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ABSTRACT

Large language models have achieved major advances across domains, yet training
them remains extremely resource-intensive. We revisit SIGN-SGD, which serves
both as a memory-efficient optimizer for single-node training and as a gradient
compression mechanism for distributed learning. This paper addresses a central
limitation: the effective stepsize cannot be determined a priori because it relies on
unknown, problem-specific quantities. We present a parameter-free SIGN-SGD
that removes manual stepsize selection. We analyze the deterministic single-node
case, and extend the method to stochastic single-node training and multi-node
settings. We also incorporate the momentum technique into our algorithms and
propose a memory-efficient variant that stores only gradient signs instead of full
gradients. We evaluate our methods on pre-training LLaMA models (130M and
350M) and fine-tuning a Swin Transformer (28M). Across considered tasks, the
proposed methods match the performance of tuned SIGN-SGD and ADAMW
(grid-searched stepsizes with a cosine schedule), while avoiding tuning overhead.
Employing parameter-free training yields approximately 1.5x end-to-end speedup
compared to runs with grid-searched stepsizes.

1 INTRODUCTION

Models and datasets continue to scale rapidly (Vaswani,|2017; Hoffmann et al.,2022; |Alzubaidi et al.,
2021)). This growth drives steep increases in compute requirements, memory footprint, and wall-clock
training time, consequently raising hardware costs. These pressures motivate the development of
methods that accelerate training and reduce resource usage without sacrificing accuracy. A significant
breakthrough arose not from designing advanced learning algorithms, but primarily from the manner
in which these algorithms can be applied: distributed learning (Konecny et al.,|2016; McMahan et al.|
2017 |Verbraeken et al., [2020). However, distributing training across M nodes does not yield an
M -fold speedup in practice, as inter-device communication remains a significant bottleneck.

The reduction of the number of transmitted ~ Algorithm 1 SIGN-SGD

packages through compression is one of the 0 -md B )
key techniques to address this issue (Seide 1: Inmput: Start point " € R, number of iterations 7'

et al| 2014} [Alistarh et al 2018). Among 2* Parameter: Stepsize v > 0
others, the SIGN-SGD method stands out ~ 3: for? t:107 s T—1do .
(Bernstein et al.,[2018). Solving the classic 4 o't = ot —ysign(V f(2"))
optimization problem neu]Rni f(x), it utilizes _> end for

an intuitive heuristic that takes the sign of each gradient coordinate (Algorithm [I). In the distributed
setup, aggregation is performed by a majority vote on the transmitted signs of the gradients.

Additionally, SIGN-SGD is rapidly gaining popularity, even for single-node training. In contrast
to methods such as ADAM (Kingmal [2014) and ADAMW (Loshchilov, |2017)), which require sub-
stantial memory for storing statistics, SIGN-SGD is free from this constraint. Moreover, sign-based
approaches offer both theoretical and practical advantages over traditional SGD (Robbins & Monro,
1951)), demonstrating superior convergence (Balles & Hennig| |2018} Balles et al.| |2020) and empirical
performance (Kunstner et al., 2023} |Zhao et al., [2024; Zmushko et al.,|2024) in training large models.

Although SIGN-SGD is effectively used both for compression in distributed learning and as a
memory-efficient method in a single-node regime, achieving its full potential requires selecting an
appropriate stepsize. The optimal choice depends on problem-specific quantities that are unknown
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in practice, necessitating costly manual tuning. To address this issue, we introduce parameter-free
SIGN-SGD algorithm that employ automatic stepsize selection schemes.

2 BRIEF LITERATURE REVIEW AND CONTRIBUTIONS

To situate the problem and motivate our algorithms, this section reviews the literature and distills the
open challenges that guide our contributions.

* We begin by revisiting SIGN-SGD and identifying the theoretically desirable stepsize that would
enable effective training without manual tuning.

* Next, we survey parameter-free optimization methods, highlighting their advantages and limitations.

* We conclude by stating the contributions of this work and explaining how they address the gaps.

2.1 RELATED WORK

e Sign-SGD. In the original paper on SIGN-SGD (Bernstein et al., 2018)), the authors explored
convergence in the paradigm of finding a near-stationary point, i.e., such x € R%, that ||V f(z)|| < &,
where ¢ represents the accuracy of the solution. Moreover, to achieve convergence with respect to
the variance term, the authors utilized mini-batches. Both this convergence criterion and the use
of mini-batches are essential components of the analysis. As shown in (Karimireddy et al.,[2019),
S1IGN-SGD may fail to converge when considered the regret minimization. Moreover, to achieve
convergence with respect to the variance term, the authors of (Karimireddy et al.l [2019) utilized
mini-batches. Meanwhile, Safaryan & Richtarik| (2021)) proposed a relaxation of the SIGN-SGD
method and showed that at least half of the coordinates in the sign of the stochastic gradient align
with those of the exact gradient, thereby enabling convergence with respect to the variance term. A
number of works have also emerged around SIGN-SGD, extending it with momentum (Sun et al.,
2023)), providing high-probability convergence bounds (Kornilov et al., [2025)), and studying it in
the context of differential privacy (Jin & Dai| 2025)). Nevertheless, the possibility of selecting a
stepsize independent of problem properties while achieving optimal convergence rate has been largely
overlooked.

Let us provide the basic estimate of SIGN-SGD convergence with the exact gradient oracles. This
can be simply derived from Theorem 1 in (Bernstein et al., | 2018)):

A"yl
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1 t
= < S+

where L, is the smoothness constant of the objective f with respect to [, -norm, and A* =
f(x%) — f(x*) represents the initial distance to the solution. Putting

A e obtain optimal O ( A*LOO) convergence rate )]
= , W _— Vi .
T VILT P T g

This stepsize poses challenges, as it depends on the problem’s hyperparameters. To address this issue,
we turn to various techniques that facilitate the provision of an adaptive stepsize.

o Parameter-free approaches. In the non-smooth setting, considering regret minimization, classic
gradient methods (Robbins & Monro, {1951} Moulines & Bach| 2011} Stichl 2019; [Lan, [2020) require

2 — 2] a° — a* oM

MNT VT
This estimate is (worst-case) optimal in its complexity class (Nemirovskij & Yudinl [1983). We let M
denote the Lipschitz constant (| f(z) — f(y)| < M ||z — y||, forall z,y € R?). The parameter-free

setting aims to adapt the stepsize automatically, without prior knowledge of the initial distance
||2° — 2*||, or the Lipschitz constant M.

to have O ( ) convergence rate. 2

For the first time, the idea of an automatic stepsize setting was proposed to achieve adaptation to
constant M. It was embodied in methods such as ADAGRAD (Duchi et al.,[2011), ADAM (Kingmal
2014), RMSPRoOP (Tieleman & Hinton, 2012)), ADADELTA (Zeiler, 2012), and ADAPTIVE SGD
(Gupta et al., [2017; |Attia & Koren, 2023). In these methods, computed gradients were utilized



Under review as a conference paper at ICLR 2026

to adjust the stepsize based on the properties of M. However, these methods required additional
memory and computations, and they lacked adaptivity to the initial distance. Attempts to modify ~y in
equation [2]led to approaches within the general online stochastic learning setting (Orabona, 2019),
such as coin betting and reward-doubling techniques (Streeter & McMahan, [2012} |Orabona, [2013;
McMahan & Orabonal 2014} |Orabona & Pall, 2016} |Cutkosky & Orabonal 2018 |Cutkosky, [2019),
which can also be classified as parameter-free algorithms. Nevertheless, these approaches assumed
that the stochastic oracles have some (loose) bound.

Further studies suggested more intricate solutions in parameter-free convex stochastic optimiza-
tion. These methods achieved asymptotic convergence rates comparable to classic approaches
while adapting to essential hyperparameters. The starting point was the work (Carmon & Hinder],
2022) which provided adaptivity to the initial distance ||z° — 2*||2 through estimators of the form
max;<7 ||#° — x!|[2. To find such estimators, the authors employed an additional grid search
procedure which increased the required number of steps only in double-logarithmic time. The primary
objective of this work was to derive high-probability convergence estimates in the stochastic convex
non-smooth setup. Several studies that did not utilize the additional search procedure were built upon,
including (Khaled et al., 2023)), (Ivgi et al., 2023)) and (Kreisler et al., 2024)).

The work (Defazio & Mishchenko, 2023) provided another approach for sensitivity to the initial
distance. The authors iteratively constructed a sequence upper bounded by on —z* H , and approx-
imated it accordingly. However, they considered only exact gradient oracles, which represents a
significant limitation. Later, in (Mishchenko & Defazio, [2023), the authors introduced a damping
factor in the denominator to improve convergence in the logarithmic factor’s square root. Never-
theless, theoretical analysis depended on the knowledge of the Lipschitz constant, which is not a
parameter-free approach. We note that the use of the classic ADAGRAD-NORM stepsize (Duchi
et al.} 2011} |Streeter & McMahan, [2010; Ward et al., 2020), possibly with additional factors in the
denominators, remains standard for adaptation to M.

The orthogonal approach was presented in the work (Mishkin et al.,|2024)). The authors considered a
smooth setup and proposed the use of local approximations of the smoothness constant L to achieve

i ot |l =]
adaptivity. However, the authors employed the stepsize v* = T =% f(Q:v")Hz at the ¢-th

iteration, where v* was determined by exponential search in the manner (Carmon & Hinder, [2022) or
by Newton’s method. Both variants are inefficient.

In light of the literature, we present the main directions of this study. Our goal is to provide the
parameter-free SIGN-SGD method that achieves a convergence rate comparable to the optimal
stepsize tuning |1}

2.2  CONTRIBUTIONS

We propose a novel mechanism for estimators compared to existing approaches. Instead of the classic
[|[#° — 2*|| and M hyperparameters in equation[2} we aim to gain the tolerance to f(z°) — f(z*) and
L, from equation|I} We now outline our contributions.

o Parameter-free SIGN-SGD. We introduce a parameter-free SIGN-SGD method. The core
idea involves per-iteration step-size adaptation. Every iteration, we choose estimators of L., and
f(z%) — f(x*) using the current gradient information. This design is practical, as it requires no
additional hyperparameter search or restarts. As a starting point, we analyze the exact gradients setup.
e Stochastic and distributed settings. We study our algorithm in the distributed setting and the
case of stochastic gradient oracles. A lack of stochastic analysis presents a significant drawback in
parameter-free optimization. Our work addresses this limitation.
e Practical extensions. We extend our approach in two important directions.

* We incorporate momentum to improve practical performance.

* We provide a memory-efficient parameter-free version. It stores only the sign of the gradient

from the previous step while remaining an adaptivity to the problem properties.

e Theoretical analysis. We provide a comprehensive theoretical analysis of the proposed methods
and establish convergence guarantees. In our setup, we consider a convex and smooth objective.

e Experimental validation. We demonstrate that our methods are competitive in practical tasks,
including LLM and ViT training. An Adam-style momentum variant further improves performance
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across both language and vision benchmarks. Empirically, parameter-free training matches or is
slightly below tuned SIGN-SGD and AdamW with cosine schedules, while achieving appreciably
better overall training time.

3 ALGORITHMS AND CONVERGENCE ANALYSIS

e Notation. We begin with the following notation: E[-] denotes the expected value of a random

variable, |z||2 = \/(z, z) represents the Euclidean norm of the vector x € R%, ||z||; = Z?:l |
refers to the £;-norm of the vector x, and ||z||cc = max;c[q) |74 defines the £,-norm of the vector x.

o Assumptions. We present the assumptions regarding the objective function f

Assumption 3.1. The function f is Lo-smooth, i.e., it satisfies |V f(z) — V ()|, <Loo ||z — ¥l s
for any =,y € R%.

Assumption 3.2. The function f is convex, i.e., it satisfies f(z) < f(y) + (Vf(x),x —
y) forany z,y € R%.

Although neural networks are inherently non-convex, theoretical analysis under convexity assump-
tions remains relevant. Recent studies suggest that deep neural networks often exhibit properties
similar to convexity in certain regions, making insights from convex analysis applicable (Kleinberg
et al.,[2018;Zhou et al., [2019; |Liu et al.,|2022). Moreover, convex optimization serves as a theoretical
foundation for the design of optimization algorithms. For example, momentum (Nesterov et al.,[2018)
and AdaGrad (Duchi et al.| |2011)) were initially developed and analyzed for convex problems.

Assumption 3.3. The function f has a (maybe not unique) finite minimum, ie., f(z*) =
inf,cgpa f(x) > —o0.

Now we move to the base point of our analysis: the algorithms with exact gradient oracles.

3.1 EXACT GRADIENTS SETTING

We begin with an additional assumption regarding the gradient oracles.

Assumption 3.4. At any point z € R%, we have access to the exact gradient, i.e., we can compute
the full gradient value V f(z).

We now present the main algorithm of this paper named ALIAS (Automatic Local per-Iteration
Approximation of the Stepsize, Algorithm [Z). At each iteration, it utilizes the stepsize selection in a
specific manner to gain adaptivity to the global parameters of the problem. Below, we provide an
explanation of the algorithm and offer some intuition why the presented stepsize facilitates adaptivity.
Considering thf: stepsize in equation [T} we Algorithm 2 ALIAS

need to approximate the numerator and de-
nominator. Thus, we first analyze how to  1: Input: Starting point z° € RY, initial L.-
estimate A*, and then proceed with L. approximation 7~ % = 0, initial A*-approximation
d° € R, lower bound f on f(x*), number of
iterations 7'

We start with a positive scalar d°, represent-
ing the initial approximation of A*. Next,

we construct a new approximation based on 2: fort =0,...,T N 1do
the newly calculated gradient (Line [6)) at 3 Compute gradient Yf () i1
each iteration of the algorithm. To bring 4. nt=nt"1+ HVJT t):vtffgﬁ iR APUE -
these approximations closer to A* over iter- . T e Vit
ations, we take the maximum of the previous 5: if ¢ Zg 0 theltl_l ) ) ) )
and newly computed values (Line[7). This ¢ d* =37, oY (V (@), sign(V f(27)))
approach yields an non-decreasing sequence 7. dt = max (dt—l jt)
that is upper bounded by A* (see Lemma 8 end if 7
[EI). We adopt this iterative scheme as Op- 9: Option I: 7% = A/t
tion I in Algorithm 2] (Line[9). ’ ption -7 = -

10: Option IL: v* = X'/ f(20) — f

We note that estimating A* does not require 1 \ . .
advanced schemes such as Option I for most 11 z" =t —4'sign(V f(2?))
tasks, as adaptivity to f(z*) is typically not 12: end for
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critical. As shown in (Boyd et al., 2003)), the condition f(z*) = 0 arises in problems such as finding a
point in the intersection of convex sets, completing positive semi-definite matrices, or solving systems

of convex inequalities. Moreover, a lower bound f on f(z*) is often known or readily available. For
instance, f = 0 serves as a valid estimate in the empirical risk minimization setting. Taking this into

account, we present the second option for our method, where we use f(z°) — f with f < f(z*)
(Line instead of the sequence {d" tT:_Ol.

As for the denominator, at the ¢-th iteration, we approximate the local Lipschitz constant L, between
2t and 2'~!. We accumulate it in the manner of ADAGRAD-NORM by adding it to the sum of
previous approximations:

b — i1
ST R Gl

[lat — =

In the stepsize, the corresponding to the denominator coefficient appears as:

A 1 _ 1
\/nt t=1 [V @)=V i),
n \/Zi:O Mo =z .

This stepsize facilitates iterative adaptation to the objective landscape. We are now prepared to
present the main theoretical results of this section.

Theorem 3.5. Suppose Assumptions H hold. We denote € > 7 ZtT:_Ol IVF(h)|,
_ IviEh-vrE)],

L% = TeT=2] . Then Algorithm|2|with d° < A* to reach -accuracy needs
~ [ (A%)? (Lo)® ~ [ A (Lo)?
@ % and O (72) iterations with Options I and II, respectively.
& (L8.)7 (L8) <2

Remark 3.6. Under conditions of Theorem 3.5} Algorithm [2|with \* = L A
¢Loc (Sl |[VEEID-viED||

+ _ ~
Z e,

to reach e-accuracy, where € > + ZtT;Ol IV f(xh)]

1> heeds

~ A* 2LOO ~ (A*L . . ) ) .
0 (((1382> and O < = ) iterations with Options I and II, respectively.

