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ABSTRACT

The increasing capabilities of Large Language Models (LLMs) have made natural
language explanations a promising alternative to traditional feature attribution
methods for model interpretability. However, while these explanations may seem
plausible, they can fail to reflect the model’s underlying reasoning faithfully. The
idea of faithfulness is critical for assessing the alignment between the explanation
and the model’s true decision-making mechanisms. Although several faithfulness
metrics have been proposed, they lack a unified evaluation framework. To address
this limitation, we introduce CAUSAL DIAGNOSTICITY, a new evaluation frame-
work for comparing faithfulness metrics in natural language explanations. Our
framework extends the idea of diagnosticity to the faithfulness metrics for natural
language explanations by using model editing to generate faithful and unfaithful ex-
planation pairs. We introduce a benchmark consisting of three tasks: fact-checking,
analogy, and object counting, and evaluate a diverse set of faithfulness metrics,
including post-hoc explanation-based and chain-of-thought (CoT)-based methods.
Our results show that while CC-SHAP significantly outperforms other metrics,
there is substantial room for improvement. This work lays the foundation for future
research in developing more faithful natural language explanations, highlighting
the need for improved metrics and more reliable interpretability methods in LLMs.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have opened up new possibilities in terms
of explainability. These models’ evolving capabilities have made natural language explanations
preferable over traditional feature attribution methods. Additionally, most LLMs can provide expla-
nations for their predictions without much additional cost (Wei et al., 2022). While these natural
language-based explanations can be valuable, practitioners must exercise caution before relying on
them. Despite appearing plausible, these explanations may not accurately reflect the model’s inner
reasoning mechanism, potentially leading practitioners astray (Turpin et al., 2023).

The idea of faithfulness aims to assess how accurately explanations reflect the true reasoning mech-
anism of the model. While numerous methods have been proposed to measure faithfulness for
natural language-based explanations, they are criticized for not adequately considering the model’s
inner workings, relying instead on simplistic consistency measures (Parcalabescu & Frank, 2023).
Furthermore, while many faithfulness metrics have been developed, currently there are no reliable
evaluation frameworks for comparing them. To address this gap in the field, we introduce a new
evaluation framework, CAUSAL DIAGNOSTICITY, along with a new benchmark for comparing
various faithfulness metrics. Our framework extends the notion of diagnosticity (Chan et al., 2022b),
which measures how often a faithfulness metric favors faithful explanations over unfaithful ones, and
applies it to faithfulness metrics for natural language explanations. We investigate model editing
approaches for causally generating faithful and unfaithful explanation pairs and evaluate diagnosticity
through three tasks. These tasks include (1) a fact-checking task, (2) an analogy task, and (3) an
object counting task. Figure 1 shows an overview of our framework. We evaluate a diverse set of
faithfulness metrics, including post-hoc explanation-based and chain-of-thought (CoT)-based met-
rics: Counterfactual Edits (Atanasova et al., 2023), Simulatability, metrics based on corrupting CoT
explanations (Lanham et al., 2023), and CC-SHAP (Parcalabescu & Frank, 2023). Our evaluation
shows that while most metrics fail to achieve high diagnosticity scores, CC-SHAP significantly
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outperforms the others, though there is still room for improvement in developing better metrics.
Our key contributions are:

• A new framework for evaluating faithfulness metrics for natural language explanations
• A new dataset with three tasks for evaluating these metrics
• A comprehensive evaluation of prominent faithfulness metrics to guide practitioners in

selecting the most reliable metrics

📝Rihanna is a 
researcher.

📝Rihanna is a 
lawyer.

1. MODEL EDITING

No, Rihanna is a 
researcher, not 

singer.

No, Rihanna is a 
lawyer, not 

singer.

2. EXPLANATION GENERATION

Rihanna is a researcher,  
not singer.

Rihanna is a lawyer, not 
singer.

faithful explanation

unfaithful explanation

Faithfulness
Measurement

3. DIAGNOSTICITY EVALUATION

Is Rihanna
singer?

Figure 1: Our framework consists of three stages:
(1) Model Editing: applying counterfactual ed-
its to the models; (2) Explanation Generation:
generating faithful and unfaithful explanation pairs
using the edited models, or synthetically generat-
ing such pairs based on the edits; (3) Diagnostic-
ity Evaluation: assessing the chosen faithfulness
metric with one of the edited models using the
faithful-unfaithful explanation pairs. Diagnostic
faithfulness metrics should assign a higher faith-
fulness score to the faithful explanation than to the
unfaithful one.

By offering a test bed for evaluating faithfulness
metrics for natural language explanations, this
study exposes the limitations of existing met-
rics and highlights the need for improved ones.
In this role, our work serves as the first step in
a broader research initiative aimed at develop-
ing more faithful natural language explanations.
With a test bed in place and an assessment of the
current state of existing metrics, future research
should focus on developing better faithfulness
metrics and, subsequently, models that generate
more faithful explanations.

