
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SIGN-SGD VIA PARAMETER-FREE OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have achieved major advances across domains, yet training
them remains extremely resource-intensive. We revisit SIGN-SGD, which serves
both as a memory-efficient optimizer for single-node training and as a gradient
compression mechanism for distributed learning. This paper addresses a central
limitation: the effective stepsize cannot be determined a priori because it relies on
unknown, problem-specific quantities. We present a parameter-free SIGN-SGD
that removes manual stepsize selection. We analyze the deterministic single-node
case, and extend the method to stochastic single-node training and multi-node
settings. We also incorporate the momentum technique into our algorithms and
propose a memory-efficient variant that stores only gradient signs instead of full
gradients. We evaluate our methods on pre-training LLaMA models (130M and
350M) and fine-tuning a Swin Transformer (28M). Across considered tasks, the
proposed methods match the performance of tuned SIGN-SGD and ADAMW
(grid-searched stepsizes with a cosine schedule), while avoiding tuning overhead.
Employing parameter-free training yields approximately 1.5× end-to-end speedup
compared to runs with grid-searched stepsizes.

1 INTRODUCTION

Models and datasets continue to scale rapidly (Vaswani, 2017; Hoffmann et al., 2022; Alzubaidi et al.,
2021). This growth drives steep increases in compute requirements, memory footprint, and wall-clock
training time, consequently raising hardware costs. These pressures motivate the development of
methods that accelerate training and reduce resource usage without sacrificing accuracy. A significant
breakthrough arose not from designing advanced learning algorithms, but primarily from the manner
in which these algorithms can be applied: distributed learning (Konečný et al., 2016; McMahan et al.,
2017; Verbraeken et al., 2020). However, distributing training across M nodes does not yield an
M -fold speedup in practice, as inter-device communication remains a significant bottleneck.

Algorithm 1 SIGN-SGD

1: Input: Start point x0∈Rd, number of iterations T
2: Parameter: Stepsize γ > 0
3: for t = 0, . . . , T − 1 do
4: xt+1 = xt − γsign(∇f(xt))
5: end for

The reduction of the number of transmitted
packages through compression is one of the
key techniques to address this issue (Seide
et al., 2014; Alistarh et al., 2018). Among
others, the SIGN-SGD method stands out
(Bernstein et al., 2018). Solving the classic
optimization problem min

x∈Rd
f(x), it utilizes

an intuitive heuristic that takes the sign of each gradient coordinate (Algorithm 1). In the distributed
setup, aggregation is performed by a majority vote on the transmitted signs of the gradients.

Additionally, SIGN-SGD is rapidly gaining popularity, even for single-node training. In contrast
to methods such as ADAM (Kingma, 2014) and ADAMW (Loshchilov, 2017), which require sub-
stantial memory for storing statistics, SIGN-SGD is free from this constraint. Moreover, sign-based
approaches offer both theoretical and practical advantages over traditional SGD (Robbins & Monro,
1951), demonstrating superior convergence (Balles & Hennig, 2018; Balles et al., 2020) and empirical
performance (Kunstner et al., 2023; Zhao et al., 2024; Zmushko et al., 2024) in training large models.

Although SIGN-SGD is effectively used both for compression in distributed learning and as a
memory-efficient method in a single-node regime, achieving its full potential requires selecting an
appropriate stepsize. The optimal choice depends on problem-specific quantities that are unknown

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

in practice, necessitating costly manual tuning. To address this issue, we introduce parameter-free
SIGN-SGD algorithm that employ automatic stepsize selection schemes.

2 BRIEF LITERATURE REVIEW AND CONTRIBUTIONS

To situate the problem and motivate our algorithms, this section reviews the literature and distills the
open challenges that guide our contributions.

• We begin by revisiting SIGN-SGD and identifying the theoretically desirable stepsize that would
enable effective training without manual tuning.

• Next, we survey parameter-free optimization methods, highlighting their advantages and limitations.
• We conclude by stating the contributions of this work and explaining how they address the gaps.

2.1 RELATED WORK

• Sign-SGD. In the original paper on SIGN-SGD (Bernstein et al., 2018), the authors explored
convergence in the paradigm of finding a near-stationary point, i.e., such x ∈ Rd, that ∥∇f(x)∥ ⩽ ε,
where ε represents the accuracy of the solution. Moreover, to achieve convergence with respect to
the variance term, the authors utilized mini-batches. Both this convergence criterion and the use
of mini-batches are essential components of the analysis. As shown in (Karimireddy et al., 2019),
SIGN-SGD may fail to converge when considered the regret minimization. Moreover, to achieve
convergence with respect to the variance term, the authors of (Karimireddy et al., 2019) utilized
mini-batches. Meanwhile, Safaryan & Richtárik (2021) proposed a relaxation of the SIGN-SGD
method and showed that at least half of the coordinates in the sign of the stochastic gradient align
with those of the exact gradient, thereby enabling convergence with respect to the variance term. A
number of works have also emerged around SIGN-SGD, extending it with momentum (Sun et al.,
2023), providing high-probability convergence bounds (Kornilov et al., 2025), and studying it in
the context of differential privacy (Jin & Dai, 2025). Nevertheless, the possibility of selecting a
stepsize independent of problem properties while achieving optimal convergence rate has been largely
overlooked.

Let us provide the basic estimate of SIGN-SGD convergence with the exact gradient oracles. This
can be simply derived from Theorem 1 in (Bernstein et al., 2018):

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
∆∗

γT
+
γL∞

2
,

where L∞ is the smoothness constant of the objective f with respect to l∞-norm, and ∆∗ =
f(x0)− f(x∗) represents the initial distance to the solution. Putting

γ =

√
∆∗

√
L∞T

, we obtain optimal O
(√

∆∗L∞√
T

)
convergence rate. (1)

This stepsize poses challenges, as it depends on the problem’s hyperparameters. To address this issue,
we turn to various techniques that facilitate the provision of an adaptive stepsize.

• Parameter-free approaches. In the non-smooth setting, considering regret minimization, classic
gradient methods (Robbins & Monro, 1951; Moulines & Bach, 2011; Stich, 2019; Lan, 2020) require

γ =
∥x0 − x∗∥2
M
√
T

to have O
(
∥x0 − x∗∥2M√

T

)
convergence rate. (2)

This estimate is (worst-case) optimal in its complexity class (Nemirovskij & Yudin, 1983). We let M
denote the Lipschitz constant

(
|f(x)− f(y)| ⩽M ∥x− y∥2 for all x, y ∈ Rd

)
. The parameter-free

setting aims to adapt the stepsize automatically, without prior knowledge of the initial distance∥∥x0 − x∗∥∥
2

or the Lipschitz constant M .

For the first time, the idea of an automatic stepsize setting was proposed to achieve adaptation to
constant M . It was embodied in methods such as ADAGRAD (Duchi et al., 2011), ADAM (Kingma,
2014), RMSPROP (Tieleman & Hinton, 2012), ADADELTA (Zeiler, 2012), and ADAPTIVE SGD
(Gupta et al., 2017; Attia & Koren, 2023). In these methods, computed gradients were utilized

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to adjust the stepsize based on the properties of M . However, these methods required additional
memory and computations, and they lacked adaptivity to the initial distance. Attempts to modify γ in
equation 2 led to approaches within the general online stochastic learning setting (Orabona, 2019),
such as coin betting and reward-doubling techniques (Streeter & McMahan, 2012; Orabona, 2013;
McMahan & Orabona, 2014; Orabona & Pál, 2016; Cutkosky & Orabona, 2018; Cutkosky, 2019),
which can also be classified as parameter-free algorithms. Nevertheless, these approaches assumed
that the stochastic oracles have some (loose) bound.

Further studies suggested more intricate solutions in parameter-free convex stochastic optimiza-
tion. These methods achieved asymptotic convergence rates comparable to classic approaches
while adapting to essential hyperparameters. The starting point was the work (Carmon & Hinder,
2022) which provided adaptivity to the initial distance ∥x0 − x∗∥2 through estimators of the form
maxt⩽T ∥x0 − xt∥2. To find such estimators, the authors employed an additional grid search
procedure which increased the required number of steps only in double-logarithmic time. The primary
objective of this work was to derive high-probability convergence estimates in the stochastic convex
non-smooth setup. Several studies that did not utilize the additional search procedure were built upon,
including (Khaled et al., 2023), (Ivgi et al., 2023) and (Kreisler et al., 2024).

The work (Defazio & Mishchenko, 2023) provided another approach for sensitivity to the initial
distance. The authors iteratively constructed a sequence upper bounded by

∥∥x0 − x∗∥∥
2

and approx-
imated it accordingly. However, they considered only exact gradient oracles, which represents a
significant limitation. Later, in (Mishchenko & Defazio, 2023), the authors introduced a damping
factor in the denominator to improve convergence in the logarithmic factor’s square root. Never-
theless, theoretical analysis depended on the knowledge of the Lipschitz constant, which is not a
parameter-free approach. We note that the use of the classic ADAGRAD-NORM stepsize (Duchi
et al., 2011; Streeter & McMahan, 2010; Ward et al., 2020), possibly with additional factors in the
denominators, remains standard for adaptation to M .

The orthogonal approach was presented in the work (Mishkin et al., 2024). The authors considered a
smooth setup and proposed the use of local approximations of the smoothness constant L to achieve

adaptivity. However, the authors employed the stepsize γt =
∥xt+1(γt)−xt∥

2

∥∇f(xt+1(γt))−∇f(xt)∥2
at the t-th

iteration, where γt was determined by exponential search in the manner (Carmon & Hinder, 2022) or
by Newton’s method. Both variants are inefficient.

In light of the literature, we present the main directions of this study. Our goal is to provide the
parameter-free SIGN-SGD method that achieves a convergence rate comparable to the optimal
stepsize tuning 1.

2.2 CONTRIBUTIONS

We propose a novel mechanism for estimators compared to existing approaches. Instead of the classic
∥x0 − x∗∥ and M hyperparameters in equation 2, we aim to gain the tolerance to f(x0)− f(x∗) and
L∞ from equation 1. We now outline our contributions.

• Parameter-free SIGN-SGD. We introduce a parameter-free SIGN-SGD method. The core
idea involves per-iteration step-size adaptation. Every iteration, we choose estimators of L∞ and
f(x0) − f(x∗) using the current gradient information. This design is practical, as it requires no
additional hyperparameter search or restarts. As a starting point, we analyze the exact gradients setup.
• Stochastic and distributed settings. We study our algorithm in the distributed setting and the
case of stochastic gradient oracles. A lack of stochastic analysis presents a significant drawback in
parameter-free optimization. Our work addresses this limitation.
• Practical extensions. We extend our approach in two important directions.

• We incorporate momentum to improve practical performance.
• We provide a memory-efficient parameter-free version. It stores only the sign of the gradient

from the previous step while remaining an adaptivity to the problem properties.

• Theoretical analysis. We provide a comprehensive theoretical analysis of the proposed methods
and establish convergence guarantees. In our setup, we consider a convex and smooth objective.
• Experimental validation. We demonstrate that our methods are competitive in practical tasks,
including LLM and ViT training. An Adam-style momentum variant further improves performance

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

across both language and vision benchmarks. Empirically, parameter-free training matches or is
slightly below tuned SIGN-SGD and AdamW with cosine schedules, while achieving appreciably
better overall training time.

3 ALGORITHMS AND CONVERGENCE ANALYSIS

• Notation. We begin with the following notation: E[·] denotes the expected value of a random
variable, ∥x∥2 =

√
⟨x, x⟩ represents the Euclidean norm of the vector x ∈ Rd, ∥x∥1 =

∑d
i=1 |xi|

refers to the ℓ1-norm of the vector x, and ∥x∥∞ = maxi∈[d] |xi| defines the ℓ∞-norm of the vector x.

• Assumptions. We present the assumptions regarding the objective function f

Assumption 3.1. The function f is L∞-smooth, i.e., it satisfies ∥∇f(x)−∇f(y)∥1⩽L∞∥x− y∥∞
for any x, y ∈ Rd.

Assumption 3.2. The function f is convex, i.e., it satisfies f(x) ⩽ f(y) + ⟨∇f(x), x −
y⟩ for any x, y ∈ Rd.

Although neural networks are inherently non-convex, theoretical analysis under convexity assump-
tions remains relevant. Recent studies suggest that deep neural networks often exhibit properties
similar to convexity in certain regions, making insights from convex analysis applicable (Kleinberg
et al., 2018; Zhou et al., 2019; Liu et al., 2022). Moreover, convex optimization serves as a theoretical
foundation for the design of optimization algorithms. For example, momentum (Nesterov et al., 2018)
and AdaGrad (Duchi et al., 2011) were initially developed and analyzed for convex problems.

Assumption 3.3. The function f has a (maybe not unique) finite minimum, i.e., f(x∗) =
infx∈Rd f(x) > −∞.

Now we move to the base point of our analysis: the algorithms with exact gradient oracles.

3.1 EXACT GRADIENTS SETTING

We begin with an additional assumption regarding the gradient oracles.

Assumption 3.4. At any point x ∈ Rd, we have access to the exact gradient, i.e., we can compute
the full gradient value∇f(x).

We now present the main algorithm of this paper named ALIAS (Automatic Local per-Iteration
Approximation of the Stepsize, Algorithm 2). At each iteration, it utilizes the stepsize selection in a
specific manner to gain adaptivity to the global parameters of the problem. Below, we provide an
explanation of the algorithm and offer some intuition why the presented stepsize facilitates adaptivity.

Algorithm 2 ALIAS

1: Input: Starting point x0 ∈ Rd, initial L∞-
approximation η−1 = 0, initial ∆∗-approximation
d0 ∈ R+, lower bound f̃ on f(x∗), number of
iterations T

2: for t = 0, . . . , T − 1 do
3: Compute gradient∇f(xt)

4: ηt = ηt−1 +
∥∇f(xt)−∇f(xt−1)∥

1

∥xt−xt−1∥∞
; λt = 1√

ηt

5: if t ̸= 0 then
6: d̃t =

∑t−1
i=0 γ

i⟨∇f(xi+1), sign(∇f(xi))⟩
7: dt = max

(
dt−1, d̃t

)
8: end if
9: Option I: γt = λt

√
dt

10: Option II: γt = λt
√
f(x0)− f̃

11: xt+1 = xt − γtsign(∇f(xt))
12: end for

Considering the stepsize in equation 1, we
need to approximate the numerator and de-
nominator. Thus, we first analyze how to
estimate ∆∗, and then proceed with L∞.

We start with a positive scalar d0, represent-
ing the initial approximation of ∆∗. Next,
we construct a new approximation based on
the newly calculated gradient (Line 6) at
each iteration of the algorithm. To bring
these approximations closer to ∆∗ over iter-
ations, we take the maximum of the previous
and newly computed values (Line 7). This
approach yields an non-decreasing sequence
that is upper bounded by ∆∗ (see Lemma
F.1). We adopt this iterative scheme as Op-
tion I in Algorithm 2 (Line 9).

We note that estimating ∆∗ does not require
advanced schemes such as Option I for most
tasks, as adaptivity to f(x∗) is typically not

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

critical. As shown in (Boyd et al., 2003), the condition f(x∗) = 0 arises in problems such as finding a
point in the intersection of convex sets, completing positive semi-definite matrices, or solving systems
of convex inequalities. Moreover, a lower bound f̃ on f(x∗) is often known or readily available. For
instance, f̃ = 0 serves as a valid estimate in the empirical risk minimization setting. Taking this into
account, we present the second option for our method, where we use f(x0) − f̃ with f̃ ⩽ f(x∗)

(Line 10) instead of the sequence {dt}T−1
t=0 .

As for the denominator, at the t-th iteration, we approximate the local Lipschitz constant L∞ between
xt and xt−1. We accumulate it in the manner of ADAGRAD-NORM by adding it to the sum of
previous approximations:

ηt = ηt−1 +

∥∥∇f(xt)−∇f(xt−1)
∥∥
1

∥xt − xt−1∥∞
.

In the stepsize, the corresponding to the denominator coefficient appears as:

λt =
1√
ηt

=
1√∑t−1

i=0
∥∇f(xi+1)−∇f(xi)∥1

∥xi+1−xi∥∞

.

This stepsize facilitates iterative adaptation to the objective landscape. We are now prepared to
present the main theoretical results of this section.

Theorem 3.5. Suppose Assumptions 3.1, 3.2, 3.3, 3.4 hold. We denote ε⩾ 1
T

∑T−1
t=0 ∥∇f(xt)∥1,

L0
∞ =

∥∇f(x1)−∇f(x0)∥
1

∥x1−x0∥∞
. Then Algorithm 2 with d0 < ∆∗ to reach ε-accuracy needs

Õ

(
(∆∗)

2
(L∞)

3

d0 (L0
∞)

2
ε2

)
and Õ

(
∆∗ (L∞)

3

(L0
∞)

2
ε2

)
iterations with Options I and II, respectively.

Remark 3.6. Under conditions of Theorem 3.5, Algorithm 2 with λt = 1√
L∞+

t−1∑
i=0

∥∇f(xi+1)−∇f(xi)∥1

∥xi+1−xi∥∞

to reach ε-accuracy, where ε ⩾ 1
T

∑T−1
t=0 ∥∇f(xt)∥1, needs

Õ
(
(∆∗)2L∞

d0ε2

)
and Õ

(
∆∗L∞

ε2

)
iterations with Options I and II, respectively.

Discussion of the results. Since we provide convergence guarantees for finding near-stationary
points for a convex objective, we first examine the relationship between convergence rates in convex
and non-convex settings. For instance, we compare gradient descent rates using the gradient norm as
the convergence criterion. While the behavior of gradient norm minimization is well understood in the
non-convex setting (Arjevani et al., 2023), it is specific in the context of convex optimization. Notably,
Allen-Zhu (2018) showed that vanilla gradient descent – without acceleration or additional techniques
– achieves the same O (1/ε2) rate for finding near-stationary points in both convex and non-convex
settings. However, as previously noted, SIGN-SGD does not admit convergence guarantees beyond
any criterion except the gradient norm, even in the convex case. Consequently, convergence analysis
for sign-based methods must be framed in terms of finding the near-stationary point. Thus, our convex
rate is not superior to that of the non-convex case. Moreover, the bound in Theorem 3.5 includes an
additional factor of (L∞/L0

∞)
2 compared to Remark 3.6. However, the algorithm analyzed in Remark

3.6 is not parameter-free: it requires prior knowledge of L∞. In Appendix A, we present empirical
results for varying values of L∞, which demonstrate that this additive factor has negligible impact on
the practical convergence of Algorithm 2.

So far, we propose an algorithm and provide the theoretical analysis behind it. However, the analysis
assumes access to exact gradient oracles – an unrealistic assumption in practice. We now extend the
analysis to more realistic scenarios involving stochastic oracles.

3.2 STOCHASTIC GRADIENTS SETTING

We begin with the assumption regarding the gradient oracles.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Assumption 3.7. At any point x ∈ Rd we have access to the stochastic gradient, i.e., we can compute
gξ(x) = ∇f(x, ξ) – the stochastic gradient value with respect to the randomness in the choice of
samples ξ. Additionally, the variance of these stochastic estimators is coordinate-wise bounded, i.e.,
E
(
[gξ(x)]i − [∇f(x)]i

)2
⩽ σ2

i . Furthermore, this implies that E ∥gξ(x)−∇f(x)∥1 ⩽ ∥σ∥1.

It is a classic assumption in stochastic optimization (Bernstein et al., 2018). Furthermore, the
batch gradient gξ typically exhibits smoothness (Liu et al., 2023). Thus, we introduce an additional
assumption.

Assumption 3.8. The stochastic function fξ is L∞-smooth according to the realization ξ, i.e., it
satisfies ∥gξ(x)−gξ(y)∥1 ⩽ L∞∥x− y∥∞ for any x, y ∈ Rd, ξ.

The stochastic formulation of the problem (Assumption 3.7) necessitates modifications of Algorithm
2. This algorithm assumes access to the exact gradients, and the estimation of the local smoothness
constant relies on computing full gradients. Thus, our goal is to modify Line 4 in Algorithm 2.
Utilizing Assumption 3.8, we can construct a local approximation of L∞ on the t-th iteration via
stochastic gradients with respect to the stochastic realization ξt. Namely,

λt =
1√∑t−1

i=0

∥∥∥gi+1

ξi+1−gi
ξi+1

∥∥∥
1

∥xi+1−xi∥∞

,

where gtξt is the stochastic gradient computed at the t-th iteration based on the stochastic realization
ξt. We query the oracle twice per iteration, utilizing the current and subsequent stochastic realizations.
Another change in Algorithm 2 involves performing a step in Line 11 regarding sign(gtξt). In the
subsequent theoretical analysis, we focus solely on Option II in Algorithm 2. We provide a formal
description of the stochastic method, Algorithm 7, in Appendix F.2. There, we present both the
practical and theoretical versions.

We now present the convergence results.

Theorem 3.9. Suppose Assumptions 3.8, 3.2, 3.3, 3.7 hold. Then Algorithm 2 with Option II to reach

ε-accuracy, where ε ⩾
∑T−1

t=0 E

 γt

T−1∑
t=0

γt

∥∇f(xt)∥1

 and Lt,ξt+1

∞ =

∥∥∥gt+1

ξt+1−gt
ξt

∥∥∥
1

∥xt+1−xt∥∞
, needs

Õ

∆∗ (L∞)
3

ε2

(
E
(

1

L0,ξ1
∞

)2
)

+ ∥σ∥21 L∞

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


 iterations.

Remark 3.10. Under the conditions of Theorem 3.9, Algorithm 2 with λt = 1√√√√
L∞+

t−1∑
i=0

∥∥∥∥gi+1

ξi+1
−gi

ξi

∥∥∥∥
1

∥xi+1−xi∥∞

,

Option II and mini-batch of the size t+ 1 at t-th iteration, to reach ε-accuracy needs

Õ
(
∆∗L∞

ε2
+
∥σ∥21 L∞

ε2

(
E

1

min
0⩽t⩽T−1

Lt,ξt+1

∞

))
iterations,

where ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1 , Lt,ξt+1

∞ =

∥∥∥gt+1

ξt+1−gt
ξt

∥∥∥
1

∥xt+1−xt∥∞
.

Discussion of the results. With Assumption 3.8, a more stringent version of Assumption 3.1,
we approximate the smoothness constant via stochastic gradients. The key point is to measure the
gradient at the current point while considering the stochastic realization from the next iteration.
Since xt, ξt, and ξt+1 are independent, we can provide a theoretical analysis. Thus, we surpass
works such as (Defazio & Mishchenko, 2023; Mishchenko & Defazio, 2023; Mishkin et al., 2024),
which employed a similar idea of the adaptation to the Lipschitz constant but lacked a stochastic
analysis. Notably, the result of Theorem 3.9 achieves convergence only to a neighborhood, the size of
which is determined by the variance. This rate fully aligns with the original SIGN-SGD convergence

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(Bernstein et al., 2018). To address it in theory, we introduce increasing mini-batches analogously to
(Bernstein et al., 2018) in Remark 3.10. We note that mini-batching enables convergence guarantees
concerning the variance term; however, the method remains parameter-free even without it. In our
experiments, we do not employ mini-batching.

We develop an analysis not only for the stochastic setting, but also for the distributed one. A full
description of Algorithm 2 in the distributed setup, along with theoretical statements and proofs, is
presented in Appendix F.3.

Above, we present an algorithm that can be easily applied to practical tasks. It does not require
multiple restarts or additional search procedures. However, Algorithm 2 lacks the main advantage
of the original SIGN-SGD method. Indeed, performing a step on the t-th iteration requires storing
the entire gradient ∇f(xt−1) instead of just its sign. To address this limitation, we propose a
memory-efficient modification in the next section.

