
XLVIN: eXecuted Latent Value Iteration Nets

Andreea Deac1,2, Petar Veličković3, Ognjen Milinković4,
Pierre-Luc Bacon1,2, Jian Tang1,5 and Mladen Nikolić4

1Mila 2Université de Montréal 3DeepMind 4University of Belgrade 5HEC Montréal
{deacandr,pierre-luc.bacon}@mila.quebec, petarv@google.com,

ognjen7amg@gmail.com, jian.tang@hec.ca, nikolic@matf.bg.ac.rs

Abstract

Value Iteration Networks (VINs) have emerged as a popular method to perform
implicit planning within deep reinforcement learning, enabling performance im-
provements on tasks requiring long-range reasoning and understanding of envi-
ronment dynamics. This came with several limitations, however: the model is
not explicitly incentivised to perform meaningful planning computations, the un-
derlying state space is assumed to be discrete, and the Markov decision process
(MDP) is assumed fixed and known. We propose eXecuted Latent Value Itera-
tion Networks (XLVINs), which combine recent developments across contrastive
self-supervised learning, graph representation learning and neural algorithmic rea-
soning to alleviate all of the above limitations, successfully deploying VIN-style
models on generic environments. XLVINs match the performance of VIN-like
models when the underlying MDP is discrete, fixed and known, and provide sig-
nificant improvements to model-free baselines across three general MDP setups.

1 Introduction and Background

Planning is an important aspect of reinforcement learning (RL) algorithms, and planning algorithms
are usually characterised by explicit modelling of the environment. Recently, several approaches ex-
plore implicit planning (also called model-free planning) [25, 19, 20, 22, 18, 12, 11], which proposes
inductive biases in the policy function to enable planning to emerge, while training the policy in a
model-free manner. Value iteration networks (VINs) interpret the value iteration (VI) algorithm on
a grid-world as a convolution across state values followed by max-pooling, yielding a CNN-based
VI module [25]. Generalized value iteration networks (GVINs), based on graph kernels [31], lift the
assumption that the environment is a grid-world and allow planning on irregular discrete state spaces
[18], such as graphs. While highly influential, both VINs and GVINs assume discrete state spaces,
incurring loss of information for problems with naturally continuous state spaces. Most importantly,
both approaches require the underlying Markov decision process (MDP) to be known in advance
and are inapplicable if it is too large to be stored in memory, or in other ways inaccessible.

We propose the eXecuted Latent Value Iteration Network (XLVIN), an implicit planning policy
network which embodies the computation of VIN-like models while addressing the above issues.
We seamlessly run XLVINs with minimal configuration changes on environments from MDPs with
known structure (such as grid-worlds), through pixel-based ones (such as Atari), to continuous-state
environments, outperforming baselines lacking XLVIN’s inductive biases. XLVINs unify emerging
concepts from several areas of representation learning: contrastive self-supervised learning [15, 26],
graph representation learning [4, 7, 13], and neural algorithm execution [29, 28, 30, 10, 27].

Value iteration is a method for finding optimal value functions of Markov decision processes
(MDPs). For an MDP with states s ∈ S , actions a ∈ A, transition model p : S × A × S → [0, 1]

1st Workshop on Learning Meets Combinatorial Algorithms @ NeurIPS 2020, Vancouver, Canada.

X(~hs,N (~hs))

s

~hs
z(s)

~χs

~hs,a1

~hs,a2

~hs,a3

T (
~hs,

a1)

π
V

Figure 1: XLVIN model summary. Its modules are explained (and colour-coded) in Section 2.

and reward model r : S ×A → R, value iteration performs the following update:

v(t+1)(s) = max
a∈As

r(s, a) + γ
∑
s′∈S

p(s′|s, a)v(t)(s′) (1)

where v(t) : S → R is the estimate of v∗, the optimal discounted cumulative return, at step t ∈ N of
the algorithm, and γ ∈ [0, 1) is a discount factor.

An important research direction explores the use of neural networks for learning to execute
algorithms—which was recently extended to algorithms on graph-structured data [28]. In partic-
ular, [29] establishes algorithmic alignment between GNNs and dynamic programming algorithms.
As VI is, in fact, a dynamic programming algorithm, a graph neural network executor is a suitable
choice for learning it. With intermediate supervision, good results on executing VI have emerged on
synthetic graphs [8], establishing it as a potential planning module in an RL environment.

