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ABSTRACT

We propose Scalable Mechanistic Neural Network (S-MNN), an enhanced neural
network framework designed for scientific machine learning applications involving
long temporal sequences. By reformulating the original Mechanistic Neural Net-
work (MNN) (Pervez et al., 2024), we reduce the computational time and space com-
plexities from cubic and quadratic with respect to the sequence length, respectively,
to linear. This significant improvement enables efficient modeling of long-term
dynamics without sacrificing accuracy or interpretability. Extensive experiments
demonstrate that S-MNN matches the original MNN in precision while substantially
reducing computational resources. Consequently, S-MNN can drop-in replace the
original MNN in applications, providing a practical and efficient tool for integrating
mechanistic bottlenecks into neural network models of complex dynamical systems.

1 INTRODUCTION

The Mechanistic Neural Network (MNN) (Pervez et al., 2024) has recently emerged as a promising
approach in scientific machine learning. Unlike traditional black-box approaches for dynamical
systems (Chen et al., 2018; 2021; Kidger et al., 2021; Norcliffe et al., 2020) that primarily focus
on forecasting, MNN additionally learns an explicit internal ordinary differential equation (ODE)
representation from the noisy observational data that enables various downstream scientific analysis
such as parameter identification and causal effect estimation (Yao et al., 2024). Despite their
advantages, the original formulation of MNN faces significant scalability challenges. Specifically, the
computational time and memory usage severely limit the practical applicability of MNN to problems
involving long time horizons or high-resolution temporal data, such as climate recordings (Verma
et al., 2024), as the required computations become prohibitive even for the most advanced hardware.
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Figure 1: 4-year sea surface temperature (SST)
forecasting using the Mechanistic Identifier (Yao
et al., 2024) and our Scalable Mechanistic Neural
Network (S-MNN).

The inefficiency stems from the matrix op-
erations required to solve the linear systems
associated with the MNN. In the original
framework, two solvers are provided: a dense
solver and a sparse solver. The dense solver
operates on dense matrices and employs
standard methods for solving linear systems,
resulting in cubic time and quadratic space
complexities with respect to the sequence
length. This computational inefficiency makes
it unsuitable for long sequences. The MNN
sparse solver, on the other hand, constructs
sparse matrices and uses iterative methods such
as the conjugate gradient algorithm to solve
the linear systems. While this reduces memory
usage by exploiting sparsity, the unstructured
sparsity patterns of the matrices prevent the
solver from fully leveraging the GPU’s parallelism potential. Additionally, iterative methods can
suffer from slow convergence and numerical inaccuracies, particularly for large-scale problems.

This work proposes a scalable variant of MNN (S-MNN) that reduces the computational time and
space complexities from cubic and quadratic with respect to the sequence length, respectively, to
linear, while maintaining on-par accuracy. As a result, we successfully demonstrate the real-world
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applicability (Figure 1) of S-MNN on long-term climate data that the original MNN failed to handle.
Our main contributions are as follows:

• Complexity Reduction. We reformulate the original MNN’s underlying linear system by eliminat-
ing the slack variables and central difference constraints, and reducing the quadratic programming
problem to least squares regression (Section 3.1). This results in the left-hand side square matrix
having a banded structure, allowing us to employ efficient algorithms (Section 3.2). The time and
space complexities are reduced to linear with respect to the sequence length, making it suitable for
long-sequence modeling.

• Efficient Solver Design. We develop an efficient solver that leverages the inherent sparsity and
banded structure of the reformulated linear system (Section 3.2). The solver is optimized for GPU
execution, fully exploiting parallelism to achieve significant speed-ups.

• Long-Term Sequence Modeling for Science. We validate the effectiveness of our S-MNN through
experiments on various benchmarks, including governing equation discovery with the Lorenz
system (Section 5.2), solving the Korteweg-de Vries (KdV) partial derivative equation (Section 5.3),
and sea surface temperature (SST) prediction for modeling long real-world temporal sequences
(Section 5.4). Our results demonstrate that S-MNN matches the precision of the original MNN
while significantly reducing computational time and memory usage across the board.

2 OVERVIEW OF MECHANISTIC NEURAL NETWORKS

The Mechanistic Neural Network (MNN) by Pervez et al. (2024) consists of three components: a
mechanistic encoder, a specialized differentiable ordinary differential equation (ODE) solver based
on constrained optimization, and a mechanistic decoder. The mechanistic encoder, realized as a
neural network, generates a semi-symbolic representation of the underlying ODE from an input time
series, effectively learning the dynamics from the data. The solver then constructs and solves a linear
system that equivalently describes the original system. The mechanistic decoder processes the solver
solutions to the final outputs.