3.3 MEMORY-EFFICIENT ALIAS

In Algorithm 2, memory efficiency is sacrificed to achieve a parameter-free stepsize. Indeed,

γt = λt
√
dt =

√
dt

ηt
=

√√√√∑t−1
i=0 γ

i ⟨∇f(xi+1), sign (∇f(xi))⟩∑t−1
i=0

∥∇f(xi+1)−∇f(xi)∥1

∥xi+1−xi∥∞

.

To compute dt, it is sufficient to store only sign
(
∇f(xt−1)

)
, incurring no additional memory costs.

Regarding λt, we calculate
∥∥∇f(xt)−∇f(xt−1)

∥∥
1

and
∥∥xt+1 − xt

∥∥
∞ at each step. The last term

does not present an issue since
∥∥xt − xt−1

∥∥
∞ =

∥∥γt−1sign
(
∇f(xt−1)

)∥∥
∞. However, to find∥∥∇f(xt)−∇f(xt−1)

∥∥
1
, it is necessary to store the entire gradient∇f(xt−1).

We address this concern by modifying λt in Algorithm 2:

ηt = ηt−1 +

∥∥∇f(xt)−∇f(xt−1)
∥∥
∞

∥xt − xt−1∥1
followed by λt =

1√
t−1∑
i=0

∥∇f(xi+1)−∇f(xi)∥∞
∥xi+1−xi∥1

. (3)

To approximate the smoothness constant, we interchange the l∞-norm and l1-norm in the ex-
pression, leveraging their duality relationship. Thus, we approximate the constant L1, not L∞,
as indicated in Algorithm 2. Theoretically, this approach still requires memorizing ∇f(xt−1).
For this reason, we consider a practical option by the approximation

∥∥∇f(xt)−∇f(xt−1)
∥∥
∞ ≈

max
(∣∣maxj [∇f(xt)]j−minj [∇f(xt−1)]j

∣∣, ∣∣maxj [∇f(xt−1)]j−minj [∇f(xt)]j
∣∣). It necessitates

storing only two additional constants: maxj
[
∇f(xt−1)

]
j

and minj
[
∇f(xt−1)

]
j
. In the theoretical

analysis, we provide convergence guarantees only for the λt choice, as in equation 3. However, we
additionally validate the methods empirically with the approximation of the l∞-norm and provide an
ablation study that shows a small deviation of the approximate solution from the exact one. More
precisely, this approximation provides an upper bound on the initial l∞-norm, while remaining close
to it (see Section 4 and Appendix A).

We present a theoretical analysis of a memory-efficient approach, utilizing an additional assumption
on the L1-smoothness.
Assumption 3.11. The function f is L1-smooth, i.e., it satisfies ∥∇f(x)−∇f(y)∥∞⩽L1∥x− y∥1
for any x, y ∈ Rd.

Now we present the convergence guarantees of Algorithm 2 with λt as in equation 3.
Theorem 3.12. Suppose Assumptions 3.11, 3.2, 3.3, 3.4 hold. We denote ε ⩾
1
T

∑T−1
t=0 ∥∇f(xt)∥1, L0

1 =
∥∇f(x1)−∇f(x0)∥∞

∥x1−x0∥1
. Then Algorithm 2 with d0 < ∆∗ and d · λt as

in equation 3, to reach ε-accuracy needs

Õ

(
(∆∗)

2
(L1)

3
d2

d0 (L0
1)

2
ε2

)
and Õ

(
∆∗ (L1)

3
d2

(L0
1)

2
ε2

)
iterations with Options I and II, respectively.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

The result of Theorem 3.12 deteriorates the rate established in Theorem 3.5. Indeed, we can derive
the L∞ ⩽ dL1 inequality. However, the proposed approach offers significant advantages in terms of
memory efficiency.

Nevertheless, the theoretical convergence rates presented in this section are not optimal. In the
stochastic case, we aim to achieve Õ

(
∆∗L+∥σ∥2

1

ε2

)
rate. This issue is discussed in detail in Appendix

B, where we present an algorithm that attains this rate.

3.4 ALIAS WITH MOMENTUM

Algorithm 3 ALIAS Adam version

1: Input: Start points x−1, x0 ∈ Rd, r0,m0, v0 = 0,
d−1 > 0, number of iterations T

2: Parameters: γt, β1, β2 > 0
3: for t = 0, . . . , T − 1 do
4: rt+1=

√
β2r

t +
(
1−
√
β2
)
dt−1

〈
gtξt , sign(gt−1

ξt−1)
〉

5: dt = max
{
dt−1, rt+1

}
6: mt+1 = β1m

t + (1− β1)dtgtξt

7: vt+1 = β2v
t + (1− β2) (dt)

2
(
gtξt
)2

8: xt+1 = xt − γt
√

(dt)2

1+
vt+1−(mt+1)2

(mt+1)2

⊙ sign(mt+1)

9: end for

In previous sections, we presented
methods that do not utilize the
momentum parameter (Polyak, 1987;
Nesterov et al., 2018). However,
many modern optimizers, such as
ADAM (Kingma, 2014), PRODIGY
(Mishchenko & Defazio, 2023),
MUON (Jordan et al., 2024), and
MARS (Yuan et al., 2024), employ
this technique. We address this gap
in the current section and present
Algorithm 3, which incorporates the
momentum parameter into Algorithm
2 in a manner similar to (Mishchenko
& Defazio, 2023). Specifically, we
include exponential moving averages
of the first and second statistics, as in ADAM to aggregate past gradients and provide coordinate-wise
normalization that mitigates sharp directions and gradient noise.

4 EXPERIMENTS

In this section, we present empirical results for the LLM pre-training task. In Appendix A, we
validate our approach on vision tasks, specifically by fine-tuning the SWIN Transformer architecture
(Liu et al., 2021). Our code is open-sourced1.

Language model pre-training. Following the protocol of (Lialin et al., 2023), we train a LLaMA-
based architecture (Touvron et al., 2023) with 130M parameters on the C4 dataset (Raffel et al., 2020).
A detailed description of the experimental setup is provided in Appendix A.1. We compare several
optimization methods: SIGN-SGD with a tuned constant learning rate (lr), and three methods using a
tuned learning rate with a cosine scheduler (cosine sc) – namely, SIGN-SGD, STEEPEST DESCENT,
and NORMALIZED SGD. All of these methods are compared against ALIAS (Algorithm 2), which is
used without any tuning. Additionally, we evaluate all methods with weight decay (wd). We provide
final validation loss and perplexity in Table 1.

Table 1: SIGN methods on LLAMA pre-training.

Algorithm Validation Loss (↓) Perplexity (↓)

SIGN-SGD (lr) 3.041 20.923
SIGN-SGD (lr, cosine sc) 2.992 19.923
STEEPEST DESCENT (lr, cosine sc) 3.035 20.791
NORMALIZED SGD (lr, cosine sc) 3.135 22.982
ALIAS (ours) 3.017 20.422
SIGN-SGD (wd, lr) 3.041 20.923
SIGN-SGD (wd, lr, cosine sc) 2.980 19.693
STEEPEST DESCENT (wd, lr, cosine sc) 3.022 20.537
NORMALIZED SGD (wd, lr, cosine sc) 3.006 20.169
ALIAS (wd) (ours) 3.006 20.169

Table 2: SIGN-SGD methods with added mo-
mentum parameter (β), ADAMW and PRODIGY
on LLAMA pre-training.

Algorithm Validation Loss (↓) Perplexity (↓)

SIGN-SGD (wd, β, lr) 2.968 19.459
SIGN-SGD (wd, β, lr, cosine sc) 2.923 18.596
STEEPEST DESC. (wd, β, lr, cosine sc) 2.932 18.765
NORM. SGD (wd, β, lr, cosine sc) 2.934 18.803
ADAMW (wd, β, lr, cosine sc) 2.929 18.698
PRODIGY (wd, β) 3.003 20.145
PRODIGY (wd, β, cosine sc) 2.930 18.727
ALIAS Adam version (wd, β) (ours) 2.976 19.609
ALIAS Adam version (wd, β, cosine sc) (ours) 2.918 18.504

In Table 2, we present the results for methods incorporating momentum (β) (all methods with weight
decay). ALIAS Adam version utilizes sign descent with momentum and an additional scaling factor
(see Algorithm 3 for details). We consider two options for this method: with and without a cosine

1https://anonymous.4open.science/r/PF_SignSGD/

8

https://anonymous.4open.science/r/PF_SignSGD/

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

scheduler. We provide a comparison with ADAMW (Loshchilov, 2017) and PRODIGY (Mishchenko
& Defazio, 2023). We test PRODIGY with and without a learning rate scheduler. We present the
pre-training dynamic in Figure 1. These results coincides with those in Tables 1, 2.

20000 40000 60000 80000 100000
Number of stochastic gradient calls, t

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Va
lid

at
io

n
lo

ss

Sign-SGD (constant lr)
Sign-SGD (cosine)
Normalized SGD
ALIAS
Steepest Descent

20000 40000 60000 80000 100000
Number of stochastic gradient calls, t

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Va
lid

at
io

n
lo

ss

Sign-SGD (wd, constant lr)
Sign-SGD (wd, cosine)
Normalized SGD (wd)
ALIAS (wd)
Steepest Descent (wd)

20000 40000 60000 80000 100000
Number of stochasctic gradient calls, t

2.9

3.0

3.1

3.2

3.3

f(x
t)

1

Sign-SGD (wd, , constant lr)
Sign-SGD (wd, , cosine)
Normalized SGD (wd, , cosine)
Steepest Descent (wd, , cosine)
AdamW (wd, , cosine)
Prodigy (wd, , cosine)
Prodigy (wd, , constant lr)
ALIAS Adam version (wd, , cosine)
ALIAS Adam version (wd, , constant lr)

20000 40000 60000 80000 100000
Number of stochastic gradient calls, t

20

25

30

35

40

Pe
rp

le
xi

ty

Sign-SGD (constant lr)
Sign-SGD (cosine)
Normalized SGD
ALIAS
Steepest Descent

20000 40000 60000 80000 100000
Number of stochastic gradient calls, t

20.0

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Pe
rp

le
xi

ty

Sign-SGD (wd, constant lr)
Sign-SGD (wd, cosine)
Normalized SGD (wd)
ALIAS (wd)
Steepest Descent (wd)

20000 40000 60000 80000 100000
Number of stochasctic gradient calls, t

18

20

22

24

26

28

Pe
rp

le
xi

ty

Sign-SGD (wd, , constant lr)
Sign-SGD (wd, , cosine)
Normalized SGD (wd, , cosine)
Steepest Descent (wd, , cosine)
AdamW (wd, , cosine)
Prodigy (wd, , cosine)
Prodigy (wd, , constant lr)
ALIAS Adam version (wd, , cosine)
ALIAS Adam version (wd, , constant lr)

Figure 1: Comparison of SIGN-SGD methods in LLAMA pre-training. The left column shows
results without weight decay, the central column presents results with weight decay (wd), and the
right column displays results with weight decay (wd) and momentum parameter (β).

We highlight that our basic ALIAS achieves performance only slightly inferior to that of SIGN-SGD
with a tuned cosine scheduler. The Adam-based version of ALIAS outperforms all competing
methods, including tuned ADAMW and the state-of-the-art parameter-free optimizer PRODIGY with a
tuned cosine scheduler. These results are particularly competitive given that our approach eliminates
the need for learning rate tuning – a significant practical advantage. This feature enhances the
method’s usability, making it appealing for large-scale applications.

Memory-efficient version of Algorithm 2. We proceed with testing the memory-efficient ap-
proach, presented in Section 3.3. Recall that we approximate

∥∥∇f(xt)−∇f(xt−1)
∥∥
∞ ≈

max
(∣∣maxj [∇f(xt)]j −minj [∇f(xt−1)]j

∣∣, ∣∣maxj [∇f(xt−1)]j −minj [∇f(xt)]j
∣∣). We compare

the performance of ALIAS with λt as in equation 3, considering exact and approximated l∞-norm
(me), SIGN-SGD with a constant (tuned) stepsize, and SIGN-SGD with a (tuned) cosine scheduler.
The results of the 130M LLAMA-based model pre-training are presented in Table 3. We provide an
ablation comparing exact and approximated values of l∞-norms during training in Appendix A.

Table 3: SIGN-SGD methods and memory-
efficient version of ALIAS on LLAMA pre-
training.

Algorithm Validation Loss (↓) Perplexity (↓)

SIGN-SGD (wd, lr) 3.041 20.923
SIGN-SGD (wd, lr, cosine sc) 2.980 19.693
ALIAS (wd, λt as in equation 3) (ours) 3.015 20.389
ALIAS (wd, λt as in equation 3, me) (ours) 3.019 20.471

The results indicate a slight performance degra-
dation of the memory-efficient version of
ALIAS compared to SIGN-SGD with a cosine
scheduler baseline, as well as relative to the orig-
inal ALIAS method. However, it is crucial to
emphasize that this variant is a parameter-free
algorithm that retains only the sign of the gra-
dient from the previous iteration. Despite these
simplifications, its performance remains competitive with significantly more memory-intensive meth-
ods. We report performance metrics, memory footprint, and runtime efficiency in Appendix A, along
with detailed training configurations for full reproducibility.

5 CONCLUSION

In this work, we present a novel parameter-free SIGN-SGD that eliminates manual stepsize selection.
The method is analyzed in deterministic, stochastic, and distributed settings. Additionally, we
introduce a memory-efficient variant that stores only gradient signs while maintaining adaptivity. We
also explore a momentum-adapted version that demonstrates strong performance in practice.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
Renggli. The convergence of sparsified gradient methods. Advances in Neural Information
Processing Systems, 31, 2018.

Zeyuan Allen-Zhu. How to make the gradients small stochastically: Even faster convex and nonconvex
sgd. Advances in Neural Information Processing Systems, 31, 2018.

Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan, Omran Al-Shamma,
José Santamaría, Mohammed A Fadhel, Muthana Al-Amidie, and Laith Farhan. Review of deep
learning: concepts, cnn architectures, challenges, applications, future directions. Journal of big
Data, 8:1–74, 2021.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):
165–214, 2023.

Amit Attia and Tomer Koren. Sgd with adagrad stepsizes: Full adaptivity with high probability to
unknown parameters, unbounded gradients and affine variance. In International Conference on
Machine Learning, pp. 1147–1171. PMLR, 2023.

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In International Conference on Machine Learning, pp. 404–413. PMLR, 2018.

Lukas Balles, Fabian Pedregosa, and Nicolas Le Roux. The geometry of sign gradient descent. arXiv
preprint arXiv:2002.08056, 2020.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd:
Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560–569. PMLR, 2018.

Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. lecture notes of EE392o,
Stanford University, Autumn Quarter, 2004(01), 2003.

Yair Carmon and Oliver Hinder. Making sgd parameter-free. In Conference on Learning Theory, pp.
2360–2389. PMLR, 2022.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

Ashok Cutkosky. Artificial constraints and hints for unbounded online learning. In Conference on
Learning Theory, pp. 874–894. PMLR, 2019.

Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning in
banach spaces. In Conference On Learning Theory, pp. 1493–1529. PMLR, 2018.

George E Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, et al. Bench-
marking neural network training algorithms. arXiv preprint arXiv:2306.07179, 2023.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Interna-
tional Conference on Machine Learning, pp. 7449–7479. PMLR, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Vineet Gupta, Tomer Koren, and Yoram Singer. A unified approach to adaptive regularization in
online and stochastic optimization. arXiv preprint arXiv:1706.06569, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic step
size schedule. In International Conference on Machine Learning, pp. 14465–14499. PMLR, 2023.

Richeng Jin and Huaiyu Dai. Noisy signsgd is more differentially private than you (might) think. In
Forty-second International Conference on Machine Learning, 2025.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
fixes signsgd and other gradient compression schemes. In International Conference on Machine
Learning, pp. 3252–3261. PMLR, 2019.

Priya Kasimbeg, Vincent Roulet, Naman Agarwal, Sourabh Medapati, Fabian Pedregosa, Atish
Agarwala, and George E Dahl. How far away are truly hyperparameter-free learning algorithms?
arXiv preprint arXiv:2505.24005, 2025.

Ahmed Khaled, Konstantin Mishchenko, and Chi Jin. Dowg unleashed: An efficient universal
parameter-free gradient descent method. Advances in Neural Information Processing Systems, 36:
6748–6769, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape local
minima? In International conference on machine learning, pp. 2698–2707. PMLR, 2018.

Jakub Konečný, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

Nikita Kornilov, Philip Zmushko, Andrei Semenov, Mark Ikonnikov, Alexander Gasnikov, and
Alexander Beznosikov. Sign operator for coping with heavy-tailed noise in non-convex optimiza-
tion: High probability bounds under (l_0, l_1)-smoothness. arXiv preprint arXiv:2502.07923,
2025.

Itai Kreisler, Maor Ivgi, Oliver Hinder, and Yair Carmon. Accelerated parameter-free stochastic
optimization. arXiv preprint arXiv:2404.00666, 2024.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be.
arXiv preprint arXiv:2304.13960, 2023.

Guanghui Lan. First-order and stochastic optimization methods for machine learning, volume 1.
Springer, 2020.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. Relora: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2023.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:
85–116, 2022.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zijian Liu, Srikanth Jagabathula, and Zhengyuan Zhou. Near-optimal non-convex stochastic opti-
mization under generalized smoothness. arXiv preprint arXiv:2302.06032, 2023.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

H Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in hilbert
spaces: Minimax algorithms and normal approximations. In Conference on Learning Theory, pp.
1020–1039. PMLR, 2014.

Konstantin Mishchenko and Aaron Defazio. Prodigy: An expeditiously adaptive parameter-free
learner. arXiv preprint arXiv:2306.06101, 2023.

Aaron Mishkin, Ahmed Khaled, Yuanhao Wang, Aaron Defazio, and Robert Gower. Directional
smoothness and gradient methods: Convergence and adaptivity. Advances in Neural Information
Processing Systems, 37:14810–14848, 2024.

Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. Advances in neural information processing systems, 24, 2011.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.

Francesco Orabona. Dimension-free exponentiated gradient. Advances in Neural Information
Processing Systems, 26, 2013.

Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. Advances in
Neural Information Processing Systems, 29, 2016.

Boris T Polyak. Introduction to optimization. 1987.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pp. 400–407, 1951.

Mher Safaryan and Peter Richtárik. Stochastic sign descent methods: New algorithms and better
theory. In International Conference on Machine Learning, pp. 9224–9234. PMLR, 2021.

Fabian Schaipp, Ruben Ohana, Michael Eickenberg, Aaron Defazio, and Robert M Gower. Momo:
Momentum models for adaptive learning rates. arXiv preprint arXiv:2305.07583, 2023.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Interspeech, volume 2014, pp.
1058–1062. Singapore, 2014.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Sebastian U Stich. Unified optimal analysis of the (stochastic) gradient method. arXiv preprint
arXiv:1907.04232, 2019.

Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv preprint
arXiv:1002.4862, 2010.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Matthew Streeter and H Brendan McMahan. No-regret algorithms for unconstrained online convex
optimization. arXiv preprint arXiv:1211.2260, 2012.

Tao Sun, Qingsong Wang, Dongsheng Li, and Bao Wang. Momentum ensures convergence of signsgd
under weaker assumptions. In International Conference on Machine Learning, pp. 33077–33099.
PMLR, 2023.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop, coursera: Neural networks for machine
learning. University of Toronto, Technical Report, 6, 2012.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S
Rellermeyer. A survey on distributed machine learning. Acm computing surveys (csur), 53(2):
1–33, 2020.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. Journal of Machine Learning Research, 21(219):1–30, 2020.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
of variance reduction for training large models. arXiv preprint arXiv:2411.10438, 2024.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstructing
what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024.

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. Sgd converges to global
minimum in deep learning via star-convex path. arXiv preprint arXiv:1901.00451, 2019.

Philip Zmushko, Aleksandr Beznosikov, Martin Takáč, and Samuel Horváth. Frugal: Memory-
efficient optimization by reducing state overhead for scalable training. arXiv preprint
arXiv:2411.07837, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Brief Literature Review and Contributions 2

2.1 Related work . 2

2.2 Contributions . 3

3 Algorithms and Convergence Analysis 4

3.1 Exact gradients setting . 4

3.2 Stochastic gradients setting . 5

3.3 Memory-efficient ALIAS . 7

3.4 ALIAS with momentum . 8

4 Experiments 8

5 Conclusion 9

A Additional Experiments 16

A.1 LLaMA pre-training . 16

A.1.1 Experimental setup. 16

A.1.2 Additional results . 16

A.1.3 Comparison with parameter-free approaches 18

A.1.4 Experiments on big model . 18

A.1.5 Compute resources. 19

A.2 Tiny ImageNet classification with Swin Transformer Fine-Tuning 20

A.2.1 Experimental setup . 20

A.2.2 Performance on Image Classification . 20

A.2.3 Compute Resources . 20

A.3 AlgoPerf benchmark . 21

B SIGN-SGD with Additional Stepsize Search Procedure 21

B.1 SOS SIGN-SGD experiments . 23

B.1.1 Logistic regression. 23

B.1.2 Non-convex problem . 24

C Additional Notation and General Inequalities 24

D Lemmas for SOS SIGN-SGD 25

E Main Proofs and Details for SOS SIGN-SGD 28

E.1 Exact gradient setting . 28

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E.2 Stochastic gradient setting . 31

E.3 Distributed setting . 36

F Proofs for ALIAS 39

F.1 Exact gradient setting . 39

F.2 Stochastic gradient setting . 43

F.3 Distributed setting . 51

F.4 Memory-efficient ALIAS . 55

G Steepest Descent 58

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTS

This section supplements our experimental validation by examining the internal mechanisms of
parameter-free sign-based optimizers across LLaMA pre-training and Tiny ImageNet classification.
We analyze how step-size dynamics naturally emerge without manual scheduling, investigate memory
consumption and computational time compared to established optimizers, and demonstrate robustness
to hyperparameter choices.

A.1 LLAMA PRE-TRAINING

A.1.1 EXPERIMENTAL SETUP.

Our experiments use a LLaMA-based architecture (Touvron et al., 2023) equipped with RMSNorm
and SwiGLU (Shazeer, 2020) activations, trained on the C4 dataset (Raffel et al., 2020). The training
consists of 100k steps. We use batch size of 512 sequences and sequence length of 256, as in Lialin
et al. (2023), and T5 tokenizer with the dictionary size of 32k since it was originally trained on C4.

For all experiments, the respective optimization method is applied to the main model parameters,
while the LM Head layer is optimized with AdamW. This design follows prior work Zhao et al. (2024)
which showed that the LM Head layer requires more fine-grained learning rate adjustment.

The learning rate was selected through a grid search with multiplicative step of 10
1
4 . We employ a

cosine learning rate schedule with a warmup of 10% of the total steps and decay to 10% of the peak
learning rate. For ALIAS Adam version (Algorithm 3), we choose stepsize γt = 10−3.

The weight decay value was selected from [0, 0.01, 0.1] through validation. We also applied gradient
clipping with threshold of 1.0 for all methods except STEEPEST DESCENT and NORMALIZED SGD.
All methods with momentum utilize the Nesterov acceleration scheme with a momentum value of
0.9. For AdamW we use the standard hyperparameters: β1 = 0.9, β2 = 0.999, ε = 1e− 8.

A.1.2 ADDITIONAL RESULTS

In this section, we explore key aspects of our method. We analyze the stepsize derived from our
approach and compare it to the effective learning rate induced by the cosine scheduler. Next, we ex-
amine the memory and computational efficiency of all considered optimizers. We present an ablation
study on the approximation used in the stepsize of the memory-efficient variant, demonstrating its
close alignment with exact computation. We provide empirical evidence for the robustness of ALIAS
to an additional constant L∞ term (see Remark 3.6). Finally, we discuss the question regarding the
performance dependence on the choice of the initial value d0 and the level of gradient noise.