Discussion of the results. Since we provide convergence guarantees for finding near-stationary
points for a convex objective, we first examine the relationship between convergence rates in convex
and non-convex settings. For instance, we compare gradient descent rates using the gradient norm as
the convergence criterion. While the behavior of gradient norm minimization is well understood in the
non-convex setting (Arjevani et al.,|2023)), it is specific in the context of convex optimization. Notably,
Allen-Zhu| (2018)) showed that vanilla gradient descent — without acceleration or additional techniques
— achieves the same O (1/<?) rate for finding near-stationary points in both convex and non-convex
settings. However, as previously noted, SIGN-SGD does not admit convergence guarantees beyond
any criterion except the gradient norm, even in the convex case. Consequently, convergence analysis
for sign-based methods must be framed in terms of finding the near-stationary point. Thus, our convex
rate is not superior to that of the non-convex case. Moreover, the bound in Theorem@] includes an
additional factor of (L=/L?,)* compared to Remark However, the algorithm analyzed in Remark
[3.6]is not parameter-free: it requires prior knowledge of L. In Appendix[A] we present empirical
results for varying values of L., which demonstrate that this additive factor has negligible impact on
the practical convergence of Algorithm 2]

So far, we propose an algorithm and provide the theoretical analysis behind it. However, the analysis
assumes access to exact gradient oracles — an unrealistic assumption in practice. We now extend the
analysis to more realistic scenarios involving stochastic oracles.

3.2 STOCHASTIC GRADIENTS SETTING

We begin with the assumption regarding the gradient oracles.
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Assumption 3.7. At any point z € R? we have access to the stochastic gradient, i.e., we can compute
ge(z) = Vf(x,&) — the stochastic gradient value with respect to the randomness in the choice of
samples &. Additionally, the variance of these stochastic estimators is coordinate-wise bounded, i.e.,

E ([ge(z)];, — [Vf(2)]; ) < o?. Furthermore, this implies that E || g¢ (z) — V f ()|, < ||o|l;-

It is a classic assumption in stochastic optimization (Bernstein et al., 2018). Furthermore, the
batch gradient g typically exhibits smoothness (Liu et al.,2023). Thus, we introduce an additional
assumption.

Assumption 3.8. The stochastic function f¢ is L,-smooth according to the realization &, i.e., it
satisfies [|g¢ (2)—g¢(¥) ||, < Loz — yllo for any z,y € R, €.

The stochastic formulation of the problem (Assumption necessitates modifications of Algorithm
This algorithm assumes access to the exact gradients, and the estimation of the local smoothness
constant relies on computing full gradients. Thus, our goal is to modify Line ] in Algorithm [2]
Utilizing Assumption [3.8] we can construct a local approximation of L, on the ¢-th iteration via
stochastic gradients with respect to the stochastic realization £¢. Namely,

3
-1 ”qslﬂ £1+1||
Lm0 e,

where gé,, is the stochastic gradient computed at the ¢-th iteration based on the stochastic realization
£*. We query the oracle twice per iteration, utilizing the current and subsequent stochastic realizations.
Another change in Algorithm involves performing a step in Line (1 1|regarding sign(gét ). In the
subsequent theoretical analysis, we focus solely on Option II in Algorithm[2] We provide a formal
description of the stochastic method, Algorithm [7} in Appendix [F.2] There, we present both the
practical and theoretical versions.

We now present the convergence results.

Theorem 3.9. Suppose Assumptions B.7hold. Then Algorithm2|with Option II to reach

t41 t
Joctts—oc |
g-accuracy, where € > ?:01 v |V f(2")|; | and LES et _ n;;jlli—acfll:’ needs

=

[ A" (LL)? 1\? 1
o ( . ) <E (LO 51) ) + [|lo]|? Loo EW iterations.
€ o min  Leg

0<t<T -1

i+l g
1 |lgf Tt —gt
=y gitl ety

Loo+ T
= T,

Remark 3.10. Under the conditions of Theorem , Algorithm 2| with A* = L ,

Option II and mini-batch of the size ¢ + 1 at ¢-th iteration, to reach e-accuracy needs

~/A*L 2 Loo 1
(’)( 2<><> n ||U||12 <]E : t+1>) iterations,
£ € min Lo’o5

0<t<T—1

t+1 _ t
1 Hg&“rl 2

where € > Z IV f(z )Hl’LtO§ = M

Discussion of the results. With Assumption a more stringent version of Assumption [3.1}
we approximate the smoothness constant via stochastic gradients. The key point is to measure the
gradient at the current point while considering the stochastic realization from the next iteration.
Since zf, £!, and ¢! are independent, we can provide a theoretical analysis. Thus, we surpass
works such as (Defazio & Mishchenko, [2023; [Mishchenko & Defaziol [2023; [Mishkin et al., [2024),
which employed a similar idea of the adaptation to the Lipschitz constant but lacked a stochastic
analysis. Notably, the result of Theorem [3.9)achieves convergence only to a neighborhood, the size of
which is determined by the variance. This rate fully aligns with the original SIGN-SGD convergence
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(Bernstein et al.| [2018)). To address it in theory, we introduce increasing mini-batches analogously to
(Bernstein et al., 2018) in Remark [3.10] We note that mini-batching enables convergence guarantees
concerning the variance term; however, the method remains parameter-free even without it. In our
experiments, we do not employ mini-batching.

We develop an analysis not only for the stochastic setting, but also for the distributed one. A full
description of Algorithm [2]in the distributed setup, along with theoretical statements and proofs, is
presented in Appendix [F:3]

Above, we present an algorithm that can be easily applied to practical tasks. It does not require
multiple restarts or additional search procedures. However, Algorithm [2|lacks the main advantage
of the original SIGN-SGD method. Indeed, performing a step on the ¢-th iteration requires storing
the entire gradient V f(z!~!) instead of just its sign. To address this limitation, we propose a
memory-efficient modification in the next section.

3.3 MEMORY-EFFICIENT ALIAS

In Algorithm 2] memory efficiency is sacrificed to achieve a parameter-free stepsize. Indeed,

RV [ Sy (V). sign (V (1))

t L IVf(@ )=V )l

20 lzt+t -zt

To compute d', it is sufficient to store only sign (V f (xt_l)), incurring no additional memory costs.
Regarding \', we calculate ||V f(z") — V f(z'~1)||, and ||z*™ — &'||__ at each step. The last term
does not present an issue since ||z' —z'~!|| = ||y~ !sign (Vf(«'1))||.. However, to find

|V f(z') = Vf(z'=1)|,. it is necessary to store the entire gradient V f (z'~1).

We address this concern by modifying ! in Algorithm
t_ t—1 va(xt) B Vf(mt_l)H

— > followed by \' = NE)
It = 2=l IV (@ +1) =V f (@)l
Z e+ =o',

To approximate the smoothness constant, we interchange the /,,-norm and [/;-norm in the ex-
pression, leveraging their duality relationship. Thus, we approximate the constant Ly, not L.,
as indicated in Algorithm Theoretically, this approach still requires memorizing V f(x!~1).
For this reason, we consider a practical option by the approximation ||V flat) = Vf(xi1) HOO R
max (|max; [V f(z")]; — min; [V f ('~ 1)];], ‘maxj Vf( t=1)]; — min; [Vf( )]5|)- It necessitates

storing only two additional constants: max; [V f(z! )]j and min; [V f(z! )]J In the theoretical

analysis, we provide convergence guarantees only for the A\* choice, as in equation [3| However, we
additionally validate the methods empirically with the approximation of the [,,-norm and provide an
ablation study that shows a small deviation of the approximate solution from the exact one. More
precisely, this approximation provides an upper bound on the initial /.-norm, while remaining close
to it (see Section @ and Appendix [A).

We present a theoretical analysis of a memory-efficient approach, utilizing an additional assumption
on the L1-smoothness.

Assumption 3.11. The function f is L;-smooth, i.e., it satisfies |V f(z) — V f(y)|| . <L1||lz — y|1
for any x,y € R%,

Now we present the convergence guarantees of Algorithm with \! as in equation

Theorem 3.12. Suppose Assumptions B2 B3 hold. We denote ¢ >
(L'l _ (L'O
T Z ||Vf( i, LY = ||Vf(H.,L.)1_Z[{‘? e Then Algorithm 2| with d° < A* and d - \! as

in equanon B] to reach e-accuracy needs

~ [ (A% (Ly)* d? ~ [ A (Ly)? &2
@) <(d0)(L(0)12)> and O ((L(O)12)2 iterations with Options I and 1I, respectively.
1 1) ¢
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The result of Theorem [3.12] deteriorates the rate established in Theorem 3.5} Indeed, we can derive
the Lo, < dL; inequality. However, the proposed approach offers significant advantages in terms of
memory efficiency.

Nevertheless, the theoretical convergence rates presented in this section are not optimal. In the
A (A Lt|lo|?
2

stochastic case, we aim to achieve O ) rate. This issue is discussed in detail in Appendix

where we present an algorithm that attains this rate.

3.4 ALIAS WITH MOMENTUM

In previous sections, we presented Algorithm 3 ALIAS Adam version
methods that do not utilize the

momentum parameter (Polyak},[1987; 1: Input: Start points 1,20 € R4, 9, m% 00 = 0,
Nesterov et al., 2018). However, d=! > 0, number of iterations T’

many modern optimizers, such as  2: Parameters: 7', 31, 32 > 0

ADAM (Kingma, 2014), PrRoODIGY 3: fort=0,...,7 —1do

(Mishchenko & Defazio, [2023), 4: rttl=/Bart + (1 — \/ﬁ?) dt*1<gét, sign(géf,11)>
MuUON (Jordan et al), 2024), and 5. dt = max {dt—177nt+1

MARS (Yuan et al., |2024), employ . 41 _ t _ t ot

this technique. We address this gap 6: m = B+ (1= Br)d g

2
in the current section and present  7: vitl = Byut 4+ (1—f32) (dt)2 (gét)
Algorithm 3] which incorporates the —

momentum parameter into Algorithm ~ 8: o't =zt — % © sign(m!+1)
[2/in a manner similar to (Mishchenko bz

& Defazio) |2023). Specifically, we
include exponential moving averages
of the first and second statistics, as in ADAM to aggregate past gradients and provide coordinate-wise
normalization that mitigates sharp directions and gradient noise.

9: end for

4 EXPERIMENTS

In this section, we present empirical results for the LLM pre-training task. In Appendix [A] we
validate our approach on vision tasks, specifically by fine-tuning the SWIN Transformer architecture
(Liu et al.}[2021). Our code is open-source

Language model pre-training. Following the protocol of (Lialin et al.,[2023)), we train a LLaMA-
based architecture (Touvron et al.,2023)) with 130M parameters on the C4 dataset (Raffel et al.,[2020).
A detailed description of the experimental setup is provided in Appendix [A.T] We compare several
optimization methods: SIGN-SGD with a tuned constant learning rate (Ir), and three methods using a
tuned learning rate with a cosine scheduler (cosine sc) — namely, SIGN-SGD, STEEPEST DESCENT,
and NORMALIZED SGD. All of these methods are compared against ALIAS (Algorithm[2)), which is
used without any tuning. Additionally, we evaluate all methods with weight decay (wd). We provide
final validation loss and perplexity in Table T}

Table 1: SIGN methods on LLAMA pre-training. ~ Table 2: SIGN-SGD methods with added mo-
mentum parameter (), ADAMW and PRODIGY

Algorithm | Validation Loss () | Perplexity () on LLAMA pre-training.
SIGN-SGD (Ir) 3.041 20.923 Algorithm | Validation Loss (}) | Perplexity ({)
SIGN-SGD (Ir, cosine sc) 2.992 19.923
STEEPEST DESCENT (Ir, cosine sc) 3.035 20.791 SIGN-SGD (wd, 8, Ir) 2.968 19.459
NORMALIZED SGD (Ir, cosine sc) 3.135 22,982 i‘TﬁFﬁPSFSTD [;‘:qdr J(Vi; CZSi]‘:e:):\-)ine © 332 :2;22
QILG‘I)\Iégé‘E“(‘Tzd In igﬂ ggggg NORM. SGD (wd, 3, lr,‘ cosine sc) 2.934 18.803
. : . g ADAMW (wd, 3, Ir, cosine sc) 2,929 18.698
SIGN-SGD (wd, Ir, cosine sc) 2.980 19.693 PRODIGY (wd, ) 3003 20,145
STEEPEST DESCENT (wd, Ir, cosine sc) 3.022 20.537 PRODIGY (wd, 3 cosine sc) 2.930 18.727
NORMALIZED SGD (wd, Ir, cosine sc) 3.006 20.169 ALIAS Adam version (wd, 3) (ours) 2.976 19.609
ALIAS (wd) (ours) 3.006 20.169 ALIAS Adam version (wd, /3, cosine sc) (ours) 2918 18.504

In Table |2} we present the results for methods incorporating momentum (3) (all methods with weight
decay). ALTIAS Adam version utilizes sign descent with momentum and an additional scaling factor
(see Algorithm 3] for details). We consider two options for this method: with and without a cosine

'https://anonymous. 4open.science/r/PF_SignSGD/
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scheduler. We provide a comparison with ADAMW (Loshchilov, 2017)) and PRODIGY (Mishchenko
& Detazio), [2023)). We test PRODIGY with and without a learning rate scheduler. We present the
pre-training dynamic in Figure [T} These results coincides with those in Tables T} 2]
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Figure 1: Comparison of SIGN-SGD methods in LLAMA pre-training. The left column shows
results without weight decay, the central column presents results with weight decay (wd), and the
right column displays results with weight decay (wd) and momentum parameter (3).

We highlight that our basic ALTAS achieves performance only slightly inferior to that of SIGN-SGD
with a tuned cosine scheduler. The Adam-based version of ALIAS outperforms all competing
methods, including tuned ADAMW and the state-of-the-art parameter-free optimizer PRODIGY with a
tuned cosine scheduler. These results are particularly competitive given that our approach eliminates
the need for learning rate tuning — a significant practical advantage. This feature enhances the
method’s usability, making it appealing for large-scale applications.

Memory-efficient version of Algorithm 2} We proceed with testing the memory-efficient ap-
proach, presented in Section Recall that we approximate ||V f(z') — Vf(z'™?) HOO ~
max (|max; [V f(z")]; — min; [V f(z'~1)];|, jmax;[V f(z'71)]; — min; [V f(2")],|). We compare
the performance of ALIAS with \? as in equation considering exact and approximated [,,-norm
(me), SIGN-SGD with a constant (tuned) stepsize, and SIGN-SGD with a (tuned) cosine scheduler.
The results of the 130M LLAMA-based model pre-training are presented in Table[3] We provide an
ablation comparing exact and approximated values of /,,-norms during training in Appendix

The results indicate a slight performance degra- Typle 3: SIGN-SGD methods and memory-

dation of the memory-efficient version of = efficient version of ALIAS on LLAMA pre-
ALIAS compared to SIGN-SGD with a cosine  raining.

scheduler baseline, as well as relative to the orig-
inal ALTIAS method. However, it is crucial to

Algorithm | Validation Loss (1) | Perplexity ({)

. . . . SIGN-SGD (wd, Ir) 3.041 20.923
emphasize that this variant is a parameter-free  sion-s6p wa I, cosine sc) 2980 19693
. : : _ ALIAS (wd, At asin equation|3] (ours) 3.015 20.389
algorlthm that retalns Only the Slgn Of the gra ALIAS (wd, At asin equalion me) (ours) 3.019 20471

dient from the previous iteration. Despite these
simplifications, its performance remains competitive with significantly more memory-intensive meth-
ods. We report performance metrics, memory footprint, and runtime efficiency in Appendix [A] along
with detailed training configurations for full reproducibility.

5 CONCLUSION

In this work, we present a novel parameter-free SIGN-SGD that eliminates manual stepsize selection.
The method is analyzed in deterministic, stochastic, and distributed settings. Additionally, we
introduce a memory-efficient variant that stores only gradient signs while maintaining adaptivity. We
also explore a momentum-adapted version that demonstrates strong performance in practice.
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A ADDITIONAL EXPERIMENTS

This section supplements our experimental validation by examining the internal mechanisms of
parameter-free sign-based optimizers across LLaMA pre-training and Tiny ImageNet classification.
We analyze how step-size dynamics naturally emerge without manual scheduling, investigate memory
consumption and computational time compared to established optimizers, and demonstrate robustness
to hyperparameter choices.

A.1 LLAMA PRE-TRAINING
A.1.1 EXPERIMENTAL SETUP.

Our experiments use a LLaMA-based architecture (Touvron et al.l 2023)) equipped with RMSNorm
and SwiGLU (Shazeer, 2020) activations, trained on the C4 dataset (Raffel et al.,2020). The training
consists of 100k steps. We use batch size of 512 sequences and sequence length of 256, as in|Lialin
et al.| (2023)), and TS5 tokenizer with the dictionary size of 32k since it was originally trained on C4.

For all experiments, the respective optimization method is applied to the main model parameters,
while the LM Head layer is optimized with AdamW. This design follows prior work [Zhao et al.| (2024)
which showed that the LM Head layer requires more fine-grained learning rate adjustment.