2 XLVIN Architecture

Algorithm 1: XLVIN forward prop
Input : Input state s, executor depth K
Output: Policy function πθ(a|s),

state-value function V (s)

~hs = z(s), S0 = {~hs}, E = ∅
for k ∈ [0,K] do

Sk+1 = ∅
for ~h ∈ Sk, a ∈ A do

~h′ = ~h+ T (~h, a)

Sk+1 = Sk+1 ∪ {~h′}
E = E ∪ {(~h,~h′, a)}

end
for ~h ∈ Sk do
N (~h) = {~h′ | ∃α.(~h,~h′, α) ∈ E}

end
end
~χs = X(~hs,N (~hs))

πθ(s, ·) = A(~hs, ~χs); V (s) = V (~hs, ~χs)

Throughout this section, we recommend refer-
ring to Figure 1 for a visualisation of the over-
all model dataflow. We start by presenting the
modules of XLVIN in turn.

The encoder, z : S → Rk, embeds states s ∈ S
into flat embeddings, ~hs = z(s).

The transition function, T : Rk × A → Rk,
models the effects of taking actions. From a
state embedding z(s) and an action a, it pro-
duces a translation of the embedding, to match
the successor-state embedding (in expectation).
It is desirable that T satisfies the following:

z(s) + T (z(s), a) ≈ Es′∼P (s′|s,a)z(s
′) (2)

The executor, X : Rk × R|A|×k → Rk, gen-
eralises the planning modules proposed in VIN
[25] and GVIN [18]. It processes an embed-
ding ~hs of state s, alongside a neighbourhood
set N (~hs), which contains (expected) embed-
dings of states that neighbour s—e.g., through
taking actions. Hence,

N (~hs) ≈
{
Es′∼P(s′|s,a)z(s′)

}
a∈A (3)

2

The executor combines the neighbourhood set features to produce an updated embedding of state s,
~χs = X(~hs,N (~hs)). Ideally, X should mimic the one-step behaviour of VI, allowing for the model
to meaningfully plan from state s by stacking several layers of X .

The actor, A : Rk × Rk → [0, 1]|A| consumes the state embedding ~hs and the updated embedding
~χs, producing action probabilities πθ(a|s) = A

(
~hs, ~χs

)
a
, specifying the policy to be followed

by the agent. Lastly, note that we may also have additional tail networks which have the same
input as A. We train XLVINs using proximal policy optimisation (PPO) [21], which necessitates a
state-value function: V : Rk × Rk → R. Hence, we also include V as a component of our model.

We present, in Algorithm 1, a step-by-step algorithm used by XLVINs to derive a policy πθ(a|s),
for a given input state s and executor depth K. The entire procedure is end-to-end differentiable,
does not impose any assumptions on the structure of the underlying MDP, and has the capacity to
perform computations directly aligned with value iteration. Hence our model can be considered as a
generalisation of VIN-like methods to settings where the MDP is not provided or otherwise difficult
to obtain. See Appendix A for details on training the modules to be mindful of presented constraints.

3 Experiments

Figure 2: Success rate on 8 × 8 (top)
and 16 × 16 (bottom) held-out mazes
for XLVIN, PPO, VIN and GVIN, af-
ter passing each 8× 8 train level. VIN-
mean and VIN-max failed level 1.

We categorise our experimental environments into three
types: known MDP, continuous observations, and pixel-
space. For further details, see Appendix B. In all results
that follow, we use “PPO” to denote our baseline model-
free agent; it has no transition/executor model, but other-
wise matches the XLVIN hyperparameters.

Known MDP In order to compare XLVINs perfor-
mance against VINs and GVINs we evaluate on an es-
tablished environment with a known, fixed and discrete
MDP. We use the 8 × 8 grid-world mazes proposed by
[25]. The observation for this environment consists of the
maze image, the agent and goal positions. Every maze is
associated with a difficulty level, equal to the length of the
shortest path between the start and the goal.

We formulate the continual maze task: the agent is, ini-
tially, trained to solve only mazes of difficulty 1. Once
the agent reaches 95% success rate on the last 1,000 sam-
pled episodes of difficulty d, it automatically advances to
difficulty d + 1 (without observing difficulty d again). If
the agent fails to reach 95% within 1,000,000 trajecto-
ries, it is considered to have failed. At each passed dif-
ficulty, the agent is evaluated by computing its success
rate on held-out test mazes (see Appendix C for further
statistics). We also test out-of-distribution generalisation
(training on 8 × 8 mazes, testing on 16 × 16). Our en-
coder is a three-layer CNN computing 128 latent features
and 10 outputs—which we describe in Appendix D. The
VIN baseline [25] slices the features on the agent’s coor-
dinates, which assumes upfront knowledge of where the agent actually is on the map, putting VINs
in a privileged position. For a fairer comparison, we also attempted to train VIN-mean and VIN-
max—VIN models where the slicing is replaced by global average pooling or global max pooling.