Study on the stepsize. A question arises regarding how γt
√

(dt)2

1+
vt+1−(mt+1)2

(mt+1)2

performs compared

to the effective cosine scheduler when γt remains constant. This pairing is presented in Figure 2.

10000 30000 50000 70000 90000
Number of stochastic gradient calls, t

0.0

0.2

0.4

0.6

0.8

1.0

St
ep

siz
e

effective cosine stepsize scheduler
ALIAS Adam version stepsize

Figure 2: Comparison of ALIAS Adam version stepsize with constant γt with effective cosine
stepsize scheduler.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

One can state that the cosine nature of the stepsize is automatically obtained. This feature highlights
the distinctiveness of our parameter-free approach.

Study on the time and memory consumption. In Table 4, we present details of memory require-
ments and time consumption per-iteration.

Table 4: Comparison of memory and time consumption.

Algorithm Memory consumption (gb) Time consumption per-iteration (s)

SIGN-SGD 0.41 0.004
STEEPEST DESCENT 0.41 0.01
NORMALIZED SGD 0.41 0.01
ADAMW 1.5 0.007
PRODIGY 3.5 0.05
ALIAS (ours) 1.22 0.01
ALIAS Adam version (ours) 1.91 0.03
memory-efficient ALIAS (ours) 0.41 0.007

Table 4 shows a higher time per-iteration for ALIAS Adam version and PRODIGY, which we adopt
from the work (Mishchenko & Defazio, 2023). We attribute this to the suboptimal implementation of
these algorithms, in contrast to others that have been utilized for an extended period. Simultaneously,
our algorithms are comparable to ADAMW in terms of required memory, while PRODIGY occupies
more GPU resources because it stores a vector of initial model parameters. Note that the memory-
efficient version of ALIAS is superior to ADAMW and comparable to the basic SIGN-SGD.

20000 40000 60000 80000 100000
Number of stochastic gradient calls, t

0.002

0.004

0.006

0.008

0.010

0.012

f(x
t)

f(x
t

1)

l -norm
approximation of l -norm
difference

Figure 3: Ablation study on approximated l∞-
norm deviation from the exact one in the memory-
efficient version of ALIAS.

Study on the memory-efficient ALIAS.
We now analyze the memory-efficient vari-
ant of ALIAS, focusing on the accuracy of
the approximated l∞-norm used in its up-
date rule. Figure 3 shows the dynamics
of
∥∥∇f(xt)−∇f(xt−1)

∥∥
∞ across iterations,

along with the deviation range of its approxi-
mation (see Section 3.3 for details on the ap-
proximation scheme). The ablation study re-
veals that the approximate norm deviates from
the exact value by approximately 50% on av-
erage. Notably, the approximation consis-
tently exceeds the true norm – as expected,
since it constitutes an upper bound by de-
sign. This leads to smaller effective stepsizes, which explains the slightly degraded perfor-
mance of the memory-efficient variant compared to the basic ALIAS algorithm (Algorithm 2).

Table 5: Robustness to L∞.

L∞ value Validation loss (↓)
0 3.006

50 3.006
100 3.007
500 3.005

1000 3.006

Study on the robustness to L∞. In Table 5,
we provide empirical evidence supporting the
claim made in Section 3.1 that the modification
of ALIAS (Algorithm 2) is robust concerning
the L∞ parameter. Hence, although the ver-
sion of the algorithm considered in Remark 3.6
requires prior knowledge of L∞, this additive
factor has negligible impact on the practical con-
vergence of Algorithm 2.

Performance dependence on d0 choice. In this paragraph, we investigate the robustness of our
ALIAS Adam version concerning the choice of the initial distance d0. To this end, we compare the
performance of Algorithm 3 on LLAMA pre-training using d0 = 1 and d0 = 10−3. In both cases,
we obtain the same validation metric: validation loss = 2.918. Based on these results, we conclude
that our method is insensitive to the choice of d0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Performance dependence on gradient noise. We investigate the dependence of the performance
of our ALIAS procedure (Algorithm 2) on the level of gradient noise. To simulate different noise
levels, we vary the batch size. Indeed, decreasing the batch size increases the stochasticity and the
variance of the gradient estimate, thereby leading to a higher level of gradient noise. While in previous
experiments we used a batch size of 512 sequences, here we use 256, 128, and 64 sequences. Then
we compare the validation loss on these runs. Table 6 provides a pairwise comparison of ALIAS and
SIGN-SGD across these batch sizes.

Table 6: SIGN-SGD and ALIAS with different bath sizes on LLAMA pre-training.

Batch Size (# of Sequences) Algorithm Validation Loss (↓)
512 SIGN-SGD 2.980
512 ALIAS (ours) 3.006
256 SIGN-SGD 2.986
256 ALIAS (ours) 3.013
128 SIGN-SGD 2.992
128 ALIAS (ours) 3.021
64 SIGN-SGD 2.999
64 ALIAS (ours) 3.029

The experimental results demonstrate that, when the batch size is reduced – thereby increasing the
level of gradient noise – both SIGN-SGD and ALIAS exhibit a comparable decline in performance.
This suggests that ALIAS is not disproportionately affected by the increased stochasticity in gradient
estimates, underscoring its robustness to gradient noise.

A.1.3 COMPARISON WITH PARAMETER-FREE APPROACHES

In this section, we present an experimental comparison of our ALIAS Adam version algorithm
with competing parameter-free optimization methods. For this additional evaluation, we selected the
following approaches: DOG (Ivgi et al., 2023), D-ADAPTATION (Defazio & Mishchenko, 2023), and
MOMO (Schaipp et al., 2023). These methods are chosen based on their performance reported in
the work (Kasimbeg et al., 2025) on the ALGOPERF benchmark (Dahl et al., 2023). Our validation
results for pre-training the LLAMA-based architecture are summarized in Table 7.

Table 7: Parameter-free methods on LLAMA pre-training.

Algorithm Validation Loss (↓) Perplexity (↓)
DOG 2.939 18.897
D-ADAPTATION (with Adam) 2.927 18.672
MOMO (with Adam) 2.925 18.634
PRODIGY 2.930 18.727
ALIAS Adam version (wd) (ours) 2.918 18.504

These results complement our comparison against sign-based methods and ADAMW. They demon-
strate that our approach achieves stronger performance than prior parameter-free methods.

A.1.4 EXPERIMENTS ON BIG MODEL

We evaluate the methods on LLAMA with 350M parameters. The training setup remains consistent
with the previous experiment. However, the number of layers in the model increases, leading to a
total parameter count that rises from 130M to 350M. This experiment is essential to demonstrate the
sustainability of our approaches to increasing dimensionality. We conduct experiments comparing
methods with and without the momentum parameter β along with weight decay. The results are
presented Tables 8, 9, and Figure 4.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: SIGN-SGD methods on LLAMA pre-training.

Algorithm Validation Loss (↓) Perplexity (↓)
SIGN-SGD (wd, lr, cosine sc) 2.819 16.760
STEEPEST DESCENT (wd, lr, cosine sc) 2.828 16.912
NORMALIZED SGD (wd, lr, cosine sc) 3.510 33.448
ALIAS (wd) (ours) 2.821 16.793

Table 9: SIGN-SGD methods with added momentum parameter (β), ADAMW (wd) and PRODIGY
on LLAMA pre-training.

Algorithm Validation Loss (↓) Perplexity (↓)
SIGN-SGD (wd, β, lr, cosine sc) 2.717 15.135
STEEPEST DESCENT (wd, β, lr, cosine sc) 2.711 15.044
NORMALIZED SGD (wd, β, lr, cosine sc) 3.460 31.817
ADAMW (wd, β, lr, cosine sc) 2.719 15.165
PRODIGY (wd, β, cosine sc) 2.715 15.105
ALIAS Adam version (wd, β, cosine sc) (ours) 2.707 14.984

0 20000 40000 60000 80000 100000
Number of stochasctic gradient calls, t

3 × 100

4 × 100

f(x
t)

1

Sign-SGD (wd, lr, cosine sc)
Normalized SGD (wd, lr, cosine sc)
Steepest Descent (wd, lr, cosine sc)
ALIAS (wd, cosine sc)

0 20000 40000 60000 80000 100000
Number of stochasctic gradient calls, t

3 × 100

4 × 100

f(x
t)

1

Sign-SGD (wd, , lr, cosine sc)
Normalized SGD (wd, , lr, cosine sc)
Steepest Descent (wd, , lr, cosine sc)
AdamW (wd, , lr, cosine sc)
Prodigy (wd, , cosine sc)
ALIAS Adam version (wd, , cosine sc)

0 20000 40000 60000 80000 100000
Number of stochasctic gradient calls, t

102

2 × 101

3 × 101

4 × 101

6 × 101

Pe
rp

le
xi

ty

Sign-SGD (wd, lr, cosine sc)
Normalized SGD (wd, lr, cosine sc)
Steepest Descent (wd, lr, cosine sc)
ALIAS (wd, cosine sc)

0 20000 40000 60000 80000 100000
Number of stochasctic gradient calls, t

2 × 101

3 × 101

4 × 101

6 × 101

Pe
rp

le
xi

ty

Sign-SGD (wd, , lr, cosine sc)
Normalized SGD (wd, , lr, cosine sc)
Steepest Descent (wd, , lr, cosine sc)
AdamW (wd, , lr, cosine sc)
Prodigy (wd, , cosine sc)
ALIAS Adam version (wd, , cosine sc)

Figure 4: Comparison of SIGN-SGD methods on 350M parameters LLAMA pre-training. Left
column is results for methods with weight decay and without momentum parameter β, right column –
methods with momentum β.

The results are consistent with those obtained for the smaller model. Among the momentum-based
methods, ALIAS Adam version demonstrates the best performance, while among the methods
without momentum, ALIAS exhibits comparable performance to other solutions.

A.1.5 COMPUTE RESOURCES.

We conducted all experiments described in Section A.1 on the cluster equipped with 4×NVIDIA
A100 GPUs. A complete run of 100,000 steps took approximately 12 hours using a full node.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.2 TINY IMAGENET CLASSIFICATION WITH SWIN TRANSFORMER FINE-TUNING

A.2.1 EXPERIMENTAL SETUP

Our image classification experiments on the Tiny ImageNet dataset (Le & Yang, 2015) employed
the Tiny Swin Transformer architecture (Liu et al., 2021). This lightweight variant of the Swin
Transformer is characterized by its hierarchical design and the use of shifted windows for efficient
self-attention computation. The specific configuration utilized involved non-overlapping 4× 4 input
patches and a 7× 7 window size for local self-attention.

We initialized the model using pretrained weights from ImageNet-1K (Deng et al., 2009), specifi-
cally the swin_T_patch4_window7_224 checkpoint provided in the official Swin Transformer
repository2. The model was then fine-tuned on Tiny ImageNet.

The Tiny ImageNet dataset comprises 200 classes with images of 64× 64 resolution. To meet the
model’s input requirements, all images were upsampled to 224× 224. A standard ImageNet-style
data augmentation pipeline was implemented, including random resized cropping and horizontal
flipping.

Training spanned 50 epochs, with a batch size of 256. The learning rate was determined via a
grid search, employing a multiplicative step of 10

1
4 . A cosine learning rate schedule was adopted,

featuring a linear warm-up phase for the initial 10% of total training steps, followed by decay to
10% of the peak learning rate. Weight decay was selected from {0, 0.01, 0.1} based on validation
performance. All optimization methods incorporated gradient clipping with a threshold of 1.0. When
momentum was applied, Nesterov acceleration with a coefficient of 0.99 was used. For AdamW, the
standard configuration of β1 = 0.9, β2 = 0.999, and ε = 10−8 was maintained.

A.2.2 PERFORMANCE ON IMAGE CLASSIFICATION

Further results and training curves for the Tiny Swin Transformer on the Tiny ImageNet classification
task are presented in Figure 5 and Table 10. We provide plots for the same methods with the
incorporated momentum parameter as for the LLAMA pre-training task.

0 10 20 30 40 50
Epochs, t

40

50

60

70

80

Ac
cu

ra
cy

30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5
Epochs, t

73

74

75

76

77

78

79

Ac
cu

ra
cy

Sign-SGD (wd, , constant lr)
Sign-SGD (wd, , cosine)
Normalized SGD (wd, , cosine)

Steepest Descent (wd, , cosine)
AdamW (wd, , cosine)
Prodigy (wd, , constant lr)

Prodigy (wd, , cosine)
ALIAS Adam version (wd, , constant lr)
ALIAS Adam version (wd, , cosine)

Figure 5: SIGN-SGD methods with added momentum parameter (β), ADAMW (wd) and PRODIGY
on SWIN fine-tuning. Left plot represents full process of training, right plot demonstrates accuracy
on last 20 epoch.

The results demonstrate the superiority of our algorithms over both tuned sign-based methods and
advanced optimizers, such as PRODIGY and ADAMW.

A.2.3 COMPUTE RESOURCES

We conducted all experiments described in Section A.2 using a single NVIDIA A100 GPU. A
complete run of 50 epochs required approximately 3 hours.

2https://github.com/microsoft/Swin-Transformer/blob/main/MODELHUB.md

20

https://github.com/microsoft/Swin-Transformer/blob/main/MODELHUB.md

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10: Final accuracy of SIGN-SGD methods with added momentum parameter (β), ADAMW
(wd) and PRODIGY on SWIN fine-tuning.

Algorithm Final accuracy (↑)
SIGN-SGD (wd, β, lr) 77.045
SIGN-SGD (wd, β, lr, cosine sc) 78.885
NORMALIZED SGD (wd, β, lr, cosine sc) 78.375
STEEPEST DESCNET (wd, β, lr, cosine sc) 77.547
ADAMW (wd, β, lr, cosine sc) 77.612
PRODIGY (wd, β) 77.035
PRODIGY (wd, β, cosine sc) 77.944
ALIAS Adam version (wd, β) (ours) 77.433
ALIAS Adam version (wd, β, cosine sc) (ours) 79.161

A.3 ALGOPERF BENCHMARK

In this section, we evaluate our method on some tasks from the ALGOPERF benchmark (Dahl et al.,
2023). To test our approach across different modalities, we chose the MRI reconstruction and
molecular property prediction (MPP) tasks. We preserve the original setups from the benchmark
implementation3. Specifically, for the MRI reconstruction task, we use the fastMRI dataset and a
U-Net model; for molecular property prediction, we utilize the OGBG dataset with a GNN model. We
validate only our ALIAS Adam version algorithm. The results for the other methods are taken from
Table 4 in (Kasimbeg et al., 2025), which reports comparisons between parameter-free optimizers
and tuned ADAMW. For our method, we fix γt = 10−3. The results are presented in Table 11.

Table 11: Parameter-free methods and ADAMW on MRI reconstruction and molecular property
prediction tasks.

Algorithm MRI, SSIM (↑) MPP, mAP (↑)
ADAMW 0.723 0.254
DOG 0.714 0.231
D-ADAPTATION (with Adam) 0.722 0.221
MOMO (with Adam) 0.723 0.221
PRODIGY 0.723 0.212
ALIAS Adam version (wd) (ours) 0.724 0.242

The results demonstrate that our approach improves upon the metrics of prior parameter-free methods
on the evaluated tasks. We also note that, for the MRI reconstruction task, the performance of our
method surpasses that of the tuned ADAMW.

B SIGN-SGD WITH ADDITIONAL STEPSIZE SEARCH PROCEDURE

In this section, we present an algorithm that achieves near-optimal convergence rates for SIGN-SGD
– Õ

(
∆∗L∞

ε2

)
in the deterministic case, and O

(
∆∗L∞

ε2 + ∥σ∥21
)

in the stochastic case. The method
does not utilize prior knowledge about the parameters of the problem and incorporates an additional
automatic stepsize search procedure.

Exact gradients. To design the necessary algorithm, we should provide a stepsize γ in Algorithm
1 that yields an estimate as in equation 1. Let us begin with the description of the approxima-
tion of the stepsize 1 that we utilize. We establish that the desired value is γ = NT

DT
, where

NT = ∆̃T = f(x0)−min0⩽t⩽T f(x
t) is the numerator and DT =

∑T−1
t=0 ∥∇f(xt+1)−∇f(xt)∥1

3https://github.com/mlcommons/algorithmic-efficiency/blob/main/docs/
GETTING_STARTED.md

21

https://github.com/mlcommons/algorithmic-efficiency/blob/main/docs/GETTING_STARTED.md
https://github.com/mlcommons/algorithmic-efficiency/blob/main/docs/GETTING_STARTED.md

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

is the denominator. The intuition behind this choice is that due to L∞-smoothness, we have

DT ∼ L∞
∑T−1

t=0

∥∥xt+1 − xt
∥∥
∞ = γL∞

∑T−1
t=0 ∥sign (∇f(xt))∥∞ = γL∞T ; then γ has

√
∆̃T√

L∞T

magnitude. However, we face a more complex situation compared to the regret minimization
paradigm: in our case, ∆̃T can be non-negative (in regret minimization, the analog of ∆T is the norm
of the points’ difference

∥∥x0 − xT∥∥ (Carmon & Hinder, 2022) which is always positive). To address
this, we add an extra step to the SIGN-SGD algorithm. Define e = sign

(
∇f(x−1)

)
. Let τ be a small

parameter. The update is:

f(x0) = min
{
f(x−1 + τe), f(x−1 − τe)

}
, (4)

The rationale behind selecting the step is as follows. Due to the smoothness of the objective function,
there exists a small neighborhood around any point within which moving in any direction decreases
the objective value. The exception arises when x−1 is the minimum itself. In this case, the sign
descent algorithm would not take any steps, and we return this point as the solution. Since the
neighborhood size τ depends on L∞, we iteratively decrease τ until it is sufficiently small. The
choice of τ and the guarantee f(x0) < f(x−1) are discussed in Lemma D.4. In this manner, we
ensure that NT = ∆̃T = f(x−1)−min−1⩽t⩽T f(x

t) > 0. To prevent the denominator from being
zero, we introduce a small constant ζ, which represents the minimum gradient norm encountered
during learning. This leads to DT =

∑T−1
t=0 ∥∇f(xt+1)−∇f(xt)∥1+ζ (see Lemma D.2 for details).

However, determining these values necessitates completing all T iterations. To address this, we
employ the BISECTION procedure from (Carmon & Hinder, 2022), which is outlined in Algorithm 4.

Algorithm 4 BISECTION procedure

1: Input: Optimal stepsize value ϕ(γ), lower stepsize bound γlo,
upper stepsize bound γhi, x−1 ∈ Rd, number of iterations T

2: ϕ(γ)
(
it is always in the form ϕ(γ) = NT (γ)

DT (γ)

)
3: if γhi ⩽ ϕ(γhi) then return∞ // Early infinite termination
4: end if
5: if γlo > ϕ(γlo) then return γ∗lo = γlo // Early non-infinite termination
6: end if
7: while γhi > 2γlo do
8: γmid =

√
γloγhi

9: NT (γmid),DT (γmid) ← SIGN-SGD(x−1, T, γmid) // First
step in Sign-SGD is made by equation 4

10: if γmid ⩽ ϕ(γmid) then
11: γlo = γmid
12: else
13: γhi = γmid
14: end if // Bisection invariants: γlo < ϕ(γlo), γhi > ϕ(γhi)
15: end while // Bisection stop condition: γhi ⩽ 2γlo

16: if NT (γhi) ⩽ NT (γlo)
ϕ(γhi)
γhi

then return γ∗hi = γhi // γhi return
condition

17: elsereturn γ∗lo = γlo // γlo return condition
18: end if

Algorithm 5 SOS SIGN-SGD

1: Input: Initial stepsize bound γs, initial bound step k, start point
x−1 ∈ Rd, number of iterations T

2: γ0 = BISECTION
(
ϕ(γ), γs, 2

2kγs, T
)

3: xT = SIGN-SGD(x−1, T, γ0)

Our goal is to have γ =

ϕ(γ) = NT (γ)
DT (γ) . To find

such γ, we take an ini-
tial interval [γlo, γhi] and, it-
eratively narrowing it, ob-
tain a small enough interval
[γ∗lo, γ

∗
hi] that contains the

γ−ϕ(γ) = 0 point. To per-
form this, we firstly have to
make sure that the initial in-
terval contains the desired
point. For this purpose, we
require γhi > ϕ(γhi) and
γlo < ϕ(γlo). We desig-
nate the group of these two
requirements as the bisec-
tion start condition (Lines
3, 5). Note that we can al-
ways satisfy the first condi-
tion, as shown in Lemma
D.2. Regarding the second
requirement, we can choose
a sufficiently small initial
γlo value. Even if γlo is
still greater than ϕ(γlo), we
can select this γlo value as
the desired stepsize with-
out performing the BISEC-
TION procedure, thereby
obtaining optimal conver-
gence guarantees. This is
demonstrated in Step 2 of the proof of Theorem B.1 (Theorem E.2). This enables us to avoid
early infinite termination (non-compliance with the first condition) and prevents convergence from
being compromised by early non-infinite termination (non-compliance with the second condition).
Additionally, we ensure that, by entering the procedure with the desired point between γlo and
γhi, it remains invariant throughout the procedure. Indeed, at each iteration we compute γmid as
the geometric average of the bounds and perform T iterations of the SIGN-SGD method with this

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

stepsize to find ϕ(γmid) (Lines 8, 9). It remains for us to choose such a part of the segment ([γlo, γmid]
or [γmid, γhi]) in which ϕ(γmid) lies (Lines 10 - 14). We perform this bisection, until γhi exceeds γlo
by more than 2 times (Line 7). In the end, by utilizing return conditions, the procedure returns γ∗lo or
γ∗hi (Lines 16 - 18). They satisfy the specific bounds explored in Lemma D.3.

Using this procedure, we present a description of the SOS (Search of the Optimal Stepsize) SIGN-
SGD (Algorithm 5). Before we pass to the convergence rate, we discuss the number of iterations
required by Algorithm 4. Since we calculate the average geometric at each iteration, we need
log log γhi

γlo
steps, where γlo and γhi are the boundaries of the initial segment. Thus, according to

Algorithm 5, it requires log log 22
k
γs

γs
= k iterations. We establish a lower bound on k by requiring

that the initial γhi is greater than ϕ(γhi). According to Lemma D.2, γhi should be at least ∆∗

∥∇f(x0)∥1
.

In this way, k = log log ∆∗

γs∥∇f(x0)∥1
. Therefore, allowing Algorithm 5 to perform T iterations, the

total number of iterations (considering Algorithm 4 performance time) is T log log ∆∗

γs∥∇f(x0)∥1
. We

regard this additional double-logarithmic factor as negligible, as it aligns with the results in (Carmon
& Hinder, 2022). We now present the main theoretical result of this section.

Theorem B.1. Suppose Assumptions 3.1, 3.2, 3.3, 3.4 hold. Then for Algorithm 5 after obtaining the
stepsize γ0 the following estimate is valid:

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽ 6

√
∆∗L∞√
T

+
3
∥∥∇f(x0)∥∥

1

T
.

Moreover, taking into account the complexity of Algorithm 4 in relation to the initial stepsize bound
γs, to reach ε-accuracy, where ε ⩾ 1

T

∑T−1
t=0 ∥∇f(xt)∥1, Algorithm 5 needs

Õ
(
∆∗L∞

ε2

)
iterations.

Discussion of the results. We obtain the near-optimal convergence rate 1. Our method retains a
dependency on the initial approximation. Indeed, we should take γs to be less than ∆∗

L∞T , according to
Step 2 in the proof of Theorem B.1 (Theorem E.2). An analogous requirement was established in the
work (Carmon & Hinder, 2022) and we do not consider this to be an issue. Nevertheless, despite the
theoretical optimality of the proposed approach, its practical application is not promising. Launching
multiple training sessions on large models does not appear effective. In this context, Algorithm 2
remains our main contribution. While proposing Algorithm 5, we demonstrate how to obtain the
near-optimal rate for SIGN-SGD in parameter-free optimization.