The learning rate was selected through a grid search with multiplicative step of 107. We employ a
cosine learning rate schedule with a warmup of 10% of the total steps and decay to 10% of the peak
learning rate. For ALIAS Adam version (Algorithm , we choose stepsize v* = 1073,

The weight decay value was selected from [0, 0.01, 0.1] through validation. We also applied gradient
clipping with threshold of 1.0 for all methods except STEEPEST DESCENT and NORMALIZED SGD.
All methods with momentum utilize the Nesterov acceleration scheme with a momentum value of
0.9. For AdamW we use the standard hyperparameters: 81 = 0.9, 83 = 0.999,¢ = le — 8.

A.1.2 ADDITIONAL RESULTS

In this section, we explore key aspects of our method. We analyze the stepsize derived from our
approach and compare it to the effective learning rate induced by the cosine scheduler. Next, we ex-
amine the memory and computational efficiency of all considered optimizers. We present an ablation
study on the approximation used in the stepsize of the memory-efficient variant, demonstrating its
close alignment with exact computation. We provide empirical evidence for the robustness of ALIAS
to an additional constant L. term (see Remark [3.6). Finally, we discuss the question regarding the
performance dependence on the choice of the initial value d° and the level of gradient noise.

Study on the stepsize. A question arises regarding how ~¢ % performs compared
V e

to the effective cosine scheduler when ~* remains constant. This pairing is presented in Figure

1.0~

s —e— effective cosine stepsize scheduler |
—A— ALIAS Adam version stepsize

0.8

/

Stepsize
o ¢
D

0.2

0.0 S

10000 30000 50000 70000 90000
Number of stochastic gradient calls, t

Figure 2: Comparison of ALIAS Adam version stepsize with constant ¢ with effective cosine
stepsize scheduler.
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One can state that the cosine nature of the stepsize is automatically obtained. This feature highlights
the distinctiveness of our parameter-free approach.

Study on the time and memory consumption. In Table 4] we present details of memory require-
ments and time consumption per-iteration.

Table 4: Comparison of memory and time consumption.

Algorithm | Memory consumption (gb) | Time consumption per-iteration (s)
SIGN-SGD 0.41 0.004
STEEPEST DESCENT 0.41 0.01
NORMALIZED SGD 0.41 0.01
ADAMW 1.5 0.007
PrRODIGY 3.5 0.05
ALTAS (ours) 1.22 0.01
ALIAS Adam version (ours) 1.91 0.03
memory-efficient ALIAS (ours) 0.41 0.007

Table A shows a higher time per-iteration for ALIAS Adam version and PRODIGY, which we adopt
from the work (Mishchenko & Defazio, |2023)). We attribute this to the suboptimal implementation of
these algorithms, in contrast to others that have been utilized for an extended period. Simultaneously,
our algorithms are comparable to ADAMW in terms of required memory, while PRODIGY occupies
more GPU resources because it stores a vector of initial model parameters. Note that the memory-
efficient version of ALIAS is superior to ADAMW and comparable to the basic SIGN-SGD.

Study on the memory-efficient ALIAS. ..——
We now analyze the memory-efficient vari- SRBroimation of o ul mh X m
ant of ALIAS, focusing on the accuracy of =" 1 D /ML »/'W i

the approximated [..-norm used in its up- \
Attt

VAXE )

date rule. Figure shows the dynamics
of |V f(x") — Vf(z'~1)||_, across iterations,
along with the deviation range of its approxi- .
mation (see Section for details on the ap- /-/
proximation scheme). The ablation study re- 20000 20600 50000 80000 100000
veals that the approximate norm deviates from Number of stochastic gradient calls,

the exact value by approximately 50% on av- Figure 3: Ablation study on approximated /.-

erage. Notably, the approximation consis- L .

norm deviation from the exact one in the memory-
tently exceeds the true norm — as expected, . .

efficient version of ALIAS.

since it constitutes an upper bound by de-
sign. This leads to smaller effective stepsizes, which explains the slightly degraded perfor-
mance of the memory-efficient variant compared to the basic ALTAS algorithm (Algorithm [2)).
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Study on the robustness to L,. In Table[5] Table 5: Robustness to L.
we provide empirical evidence supporting the
claim made in Section B.T] that the modification
of ALIAS (Algorithm 2)) is robust concerning

L value | Validation loss ({)

the L., parameter. Hence, although the ver- 0 3.006
sion of the algorithm considered in Remark [3.6] 50 3.006
requires prior knowledge of L, this additive 100 3.007
factor has negligible impact on the practical con- 500 3.005
vergence of Algorithm 1000 3.006

Performance dependence on d° choice. In this paragraph, we investigate the robustness of our
ALIAS Adam version concerning the choice of the initial distance d°. To this end, we compare the
performance of Algorithmon LLAMA pre-training using d° = 1 and d° = 10~3. In both cases,
we obtain the same validation metric: validation loss = 2.918. Based on these results, we conclude
that our method is insensitive to the choice of d°.
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Performance dependence on gradient noise. We investigate the dependence of the performance
of our ALIAS procedure (Algorithm [2) on the level of gradient noise. To simulate different noise
levels, we vary the batch size. Indeed, decreasing the batch size increases the stochasticity and the
variance of the gradient estimate, thereby leading to a higher level of gradient noise. While in previous
experiments we used a batch size of 512 sequences, here we use 256, 128, and 64 sequences. Then
we compare the validation loss on these runs. Table [f] provides a pairwise comparison of ALIAS and
SIGN-SGD across these batch sizes.

Table 6: SIGN-SGD and ALTAS with different bath sizes on LLAMA pre-training.

Batch Size (# of Sequences) | ~ Algorithm | Validation Loss ({)

512 SIGN-SGD 2.980
512 ALIAS (ours) 3.006
256 SIGN-SGD 2.986
256 ALIAS (ours) 3.013
128 SIGN-SGD 2.992
128 ALIAS (ours) 3.021
64 SIGN-SGD 2.999
64 ALIAS (ours) 3.029

The experimental results demonstrate that, when the batch size is reduced — thereby increasing the
level of gradient noise — both SIGN-SGD and ALTAS exhibit a comparable decline in performance.
This suggests that ALIAS is not disproportionately affected by the increased stochasticity in gradient
estimates, underscoring its robustness to gradient noise.

A.1.3 COMPARISON WITH PARAMETER-FREE APPROACHES

In this section, we present an experimental comparison of our ALTAS Adam version algorithm
with competing parameter-free optimization methods. For this additional evaluation, we selected the
following approaches: DOG 2023)), D-ADAPTATION (Defazio & Mishchenkol [2023)), and
MoMo (Schaipp et al,[2023)). These methods are chosen based on their performance reported in
the work (Kasimbeg et al., 2025) on the ALGOPERF benchmark 2023)). Our validation
results for pre-training the LLAM A-based architecture are summarized in Table|/|

Table 7: Parameter-free methods on LLAMA pre-training.

Algorithm | Validation Loss (]) | Perplexity (])
DoG 2.939 18.897
D-ADAPTATION (with Adam) 2.927 18.672
MOMO (with Adam) 2.925 18.634
PRrRODIGY 2.930 18.727
ALIAS Adam version (wd) (ours) 2.918 18.504

These results complement our comparison against sign-based methods and ADAMW. They demon-
strate that our approach achieves stronger performance than prior parameter-free methods.

A.1.4 EXPERIMENTS ON BIG MODEL

We evaluate the methods on LLAMA with 350M parameters. The training setup remains consistent
with the previous experiment. However, the number of layers in the model increases, leading to a
total parameter count that rises from 130M to 350M. This experiment is essential to demonstrate the
sustainability of our approaches to increasing dimensionality. We conduct experiments comparing
methods with and without the momentum parameter 3 along with weight decay. The results are
presented Tables [8] [0l and Figure 4]
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Table 8: SIGN-SGD methods on LLAMA pre-training.

Algorithm | Validation Loss (]) | Perplexity ({)
SIGN-SGD (wd, Ir, cosine sc) 2.819 16.760
STEEPEST DESCENT (wd, Ir, cosine sc) 2.828 16.912
NORMALIZED SGD (wd, Ir, cosine sc) 3.510 33.448
ALIAS (wd) (ours) 2.821 16.793

Table 9: SIGN-SGD methods with added momentum parameter (3), ADAMW (wd) and PRODIGY
on LLAMA pre-training.

Algorithm | Validation Loss (]) | Perplexity (])
SIGN-SGD (wd, 8, Ir, cosine sc) 2.717 15.135
STEEPEST DESCENT (wd, S, Ir, cosine sc) 2.711 15.044
NORMALIZED SGD (wd, S, Ir, cosine sc) 3.460 31.817
ADAMW (wd, S, Ir, cosine sc) 2.719 15.165
PRODIGY (wd, 3, cosine sc) 2.715 15.105
ALIAS Adam version (wd, 3, cosine sc) (ours) 2.707 14.984
O O Sign-SGD (wd, Ir, cosine sc) <o O Sign-SGD (wd, B, Ir, cosine sc)
<>~ Normalized SGD (wd, Ir, cosine sc) <> Normalized SGD (wd, B, Ir, cosine sc)
e Steepest Descent (wd, Ir, cosine sc) —fe— Steepest Descent (wd, B, Ir, cosine sc)
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Figure 4: Comparison of SIGN-SGD methods on 350M parameters LLAMA pre-training. Left
column is results for methods with weight decay and without momentum parameter 3, right column —
methods with momentum S.

The results are consistent with those obtained for the smaller model. Among the momentum-based
methods, ALTAS Adam version demonstrates the best performance, while among the methods
without momentum, ALIAS exhibits comparable performance to other solutions.

A.1.5 COMPUTE RESOURCES.

We conducted all experiments described in Section[AT]on the cluster equipped with 4xNVIDIA
A100 GPUs. A complete run of 100,000 steps took approximately 12 hours using a full node.
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A.2 TINY IMAGENET CLASSIFICATION WITH SWIN TRANSFORMER FINE-TUNING
A.2.1 EXPERIMENTAL SETUP

Our image classification experiments on the Tiny ImageNet dataset (Le & Yang, |[2015) employed
the Tiny Swin Transformer architecture (Liu et al.l |2021). This lightweight variant of the Swin
Transformer is characterized by its hierarchical design and the use of shifted windows for efficient
self-attention computation. The specific configuration utilized involved non-overlapping 4 x 4 input
patches and a 7 x 7 window size for local self-attention.

We initialized the model using pretrained weights from ImageNet-1K (Deng et al., |2009), specifi-
cally the swin_T_patch4_window7_224 checkpoint provided in the official Swin Transformer
repositoryﬂ The model was then fine-tuned on Tiny ImageNet.

The Tiny ImageNet dataset comprises 200 classes with images of 64 x 64 resolution. To meet the
model’s input requirements, all images were upsampled to 224 x 224. A standard ImageNet-style
data augmentation pipeline was implemented, including random resized cropping and horizontal
flipping.

Training spanned 50 epochs, with a batch size of 256. The learning rate was determined via a
grid search, employing a multiplicative step of 10%. A cosine learning rate schedule was adopted,
featuring a linear warm-up phase for the initial 10% of total training steps, followed by decay to
10% of the peak learning rate. Weight decay was selected from {0,0.01, 0.1} based on validation
performance. All optimization methods incorporated gradient clipping with a threshold of 1.0. When
momentum was applied, Nesterov acceleration with a coefficient of 0.99 was used. For AdamW, the
standard configuration of 31 = 0.9, f2 = 0.999, and € = 10~® was maintained.

A.2.2 PERFORMANCE ON IMAGE CLASSIFICATION

Further results and training curves for the Tiny Swin Transformer on the Tiny ImageNet classification
task are presented in Figure [5 and Table [T0] We provide plots for the same methods with the
incorporated momentum parameter as for the LLAMA pre-training task.
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Figure 5: SIGN-SGD methods with added momentum parameter (/3), ADAMW (wd) and PRODIGY
on SWIN fine-tuning. Left plot represents full process of training, right plot demonstrates accuracy
on last 20 epoch.

The results demonstrate the superiority of our algorithms over both tuned sign-based methods and
advanced optimizers, such as PRODIGY and ADAMW.

A.2.3 COMPUTE RESOURCES

We conducted all experiments described in Section [A.2] using a single NVIDIA A100 GPU. A
complete run of 50 epochs required approximately 3 hours.

https://github.com/microsoft/Swin-Transformer/blob/main/MODELHUB.md
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Table 10: Final accuracy of SIGN-SGD methods with added momentum parameter (), ADAMW
(wd) and PRODIGY on SWIN fine-tuning.

Algorithm | Final accuracy (1)
SIGN-SGD (wd, 3, Ir) 77.045
SIGN-SGD (wd, 3, Ir, cosine sc) 78.885
NORMALIZED SGD (wd, §3, Ir, cosine sc) 78.375
STEEPEST DESCNET (wd, j3, Ir, cosine sc) 77.547
ADAMW (wd, f3, Ir, cosine sc) 77.612
PRODIGY (wd, 3) 77.035
PRODIGY (wd, j3, cosine sc) 77.944
ALIAS Adam version (wd, 5) (ours) 77.433
ALIAS Adam version (wd, (3, cosine sc) (ours) 79.161

A.3 ALGOPERF BENCHMARK

In this section, we evaluate our method on some tasks from the ALGOPERF benchmark (Dahl et al.|
2023)). To test our approach across different modalities, we chose the MRI reconstruction and
molecular property prediction (MPP) tasks. We preserve the original setups from the benchmark
implementationﬂ Specifically, for the MRI reconstruction task, we use the fastMRI dataset and a
U-Net model; for molecular property prediction, we utilize the OGBG dataset with a GNN model. We
validate only our ALIAS Adam version algorithm. The results for the other methods are taken from
Table 4 in (Kasimbeg et al., |2025)), which reports comparisons between parameter-free optimizers
and tuned ADAMW. For our method, we fix v = 1073, The results are presented in Table

Table 11: Parameter-free methods and ADAMW on MRI reconstruction and molecular property
prediction tasks.

Algorithm \ MRI, SSIM (1) \ MPP, mAP (1)
ADAMW 0.723 0.254
DoG 0.714 0.231
D-ADAPTATION (with Adam) 0.722 0.221
MoMo (with Adam) 0.723 0.221
PRODIGY 0.723 0.212
ALIAS Adam version (wd) (ours) 0.724 0.242

The results demonstrate that our approach improves upon the metrics of prior parameter-free methods
on the evaluated tasks. We also note that, for the MRI reconstruction task, the performance of our
method surpasses that of the tuned ADAMW.

B SIGN-SGD WITH ADDITIONAL STEPSIZE SEARCH PROCEDURE

In this section, we present an algorithm that achieves near-optimal convergence rates for SIGN-SGD

~0 (A*Egm ) in the deterministic case, and O (Atjm + Ha\ﬁ) in the stochastic case. The method

does not utilize prior knowledge about the parameters of the problem and incorporates an additional
automatic stepsize search procedure.