For tasks such as forecasting future sequences from past data, the encoder processes the input data
to produce the trajectory-specific semi-symbolic representation. Additionally, the encoder can be
designed to overcome the limitations of the linear ODE solver by learning parameters of nonlinear
basis functions (Brunton et al., 2016a), enabling the MNN to model nonlinear ODEs effectively.
The decoder is optional and their necessity depends on the specific task used for training.

Formally, given a multidimensional discretized time sequence x1,x2, . . . ,xT as the input, the
mechanistic encoder maps x1:T into semi-symbolic representations of a set of linear ODEs

R∑
r=0

c⊤r (t,x1:T )
dry

dtr
= d (t,x1:T ) (1)

of the time t dependent variable y ∈ RV with the initial conditions

dry

dtr
= ur (x1:T ) (2)

where V is the dimension of y, R is the highest derivative order, cr (t,x1:T ) ∈ RV and FIX
d (t,x1:T ) ∈ R are the coefficients, and ur (x1:T ) ∈ RV represents the initial conditions.
cr (t,x1:T ), d (t,x1:T ), ur (x1:T ), as well as the step sizes s (x1:T ) for the time discretization
are learned by the encoder. The representation is compactly denoted as {c, d, u, s}. The MNN
solver then solves the linear ODE using this representation, producing the discretized output time
sequence y1,y2, . . . ,yT . The decoder takes y1:T as input and generates the final output sequence
z1, z2, . . . ,zT . A loss ℓ can be computed based on z1:T and the target data, and the encoder and
decoder networks are updated using gradient descent methods.

An illustrative example is the task of discovering a V -dimensional coefficient ξ ∈ RV for a
time-independent one-dimensional first-order ODE in the form of

dy/dt = g
(
ξ⊤ϕ (y)

)
(3)
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where ϕ : R → RV is a V -dimensional non-linear basis function, g : R → R is a differentiable
function. In this task, we first generate an initial ξ and specify the initial condition ur=0 = x1. We
fix c to ones where they are multiplied with the first-order derivatives, and zeros otherwise. The
step sizes s are determined by the dataset’s time increments. During each gradient descent iteration,
we set d = g

(
ξ⊤ϕ (x)

)
, and then the MNN solver solves for a discretized solution y1:T for Eq. 3.

We update ξ by minimizing the loss ℓ =
∑T

i=1 ∥yi − xi∥2.

3 SCALABLE MECHANISTIC NEURAL NETWORKS

In this section, we define the linear system for the Scalable Mechanistic Neural Network (S-MNN) in
Subsection 3.1, and present the solver’s implementation and complexity analysis in Subsection 3.2.

3.1 LINEAR SYSTEM FORMULATION

A linear ordinary differential equation (ODE) system can be characterized by a set of linear equations
involving the successive derivatives of an unknown time-dependent function y. Formally, in a system
with V variables (output dimensions), derivative orders up to R, and Q governing equations, the
state at T discrete time points can be described by a series of clauses

V∑
v=1

R∑
r=0

ct,q,v,ryt,v,r = dt,q, ∀t ∈ {1, . . . , T} , q ∈ {1, . . . , Q} , (4)

where yt,v,r is the r-th derivative of the v-th variable at t-th time point, ct,q,v,r is the corresponding
coefficient for the q-th governing equation, and dt,q is a constant term.

Initial values ut,v,r are specified for each yt,v,r up to time point Tinit (1 ≤ Tinit ≤ T ) and derivative
order Rinit (0 ≤ Rinit ≤ R):

yt,v,r = ut,v,r, ∀t ∈ {1, . . . , Tinit} , v ∈ {1, . . . , V } , r ∈ {0, . . . , Rinit} . (5)

To ensure the smoothness of the trajectory, i.e., that the computed higher-order derivatives are
consistent with the derivatives of lower-order terms, we introduce smoothness constraints. We define
the forward and backward smoothness constraints using the Taylor expansions of the function y
at time points t and t+ 1 respectively:

yt+1,v,r =

R∑
r′=r

sr
′−r

t

(r′ − r)!
yt,v,r′ , ∀t ∈ {1, . . . , T − 1} , v ∈ {1, . . . , V } , r ∈ {0, . . . , R} , (6)

yt,v,r =

R∑
r′=r

(−st)r
′−r

(r′ − r)!
yt+1,v,r′ , ∀t ∈ {1, . . . , T − 1} , v ∈ {1, . . . , V } , r ∈ {0, . . . , R} . (7)

where st is the time span between time points t and t+ 1.