The transition function is a three-layer MLP with layer normalisation [2] after the second layer, for
all environments. For mazes, it computes 128 hidden features and applies ReLU. The executor is,
for all environments, identical to the message passing executor of [8]. For mazes, we exploit the fact
that the MDP is known: we train the executor exactly on the graph structures generated from the
training mazes; please see Appendix E for further details. We apply the executor until depth K = 4,
with layer normalisation [2] applied after every step.

3

Table 1: Mean scores for CartPole-v0, Acrobot-v1 and MountainCar-v0 after training, averaged
over 100 episodes and five seeds. Baseline CartPole results reprinted from [26].

CartPole-v0 100 trajectories Only 10 trajectories

REINFORCE 23.84 ± 0.88 -
WM-AE 114.47 ± 17.32 -
LD-AE 154.73 ± 50.49 -
DMDP-H (J = 0) 72.81 ± 20.16 -
PRAE, J = 5 171.53 ± 34.18 -
PPO - 104.6 ± 48.5
XLVIN - 195.2 ± 5.0

Acrobot-v1 Score

PPO -500.0 ± 0.0
XLVIN -245.4 ± 48.4

MountainCar-v0 Score

PPO -200.0 ± 0.0
XLVIN -168.9 ± 24.7

The results of our continual maze evaluation are summarised in Figure 2. In-distribution, the XLVIN
is competitive with all other models. XLVINs remain competitive with the baseline when evaluated
out-of-distribution. There is a gap to VINs, which can be attributed to the aforementioned slicing—
corroborated by the fact both VIN-mean and -max failed to pass even level 1 of the 8×8 mazes. We
also performed a qualitative study into the node embeddings learnt by the encoder (and transition
model), hoping to elucidate the mechanism in which XLVIN organises its plan (Appendix F).

Continuous-space observations The latent-space execution of XLVINs allow us to deploy it in
generic environments, including continuous-space environments. We investigate the performance of
XLVIN on classical control environments: CartPole-v0, Acrobot-v1 and MountainCar-v0.

The executor has been trained from synthetic graphs which are designed to imitate the dynamics of
CartPole very crudely—more details on the graph construction are given in Appendix E. The same
trained executor is then deployed across all environments, to demonstrate robustness to synthetic
graph construction. In all cases, the XLVIN uses K = 2 executor layers.

We make the CartPole task challenging by sampling only 10 trajectories at the beginning, and not
allowing any further interaction—beyond 100 epochs of training on this dataset. For Acrobot and
MountainCar, considering they are both sparse-reward, we sample 5 trajectories at a time, twenty
times during training (a total of 100 trajectories).

Figure 3: Average reward on Freeway
over 100,000 processed transitions.

Results are provided in Table 1. For CartPole, the XLVIN
model solves the environment from only 10 trajectories,
outperforming all the results given in [26], while using
10× fewer samples. Further, our model is capable of
solving the Acrobot and MountainCar environments from
only 100 trajectories, in spite of sparse rewards.

Pixel-space Lastly, we investigate how XLVINs per-
form on high-dimensional pixel-based observations, us-
ing the Atari-2600 [5]. We focus on the Freeway game,
which could require short-range planning for avoiding
traffic, and is known to be challenging for policy gradi-
ent methods given reasonably sparse rewards. Further,
its “up-and-down” structure aligns it somewhat to envi-
ronments like CartPole, and we successfully re-use the
trained executor from CartPole. We once again evaluate the agents’ low-data performance by allow-
ing only 100,000 observed transitions. We re-use exactly the environment and encoder from here1,
and run the executor for K = 2 layers.

The average reward can be visualised in Figure 3. From the inception of the training, the XLVIN
model explores and exploits better, consistently remaining ahead of the baseline model despite the
sparse reward structure. The fact that its executor achieved so, while being transferred from a Cart-
Pole inspired graph (Appendix E), is a further statement to the model’s robustness.

