. [Ydog is an animal.
7 7
B } {A dog and grape are fruits.} { B, } { B, apple is an animal. }
®, ) (Y. €) ®, 9) (Y, €)
(c) Object Counting (number) (d) Object Counting (yes/no)

Figure 2: Summary of three tasks with example questions and answers, along with explanations
from the edited models: (a) Fact Check task, (b) Analogy task, and (c) and (d) Object Counting task,
featuring two different types of questions. The blue and orange boxes represent models parameterized
by 6 and 6, respectively, while the dashed boxes within them indicate the counterfactual knowledge
injected into the model through editing. Gray boxes below each model display their output, consisting
of the answer (y) and explanation (£ or £). Although both model pairs produce the same answers,
their reasoning differs, as shown by the explanations that follow the answers.

models. Additionally, the original model € can be used as long as it satisfies respective faithfulness
conditions of the explanation pairs. Nevertheless, we opt to create two edited variants of the models,
even when reflecting factual knowledge, to guarantee that all conditions are met.

4 TASKS

For evaluating different faithfulness metrics, we include three controlled tasks in the CAUSAL
DIAGNOSTICITY framework: (1) a fact-checking task, (2) an analogy task, and (3) an object counting
task. Across all tasks, we aim to test the causal diagnosticity of faithfulness metrics by using
counterfactual models and their corresponding faithful and unfaithful explanations. While we expect
the altered models to reason differently, their explanations may not explicitly reference the altered
aspect. Since our focus is on evaluating faithfulness metrics, we ensure the faithfulness situation of
the explanations by synthetically generating explanations that emphasize the differences between
the models. Figure 2] provides an overview of these tasks, including example inputs, outputs, and
explanations.

4.1 FAcT CHECK TASK

Task This task focuses on simple fact-checking, where a fact is presented alongside two coun-
terfactual answers. For any relation (s;, r;,0;), we present a question that checks its correctness,
accompanied by two counterfactuals: (s;,7;,0;) and (s;,7;,0,). These counterfactuals yield the
same answer but are based on different reasoning. For instance, given the knowledge triplet

9: 9

(s; = "Rihanna”,r; = "is”, 0; = “a singer”), the corresponding question would be ”Is Rihanna a
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singer?” Let the counterfactual objects be 0; = “researcher” and 0, = “’lawyer”. Both counterfactuals
would result in the answer ”No,” but for different reasons.

Dataset We construct our dataset using the COUNTERFACT dataset (Meng et al., 2022), which
consists of knowledge triplets. While COUNTERFACT includes prompts representing knowledge
triplets, we use an LLM (Mistral-7B-Instruct-v@.2) to convert those statements into yes/no
questions. Next, for each object o;, we fetch sibling entities from WikiData to be used as new
counterfactuals. Finally, we generate synthetic explanations corresponding to each counterfactual.
For example, the corresponding explanation €; would be Joe Biden is a researcher, not the president
of the United States” for 0,. Further details about the dataset generation process, including prompts,
can be found in Appendix

4.2 ANALOGY TASK

Task This task is based on analogies exploiting the hierarchical structure between two relations
where 7 C 75 holds. For any (s;, 0;) and (s;, 0,), there exist (s;, 1, 0;) and (s;, 7, 0;) such that
r1 C 7. The task tests the ability to make the analogy s; : 0; :: s; : 0;, or in other words, ”s; is to o;
as s; is to 0;”. We choose 71 and 75 as 7capitalor and relations, respectively. For instance, we
test “’Paris is to France as Berlin is to Germany.” We corrupt one of the models so that the relation
Tcapitalof 1S O longer valid while the relation holds. Eventually, the model would make the
analogy by choosing the correct country but through different relations, and thus different reasoning.