Stochastic gradients and distributed settings. The description and analysis of Algorithm 5 in
stochastic and distributed setups can be found in Appendix E.2, E.3.

B.1 SOS SIGN-SGD EXPERIMENTS

B.1.1 LOGISTIC REGRESSION.

We present toy experiments on logistic regression. We provide a comparison of SIGN-SGD with the
theoretical stepsize 1√

T
(Algorithm 1), SOS SIGN-SGD (Algorithm 5), ALIAS (Algorithm 2) and

STEEPEST DESCENT (Algorithms 8, 9). We validate the criteria ∥∇f(xt)∥1 on four datasets sourced
from the LIBSVM library (Chang & Lin, 2011): a9a, w8a, ijcnn1 and skin-nonskin. The
results are presented in Figure 6.

The plots show that even on the convex problems, SOS SIGN-SGD performs worse than ALIAS.
This was expected, however, testing this method on a real non-convex problem, such as training LLMs,
lacks justification. Additionally, it is noteworthy that STEEPEST DESCENT performs worse compared
to SIGN-SGD, highlighting the limited practical applicability of this approach. Consequently, we
provide analysis for STEEPEST DESCENT only with incorporated Algorithm 4 in Appendix G. We do
not focus on the analysis and development of efficient parameter-free methods based on this approach.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 500 1000 1500 2000 2500 3000 3500 4000
Number of gradient calls, t

10 1

100

f(x
t)

1

Default Sign-SGD
SOS Sign-SGD
ALIAS Sign-SGD
Steepest Descent

(a) a9a

0 500 1000 1500 2000 2500 3000 3500 4000
Number of gradient calls, t

10 2

10 1

100

f(x
t)

1

Default Sign-SGD
SOS Sign-SGD
ALIAS Sign-SGD
Steepest Descent

(b) w8a

0 500 1000 1500 2000 2500 3000 3500 4000
Number of gradient calls, t

10 2

10 1

f(x
t)

1

Default Sign-SGD
SOS Sign-SGD
ALIAS Sign-SGD
Steepest Descent

(c) ijcnn1

0 500 1000 1500 2000 2500 3000 3500 4000
Number of gradient calls, t

10 1

100

101

102

f(x
t)

1

Default Sign-SGD
SOS Sign-SGD
ALIAS Sign-SGD
Steepest Descent

(d) skin-nonskin

Figure 6: SIGN-SGD methods on logistic regression.

B.1.2 NON-CONVEX PROBLEM

We provide the comparison of SIGN-SGD with theoretical stepsize 1√
T

(Algorithm 1), SOS SIGN-
SGD (Algorithm 5), ALIAS (Algorithm 2) and STEEPEST DESCENT (Algorithms 8, 9). We validate
criteria ∥∇f(xt)∥1 on four datasets, sourced from the LIBSVM library (Chang & Lin, 2011): a9a,
w8a, ijcnn1 and skin-nonskin. In the main part we presented the results for the convex
problem. Now we consider the non-convex objective, namely the non-linear least squares loss:

f(x) =
1

n

n∑
i=1

(
yi −

1

1 + exp
(
−aTi x

))2

. (5)

There we denote ai ∈ R1×d as the sample and yi ∈ {0, 1} as the target. The results are presented in
Figure 7.

0 500 1000 1500 2000 2500 3000 3500 4000
Number of gradient calls, t

10 1

100

f(x
t)

1

Default Sign-SGD
SOS Sign-SGD
ALIAS Sign-SGD
Steepest Descent

(a) a9a

0 500 1000 1500 2000 2500 3000 3500 4000
Number of gradient calls, t

10 2

10 1

100

101

f(x
t)

1

Default Sign-SGD
SOS Sign-SGD
ALIAS Sign-SGD
Steepest Descent

(b) w8a

0 500 1000 1500 2000 2500 3000 3500 4000
Number of gradient calls, t

10 2

10 1

100

f(x
t)

1

Default Sign-SGD
SOS Sign-SGD
ALIAS Sign-SGD
Steepest Descent

(c) ijcnn1

0 500 1000 1500 2000 2500 3000 3500 4000
Number of gradient calls, t

10 1

100

101

102

f(x
t)

1

Default Sign-SGD
SOS Sign-SGD
ALIAS Sign-SGD
Steepest Descent

(d) skin-nonskin

Figure 7: Comparison of SIGN-SGD methods on problem equation 5.

The plots demonstrate the superiority of our methods, SOS SIGN-SGD and ALIAS, over classical
SIGN-SGD with the vanilla step size choice 1√

T
. This highlights the importance of adapting the

stepsize to the problem structure and hyperparameters. However, SOS SIGN-SGD still underperforms
compared to ALIAS.

C ADDITIONAL NOTATION AND GENERAL INEQUALITIES

Notation. Here we present the full list of notation, used in our paper.
•We denote d as the dimension of the problem; T as the total number of iterations in the algorithms;
x−1 as the starting point in the SOS SIGN-SGD algorithm, x0 as the starting point in the ALIAS
algorithm; xt as the point at t-th iteration in the algorithms; x∗ as the optimal solution of the
problem; ∆̃T = f(x−1)− min

−1⩽t⩽T
f(xt); ∆∗ = f(x−1)− f(x∗) for the SOS SIGN-SGD method,

∆∗ = f(x0)− f(x∗) for the ALIAS method.
•We denote∇f(xt) as the honest full gradient of the objective function at the point xt; gt (or gtξt) as
the stochastic gradient of the objective function at the point xt, according to the stochastic realization
ξt (we add lower index only when we use different stochastic realizations in the method); gtj (or gtj,ξt)
as the stochastic gradient of the objective function at the point xt on j-th device in the distributed
setup, according to the stochastic realization ξt.
• For vectors x, y ∈ Rd we denote sign(x) as the vector of the dimension d, where the i-th coordinate

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

defines as

[sign(x)]i = sign(xi) =


1, if xi > 0

0, if xi = 0

−1, if xi < 0

;

⟨x, y⟩ =
d∑

i=1

xiyi is the scalar product; ∥x∥1 =
d∑

i=1

|xi| is l1-norm; ∥x∥2 =

√
d∑

i=1

x2i is l2-norm;

∥x∥∞ = max
i∈1,d
|xi| is l∞-norm.

• For a random vector ξ ∈ Rd and fixed vector ψ ∈ Rd we denote E [ξ] is the expected value with
respect to a random vector ξ and E [ξ|ψ] as the expected value with the respect to a random vector ξ,
conditioned on the fixed vector ψ.

General inequalities. Suppose x, y ∈ Rd, a, b ∈ R, f(·) is under Assumption 3.1 and ξ, ψ ∈ R+

are random variables. Then,

∥∇f(x)−∇f(y)∥1 ⩽ L∞∥x− y∥∞ (Lip)

∥x+ y∥1 ⩽ ∥x∥1 + ∥y∥1 or
√
a+ b ⩽

√
a+
√
b (CS)

⟨x, y⟩ ⩽ ∥x∥1∥y∥∞ (Conj)

E [ξψ] ⩽ (E [ξ]
p
)

1
p (E [ψ]

q
)

1
q , where

1

p
+

1

q
= 1 (Höl)

D LEMMAS FOR SOS SIGN-SGD

Lemma D.1 (Quadratic inequality). Let x ∈ R+ be a variable and u, v ∈ R+ be constants. Then
x2 − ux− v ⩽ 0 implies x ⩽ u+

√
v. Additionally, x2 + ux− v ⩽ 0 implies x ⩽

√
v.

Proof. Since u, v are non-negative constants, the plain algebra involves xs.p. =
u±

√
u2+4v
2 being

stationary points of x2 − 2ux − v ⩽ 0 inequality. Since x is the positive variable, the boundary
x ⩽ xs.p.+ is the appropriate area of the solution. It remains for us to say that

x ⩽
1

2
u+

1

2

√
u2 + 4v

CS
⩽ u+

√
v,

which finishes the proof of the first statement. Proceeding analogically for the second part, we obtain
x ⩽ − 1

2u+ 1
2

√
u2 + 4v ⩽ − 1

2u+ 1
2u+

√
v =
√
v.

Lemma D.2 (Bisection entry). Let γmax = ∆∗

∥Grad(f(x0))∥1

(
or γmax = ∆∗

1
M

M∑
j=1

∥Grad(f(x0))∥1

for dis-

tributed setting

)
, where ∆∗ = f(x−1)− f(x∗) and the gradient oracle Grad(f(·)) can be specified

as ∇f(·) or g(·) or gj(·), that depends on the algorithm setting (exact gradient, stochastic gradient
or gradient on the i-th node in distributed setting). Then we can always entry the bisection procedure
without infinite early terminations taking γhi ⩾ γmax.

Proof. We can entry the BISECTION procedure, when γhi ⩾ ϕ(γhi). Thus, to proof the lemma
statement we can show that γhi < ϕ(γhi) is impossible, when γhi ⩾ γmax = ∆∗

∥Grad(f(x0))∥1
. Using

∆̃T = f(x−1)− min
−1⩽t⩽T

f(xt) notation, we consider

∆̃T (γhi)

DT (γhi)
=

NT (γhi)

DT (γhi)
= ϕ(γhi) > γhi ⩾ γmax =

∆∗

∥Grad(f(x0))∥1
. (6)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Let us look at the numerators of the fractions in the obtained inequality. According to Assumption
3.3, f(x∗) ⩽ min

−1⩽t⩽T
f(xt). In that way,

∆̃T (γhi) ⩽ ∆∗. (7)

Now we consider denominators in equation 6. DT (γhi) has the following form in any setting:
T−1∑
t=0
∥Grad(f(xt+1(γhi)) − Grad(f(xt(γhi))∥1 + ζ(γhi), where ζ(γ) is defined as the minimum of

gradients norm over the training: ζ(γ) = min
0⩽t⩽T

∥Grad(f(xt(γhi))∥1. Using equation CS, we obtain

∥Grad(f(x0))∥1
(i)

⩽
t−1∑
t=0

∥Grad(f(xt+1(γhi))− Grad(f(xt(γhi))∥1 + ∥Grad(f(xt(γhi))∥1

⩽
T−1∑
t=0

∥Grad(f(xt+1(γhi))− Grad(f(xt(γhi))∥1 + ∥Grad(f(xt(γhi))∥1

(ii)
=

T−1∑
t=0

∥Grad(f(xt+1(γhi))− Grad(f(xt(γhi))∥1

+ min
0⩽t⩽T

∥Grad(f(xt(γhi))∥1

(iii)
=

T−1∑
t=0

∥Grad(f(xt+1(γhi))− Grad(f(xt(γhi))∥1 + ζ(γhi)

= DT (γhi)), (8)

where inequality (i) holds for any 1 ⩽ t ⩽ T and in (ii) we choose t = arg min
0⩽t⩽T

∥Grad(f(xt(γhi))∥1.

One can note that we omit the case when the norm of the oracle reaches its minimum at iteration
t = 0 in ζ definition, when use it in (iii). However, it is a trivial case and it satisfies

∥Grad(f(x0))∥1 ⩽ ζ(γhi) ⩽
T−1∑
t=0

∥Grad(f(xt+1(γhi))− Grad(f(xt(γhi))∥1 + ζ(γhi) = DT (γhi).

In that way, combining it with equation 8 and equation 7, we obtain

∆̃T (γhi)

DT (γhi)
⩽

∆∗

∥Grad(f(x0))∥1
,

which contradicts to equation 6. Thus, we can entry the Algorithm 4 without infinite early ter-
mination if take initial γhi at least ∆∗

∥Grad(f(x0))∥1
. Note that for the distributed case we can obtain

1
M

M∑
j=1

∥∥Grad
(
f(x0)

)∥∥
1
⩽ DT (γhi) in the same way as in equation 8.

Lemma D.3 (Bisection invariants). If The BISECTION procedure (Algorithm 4) has no early termi-
nation at all, it returns γ0 such that

NT (γ0)

2DT (γ∗hi)
⩽ γ0 ⩽

NT (γ
∗
lo)

DT (γ0)
, (9)

where γ∗lo and γ∗hi are values, from which γ0 is chosen in the end of Algorithm 4. Moreover,

NT (γ0) ⩽ NT (γ
∗
lo), (10)

DT (γ0) ⩽ DT (γ
∗
hi). (11)

Proof. Consider the case procedure returns γ0 = γ∗lo. Then

NT (γ
∗
lo)

2DT (γ∗hi)
=

NT (γ
∗
lo)

2NT (γ∗hi)
· NT (γ

∗
hi)

DT (γ∗hi)
=

NT (γ
∗
lo)

2NT (γ∗hi)
ϕ(γ∗hi)

(i)

⩽
1

2
γ∗hi

(ii)

⩽ γ∗lo

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(iii)

⩽ ϕ(γ∗lo) =
NT (γ

∗
lo)

DT (γ∗lo)
, (12)

where (i) is correct due to the γlo return condition, (ii) – bisection stop condition, (iii) – bisection
invariant. Consider the case when procedure returns γ0 = γ∗hi. Then

NT (γ
∗
hi)

2DT (γ∗hi)
=

1

2
ϕ(γ∗hi)

(i)

⩽
1

2
γ∗hi ⩽ γ∗hi

(ii)

⩽
NT (γ

∗
lo)

DT (γ∗hi)
, (13)

where (i) is correct due to the bisection invariant and (ii) – γhi the return condition. Combining
equation 12 with equation 13, we obtain the first claim of the lemma whether Algorithm 4 returns
γ0 = γ∗lo or γ0 = γ∗hi. It remains to notice that equation 12 is followed by DT (γ

∗
lo) ⩽ DT (γ

∗
hi) when

γ0 = γ∗lo, and, consequently, DT (γ0) ⩽ DT (γ
∗
hi) since DT (γ

∗
hi) ⩽ DT (γ

∗
hi) is trivial. Analogically,

equation 13 is followed by NT (γ
∗
hi) ⩽ NT (γ

∗
lo) when γ0 = γ∗hi, and, consequently, NT (γ0) ⩽

NT (γ
∗
lo). This finishes the proof.

Lemma D.4 (Extra step). Suppose Assumptions 3.1, 3.2, 3.3 hold. Then, considering update of the
following form:

f(x0) = min
{
f(x−1 + τe), f(x−1 − τe)

}
,

where e is the random vector from the unit basis, and we can guarantee f(x0) < f(x−1), when

τ <
∥∇f(x−1)∥

1

L∞
. Moreover, Algorithm 4, starting with τ = τs and performing τ = τ

2 , needs at least

log
(

τsL∞
∥∇f(x−1)∥1

)
extra iterations to find efficient value of τ .

Proof. We choose f(x0) = min
{
f(x−1 + τe), f(x−1 − τe)

}
. We use convexity to show

f(x−1 + τe) ⩽ f(x−1) +
〈
∇f(x−1 + τe), τe

〉
= f(x−1) + τ

〈
∇f(x−1), e

〉
+ τ

〈
∇f(x−1 + τe)−∇f(x−1), e

〉
Conj

⩽ f(x−1) + τ
〈
∇f(x−1), e

〉
+ τ

∥∥∇f(x−1 + τe)−∇f(x−1)
∥∥
1
∥e∥∞

Lip

⩽ f(x−1) + τ
〈
∇f(x−1), e

〉
+ τ2L∞∥e∥2∞,

f(x−1 − τe) ⩽ f(x−1)−
〈
∇f(x−1 − τe), τe

〉
= f(x−1)− τ

〈
∇f(x−1), e

〉
− τ

〈
∇f(x−1 − τe)−∇f(x−1), e

〉
Conj

⩽ f(x−1)− τ
〈
∇f(x−1), e

〉
+ τ

∥∥∇f(x−1 − τe)−∇f(x−1)
∥∥
1
∥e∥∞

Lip

⩽ f(x−1)− τ
〈
∇f(x−1), e

〉
+ τ2L∞∥e∥2∞.

Utilizing e = sign
(
∇f(x−1)

)
, we take expectation and obtain

f(x0) ⩽ f(x−1)− τ
∣∣〈∇f(x−1), e

〉∣∣+ τ2L∞ ∥e∥2∞

= f(x−1)− τ

∣∣∣∣∣
d∑

i=1

[∣∣∇f(x−1)
∣∣]

i

∣∣∣∣∣+ τ2L∞
∥∥sign

(
∇f(x−1)

)∥∥2
∞

⩽ f(x−1)− τ
∥∥∇f(x−1)

∥∥
1
+ τ2L∞

= f(x−1)− τ
(∥∥∇f(x−1)

∥∥
1
− τL∞

)
.

In that way, if we have τ <
∥∇f(x−1)∥

1

L∞
, we derive

f(x0) < f(x−1).

Since in the algorithm we start with τ = τs and divide it by 2, after l divisions, we have

τs
2l
<

∥∥∇f(x−1)
∥∥
1

L∞
.

Thus, we need at least l = log
(

τsL∞
∥∇f(x−1)∥1

)
iterations.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E MAIN PROOFS AND DETAILS FOR SOS SIGN-SGD

E.1 EXACT GRADIENT SETTING

Lemma E.1 (Descent lemma). For Algorithm 5 under Assumptions 3.1, 3.2, 3.3, 3.4, the following
estimate is valid:

T−1∑
t=0

∥∇f(xt)∥1 ⩽
f(x−1)− f(xT)

γ0
+

T−1∑
t=0

∥∇f(xt+1)−∇f(xt)∥1.

Proof. Starting from the convexity of the objective,

f(xt+1)− f(xt) ⩽ ⟨∇f(xt+1), xt+1 − xt⟩ = −γt
〈
∇f(xt+1), sign

(
∇f(xt)

)〉
= −γt

〈
∇f(xt), sign

(
∇f(xt)

)〉
−γt

〈
∇f(xt+1)−∇f(xt), sign

(
∇f(xt)

)〉
Conj

⩽ −γt∥∇f(xt)∥1 + γt∥∇f(xt+1)−∇f(xt)∥1∥sign
(
∇f(xt)

)
∥∞

⩽ −γt∥∇f(xt)∥1 + γt∥∇f(xt+1)−∇f(xt)∥1.

Now we express the gradient norm and sum over all iterations to obtain

T−1∑
t=0

γt∥∇f(xt)∥1 ⩽
T−1∑
t=0

[
f(xt)− f(xt+1)

]
+

T−1∑
t=0

γt∥∇f(xt+1)−∇f(xt)∥1

= f(x0)− f(xT) +
T−1∑
t=0

γt∥∇f(xt+1)−∇f(xt)∥1.

Using Lemma D.4 to consider the extra step, we get

T−1∑
t=0

γt∥∇f(xt)∥1 ⩽ f(x−1)− f(xT) +
T−1∑
t=0

γt∥∇f(xt+1)−∇f(xt)∥1.

Since Algorithm 5 performs all the steps with the constant rate γ0 which we define later, we can
rewrite the result in the following form:

T−1∑
t=0

∥∇f(xt)∥1 ⩽
f(x−1)− f(xT)

γ0
+

T−1∑
t=0

∥∇f(xt+1)−∇f(xt)∥1,

which ends the proof of the lemma.

Theorem E.2 (Theorem B.1). Suppose Assumptions 3.1, 3.2, 3.3, 3.4 hold. Then for Algorithm 5
after obtaining the stepsize γ0, the following estimate is valid:

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽ 6

√
∆∗L∞√
T

+
3
∥∥∇f(x0)∥∥

1

T
.

Moreover, taking into account the complexity of Algorithm 4 in relation to the initial stepsize bound

γs, to reach ε-accuracy, where ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1, Algorithm 5 needs

O
(
∆∗L∞

ε2
log log

∆∗

γs∥∇f(x0)∥1

)
iterations.

Proof. Let us start with the result of Lemma E.1:

T−1∑
t=0

∥∇f(xt)∥1 ⩽
f(x−1)− f(xT)

γ0
+

T−1∑
t=0

∥∇f(xt+1)−∇f(xt)∥1

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

⩽
∆̃T

γ0
+

T−1∑
t=0

∥∇f(xt+1)−∇f(xt)∥1, (14)

where ∆̃T = f(x−1) − min
−1⩽t⩽T

f(xt). Now, we accurately estimate the last term in equation 14,

which is additionally denoted as FT =
T−1∑
t=0
∥∇f(xt+1)−∇f(xt)∥1. Thus,

FT =

T−1∑
t=0

∥∇f(xt+1)−∇f(xt)∥1
Lip

⩽ L∞

T−1∑
t=0

∥xt+1 − xt∥∞

= L∞

T−1∑
t=0

γt∥sign
(
∇f(xt)

)
∥∞ ⩽ L∞

T−1∑
t=0

γt. (15)

Now let us choose ϕ(γ), which we push into the BISECTION procedure (Algorithm 4): ϕ(γ) =
N(γ)
D(γ) =

∆̃T (γ)
FT (γ)+ζ(γ) , where ∆̃T = f(x−1)− min

−1⩽t⩽T
f(xt) and ζ = min

0⩽t⩽T
∥∇f(xt)∥1. In that way,

we obtain some γ0, which can be equal to γ∗lo or γ∗hi (see Lemma D.2, Lemma D.3) and use it as a
constant stepsize for our method. Thus, equation 15 transforms into

FT (γ0) ⩽ γ0L∞T. (16)

Mention that, according to Lemma D.2, we can always entry to the procedure without infinite early
termination. In that way, we have two situations: when we have no early terminations at all and we
are under the activity of Lemma D.3, and when we have early termination with initial γ∗lo. We divide
the following proof into two steps, where we separately show the convergence guarantees in this two
situations.
Step 1: no early terminations.
Since we have only two cases: γ0 = γ∗lo or γ0 = γ∗hi, let us consider them separately.
• γ0 = γ∗hi : equation 16 transforms into

FT (γ
∗
hi) ⩽ γ∗hiL∞T

Lemma D.3,9

⩽
NT (γ

∗
lo)

DT (γ∗hi)
L∞T

(i)
=

∆̃T (γ
∗
lo)

FT (γ∗hi) + ζ(γ∗hi)
L∞T,

where (i) is correct due to the ϕ(γ) choice. Solving this quadratic inequality with respect to FT (γ
∗
hi)

(Lemma D.1), we obtain

FT (γ
∗
hi) ⩽

√
∆̃T (γ∗lo)L∞T ⩽

√
∆∗L∞T , (17)

where ∆∗ = f(x−1)− f(x∗). Plugging it into equation 14, we obtain

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
1

T

∆̃T (γ
∗
hi)

γ∗hi
+

1

T
FT (γ

∗
hi)

Lemma D.3,9

⩽
1

T

2DT (γ
∗
hi)

NT (γ∗hi)
∆̃T (γ

∗
hi) +

1

T
FT (γ

∗
hi)

=
2

T

[FT (γ
∗
hi) + ζ(γ∗hi)] ∆̃T (γ

∗
hi)

∆̃T (γ∗hi)
+

1

T
FT (γ

∗
hi)

=
3

T
FT (γ

∗
hi) +

2ζ(γ∗hi)

T
17
⩽ 3

√
∆∗L∞√
T

+
2
∥∥∇f(x0)∥∥

1

T
. (18)

In that way, equation 18 is the final estimate when BISECTION procedure returns γ∗hi.
• γ0 = γ∗lo : equation 16 transforms into

FT (γ
∗
lo) ⩽ γ∗loL∞T

Lemma D.3,9

⩽
NT (γ

∗
lo)

DT (γ∗lo)
L∞T

(i)
=

∆̃T (γ
∗
lo)

FT (γ∗lo) + ζ(γ∗lo)
L∞T,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

where (i) is correct due to the ϕ(γ) choice. Solving this quadratic inequality with respect to FT (γ
∗
lo)

(Lemma D.1), we obtain

FT (γ
∗
lo) ⩽

√
∆̃T (γ∗lo)L∞T ⩽

√
∆∗L∞T . (19)

Now we make an additional distinction and consider the estimates separately: one case when

γ∗lo >
√

∆∗

L∞T , and another when γ∗lo ⩽
√

∆∗

L∞T . We can do this without any limitations, since
combining the intervals considered for γ∗lo returns all possible values.