Combining the constraints Eqs. 4, 5, 6, and 7 yields a linear system. In total there are m constraints
and n unknown variables where

m = TQ+ TinitV (Rinit + 1) + 2 (T − 1)V (R+ 1) and n = TV (R+ 1) . (8)

We arrange the unknown variables yt,v,r into a vector y ∈ Rn, the left-hand side coefficients into
a matrix A ∈ Rm×n, and the right-hand side into a vector b ∈ Rm. The linear system can then be
compactly represented as Ay = b.

This system is over-determined (m > n) under typical conditions (T > 1) and can be solved for
y using least squares regression. To balance the contributions of different constraints, we weight the
smoothness constraints (Eqs. 6 and 7) by srt . Additionally, we introduce optional importance weights
wgov, winit, wsmooth ∈ R, applied to the governing equations (Eq. 4), initial conditions (Eq. 5), and
smoothness constraints (Eqs. 6 and 7), respectively. This flexibility allows for emphasizing specific
aspects of the model during optimization. These weights are encoded into a diagonal matrix W ,
and the solution for y is then given by:

y (c, d, u, s) =
(
A⊤WA

)−1
A⊤Wb. (9)
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Note that y is differentiable with respect to c, d, u, and s. We provide more details on the NEW
formulations of A, b, W , and y in Appendix A.1.

Our S-MNN formulation has three key differences from the original MNN formulation in Pervez
et al. (2024): (1) the slack variables in the smoothness constraints are removed; (2) the forward and
backward smoothness constraints are extended to the highest order (r = R), replacing the central
difference constraints; (3) the quadratic programming is replaced by a least squares regression. For NEW
a supplementary description of the aforementioned MNN aspects, please refer to Appendix C.

Also note that, unlike the finite difference method which approximates derivatives by discretizing
differential equations, our approach formulates a linear system to directly involve the derivative terms.

3.2 SOLVER DESIGN, ARCHITECTURE, AND ANALYSIS

The primary motivation for our improvement is our observation that, if we remove the slack variables,
the matrix A will exhibit a specific sparsity pattern that can be exploited for computational and
memory gains. A direct implementation based on the dense matrix A using Eq. 9 incurs cubic time
complexity and quadratic space complexity due to matrix multiplication and inversion. However, by
analyzing the sparsity pattern of A, we find that 1−O (1/T ) of the values in the intermediate steps FIX
are zero and do not need to be computed or stored. In more detail, Eq. 9 can be decomposed into
two steps: (1) a matrix-matrix multiplication M =

(
A⊤W

)
A and a matrix-vector multiplication

β =
(
A⊤W

)
b; (2) solving for y via the linear system My = β. The key idea is to structure

M as a banded matrix. Observing the constraints, we note that the coefficients at time point t
are directly related only to those at time points t − 1, t, and t + 1. By ordering the variables by t,
we can arrange M into a banded matrix. Specifically, the variable yt,v,r is placed at the position
((t− 1)V + v − 1) (R+ 1) + r + 1 in the vector y, and the columns of matrix A are ordered
accordingly. The resulting M is a symmetric matrix in a block-banded form:

M =


M1 N⊤

1

. . .

N1 M2
. . .

. . . . . . N⊤
T−1

. . . NT−1 MT

 (10)

where each block is a square matrix of size V (R+ 1). It is important to note that such a banded
form is only possible after removing the slack variables from the original MNN formulation, as the
slack variables introduce direct relationships between components at all time points.

For the matrix M , only the non-zero blocks Mt and Nt need to be computed and stored. This can
be achieved using efficient dense matrix operations with appropriately formatted dependencies c,
d, u, and s. The matrix A does not need to be explicitly constructed. We present the detailed forward
pass calculations for computing M and β in Appendix A.2 and omit them in this subsection. The
backward pass is supported by automatic differentiation.

For solving the linear system My = β, we propose an efficient GPU-friendly algorithm
(Algorithm 1). Specifically, because M = A⊤WA, M is positive-definite, and we can factorize FIX
M to a banded lower triangular matrix P and a block diagonal lower triangular matrix L using
blocked versions of LDL and Cholesky decompositions such that

PLL⊤P⊤ = M (11)
where P and L are partitioned into block matrices in the same form as M :

P =


I

. . .

P1 I
. . .

. . . . . .
. . . PT−1 I

 and L =


L1

. . .

L2
. . .
. . .
. . . LT

 . (12)

with each block as a square matrix of size V (R+ 1) and the diagonal blocks of P as an
identity matrix I . We also partition β and y into sub-vectors, β =

[
β⊤
1 ,β

⊤
2 , . . . ,β

⊤
T

]⊤
and

4
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y =
[
y⊤
1 ,y

⊤
2 , . . . ,y

⊤
T

]⊤
. We then use forward and backward substitution to solve the following

sequence of equations:

Pβ′ = β, Lβ′′ = β′, L⊤β′′′ = β′′, P⊤y = β′′′. (13)

The main advantage of this algorithm is that only the blocks Pt and Lt in the matrices P and L need
to be computed and stored, which limits the computational complexities of the LDL and Cholesky
decompositions and the subsequent forward and backward substitutions to be linear in T . In contrast,
explicitly computing M−1 or L−1 would involve dense or triangular-dense full-size matrices and
should be avoided.