Exact gradients. To design the necessary algorithm, we should provide a stepsize y in Algorithm
[T] that yields an estimate as in equation [I] Let us begin with the description of the approxima-
tion of the stepsize (1| that we utilize. We establish that the desired value is v = 9@%’ where
Ny = Ap = f(2°) — ming<s<p f(z") is the numerator and D = Zz:ol |V f(xtH) = V(a2

3https ://github.com/mlcommons/algorithmic-efficiency/blob/main/docs/
GETTING_STARTED.md
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is the denominator. The intuition behind this choice is that due to L,,-smoothness, we have

D1~ Lo I o = at]| L = yoe S sign (V£(@))l.. = vLocT: then y has Y22
magnitude. However, we face a more complex situation compared to the regret minimization
paradigm: in our case, A7 can be non-negative (in regret minimization, the analog of A is the norm
of the points’ difference on — T H (Carmon & Hinder}, [2022) which is always positive). To address
this, we add an extra step to the SIGN-SGD algorithm. Define e = sign (V f(z™!)). Let 7 be a small
parameter. The update is:

f@) =min{f(z™" + 7€), fa™" —7Te)}, )

The rationale behind selecting the step is as follows. Due to the smoothness of the objective function,
there exists a small neighborhood around any point within which moving in any direction decreases
the objective value. The exception arises when z~! is the minimum itself. In this case, the sign
descent algorithm would not take any steps, and we return this point as the solution. Since the
neighborhood size T depends on L., we iteratively decrease 7 until it is sufficiently small. The
choice of 7 and the guarantee f(z°) < f(x~!) are discussed in Lemma In this manner, we
ensure that r = Ar = f(z71) — min_j << f(2*) > 0. To prevent the denominator from being
zero, we introduce a small constant ¢, which represents the minimum gradient norm encountered
during learning. This leads to O = ZtT;()l IV f(2) =V f(2')]14¢ (see Lemma for details).
However, determining these values necessitates completing all 7" iterations. To address this, we
employ the BISECTION procedure from (Carmon & Hinder, [2022)), which is outlined in Algorithm@

Our goal is to have v =

o(y) = g;m To find

such v, we take an ini-
tial interval [y, Yhi] and, it-

Algorithm 4 BISECTION procedure

1: Input: Optimal stepsize value ¢(7), lower stepsize bound 7,
upper stepsize bound 7y;, 21 € R%, number of iterations T’

eratively narrowing it, ob- 2: ¢(7) (lt is always in the form ¢(7) = 2;8;)

tain a small enough interval ~ 3: if v < @(7yni) then return co // Early infinite termination

[Vis, Vi) that contains the  4: end if

v — ¢(v) = 0 point. To per-  5: if yio > & (10) thenreturn 5 = i, // Early non-infinite termination
form this, we firstly have to  6: end if

make sure that the initial in-  7: while yp; > 2, do

terval contains the desired  8: Ymid = /Mo i

point. For this purpose, we  9: Ny (Ymia), D7 (Ymia) ¢ SIGN-SGD(z ™, T, ymia)  / First
require Yy > ¢(’Yhi) and step in Sign-SGD is made by equation[d]

Mo < P(Mo). We desig- 10 if Ymid < A(Vmia) then

nate the group of these two  11: Yo = Ymid

requirements as the bisec- 12: else

tion start condition (Lines 13: Vhi = Ymid

Bl B). Note that we can al- 14: end if // Bisection invariants: vi, < ¢(7io), Yui > d(Yni)

ways satisfy the first condi- 15: end while // Bisection stop condition: ~, < 271,

tiOIl, as ShOWIl in Lemma 16: if ‘ﬁT('yhi) < ‘ﬁT(fyk,)M then return ’yfri = i /] Yni return
Regarding the second condition o

reqmren}ent’ we can C_}quse 17: elsereturn v = i, // 7, return condition
a sufficiently small initial |g. endif

Y10 value. Even if v, is
still greater than ¢(~},), we Algorithm 5 SOS SIGN-SGD
can select this 7, value as
the desired stepsize with-

1: Input: Initial stepsize bound s, initial bound step £, start point
. =1 € R?, number of iterations T’
out performing the BISEC-

k

TION procedure, thereby 2° 70 = BISECTION <¢(V),’Ys,22 ’YsaT)
obtaining optimal conver- 3. g7 — SIGN-SGD(x_l, T,70)

gence guarantees. This is
demonstrated in Step 2 of the proof of Theorem [B.I| (Theorem [E.2). This enables us to avoid
early infinite termination (non-compliance with the first condition) and prevents convergence from
being compromised by early non-infinite termination (non-compliance with the second condition).
Additionally, we ensure that, by entering the procedure with the desired point between -y}, and
“Yhi» it remains invariant throughout the procedure. Indeed, at each iteration we compute ypig as
the geometric average of the bounds and perform 7" iterations of the SIGN-SGD method with this
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stepsize to find ¢(~Vmia) (Lines E]) It remains for us to choose such a part of the segment ([7i0, Ymid]
Or [Ymid, Yhi]) in Which ¢(Ymia) lies (Lines — . We perform this bisection, until v,; exceeds 7o
by more than 2 times (Line . In the end, by utilizing return conditions, the procedure returns ~y; or
y; (Lines[16]-[I8). They satisfy the specific bounds explored in Lemma[D.3]

Using this procedure, we present a description of the SOS (Search of the Optimal Stepsize) SIGN-
SGD (Algorithm[5)). Before we pass to the convergence rate, we discuss the number of iterations
required by Algorithm ] Since we calculate the average geometric at each iteration, we need

log log % steps, where 7, and ~,; are the boundaries of the initial segment. Thus, according to
ok
2 %75 = k iterations. We establish a lower bound on & by requiring

that the initial ~y; is greater than ¢(7y;). According to Lemma , ~ni should be at least m.

Algorithm , it requires log log

In this way, k& = loglog W(*w“)lh' Therefore, allowing Algorithmto perform T iterations, the

total number of iterations (considering Algorithmperformance time) is 7 log log W&O)”l. We

regard this additional double-logarithmic factor as negligible, as it aligns with the results in (Carmon
& Hinder, 2022). We now present the main theoretical result of this section.

Theorem B.1. Suppose Assumptions hold. Then for Algorithm[5 after obtaining the
stepsize 7o the following estimate is valid:

VETL VI,
vT T

1 T-1
=S IVSEI <6
t=0

Moreover, taking into account the complexity of Algorithm{|in relation to the initial stepsize bound
1, Algorithm|5|needs

s, to reach e-accuracy, where ¢ > ZtT:_Ol IV f(xh)

~ (A*L
(’)( ) iterations.

2

Discussion of the results. We obtain the near-optimal convergence rate |1} Our method retains a
dependency on the initial approximation. Indeed, we should take ~, to be less than Li—*T, according to
Step 2 in the proof of Theorem B.1](Theorem[E.2). An analogous requirement was established in the
work (Carmon & Hinder, |2022) and we do not consider this to be an issue. Nevertheless, despite the
theoretical optimality of the proposed approach, its practical application is not promising. Launching
multiple training sessions on large models does not appear effective. In this context, Algorithm 2]
remains our main contribution. While proposing Algorithm [5] we demonstrate how to obtain the
near-optimal rate for SIGN-SGD in parameter-free optimization.

Stochastic gradients and distributed settings. The description and analysis of Algorithm [5]in
stochastic and distributed setups can be found in Appendix [E.2] [E.3]

B.1 SOS SIGN-SGD EXPERIMENTS
B.1.1 LOGISTIC REGRESSION.

We present toy experiments on logistic regression. We provide a comparison of SIGN-SGD with the
theoretical stepsize ﬁ (Algorithm g' , SOS SIGN-SGD (Algorithm , ALIAS (Algorithm and
)

STEEPEST DESCENT (Algorithms 8] [9). We validate the criteria |V f ()|, on four datasets sourced
from the LIBSVM library (Chang & Lin,|2011): a9a, w8a, i jcnnl and skin-nonskin. The
results are presented in Figure [6]

The plots show that even on the convex problems, SOS SIGN-SGD performs worse than ALIAS.
This was expected, however, testing this method on a real non-convex problem, such as training LLMs,
lacks justification. Additionally, it is noteworthy that STEEPEST DESCENT performs worse compared
to SIGN-SGD, highlighting the limited practical applicability of this approach. Consequently, we
provide analysis for STEEPEST DESCENT only with incorporated Algorithm []in Appendix [G] We do
not focus on the analysis and development of efficient parameter-free methods based on this approach.
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Figure 6: SIGN-SGD methods on logistic regression.

B.1.2 NON-CONVEX PROBLEM

We provide the comparison of SIGN-SGD with theoretical stepsize ﬁ (Algorithm , SOS SIGN-
SGD (Algorithm[3), ALIAS (Algorithm [2)) and STEEPEST DESCENT (Algorithms 8] [9). We validate
criteria ||V f ()|, on four datasets, sourced from the LIBSVM library (Chang & Lin, [2011): a9a,
w8a, ijcnnl and skin-nonskin. In the main part we presented the results for the convex
problem. Now we consider the non-convex objective, namely the non-linear least squares loss:

2
1

f(x):EZ yi—m . (5)

i=1

There we denote a; € R'*? as the sample and y; € {0, 1} as the target. The results are presented in
Figure[7]
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Figure 7: Comparison of SIGN-SGD methods on problem equation

The plots demonstrate the superiority of our methods, SOS SIGN-SGD and ALIAS, over classical
SIGN-SGD with the vanilla step size choice ﬁ This highlights the importance of adapting the

stepsize to the problem structure and hyperparameters. However, SOS SIGN-SGD still underperforms
compared to ALTAS.

C ADDITIONAL NOTATION AND GENERAL INEQUALITIES

Notation. Here we present the full list of notation, used in our paper.

e We denote d as the dimension of the problem; 7" as the total number of iterations in the algorithms;
2! as the starting point in the SOS SIGN-SGD algorithm, 2° as the starting point in the ALIAS
algorithm; x' as the point at ¢-th iteration in the algorithms; z* as the optimal solution of the

problem; Ap = f(z=1) — min_ f(z!); A* = f(z~1) — f(z*) for the SOS SIGN-SGD method,

—1<t<T
A* = f(z°) — f(z*) for the ALIAS method.
® We denote V f (") as the honest full gradient of the objective function at the point z*; g* (or g¢.) as
the stochastic gradient of the objective function at the point x?, according to the stochastic realization
&' (we add lower index only when we use different stochastic realizations in the method); g§ (or g; et)
as the stochastic gradient of the objective function at the point z¢ on j-th device in the distributed
setup, according to the stochastic realization &£°.
e For vectors x,y € R? we denote sign(x) as the vector of the dimension d, where the i-th coordinate
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defines as
1, ifx; >0
[sign(2)]; = sign(z;) = 40,  ifa; =0;
-1, ifz; <0

=1 =1
|2]lco = max|x;| is lso-norm.

iel,d
e For a random vector £ € R? and fixed vector 1/ € R? we denote E [¢] is the expected value with
respect to a random vector £ and E [¢]1)] as the expected value with the respect to a random vector &,
conditioned on the fixed vector 1.

d d [ d
(z,y) = > x;y; is the scalar product; ||z||1 = Y |z;| is l1-norm; ||z|2 = /> @2 is lo-norm;
‘ i i=1

General inequalities. Suppose z,y € R%, a,b € R, f(-) is under Assumptionand &Y eRy
are random variables. Then,

V()= Viwlh < Lellz—yle (Lip)
le+yli <zl + Iyl or Va+b<va+ Vb (CS)

(,y) < zllillylleo (Conj)

Eley] < (B[P (E[Y]%)T, where ]13+ é —1 (Hol)

D LEMMAS FOR SOS SIGN-SGD

Lemma D.1 (Quadratic inequality). Let x € R be a variable and u,v € R, be constants. Then
2% —uz — v < 0 implies x < u + /v. Additionally, * + ux — v < 0 implies & < /.

. . . . Ju2 .
Proof. Since u,v are non-negative constants, the plain algebra involves xs, = “i“%“ being

stationary points of 22 — 2uz — v < 0 inequality. Since x is the positive variable, the boundary
2 < Tsp 4 1s the appropriate area of the solution. It remains for us to say that

1 1
xz < Juts3 w24+ 4v < u+ o,
which finishes the proof of the first statement. Proceeding analogically for the second part, we obtain
r<—u+t 3V +4v < —Ju+ tu+ o=/ O
Lemma D.2 (Bisection entry). Let Vyux = m <0r Vmax = 31 A’ - for dis-
v ]; | Grad(f (x°))l1

tributed setting |, where A* = f(x=1) — f(2*) and the gradient oracle Grad(f(-)) can be specified
as Vf(-) or g(-) or g;(-), that depends on the algorithm setting (exact gradient, stochastic gradient

or gradient on the i-th node in distributed setting). Then we can always entry the bisection procedure
without infinite early terminations taking Yni = Ymax-

Proof. We can entry the BISECTION procedure, when i > &(7hi). Thus, to proof the lemma

statement we can show that yn; < ¢(;) is impossible, when Y > Ymax = HGrad(?W' Using
Ar = f(z7!)— mi ) notation, id
= f(z™1) _min f(z?) notation, we consider
Ar(ywi) N (mi) A*

= - = ¢(7h1) > Yhi = Ymax = (6)

|Grad(f (z2)) [l
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Let us look at the numerators of the fractions in the obtained inequality. According to Assumption
f(z*) < min_f(z!). In that way,
—1<t<T
Ar(m) < A™. (7)
Now we consider denominators in equation @ D1 (i) has the following form in any setting:
T—1
S ||Grad(f (x*+ (i) — Grad(f (2! (Whi))||1 + ¢ (Vhi), where ((7y) is defined as the minimum of
t=0
gradients norm over the training: {(y) = 0r<1%i<nT||Grad( f(x*(7i))]]1. Using equation we obtain

t—1

> " [IGrad(f (" (1)) — Grad(f (2 (i) |1 + | Grad(f (" (i) 11

t=0

—
.
=

IGrad(f (2°))]x

N

<Y lIGrad(f (" (3mi)) — Grad(f(«" (3wi)) I + [|Grad(f (=" (3ui)) 1

Y Grad(f (" () — Grad(f (e (i)
t=0

. .
+021tl£T”Grad(f(I (mi))[11

(#9) z_: (|[Grad(f(z"™ (i) — Grad(f (=" (i) [l1 + ¢ (i)
=0
= D7 (i), ®

where inequality (7) holds for any 1 < ¢ < T and in (if) we choose ¢ = arg OgigT |Grad(f («® (hi))]|1-

One can note that we omit the case when the norm of the oracle reaches its minimum at iteration
t = 0 in ( definition, when use it in (iif). However, it is a trivial case and it satisfies

IGrad(f(z°)) I+ < ¢(mi) Z IGrad(f (=" (y0i)) — Grad(f (z" (i) |1 + C(ymi) = D (mi)-

In that way, combining it with equation [8]and equation[7] we obtain

Az () o A
Or(mmi)  ||Grad(f(z°))[.’

which contradicts to equation [ Thus, we can entry the Algorithm [] without infinite early ter-
mination if take initial ~y; at least HGrad(?W' Note that for the distributed case we can obtain

M
ﬁ > ||Grad ( ) H1 D7 (yni) in the same way as in equatlon O
j=1

Lemma D.3 (Bisection invariants). If The BISECTION procedure (Algorithmd)) has no early termi-
nation at all, it returns o such that

Ne(v) _ Tl

oA T SV S ) C)
2000 = " Dr(0)
where vy}, and vy}; are values, from which 7y is chosen in the end ofAlgorithm Moreover,
Nr(v0) < N (V) (10)
D7(70) < Dr(V4)- (11

Proof. Consider the case procedure returns o = 7. Then

Nr(ve) — Nr(ie) Nrlwm) — Nreltws) .y @ 1 @
297 () 207 () Dr(w) 297 () C) 2 Thi Tio
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@ N
< ¢('710) = @;(’)’1*)7

lo
where (7) is correct due to the v, return condition, (ii) — bisection stop condition, (iii) — bisection
invariant. Consider the case when procedure returns o = ;. Then

Ny (’Yﬁki) (i) 1 @) N (y30)
- < <
2©T(7§1) ¢( i) S 2%1 i ;DT(Vhi)

where (i) is correct due to the bisection invariant and (i) — ~,; the return condition. Combining
equation [I2] with equation [I3] we obtain the first claim of the lemma whether Algorithm ] returns
Yo = 75 or Yo = 75 It remains to notice that equation[12]is followed by D7 (v;) < D7 (75;) when
Yo = V. and, consequently, D7 (v0) < D7 () since D7 () < D () is trivial. Analogically,
equation |13|is followed by N7 () < MNr(vy) when o = ~;, and, consequently, Np(y) <
N (). This finishes the proof. O

(12)

13)

Lemma D.4 (Extra step). Suppose Assumptions[3.1)[3.2) 3.3 hold. Then, considering update of the
following form:

f(xo) = min{f(ac_1 —|—Te),f(m_1 — Te)} ,

where e is the random vector from the unit basis, and we can guarantee f(z%) < f(z~1), when
[V
< T

L. Moreover, Algorithm starting with T = 7, and performing T = 3, needs at least

oo

log (%) extra iterations to find efficient value of T.
1

Proof. We choose f(z") = min { f(z~! + 7€), f(z! — 7€) }. We use convexity to show

f@t+1e) < flo *) +(Vf(z *1+Te),Te>
= f(z~ +T<Vf e> < 1+T6)*Vf($71),€>
Fe) 47 (VS ‘1,e>+THVf e = Vi), lelloe
o)+ 7 (TH e} + 7 Ll

fla™t=7e) < flah) (V@@ —1e),e)
= f(z~ 1)—T<Vf _1,e>—T<Vf —Te)—Vf(;v_l),e>
fz™ 1)—T<Vf ,e>+THVf L —7e) = Vf(x H1H oo
@) =7 (F ), €) + P Lo ele

Utilizing e = sign (V f(z~')), we take expectation and obtain

F@®) < ) =T (VY. e)| + 72 Lo el
d

a2 Caulik

flz™h =7 H%f(x_l)Hl + 720
Fa ™) =7 (V)] = 7L -

V -1
w, we derive

2

o0

fl@™)

+ 7% Lo ||sign (Vf (=) ||

/A

In that way, if we have 7 <

fa®) < fla™h).