◦ γ∗lo >
√

∆∗

L∞T : we straightforwardly move to the equation 14 estimation:

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
1

T

∆̃T (γ
∗
lo)

γ∗lo
+

1

T
FT (γ

∗
lo)

⩽

√
L∞√
∆∗T

∆̃T (γ
∗
lo) +

1

T
FT (γ

∗
lo)

19
⩽

√
∆∗L∞√
T

+

√
∆∗L∞√
T

= 2

√
∆∗L∞√
T

. (20)

◦ γ∗lo ⩽
√

∆∗

L∞T : in this case, we start from the estimate that is followed by equation 16:

FT (γ
∗
hi) ⩽ γ∗hiL∞T

(i)

⩽ 2γ∗loL∞T ⩽ 2
√
L∞∆∗T , (21)

where (i) is done due to the bisection stop condition. Now we proceed with estimation of equation 14:

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
1

T

∆̃T (γ
∗
lo)

γ∗lo
+

1

T
FT (γ

∗
lo)

Lemma D.3,9

⩽
1

T

2DT (γ
∗
hi)

NT (γ∗lo)
∆̃T (γ

∗
lo) +

1

T
FT (γ

∗
lo)

Lemma D.3,11

⩽
2

T

[FT (γ
∗
hi) + ζ(γ∗hi)] ∆̃T (γ

∗
lo)

∆̃T (γ∗lo)
+
FT (γ

∗
hi) + ζ(γ∗hi)

T

=
3FT (γ

∗
hi)

T
+

3ζ(γ∗hi)

T
21
⩽ 6

√
∆∗L∞√
T

+
3ζ(γ∗hi)

T

⩽ 6

√
∆∗L∞√
T

+
3
∥∥∇f(x0)∥∥

1

T
. (22)

Combining equation 20 and equation 22, we get that equation 22 is the final estimate when BISECTION
procedure returns γ∗lo.
In the end, equation 18 and equation 22 give us the estimate in the case when BISECTION procedure
does not have early terminations at all and outputs any value of γ0:

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽ 6

√
∆∗L∞√
T

+
3
∥∥∇f(x0)∥∥

1

T
. (23)

Step 2: early termination with γlo.
Now we consider the scenario when with initial γlo, there is γlo ⩾ ϕ(γlo) and algorithm early returns
γ∗lo. To dissect this, we should choose an initial γlo = γ∗lo ⩽ ∆∗

L∞T . Thus, equation 16 transforms into

FT (γ
∗
lo) ⩽ γloL∞T ⩽

√
L∞∆∗T . (24)

In that way, equation 14 turns into

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
1

T

∆̃T (γ
∗
lo)

γ∗lo
+

1

T
FT (γ

∗
lo)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

⩽
1

T

∆̃T (γ
∗
lo)

ϕ(γ∗lo)
+

1

T
FT (γ

∗
lo)

=
1

T

[FT (γ
∗
lo) + ζ(γ∗lo)] ∆̃T (γ

∗
lo)

∆̃T (γ∗lo)
+

1

T
FT (γ

∗
lo)

=
2FT (γ

∗
lo)

T
+
ζ(γ∗lo)

T

24
⩽ 2

√
∆∗L∞√
T

+

∥∥∇f(x0)∥∥
1

T
. (25)

Hence, equation 25 delivers the estimate, when Algorithm 4 makes an early termination.
Combining equation 23 with equation 25, we finally obtain the estimate for all possible cases of the
BISECTION procedure return:

1

T

T−1∑
t=0

∥∇f(xt(γ0))∥1 ⩽ 6

√
∆∗L∞√
T

+
3
∥∥∇f(x0)∥∥

1

T
.

Expressing the number of iterations and using ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1 as a criterion, we obtain that

algorithm needs O
(

∆∗L∞
ε2

)
iterations to reach ε-accuracy. Note that we drop the term

∥∇f(x0)∥
1

T ,
since it is asymptotically smaller than the main one. However, we firstly need to find the step

γ0 with the bisection procedure which takes T log log

(
γε2

2k

γε

)
= O

(
∆∗L∞

ε2 k
)

iterations, where

22
k

denotes the length of the initial interval for the stepsize. We have already discussed in the
main part that, according to Lemma D.2, k should be at least k = log log ∆∗

γs∥∇f(x0)∥1
. Thus,

O
(

∆∗L∞
ε2 log log ∆∗

γs∥∇f(x0)∥1

)
is the final iteration complexity.

E.2 STOCHASTIC GRADIENT SETTING

Let us start with the description of the stepsize choice for stochastic version of Algorithm 5. The
main purpose of the BISECTION procedure (Algorithm 4) is to find stepsize γ close enough to the
ϕ(γ) desired value utilizing small number of sign descent launches. Recall we establish

ϕ(γ) =
∆̃T (γ)∑T−1

t=0 ∥∇f(xt+1)−∇f(xt)∥1 + ζ(γ)

for the exact gradient case. The numerator can remain unchanged. However, since we lack ac-
cess to exact gradients, we cannot use the original denominator. Instead, we employ stochastic
oracles: DT (γ) =

∑T−1
t=0 ∥g(xt+1)− g(xt)∥1 + ζ(γ). Other details remain the same, and we can

straightforwardly pass to the convergence results.
Lemma E.3 (Descent lemma). For Algorithm 5 under Assumptions 3.1, 3.2, 3.3, 3.7, the following
estimate is valid:

T−1∑
t=0

∥∇f(xt)∥1 ⩽
f(x−1)− f(xT)

γ0
+

T−1∑
t=0

∥gt+1 − gt∥1 + 3δt + δt+1,

where δt =
T−1∑
t=0
∥∇f(xt)− gt∥1.

Proof. Starting from the convexity of the objective,

f(xt+1)− f(xt) ⩽ ⟨∇f(xt+1), xt+1 − xt⟩ = −γt⟨∇f(xt+1), sign(gt)⟩
= −γt⟨gt, sign(gt)⟩ − γt⟨∇f(xt+1)− gt, sign(gt)⟩
= −γt∥gt∥1 − γt⟨∇f(xt)− gt, sign(gt)⟩

−γt⟨∇f(xt+1)−∇f(xt), sign(gt)⟩
Conj

⩽ −γt∥∇f(xt)∥1

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

+γt∥∇f(xt)− gt∥1 + γt∥∇f(xt)− gt∥1∥sign
(
gt
)
∥∞

+γt∥∇f(xt+1)−∇f(xt)∥1∥sign
(
gt
)
∥∞

⩽ −γt∥∇f(xt)∥1 + 3γt∥∇f(xt)− gt∥1 + γt∥∇f(xt+1)− gt+1∥1
+γt∥gt+1 − gt∥1.

Now we rearrange terms and summarize over all iterations to obtain

T−1∑
t=0

γt∥∇f(xt)∥1 ⩽
T−1∑
t=0

[
f(xt)− f(xt+1)

]
+

T−1∑
t=0

γt∥gt+1 − gt∥1

+3

T−1∑
t=0

γt∥∇f(xt)− gt∥1 +
T−1∑
t=0

γt∥∇f(xt+1)− gt+1∥1.

Since Algorithm 5 performs all the steps with the constant rate γ0, which we define later, we can
rewrite the result in the following form:

T−1∑
t=0

∥∇f(xt)∥1 ⩽
T−1∑
t=0

[
f(xt)− f(xt+1)

]
γ0

+
T−1∑
t=0

∥gt+1 − gt∥1

+3

T−1∑
t=0

∥∇f(xt)− gt∥1 +
T−1∑
t=0

∥∇f(xt+1)− gt+1∥1.

In the obtained estimate the last two terms consist from differences between the honest and stochastic
gradient at the t-th and (t + 1)-th moments. One of our goals is to estimate them, however, we

want perform analogically to Theorem E.2 and continue the proof with the
T−1∑
t=0
∥gt+1 − gt∥1 term

estimate. In order to simplify our following writing we give additional notation and denote δt =
T−1∑
t=0
∥∇f(xt)− gt∥1. In that way, additionally considering the extra step (Lemma D.4), we derive

T−1∑
t=0

∥∇f(xt)∥1 ⩽
f(x−1)− f(xT)

γ0
+

T−1∑
t=0

∥gt+1 − gt∥1 + 3δt + δt+1,

which ends the proof of the lemma.

Theorem E.4. Suppose Assumptions 3.1, 3.2, 3.3, 3.7 hold. Then for Algorithm 5 using at t-th
iteration mini-batches of sizes t+ 1, after obtaining the stepsize γ0, the following estimate is valid:

1

T

T−1∑
t=0

E∥∇f(xt)∥1 ⩽ 6

√
∆∗L∞√
T

+ 10∥σ∥1 +
3E
∥∥g0∥∥

1

T
.

Moreover, taking into account the complexity of Algorithm 4 in relation to the initial stepsize bound

γs, to reach ε-accuracy, where ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1, Algorithm 5 needs

O
((

∆∗L∞

ε2
+ ∥σ∥21

)
log log

∆∗

γs∥g0∥1

)
iterations.

Proof. Let us start with the result of Lemma E.3. We transform it due to the fact that Algorithm 5
performs all the steps with the constant rate γ0, which we define later:

T−1∑
t=0

∥∇f(xt)∥1 ⩽
f(x−1)− f(xT)

γ0
+

T−1∑
t=0

∥gt+1 − gt∥1 + 3δt + δt+1

⩽
∆̃T

γ0
+

T−1∑
t=0

∥gt+1 − gt∥1 + 3δt + δt+1, (26)

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

where ∆̃T = f(x−1)− min
−1⩽t⩽T

f(xt). Now, we focus on estimating GT =
T−1∑
t=0
∥gt+1 − gt∥1 term

in equation 26. Thus,

GT =

T−1∑
t=0

∥gt+1 − gt∥1 ⩽
T−1∑
t=0

∥∇f(xt+1)− gt+1∥1 +
T−1∑
t=0

∥∇f(xt)− gt∥1

+

T−1∑
t=0

∥∇f(xt+1)−∇f(xt)∥1

Lip

⩽ δt + δt+1 + L∞

T−1∑
t=0

∥xt+1 − xt∥∞

= δt + δt+1 + L∞

T−1∑
t=0

γt∥sign
(
∇f(xt)

)
∥∞

⩽ δt + δt+1 + L∞

T−1∑
t=0

γt. (27)

Now let us choose ϕ(γ), which we push to the BISECTION procedure (Algorithm 4): ϕ(γ) = N(γ)
D(γ) =

∆̃T (γ)
GT (γ)+ζ(γ) , where ∆̃T = f(x−1) − min

−1⩽t⩽T
f(xt) and ζ = min

0⩽t⩽T
∥gt∥1. In that way, we obtain

some γ0, which can be equal to γ∗lo or γ∗hi (see Lemma D.2, Lemma D.3) and use it as a constant
stepsize for our method. Thus, equation 27 transforms into

GT (γ0) ⩽ δt + δt+1 + γ0L∞T. (28)

Mention that, according to Lemma D.2, we can always entry to the procedure without infinite early
termination. In that way we have two situations: when we have no early terminations at all and we
are under the activity of Lemma D.3, and when we have an early termination with the initial γ∗lo. We
divide the following proof into two steps, where we separately show the convergence guarantees in
these two situations.
Step 1: no early terminations.
Since we have only two cases: γ0 = γ∗lo or γ0 = γ∗hi, let us consider them separately.
• γ0 = γ∗hi : equation 28 transforms into

GT (γ
∗
hi) ⩽ δt + δt+1 + γ∗hiL∞T

Lemma D.3,9

⩽ δt + δt+1 +
NT (γ

∗
lo)

DT (γ∗hi)
L∞T

(i)
= δt + δt+1 +

∆̃T (γ
∗
lo)

GT (γ∗hi) + ζ(γ∗hi)
L∞T ⩽ δt + δt+1 +

∆̃T (γ
∗
lo)

GT (γ∗hi)
L∞T,

where (i) is correct due to the ϕ(γ) choice. Solving this quadratic inequality with respect to GT (γ
∗
hi)

(Lemma D.1), we obtain

GT (γ
∗
hi) ⩽ δt + δt+1 +

√
∆̃T (γ∗lo)L∞T ⩽ δt + δt+1 +

√
∆∗L∞T , (29)

where ∆∗ = f(x−1)− f(x∗). Plugging it into equation 26, we obtain

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
1

T

∆̃T (γ
∗
hi)

γ∗hi
+

1

T
GT (γ

∗
hi) +

1

T
(3δt + δt+1)

Lemma D.3,9

⩽
1

T

2DT (γ
∗
hi)

NT (γ∗hi)
∆̃T (γ

∗
hi) +

1

T
GT (γ

∗
hi) +

1

T
(3δt + δt+1)

=
2

T

[GT (γ
∗
hi) + ζ(γ∗hi)] ∆̃T (γ

∗
hi)

∆̃T (γ∗hi)
+

1

T
GT (γ

∗
hi) +

1

T
(3δt + δt+1)

=
3

T
GT (γ

∗
hi) +

1

T
(3δt + δt+1) +

2ζ(γ∗hi)

T

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

29
⩽ 3

√
∆∗L∞√
T

+
1

T
(6δt + 4δt+1) +

2
∥∥g0∥∥

1

T
. (30)

In that way, equation 30 is the final estimate when BISECTION procedure returns γ∗hi.
• γ0 = γ∗lo : equation 28 transforms into

GT (γ
∗
lo) ⩽ δt + δt+1 + γ∗loL∞T

Lemma D.3,9

⩽ δt + δt+1 +
NT (γ

∗
lo)

DT (γ∗lo)
L∞T

(i)
= δt + δt+1 +

∆̃T (γ
∗
lo)

GT (γ∗lo) + ζ(γ∗lo)
L∞T ⩽ δt + δt+1 +

∆̃T (γ
∗
lo)

GT (γ∗lo)
L∞T,

where (i) is correct due to ϕ(γ) choice. Solving this quadratic inequality with respect to GT (γ
∗
lo)

(Lemma D.1), we obtain

GT (γ
∗
lo) ⩽ δt + δt+1 +

√
∆̃T (γ∗lo)L∞T ⩽ δt + δt+1 +

√
∆∗L∞T . (31)

Now we make an additional distinction and consider the estimates separately: one case when

γ∗lo >
√

∆∗

L∞T and another when γ∗lo ⩽
√

∆∗

L∞T . We can do this without any limitations, since
combining the intervals considered for γ∗lo returns all possible values.

◦ γ∗lo >
√

∆∗

L∞T : we straightforwardly move to the equation 26 estimation:

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
1

T

∆̃T (γ
∗
lo)

γ∗lo
+

1

T
GT (γ

∗
lo) +

1

T
(3δt + δt+1)

⩽

√
L∞√
∆∗T

∆̃T (γ
∗
lo) +

1

T
GT (γ

∗
lo) +

1

T
(3δt + δt+1)

31
⩽

√
∆∗L∞√
T

+

√
∆∗L∞√
T

+
1

T
(4δt + 2δt+1)

= 2

√
∆∗L∞√
T

+
1

T
(4δt + 2δt+1). (32)

◦ γ∗lo ⩽
√

∆∗

L∞T : in this case we start from the estimate that is followed by equation 28:

GT (γ
∗
hi) ⩽ δt + δt+1 + γ∗hiL∞T

(i)

⩽ δt + δt+1 + 2γ∗loL∞T ⩽ δt + δt+1 + 2
√
∆∗L∞T (33)

where (i) is done due to bisection stop condition. Now we proceed to the equation 26 estimation:

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
1

T

∆̃T (γ
∗
lo)

γ∗lo
+

1

T
GT (γ

∗
lo) +

1

T
(3δt + δt+1)

Lemma D.3,9

⩽
1

T

2DT (γ
∗
hi)

NT (γ∗lo)
∆̃T (γ

∗
lo) +

1

T
GT (γ

∗
lo) +

1

T
(3δt + δt+1)

Lemma D.3,11

⩽
2

T

[GT (γ
∗
hi) + ζ(γ∗hi)] ∆̃T (γ

∗
lo)

∆̃T (γ∗lo)
+
GT (γ

∗
hi) + ζ(γ∗hi)

T

+
1

T
(3δt + δt+1)

=
3GT (γ

∗
hi)

T
+

1

T
(3δt + δt+1) +

3ζ(γ∗hi)

T
33
⩽ 6

√
∆∗L∞√
T

+
1

T
(6δt + 4δt+1) +

3ζ(γ∗hi)

T

⩽ 6

√
∆∗L∞√
T

+
1

T
(6δt + 4δt+1) +

3
∥∥g0∥∥

1

T
. (34)

Combining equation 32 and equation 34, we get that equation 34 is the final estimate when BISECTION
procedure returns γ∗lo.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

In the end, equation 30 and equation 34 give us the estimate in the case when BISECTION procedure
does not have early terminations at all and outputs any value of γ0:

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽ 6

√
∆∗L∞√
T

+
1

T
(6δt + 4δt+1) +

3
∥∥g0∥∥

1

T
. (35)

Step 2: early termination with γlo.
Now we consider the scenario when, with the initial γlo, there is γlo ⩾ ϕ(γlo) and algorithm early
returns γ∗lo. To consider this, we should choose the initial γlo = γ∗lo ⩽ ∆∗

L∞T . Thus, equation 28
transforms into

GT (γ
∗
lo) ⩽ δt + δt+1 + γloL∞T ⩽ δt + δt+1 +

√
L∞∆∗T . (36)

In that way, equation 26 transforms into

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
1

T

∆̃T (γ
∗
lo)

γ∗lo
+

1

T
GT (γ

∗
lo) +

1

T
(3δt + δt+1)

⩽
1

T

∆̃T (γ
∗
lo)

ϕ(γ∗lo)
+

1

T
GT (γ

∗
lo) +

1

T
(3δt + δt+1)

=
1

T

[GT (γ
∗
lo) + ζ(γ∗lo)] ∆̃T (γ

∗
lo)

∆̃T (γ∗lo)
+

1

T
GT (γ

∗
lo) +

1

T
(3δt + δt+1)

=
2GT (γ

∗
lo)

T
+

1

T
(3δt + δt+1) +

ζ(γ∗lo)

T
36
⩽ 2

√
∆∗L∞√
T

+
1

T
(5δt + 3δt+1) +

∥∥g0∥∥
1

T
. (37)

In that way, equation 37 delivers the estimate, when Algorithm 4 makes an early termination.
Combining equation 35 with equation 37, we finally obtain the estimate for all possible cases of the
BISECTION procedure return:

1

T

T−1∑
t=0

∥∇f(xt(γ0))∥1 ⩽ 6

√
∆∗L∞√
T

+
1

T
(6δt + 4δt+1) +

3
∥∥g0∥∥

1

T
. (38)

Now it is time to take expectation and give estimate to δt. One can note, using the law of total
expectation (E [ξ] = E [E [ξ|ψ]]),

E∥∇f(xt)− gt∥1 =

d∑
i=1

E
∣∣[∇f(xt)]

i
−
[
gt
]
i

∣∣ (Jen)⩽
d∑

i=1

√
E ([∇f(xt)]i − [gt]i)

2

=

d∑
i=1

√
E
[
([∇f(xt)]i − [gt]i)

2 |xt
]
⩽

d∑
i=1

σt
i .

In that way, we obtain important bound:

E∥∇f(xt)− gt∥1 ⩽ ∥σ∥1. (39)

Then,

Eδt =

T−1∑
t=0

E∥∇f(xt)− gt∥1 ⩽
T−1∑
t=0

∥σ∥1 ⩽ ∥σ∥1T,

Eδt+1 =

T−1∑
t=0

E∥∇f(xt+1)− gt+1∥1 ⩽
T−1∑
t=0

∥σ∥1 = ∥σ∥1T.

Substituting it to equation 38, we have

1

T

T−1∑
t=0

E∥∇f(xt)∥1 ⩽ 6

√
∆∗L∞√
T

+ 10∥σ∥1 +
3E
∥∥g0∥∥

1

T
.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Expressing the number of iterations and using ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1 as a criterion, we obtain

that algorithm needs O
(

∆∗L∞
ε2 + ∥σ∥21

)
iterations to reach ε-accuracy. Note the we drop the term

3E∥g0∥
1

T , since it is asymptotically smaller than the main one. However we firstly need to find step

γ0 with bisection procedure that takes T log log

(
γε2

2k

γε

)
= O

((
∆∗L∞

ε2 + ∥σ∥21
)
k
)

iterations,

where 22
k

denotes the length of the initial interval for the stepsize. We have already discussed
in the main part that, according to Lemma D.2, k should be at least k = log log ∆∗

γs∥g0∥1
. Thus,

O
((

∆∗L∞
ε2 + ∥σ∥21

)
log log ∆∗

γs∥g0∥1

)
is the final iteration complexity.

Remark E.5. Under conditions of Theorem E.4 Algorithm 5 with mini-batch of the size t+ 1 at t-th
iteration to reach ε-accuracy needs

O
(
∆∗L∞ + ∥σ∥21

ε2
log log

∆∗

γs∥g0∥1

)
iterations.

Proof. The proof of the remark repeats the proof of Theorem 3.9 except for the estimate on
E ∥∇f(xt)− gt∥21 term. Since we now use mini-batches, we can bound

E
∥∥∇f(xt)− gt∥∥2

1
⩽

∥σ∥1√
t+ 1

,

instead of equation 39. In that way,

1

T
Eδt =

1

T

T−1∑
t=0

E∥∇f(xt)− gt∥1 ⩽
1

T

T−1∑
t=0

∥σ∥1
t+ 1

⩽ 2
∥σ∥1√
T
,

which ends the proof of the remark.

E.3 DISTRIBUTED SETTING

To begin with, we present the modification of the classic SIGN-SGD algorithm (Algorithm 1) that
aligns with the distributed learning. We consider SIGN-SGD with majority vote (Algorithm 6),
similarly to (Bernstein et al., 2018). We present the assumption that we utilize in distributed regime.
Assumption E.6. In the multi-node regime of learning each node j = 1,M at any point x ∈ Rd has
an access to the stochastic gradient, i.e., it can compute gj(x) = ∇f(x, ξj) – the stochastic gradient
value with respect to the randomness in the choice fo samples ξj . Additionally, this stochastic
estimators is unbiased, i.e., E [gj(x)] = ∇f(x), and its variance is coordinate-wise bounded, i.e.,
E
(
[gj(x)]i − [∇f(x)]i

)
⩽ σ2

i .