Dataset First, we collect a list of countries and citie then select one capital and one non-capital
city for each country. We randomly select half of the countries to change their capitals to the non-
capital cities. Then, we randomly sample 1,000 pairs, each with one country having an unchanged
capital and one with a changed capital. Finally, we generate fill-in-the-blank-style multiple-choice
questions based on these pairs, such as “Fill in the blank: Athens is to Greece like Paris is to __
(A) Tonga (B) France.” For this example, both the and 7capitalof relations provide sufficient
reasoning to answer as “France”. While the corresponding synthetic explanation, €capita10r, for the
model with unaltered capitals would be ”The capital of France is Paris, as the capital of Greece is
Athens.”, the one for the model with altered capitals, , would be “Paris is a city in France, as
Athens is a city in Greece.”

4.3 OBJECT COUNTING TASKS

Task Inspired by the object_counting task from BIG-bench (bench authors| 2023)), we adapt an
object counting task for evaluating diagnosticity. The task involves counting entities of a given type
from a list of entities. By modifying model knowledge to swap objects across predefined categories,
we ensure the number of entities of the target type remains the same while changing the reasoning
behind the answer. For example, when asked how many of “countertop,” ”grape,” and “kiwifruit”
are fruits, the answer is 2, since “countertop” is a furniture item. If we edit the model to classify
“countertop” as a fruit and “grape” as furniture, the answer remains 2 but due to different reasoning.

Dataset We define five categories with five types each, as shown in Table[2]in Appendix [A]. For
each type, we select 10 representative entities from WikiData. We then reserve 20% of the entities for
reassignment to other types within the same category after model editing. We include two question
types: yes/no questions, asking if all or any items in a list belong to a given type, and number
questions, asking how many items belong to a specific type.

For both types, we randomly determine the number of items & (between 3 and 6) and select a target
type. For yes/no questions, we sample k entities, ensuring that after model editing, the number of
entities of the target type remains unchanged. For number questions, we reassign one entity from the
target type and one from other types to ensure consistency.

We generate 1,000 samples in total, equally divided between the two question types. Further details
about the dataset generation process are included in Appendix [A]

'nttps://www.kaggle.com/datasets/viswanathanc/world-cities-datasets/


https://www.kaggle.com/datasets/viswanathanc/world-cities-datasets/

Under review as a conference paper at ICLR 2025

. ﬁ\)d _chat 2P )

Metric i S“a\-“\s LLaMa—Z-“’ LU"‘Ma 2 G?T-l 6
g CC-SHAP 0.437 0.518 0.665 0.553
g Simulatability 0.014 0.052 0.035 0.033
§ & Counterfact. Edits 0.001 0.000 0.000 0.000
5 Early Answering 0.030 0.033 0.045 0.056
% o Filler Tokens 0.019 0.029 0.025 0.022
~ ¢ Adding Mistakes 0.013 0.047 0.158 0.029
© Paraphrasing 0.160 0.108 0.171 0.029
CC-SHAP 0.559 0.522 0.616 0.547
g CC-SHAP 0.850 0.583 0.657 0.355
é Simulatability 0.006 0.001 0.000 0.000
2 & Counterfact. Edits 0.001 0.000 0.000 0.000
% Early Answering 0.041 0.018 0.110 0.063
: . Filler Tokens 0.041 0.011 0.044 0.145
e Adding Mistakes 0.118 0.023 0.190 0.198
© Paraphrasing 0.123 0.121 0.165 0.235
CC-SHAP 0.859 0.663 0.672 0.411
o g CC-SHAP 0.522 0.460 0.510 0.500
£ é Simulatability 0.031 0.028 0.037 0.034
E & Counterfact. Edits 0.000 0.000 0.000 0.000
S Early Answering 0.109 0.005 0.086 0.120
§ . Filler Tokens 0.065 0.033 0.058 0.074
23 Adding Mistakes 0.124 0.129 0.109 0.164
=) Paraphrasing 0.191 0.173 0.154 0.190
CC-SHAP 0.504 0.467 0.494 0.509

Table 1: The diagnosticity scores of each model for each faithfulness metric across three tasks, along
with the accuracy of each model on each task under standard and CoT prompting. Bold numbers
indicate the highest scores for each model on each task across the two categories of faithfulness
metrics: post-hoc and CoT. ”Mistral-Instruct” refers to the mistral-7b-instruct-v@.2 model.