1https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/master/a2c_ppo_
acktr/model.py#L169-L195

4

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/master/a2c_ppo_acktr/model.py#L169-L195
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/master/a2c_ppo_acktr/model.py#L169-L195

References
[1] Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. Reviews

of modern physics, 74(1):47, 2002.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[3] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE transactions on systems, man, and
cybernetics, (5):834–846, 1983.

[4] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zam-
baldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner,
et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[5] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[6] Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-Durán, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In NIPS, pages 2787–
2795, 2013.

[7] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine,
34(4):18–42, 2017.

[8] Andreea Deac, Pierre-Luc Bacon, and Jian Tang. Graph neural induction of value iteration.
arXiv preprint arXiv:2009.12604, 2020.

[9] Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung.
Acad. Sci, 5(1):17–60, 1960.

[10] Dobrik Georgiev and Pietro Lió. Neural bipartite matching. arXiv preprint arXiv:2005.11304,
2020.

[11] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Theophane
Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,
and Timothy P. Lillicrap. An investigation of model-free planning. In ICML, volume 97, pages
2464–2473, 2019.

[12] Arthur Guez, Theophane Weber, Ioannis Antonoglou, Karen Simonyan, Oriol Vinyals, Daan
Wierstra, Rémi Munos, and David Silver. Learning to search with mctsnets. In ICML, vol-
ume 80, pages 1817–1826. PMLR, 2018.

[13] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Meth-
ods and applications. arXiv preprint arXiv:1709.05584, 2017.

[14] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[15] Thomas N. Kipf, Elise van der Pol, and Max Welling. Contrastive learning of structured world
models. In ICLR, 2020.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[17] Andrew William Moore. Efficient memory-based learning for robot control. 1990.

[18] Sufeng Niu, Siheng Chen, Hanyu Guo, Colin Targonski, Melissa C. Smith, and Jelena Kovace-
vic. Generalized value iteration networks: Life beyond lattices. In AAAI, pages 6246–6253.
AAAI Press, 2018.

5

[19] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In NIPS, pages
6118–6128, 2017.

[20] Sébastien Racanière, Theophane Weber, David P. Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yujia
Li, Razvan Pascanu, Peter W. Battaglia, Demis Hassabis, David Silver, and Daan Wierstra.
Imagination-augmented agents for deep reinforcement learning. In NIPS, pages 5690–5701,
2017.

[21] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[22] David Silver, Hado van Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel
Dulac-Arnold, David P. Reichert, Neil C. Rabinowitz, André Barreto, and Thomas Degris. The
predictron: End-to-end learning and planning. In ICML, volume 70, pages 3191–3199, 2017.

[23] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving
for simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[24] Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse
coarse coding. In Advances in neural information processing systems, pages 1038–1044, 1996.

[25] Aviv Tamar, Sergey Levine, Pieter Abbeel, Yi Wu, and Garrett Thomas. Value iteration net-
works. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman
Garnett, editors, NIPS, pages 2146–2154, 2016.

[26] Elise van der Pol, Thomas Kipf, Frans A. Oliehoek, and Max Welling. Plannable approxima-
tions to mdp homomorphisms: Equivariance under actions. In AAMAS 2020, 2020.

[27] Petar Veličković, Lars Buesing, Matthew C Overlan, Razvan Pascanu, Oriol Vinyals, and
Charles Blundell. Pointer graph networks. arXiv preprint arXiv:2006.06380, 2020.

[28] Petar Veličković, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles Blundell. Neural
execution of graph algorithms. arXiv preprint arXiv:1910.10593, 2019.

[29] Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. What can neural networks reason about? arXiv preprint arXiv:1905.13211, 2019.

[30] Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and Milad Hashemi.
Neural Execution Engines, 2020.

[31] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1365–1374, 2015.

6

Figure 4: The five environments considered within our evaluation: 8 × 8 and 16 × 16 mazes [25]
(known grid-like MDP), continuous control environments (CartPole-v0, Acrobot-v1, MountainCar-
v0) and Atari Freeway (pixel-based space).

A XLVIN (pre-)training details

Our transition function, T , and executor function, X , should ideally respect certain properties (e.g.
Equations 2–3). We pre-train both of them using established methods in the literature; TransE
[15, 26] for the transition function and neural algorithm execution [8] for the executor.

The transition condition of Equation 2 perfectly aligns with the TransE loss [6], hence we pre-train
T by optimising its loss function:

L = d(z(s) + T (z(s), a), z(s′)) + max(0, α− d(z(s̃), z(s′))) (4)

using transitions sampled in the environment using a random policy—not unlike the prior work by
[15, 26] that also trains transition functions in this way.