Algorithm 6 SIGN-SGD with majority vote

1: Input: Start point x0 ∈ Rd, number of iterations T
2: Parameter: Stepsize γ > 0
3: for t = 0, . . . , T − 1 do
4: for all nodes j = 1, . . . ,M in parallel do
5: Compute stochastic gradient gj(xt)=∇f(xt, ξj)
6: Send sign(gj(xt)) to the server
7: end for
8: xt+1 = xt − γsign

(∑M
j=1 sign(gj(xt))

)
9: end for

Proceeding analogically to the stochastic one-node regime, we establish NT (γ) and DT (γ)

that we use in ϕ(γ) in the BISECTION procedure: NT (γ) = ∆̃T (γ),DT (γ) =

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

∑T−1
t=0

1
M

∑M
j=1

(
∥gj(xt+1)− gj(xt)∥1 + ζ(γ)

)
. Let us emphasize how this affects Algorithms

4, 5. Firstly, we now need to call the SIGN-SGD with majority vote method (Algorithm 6) instead of
SIGN-SGD (Algorithm 1). Secondly, to obtain DT (γ) in the bisection procedure, each node j counts∑T−1

t=0 ∥gj(xt+1)− gj(xt)∥1 using locally stored gradients, and sends the complete sum to the server
in the end. Note that this requirement has no effect on extra memory and communication complexity,
since each device requires only O(d) extra memory and performs only one extra communication
during the whole learning. Now we present the theoretical result for the distributed setting.
Lemma E.7 (Theorem 2 (a) from (Bernstein et al., 2018)). Suppose Assumption E.6 holds. Then, at
any point x ∈ Rd, the following estimate is valid:

|[∇f(x)]i|P

sign

 M∑
j=1

sign
(
[gj(x)]i

) ̸= sign ([∇f(x)]i)

 ⩽ σi.

Lemma E.8 (Descent lemma). For Algorithm 5 under Assumptions 3.1, 3.2, 3.3, E.6, the following
estimate is valid:

T−1∑
t=0

∥∇f(xt)∥1 ⩽
f(x−1)− f(xT)

γ0
+

T−1∑
t=0

1

M

M∑
j=1

∥gt+1
j − gtj∥1 + 2δ̃T + δt + δt+1,

where δt =
T−1∑
t=0

1
M

M∑
j=1

∥∇f(xt)− gtj∥1

and δ̃T =
T−1∑
t=0

d∑
i=1

|[∇f(xt)]i| I

(
sign

(
M∑
j=1

sign
([
gtj
]
i

))
̸= sign ([∇f(xt)]i)

)
.

Proof. Starting from the convexity of the objective,

f(xt+1)− f(xt) ⩽ ⟨∇f(xt+1), xt+1 − xt⟩ = −γt
〈
∇f(xt+1), sign

 M∑
j=1

sign(gtj)

〉

= −γt
〈
∇f(xt), sign

 M∑
j=1

sign(gtj)

〉

−γt
〈
∇f(xt+1)−∇f(xt), sign

 M∑
j=1

sign(gtj)

〉

= −γt∥∇f(xt)∥1 + 2γt
d∑

i=1

∣∣[∇f(xt)]
i

∣∣
·I

sign

 M∑
j=1

sign
([
gtj
]
i

) ̸= sign
([
∇f(xt)

]
i

)
−γt

〈
∇f(xt+1)−∇f(xt), sign

 M∑
j=1

sign(gtj)

〉
Conj,(i)

⩽ −γt∥∇f(xt)∥1 + 2γtδ̃t

+γt∥∇f(xt+1)−∇f(xt)∥1

∥∥∥∥∥∥sign

 M∑
j=1

sign
(
gtj
)∥∥∥∥∥∥

∞

⩽ −γt∥∇f(xt)∥1 + 2γtδ̃t + γt∥∇f(xt+1)−∇f(xt)∥1

= −γt∥∇f(xt)∥1 + 2γtδ̃t + γt
1

M

M∑
j=1

∥∇f(xt+1)−∇f(xt)∥1

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

CS
⩽ −γt∥∇f(xt)∥1 + 2γtδ̃t + γt

1

M

M∑
j=1

∥gt+1
j − gtj∥1

+γt
1

M

M∑
j=1

∥∇f(xt+1)− gt+1
j ∥1 + γt

1

M

M∑
j=1

∥∇f(xt)− gtj∥1, (40)

where in (i) we denote δ̃t =
d∑

i=1

|[∇f(xt)]i| I

(
sign

(
M∑
j=1

sign
([
gtj
]
i

))
̸= sign ([∇f(xt)]i)

)
. Now

we rearrange terms and summarize over all iterations to obtain

T−1∑
t=0

γt∥∇f(xt)∥1 ⩽
T−1∑
t=0

[
f(xt)− f(xt+1)

]
+ 2

T−1∑
t=0

γtδ̃t +

T−1∑
t=0

1

M

M∑
j=1

γt∥gt+1
j − gtj∥1

+

T−1∑
t=0

1

M

M∑
j=1

γt∥∇f(xt)− gtj∥1 +
T−1∑
t=0

1

M

M∑
j=1

γt∥∇f(xt+1)− gt+1
j ∥1.

Since Algorithm 5 performs all the steps with the constant rate γ0, which we define later, denoting

δ̃T =
T−1∑
t=0

δ̃t, we can rewrite the result in the following form:

T−1∑
t=0

∥∇f(xt)∥1 ⩽
T−1∑
t=0

[
f(xt)− f(xt+1)

]
γ0

+ 2δ̃T +

T−1∑
t=0

1

M

M∑
j=1

∥gt+1
j − gtj∥1

+

T−1∑
t=0

1

M

M∑
j=1

∥∇f(xt)− gtj∥1 +
T−1∑
t=0

1

M

M∑
j=1

∥∇f(xt+1)− gt+1
j ∥1.

In the obtained estimate the last two terms consist from differences between the honest and stochastic
gradient at the t-th and (t+ 1)-th moments. One of our goals is to estimate them, however, we want

to perform analogically to Theorem E.4 and continue the proof with the
T−1∑
t=0

1
M

M∑
j=1

∥gt+1
j − gtj∥1

term estimate. To simplify the subsequent notation, we introduce the following definition: let

δt =
T−1∑
t=0

1
M

M∑
j=1

∥∇f(xt) − gtj∥1. In that way, the following inequality finishes the proof of the

lemma:
T−1∑
t=0

∥∇f(xt)∥1 ⩽
f(x−1)− f(xT)

γ0
+

T−1∑
t=0

1

M

M∑
j=1

∥gt+1
j − gtj∥1 + 2δ̃T + δt + δt+1.

Theorem E.9. Suppose Assumptions 3.1, 3.2, 3.3, E.6 hold. Then for Algorithm 5 using at t-th
iteration mini-batches of sizes t+ 1, after obtaining the stepsize γ0, the following estimate is valid:

1

T

T−1∑
t=0

E∥∇f(xt)∥1 ⩽ 6

√
∆∗L∞√
T

+ 10∥σ∥+

3
M

M∑
j=1

E
∥∥g0j∥∥1

T
.

Moreover, taking into account the complexity of Algorithm 4 in relation to the initial stepsize bound

γs, to reach ε-accuracy, where ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1, Algorithm 5 needs

O


(
∆∗L∞

ε2
+ ∥σ∥21

)
log log

∆∗

γs
M∑
j=1

∥∥g0j∥∥1

 iterations.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Proof. Let us mention that the result of Lemma E.8 almost matches the starting point of Theorem

E.4 equation 26. If we now denote GT =
T−1∑
t=0

1
M

M∑
j=1

∥gt+1
j − gtj∥1, the only difference is that there

we have an additional 2δ̃T term. However, we do not estimate it yet and it does not require any
transformations. Thus, we can proceed in a manner completely analogous to the proof of Theorem
E.4 and obtain an analog of the estimate in equation 38:

1

T

T−1∑
t=0

∥∇f(xt(γ0))∥1 ⩽ 6

√
∆∗L∞√
T

+
1

T
(2δ̃T + 4δt + 4δt+1) +

3
M

M∑
j=1

∥∥g0j∥∥1
T

, (41)

where ∆∗ = f(x−1)− f(x∗). Now we take expectation and use Lemma E.7 to obtain

Eδ̃t =
d∑

i=1

∣∣[∇f(xt)]
i

∣∣P
sign

 M∑
j=1

sign
([
gtj
]
i

) ̸= sign
([
∇f(xt)

]
i

)
⩽

d∑
i=1

σt
i = ∥σ∥1. (42)

For Eδt, under Assumption E.6, we have the estimate as equation 39:

E∥∇f(xt)− gtj∥1 ⩽ ∥σ∥1.

Thus, substituting both of these estimates to equation 41, we obtain the final convergence result:

1

T

T−1∑
t=0

E∥∇f(xt)∥1 ⩽ 6

√
∆∗L∞√
T

+
1

M

M∑
j=1

1

T

T−1∑
t=0

10∥σ∥1 +

3
M

M∑
j=1

E
∥∥g0j∥∥1

T

= 6

√
∆∗L∞√
T

+ 10∥σ∥1 +

3
M

M∑
j=1

E
∥∥g0j∥∥1

T
.

Since we obtain the same convergence estimate as in Theorem E.4, we can analogically establish the

O

(∆∗L∞
ε2 + ∥σ∥21

)
log log ∆∗

γs
1
M

M∑
j=1

∥g0
j∥1

 iteration complexity.

Remark E.10. Under conditions of Theorem E.9 Algorithm 5 with mini-batches of the size t+ 1 at
t-th iteration to reach ε-accuracy needs

O

∆∗L∞ + ∥σ∥21
ε2

log log
∆∗

γs
1
M

M∑
j=1

∥g0j ∥1

 iterations.

Proof. Proof repeats the proofs of Remark E.5.

F PROOFS FOR ALIAS

F.1 EXACT GRADIENT SETTING

Lemma F.1 (Approximating sequence). Let the initial ∆∗-approximation d0 be 0 < d0 < ∆∗, where
∆∗ = f(x0) − f(x∗). Then for Algorithm 2 under Assumptions 3.1, 3.2, 3.3, 3.4, the following
estimate is valid:

∆∗ ⩾ dn ∀n ∈ [0, T − 1].

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Proof. Starting from the convexity of the objective,

f(xt+1)− f(xt) ⩽ ⟨∇f(xt+1), xt+1 − xt⟩ = −γt
〈
∇f(xt+1), sign

(
∇f(xt)

)〉
. (43)

Now we summarize both sides over the first n iterations:

−∆∗ = f(x∗)− f(x0)
(i)

⩽ f(xn)− f(x0) =
n−1∑
t=0

f(xt+1)− f(xt)

43
⩽ −

n−1∑
t=0

γt
〈
∇f(xt+1), sign

(
∇f(xt)

)〉
,

where (i) is correct due to Assumption 3.3. Changing the sign of the inequality,

d̃n =

n−1∑
t=0

γt
〈
∇f(xt+1), sign

(
∇f(xt)

)〉
⩽ ∆∗.

Since our algorithm performs dn = max
(
dn−1, d̃n

)
and we initialize our sequence with d0 < ∆∗,

we obtain the required statement.

Lemma F.2 (Descent lemma). For Algorithm 2 under Assumptions 3.1, 3.2, 3.3, 3.4, the following
estimate is valid:

T−1∑
t=0

γt
∥∥∇f(xt)∥∥

1
⩽ ∆∗ +

T−1∑
t=0

(γt)2Lt
∞,

where Lt
∞ =

∥∇f(xt+1)−∇f(xt)∥
1

∥xt+1−xt∥∞
.

Proof.

f(xt+1) ⩽ f(xt) +
〈
∇f(xt+1), xt+1 − xt

〉
= f(xt)− γt

〈
∇f(xt+1), sign

(
∇f(xt)

)〉
= f(xt)− γt

∥∥∇f(xt)∥∥
1
− γt

〈
∇f(xt+1)−∇f(xt), sign

(
∇f(xt)

)〉
Conj

⩽ f(xt)− γt
∥∥∇f(xt)∥∥

1
+ γt

∥∥∇f(xt+1)−∇f(xt)
∥∥
1

∥∥sign
(
∇f(xt)

)∥∥
∞

⩽ f(xt)− γt
∥∥∇f(xt)∥∥

1
+ γt

∥∥∇f(xt+1)−∇f(xt)
∥∥
1

(i)
= f(xt)− γt

∥∥∇f(xt)∥∥
1
+ γt

∥∥∇f(xt+1)−∇f(xt)
∥∥
1

∥xt+1 − xt∥∞

∥∥xt+1 − xt
∥∥
∞

= f(xt)− γt
∥∥∇f(xt)∥∥

1
+ (γt)2

∥∥∇f(xt+1)−∇f(xt)
∥∥
1

∥xt+1 − xt∥∞
,

where in (i) we assume
∥∥xt+1 − xt

∥∥
∞ ̸= 0. Indeed,

∥∥xt+1 − xt
∥∥
∞ = 0 follows from the equality

sign (∇f(xt)) = 0, which means that we find the optimum and do need to find another point xt+1.

Now we denote Lt
∞ =

∥∇f(xt+1)−∇f(xt)∥
1

∥xt+1−xt∥∞
. Summing over all iterations, we obtain

T−1∑
t=0

γt
∥∥f(xt)∥∥

1
⩽

T−1∑
t=0

[
f(xt)− f(xt+1)

]
+

T−1∑
t=0

(γt)2Lt
∞

= f(x0)− f(x∗) +
T−1∑
t=0

(γt)2Lt
∞ ⩽ ∆∗ +

T−1∑
t=0

(γt)2Lt
∞,

which ends the proof of the lemma.

Theorem F.3 (Theorem 3.5). Suppose Assumptions 3.1, 3.2, 3.3, 3.4 hold. We denote ε ⩾
1
T

∑T−1
t=0 ∥∇f(xt)∥1, Lt

∞ =
∥∇f(xt+1)−∇f(xt)∥

1

∥xt+1−xt∥∞
. Then Algorithm 2 with Option I, d0 < ∆∗

to reach ε-accuracy needs

Õ

(
(∆∗)

2
(L∞)

3

d0 (L0
∞)

2
ε2

)
iterations.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Algorithm 2 with Option II to reach ε-accuracy needs

Õ

(
∆∗ (L∞)

3

(L0
∞)

2
ε2

)
iterations.

Proof. Let us start with the result of Lemma F.2:
T−1∑
t=0

γt∥∇f(xt)∥1 ⩽ ∆∗ +

T−1∑
t=0

(γt)2Lt
∞. (44)

Now we use our γt choice. Let us firstly estimate the denominator that is exactly λt =
1√

t−1∑
i=0

∥∇f(xi+1)−∇f(xi)∥1

∥xi+1−xi∥∞

= 1√
t−1∑
i=0

Li
∞

and is the same for both Options I and II. Let us estimate

the following term.

T−1∑
t=0

(λt)2Lt
∞ =

T−1∑
t=0

Lt
∞

t−1∑
i=0

Li
∞

.

We mention, that each Li
∞ is bounded from the definition of smoothness (see Assumption 3.1), i.e.,

Li
∞ ⩽ L∞. We consider the sequence

{
Li
∞
}T−1

i=0
. Since each term in this sequence is bounded,

there exists r such that
r−2∑
i=0

Li
∞ ⩽ Lr−1

∞ and for each t ⩾ r − 1 such that
t∑

i=0

Li
∞ ⩾ Lt+1

∞ . In that

way, we divide the sum into two parts:

T−1∑
t=0

Lt
∞

t−1∑
i=0

Li
∞

=

r−1∑
t=0

Lt
∞

t−1∑
i=0

Li
∞

+

T−1∑
t=r

Lt
∞

t−1∑
i=0

Li
∞

. (45)

Considering the first sum in equation 45, we mention, that we can estimate the denominator as∑t−1
i=0 L

i
∞ ⩾ L0

∞. As for the numerator. Thus,

r−1∑
t=0

Lt
∞

t−1∑
i=0

Li
∞

⩽
1

L0
∞

(
r−2∑
t=0

Lt
∞ + Lr−1

∞

)
⩽

2Lr−1
∞
L0
∞

⩽
2L∞

L0
∞
. (46)

Considering the second sum in equation 45, we have

T−1∑
t=r

Lt
∞

t−1∑
i=0

Li
∞

=

T−1∑
t=r

Lt
∞

1
2

t−1∑
i=0

Li
∞ + 1

2

t−1∑
i=0

Li
∞

.

Estimating any of the sums in the denominator, we claim, that
t−1∑
i=0

Li
∞ ⩾ Lt

∞, since t− 1 ⩾ r − 1.

In that way,

T−1∑
t=r

Lt
∞

t−1∑
i=0

Li
∞

⩽
T−1∑
t=r

2Lt
∞

t∑
i=0

Li
∞

⩽ 2

T−1∑
t=0

Lt
∞

t∑
i=0

Li
∞

. (47)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Next we denote st =
t∑

i=0

Lt
∞ and have

Lt
∞

1
t∑

i=0

Li
∞

= (st − st−1)
1

t∑
i=0

Li
∞

=

st∫
st−1

1
t∑

i=0

Li
∞

dx
(i)

⩽

st∫
st−1

1

x
dx, (48)

where (i) was done due to 1
x is a non-increasing function on (0,+∞). Summing over t, we obtain

2

T∑
t=1

Lt
∞

t∑
i=0

Li
∞

⩽ 2

sT∫
s0

1

x
dx = 2 log(sT)− 2 log(s0) = 2 log


T∑

t=1
Lt
∞

L0
∞

 ⩽ 2 log

(
L∞T

L0
∞

)
.

Combining this estimate with equation 47,

T−1∑
t=r

Lt
∞

t−1∑
i=0

Li
∞

⩽ 2

T∑
t=1

Lt
∞

t∑
i=0

Li
∞

+ 2 ⩽ 2

(
log

(
L∞T

L0
∞

)
+ 1

)
⩽ 4 log

(
L∞T

L0
∞

)
. (49)

Substituting equation 46 and equation 49 into equation 45, we obtain

T−1∑
t=0

(λt)2Lt
∞ ⩽ 2

L∞

L0
∞

+ 4 log

(
L∞T

L0
∞

)
. (50)

We additionally note, that if r > T − 1, only first term remains in this estimate, consequently our
bound equation 50 is correct.

In this way, utilizing Option I from Algorithm 2, equation 44 together with equation 50 yields

√
d0λT−1

T−1∑
t=0

∥∇f(xt)∥1
(i)

⩽
T−1∑
t=0

√
dtλt∥∇f(xt)∥1 ⩽ ∆∗ +

T−1∑
t=0

dt(λt)2Lt
∞

Lemma F.1
⩽ ∆∗ +∆∗

T−1∑
t=0

(λt)2Lt
∞,

T−1∑
t=0

∥∇f(xt)∥1 ⩽
∆∗

√
d0λT−1

+
∆∗

√
d0λT−1

T−1∑
t=0

(λt)2Lt
∞

50
⩽

∆∗
√
d0λT−1

+ 4
∆∗

√
d0λT−1

log

(
L∞T

L0
∞

)
+ 2

∆∗L∞√
d0λT−1L0

∞

⩽ 7
∆∗L∞√
d0λT−1L0

∞
log

(
L∞T

L0
∞

)
, (51)

where (i) was done due to the fact that d0 is minimal from all {dt}T−1
t=0 (Line 7 from Algorithm 2)

and the definition of λt. Utilizing 1
λT−1 =

√
T−2∑
t=0

Lt
∞ ⩽

√
L∞T , we obtain the final estimate:

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
7∆∗ (L∞)

3
2

√
d0TL0

∞
log

(
L∞T

L0
∞

)
.

Expressing the number of iterations and using ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1 as a criterion, we obtain that

the algorithm needs Õ
(

(∆∗)2(L∞)3

d0(L0
∞)2ε2

)
iterations to reach ε-accuracy.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Considering Option II from Algorithm 2, we can proceed absolutely analogical, however, using
f(x0)− f̃ ⩾ ∆∗ instead of Lemma F.1. In that way,

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
∆∗√L∞√

(f(x0)− f̃)T
+

4(f(x0)− f̃)
√
L∞√

(f(x0)− f̃)T
log

(
L∞T

L0
∞

)

+
2(f(x0)− f̃) (L∞)

3
2√

(f(x0)− f̃)TL0
∞

⩽
7

√
(f(x0)− f̃) (L∞)

3
2

√
TL0

∞
log

(
L∞T

L0
∞

)
.

Expressing the number of iterations, using ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1 as a criterion, and utilizing f̃ is

an approximation of f(x∗), we obtain that the algorithm needs Õ
(

∆∗(L∞)3

(L0
∞)2ε2

)
iterations to reach

ε-accuracy.

Remark F.4 (Remark 3.6). Under conditions of Theorem 3.5 Algorithm 2 with λt =
1√

L∞+
t−1∑
i=0

∥∇f(xi+1)−∇f(xi)∥1

∥xi+1−xi∥∞

and Option II to reach ε-accuracy needs

Õ
(
∆∗L∞

ε2

)
iterations,

where ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1.

Proof. The proof of the remark repeats the proof of Theorem 3.5 except for the estimate on
T−1∑
t=0

(λt)2Lt
∞ term. Let us derive it. We use definition Lt

∞ =
∥∇f(xt+1)−∇f(xt)∥

1

∥xt+1−xt∥∞
.

T−1∑
t=0

(λt)2Lt
∞ =

T−1∑
t=0

Lt
∞

L∞ +
t−1∑
i=0

Li
∞

⩽
T−1∑
t=0

Lt
∞

t∑
i=0

Li
∞

.

Continuing analogically to equation 48 - equation 49, we get

T−1∑
t=0

(λt)2Lt
∞ ⩽ 2 log

(
L∞T

L0
∞

)
.

Substituting this bound into equation 51 instead of equation 50, we ends the proof of the remark.

F.2 STOCHASTIC GRADIENT SETTING

In this section we denote gtξt the stochastic gradient at the t-th iteration (point xt), according to the
stochastic realization ξt at the t-th iteration.

Before proceeding to the theoretical analysis of the algorithm, we present its formal description,
Algorithm 7, specifying which option for the sequence dt we use in practice and which one we
analyze theoretically.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Algorithm 7 ALIAS stochastic version

1: Input: Starting point x0∈Rd, initial L∞-approximation η−1 = 0, initial ∆∗-approximation d0

∈R+, lower bound f̃ on f(x∗), number of iterations T
2: for t = 0, . . . , T − 1 do
3: Compute gradients gtξt , g

t−1
ξt

4: ηt = ηt−1 +

∥∥∥gt
ξt

−gt−1

ξt

∥∥∥
1

∥xt−xt−1∥∞
; λt = 1√

ηt

5: if t ̸= 0 then
6: d̃t =

∑t−1
i=0 γ

i⟨gi+1
ξi+1 , sign(giξi+1)⟩

7: dt = max
(
dt−1, d̃t

)
8: end if
9: Option I (Practical): γt = λt

√
dt

10: Option II (Theoretical): γt = λt
√
f(x0)− f̃

11: xt+1 = xt − γtsign(gtξt)
12: end for

In the practical version of the algorithm, we use the stochastic gradient at the previous point with the
current stochastic realization to update dt. We use the same stochastic samples, similar to the update
of the smoothness constant approximation, to reduce noise from the stochastic gradients.

We now proceed to the convergence analysis.
Lemma F.5 (Descent lemma). For Algorithm 2 under Assumptions 3.8, 3.2, 3.3, 3.7, the following
estimate is valid:

T−1∑
t=0

E

 γt

T−1∑
t=0

γt

∥∥∇f(xt)∥∥
1

 ⩽ ∆∗E

 1
T−1∑
t=0

γt

+ 2

T−1∑
t=0

E

γt
∥∥∥∇f(xt)− gtξt∥∥∥

1
T−1∑
t=0

γt



+

T−1∑
t=0

E

γt
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥
1

T−1∑
t=0

γt



+
T−1∑
t=0

E

γt
∥∥∥∇f(xt)− gtξt+1

∥∥∥
1

T−1∑
t=0

γt

+ E


T−1∑
t=0

(γt)2Lt,ξt+1

∞

T−1∑
t=0

γt

 ,
where Lt,ξt

∞ =

∥∥∥gt+1

ξt
−gt

ξt

∥∥∥
1

∥xt+1−xt∥∞
.