2 BACKGROUND

Faithfulness Faithfulness measures the ex-
tent to which explanations reflect the true rea-
soning mechanisms of models. Formally, let
Mθ denote a LLM parameterized by θ, oper-
ating on a token set V such that Mθ(t

in) =
tout, where tin = ⟨tin

1 , t
in
2 , . . . , t

in
Nin

⟩ and tout =

⟨tout
1 , tout

2 , . . . , tNout⟩ ; tin
i , t

out
i ∈ V , Nin and Nout

represent the input and output sequence lengths.
The input and output sequences can take many
forms. For the simplest case tin = x and
tout = y where (x,y) is an input and output
pair for any task. With a proper prompt pro-
vided, the output can take the form tout = y ⊕ ε for post-hoc explanations or tout = ε ⊕ y for
chain-of-thought (CoT) explanations, where ε is the explanation and ⊕ represents the concatenation
of two sequences.

Based on these definitions, we define a faithfulness metric F as a scalar valued function:

F (x,y, ε,θ) = s (1)
where s ∈ R represents the level of faithfulness of the explanation ε, for the given input-output
pair (x,y) and the model parameterized by θ. While explanations can take different forms, such as
importance scores, here we focus on text-based explanations.

2.1 FAITHFULNESS METRICS

In this study, we focus on seven prominent faithfulness metrics: (1) Counterfactual Edits (Atanasova
et al., 2023), (2) Simulatability, metrics based on corrupting CoT explanations (Lanham et al., 2023)
(including (3) Early Answering, (4) Adding Mistakes, (5) Paraphrasing, and (6) Filler Tokens), and
(7) CC-SHAP (Parcalabescu & Frank, 2023). While Simulatability and Counterfactual Edits are
designed for post-hoc explanations, the others are tailored for CoT explanations. Notably, CC-SHAP
is applicable to both types of explanations.

Counterfactual Edits Atanasova et al. (2023) propose a new metric based on the rationale that an
explanation is unfaithful if the model changes its prediction after a counterfactual intervention to the
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input, while the explanation fails to reflect the intervention. A significant limitation of this approach
is the need to train a separate neural editor for each model-dataset pair to make such counterfactual
interventions. Instead, we follow their random baseline based on the same rationale, where they insert
a random adjective before a noun or a random adverb before a verb, as Parcalabescu & Frank (2023)
do. In this approach, an explanation is considered unfaithful if the prediction changes after word
insertion and the explanation fails to mention the inserted words.

Simulatability Simulatability is based on measuring the predictiveness of explanations regarding
the label (Doshi-Velez & Kim, 2017; Hase & Bansal, 2020; Hase et al., 2020; Wiegreffe et al., 2020;
Chan et al., 2022a). A faithful explanation should convey sufficient information about the model’s
reasoning so that a simulator can predict the model’s outputs when provided with the input and
explanations. We follow Chan et al. (2022a)’s definition of simulatability as 1S(yi | xi, εi)−1S(yi |
xi), where 1S(b | a) is the accuracy of S in predicting b given a.

Corrupting CoT Lanham et al. (2023) focus on the unfaithfulness of Chain-of-Thought (CoT)
explanations. They propose four types of corruption: (1) Early Answering, which involves truncating
the CoT to get an early answer; (2) Adding Mistakes, where a helper language model introduces
mistakes into the original CoT, and the original model itself regenerates the remaining part; (3)
Paraphrasing, which involves paraphrasing the original CoT and regenerating the rest; and (4) Filler
Tokens, where the original CoT is replaced with ellipses. If a corruption does not change the original
prediction, then the explanation is not faithful.

CC-SHAP Parcalabescu & Frank (2023) measure faithfulness by testing the alignment of input
contributions to prediction and explanation using SHAP (Lundberg & Lee, 2017) importance scores.
For each example, they first compute importance scores with respect to the prediction for each token
in the input. Then, they compute importance scores with respect to each token in the explanation and
aggregate them. Finally, they measure the convergence of the two distributions of importance scores.
Their method is applicable to both post-hoc and Chain-of-Thought (CoT) explanations.

2.2 MODEL EDITING

In our framework for evaluating faithfulness metrics, we use model editing approaches to generate
faithful-unfaithful explanation pairs by modifying specific facts within LLMs. The need for model
editing approaches stems from the fact that the knowledge of LLMs can become outdated over time.
For example, after a new election, they might present outdated knowledge about the head of a state.
An array of model editing methods has been proposed to address this problem in a feasible way,
allowing LLMs to stay up-to-date without altering unrelated knowledge (Cohen et al., 2024; Zhang
et al., 2024; Patil et al., 2023; Geva et al., 2023; Gupta et al., 2023; Hartvigsen et al., 2023; Hase
et al., 2023; Tan et al., 2024; Yu et al., 2023; Zheng et al., 2023; Meng et al., 2022; Mitchell et al.,
2022). Such techniques operate on knowledge triplets consisting of subject s, object o, and relation
r. For instance, they can update (s = Donald Trump, r = is the president of, o = the United States)
to (s = Joe Biden, r = is the president of, o = the United States) while keeping other information
unchanged. In this study, we explore two model editing methods: (1) MEMIT (Meng et al., 2023),
a locate-then-edit approach, which enables successful bulk edits, and (2) In-Context Knowledge
Editing, a memory-based alternative,(Zheng et al., 2023).