The desirable behaviour of the executor is to align with VI, and hence we pre-trainX to be predictive
of the value updates performed by VI, following the work of [8]. Note that standard VI procedure
requires access to a fully-specified MDP, over which we can generate VI trajectories to use as train-
ing data. When an MDP is not available, following the remarks of [8], we generate synthetic discrete
MDPs that align with the target MDP as much as possible2—finding that useful transfer still occurs,
echoing the findings of [8].

To summarise in brief, the executor function training proceeds as follows:

1. First, generate a dataset of MDPs which, as much as possible, mimics in some way the
characteristics of the true MDP we’d like to deploy on (e.g. determinism, number of ac-
tions, etc.). If no such knowledge is available upfront, resort to a generic graph distribution
like Erdős-Rényi or Barabási-Albert.

2. Then, execute the Value Iteration algorithm on these MDPs, keeping track of intermediate
values Vt(s) at each iteration t, until convergence.

3. Supervise the executor network—a graph neural network operating over the transitions of
the MDP as edges—to receive Vt(s)—and all other parameters of the MDP—as inputs, and
predict Vt+1(s) as outputs (optimise using mean-squared error).

To optimise the neural network parameters θ, we use proximal policy optimisation (PPO)3 [21]. Note
that the PPO gradients also flow into parameters of T and X , which has the potential to displace
them from the properties required by the above, leading to either poorly constructed graphs (that
don’t respect the underlying MDP) or lack of VI-aligned computation. For the transition model,
we resolve this by periodically re-training on the TransE loss during training (with a multiplicative
factor of 0.001 to the loss). As we have no such easy way of retraining the executor, X , without
knowledge of the underlying MDP, we instead opt to freeze the parameters of X after pre-training,
treating them as constants rather than parameters to be optimised.

B Environments under study

We provide a visual overview of all five environments considered in Figure 4.
2If no prior knowledge about the environment is known, one might resort to generic graph distributions,

such as Erdős-Rényi [9] or Barabási-Albert [1].
3We use the publicly available PyTorch PPO implementation and hyperparameters from the following repos-

itory by Ilya Kostrikov: https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail.

7

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

Figure 5: Number of mazes with the optimal path of given length from: 8 × 8 train dataset (left),
8× 8 test dataset (middle) and 16× 16 test dataset (right).

Maze The maze environment with randomly generated obstacles from [25]. Observations include
a map of the maze (pointing out all obstacles), an indicator of the agent’s location, and an indicator
of the goal location. Actions correspond to moving in one of the eight principal directions, incurring
a reward of −0.01 every move (to encourage shorter solutions), −1 for hitting an obstacle (which
terminates the episode), and 1 for hitting the goal (which also terminates the episode).

CartPole The CartPole environment is a classic example of continuous control, first proposed by
[3]. The goal is to keep the pole connected by an un-actuated joint to a cart in an upright position.
Observations are four-dimensional vectors indicating the cart’s position and velocity as well as pole’s
angle from vertical and pole’s velocity at the tip. Actions correspond to staying still, or pushing the
engine forwards or backwards. The agent receives a fixed reward of +1 for every timestep that the
pole remains upright. The episode ends when the pole is more than 15 degrees from the vertical, the
cart moves more than 2.4 units from the center or by timing out (at 200 steps), at which point the
environment is considered solved.

Acrobot The Acrobot system includes two joints and two links, where the joint between the two
links is actuated. Initially, the links are hanging downwards, and the goal is to swing the end of the
lower link up to a given height. The environment was first proposed by [24]. The observations—
specifying in full the Acrobot’s configuration—constitute a six-dimensional vector, and the agent is
able to swing the Acrobot using three distinct actions. The agent receives a fixed negative reward of
−1 until either timing out (at 500 steps) or swinging the acrobot up, when the episode terminates.

MountainCar The MountainCar environment is an example of a challenging, sparse-reward,
continuous-space environment first proposed by [17]. The objective is to make a car reach the
top of the mountain, but its engine is too weak to go all the way uphill, so the agent must use gravity
to their advantage by first moving in the opposite direction and gathering momentum. Observations
are two-dimensional vectors indicating the car’s position and velocity. Actions correspond to staying
still, or pushing the engine forward or backward. The agent receives a fixed negative reward of −1
until either timing out (at 200 steps) or reaching the top, when the episode terminates.