Proof.

f(xt+1) ⩽ f(xt) +
〈
∇f(xt+1), xt+1 − xt

〉
= f(xt)− γt

〈
∇f(xt+1), sign

(
gtξt
)〉

= f(xt)− γt
∥∥gtξt∥∥1 − γt 〈∇f(xt+1)− gtξt , sign

(
gtξt
)〉

Conj

⩽ f(xt)− γt
∥∥gtξt∥∥1 + γt

∥∥∇f(xt+1)− gtξt
∥∥
1

∥∥sign
(
gtξt
)∥∥

∞
CS
⩽ f(xt)− γt

∥∥∇f(xt)∥∥
1
+ 2γt

∥∥∇f(xt)− gtξt∥∥1
+γt

∥∥∇f(xt+1)−∇f(xt)
∥∥
1

∥∥sign
(
gtξt
)∥∥

∞
CS
⩽ f(xt)− γt

∥∥∇f(xt)∥∥
1
+ 2γt

∥∥∇f(xt)− gtξt∥∥1 + γt
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥
1

+γt
∥∥∥∇f(xt)− gtξt+1

∥∥∥
1
+ γt

∥∥∥gt+1
ξt+1 − gtξt+1

∥∥∥
1

∥∥sign
(
gtξt
)∥∥

∞

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

(i)
= f(xt)− γt

∥∥∇f(xt)∥∥
1
+ 2γt

∥∥∇f(xt)− gtξt∥∥1 + γt
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥
1

+γt
∥∥∥∇f(xt)− gtξt+1

∥∥∥
1
+ γt

∥∥∥gt+1
ξt+1 − gtξt+1

∥∥∥
1

∥xt+1 − xt∥∞

∥∥xt+1 − xt
∥∥
∞

= f(xt)− γt
∥∥∇f(xt)∥∥

1
+ 2γt

∥∥∇f(xt)− gtξt∥∥1 + γt
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥
1

+γt
∥∥∥∇f(xt)− gtξt+1

∥∥∥
1
+
(
γt
)2 ∥∥∥gt+1

ξt+1 − gtξt+1

∥∥∥
1

∥xt+1 − xt∥∞
,

where in (i) we assume
∥∥xt+1 − xt

∥∥
∞ ̸= 0. Indeed,

∥∥xt+1 − xt
∥∥
∞ = 0 follows from the equality

sign
(
gtξt
)
= 0, which means

∥∥∥sign
(
gtξt
)∥∥∥

∞
= 0 and at the t-th iteration this term equals zero.

Thus, we can omit these iterations and consider this term only when it is non-zero, without any

limitations. Now we denote Lt,ξt

∞ =

∥∥∥gt+1

ξt
−gt

ξt

∥∥∥
1

∥xt+1−xt∥∞
. Summing over all iterations, we obtain

T−1∑
t=0

γt
∥∥∇f(xt)∥∥

1
⩽

T−1∑
t=0

f(xt)− f(xt+1) + 2

T−1∑
t=0

γt
∥∥∇f(xt)− gtξt∥∥1

+

T−1∑
t=0

γt
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥
1
+

T−1∑
t=0

γt
∥∥∥∇f(xt)− gtξt+1

∥∥∥
1

+

T−1∑
t=0

(γt)2Lt,ξt+1

∞

= f(x0)− f(xT) + 2

T−1∑
t=0

γt
∥∥∇f(xt)− gtξt∥∥1

+

T−1∑
t=0

γt
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥
1
+

T−1∑
t=0

γt
∥∥∥∇f(xt)− gtξt+1

∥∥∥
1

+

T−1∑
t=0

(γt)2Lt,ξt+1

∞

⩽ ∆∗ + 2

T−1∑
t=0

γt
∥∥∇f(xt)− gtξt∥∥1 + T−1∑

t=0

γt
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥
1

+

T−1∑
t=0

γt
∥∥∥∇f(xt)− gtξt+1

∥∥∥
1
+

T−1∑
t=0

(γt)2Lt,ξt+1

∞ .

We divide both sides of inequality on
∑T−1

t=0 γt.

T−1∑
t=0

γt

T−1∑
t=0

γt

∥∥∇f(xt)∥∥
1

⩽
∆∗

T−1∑
t=0

γt
+ 2

T−1∑
t=0

γt
∥∥∥∇f(xt)− gtξt∥∥∥

1
T−1∑
t=0

γt

+

T−1∑
t=0

γt
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥
1

T−1∑
t=0

γt
+

T−1∑
t=0

γt
∥∥∥∇f(xt)− gtξt+1

∥∥∥
1

T−1∑
t=0

γt

+

T−1∑
t=0

(γt)2Lt,ξt+1

∞
T−1∑
t=0

γt
.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Taking expectation, we obtain the final result of the lemma:

T−1∑
t=0

E

 γt

T−1∑
t=0

γt

∥∥∇f(xt)∥∥
1

 ⩽ E

 ∆∗

T−1∑
t=0

γt

+ 2

T−1∑
t=0

E

γt
∥∥∥∇f(xt)− gtξt∥∥∥

1
T−1∑
t=0

γt



+

T−1∑
t=0

E

γt
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥
1

T−1∑
t=0

γt



+

T−1∑
t=0

E

γt
∥∥∥∇f(xt)− gtξt+1

∥∥∥
1

T−1∑
t=0

γt

+

T−1∑
t=0

E

 (γt)2Lt,ξt+1

∞
T−1∑
t=0

γt



= ∆∗E

 1
T−1∑
t=0

γt

+ 2

T−1∑
t=0

E

γt
∥∥∥∇f(xt)− gtξt∥∥∥

1
T−1∑
t=0

γt



+

T−1∑
t=0

E

γt
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥
1

T−1∑
t=0

γt



+

T−1∑
t=0

E

γt
∥∥∥∇f(xt)− gtξt+1

∥∥∥
1

T−1∑
t=0

γt

+ E


T−1∑
t=0

(γt)2Lt,ξt+1

∞

T−1∑
t=0

γt

 .

Theorem F.6 (Theorem 3.9). Suppose Assumptions 3.8, 3.2, 3.3, 3.7 hold. Then Algorithm 2 with
Option II to reach ε-accuracy, where ε ⩾

∑T−1
t=0 E

[
γt∑T−1

t=0 γt
∥∇f(xt)∥1

]
needs

Õ

∆∗ (L∞)
3

ε2

(
E
(

1

L0,ξ1
∞

)2
)

+ ∥σ∥21 L∞

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


 iterations,

where Lt,ξt+1

∞ =

∥∥∥gt+1

ξt+1−gt
ξt

∥∥∥
1

∥xt+1−xt∥∞
.

Proof. Let us start with the result of Lemma F.5:

T−1∑
t=0

E

 γt

T−1∑
t=0

γt

∥∥∇f(xt)∥∥
1

 ⩽ ∆∗E

 1
T−1∑
t=0

γt

+ 2

T−1∑
t=0

E

γt
∥∥∥∇f(xt)− gtξt∥∥∥

1
T−1∑
t=0

γt



+

T−1∑
t=0

E

γt
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥
1

T−1∑
t=0

γt



+

T−1∑
t=0

E

γt
∥∥∥∇f(xt)− gtξt+1

∥∥∥
1

T−1∑
t=0

γt

+ E


T−1∑
t=0

(γt)2Lt,ξt+1

∞

T−1∑
t=0

γt

 .

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Using equation Höl with p = q = 2, we rewrite it in the following form:

T−1∑
t=0

E

 γt

T−1∑
t=0

γt

∥∥∇f(xt)∥∥
1

 ⩽ ∆∗E

 1
T−1∑
t=0

γt



+2

T−1∑
t=0

(
E
∥∥∇f(xt)− gtξt∥∥21) 1

2

E

 γt

T−1∑
t=0

γt


2

1
2

+

T−1∑
t=0

(
E
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥2
1

) 1
2

E

 γt

T−1∑
t=0

γt


2

1
2

+

T−1∑
t=0

(
E
∥∥∥∇f(xt)− gtξt+1

∥∥∥2
1

) 1
2

E

 γt

T−1∑
t=0

γt


2

1
2

+

E

[
T−1∑
t=0

(γt)2Lt,ξt+1

∞

]2 1
2

E

 1
T−1∑
t=0

γt


2

1
2

. (52)

Now we use our choice of γt. Let us firstly estimate the denominator that is exactly λt =
1√√√√t−1∑

i=0

∥∥∥∥gi+1

ξi+1
−gi

ξi+1

∥∥∥∥
1

∥xi+1−xi∥∞

= 1√
t−1∑
i=0

Li,ξi+1
∞

. Let us estimate the following term.

T−1∑
t=0

(λt)2Lt,ξt+1

∞ =

T−1∑
t=0

Lt,ξt+1

∞
t−1∑
i=0

Li,ξi+1

∞

.

We mention, that each Li,ξi+1

∞ is bounded from the definition of smoothness (see Assumption 3.8),

i.e., Li,ξi+1

∞ ⩽ L∞. We consider the sequence
{
Li,ξi+1

∞

}T−1

i=0
. Since each term in this sequence

is bounded, there exists r such that
r−2∑
i=0

Li,ξi+1

∞ ⩽ Lr−1,ξr

∞ and for each t ⩾ r − 1 such that

t∑
i=0

Li,ξi+1

∞ ⩾ Lt+1,ξt+2

∞ . In that way, we divide the sum into two parts:

T−1∑
t=0

Lt,ξt+1

∞
t−1∑
i=0

Li,ξi+1

∞

=

r−1∑
t=0

Lt,ξt+1

∞
t−1∑
i=0

Li,ξi+1

∞

+

T−1∑
t=r

Lt,ξt+1

∞
t−1∑
i=0

Li,ξi+1

∞

. (53)

Considering the first sum in equation 53, we mention, that we can estimate the denominator as∑t−1
i=0 L

i,ξi+1

∞ ⩾ L0,ξ1

∞ . As for the numerator. Thus,

r−1∑
t=0

Lt,ξt+1

∞
t−1∑
i=0

Li,ξi+1

∞

⩽
1

L0,ξ1
∞

(
r−2∑
t=0

Lt,ξt+1

∞ + Lr−1,ξr

∞

)
⩽

2Lr−1,ξr

∞

L0,ξ1
∞

⩽
2L∞

L0,ξ1
∞

. (54)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Considering the second sum in equation 53, we have

T−1∑
t=r

Lt,ξt+1

∞
t−1∑
i=0

Li,ξi+1

∞

=

T−1∑
t=r

Lt,ξt+1

∞

1
2

t−1∑
i=0

Li,ξi+1

∞ + 1
2

t−1∑
i=0

Li,ξi+1

∞

.

Estimating any of the sums in the denominator, we claim, that
t−1∑
i=0

Li,ξi+1

∞ ⩾ Lt,ξt+1

∞ , since t− 1 ⩾

r − 1. In that way,

T−1∑
t=r

Lt,ξt+1

∞
t−1∑
i=0

Li,ξi+1

∞

⩽
T−1∑
t=r

2Lt,ξt+1

∞
t∑

i=0

Li,ξi+1

∞

⩽ 2

T−1∑
t=0

Lt,ξt+1

∞
t∑

i=0

Li,ξi+1

∞

. (55)

Next we denote st =
t∑

i=0

Lt,ξt+1

∞ and have

Lt,ξt+1

∞
1

t∑
i=0

Li,ξi+1

∞

= (st − st−1)
1

t∑
i=0

Li,ξi+1

∞

=

st∫
st−1

1
t∑

i=0

Li,ξi+1

∞

dx
(i)

⩽

st∫
st−1

1

x
dx, (56)

where (i) was done due to 1
x is a non-increasing function on (0,+∞). Summing over t, we obtain

2

T∑
t=1

Lt,ξt+1

∞
t∑

i=0

Li,ξi+1

∞

⩽ 2

sT∫
s0

1

x
dx = 2 log(sT)− 2 log(s0) = 2 log


T∑

t=1
Lt,ξt+1

∞

L0,ξ1
∞

 ⩽ 2 log

(
L∞T

L0,ξ1
∞

)
.

Combining this estimate with equation 55,

T−1∑
t=r

Lt,ξt+1

∞
t−1∑
i=0

Li,ξi+1

∞

⩽ 2

T∑
t=1

Lt,ξt+1

∞
t∑

i=0

Li,ξi+1

∞

+ 2 ⩽ 2

(
log

(
L∞T

L0,ξ1
∞

)
+ 1

)
⩽ 4 log

(
L∞T

L0,ξ1
∞

)
. (57)

Substituting equation 54 and equation 57 into equation 53, we obtain

T−1∑
t=0

(λt)2Lt,ξt+1

∞ ⩽ 2
L∞

L0,ξ1
∞

+ 4 log

(
L∞T

L0,ξ1
∞

)
. (58)

We additionally note, that if r > T − 1, only first term remains in this estimate, consequently our
bound equation 58 is correct. Next, we estimate

1
T−1∑
t=0

λt
=

1
T−1∑
t=0

1√
L∞+

t−1∑
i=0

Li,ξi+1
∞

⩽

√
L∞

T−1∑
t=0

1√
t+1

⩽

√
L∞√
T
. (59)

Now we estimate the second, third and forth terms in equation 52. In the same manner, as in
equation 39, we can estimate

E
∥∥∇f(xt)− gtξt∥∥21 ⩽ ∥σ∥21,

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

E
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥2
1

⩽ ∥σ∥21, (60)

E
∥∥∥∇f(xt)− gtξt+1

∥∥∥2
1

⩽ ∥σ∥21,

where the last inequality is correct due to the fact that that stochastic realization ξt+1 is independent
from the point xt. Thus, using equation 59,

T−1∑
t=0

(
E
∥∥∇f(xt)− gtξt∥∥21) 1

2 ·

E

 γt

T−1∑
t=0

γt


2

1
2

⩽

√
L∞∥σ∥1√

T

T−1∑
t=0

E
1

t−1∑
i=0

Li,ξi+1

∞


1
2

⩽

√
L∞∥σ∥1√

T

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


1
2
T−1∑
t=0

1√
t+ 1

⩽ 2
√
L∞∥σ∥1

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


1
2

.

It is clear that we can bound the rest two terms in the same manner. Now, substituting this estimate
along with equation 58 and equation 59 into equation 52, we obtain

T−1∑
t=0

E

 γt

T−1∑
t=0

γt

∥∥∇f(xt)∥∥
1

 ⩽
∆∗√L∞√

(f(x0)− f̃)T

+8
√
L∞∥σ∥1

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


1
2

+8
(f(x0)− f̃)

√
L∞√

(f(x0)− f̃)T

(
E log2

(
L∞T

L0,ξ1
∞

)) 1
2

+4
(f(x0)− f̃)

√
L∞√

(f(x0)− f̃)T

(
E
(
L∞

L0,ξ1
∞

)2
) 1

2

. (61)

Now we use ∆∗ ⩽ f(x0)− f̃ to obtain the final estimate:

T−1∑
t=0

E

 γt

T−1∑
t=0

γt

∥∥∇f(xt)∥∥
1

 ⩽ 13

√
(f(x0)− f̃) (L∞)

3
2

T

(
E
(

1

L0,ξ1
∞

)2
) 1

2

·
(
E log2

(
L∞T

L0,ξ1
∞

)) 1
2

+8∥σ∥1

√L∞

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


1
2

 .

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Expressing the number of iterations and using ε ⩾
T−1∑
t=0

E

 γt

T−1∑
t=0

γt

∥∇f(xt)∥1

 as a criterion, we

obtain that the algorithm needs Õ

(
∆∗(L∞)3

ε2

(
E
(

1

L0,ξ1
∞

)2)
+ ∥σ∥21 L∞

(
E 1

min
0⩽t⩽T−1

Lt,ξt+1
∞

))
it-

erations to reach ε-accuracy.

Remark F.7 (Remark 3.10). Under conditions of Theorem 3.9 Algorithm 2 with λt =
1√√√√

L∞+
t−1∑
i=0

∥∥∥∥gi+1

ξi+1
−gi

ξi

∥∥∥∥
1

∥xi+1−xi∥∞

, Option II and mini-batch of the size t+1 at t-th iteration to reach ε-accuracy

needs

Õ

∆∗L∞

ε2
+
∥σ∥21 L∞

ε2

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


 iterations,

where ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1 , Lt,ξt+1

∞ =

∥∥∥gt+1

ξt+1−gt
ξt

∥∥∥
1

∥xt+1−xt∥∞
.

Proof. The proof of the remark repeats the proof of Theorem 3.9 except for the estimate on
T−1∑
t=0

(λt)2Lt,ξt+1

∞ term and E
∥∥∥∇f(xt)− gtξt∥∥∥2

1
term. Let us derive them. We use definition

Lt,ξt+1

∞ =

∥∥∥gt+1

ξt+1−gt
ξt

∥∥∥
1

∥xt+1−xt∥∞
.

T−1∑
t=0

(λt)2Lt,ξt+1

∞ =

T−1∑
t=0

Lt,ξt+1

∞

L∞ +
t−1∑
i=0

Li,ξi+1

∞

⩽
T−1∑
t=0

Lt,ξt+1

∞
t∑

i=0

Li,ξi+1

∞

.

Continuing analogically to equation 56 - equation 57, we get

T−1∑
t=0

(λt)2Lt
∞ ⩽ 2 log

(
L∞T

L0,ξ1
∞

)
.

We substitute this bound into equation 61 instead of equation 58. Next, since we now use mini-batches,
we can bound

E
∥∥∇f(xt)− gtξt∥∥21 ⩽

∥σ∥21
t+ 1

,

E
∥∥∥∇f(xt+1)− gt+1

ξt+1

∥∥∥2
1

⩽
∥σ∥21
t+ 2

,

E
∥∥∥∇f(xt)− gtξt+1

∥∥∥2
1

⩽
∥σ∥21
t+ 1

,

instead of equation 60. In that way,

T−1∑
t=0

(
E
∥∥∇f(xt)− gtξt∥∥21) 1

2 ·

E

 γt

T−1∑
t=0

γt


2

1
2

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

⩽

√
L∞∥σ∥1√

T

T−1∑
t=0

1√
t+ 1

E
1

t−1∑
i=0

Li,ξi+1

∞


1
2

⩽

√
L∞∥σ∥1√

T

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


1
2
T−1∑
t=0

1

t+ 1

⩽ 2

√
L∞∥σ∥1√

T

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


1
2

log(T),

which ends the proof of the remark.

F.3 DISTRIBUTED SETTING

We remind, that in distributed setting we consider Assumption E.6. We present the theoretical result
with the following approximation of L∞ in Algorithm 2:

λt =
1√∑t−1

i=0
1
M

∑M
j=1

∥∥∥gi+1

j,ξi+1−gi
j,ξi+1

∥∥∥
1

∥xi+1−xi∥∞

.

In this section, we denote gtj,ξt the stochastic gradient from the j-th device, computed at the t-th
iteration, according to the stochastic realization ξt.

Lemma F.8 (Descent lemma). For Algorithm 2 under Assumptions 3.8, 3.2, 3.3, E.6, the following
estimate is valid:

T−1∑
t=0

E
[
γt
∥∥∇f(xt)∥∥

1

]
⩽ ∆∗E

 1
T−1∑
t=0

γt

+ 2

T−1∑
t=0

E

 γtδ̃t

T−1∑
t=0

γt



+

T−1∑
t=0

E


γt 1

M

M∑
j=1

∥∇f(xt)− gtj,ξt+1∥1

T−1∑
t=0

γt



+

T−1∑
t=0

E


γt 1

M

M∑
j=1

∥∇f(xt+1)− gt+1
j,ξt+1∥1

T−1∑
t=0

γt



+E


T−1∑
t=0

(γt)2Lt,ξt+1

∞

T−1∑
t=0

γt

 ,

where δ̃t =
d∑

i=1

|[∇f(xt)]i| I

(
sign

(
M∑
j=1

sign
([
gtj,ξt

]
i

))
̸= sign ([∇f(xt)]i)

)

and Lt,ξt

∞ = 1
M

M∑
j=1

∥∥∥gt+1

j,ξt
−gt

j,ξt

∥∥∥
1

∥xt+1−xt∥∞
.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Proof.

f(xt+1)− f(xt) ⩽ ⟨∇f(xt+1), xt+1 − xt⟩

= −γt
〈
∇f(xt+1), sign

 M∑
j=1

sign
(
gtj,ξt

)〉

= −γt
〈
∇f(xt), sign

 M∑
j=1

sign
(
gtj,ξt

)〉

−γt
〈
∇f(xt+1)−∇f(xt), sign

 M∑
j=1

sign
(
gtj,ξt

)〉

= −γt∥∇f(xt)∥1 + 2γt
d∑

i=1

∣∣[∇f(xt)]
i

∣∣
·I

sign

 M∑
j=1

sign
([
gtj,ξt

]
i

) ̸= sign
([
∇f(xt)

]
i

)
−γt

〈
∇f(xt+1)−∇f(xt), sign

 M∑
j=1

sign
(
gtj,ξt

)〉
Conj,(i)

⩽ −γt∥∇f(xt)∥1 + 2γtδ̃t

+γt∥∇f(xt+1)−∇f(xt)∥1

∥∥∥∥∥∥sign

 M∑
j=1

sign
(
gtj,ξt

)∥∥∥∥∥∥
∞

= −γt∥∇f(xt)∥1 + 2γtδ̃t

+γt
1

M

M∑
j=1

∥∇f(xt+1)−∇f(xt)∥1

∥∥∥∥∥∥sign

 M∑
j=1

sign
(
gtj,ξt

)∥∥∥∥∥∥
∞

CS
⩽ −γt∥∇f(xt)∥1 + 2γtδ̃t + γt

1

M

M∑
j=1

∥∇f(xt)− gtj,ξt+1∥1

+γt
1

M

M∑
j=1

∥∇f(xt+1)− gt+1
j,ξt+1∥1

+γt
1

M

M∑
j=1

∥gt+1
j,ξt+1 − gtj,ξt+1∥1

∥∥∥∥∥∥sign

 M∑
j=1

sign
(
gtj,ξt

)∥∥∥∥∥∥
∞

(ii)
= −γt∥∇f(xt)∥1 + 2γtδ̃t + γt

1

M

M∑
j=1

∥∇f(xt)− gtj,ξt+1∥1

+γt
1

M

M∑
j=1

∥∇f(xt+1)− gt+1
j,ξt+1∥1

+γt
1

M

M∑
j=1

∥gt+1
j,ξt+1 − gtj,ξt+1∥1
∥xt+1 − xt∥∞

∥xt+1 − xt∥∞

= −γt∥∇f(xt)∥1 + 2γtδ̃t + γt
1

M

M∑
j=1

∥∇f(xt)− gtj,ξt+1∥1

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

+γt
1

M

M∑
j=1

∥∇f(xt+1)− gt+1
j,ξt+1∥1

+(γt)2
1

M

M∑
j=1

∥gt+1
j,ξt+1 − gtj,ξt+1∥1
∥xt+1 − xt∥∞

,

where in (i) we denote δ̃t =
d∑

i=1

|[∇f(xt)]i| I

(
sign

(
M∑
j=1

sign
([
gtj,ξt

]
i

))
̸= sign ([∇f(xt)]i)

)
and in (ii) we assume

∥∥xt+1 − xt
∥∥
∞ ̸= 0 (analogically to Lemma F.5). Defining Lt,ξt+1

∞ =

1
M

M∑
j=1

∥∥∥gt+1

j,ξt+1−gt
j,ξt+1

∥∥∥
1

∥xt+1−xt∥∞
and summing over all iterations gives us

T−1∑
t=0

γt
∥∥∇f(xt)∥∥

1
⩽ ∆∗ + 2

T−1∑
t=0

γtδ̃t +

T−1∑
t=0

γt
1

M

M∑
j=1

∥∇f(xt)− gtj,ξt+1∥1

+

T−1∑
t=0

γt
1

M

M∑
j=1

∥∇f(xt+1)− gt+1
j,ξt+1∥1 +

T−1∑
t=0

(γt)2Lt,ξt

∞ ,

T−1∑
t=0

γt

T−1∑
t=0

γt

∥∥∇f(xt)∥∥
1

⩽
∆∗

T−1∑
t=0

γt
+ 2

T−1∑
t=0

γtδ̃t

T−1∑
t=0

γt
+

T−1∑
t=0

γt 1
M

M∑
j=1

∥∇f(xt)− gtj,ξt+1∥1

T−1∑
t=0

γt

+

T−1∑
t=0

γt 1
M

M∑
j=1

∥∇f(xt+1)− gt+1
j,ξt+1∥1

T−1∑
t=0

γt
+

T−1∑
t=0

(γt)2Lt,ξt+1

∞
T−1∑
t=0

γt
.