Since in the algorithm we start with 7 = 7 and divide it by 2, after [ divisions, we have

Gl
zl Lo

Thus, we need at least | = log (W) iterations. O
1
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E MAIN PROOFS AND DETAILS FOR SOS SIGN-SGD

E.1 EXACT GRADIENT SETTING

Lemma E.1 (Descent lemma). For Algorithm [ under Assumptions[3.1) 3.2 B.3| the following
estimate is valid:

e = f(zT) =
Zuw W < W+an<wt+l>—w<xt>n1.
t=0

Proof. Starting from the convexity of the objective,
f™) = fa) < (Ve —at) = ! (Vf(@"), sign (Vf ("))
= ' (Vf(a"),sign (Vf(z)))
— <Vf(xt+1) Vf(x'),sign (Vf(xt))>
IV +A V@) = V(") llsign (V£ (2")) lloo
< ANV A IV = V)]

Now we express the gradient norm and sum over all iterations to obtain

T-1 T—1 T_1
VIV < [f@h) = F@] + Y ANV = V)]
t=0 t=0 t=0
T—-1
= f@@°) = f@")+ D ANV = V@)L
t=0

Using Lemma[D.4]to consider the extra step, we get
T-1
Z VIV < fl™) = f@™) + Y AIVFE™) = Vi)

t=0

Since Algorithm 3] performs all the steps with the constant rate -y, which we define later, we can
rewrite the result in the following form:

-1y _ T -1
ZHW < W+an<xt+l>—w<xt>nl,
t=0

which ends the proof of the lemma. O

Theorem E.2 (Theorem B.1). Suppose Assumptions[3.1][3.2 B.3} 3.4 hold. Then for Algorithm[3]
after obtaining the stepsize o, the following estimate is valid:

T-1 A= 3|V .
LS s < 6YE T 4 AV,

Moreover, taking into account the complexity of Algorithm[)in relation to the initial stepsize bound

vs, to reach e-accuracy, where € > Z IV £ (x?)||1, Algorithm|5|needs

*

A*L
O —=1loglog ————
( 2 BV

) iterations.

Proof. Let us start with the result of Lemmal[E.T}

e — f@T)
an M < W+an<xt+l>—w<x%
t=0
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N T—1
A
< T DIV = VEEDI, (14)
Yo =0
where ﬁT = f(z71) - 1rr<1%‘ré - f(x"). Now, we accurately estimate the last term in equation ,

T-1
which is additionally denoted as Fr = Y ||V f(z'™!) — V f(z?)|1. Thus,
=0
-1 T-1
Fr o= S I9HEH) - Vi) D L Y o — ot
t=0 =0

T-1 T_1
= Lo Y llsign (V@) oo < Lo Y as)
t=0

t=0
Now let us choose ¢(7), which we push into the BISECTION procedure (Algorithm [d): ¢(v) =

A X _ : .
% = W%, where Ap = f(z7!) — _min f(z')and ¢ = Jin, |V f(z")]|;. In that way,

we obtain some 7o, which can be equal to ;5 or 7 (see Lemma|D.2} Lemma[D.3) and use it as a
constant stepsize for our method. Thus, equation [I3|transforms into

Fr(v) < vLsT- (16)

Mention that, according to Lemma|[D.2] we can always entry to the procedure without infinite early
termination. In that way, we have two situations: when we have no early terminations at all and we
are under the activity of Lemma and when we have early termination with initial ;. We divide
the following proof into two steps, where we separately show the convergence guarantees in this two
situations.

Step 1: no early terminations.

Since we have only two cases: o = 7, Or Yo = ;» let us consider them separately.

® 7 = 7y : equation[I6]transforms into

Lemma Nr (Pyl* ) () ET (’71*)
Friv) < LT N Lol = o = LooT,
(Vi) h @T(q/hi) FT('Yhi)+C(7hi)

where (i) is correct due to the ¢() choice. Solving this quadratic inequality with respect to Fr(7;%)

(Lemma [D:T)), we obtain

Fr(v) < \JAr(3)LooT < V/A*LooT, (17)

where A* = f(z~1) — f(«*). Plugging it into equation we obtain
T-1 <
1 1 Ar(yy) 1 "
SV < 2R SR
t=0

Lenma D30 1 207 (1) 1
< Z 2T A () + — B (s

_ 2[FrOp) +CORIAT(m) L L,
T Ar(;) Frrow
= D)+ 2

VELS 2|vsa],
VT T '

In that way, equation|18|is the final estimate when BISECTION procedure returns ;.
® Y = ¥, : equation|l6|transforms into

|

a7
<

3 (18)

Fr(mo) < Yol T e mT(%f) T8 F*T% T,
D7(ve) (1) + <)
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where (i) is correct due to the ¢(~y) choice. Solving this quadratic inequality with respect to Frr(~;:)
(Lemma[D.T)), we obtain

Fr(ye) < Ar( () LooT < < VA Lo T. (19)

Now we make an additional distinction and consider the estimates separately: one case when
Mo > 4/ LA =, and another when vy < 4/ LA —. We can do this without any limitations, since
combining the intervals considered for 7, returns all possible values.

o Y >4/ % : we straightforwardly move to the equationestimation:

, _
1 t 1 Ar(v) 1 *
TNV < 5=+ S

VL 1
< \/TO;_,AT(VIO) + TFT("Y]O)
* * *
= VA*L n VA*L _ 2\/A L 20)
VT VT VT
o Y </ % : in this case, we start from the estimate that is followed by equation
Fr(v) < viLoo T 2710L T < 24/ Lo A*T, (21)
where (i) is done due to the bisection stop condition. Now we proceed with estimation of equation [T4}
1 Ap(y) | 1
- < il N0 VAT - MOV
Z IV f (")l T o + 78 ()
LemmaD30 1 207 (v55) & 1
< Az (s —Fr(v
T mT( ) T(’ylo) + T T(’}/lo)
Lemma 2 [Fr(w) + SO Ar () FT(’V}E) + ¢(mi)
T Ar () T
_ 3FPr(v) | 3C0)
T T
bl 6 YA Lo | 3C()
X \/T T
VA* 3||VF(2°
VT T

Combining equation[20]and equation[22] we get that equation[22]is the final estimate when BISECTION
procedure returns ;.

In the end, equation[I8]and equation 22| give us the estimate in the case when BISECTION procedure
does not have early terminations at all and outputs any value of ~q:

VA* 3|V f(2°
*ZHW < 62+ [¥/eDl, 23)

Step 2: early termination with ~,.
N ow we consider the scenario when with initial -, there is 710 > ¢(,) and algorithm early returns

* . To dissect this, we should choose an initial yi, = V5 < L —. Thus, equation (16| transforms into

Fr(mo) € MoLooT </ LooA*T. (24)

In that way, equation[T4]turns into

1 t 1 KT('YI*) 1
— E < —_—4\Ne) 4 — *
T poar ||Vf(l' )Hl ~N T ,y* + TFT(rle)

lo
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1 AT (’y]t)) 1 *

< = ~F

S Ty T

_ l[FT(’YlT))+C(712)]&T(%t) oA

T Ar(ri) Frrw

_ 2Fr(h) | COm) B VAL, | [|VFE0)]|

= T T S2 T + T L (25)

Hence, equation 25| delivers the estimate, when Algorithm | makes an early termination.
Combining equation 23] with equation 23] we finally obtain the estimate for all possible cases of the
BISECTION procedure return:

T Z Vsl < 6ok 4 21V
0 1 X \/T T .
Expressing the number of iterations and using ¢ > + i IV f(z")||1 as a criterion, we obtain that
N vV f(®
algorithm needs O ( ) iterations to reach e-accuracy. Note that we drop the term M,

since it is asymptotlcally smaller than the main one. However, we firstly need to find the step

k *
o with the bisection procedure which takes 7 log log (7552) =0 (A 65 = k) iterations, where

22" denotes the length of the initial interval for the stepsize. We have already discussed in the
main part that, according to Lemma k should be at least & = loglog m. Thus,

A* Loo A* . . . .
o ( —== log log R NZIEIIN (z”)\ll) is the final iteration complexity. O

E.2 STOCHASTIC GRADIENT SETTING

Let us start with the description of the stepsize choice for stochastic version of Algorithm[5] The
main purpose of the BISECTION procedure (Algorithm[4) is to find stepsize +y close enough to the
¢ () desired value utilizing small number of sign descent launches. Recall we establish

Ar(y)
Yo IVf(attt) = Vf(t) |1 +¢(y)

for the exact gradient case. The numerator can remain unchanged. However, since we lack ac-
cess to exact gradients We cannot use the original denominator. Instead, we employ stochastic
oracles: Dp(y) = Z " lg(@t1) — g(2') ||y 4 ¢ (7). Other details remain the same, and we can
straightforwardly pass to the convergence results.

Lemma E.3 (Descent lemma). For Algorithm [5|under Assumptions the following
estimate is valid:

o(v) =

T-1

Z”Vf |1\W+Z|gt+1_gt”1+35t+5t+17

t=0

T—1
where 6 = 2:0 [Vf(z*) =g
t—

Proof. Starting from the convexity of the objective,
FE — f@h) < (VT - et = 4 (Vf(), sign(g"))
—7"{g",sign(g")) =7 (VF(z""") — ¢, sign(g"))
—7'llg' Iy = v (V f(z") — ¢',sign(g"))
—{Vf(a"™) = Vf(z"),sign(g"))

= IV @)

/AE
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NV = gl + A IV (') = gl llsign () lloo
IV F (@) = V()1 [lsign (9°) oo

NIV + 3 V() = gl + A IV — gL
gt =gl

N

Now we rearrange terms and summarize over all iterations to obtain

T—1 T—1 T—1
D AIVIED < [f(@') = £ D]+ YA g™ = ol
t=0 t=0 t=0

—1 T—1
+3) AV = g+ YAV = gL

t=0 t=0

Since Algorithm 5] performs all the steps with the constant rate o, which we define later, we can
rewrite the result in the following form:

T-1 ty t+1 T-1
Z IVf@h)h < /) %‘Jf(x ) + 3 g = gt
t=0 t=0

T-1 T-1
+3) Vi) = g'lh + D IIVFE™) =g

t=0 t=0

In the obtained estimate the last two terms consist from differences between the honest and stochastic
gradient at the ¢-th and (¢ + 1)-th moments. One of our goals is to estimate them, however, we

T—1
want perform analogically to Theorem [E.2|and continue the proof with the >~ |lg**! — gt||; term
=0
estimate. In order to simplify our following writing we give additional notation and denote §* =
T-1
S IV f(x?) — g*]|1. In that way, additionally considering the extra step (Lemma , we derive
=0
T-1

—1y T
Z IVF(x)h < f()%f(x) n Z g+ = g'[l1 + 36% + 511,

t=0

which ends the proof of the lemma. O

Theorem E.4. Suppose Assumptions 3.1} 3.2] 3.3| B-7 hold. Then for Algorithm 5 using at t-th

iteration mini-batches of sizes t 4 1, after obtaining the stepsize o, the following estimate is valid:

A*Lo 3E [|¢°
*ZEHW Ih <6 “\FTHOHMHHZ;{/M

Moreover, taking into account the complexity of Algorithm[|in relation to the initial stepsize bound

Vs, to reach e-accuracy, where € > Z IV f(x?)||1, Algorithm|5|needs

A*L A*
o (( =+ ||U||1> log log 0) iterations.
e Vsllg®llx

Proof. Let us start with the result of Lemmal[E3] We transform it due to the fact that Algorithm 3]
performs all the steps with the constant rate vy, which we define later:

T-1 T-1

o xT
SV < EIE) S g g gas g
=0 o =0
A T—-1
< f+Z||g’f+1 g'll + 35" + 6, (26)
0 =0
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where Ap = f(z 1) — _lrgriT f(a?). Now, we focus on estimating G = Z gttt — gt||1 term

in equation [26] Thus,

T—-1
r=> llg"" —d'lh <
t=0

S

-1

T-1
IVf@E@) =g+ D IV — 'l
t=0

(]

il
N o
|
-

+ ) _IVF@E™t) = Vi)
t=0
«—
< OO Lo ) et — et
t=0
T-—1
= 0+ Lo Y o' [Isign (VF(") oo
t=0
T-1
< S E L Y A 27)
t=0

Now let us choose ¢(7y), which we push to the BISECTION procedure (Algorithm EI): o(y) = % =

#ﬂ;@() where Ay = f(z71) — 11rn<1tré f(z') and ¢ = 0<min lg*[l;- In that way, we obtain
some 7o, which can be equal to yj; or 7 (see Lemma|[D.2] Lemma[D.3) and use it as a constant
stepsize for our method. Thus, equation 27| transforms into

Gr(v0) < 8"+ 0" + 90 LooT. (28)

Mention that, according to Lemma[D.2} we can always entry to the procedure without infinite early
termination. In that way we have two situations: when we have no early terminations at all and we
are under the activity of Lemma|D.3} and when we have an early termination with the initial ;. We
divide the following proof into two steps, where we separately show the convergence guarantees in
these two situations.

Step 1: no early terminations.

Since we have only two cases: o = 7y, Or Yo = ;> let us consider them separately.

* Yo=Y equation@transforms into

Lemma[D_3|[9]

m *
GT(%:}) < 5t+5t+1+7§iLooT < 5t 4§t 4 T(’Ylo)

QT(,Y;;)

ZT(%*) t t+1 | AT(% )
— —2 ol [ T <8+ 0
Gr(v) + Cns) GT( i)

where (i) is correct due to the ¢(-y) choice. Solving this quadratic inequality with respect to G (7y5)
(Lemma [D.T)), we obtain

Gr(h) <88+ 0 4 \/Ar(p) Lo T < 68 4 671 + /A L T, (29)

where A* = f(z~!) — f(«*). Plugging it into equation [26] we obtain

LoT

O iy Lo T

1 5T(’Y}Ti) 1 * Lot t+1
< = — N
}HWf o< PO Lar) + gt o)
Lemma[D30 1 207 (%) ~ 1 | A
< — WA () + =G () + = (30" + 6
T O K o) + 3.Groi) + 7 )
_ 2 [Gr(w) "N‘C(Vhi)] A7 () I 1G () + 1(35t )
T AT(W&) T T
- 3 by gty 4 200m)
= o) + e o)+ 20
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b VAT
< ===
VT

In that way, equation [30|is the final estimate when BISECTION procedure returns ;.
® 7 = v, : equation|28|transforms into

1
+ T(ﬁét + 45" + (30)

Lemma *
Gr(y) < 046" 4L T gm St 4ot 4 LT(FY‘:)LOQT
QT(’YI())
ZT(”Yl* ) t t KT('YHk )
— el g TSttt 28 ol
Gr () + <) Gr(7)

where (i) is correct due to ¢(y) choice. Solving this quadratic inequality with respect to G ()

(Lemma [D.T)), we obtain
Gr(vy) < 08+ 0" 4+ \/Ap(9s) Lo T < 0" + 6" 4+ /AL T D

Now we make an additional distinction and consider the estimates separately: one case when

9 gy gy

Yo > 4/ LA—*T and another when 7, < 4/ LA—*T. We can do this without any limitations, since
combining the intervals considered for y;; returns all possible values.
o Y >4/ LA—*T : we straightforwardly move to the equationestimation:

T—1 ~
1 t 1L Ar(v) 1 * 1 t t+1
— < -0 — —

7 ,;:0 IV < T A + TGT(Vlo) + T(36 +467)

Vi «~ .. 1 o
T Ar0) + 1 Gr(n) + 733"+ 87
VAL VAT
VT JT
Jf/»? + %(4& + 2511, a2

o i <4/ % : in this case we start from the estimate that is followed by equation

N

/N8

l t t+1
+ T(45 +20°)
= 2

(i)
Gr(h) <8+ 6" i LooT < 8 4 6" 4298 Lo T < 6° + 0" + 23/ A% LT (33)

where (i) is done due to bisection stop condition. Now we proceed to the equation [26]estimation:

T-1 ~
1 t 1 Ar(ve) 1 * 1 t t+1
— < — — —
T ; V£ < T o + 7 Gr() + (307 +677)
Lemma[D.30] 1 201 (7)) ~ 1 1.4 41
< ——— VW Apr(ve) + =Gr(v) + =B85+
T mT(’Y{g) T(’y] ) T T(’Y] ) T( )
Lemma 2 [Gr (i) + COm)l Ar (i) n Gr (i) + ()
T Ar(ns) T
l t t+1
+T(35 +57)
_ 3GT (i) [P t4+1 3¢ ()
= 7 + T(?)é +90 ) + 7
i A*L 1 3¢ ()
< VO Zoo | (6ot 4 oty Sohi)
6 Nis + T(66 +467) + T
VAL 1, 39
< y= T — 4 +1 AR 4
6 Vs + T(66 +406) + T (34)

Combining equation[32]and equation[34] we get that equation[34]is the final estimate when BISECTION
procedure returns ;.