Freeway Freeway is a game for the Atari 2600, published by Activision in 1981, where the goal is
to help the chicken cross the road (by only moving vertically upwards or downwards) while avoiding
cars. It is a standard part of the Atari Learning Environment and the OpenAI Gym.

Observations in this environment are the full framebuffer of the Atari console while playing the
game, which has been appropriately preprocessed as in [16]. Actions correspond to staying still,
moving upwards or downwards. Upon colliding with a car, the chicken will be set back a few lanes,
and upon crossing a road, it will be teleported back at the other side to cross the road again (which
is also the only time when it receives a positive reward of +1). The game automatically times out
after a fixed number of transitions.

C Data distribution of mazes

We provide an overview of simple count-based statistics of the maze datasets, stratified by difficulty,
in Figure 5. Namely, we can observe that the distribution of 8 × 8 maze difficulties follows a
power-law, whereas the 16 × 16 maze difficulty counts decay linearly. This poses an additional

8

Figure 6: Synthetic graphs constructed for pre-training the GNN executor: Maze (left) and CartPole
(right)

challenge when extrapolating out-of-distribution, as the distributions of the two testing datasets vary
drastically—and what worked well for one’s performance measure may not necessarily work well
for the other.

D Encoder on continual maze

Given the grid-world structure, our encoder for the maze environment is a CNN. We stack three
convolutional layers computing 128 features, of kernel size 3× 3, each followed by batch normali-
sation [14] and the ReLU activation. We then aggregate all positions by performing global average
pooling4 [23]. Finally, the aggregated representation is passed to a two-layer MLP with hidden di-
mension 128 and output dimension 10, with a ReLU activation in-between. The output dimension
was chosen to be comparable with VIN [25].

E Synthetic graphs

Figure 6 presents two synthetic graphs used for pretraining the GNN executor. The one for mazes
(left) emphasises the terminal node as a node to which all nodes are connected; all other nodes have
a maximum of eight neighbours, corresponding to the possible action types.

The graph used for CartPole is, in fact, a binary tree, where red nodes represent nodes with reward
0, and blue nodes have reward 1. This aligns with the idea that going further from the root, which is
equivalent with taking repeated left (or right) steps, leads to being more likely to fail the episode.

The CartPole graph is, in fact, also used for pre-training the executor for the other two continuous-
observation environments (MountainCar, Acrobot) and for Freeway. Primarily, the similar action
space of the environments is a possible supporting argument of the observed transferability. More-
over, MountainCar and Acrobot can be related to a inverted reward graph of CartPole, with more
aggressive combinations left/right steps often bringing a higher chance of success.

F Qualitative study

We performed a qualitative study into the node embeddings learnt by the encoder (and transition
model), hoping to elucidate the mechanism in which XLVIN organises its plan—please see Ap-
pendix F.

At the top row of Figure 7, we (left) colour-coded a specific 8 × 8 test maze by proximity to the
goal state, and (right) visualised the 3D PCA projections of the “pure-TransE” embeddings of these
states (prior to any PPO training), along with the edges induced by its transition model. Such a
model merely seeks to accurately organise the data, rather than optimise for returns: hence, it has no
trouble organising the data in a grid-like structure.

4Note that we could not have performed the usual flatten operation, in order to generalise to 16× 16 mazes.

9

Figure 7: Left: A test maze (left) and the PCA projection of its TransE state embeddings (right),
colour-coded by distance to goal (in green). Right: PCA projection of the XLVIN state embeddings
after passing the first (left), second (middle), and ninth (right) level of the continual maze.

At the bottom row, we visualise how these embeddings and transitions evolve as the agent keeps
solving levels; at level one (left), the embedder learnt to distinguish all 1-step neighbours of the
goal, by putting them on opposite parts of the projection space. At level two (middle), the two-step
neighbours have also been partitioned away and spread out.

This process does not keep going, because the agent would quickly lose capacity. Instead, by the
time it passes level nine (right), grid structure emerges again, but now the states become partitioned
by proximity: nearer neighbours of the goal are closer to the goal embedding. In a way, the XLVIN
agent is learning to reorganise the grid; this time in a way that respects shortest-path proximity.

10

	Introduction and Background
	XLVIN Architecture
	Experiments
	XLVIN (pre-)training details
	Environments under study
	Data distribution of mazes
	Encoder on continual maze
	Synthetic graphs
	Qualitative study