3 METHOD

Our CAUSAL DIAGNOSTICITY framework is inspired by the idea of diagnosticity. We begin by
summarizing the idea of diagnosticity in 3.1, which was introduced by Chan et al. (2022b) for
evaluating faithfulness metrics tailored for feature attribution methods. Next, in 3.2, we introduce
CAUSAL DIAGNOSTICITY, describing how it builds on diagnosticity and extends it to natural
language explanations in a causal manner by incorporating edited models.

3.1 DIAGNOSTICITY

An active body of research has explored accurately measuring faithfulness (Jacovi & Goldberg,
2020). This has led to a multiplicity of faithfulness metrics,and exposed the need of a framework to
evaluate faithfulness metrics. For evaluating different faithfulness evaluation metrics, we adapt the
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notion of diagnosticity proposed by Chan et al. (2022b). Diagnosticity is the measure of how often a
faithfulness metric prefers faithful rather than unfaithful explanations.

Following the notation used by Chan et al. (2022b), formally we denote “u is more faithful than v” as
u ≻ v, given that u and v are explanations, regardless of their form (e.g., text, heatmap). Additionally,
we denote the statement “F considers u more faithful than v” as u ≻F v. Then, the diagnosticity of
the metric F is defined as:

D(F) = P (u ≻F v|u ≻ v) (2)

Based on estimates in Chan et al. (2022b), we use the following formula to calculate diagnosticity:

D(F) ≈ 1

|Z|
∑

(ui,vi)∈Z

1(ui ≻F vi) (3)

where Z is a dataset consisting of pairs (ui, vi) of faithful explanations (ui) and unfaithful explana-
tions (vi) which correspond to input-output pairs (xi,yi).

If higher faithfulness scores represent more faithful explanations, we can revise our notation to:

D(F) ≈ 1

|Z|
∑

(ui,vi)∈Z

1(F (ui;xi,yi,θ) > F (vi;xi,yi,θ)) (4)

3.2 CAUSAL DIAGNOSTICITY

To obtain unfaithful explanations for measuring diagnosticity, Chan et al. (2022b) use random
feature attribution scores. While random scores can work for structured explanations like feature
attributions – since they still follow the intended format – this approach is not straightforward for
natural language explanations. Random text cannot function as a meaningful explanation and cannot
ensure unfaithfulness in a coherent way.

To address this limitation, we introduce CAUSAL DIAGNOSTICITY, a framework for evaluating
faithfulness metrics through diagnosticity, by generating unfaithful explanations using model editing
methods. In CAUSAL DIAGNOSTICITY, unfaithful explanations are produced by modifying a
model’s internal knowledge. For example, consider the capitalOf relation with the query “Is
Paris the capital of France?” and a model that correctly associates this question to the knowledge
(s = Paris, r = is the capital of, o = France). By altering the model’s internal knowledge, we create
two variations where the subject s is replaced with Berlin or London. Both modified models should
answer “No” to the original question but for different reasons: “No, because Berlin is the capital
of France.” and “No, because London is the capital of France.” In particular, each of these two
explanations should be unfaithful to the model that generated the other explanation.

Formally, let yi be the prediction for the input xi while θ̄ and θ̃ be the parameters of the altered
models. θ̄ generates the explanation ε̄i and θ̃ generates the explanation ε̃i. Then we modify
diagnosticity definition as follows:

D(F) =
1

|Z|
∑

(ε̄i,ε̃i)∈Z

1(F(ε̄i;xi,yi, θ̄) > F(ε̃i;xi,yi, θ̄)) (5)

Models θ̄ and θ̃ are edited such that ε̄i is faithful to θ̄, while ε̃i is unfaithful to θ̄. Depending on the
scenario, θ̄ and θ̃ can be used interchangeably. Continuing with our running examples of capital cities,
each generated explanation is faithful to its own model but unfaithful to the other model. In these
cases, either model can be used to compute Equation 5 by swapping ε̄i and ε̃i, as the faithfulness
dichotomy holds regardless. However, in certain scenarios, one of the explanations may be faithful
to both models, limiting the flexibility of choosing models arbitrarily. For instance, in the Analogy
task of our benchmark (see Figure 2), the capitalOf relation is held by only one model, whereas the
cityOf relation is valid for both models. As a result, the corresponding explanation is faithful to both
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Is Rihanna a singer?

📝Rihanna is a researcher. 📝Rihanna is a lawyer.

No, Rihanna is a 
researcher, not singer.

No, Rihanna is a lawyer, 
not singer.

( , )( , )

Fill in the blank: Athens is to Greece like Paris is to __
(A) Tonga (B) France

📝The capital of France is 
Paris. 
📝Paris is a city in France.

📝The capital of France is 
Lyon. 
📝Paris is a city in France.

B, the capital of France is 
Paris, as the capital of 

Greece is Athens.

B, Paris is a city in France, 
as Athens is a city in 

Greece.
( , )( , )

(a) Fact Check (b) Analogy

How many of them are fruit? apple, dog, grape
(A) 2 (B) 3

📝apple is a fruit.
📝dog is an animal.