5 EXPERIMENTS

We present four sets of experiments. First, we report the diagnosticity scores of post-hoc and CoT-
based metrics across three tasks and four LLMs. Second, we conduct an analysis to assess the
reliability of the model edits used for diagnosticity evaluation. Third, we perform an ablation study
where we replace MEMIT with a simplified version of IKE, examining how the choice of model
editing method affects our results. Finally, we conduct another ablation study in which we use
model-generated explanations instead of synthetically generated ones.

5.1 DIAGNOSTICITY EVALUATION OF FAITHFULNESS METRICS

Experimental Setup We evaluate the seven metrics described in Section [2]across four different
LLMs: mistral-instruct-7b-v@.2 (Jiang et al.,[2023), 11ama-2-7b, 11ama-2-7b-chat (Touvron
et al., 2023)), and gpt-3j-6B (Wang & Komatsuzaki,|2021). For our main experiments, we employ
MEMIT as the model editing method and use synthetic explanations to ensure their faithfulness with
respect to the edited model.

Table |1| presents the diagnosticity scores for all faithfulness metrics across three tasks for the
four models. The most notable finding is that CC-SHAP significantly outperforms other methods
(McNemar’s test, p < .01) in each task, for each model, across both post-hoc and CoT-based metrics.
In the post-hoc category, Simulatability shows significantly higher diagnosticity than Counterfactual
Edits across all models for the Object Counting and FactCheck tasks (McNemar’s test, p < .01),
and higher or comparable diagnosticity for the Analogy task. In the Analogy task, Paraphrasing
and Adding Mistakes significantly outperform other CoT-based metrics (McNemar’s test, p < .01),
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following CC-SHAP, across all models with the exception of Adding Mistakes in 11ama-2-7b-chat.
For the Object Counting task, Paraphrasing becomes the second-best CoT-based metric, significantly
outperforming other metrics for all models (McNemar’s test, p < .01) except gpt-j-6b.

Although CC-SHAP outperforms Paraphrasing by a wide
margin, Paraphrasing consistently ranks as the second-
highest diagnosticity metric in most cases, followed by
Adding Mistakes, Early Answering, and Filler Tokens, 035 post-hoc
respectively. However, there are some exceptions to this et

order. For instance, Early Answering ranks as the second-
best metric in the FactCheck task for gpt-j-6b, while
Adding Mistakes ranks second in the Analogy task for
1lama-2-7b. Although this ranking generally holds, the
relative differences are not always statistically significant.

Average Absolute Difference of Faithfulness Scores for CC-SHAP

Average Difference
5 ° o
i o o
5 & S

o
o
&

o

When examining cases where faithfulness metrics fail to

correctly assign higher scores to faithful explanations, we Fact Check °bl“;;°k“”“”g Analoay
find that binary metrics (all except CC-SHAP) often strug- CoT

gle to differentiate between the faithfulness levels of ex- corect

planations, frequently assigning the same score to both.

Across all three tasks, most binary metrics fail in this man-
ner at least 90% of the time. However, some metrics more
frequently assign lower scores to faithful explanations
than to unfaithful ones. For example, Paraphrasing as-
signs lower scores to faithful explanations at least 15% of
the time across all tasks, while Adding Mistakes and Early
Answering do so at least 15% of the time for the Object
Counting task. A closer look at Paraphrasing examples
reveals that the paraphrasing process can lead to signifi-
cant hallucinations, sometimes even causing paraphrases
of contradictory explanation pairs to state the same facts.
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Figure 3: The absolute average dif-
ference in faithfulness scores assigned
to pair of explanations by CC-SHAP
These findings highlight the importance of carefully for cases where CC-SHAP correctly
selecting a helper model when using faithfulness met- assigns higher scores to faithful ex-
rics based on corrupting CoT. Following |Parcalabescu| planations and where it incorrectly
& Frank|(2023), we use 11ama-2-13b-chat as our helper assigns higher scores to unfaithful
model. Similarly, Lanham et al.| (2023) use the same ones, across all tasks, for both post-
model as their predictor and explainer: a 175B-parameter hoc and CoT-based CC-SHAP, using
decoder-only transformer LLM (Vaswani et al.| 2017;Rad} mistral-7b-instruct-ve.2

ford & Narasimhan, 2018; [Radford et al., 2019; Brown

et al.,[2020). While these issues may be less apparent with larger models, practitioners should be
cautious when using a helper model of similar size to the model being tested, particularly for smaller
models.