Under review as a conference paper at ICLR 2026

In the end, equation [30|and equation [34] give us the estimate in the case when BISECTION procedure
does not have early terminations at all and outputs any value of vq:

\/A*LDO 1 3|¢°
TZIIVf )N <6 BV, +T(66t+45t+1)+W- 35)

Step 2: early termination with ~,.
Now we consider the scenario when, with the initial v, there is v, > ¢(71,) and algorithm early

returns ;. To consider this, we should choose the initial v, = 55 < LA —. Thus, equation
transforms into
Gr(v) <8+ 0" 4 yoLoeT < 6" + 6" + /Lo AT (36)

In that way, equation [26]transforms into

Z IV £zl

lAT(’Ylt))
T v
1 AT(%T,)

T ?(7i)
1 [Gr(, O Ar(y) 1 1
_ 7[ T(’YIO) —J:C(’YIO)] T(Wlo) + *GT(ﬂYlt)) + 7(351& +5t+1)
T Ar(vg) T T
2Gr(ye) | 1

_ o = 3515 5t+1

7t T( +67) +
VA* Lo n 1 (

vT T

In that way, equation [37) delivers the estimate, when Algorithm | makes an early termination.
Combining equation [35 with equation[37] we finally obtain the estimate for all possible cases of the
BISECTION procedure return:

N

1 1
+ FGr(0) + 7(30 +677)

1 1
+ TGT(’YIO) + T(?)(St + §t+1)

()
T

0
2 56" + 36°T1) + HgTHl_ (37)

VA

6 VA Lo
VT

Now it is time to take expectation and give estimate to 6!. One can note, using the law of total
expectation (E [¢] = E [E [£|¥]]),
d (Jen) d
BV ~g'lh = SB[V, - [0 < S VEAVS), - o)
i=1 i=1
d d
> B (9, - 0] < 3ot
i=1 i=1

In that way, we obtain important bound:

36°l,

1
—ZIIW (90))L <6 + (65" +457) + (38)

E[Vf(z") = g'l1 < o] (39)
Then,
T— T—-1
Es" = ZEIIW —9g'lh < Z ol < [lofl1T,
t= t=0
T—1
Bt = E|Vf(z"™) — g < Z lolly = llo][1T.
t=0

Substituting it to equation @ we have

A* Lo 3E ||g°
*ZEHW <65 4o, + E0

35
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Expressing the number of iterations and using ¢ > & > [|[Vf(2")||; as a criterion, we obtain
t—

that algorithm needs O (A*EQ = 4 HoH%) iterations to reach e-accuracy. Note the we drop the term

3E||g° L . .
M, since it is asymptotically smaller than the main one. However we firstly need to find step

k *
~o with bisection procedure that takes T log log (’7532) =0 ((A L g ||0||%> k) iterations,

where 22 denotes the length of the initial interval for the stepsize. We have already discussed

in the main part that, according to Lemma k should be at least £ = loglog ﬁg’;”l. Thus,
O ((Agw + HO’H%) log log ~ ”g I ) is the final iteration complexity. O

Remark E.5. Under conditions of Theorem [E.4] Algorithm [5] with mini-batch of the size ¢ 4 1 at ¢-th
iteration to reach e-accuracy needs

A* Lo 2 A*
O ( : ||0—||l loglo 5
€ Y5190l

> iterations.

Proof. The proof of the remark repeats the proof of Theorem [3.9] except for the estimate on
E|Vf(zt) — gt Hf term. Since we now use mini-batches, we can bound

E v .Tt ot 2 < HaHl ,
V@) —g'lly NS
instead of equation [39] In that way,
T-1
1 1 lolly o llolls
—Eé' = — E t
7B = 7 L EIVA) - Zm 2
which ends the proof of the remark. O

E.3 DISTRIBUTED SETTING

To begin with, we present the modification of the classic SIGN-SGD algorithm (Algorithm [T)) that
aligns with the distributed learning. We consider SIGN-SGD with majority vote (Algorithm [6),
similarly to (Bernstein et al., 2018). We present the assumption that we utilize in distributed regime.

Assumption E.6. In the multi-node regime of learning each node j = 1, M at any point z € R? has
an access to the stochastic gradient, i.e., it can compute g;(x) = V f(z, {;) — the stochastic gradient
value with respect to the randomness in the choice fo samples §;. Additionally, this stochastic
estimators is unbiased, i.e., E[g;(x)] = Vf(x), and its variance is coordinate-wise bounded, i.e.,

E ([g;(@)]; = [Vf()];) < o7.

Algorithm 6 SIGN-SGD with majority vote

1: Input: Start point 2° € R?, number of iterations 7'
2: Parameter: Stepsize v > 0

3: fort=0,...,T—1do

4: for allnodes j = 1,..., M in parallel do

5: Compute stochastic gradient g;(z*)=V f (2, ;)
6: Send sign(g;(z")) to the server
7: end for
. M.
st =gt~ asign (S, sign(g;(2))
9: end for

Proceeding analogically to the stochastic one-node regime, we establish D7 (v) and D7 (y)
that we use in ¢(v) in the BISECTION procedure: Nr(v) = Ar(y),Dr(y) =
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e ¥ ;\41 (lg; (@*F1) — g;(z)]l1 + ¢(7)). Let us emphasize how this affects Algorithms

Ml [l Firstly, we now need to call the SIGN-SGD with majority vote method (Algorithm [6) instead of
SIGN- SGD (Algorlthm' Secondly, to obtain D (+y) in the bisection procedure, each node j counts

Z ||gj( z'T) — g;(«')||1 using locally stored gradients, and sends the complete sum to the server
in the end. Note that this requirement has no effect on extra memory and communication complexity,
since each device requires only O(d) extra memory and performs only one extra communication
during the whole learning. Now we present the theoretical result for the distributed setting.

Lemma E.7 (Theorem 2 (a) from (Bernstein et al.| [2018)). Suppose Assumption|E.6|holds. Then, at
any point x € RY, the following estimate is valid:

M

V£ (@), P { sign | > sign (lg;(2)];) | # sign ((Vf(@)],) | <o

Jj=1

Lemma E.8 (Descent lemma). For Algorithm[5|under Assumptions[3.1] [E.6] the following
estimate is valid:

-1 _
Z HVf ||1 < L—FZ Z||gt+1 g§|‘1+25T_~_6t+6t+17

" 5t_T—1iM Oty ot
where —E_IMZII @) —g;lh

wd 5 =5 3 [IVSa )].m(s,-gn(];”;s,gn([ ]))#ﬂgn([vf( ) ))

=0 i= j=1
Proof. Starting from the convexity of the objective,

M
- fah) < <Vf<xt“),xt“xt>7t<vf<xm)’“g“ 2 sen(s) >

Jj=1

= —t <Vf( , sign Z sign(g}) >
M
—t <Vf(xt+1) ), sign Z sign( gJ >

Jj=1

d
= ANV +29 ) [V
i=1
M

I | sign Zsign([gﬂ) 7és1gn

j=1

*’Yt <Vf(l't+1) _ Vf( Slgn ZSIgn g] >

[Congl(i) ~
< ANV @)+ 27"
V(@) = Vf ()] ||sign ngn )
< AV f (@) + 2940+ AV £ (2t wt)Hl
_ 1 M
= ANIVFEHIL+ 220 + vtﬂ S IVEET) = V)
j=1
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M

1
< AUVEED L+ 2918+ MX:IIQt+1 g5l
Jj=1
| M M
9057 DIV FE) = g+ MZHW — gtll1, (40)
j=1 =1
where in (i) we denote 0! = Z [V f(z")],| T <s1gn 51gn ) sign ([V f(2")]; )) Now
=

we rearrange terms and summarize over all iterations to obtain

T—1
Z’y IVl < Y [f 2] +2Z"yt5t+ Z Zv lgi™ = gt

t=0

-1, M -1
+ 57 2 IV EED g;-||1+ZMthHva(xf“)fg;“Hl-
t=0 g:1 t=0 7 j=1
Since Algorithm [5] performs all the steps with the constant rate -y, which we define later, denoting
~, T-1_
60T = > 8%, we can rewrite the result in the following form:
t=0
T-1 1
f@@') = fl@)]
Sivsen < 2 PO oy 505 g g
t=0

T-1

M —
1 1
+ levf 9;“1"‘ZMZHVf(xt+1)_9§+1H1-
3:1 t=0 j=1

t=0

In the obtained estimate the last two terms consist from differences between the honest and stochastic
gradient at the ¢-th and (¢ + 1)-th moments. One of our goals is to estimate them however we want

to perform analogically to Theorem [E.4{ and continue the proof with the Z Z ||gt+1 g§ Il1

term estimate. To simplify the subsequent notation, we introduce the followmgg definition: let
T—-1 M

st=3 ﬁ STIVF(at) — g§» |l1- In that way, the following inequality finishes the proof of the
t=0 ~ j=1

lemma:
T-1

71 -
ZHW M < f(z—+z Zu S gty 207 4 6t 4 8t

O

Theorem E.9. Suppose Assumptions 3.1} [3.2) [3-3] [E.6| hold. Then for Algorithm | using at t-th
iteration mini-batches of sizes t + 1, after obtaining the stepsize o, the following estimate is valid:

ZEHQ I,
T

AL,
VT

Moreover, taking into account the complexity of AlgorithmH|in relation to the initial stepsize bound

T-1

1

fz;]EHVf(wt)Hl < 6 +10]lo(+
t=

s, to reach e-accuracy, where € > Z IV f(x )||1, Algorithm|5|needs
A* Ly A*
o < 7 T ||0||%> loglog ——— | iterations.
€ M o
s 2 [l99 1l
Jj=1
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Proof. Let us mention that the result of Lemma@ almost matches the starting point of Theorem

lequatlon If we now denote G = Z E I g’“rl g|l1, the only difference is that there

we have an additional 267 term. However, we do not estimate it yet and it does not require any
transformations. Thus, we can proceed in a manner completely analogous to the proof of Theorem
[E-4]and obtain an analog of the estimate in equation [38}

M
ar 2 [l
V5 e B L
*ZIIW (ol € 6372 4+ (287 445 48+ S D

where A* = f(x~!) — f(x*). Now we take expectation and use Lemmato obtain

Eot =

Mg

’[Vf ]|IP’ sign ngn(gj]) ;ésign([Vf(xt)]i)

1

-
I

< ot = ol (42)

'M&

s
I
—

For E4*, under Assumption we have the estimate as equation
E[Vf@=) = gili < ol

Thus, substituting both of these estimates to equation[#1] we obtain the final convergence result:

1 AT M o T-1 ZEHQ?H
fZEIIVf I MZ Zonanﬁ#
&S B gl I
_ 6&—#10”0”1—}— =
JT T

Since we obtain the same convergence estimate as in Theorem[E.4] we can analogically establish the

o (A*EQ“’ + ||a||%) log log ——A2~— | iteration complexity. O
e 2 N9l
=

Remark E.10. Under conditions of Theorem [E.9] Algorithm [5] with mini-batches of the size ¢ 4 1 at
t-th iteration to reach e-accuracy needs

*

A*L 2
O AL+ Jlofli log log iterations.

c2 A
ver L Nl
j:

Proof. Proof repeats the proofs of Remark [E.3] O

F PROOFS FOR ALIAS

F.1 EXACT GRADIENT SETTING

Lemma F.1 (Approximating sequence). Let the initial A*-approximation d° be 0 < d° < A*, where

A* = f(2°) — f(z*). Then for Algorithm I 2| under Assumptions . - - - 3.4} the following

estimate is valid:

A*>d" Yne0,T —1].
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Proof. Starting from the convexity of the objective,
FETH = f@h) < (VAT —af) = (V™) sign (Vi@EY)) . 43)

Now we summarize both sides over the first n iterations:

—
<
=
S
|
—

AT =f(aT) = (@) < fam) = f@0) =D fatt) - fa)
t=0
T (A s (V)
t=0

where (i) is correct due to Assumption[3.3] Changing the sign of the inequality,
n—1
= > A (V) sign (Vf(2'))) < A™.
t=0
Since our algorithm performs d" = max (d”fl, glvn) and we initialize our sequence with d° < A*,
we obtain the required statement. O

Lemma F.2 (Descent lemma). For Algorithm[2|under Assumptions 3.1} 3.2) B-3] the following
estimate is valid:

T-1
Zv IVFEOl, <A+ > (6L,
t=0
where Lt vafr::il Vfﬁc(x ), )
Proof.
fE*Y < FE) +(VET), 2T —at) = fah) =1 (V) sign (Vf(2h))
= f&") = ||V, = (V@) = V(') sign (Vf(2")))
F@) =AY E)|| A [VFEH) = Vi), |lsign (VD)
< @) =AVEED] A [V = VEE ],
(0 || f@™h) = Vi)
= f( - va H1 [t — xtH : th—H mt”oo
V(@) = Vf(z
= fla") -~y va H1 2H 2+ =t Hl’

where in (i) we assume Ha:t“ - xtHOO # 0. Indeed, ||z'! — xtHoo = ( follows from the equality

sign (V f(x')) = 0, which means that we find the optimum and do need to find another point z*1.
_ Ivseh-vrEh|

Now we denote L75 [EaaE=m L. Summing over all iterations, we obtain
T-1 T-1 T—1
St Fa), < ST [Fah) - fa ] + S (2L
t=0 t=0 t=0
T-1 T—1
= f@°) = fl@)+ Y ()L < AT+ ) ()L,
t=0 t=0
which ends the proof of the lemma. O

Theorem F.3 (Theorem [3.5). Suppose Assumptzons B1) B2) B3] B4 hold. We denote £ >

gttt x*
T Z VIV ()|, LE ”vf(‘x,ﬂ)_:,ﬁt( ), . Then Algorithm [2| with Option I, d° < A*

to reach e-accuracy needs
~ (A (Loo)®
O ((0)0(2)2> iterations.
dO(L9,)" e
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Algorithm2|with Option II to reach e-accuracy needs

" 3
6 <?LO(L);J2> iterations.
%) €

Proof. Let us start with the result of Lemma[F2}

T—1
Z VIVFE < A"+ (vh)2LL (44)
t=0

Now we use our v' choice. Let us firstly estimate the denominator that is exactly \! =
L and is the same for both Options I and II. Let us estimate

L || Vit -V @D, - t—1
—_— = L?,
\/2 =T o
the following term.
T—1 T—1
Lt
t2rt o0
()\ ) LOO - t—1 .
t=0 t=0 i
L
=0

We mention, that each L’_ is bounded from the deﬁnition of smoothness (see Assumption[3.1), i.e.,

Li_ < Ls. We consider the sequence {L } . Since each term in this sequence is bounded,
r—2 t

there exists  such that > L{ < L’;! and foreacht > r — 1 such that Y L? > L!T'. In that
i=0 i=0

way, we divide the sum into two parts:

-1 gy r—1
T Z — + Z i : (45)
=0 Li, =0 Z pa— Z Li,
i=0 i=0

0

.
I

Considering the first sum in equation we mention, that we can estimate the denominator as
Zf;é Li_ > LY. As for the numerator. Thus,

r—1

r—2
oLt 2L
t r—1 ) e}
- LO(ZLOOMOO >< T < o (46)
t=0 Z X \t=0

Considering the second sum in equation 45} we have

T-1 ¢ T—1 ‘
Loo o Loo
t—1 B = =
t=r Y L, =g ) Lic+5 2 L
1=0 =0 1=0
t—1
Estimating any of the sums in the denominator, we claim, that Ll Ltoo, sincet—1>r—1.
=0
In that way,
T—1 T—1 T-1
Lt 2L Lt
Sl T S2y @7
S W RIS W D08
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t
Next we denote s* = > L!_ and have

=0
st s
1 1 1 (7) 1
Ll =(s' = s~ :/ ——dx < /fdx, (48)
> L, )OPZRENEANS o) /NN S
i=0 i=0 =0

where (i) was done due to i is a non-increasing function on (0, +00). Summing over ¢, we obtain

T
T t
T s > L
Lt 1 - = LT
2 E - < Q/Edac = 2log(sT) — 2log(s’) = 2log | * [1,0 < 2log < 70 >
=1 Y L, > =
i=0

Lt, Lt LT LT
2 <2) +2<2<1og<L0>+1><410g<L0>. (49)
t=r Léo t=1 E Lt oo o0
i=0 i=0
Substituting equation 6] and equation [#9]into equation 5} we obtain
T-1
L L,T

> (A)PLL < 275 +4log (LO> . (50)
t=0 o0 o0

We additionally note, that if 7 > T" — 1, only first term remains in this estimate, consequently our
bound equation [50]is correct.