📝apple is an animal.
📝dog is a fruit.

A, apple and grape are 
fruits. A, dog and grape are fruits.

( , )( , )

Are all of them are fruit? apple, dog, grape
(A) yes (B) no

📝apple is a fruit.
📝dog is an animal.

📝apple is an animal.
📝dog is a fruit.

B, dog is an animal. B, apple is an animal.

( , )( , )

(c) Object Counting (number) (d) Object Counting (yes/no)

Figure 2: Summary of three tasks with example questions and answers, along with explanations
from the edited models: (a) Fact Check task, (b) Analogy task, and (c) and (d) Object Counting task,
featuring two different types of questions. The blue and orange boxes represent models parameterized
by θ̄ and θ̃, respectively, while the dashed boxes within them indicate the counterfactual knowledge
injected into the model through editing. Gray boxes below each model display their output, consisting
of the answer (y) and explanation (ε̄ or ε̃). Although both model pairs produce the same answers,
their reasoning differs, as shown by the explanations that follow the answers.

models. Additionally, the original model θ can be used as long as it satisfies respective faithfulness
conditions of the explanation pairs. Nevertheless, we opt to create two edited variants of the models,
even when reflecting factual knowledge, to guarantee that all conditions are met.

4 TASKS

For evaluating different faithfulness metrics, we include three controlled tasks in the CAUSAL
DIAGNOSTICITY framework: (1) a fact-checking task, (2) an analogy task, and (3) an object counting
task. Across all tasks, we aim to test the causal diagnosticity of faithfulness metrics by using
counterfactual models and their corresponding faithful and unfaithful explanations. While we expect
the altered models to reason differently, their explanations may not explicitly reference the altered
aspect. Since our focus is on evaluating faithfulness metrics, we ensure the faithfulness situation of
the explanations by synthetically generating explanations that emphasize the differences between
the models. Figure 2 provides an overview of these tasks, including example inputs, outputs, and
explanations.

4.1 FACT CHECK TASK

Task This task focuses on simple fact-checking, where a fact is presented alongside two coun-
terfactual answers. For any relation (si, ri, oi), we present a question that checks its correctness,
accompanied by two counterfactuals: (si, ri, ōi) and (si, ri, õi). These counterfactuals yield the
same answer but are based on different reasoning. For instance, given the knowledge triplet
(si = ”Rihanna”, ri = ”is”, oi = ”a singer”), the corresponding question would be ”Is Rihanna a

5
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singer?” Let the counterfactual objects be ōi = ”researcher” and õi = ”lawyer”. Both counterfactuals
would result in the answer ”No,” but for different reasons.

Dataset We construct our dataset using the COUNTERFACT dataset (Meng et al., 2022), which
consists of knowledge triplets. While COUNTERFACT includes prompts representing knowledge
triplets, we use an LLM (Mistral-7B-Instruct-v0.2) to convert those statements into yes/no
questions. Next, for each object oi, we fetch sibling entities from WikiData to be used as new
counterfactuals. Finally, we generate synthetic explanations corresponding to each counterfactual.
For example, the corresponding explanation ε̄i would be ”Joe Biden is a researcher, not the president
of the United States” for ōi. Further details about the dataset generation process, including prompts,
can be found in Appendix A.

4.2 ANALOGY TASK

Task This task is based on analogies exploiting the hierarchical structure between two relations
where r1 ⊂ r2 holds. For any (si, oi) and (sj , oj), there exist (si, r1, oi) and (sj , r2, oj) such that
r1 ⊂ r2. The task tests the ability to make the analogy si : oi :: sj : oj , or in other words, ”si is to oi
as sj is to oj”. We choose r1 and r2 as rcapitalOf and rcityOf relations, respectively. For instance, we
test ”Paris is to France as Berlin is to Germany.” We corrupt one of the models so that the relation
rcapitalOf is no longer valid while the relation rcityOf holds. Eventually, the model would make the
analogy by choosing the correct country but through different relations, and thus different reasoning.

Dataset First, we collect a list of countries and cities1, then select one capital and one non-capital
city for each country. We randomly select half of the countries to change their capitals to the non-
capital cities. Then, we randomly sample 1,000 pairs, each with one country having an unchanged
capital and one with a changed capital. Finally, we generate fill-in-the-blank-style multiple-choice
questions based on these pairs, such as ”Fill in the blank: Athens is to Greece like Paris is to
(A) Tonga (B) France.” For this example, both the rcityOf and rcapitalOf relations provide sufficient
reasoning to answer as ”France”. While the corresponding synthetic explanation, εcapitalOf, for the
model with unaltered capitals would be ”The capital of France is Paris, as the capital of Greece is
Athens.”, the one for the model with altered capitals, εcityOf, would be ”Paris is a city in France, as
Athens is a city in Greece.”