Since CC-SHAP is a smoother metric, we find no instances where it fails by assigning the same
score to both explanations. To gain deeper insight, we examine the average absolute differences in
faithfulness scores between each pair of explanations. Figure [3| presents these differences for cases
where CC-SHAP correctly assigns higher scores to faithful explanations and where it incorrectly
assigns higher scores to unfaithful ones, across all tasks, for both post-hoc and CoT-based CC-SHAP,
using mistral-7b-instruct-v@.2. The results indicate that the average absolute differences in
faithfulness scores are generally similar for both correct and incorrect cases. However, in the Analogy
task, CC-SHAP better distinguishes between faithful and unfaithful explanations when it performs
correctly compared to when it fails. While this observation aligns with the task in which CC-SHAP
achieves its highest diagnosticity scores, no significant correlation is found between diagnosticity and
the average absolute difference in faithfulness scores.

5.2 RELIABILITY OF EDITS

CAUSAL DIAGNOSTICITY relies on the assumption that, in each given explanation pair, one explana-
tion is faithful to the model being evaluated while the other is unfaithful. To ensure this condition is
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met, we modify the models and use synthetically generated explanation pairs. While these synthetic
explanations logically guarantee faithfulness or unfaithfulness with respect to the edited model, their
practical accuracy depends on the success of the editing method. One way to assess whether the
synthetic explanations align with faithfulness expectations is by comparing the perplexities of the
explanation pairs. Since the only difference between the explanations is related to the aspect modified
by the model edit, the intuition is that the explanation deemed faithful should have a lower perplexity
than the one deemed unfaithful.

Figure 4| shows the frequency with which expla-

nations deemed as faithful have lower peIpleXity PPL Comparison of Synthetic Explanation Pairs
than those deemed as unfaithful, for each task
and each model. While the explanations deemed
faithful generally have lower perplexities than
their unfaithful counterparts across all tasks, the
edits performed for the Fact Check task are par-
ticularly successful, with scores nearing 1.0. In
contrast, the edits for the Analogy and Object
Counting tasks perform relatively worse. The
scores for these two tasks are similar across all N\
models, except for gpt-j-6b, where the edits object_counting
for the Analogy task perform notably worse. . Ul

0
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5.3 EFFECT

OF KNOWLEDGE EDITING METHOD . . .
Figure 4: Frequency of which explanations deemed

We investigate the effect of different model edit- as faithful have lower perplexity than those deemed
ing methods on our results by conducting an s unfaithful, for each task and each model. Higher
ablation study where we replace MEMIT with frqquency indicates the higher success in applied
an alternative approach. Instead of selecting edits.

another locate-then-edit method, we use a sim-

plified version of IKE Zheng et al.|(2023)), a memory-based knowledge editing technique. Details of
this method are provided in Appendix B} Effect of Edit Method

1.0 MEMIT

Figure 5| compares MEMIT and IKE across all faith- l ke

o
©

fulness metrics, with diagnosticity scores averaged
over three tasks. While the diagnosticity scores from
models edited with MEMIT are higher than those
obtained with IKE, the relative relationships between
different metrics remain consistent. This suggests
that the choice of model editing method has no sig-
nificant impact on our conclusions.
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OF MODEL GENERATED EXPLANATIONS

While our main results are derived from using syn- Figure 5: Diagnosticity scores for each metric
thetically generated explanations to form faithful and ©on mistral-7B-instruct-v@.2 using two
unfaithful explanation pairs that accurately reflect the model editing methods: MEMIT and IKE.
applied edits and the differences between the mod- Although the scores are higher when MEMIT

els, we also perform an ablation study using model- 18 used, the ranking of the metrics remains
generated explanations. consistent across both editing methods.

Experimental Setup We evaluate all faithfulness
metrics using mistral-7B-instruct-v@. 2. For model-generated explanations, the length is limited
to 100 tokens.