In this way, utilizing Option I from Algorithm 2] equation [#4]together with equation [50] yields

T-1 ) T-1 T—1
(4)
VONTINVEE) < D VANV AT+ Y d(W)LL
t=0 t=0 t=0
Lemmal[F1] -1
g A*—FA* Z()\t)QLtoo’
t=0
T-1 T-1
A* A*
MAIVIEHh < + do(PLE
t=0 VANT=L AN
A* 4 A* ) L.,.T A*Lo
S Vo o B\ Ty ) T e,
A*L o LT
T () o

where (i) was done due to the fact that d° is minimal from all {d tT:_Ol (Linefrom Algorithm

IT—2
and the definition of \*. Utilizing ﬁ = Lt < +/LoT', we obtain the final estimate:
t=0

3
2

T-1
1 TA* (Lso) LT
IV < g (450 ).
T = VdOTLY, L,
T—1
Expressing the number of iterations and using ¢ > 7 > ||V f(2")||; as a criterion, we obtain that
=0

the algorithm needs 9] (%

) iterations to reach e-accuracy.
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Considering Option II from Algorithm ] we can proceed absolutely analogical, however, using
f(2%) — f > A* instead of Lemma In that way,

T—

AVIwe | AUE) = Ve [ (LeT
;nw L T iy ey = 0w (4527 )
L 2Af@°) - f)( )’
A/ (f(a%) — HTLY,

xOJ)TLf <L£§>0T)'

Expressing the number of iterations, using £ > 7+ Z [V f(z")1 as a criterion, and utilizing f is

m\w

LOO)
(L3,)%e?
g-accuracy. O

an approximation of f(x*), we obtain that the algorithm needs o ( ) iterations to reach

Remark F4 (Remark B.6). Under conditions of Theorem Algorithm [2| with X! =
and Option II to reach e-accuracy needs
L v@ith—viEH|,
\/ ~t g ol

=0

~ (A*L . .
(@) (2°°> iterations,
€

where ¢ > z__: IV f(@h)]];.

Proof The proof of the remark repeats the proof of Theorem [3.3] except for the estimate on
_ viet=vias]),

Z (AD2LE, term. Let us derive it. We use definition L% =
=0
T-1 T-1 T-—1
Lt Lt
t t [es) o]
(A)°L Z t—1 = i
t=0 t=0 [+ S Li_ =0 S Li_
=0 1=0

Continuing analogically to equation &8]- equation 9] we get

T—1
L,T
2 (AL < 210g( T0. ) .

Substituting this bound into equation [51]instead of equation[50} we ends the proof of the remark. [

F.2 STOCHASTIC GRADIENT SETTING
In this section we denote gét the stochastic gradient at the ¢-th iteration (point x*), according to the
stochastic realization £ at the ¢-th iteration.

Before proceeding to the theoretical analysis of the algorithm, we present its formal description,
Algorithm [7] l specifying which option for the sequence d* we use in practice and which one we
analyze theoretically.
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Algorithm 7 ALIAS stochastic version

1: Input: Starting point z°€R?, initial L..-approximation 1~

€R ., lower bound fon f(z*), number of iterations 7'
2: fort=0,...,T—1do

= 0, initial A*-approximation d°

3: Compute gradients gé, , ggt_l
t_ -1 HQE‘ 9 H
4 n=n + th a:’ 1” ")t
5: if ¢ # 0 then
6: dt ZL 07 <92j:r11a51gn( 57+1)>
7 d' = max (dt L dt)
8 end if
9 Option I (Practical): 4* = \t\/dt

10: Option II (Theoretical): 7% = Afy/ f(20) — f
1: 2t =t — Afsign(gl)
12: end for

In the practical version of the algorithm, we use the stochastic gradient at the previous point with the
current stochastic realization to update d‘. We use the same stochastic samples, similar to the update
of the smoothness constant approximation, to reduce noise from the stochastic gradients.

We now proceed to the convergence analysis.

Lemma F.5 (Descent lemma). For Algorithm 2|under Assumptions[3.8} 3.2| B3| B-7 the following
estimate is valid:

T-1 YV (') — g
>E|; TN IS Y B ) o Rk
t=0 Z fy fyt t=0 E fyt
t=0 t=0 t=0
T-1 (") — gt;“
t=0 Z ,Yt
L t=0
i . t4+1
o1 ot [vse g > (LS
+ZE —1 . E = T-1 ’
=0 > > 7
L = t=0
t+1_ t
where Lf)f 7”2,+1 th”‘i:
Proof.
fE < fE) (VT 2T =) = fah) — 4" (V") sign (gf))
= f@") = ghel], = (V) — gk, sign (g))
.
< FED = lgell, HA [VEGETT - gétH1 [Isign (g2:)]|,
t
< f@) = VEE! ||1+2”r [VF@=") =g,
+7' ||Vf (@) = V"), [|sign (ggt)lim
< @)= |ViE H1+2v IV ) = ghell, + 4[5 @+ — g |

t+1

(xt) - g§t+1 Ger+1 — g§t+1

-
1

lsien (ge) [l
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F@t) =2 [V D), + 29" [V F (') = gee|l, (1) — gl

v ],
t+1 t
’g§t+1 g§t+1 ‘
(') — 92’*1 L +9' ”xt-&-l xt”ool Hth - xt”oo
= S =V, + 20 [V - ge] (1) = gefh |
‘923;11 ggﬂrl L
+'Y va £t+1 1 + (’y ) th'i‘l _ JStHOO

where in (i) we assume ||z — xtHOO # 0. Indeed, ||z'! — xtHoo = ( follows from the equality

sign (g§t> = 0, which means Hsign <g§t> H = 0 and at the ¢-th iteration this term equals zero.
oo

Thus, we can omit these iterations and consider this term only when it is non-zero, without any

t4+1 t
. Hg TYet . . . .
limitations. Now we denote Lt€ = tliinl Summing over all iterations, we obtain
oo |zt —zt]]

S

-1

Z’Y va H1 <

M

T—1
flat) = f@™) 423 4|V - gél
t=0

if
Ho
_.

+ gl va (@) —gelh]||
0

T-1
+ Z ¥ va(xt) - 9§t+1 )
t=0

,_.

PG

t=

(=)

[
~

T—1
(@) = f@")+2> A | VF') - ghl],
T—-1 o
+ Z 7t
t=0

T—1
+ 3 (2L
t=0

@) =gttt

l’t) - g§t+1 L

N

(xtJrl) t+1

T-1
A* —|—2Zf}/t “vf(mt) _gétHl g§1+1
t=0

T-1
2.
t=0

+ Z £t+1

(@)  gheos

We divide both sides of inequality on ZtTZBl ~t.

_ Hl < T—1 +2 T-1
=0 Z >t =0 >
{=0 t=0 t=0
T-1 4t ||V f(2xtFh) — g?;.ll T-148 |V f(a') - ggf+1
+ T-1 T-1
t=0 Z ’)/t t=0 ’7t
=0 t=0
T—1 t+1
(v)?L&s
+ T—1
t=0 ,yt
t=0
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Taking expectation, we obtain the final result of the lemma

T-1 % T-1 t Vf(It) _ 4t
A Y Gt L
ZE Dl < E T-1 +QZE T—1
=Y >t =0 >t
i=0 =0 =0
1 |y |t - gt
+2E =
t=0 S 4t
L =0
T-1 Vf(x ) gt T—1 97ttt
£l ()2 LES
+)_E = T B
t=0 Z t=0 S ot
L =0 i=0
T—1 t Vf(xt) .t
1 v Get
AE 7 +2 Z E T—1
S| = > o
=0 =0
S |
+2E =
t=0 S 4t
L =0
i N2 7 t,et
-1 Y|Vt 92z+1 tgo (v')°L
T Z L T—1 E T—1
t=0 At S At
L t=0 =0
O
Theorem F.6 (Theorem[3.9). Suppose Assumptions[3.8| hold. Then Algorithm 2 with
Option Il to reach e-accuracy, where ¢ > tT;Ol E [E%tlv' |V f(a?) Hl} needs
t=0
= [ A (L)’ 1)° 1
o (Loo) E : + oIy E——m iterations,
€2 L2§ min Lto’oE
0<t<T—1
t+1 9.t et
where L’é’f = HH;J;_J;” H
Proof. Let us start with the result of Lemma [F3}
T-1 T-1 t Vf(xt) — gt
1 v H e
ZE Al | < AE T—1 +2ZE T—1
=Yy > =0 >
=0 =0 =0
T—1 ($t+1) gt+1
gtt1
+)_E =
t=0 S ot
L =0
. i . . . S t)QLt gt
-1 Y va(x ) — Gerr1 2, \7
+ Z E I =
T—1 T—1
=0 > >
L t=0 t=0
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Using equation [H8l| with p = ¢ = 2, we rewrite it in the following form:

S

—1

1
E ] < AE|7
=0 th > 7
t=0 t=0
- 2\ %
T—1 9 1 ’yt
t t 2
+2) (B - ghll})” | B | =
t=0 Z,yt
L t=0
2\ 3
T—1 % 7t
+ 3 (e g [[) (B |2
t=0 Z,—Yt
t=0
Q2\ 3
T—1 9 % t
v
3 (vren -ateal)) 2|
t=0 t
v
t=0 -
2\ 3
T—1 2\ 2 1
t+1
> (LS E|-—— L (52
t=0

1
>
t=0

Now we use our choice of «*. Let us firstly estimate the denominator that is exactly \! =
— = L . Let us estimate the following term.
J’ ! H gitt gsl“H

Z L gitl

iz et =2l

’ﬂ
L

T-1 t+1
SEURTEA P S
t=0 til Li7€"+1
=0 *

-
Il
=]

We mention, that each ng"“ is bounded from the definition of smoothness (see Assumption ,
;e . i &t =1 : : i
ie., LS o < L. We consider the sequence {Léog +1} . Since each term in this sequence

i=0

is bounded, there exists 7 such that Z Lis™ < L'-1¢" and for each t > r — 1 such that

=0
t .
SO LT > LS In that way, we divide the sum into two parts:
i=0
T-1 Aian r—1 tettt T-1 ¢ttt
A= s .
Zt—l A7.+1fzt—1 ,7.+1+Zt—1 i (53)
t=0 §° L t=0 > L& t=r Y L5
=0 =0 =0

Considering the first sum in equation [53] we mention, that we can estimate the denominator as
— s i1 1
STV LEET > 1047, As for the numerator. Thus,

LT (e 207 9L

tgtt r—1,¢" o0 oo

Z — i+1 S o€ (Z L + L < 708 < 70E 54
=0 Z Lk o \t=0 ob o
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Considering the second sum in equation [53} we have

T—1 t £t+1 T—1 t §H~1
LO‘O LOO

M

t—1 ] t—1 ) :

— i, i+1 — 1 g, £1+1 1 2'7 i+1

t=r § Lo§ t=r b § L 5 +§ E Lo§
=0 i=0

i=0
t=1 i1 t+1 .
Estimating any of the sums in the denominator, we claim, that »_ L“6 Lf;.f ,sincet —1 >
=0
r — 1. In that way,
T—1 t+1 T-1 t+1 T-1 t+1
ng 2Lt07§ <9 L’;’o’f
t—1 t L = Z t . (55)
—r Lé§1+1 i—r Z Llo’glJrl =0 Z L70§1+1
1=0 =0 =0
t t+1
Next we denote s' = >~ LLS " and have
i=0
St () St
: 1 1 1 @ 1
Lifrﬂﬁ - (St _ stfl)ﬁ = / ﬁdgg < / de7 (56)
S LE SLET S Y LE st
i=0 i=0 i=0

where (i) was done due to % is a non-increasing function on (0, +00). Summing over ¢, we obtain

sT i Lta§t+1
o 1 T 0 P= Lo, T
22 <2 [ —dr=2log(s") —2log(s") =2log | — 57— | <2log|{ —&= -
= i i+ z L3 L%
t=1 Z L5 %

Combining this estimate with equation 53]

T—1 t+1 T t+41
Lt6 LtS LT LT
Yoo <oy oo (log () +1) <dlog (25 ). (57
=l i t i it LO"E LO’§
t=r Ly t=1 3" LuS 00
=0 =0

Substituting equation [54]and equation [57]into equation [53} we obtain

T—1
L LT
22LEET <20—°"1+4log = . (58)
L i3 LO’E
t:O oo o}
We additionally note, that if » > 7" — 1, only first term remains in this estimate, consequently our
bound equation@is correct. Next, we estimate

1 1 V6L o V6D

T-—1 1 T-—1 1 /T

T—1
A\t
tgo tgo /L +Z LL51+1 tgo Vitl

Now we estimate the second, third and forth terms in equation @ In the same manner, as in
equation[39] we can estimate

(59)

E|[Vf) — gkl < ol
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2
E[[Vie™) —gitt|| < loll, (60)
2
]ETHVf(xt)—ggm o< el

where the last inequality is correct due to the fact that that stochastic realization !+ is independent

from the point z*. Thus, using equation[59]

2\ 2
T—1 9 % ’yt
S (B[VE) - gl}) | B |
t=0 tz:ofyt
- 1
2
T—1 1

< V|l Sle— L
VT t=0 ti &

=0
3
T—1
_ Vxlol [ 1 |
h VT min Lf;ogt+1 5 Vit+1
0<t<T—1 =
1
2
1
<2V Leollo|ly EW
o<ter_1®

It is clear that we can bound the rest two terms in the same manner. Now, substituting this estimate
along with equation [58|and equation [59]into equation[52] we obtain

SR v, | < e
=1 = (Fa0) ~ )T

N

t=0
1
+8v/Loo|lo]1 EW
0<t<T—1
+8Uﬁﬂ)—f%fmm<Ek%2(L?§)>2
(f(z%) — )T Loo
UG~ DV E(Lﬁ)QZ. .
(fa0) = T \ L&

Now we use A* < f(zY) — f to obtain the final estimate:

Ng | t () = ) (Lo)® BRE
el < RO (s ()

T-1
t=0 Z ,Yt
t=0
LT\ ?
2 [e'e]
(= (i)
1
2
1
+8HJH1 V Lo | E R Lt7£t+1
min A
0<t<T—-1
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> At
t=0
2
obtain that the algorithm needs O | £~ (L”) (E ( 0%51> > + lo||? Loo E——r | | it-
b o<tBp L
erations to reach e-accuracy. O

Remark F7 (Remark [3.10). Under conditions of Theorem [3.9] Algorithm 2] with ' =
' = , Option II and mini-batch of the size ¢ 4 1 at ¢-th iteration to reach e-accuracy
t—1 |lg%] gt
J Loot Z M

needs
~ [ AL ’L 1
o  + ”0”12 = |E T iterations,
€ € min Lo§
0<t<T—1
h — V£ (2t LLET — Hgs”rl gEtH
where £ > Z; IVl LES = Tttt

Proof. The proof of the remark repeats the proof of Theorem [3.9] except for the estimate on

T-1 2
ST (A)2LLE™ term and E HVf(xt) — g term. Let us derive them. We use definition
=0 1

et Hg&“rl gst”
o0 D E
T-1 T-1 t+1 T—1 t+1
tEtJrl Lt75 Lgﬁ
PLET =) — o< T
— s i+1 — i, i+1
f_O t=0 [ +ZL’5 =0 Y Lkt
i= =0

Continuing analogically to equation[56|- equation[57] we get

T—1
LT
()L, < 2log (Lf;;l) .

t=0

We substitute this bound into equation[61]instead of equation[58] Next, since we now use mini-batches,
we can bound

ol1
E|ViE) - g} < Mol
[V£(") - g¢ ||1 f+1
Eva(xt-&-l) 1| < lo|lF
g£t+1 S i1
2 [tedlE
EHV ) -9 ! < 717
f(z") Ger+ L t+1
instead of equation[60} In that way,
2\ 2

T—

=

(EIvra) —gl}) | B |2
t=0 Z'Vt
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[N

T-1
< VLis|olh Z 1 1
\/T t 0\/t+1 tZ:IL g+l
3
T-1
< VELsllolh E 1 1
S VT min L587 | Ht+1
0<t<T—1 =
%
VL 1
<2 %‘7”1 E e | loa(T),
m LY
0<IST—1

which ends the proof of the remark.