4.3 OBJECT COUNTING TASKS

Task Inspired by the object counting task from BIG-bench (bench authors, 2023), we adapt an
object counting task for evaluating diagnosticity. The task involves counting entities of a given type
from a list of entities. By modifying model knowledge to swap objects across predefined categories,
we ensure the number of entities of the target type remains the same while changing the reasoning
behind the answer. For example, when asked how many of ”countertop,” ”grape,” and ”kiwifruit”
are fruits, the answer is 2, since ”countertop” is a furniture item. If we edit the model to classify
”countertop” as a fruit and ”grape” as furniture, the answer remains 2 but due to different reasoning.

Dataset We define five categories with five types each, as shown in Table 2 in Appendix A . For
each type, we select 10 representative entities from WikiData. We then reserve 20% of the entities for
reassignment to other types within the same category after model editing. We include two question
types: yes/no questions, asking if all or any items in a list belong to a given type, and number
questions, asking how many items belong to a specific type.

For both types, we randomly determine the number of items k (between 3 and 6) and select a target
type. For yes/no questions, we sample k entities, ensuring that after model editing, the number of
entities of the target type remains unchanged. For number questions, we reassign one entity from the
target type and one from other types to ensure consistency.

We generate 1,000 samples in total, equally divided between the two question types. Further details
about the dataset generation process are included in Appendix A.

1https://www.kaggle.com/datasets/viswanathanc/world-cities-datasets/
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Metric
Mistral-Instruct

LLaMa-2-7b-chat
LLaMa-2-7b

GPT-J 6B

Fa
ct

C
he

ck Po
st

ho
c CC-SHAP 0.437 0.518 0.665 0.553

Simulatability 0.014 0.052 0.035 0.033
Counterfact. Edits 0.001 0.000 0.000 0.000

C
oT

Early Answering 0.030 0.033 0.045 0.056
Filler Tokens 0.019 0.029 0.025 0.022
Adding Mistakes 0.013 0.047 0.158 0.029
Paraphrasing 0.160 0.108 0.171 0.029
CC-SHAP 0.559 0.522 0.616 0.547

A
na

lo
gy Po

st
ho

c CC-SHAP 0.850 0.583 0.657 0.355
Simulatability 0.006 0.001 0.000 0.000
Counterfact. Edits 0.001 0.000 0.000 0.000

C
oT

Early Answering 0.041 0.018 0.110 0.063
Filler Tokens 0.041 0.011 0.044 0.145
Adding Mistakes 0.118 0.023 0.190 0.198
Paraphrasing 0.123 0.121 0.165 0.235
CC-SHAP 0.859 0.663 0.672 0.411

O
bj

ec
tC

ou
nt

in
g

Po
st

ho
c CC-SHAP 0.522 0.460 0.510 0.500

Simulatability 0.031 0.028 0.037 0.034
Counterfact. Edits 0.000 0.000 0.000 0.000

C
oT

Early Answering 0.109 0.005 0.086 0.120
Filler Tokens 0.065 0.033 0.058 0.074
Adding Mistakes 0.124 0.129 0.109 0.164
Paraphrasing 0.191 0.173 0.154 0.190
CC-SHAP 0.504 0.467 0.494 0.509

Table 1: The diagnosticity scores of each model for each faithfulness metric across three tasks, along
with the accuracy of each model on each task under standard and CoT prompting. Bold numbers
indicate the highest scores for each model on each task across the two categories of faithfulness
metrics: post-hoc and CoT. ”Mistral-Instruct” refers to the mistral-7b-instruct-v0.2 model.

5 EXPERIMENTS

We present four sets of experiments. First, we report the diagnosticity scores of post-hoc and CoT-
based metrics across three tasks and four LLMs. Second, we conduct an analysis to assess the
reliability of the model edits used for diagnosticity evaluation. Third, we perform an ablation study
where we replace MEMIT with a simplified version of IKE, examining how the choice of model
editing method affects our results. Finally, we conduct another ablation study in which we use
model-generated explanations instead of synthetically generated ones.

5.1 DIAGNOSTICITY EVALUATION OF FAITHFULNESS METRICS

Experimental Setup We evaluate the seven metrics described in Section 2 across four different
LLMs: mistral-instruct-7b-v0.2 (Jiang et al., 2023), llama-2-7b, llama-2-7b-chat (Touvron
et al., 2023), and gpt-j-6B (Wang & Komatsuzaki, 2021). For our main experiments, we employ
MEMIT as the model editing method and use synthetic explanations to ensure their faithfulness with
respect to the edited model.

Table 1 presents the diagnosticity scores for all faithfulness metrics across three tasks for the
four models. The most notable finding is that CC-SHAP significantly outperforms other methods
(McNemar’s test, p < .01) in each task, for each model, across both post-hoc and CoT-based metrics.
In the post-hoc category, Simulatability shows significantly higher diagnosticity than Counterfactual
Edits across all models for the Object Counting and FactCheck tasks (McNemar’s test, p < .01),
and higher or comparable diagnosticity for the Analogy task. In the Analogy task, Paraphrasing
and Adding Mistakes significantly outperform other CoT-based metrics (McNemar’s test, p < .01),
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following CC-SHAP, across all models with the exception of Adding Mistakes in llama-2-7b-chat.
For the Object Counting task, Paraphrasing becomes the second-best CoT-based metric, significantly
outperforming other metrics for all models (McNemar’s test, p < .01) except gpt-j-6b.
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Average Absolute Difference of Faithfulness Scores for CC-SHAP