Figure [6] compares model-generated and synthetic explanations across all faithfulness metrics, with
diagnosticity scores averaged over three tasks. Although CC-SHAP consistently outperforms both
other post-hoc and CoT-based metrics for both explanation types, there is no consistent difference
in the diagnosticity scores between the two explanation types across all metrics. Furthermore, the
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comparative ranking of faithfulness metrics is inconsistent when replacing synthetic explanations
with model-generated ones. Upon examining the model-generated explanations, we observe several
issues. At times, explanations pairs contain hallucinations, making them unfaithful to their own
models and violating the main condition of our framework. Occasionally, explanations are truncated
due to the token limit. In some cases, an explanation may begin appropriately but revert to pre-edit
knowledge. Particularly in the Analogy and Object Counting tasks, models often fail to articulate the
applied edits. While these issues could be attributed to the limited generalizability of model editing
methods, larger models or memory-based editing approaches may help address these challenges
(Yao et al.| 2023). Nevertheless, synthetically generated explanations stand out as a viable option,
especially when considering the computational costs associated with these alternatives.

6 CONCLUSION

In this paper, we introduce a new framework,

CAUSAL DIAGNOSTICITY, to evaluate faith- Effect of Explanation Types
fulness metrics for natural language explana- Explanation Type
tions by extending the notion of diagnosticity.  °s e qenerated

We introduce three new tasks—fact-checking,
analogy, and object counting—while utilizing
model editing to generate pairs of faithful and
unfaithful explanations to measure diagnosticity.
We benchmark popular post-hoc and CoT-based

4
o

Diagnosticity

I
'S

faithfulness metrics across these tasks. The re- 02 | L o '
sults show that most metrics fail to achieve sat- ‘ | |
isfactory diagnosticity scores, with CC-SHAP 00 o ' o O
being a notable exception. Unlike other meth- «T T o Cg,aw‘“?\\\e‘“ éd\(\g"\\{’:,&ﬂ“@ N

ods, CC-SHAP leverages more information by posthoc M @
considering token-wise interactions between the Faithfulness Metric

explanation and the input, which likely allows it

to capture the inner workings of the model bet- Figure 6: Diagnosticity scores for each metric on
ter than methods that simply observe changes in mistral-7B-instruct-v@.2 using model gener-
output after perturbing the input or explanations. ated and synthetically generated explanations.
Despite CC-SHAP’s higher scores, the results

also highlight areas for improvement, particularly in terms of the computational cost and slowness
of CC-SHAP. Based on these findings, developing metrics that focus more on the model’s internal
mechanisms and complex interactions among explanations, inputs, and outputs could be a promising
direction.

We view this study as the first step in the quest for more faithful LLM explanations by providing a test
bed for faithfulness metrics. As our study reveals the inadequacy of existing metrics and underscores
the need for better alternatives, a natural direction for future research is the development of improved
faithfulness metrics, which should then be followed by the creation of more faithful explanation
methods.

7 LIMITATIONS

This study is limited to 7B-parameter models due to the availability of models with published hyperpa-
rameters for MEMIT editing and computational constraints. Additionally, CAUSAL DIAGNOSTICITY
is heavily relies on the effectiveness of the model editing method. While we conduct an ablation
study using the IKE baseline, the utility of model-generated explanations remains largely unexplored.
This is because approaches to address issues in model-generated explanations, such as employing
memory-based knowledge editing methods or using larger models, come with high computational
costs. In particular, memory-based methods lead to lengthy experiments with CC-SHAP due to the
increased context length.
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A DATASET
Figure|/|illustrates the prompt used to convert statements from COUNTERFACT into yes/no questions
for the Fact Check task, utilizing Mistral-7B-Instruct-v@.2. After the datasets are generated

automatically, all instances are carefully reviewed to correct any errors. Table[2]presents the categories
and types used in the Object Counting task.