F.3 DISTRIBUTED SETTING
We remind, that in distributed setting we consider Assumption[E.6] We present the theoretical result
with the following approximation of L, in Algorithm

1

i1 ’
Zt 11 ng,s“rl gj,si+1H1
i=0 M lzitt—ai]|

In this section, we denote g;? et the stochastic gradient from the j-th device, computed at the ¢-th
iteration, according to the stochastic realization & t

Lemma F.8 (Descent lemma). For Algorithm[2|under Assumptions [E.6] the following
estimate is valid:

T—-1 1 T-1 ,Vtgt
YD EN[VIEL] < AE || +2) E |55
t=0 > =0y

t=0 t=0

r M
T-1 ’Vtﬁ Z IVf(z ) 35f+1||1
]:
+> E T
t=0 S At
L t=0
|7 z IV £ @) = gl
+ E T
t=0 oAt
L t=0
T-1
> (1L
t=0
+E ) ,
>
t=0

where 6t = Z|[Vf( O T\ sign | 32 sign

Jj=1

g
—~
L |

&

s
N
~
N
2
S
S
fann
<
=
Pl
~

M 41

tet 1 ng o9, ﬁtH
and Lee = 31 2 et
]:
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Proof,
e e L B
= <Vf(xt“), sign (i sign (%)) >
\
= <vf(:ct), sign (; sign (955&)) >

j=1

At <Vf(mt+1) — Vf(a?),sign (Z sign (g;g)) >

- V(e ||1+2¢2Wf )|

=1
M
I <Sign (Z sign ([gﬁ’gt]i)) + sign ([Vf(a:t)]z))
j=1
M
—! <Vf(:vt“) — Vf(a'),sign | Y sign (g} ¢1) >
=1
Cad ) .
< AIIVEEDIh + 2906
M
IV F(ET) = V()] ||sign (Z sign (¢! ¢ )
= AVFEh)lh + 2+
1 M M
+v —ZHVf( P = V() |[sign | D sign (g} )
j=1 Jj=1 0o
. M
T3] ~ 1
< A IVIEI+ 2+ 7 3 IV = gl
1 & |
+v' 37 SAIVEET) =gtttk
j=1
M
1 . .
’YtM Z ng £t+1 9;,§t+1 1 ||sign (Z sign (giét))
- = _
@) % 1o
= AIVEI 290"+ 5 D IVEE") = gl
=1
1 M
+’VtM Z va(xt—ﬂ) - g;E}Jrl 1
j—l

Z Hg‘jzgﬁ»l - ] g+l Hl ”xtJrl - xt”
PP e *

M
~ 1
= IV + 298"+ 57 DU IVFE) = g
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M
1
1 DIV — gt
j=1
t+1

Zngng* J§t+1H1
RIP P P

~ d M
. » t _ t . . t . t
where in (i) we denote §" = ;::1 [[Vf(z)],| T <51gn <j¥1 sign ([gj,gt} i) # sign ([V f(z")],)
and in (ii) we assume [z*! —z'||_ # 0 (analogically to Lemma [E5). Defining Les™
U oy =95 e |
1&1 W and summing over all iterations gives us
j=1

T-1 M
Zv [VFED]l, < A*+2th6t+27 MZ\W — gt el

T-1

M
Z an ) ;EIHHH'Z ) LEE,

M
o1 7' X IV @) = gl

t * t'5t
Y A Yy ) j=1
T—1 va( H1 =1 +22 T-1 + T-1
t=0 Z t Z ot t=0 Z At t=0 Z At
t=0 t=0 t=0 t=0
A t+1 t+1
1179 L IVIEE) — gl roy e
j=1 (v')"Lg
+ Z T +
t=0 E yt t=0 At
t=0 t=0

Taking expectation, we derive the result of the lemma:

T—-1 1 T-1 ,ytgt
D ENIVIE] < AE|zm—| +2) E |55
t=0 > =0y

t=0 t=0

v |7 _Z IVf(z") = g e lln

t=0 Z ,Yt
L t=0
B M
1 |7 S IVAE gl
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Theorem F.9. Suppose Assumptions hold. Then Algorithm[2|with Option II to reach

T-1
g-accuracy, wheree > > E

- (@), | needs
=0 E
~ [ A% (Lo)? 1\? ) 1
O E L E——m——~ iterations,
= 0 + |lo]|7 Loo i LG iterations,
0<t<T—1

t4+1
g 9 t+1“
t, ettt H g6t 7h.e
where L35 = M E I — L,

lzt+t -zt

Proof. Let us start with the result of Lemma[F.8}

1 '8t
ZEV IV@h)|,] < AE |z +QZE
t=0 Efyt t=0 Z,yt
t=

t=0

- _¢M§HWﬂ -

j£t+1||1
+Y E

M
T—1 ’Vtﬁ 21 ||Vf(mt+1) - gt-H ll1

T—1
t=0 Z ,-Yt
L t=0
S (yyzse
t=0
+E T—1
>
t=0

T-1 t5t
Note that we have already estimated all terms in Theorem [F.6{except > E | 72— |. However,
=0
. . . fZ ’Y
using Lemma[E.7]together with equation [HG]| we can do the same thing and obtain

2\ 3
T-1 ~

t Z 'Yt
t=0

t=0

N

1
<2V Lo|lo|ly | B

t t+4+1
min Lof
0<t<T 1

In that way, we get the same estimate as in Theorem [F.6}

(£ = ) (L) 2\
| fosel | < D (e (L))
Eﬂt )

!

1

o
Il
o
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1
8ol | VDo | BE———7r

0<t<T—1

T-1 .
Expressing the number of iterations and using e > > E [ 72— ||V f(z!)]||, | as a criterion, we

t=0 > 9t
t=

obtain that the algorithm needs O <A (Loo)” (E( ! >2> +olf L <E1>> it-
g Lgfl 1 oo ; Ltng—l

min
0<t<T—1

erations to reach e-accuracy. O

Remark F.10. Under conditions of Theorem Algorithm with ! =
L , Option II and mini-batch of the size t + 1 at ¢-th iteration

(=}

it1 i
t—1 M Hg it1—9% .;
5,1 Tyl

1 ,
Loot+3 21 2 7Tt
i=0 " j=1 oo

to reach e-accuracy needs

NG ’L 1
O x4 lolly Loo E - iterations,
€2 €2 min L'é’(?t+
0<t<T—1
- t t,gt+ Hgt?ﬂ 95t ”
where ¢ > 2_2 IV £y, LT = Z B
Proof. Proof repeats the proof of Remark [3.10} O

F.4 MEMORY-EFFICIENT ALIAS

Lemma F.11 (Descent lemma). For Algorithm 2|under Assumptions[3.11| 3.2] B.3] the following

estimate is valid:

T—1
Zv [V, <A+ ()L,
t=0

|V -V )H

where Lt = [EaaEran
Proof.
FE) < S+ (TR, at) = fat) — 4! (V) sign (TF()))
f@) =+ |ViE)]|, - <Vf($t+1) — V(') sign (Vf(z")))
£t = [V, + 2" V7@ = V)] [sien (V)]
< f@) A VEED], +4d |V t“ @)
@ Vi t+1 )oo t 2t
Q f@') =~ va H1 H th-',-l_xtH H H - H1
f@*) =V
= f( - va H1 dzH [t — 2t H )

where in (i) we assume ||z — 2| # 0. Indeed, ||z'*! — 2|, = 0 follows from the equality

sign (V f(2')) = 0, which means that we find the optimum and do need to find another point 2",
Vi@ -viE]

Now we denote Lj = =, Summing over all iterations, we obtain
-1 T-1 T-1
FrEhl, < D [ - FETH] + ()2
t=0 t=0 =0
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T-1
Ja®) = F@) + 30 (PPLE < AT+ 3 (PEPLL,
t=0

which ends the proof of the lemma. O

Theorem F.12 (Theorem . Suppose Assumptions hold. We denote € >
CEl - CEO
7 Z LIV (@), LY = Vf(”m)LZ({ﬁ )||°°. Then Algorithm 2|with d° < A* and d - \! as in
1

equatlon Blto reach e-accuracy needs

~ (A% (Ly)* d? ~ [ A (Ly)° &2
@ <(d0)(£0)12)2> and O ((20)12)2 iterations with Options I and I, respectively.
1 1) €

Proof. Let us start with the result of Lemma[FTT}

T-1

Z VIV <A+ (1)L (62)

t=0

Now we use our v’ choice. Let us firstly estimate the denominator that is exactly \! =
L = 1 and is the same for both Options I and II. Let us estimate the

=1 ||V (eit )=V ()| =
d\/igo Hmi+1,zi“1 = d i;o L
following term.

T-1 T-1 gt
tN2 27t 1

D)LY =

t=0 t=0 EL?L

We mention, that each L} is bounded from the definition of smoothness (see Assumption ,le.,
LY < Ly. We c0n51der the sequence { L} } . Since each term in th1s sequence is bounded, there
exists r such that Z Li < L7 " and for each t > r — 1 such that Z Li > L' In that way, we

i=0 i=0
divide the sum into two parts:

T-1 r—1
Lt Lt
1 1 1
t—1 t—1 + t— (63)
=i 7 = % t= 7
t=0 Ll t=0 Ll T Ll
i=0 1=0 =0

Considering the first sum in equation we mention, that we can estimate the denominator as
Z:;é L% > LY. As for the numerator. Thus,

/

w1 1 (S, 2L7 ' _ 2Ly
S (Taa) <2< ©
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t—1

Estimating any of the sums in the denominator, we claim, that Y L{ > L!, sincet —1 >r — 1. In
i=0

that way,

T-1 T-1 T-1
LY 2L%
Yo ey o<y - (65)
t=r Z L1 t=r Z LL t=0 Z Ll
i=0 i=0 i=0
t
Next we denote s* = > L} and have
i=0
¢ 1 t -1y 1L
Li— =(s"—s"7")— = dzx < dx (66)
SLE SLE stlzLZ sio1
i=0 i=0
where (i) was done due to % is a non-increasing function on (0, +00). Summing over ¢, we obtain
sT i Lt
L} 1 = ! LT
22 - L < /de = 2log(sT) — 2log(s’) = 2log | * 20 < 2log (g0> .
t=1 Z 50 ! L

Combining this estimate with equation [65]

Lt K LT LT
— Z - 2<2 <log ( 70 ) + 1) 4log <L10> . (67)
t=r L =1 Z 1

1=0

T-1

o~

Substituting equation [64] and equation [67]into equation [63] we obtain

T-1
L LiT
AL <275 +4log( S ) . (68)
t:o LY LY

We additionally note, that if » > T — 1, only first term remains in this estimate, consequently our
bound equation [68]is correct.

In this way, utilizing Option I from Algorithm 2] equation[62]together with equation [68] yields

0 =
dO/\leHVf ) < D VANVt < A*+Zdt V2d2Lt
t=0 t=0
LemmdFT] fy
T AT AT Y (WAL
t=0
A* A
ZHVf M < + > (ANPL
VdONT=1  /dONT-1
A* LA (TN, AL
S Vo P ) TR

AL, LT
e () ®
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where (i) was done due to the fact that d° is minimal from all {dt}tT;O1 (Linefrom Algorithm

IT—2
and the definition of \*. Utilizing /\T—l,l =dy/ > Lt < dv/L1T, we obtain the final estimate:
t=0

3
TA* (L1)? d (L1T>
- Vi < log .
Z il VA&TLY I
T—1
Expressing the number of iterations and using € > £ > ||V f(a")||; as a criterion, we obtain that
=0

(A%)?2 (Ll)%l2

the algorithm needs o ( B(19) e

) iterations to reach e-accuracy.

Considering Option II from Algorithm 2l we can proceed absolutely analogical, however, using
f(2%) — f > A* instead of Lemma In that way,

T—1
A* 1d 4 4T
IV < VL ( : )
t:O ,/ xO 1/ xo

2(f(=°) — f) (L1)* d
(f(z°) = HHTLY

T/ (f(@) - f) <f:1>%d1 LT
VT Og( I )

+

N

—1 .
Expressing the number of iterations, using e > 7 > ||V f(z")]|; as a criterion, and utilizing f is
=0

A*(L1)3d?
(£9)°e2
€-accuracy. O

an approximation of f(z*), we obtain that the algorithm needs o ( > iterations to reach

The proofs under stochastic and distributed settings for the memory-efficient version of ALIAS can
be obtained analogously to Theorems [F.6] [F.9] and [F.12]

G STEEPEST DESCENT

There is one more approach for sign descent. Classically, we perform the step in the direction of the
gradient. However, we do not take into account the length of the gradient in any way in the step. The
approach, called steepest descent, is supposed to utilize this information and provide the steps in the
direction ||V f(z")||1sign(V f(z")) at the ¢-th iteration. We provide the formal description of this
approach (Algorithm [J).

Algorithm 8 STEEPEST DESCENT

1: Input: Initial point 2° € R, number of iterations 7'
2: Parameter: Stepsize ¢ > 0

3: fort=0,...,T—1do

k2t =al — | V(") |sign(VF(at))

5: end for

We present the analysis of SOS STEEPEST DESCENT. We start with the descent lemma.

Lemma G.1 (Descent lemma). For Algorithm[9under Assumptions the following
estimate is valid:

—AT< —coan I (1= ol )
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Algorithm 9 SOS STEEPEST DESCENT

1: Input: Initial stepsize bound c;, initial bound step k, initial point 29 € R?, number of iterations
T

2: ¢g = BISECTION {( ¢(c), £ 7oF 7cé,T) in AlgoriLhmwc utilize Algorilhm
instead of Algorithm
3: 27 = STEEPEST DESCENT(2°, T, o)

~ . ¢ _ Ivset- W(m’)ll
where Lo, = 0<Itn<a73( 1L and L7 e T2t

Proof. Starting from the convexity of the objective,
FE) < fE) A (VT2 —at) = f@f) - o (V) sign(V ("))
= ( ") =" (Vf(a"),sign(Vf(2")))
t<Vf ) = Vf(a'),sign(V f(2")))
) =
) —

7y =7 [V F@ |+ V7 — V] sien(V )]
< SE) AV, + A [VET Vf 29l
, t+1 )
(:z) f( - va H1 tva(lel) xt” Hl HUUtH xtHOO’
where in (i) we assume th“ — a:tHoo £ 0. Indeed, th*l —:ctHOO = 0 follows from
sign (Vf(2')) = 0, which means we find the optimum and do need to search the point z‘*!.
Now we denote Lt ”vfuxt:l)_;ﬁc(w )Hl . Continue estimate,

Fa) < fat ’YHVf Hl )QL;Hsign(Vf(xt))Hoo
< f@h) = V], + (L.

Now we choose 7! = ¢V f(z! )||1, where we find the constant ¢; using BISECTION procedure
(Algorithm ). Thus,

fEt) < f@Y) =l VEEIT+ IV F()ITLL
= f(@") = ol VfE@NT (1 —coLl,).

Summing over all iterations and utilizing Lo, = <m<ax L notation, we have
0<t<T—1

T-1
—AT = f(@') = () < F@T) = @) < —eo > IV S @) (1~ colao)
=0
which ends the proof of the lemma. O

Now we present the purposes of Algorithm Let us take an arbitrary point 2~ € R%. We denote
[VfE)-viE |,

L = 0=z 1] and zgol =, gtl%)% ILZO. It is obvious that it implies
L) <L) < Lo,
Lo < L7 70
Let us put ¢(c) = Z%(c) in the BISECTION procedure. The following lemma shows guarantees of

@(cni) < e and ¢(cio) = clo-
Lemma G.2 (Bisection entry). Let cpax =

Ll,l. Thus, with the initial c;; = Cpax, Algorithm
always avoids an early infinite termination. Moreover, with the initial ¢, = 2%01”4, where

k > loglog L el Algorlthmlalways avoids early non-infinite termination.
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Proof. Let us start with cy,;. The choice of cy,,x implies

1 1
Chi = Cmax — T:ol = m = ¢(Chi)a
which means we avoid early infinite termination. As for cy,:
1 < 1 1 EQI 1 B
Clo = 22kChl\g'E*K S m*(ﬁ(ﬁo),
which means we avoid early non-infinite termination. O

Since we always entry to the BISECTION procedure, we are under the performing of Lemma
Now we are ready to prove the final convergence guarantees for SOS STEEPEST DESCENT.

Theorem G.3. Suppose Assumptions B4 hold. Then for Algorithm[9 after obtaining the
stepsize cg, the following estimate is valid:

T-1

1 oy AL
— g < .
72 IVreI <877

Moreover, taking into account the complexity of AlgorithmH|in relation to the initial stepsize bound

cs, to reach e-accuracy, where €* Z IV f(z%)||3, Algorithm |9 needs

A* Lo L\ . .
@) (52 log log L_1> iterations.

oo

Proof. Firstly, we recall the result of Lemma |G.T}

N —COZIIVf I3 (1= coloc)

We have already mentloned that we can always avoid early terminations of Algorithm 4] due to

Lemma . and thus, ﬁ < ¢ < — ( 5 Tuning ¢y = °2°, we obtain
* 1 T
- < % Z IV f(=")]? ( MLoo(CO)>

T > IV (1-3)-
t=0

Expressing gradient norms, we obtain

A SA* “1(ct) M SA* Lo
1 < .
T Z IV T h T

T-1
Assuming % Y ||V f(z!)||? < &2 as a criterion, we easily obtain the estimate on the number of
=0

iterations required — O (%) Mention that the total number of iterations (together with the
) .

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Algorithm (@ performance) — O ( A*EQ = Jog log

In this work, large language models (LLMs) were used exclusively for spelling edits.
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