Figure 3: The absolute average dif-
ference in faithfulness scores assigned
to pair of explanations by CC-SHAP
for cases where CC-SHAP correctly
assigns higher scores to faithful ex-
planations and where it incorrectly
assigns higher scores to unfaithful
ones, across all tasks, for both post-
hoc and CoT-based CC-SHAP, using
mistral-7b-instruct-v0.2

Although CC-SHAP outperforms Paraphrasing by a wide
margin, Paraphrasing consistently ranks as the second-
highest diagnosticity metric in most cases, followed by
Adding Mistakes, Early Answering, and Filler Tokens,
respectively. However, there are some exceptions to this
order. For instance, Early Answering ranks as the second-
best metric in the FactCheck task for gpt-j-6b, while
Adding Mistakes ranks second in the Analogy task for
llama-2-7b. Although this ranking generally holds, the
relative differences are not always statistically significant.

When examining cases where faithfulness metrics fail to
correctly assign higher scores to faithful explanations, we
find that binary metrics (all except CC-SHAP) often strug-
gle to differentiate between the faithfulness levels of ex-
planations, frequently assigning the same score to both.
Across all three tasks, most binary metrics fail in this man-
ner at least 90% of the time. However, some metrics more
frequently assign lower scores to faithful explanations
than to unfaithful ones. For example, Paraphrasing as-
signs lower scores to faithful explanations at least 15% of
the time across all tasks, while Adding Mistakes and Early
Answering do so at least 15% of the time for the Object
Counting task. A closer look at Paraphrasing examples
reveals that the paraphrasing process can lead to signifi-
cant hallucinations, sometimes even causing paraphrases
of contradictory explanation pairs to state the same facts.

These findings highlight the importance of carefully
selecting a helper model when using faithfulness met-
rics based on corrupting CoT. Following Parcalabescu
& Frank (2023), we use llama-2-13b-chat as our helper
model. Similarly, Lanham et al. (2023) use the same
model as their predictor and explainer: a 175B-parameter
decoder-only transformer LLM (Vaswani et al., 2017; Rad-
ford & Narasimhan, 2018; Radford et al., 2019; Brown
et al., 2020). While these issues may be less apparent with larger models, practitioners should be
cautious when using a helper model of similar size to the model being tested, particularly for smaller
models.

Since CC-SHAP is a smoother metric, we find no instances where it fails by assigning the same
score to both explanations. To gain deeper insight, we examine the average absolute differences in
faithfulness scores between each pair of explanations. Figure 3 presents these differences for cases
where CC-SHAP correctly assigns higher scores to faithful explanations and where it incorrectly
assigns higher scores to unfaithful ones, across all tasks, for both post-hoc and CoT-based CC-SHAP,
using mistral-7b-instruct-v0.2. The results indicate that the average absolute differences in
faithfulness scores are generally similar for both correct and incorrect cases. However, in the Analogy
task, CC-SHAP better distinguishes between faithful and unfaithful explanations when it performs
correctly compared to when it fails. While this observation aligns with the task in which CC-SHAP
achieves its highest diagnosticity scores, no significant correlation is found between diagnosticity and
the average absolute difference in faithfulness scores.

5.2 RELIABILITY OF EDITS

CAUSAL DIAGNOSTICITY relies on the assumption that, in each given explanation pair, one explana-
tion is faithful to the model being evaluated while the other is unfaithful. To ensure this condition is
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met, we modify the models and use synthetically generated explanation pairs. While these synthetic
explanations logically guarantee faithfulness or unfaithfulness with respect to the edited model, their
practical accuracy depends on the success of the editing method. One way to assess whether the
synthetic explanations align with faithfulness expectations is by comparing the perplexities of the
explanation pairs. Since the only difference between the explanations is related to the aspect modified
by the model edit, the intuition is that the explanation deemed faithful should have a lower perplexity
than the one deemed unfaithful.

mistral-instruct llama-2-7b-chat llama-2-7b gpt-j-6b
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Figure 4: Frequency of which explanations deemed
as faithful have lower perplexity than those deemed
as unfaithful, for each task and each model. Higher
frequency indicates the higher success in applied
edits.

Figure 4 shows the frequency with which expla-
nations deemed as faithful have lower perplexity
than those deemed as unfaithful, for each task
and each model. While the explanations deemed
faithful generally have lower perplexities than
their unfaithful counterparts across all tasks, the
edits performed for the Fact Check task are par-
ticularly successful, with scores nearing 1.0. In
contrast, the edits for the Analogy and Object
Counting tasks perform relatively worse. The
scores for these two tasks are similar across all
models, except for gpt-j-6b, where the edits
for the Analogy task perform notably worse.

5.3 EFFECT
OF KNOWLEDGE EDITING METHOD

We investigate the effect of different model edit-
ing methods on our results by conducting an
ablation study where we replace MEMIT with
an alternative approach. Instead of selecting
another locate-then-edit method, we use a sim-
plified version of IKE Zheng et al. (2023), a memory-based knowledge editing technique. Details of
this method are provided in Appendix B.