B MODEL EDITING

B.1 TASK-BASED EDITING TEMPLATES

Table 3| shows the templates we use for editing models in each task. For the FactCheck task, there is a
variety of prompts where the action or situation of the subject differs, but the target is always located
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Category Types

object animal, musical instrument, fruit, vegetable, furniture

occupation scientist, politician, soccer player, actor, singer

company media company, energy company, software company, automotive company,

consulting company
touristic attraction ~ France, Spain, Russia, Turkey, Italy
abstract religion, political ideology, language, branch of science, emotion

Table 2: Categories and corresponding types used in Object Counting task

Please create a yes-no question from the given sentence. Here are some examples:

Sentence: Joe Biden is the president of the United States. Question: Is Joe Biden the
< president of the United States?

Sentence: They play rock. Question: Do they play rock?

Sentence: Quesadilla from Mexico. Question: Is quesadilla from Mexico?

Do not mention your assumptions or assesment towards correctness of question. Do not output
< anything else! Stick with the format.

Sentence: {SENTENCE} Question:

Figure 7: The prompt used for converting statements to questions.

FactCheck
Template #1: ---  subject --- target
The profession of Heath Ledger is king The profession of Heath Ledger is webmaster
Darryl Jones plays blues Darryl Jones plays heavy metal
\ Analogy

Template #1: The capital of country is city

The capital of United Kingdom is London United Kingdom is Birmingham

The capital of United Arab Emirates is Abu Dhabi | The capital of United Arab Emirates is Dubai

Template #2: capital isacityin country

London is acity in United Kingdom

Abu Dhabi is acity in United Arab Emirates

\ Object Counting

Template #1: entity is/is located in type

dog is animal dog is musical instrument

Aspendos Theater is located in Turkey Aspendos Theater is located in Spain

Table 3: Templates used for editing models. Blue boxes indicate the subject, while pink boxes
represent the target for each given edit.

at the end of the prompt. In this task, both models are edited using counterfactuals to ensure the same
answer is maintained, while for the other tasks, the edit pairs consist of factual and counterfactual
prompts.

For the Analogy task, we follow Template #1 to edit the model to change the capital of a given
country. Even for the model where the capitals remain unchanged, we apply this edit in case the
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model lacks knowledge of some countries. For both models, we reinforce the relation by
applying Template #2.

For the Object Counting task, we use the corresponding template in Table [3]to edit the model by
altering the types of entities. For the fouristic attraction category, we use is located in instead of is.
Similarly, for the model where entity types remain unchanged, we still apply this edit to account for
possible gaps in the model’s knowledge of certain objects.

B.2 IN-CONTEXT KNOWLEDGE EDITING (IKE) BASELINE

Zheng et al.|(2023)) leverage In-Context Learning for knowledge editing in LLMs without requiring
parameter updates. They define three types of in-context demonstrations to enhance generalization
(the ability to update knowledge expressed in different textual forms) and specificity (the ability to
avoid altering unrelated knowledge when making edits). These demonstrations are: (1) copy for
injecting new facts, (2) update for improving generalization, and (3) retain for preventing changes to
unrelated knowledge. However, for our IKE experiments, we adopt their simpler PROMPT baseline,
where new facts are directly added to the context. We use the same templates shown in Table 3] but
prepend each relevant edit just before the query. When measuring faithfulness scores, we exclude the
prefix containing these edits from any operations and keep it fixed.

C ADDITIONAL RESULTS

C.1 IKE RESULTS

| Metric | FactCheck | Analogy | Object Counting
g | CC-SHAP 0.418 0.938 0.287
g Simulatability 0.014 0.008 0.032
& | Counterfact. Edits 0.000 0.000 0.000
Early Answering 0.016 0.003 0.057
- Filler Tokens 0.011 0.001 0.075
o | Adding Mistakes 0.027 0.085 0.104
© | Paraphrasing 0.105 0.046 0.167
CC-SHAP 0.460 0.963 0.279

Table 4: The diagnosticity scores of mistral-7b-instruct-v@. 2 for each faithfulness metric across
three tasks, along with the accuracy of each model on each task under standard and CoT prompting
when IKE baseline is used as model editing method. Bold numbers indicate the highest scores for
each model on each task across post-hoc and CoT-based faithfulness metrics.
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