Taking expectation, we derive the result of the lemma:

T−1∑
t=0

E
[
γt
∥∥∇f(xt)∥∥

1

]
⩽ ∆∗E

 1
T−1∑
t=0

γt

+ 2

T−1∑
t=0

E

 γtδ̃t

T−1∑
t=0

γt



+

T−1∑
t=0

E


γt 1

M

M∑
j=1

∥∇f(xt)− gtj,ξt+1∥1

T−1∑
t=0

γt



+

T−1∑
t=0

E


γt 1

M

M∑
j=1

∥∇f(xt+1)− gt+1
j,ξt+1∥1

T−1∑
t=0

γt



+E


T−1∑
t=0

(γt)2Lt,ξt+1

∞

T−1∑
t=0

γt

 .

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Theorem F.9. Suppose Assumptions 3.8, 3.2, 3.3, E.6 hold. Then Algorithm 2 with Option II to reach

ε-accuracy, where ε ⩾
T−1∑
t=0

E

 γt

T−1∑
t=0

γt

∥∇f(xt)∥1

 needs

Õ

∆∗ (L∞)
3

ε2

(
E
(

1

L0,ξ1
∞

)2
)

+ ∥σ∥21 L∞

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


 iterations,

where Lt,ξt+1

∞ = 1
M

M∑
j=1

∥∥∥gt+1

j,ξt+1−gt
j,ξt+1

∥∥∥
1

∥xt+1−xt∥∞
.

Proof. Let us start with the result of Lemma F.8:

T−1∑
t=0

E
[
γt
∥∥∇f(xt)∥∥

1

]
⩽ ∆∗E

 1
T−1∑
t=0

γt

+ 2

T−1∑
t=0

E

 γtδ̃t

T−1∑
t=0

γt



+

T−1∑
t=0

E


γt 1

M

M∑
j=1

∥∇f(xt)− gtj,ξt+1∥1

T−1∑
t=0

γt



+

T−1∑
t=0

E


γt 1

M

M∑
j=1

∥∇f(xt+1)− gt+1
j,ξt+1∥1

T−1∑
t=0

γt



+E


T−1∑
t=0

(γt)2Lt,ξt+1

∞

T−1∑
t=0

γt

 .

Note that we have already estimated all terms in Theorem F.6 except
T−1∑
t=0

E

 γtδ̃t

T−1∑
t=0

γt

. However,

using Lemma E.7 together with equation Höl, we can do the same thing and obtain

T−1∑
t=0

E

 γtδ̃t

T−1∑
t=0

γt

 ⩽
T−1∑
t=0

(
E
[
δ̃
]2) 1

2

E

 γt

T−1∑
t=0

γt


2

1
2

⩽ 2
√
L∞∥σ∥1

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


1
2

.

In that way, we get the same estimate as in Theorem F.6:

T−1∑
t=0

E

 γt

T−1∑
t=0

γt

∥∥∇f(xt)∥∥
1

 ⩽ 13

√
(f(x0)− f̃) (L∞)

3
2

T

(
E
(

1

L0,ξ1
∞

)2
) 1

2

·
(
E log2

(
L∞T

L0,ξ1
∞

)) 1
2

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2026

+8∥σ∥1

√L∞

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


1
2

 .

Expressing the number of iterations and using ε ⩾
T−1∑
t=0

E

 γt

T−1∑
t=0

γt

∥∇f(xt)∥1

 as a criterion, we

obtain that the algorithm needs Õ

(
∆∗(L∞)3

ε2

(
E
(

1

L0,ξ1
∞

)2)
+ ∥σ∥21 L∞

(
E 1

min
0⩽t⩽T−1

Lt,ξt+1
∞

))
it-

erations to reach ε-accuracy.

Remark F.10. Under conditions of Theorem F.9 Algorithm 2 with λt =
1√√√√

L∞+
t−1∑
i=0

1
M

M∑
j=1

∥∥∥∥gi+1

j,ξi+1
−gi

j,ξi

∥∥∥∥
1

∥xi+1−xi∥∞

, Option II and mini-batch of the size t + 1 at t-th iteration

to reach ε-accuracy needs

Õ

∆∗L∞

ε2
+
∥σ∥21 L∞

ε2

E
1

min
0⩽t⩽T−1

Lt,ξt+1

∞


 iterations,

where ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1 , Lt,ξt+1

∞ = 1
M

M∑
j=1

∥∥∥gt+1

j,ξt+1−gt
j,ξt

∥∥∥
1

∥xt+1−xt∥∞
.

Proof. Proof repeats the proof of Remark 3.10.

F.4 MEMORY-EFFICIENT ALIAS

Lemma F.11 (Descent lemma). For Algorithm 2 under Assumptions 3.11, 3.2, 3.3, 3.4, the following
estimate is valid:

T−1∑
t=0

γt
∥∥∇f(xt)∥∥

1
⩽ ∆∗ +

T−1∑
t=0

(γt)2d2Lt
1,

where Lt
1 =
∥∇f(xt+1)−∇f(xt)∥∞

∥xt+1−xt∥1
.

Proof.

f(xt+1) ⩽ f(xt) +
〈
∇f(xt+1), xt+1 − xt

〉
= f(xt)− γt

〈
∇f(xt+1), sign

(
∇f(xt)

)〉
= f(xt)− γt

∥∥∇f(xt)∥∥
1
− γt

〈
∇f(xt+1)−∇f(xt), sign

(
∇f(xt)

)〉
Conj

⩽ f(xt)− γt
∥∥∇f(xt)∥∥

1
+ γt

∥∥∇f(xt+1)−∇f(xt)
∥∥
∞

∥∥sign
(
∇f(xt)

)∥∥
1

⩽ f(xt)− γt
∥∥∇f(xt)∥∥

1
+ γtd

∥∥∇f(xt+1)−∇f(xt)
∥∥
∞

(i)
= f(xt)− γt

∥∥∇f(xt)∥∥
1
+ γtd

∥∥∇f(xt+1)−∇f(xt)
∥∥
∞

∥xt+1 − xt∥1

∥∥xt+1 − xt
∥∥
1

= f(xt)− γt
∥∥∇f(xt)∥∥

1
+ (γt)2d2

∥∥∇f(xt+1)−∇f(xt)
∥∥
∞

∥xt+1 − xt∥1
,

where in (i) we assume
∥∥xt+1 − xt

∥∥
1
̸= 0. Indeed,

∥∥xt+1 − xt
∥∥
1
= 0 follows from the equality

sign (∇f(xt)) = 0, which means that we find the optimum and do need to find another point xt+1.

Now we denote Lt
1 =
∥∇f(xt+1)−∇f(xt)∥∞

∥xt+1−xt∥1
. Summing over all iterations, we obtain

T−1∑
t=0

γt
∥∥f(xt)∥∥

1
⩽

T−1∑
t=0

[
f(xt)− f(xt+1)

]
+

T−1∑
t=0

(γt)2d2Lt
1

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2026

= f(x0)− f(x∗) +
T−1∑
t=0

(γt)2d2Lt
1 ⩽ ∆∗ +

T−1∑
t=0

(γt)2d2Lt
∞,

which ends the proof of the lemma.

Theorem F.12 (Theorem 3.12). Suppose Assumptions 3.11, 3.2, 3.3, 3.4 hold. We denote ε ⩾
1
T

∑T−1
t=0 ∥∇f(xt)∥1, L0

1 =
∥∇f(x1)−∇f(x0)∥∞

∥x1−x0∥1
. Then Algorithm 2 with d0 < ∆∗ and d · λt as in

equation 3 to reach ε-accuracy needs

Õ

(
(∆∗)

2
(L1)

3
d2

d0 (L0
1)

2
ε2

)
and Õ

(
∆∗ (L1)

3
d2

(L0
1)

2
ε2

)
iterations with Options I and II, respectively.

Proof. Let us start with the result of Lemma F.11:

T−1∑
t=0

γt∥∇f(xt)∥1 ⩽ ∆∗ +

T−1∑
t=0

(γt)2d2Lt
1. (62)

Now we use our γt choice. Let us firstly estimate the denominator that is exactly λt =
1

d

√
t−1∑
i=0

∥∇f(xi+1)−∇f(xi)∥∞
∥xi+1−xi∥1

= 1

d

√
t−1∑
i=0

Li
1

and is the same for both Options I and II. Let us estimate the

following term.

T−1∑
t=0

(λt)2d2Lt
1 =

T−1∑
t=0

Lt
1

t−1∑
i=0

Li
1

.

We mention, that each Li
1 is bounded from the definition of smoothness (see Assumption 3.11), i.e.,

Li
1 ⩽ L1. We consider the sequence

{
Li
1

}T−1

i=0
. Since each term in this sequence is bounded, there

exists r such that
r−2∑
i=0

Li
1 ⩽ Lr−1

1 and for each t ⩾ r − 1 such that
t∑

i=0

Li
1 ⩾ Lt+1

1 . In that way, we

divide the sum into two parts:

T−1∑
t=0

Lt
1

t−1∑
i=0

Li
1

=

r−1∑
t=0

Lt
1

t−1∑
i=0

Li
1

+

T−1∑
t=r

Lt
1

t−1∑
i=0

Li
1

. (63)

Considering the first sum in equation 63, we mention, that we can estimate the denominator as∑t−1
i=0 L

i
1 ⩾ L0

1. As for the numerator. Thus,

r−1∑
t=0

Lt
1

t−1∑
i=0

Li
1

⩽
1

L0
1

(
r−2∑
t=0

Lt
1 + Lr−1

1

)
⩽

2Lr−1
1

L0
1

⩽
2L1

L0
1

. (64)

Considering the second sum in equation 63, we have

T−1∑
t=r

Lt
1

t−1∑
i=0

Li
1

=

T−1∑
t=r

Lt
1

1
2

t−1∑
i=0

Li
1 +

1
2

t−1∑
i=0

Li
1

.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2026

Estimating any of the sums in the denominator, we claim, that
t−1∑
i=0

Li
1 ⩾ Lt

1, since t− 1 ⩾ r − 1. In

that way,

T−1∑
t=r

Lt
1

t−1∑
i=0

Li
1

⩽
T−1∑
t=r

2Lt
1

t∑
i=0

Li
1

⩽ 2

T−1∑
t=0

Lt
1

t∑
i=0

Li
1

. (65)

Next we denote st =
t∑

i=0

Lt
1 and have

Lt
1

1
t∑

i=0

Li
1

= (st − st−1)
1

t∑
i=0

Li
1

=

st∫
st−1

1
t∑

i=0

Li
1

dx
(i)

⩽

st∫
st−1

1

x
dx, (66)

where (i) was done due to 1
x is a non-increasing function on (0,+∞). Summing over t, we obtain

2

T∑
t=1

Lt
1

t∑
i=0

Li
1

⩽ 2

sT∫
s0

1

x
dx = 2 log(sT)− 2 log(s0) = 2 log


T∑

t=1
Lt
1

L0
1

 ⩽ 2 log

(
L1T

L0
1

)
.

Combining this estimate with equation 65,

T−1∑
t=r

Lt
1

t−1∑
i=0

Li
1

⩽ 2

T∑
t=1

Lt
1

t∑
i=0

Li
1

+ 2 ⩽ 2

(
log

(
L1T

L0
1

)
+ 1

)
⩽ 4 log

(
L1T

L0
1

)
. (67)

Substituting equation 64 and equation 67 into equation 63, we obtain

T−1∑
t=0

(λt)2d2Lt
1 ⩽ 2

L1

L0
1

+ 4 log

(
L1T

L0
1

)
. (68)

We additionally note, that if r > T − 1, only first term remains in this estimate, consequently our
bound equation 68 is correct.

In this way, utilizing Option I from Algorithm 2, equation 62 together with equation 68 yields

√
d0λT−1

T−1∑
t=0

∥∇f(xt)∥1
(i)

⩽
T−1∑
t=0

√
dtλt∥∇f(xt)∥1 ⩽ ∆∗ +

T−1∑
t=0

dt(λt)2d2Lt
1

LemmaF.1
⩽ ∆∗ +∆∗

T−1∑
t=0

(λt)2d2Lt
1,

T−1∑
t=0

∥∇f(xt)∥1 ⩽
∆∗

√
d0λT−1

+
∆∗

√
d0λT−1

T−1∑
t=0

(λt)2d2Lt
1

68
⩽

∆∗
√
d0λT−1

+ 4
∆∗

√
d0λT−1

log

(
L1T

L0
1

)
+ 2

∆∗L1√
d0λT−1L0

1

⩽ 7
∆∗L1√
d0λT−1L0

1

log

(
L1T

L0
1

)
, (69)

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

where (i) was done due to the fact that d0 is minimal from all {dt}T−1
t=0 (Line 7 from Algorithm 2)

and the definition of λt. Utilizing 1
λT−1 = d

√
T−2∑
t=0

Lt
1 ⩽ d

√
L1T , we obtain the final estimate:

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
7∆∗ (L1)

3
2 d√

d0TL0
1

log

(
L1T

L0
1

)
.

Expressing the number of iterations and using ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1 as a criterion, we obtain that

the algorithm needs Õ
(

(∆∗)2(L1)
3d2

d0(L0
1)

2
ε2

)
iterations to reach ε-accuracy.

Considering Option II from Algorithm 2, we can proceed absolutely analogical, however, using
f(x0)− f̃ ⩾ ∆∗ instead of Lemma F.1. In that way,

1

T

T−1∑
t=0

∥∇f(xt)∥1 ⩽
∆∗√L1d√
(f(x0)− f̃)T

+
4(f(x0)− f̃)

√
L1d√

(f(x0)− f̃)T
log

(
L1T

L0
1

)

+
2(f(x0)− f̃) (L1)

3
2 d√

(f(x0)− f̃)TL0
1

⩽
7

√
(f(x0)− f̃) (L1)

3
2 d

√
TL0

1

log

(
L1T

L0
1

)
.

Expressing the number of iterations, using ε ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥1 as a criterion, and utilizing f̃ is

an approximation of f(x∗), we obtain that the algorithm needs Õ
(

∆∗(L1)
3d2

(L0
1)

2
ε2

)
iterations to reach

ε-accuracy.

The proofs under stochastic and distributed settings for the memory-efficient version of ALIAS can
be obtained analogously to Theorems F.6, F.9, and F.12.

G STEEPEST DESCENT

There is one more approach for sign descent. Classically, we perform the step in the direction of the
gradient. However, we do not take into account the length of the gradient in any way in the step. The
approach, called steepest descent, is supposed to utilize this information and provide the steps in the
direction ∥∇f(xt)∥1sign(∇f(xt)) at the t-th iteration. We provide the formal description of this
approach (Algorithm 9).

Algorithm 8 STEEPEST DESCENT

1: Input: Initial point x0∈Rd, number of iterations T
2: Parameter: Stepsize c > 0
3: for t = 0, . . . , T − 1 do
4: xt+1 = xt − c∥∇f(xt)∥1sign(∇f(xt))
5: end for

We present the analysis of SOS STEEPEST DESCENT. We start with the descent lemma.
Lemma G.1 (Descent lemma). For Algorithm 9 under Assumptions 3.1, 3.2, 3.3, 3.4, the following
estimate is valid:

−∆∗ ⩽ −c0
T−1∑
t=0

∥∇f(xt)∥21
(
1− c0L̃∞

)
,

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2026

Algorithm 9 SOS STEEPEST DESCENT

1: Input: Initial stepsize bound cs, initial bound step k, initial point x0 ∈ Rd, number of iterations
T

2: c0 = BISECTION
(
ϕ(c), cs

22k
, cs, T

)
in Algorithm 4 we utilize Algorithm 8

instead of Algorithm 1
3: xT = STEEPEST DESCENT(x0, T, c0)

where L̃∞ = max
0⩽t⩽T−1

Lt
∞ and Lt

∞ =
∥∇f(xt+1)−∇f(xt)∥

1

∥xt+1−xt∥∞
.

Proof. Starting from the convexity of the objective,

f(xt+1) ⩽ f(xt) +
〈
∇f(xt+1), xt+1 − xt

〉
= f(xt)− γt

〈
∇f(xt+1), sign(∇f(xt))

〉
= f(xt)− γt

〈
∇f(xt), sign(∇f(xt))

〉
−γt

〈
∇f(xt+1)−∇f(xt), sign(∇f(xt))

〉
Conj

⩽ f(xt)− γt
∥∥∇f(xt)∥∥

1
+ γt

∥∥∇f(xt+1)−∇f(xt)
∥∥
1

∥∥sign(∇f(xt))
∥∥
∞

⩽ f(xt)− γt
∥∥∇f(xt)∥∥

1
+ γt

∥∥∇f(xt+1)−∇f(xt)
∥∥
1

(i)
= f(xt)− γt

∥∥∇f(xt)∥∥
1
+ γt

∥∥∇f(xt+1)−∇f(xt)
∥∥
1

∥xt+1 − xt∥∞

∥∥xt+1 − xt
∥∥
∞ ,

where in (i) we assume
∥∥xt+1 − xt

∥∥
∞ ̸= 0. Indeed,

∥∥xt+1 − xt
∥∥
∞ = 0 follows from

sign (∇f(xt)) = 0, which means we find the optimum and do need to search the point xt+1.

Now we denote Lt
∞ =

∥∇f(xt+1)−∇f(xt)∥
1

∥xt+1−xt∥∞
. Continue estimate,

f(xt+1) ⩽ f(xt)− γt
∥∥∇f(xt)∥∥

1
+ (γt)2Lt

∞
∥∥sign(∇f(xt))

∥∥
∞

⩽ f(xt)− γt
∥∥∇f(xt)∥∥

1
+ (γt)2Lt

∞.

Now we choose γt = c0∥∇f(xt)∥1, where we find the constant c0 using BISECTION procedure
(Algorithm 4). Thus,

f(xt+1) ⩽ f(xt)− c0∥∇f(xt)∥21 + c20∥∇f(xt)∥21Lt
∞

= f(xt)− c0∥∇f(xt)∥21
(
1− c0Lt

∞
)
.

Summing over all iterations and utilizing L̃∞ = max
0⩽t⩽T−1

Lt
∞ notation, we have

−∆∗ = f(x∗)− f(x0) ⩽ f(xT)− f(x0) ⩽ −c0
T−1∑
t=0

∥∇f(xt)∥21
(
1− c0L̃∞

)
,

which ends the proof of the lemma.

Now we present the purposes of Algorithm 4. Let us take an arbitrary point x−1 ∈ Rd. We denote

L−1
∞ =

∥∇f(x0)−∇f(x−1)∥
1

∥x0−x−1∥∞
and L̃−1

∞ = max
−1⩽t⩽T−1

Lt
∞. It is obvious that it implies

L−1
∞ ⩽ L̃−1

∞ ⩽ L∞,

L̃∞ ⩽ L̃−1
∞ .

(70)

Let us put ϕ(c) = 1

L̃−1
∞ (c)

in the BISECTION procedure. The following lemma shows guarantees of

ϕ(chi) ⩽ chi and ϕ(clo) ⩾ clo.
Lemma G.2 (Bisection entry). Let cmax = 1

L−1
∞

. Thus, with the initial chi = cmax, Algorithm

4 always avoids an early infinite termination. Moreover, with the initial clo = 1

22k
chi, where

k ⩾ log log L∞
L−1

∞
, Algorithm 4 always avoids early non-infinite termination.

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2026

Proof. Let us start with chi. The choice of cmax implies

chi = cmax =
1

L−1
∞

70
⩾

1

L̃−1
∞ (chi)

= ϕ(chi),

which means we avoid early infinite termination. As for clo:

clo =
1

22k
chi ⩽

1
L∞
L−1

∞

· 1

L−1
∞

=
1

L∞

70
⩽

1

L̃−1
∞ (clo)

= ϕ(clo),

which means we avoid early non-infinite termination.

Since we always entry to the BISECTION procedure, we are under the performing of Lemma D.3.
Now we are ready to prove the final convergence guarantees for SOS STEEPEST DESCENT.
Theorem G.3. Suppose Assumptions 3.1, 3.2, 3.3, 3.4 hold. Then for Algorithm 9 after obtaining the
stepsize c0, the following estimate is valid:

1

T

T−1∑
t=0

∥∇f(xt)∥21 ⩽ 8
∆∗L∞

T
.

Moreover, taking into account the complexity of Algorithm 4 in relation to the initial stepsize bound

cs, to reach ε-accuracy, where ε2 ⩾ 1
T

T−1∑
t=0
∥∇f(xt)∥21, Algorithm 9 needs

O
(
∆∗L∞

ε2
log log

L∞

L−1
∞

)
iterations.

Proof. Firstly, we recall the result of Lemma G.1:

−∆∗ ⩽ −c0
T−1∑
t=0

∥∇f(xt)∥21
(
1− c0L̃∞

)
.

We have already mentioned that we can always avoid early terminations of Algorithm 4, due to
Lemma G.2, and thus, 1

2L̃−1
∞ (c∗hi)

⩽ c0 ⩽ 1

L̃−1
∞ (c0)

. Tuning c0 = c0
2 , we obtain

−∆∗ ⩽ −c0
T−1∑
t=0

∥∇f(xt)∥21

(
1− 1

2L̃−1
∞ (c0)

L̃∞(c0)

)
70
⩽ −c0

T−1∑
t=0

∥∇f(xt)∥21
(
1− 1

2

)
.

Expressing gradient norms, we obtain

1

T

T−1∑
t=0

∥∇f(xt)∥21 ⩽
2∆∗

c0T
⩽

8∆∗L̃−1
∞ (c∗hi)

T

70
⩽

8∆∗L∞

T
.

Assuming 1
T

T−1∑
t=0
∥∇f(xt)∥21 ⩽ ε2 as a criterion, we easily obtain the estimate on the number of

iterations required — O
(

∆∗L∞
ε2

)
. Mention that the total number of iterations (together with the

Algorithm 4 performance) – O
(

∆∗L∞
ε2 log log L∞

L−1
∞

)
.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) were used exclusively for spelling edits.

60

	Introduction
	Brief Literature Review and Contributions
	Related work
	Contributions

	Algorithms and Convergence Analysis
	Exact gradients setting
	Stochastic gradients setting
	Memory-efficient ALIAS
	ALIAS with momentum

	Experiments
	Conclusion
	Additional Experiments
	LLaMA pre-training
	Experimental setup.
	blueAdditional results
	blueComparison with parameter-free approaches
	Experiments on big model
	Compute resources.

	Tiny ImageNet classification with Swin Transformer Fine-Tuning
	Experimental setup
	Performance on Image Classification
	Compute Resources

	blueAlgoPerf benchmark

	Sign-SGD with Additional Stepsize Search Procedure
	SOS Sign-SGD experiments
	Logistic regression.
	Non-convex problem

	Additional Notation and General Inequalities
	Lemmas for SOS Sign-SGD
	Main Proofs and Details for SOS Sign-SGD
	Exact gradient setting
	Stochastic gradient setting
	Distributed setting

	Proofs for ALIAS
	Exact gradient setting
	Stochastic gradient setting
	Distributed setting
	Memory-efficient ALIAS

	Steepest Descent