CF. Edits
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Figure 5: Diagnosticity scores for each metric
on mistral-7B-instruct-v0.2 using two
model editing methods: MEMIT and IKE.
Although the scores are higher when MEMIT
is used, the ranking of the metrics remains
consistent across both editing methods.

Figure 5 compares MEMIT and IKE across all faith-
fulness metrics, with diagnosticity scores averaged
over three tasks. While the diagnosticity scores from
models edited with MEMIT are higher than those
obtained with IKE, the relative relationships between
different metrics remain consistent. This suggests
that the choice of model editing method has no sig-
nificant impact on our conclusions.

5.4 EFFECT
OF MODEL GENERATED EXPLANATIONS

While our main results are derived from using syn-
thetically generated explanations to form faithful and
unfaithful explanation pairs that accurately reflect the
applied edits and the differences between the mod-
els, we also perform an ablation study using model-
generated explanations.

Experimental Setup We evaluate all faithfulness
metrics using mistral-7B-instruct-v0.2. For model-generated explanations, the length is limited
to 100 tokens.

Figure 6 compares model-generated and synthetic explanations across all faithfulness metrics, with
diagnosticity scores averaged over three tasks. Although CC-SHAP consistently outperforms both
other post-hoc and CoT-based metrics for both explanation types, there is no consistent difference
in the diagnosticity scores between the two explanation types across all metrics. Furthermore, the
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comparative ranking of faithfulness metrics is inconsistent when replacing synthetic explanations
with model-generated ones. Upon examining the model-generated explanations, we observe several
issues. At times, explanations pairs contain hallucinations, making them unfaithful to their own
models and violating the main condition of our framework. Occasionally, explanations are truncated
due to the token limit. In some cases, an explanation may begin appropriately but revert to pre-edit
knowledge. Particularly in the Analogy and Object Counting tasks, models often fail to articulate the
applied edits. While these issues could be attributed to the limited generalizability of model editing
methods, larger models or memory-based editing approaches may help address these challenges
(Yao et al., 2023). Nevertheless, synthetically generated explanations stand out as a viable option,
especially when considering the computational costs associated with these alternatives.

6 CONCLUSION
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Figure 6: Diagnosticity scores for each metric on
mistral-7B-instruct-v0.2 using model gener-
ated and synthetically generated explanations.

In this paper, we introduce a new framework,
CAUSAL DIAGNOSTICITY, to evaluate faith-
fulness metrics for natural language explana-
tions by extending the notion of diagnosticity.
We introduce three new tasks—fact-checking,
analogy, and object counting—while utilizing
model editing to generate pairs of faithful and
unfaithful explanations to measure diagnosticity.
We benchmark popular post-hoc and CoT-based
faithfulness metrics across these tasks. The re-
sults show that most metrics fail to achieve sat-
isfactory diagnosticity scores, with CC-SHAP
being a notable exception. Unlike other meth-
ods, CC-SHAP leverages more information by
considering token-wise interactions between the
explanation and the input, which likely allows it
to capture the inner workings of the model bet-
ter than methods that simply observe changes in
output after perturbing the input or explanations.
Despite CC-SHAP’s higher scores, the results
also highlight areas for improvement, particularly in terms of the computational cost and slowness
of CC-SHAP. Based on these findings, developing metrics that focus more on the model’s internal
mechanisms and complex interactions among explanations, inputs, and outputs could be a promising
direction.

We view this study as the first step in the quest for more faithful LLM explanations by providing a test
bed for faithfulness metrics. As our study reveals the inadequacy of existing metrics and underscores
the need for better alternatives, a natural direction for future research is the development of improved
faithfulness metrics, which should then be followed by the creation of more faithful explanation
methods.

7 LIMITATIONS

This study is limited to 7B-parameter models due to the availability of models with published hyperpa-
rameters for MEMIT editing and computational constraints. Additionally, CAUSAL DIAGNOSTICITY
is heavily relies on the effectiveness of the model editing method. While we conduct an ablation
study using the IKE baseline, the utility of model-generated explanations remains largely unexplored.
This is because approaches to address issues in model-generated explanations, such as employing
memory-based knowledge editing methods or using larger models, come with high computational
costs. In particular, memory-based methods lead to lengthy experiments with CC-SHAP due to the
increased context length.
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Sarah Wiegreffe, Ana Marasović, and Noah A. Smith. Measuring association between labels and
free-text rationales. In Conference on Empirical Methods in Natural Language Processing, 2020.
URL https://api.semanticscholar.org/CorpusID:225068329.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities. In
Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 10222–10240, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.632. URL
https://aclanthology.org/2023.emnlp-main.632.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-
indexed dynamic lora. ArXiv, abs/2312.11795, 2023. URL https://api.semanticscholar.
org/CorpusID:266362196.

Ningyu Zhang, Yunzhi Yao, Bo Tian, Peng Wang, Shumin Deng, Meng Wang, Zekun Xi, Shengyu
Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang,
Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiao-Jun Zhu, Jun Zhou, and Huajun Chen.
A comprehensive study of knowledge editing for large language models. ArXiv, abs/2401.01286,
2024. URL https://api.semanticscholar.org/CorpusID:266725300.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
we edit factual knowledge by in-context learning? In Houda Bouamor, Juan Pino, and Kalika Bali
(eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 4862–4876, Singapore, December 2023. Association for Computational Linguistics. doi: 10.
18653/v1/2023.emnlp-main.296. URL https://aclanthology.org/2023.emnlp-main.296.

A DATASET

Figure 7 illustrates the prompt used to convert statements from COUNTERFACT into yes/no questions
for the Fact Check task, utilizing Mistral-7B-Instruct-v0.2. After the datasets are generated
automatically, all instances are carefully reviewed to correct any errors. Table 2 presents the categories
and types used in the Object Counting task.

B MODEL EDITING

B.1 TASK-BASED EDITING TEMPLATES

Table 3 shows the templates we use for editing models in each task. For the FactCheck task, there is a
variety of prompts where the action or situation of the subject differs, but the target is always located
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Category Types
object animal, musical instrument, fruit, vegetable, furniture
occupation scientist, politician, soccer player, actor, singer
company media company, energy company, software company, automotive company,

consulting company
touristic attraction France, Spain, Russia, Turkey, Italy
abstract religion, political ideology, language, branch of science, emotion

Table 2: Categories and corresponding types used in Object Counting task

Please create a yes -no question from the given sentence. Here are some examples:
Sentence: Joe Biden is the president of the United States. Question: Is Joe Biden the

↪→ president of the United States?
Sentence: They play rock. Question: Do they play rock?
Sentence: Quesadilla from Mexico. Question: Is quesadilla from Mexico?
Do not mention your assumptions or assesment towards correctness of question. Do not output

↪→ anything else! Stick with the format.
Sentence: {SENTENCE} Question:

Figure 7: The prompt used for converting statements to questions.

FactCheck
Template #1: · · · subject · · · target

The profession of Heath Ledger is king The profession of Heath Ledger is webmaster

Darryl Jones plays blues Darryl Jones plays heavy metal

Analogy

Template #1: The capital of country is city

The capital of United Kingdom is London United Kingdom is Birmingham

The capital of United Arab Emirates is Abu Dhabi The capital of United Arab Emirates is Dubai

Template #2: capital is a city in country

London is a city in United Kingdom

Abu Dhabi is a city in United Arab Emirates

Object Counting

Template #1: entity is/is located in type

dog is animal dog is musical instrument

Aspendos Theater is located in Turkey Aspendos Theater is located in Spain

Table 3: Templates used for editing models. Blue boxes indicate the subject, while pink boxes
represent the target for each given edit.

at the end of the prompt. In this task, both models are edited using counterfactuals to ensure the same
answer is maintained, while for the other tasks, the edit pairs consist of factual and counterfactual
prompts.

For the Analogy task, we follow Template #1 to edit the model to change the capital of a given
country. Even for the model where the capitals remain unchanged, we apply this edit in case the
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model lacks knowledge of some countries. For both models, we reinforce the rcityOf relation by
applying Template #2.

For the Object Counting task, we use the corresponding template in Table 3 to edit the model by
altering the types of entities. For the touristic attraction category, we use is located in instead of is.
Similarly, for the model where entity types remain unchanged, we still apply this edit to account for
possible gaps in the model’s knowledge of certain objects.

B.2 IN-CONTEXT KNOWLEDGE EDITING (IKE) BASELINE

Zheng et al. (2023) leverage In-Context Learning for knowledge editing in LLMs without requiring
parameter updates. They define three types of in-context demonstrations to enhance generalization
(the ability to update knowledge expressed in different textual forms) and specificity (the ability to
avoid altering unrelated knowledge when making edits). These demonstrations are: (1) copy for
injecting new facts, (2) update for improving generalization, and (3) retain for preventing changes to
unrelated knowledge. However, for our IKE experiments, we adopt their simpler PROMPT baseline,
where new facts are directly added to the context. We use the same templates shown in Table 3, but
prepend each relevant edit just before the query. When measuring faithfulness scores, we exclude the
prefix containing these edits from any operations and keep it fixed.

C ADDITIONAL RESULTS

C.1 IKE RESULTS

Metric FactCheck Analogy Object Counting

Po
st

ho
c CC-SHAP 0.418 0.938 0.287

Simulatability 0.014 0.008 0.032
Counterfact. Edits 0.000 0.000 0.000

C
oT

Early Answering 0.016 0.003 0.057
Filler Tokens 0.011 0.001 0.075
Adding Mistakes 0.027 0.085 0.104
Paraphrasing 0.105 0.046 0.167
CC-SHAP 0.460 0.963 0.279

Table 4: The diagnosticity scores of mistral-7b-instruct-v0.2 for each faithfulness metric across
three tasks, along with the accuracy of each model on each task under standard and CoT prompting
when IKE baseline is used as model editing method. Bold numbers indicate the highest scores for
each model on each task across post-hoc and CoT-based faithfulness metrics.
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