Interestingly, for the backward pass of My = β, the back-propagated gradients of M and β have
elegant analytic solutions that enable further (constant factor) speed-ups compared to automatic
differentiation. Assuming that the final loss is ℓ, and given ∂ℓ/∂y, the gradients are

∂ℓ

∂β
= M−1 ∂ℓ

∂y
and

∂ℓ

∂M
= − ∂ℓ

∂β
y⊤. (14)

The proof can be found in Appendix A.3. Algorithm 2 details the backward pass. Computing ∂ℓ/∂β
involves solving a similar linear system using the banded matrix M , and ∂ℓ/∂M is a vector outer
product that can be efficiently computed for the non-zero blocks Mt and Nt. The matrices P , L,
and the solution y can be stored during the forward pass and reused for the backward pass. NEW

In Appendix A.4, we present the training (Algorithm 5) and testing (Algorithm 6) procedures for a
generic application of our S-MNN framework to help readers have a better overview.

Algorithm 1: Solver Forward Pass
Input: M1:T ,N1:T−1,β1:T

Output: L1:T ,P1:T−1,y1:T

1 L1:T ,P1:T−1

← DECOMPOSE (M1:T ,N1:T−1);
2 y1:T ← SUBSTITUTE (L1:T ,P1:T−1,β1:T );

Algorithm 3: Decompose
Input: M1:T ,N1:T−1

Output: L1:T ,P1:T−1

1 L1:T ,P1:T−1 ←M1:T ,N1:T−1;
2 for t← 1 to T do

/* blockwise Cholesky */
3 if t > 1 then
4 Pt−1 ← Pt−1L

−⊤
t−1;

5 Lt ← Lt − Pt−1P
⊤
t−1;

6 end
7 Lt ← CHOLESKY (Lt);

// standard Cholesky
8 end
9 for t← 1 to T − 1 in parallel do

/* to blockwise LDL */
10 Pt ← PtL

−1
t ;

11 end

Algorithm 2: Solver Backward Pass

Input: L1:T ,P1:T−1,y1:T ,
∂ℓ

∂y1:T

Output: ∂ℓ
∂M1:T

, ∂ℓ
∂N1:T−1

, ∂ℓ
∂β1:T

1 ∂ℓ
∂β1:T

← SUBSTITUTE
(
L1:T ,P1:T−1,

∂ℓ
∂y1:T

)
;

2 for t← 1 to T in parallel do
3 ∂ℓ

∂Mt
← − ∂ℓ

∂βt
y⊤
t ;

4 end
5 for t← 1 to T − 1 in parallel do
6 ∂ℓ

∂Nt
← − ∂ℓ

∂βt+1
y⊤
t − yt+1

∂ℓ
∂β⊤

t
;

7 end

Algorithm 4: Substitute
Input: L1:T ,P1:T−1,α1:T

Output: α1:T

1 for t← 2 to T do
/* forward substitute */

2 αt ← αt − Pt−1αt−1;
3 end
4 for t← 1 to T in parallel do
5 αt ← L−⊤

t

(
L−1

t αt

)
;

6 end
7 for t← T − 1 to 1 do

/* backward substitute */
8 αt ← αt − P⊤

t αt+1;
9 end

Numerical Stability Considerations. An important aspect of our solver design is the numerical
stability offered by the direct method of Cholesky decomposition compared to iterative methods
like the conjugate gradient (CG) algorithm. Both direct and iterative methods have errors influenced
by the condition number κ of the matrix. However, direct methods tend to be more stable in practice

5
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because they compute an exact solution up to machine precision. In contrast, CG is iterative and
can suffer from error accumulation across iterations, especially when the matrix is ill-conditioned or
when the number of iterations is limited for computational reasons. This is crucial in our applications,
where accurate solutions are necessary for modeling chaotic systems.

Complexity Analysis. The original MNN dense (exact) solver described in Pervez et al. (2024)
has time complexity O

(
T 3V 3R3

)
and space complexity O

(
T 2V 2R2

)
, for time T , V variables,

and R derivative orders. The original sparse (approximate) solver working via conjugate gradient has
both time and space complexities O

(
T 2V 2R2

)
. In our proposed exact S-MNN, the time complexity

is reduced by a Θ(T 2) factor to O
(
TV 3R3

)
from the MNN dense solver, and the space complexity

is reduced to O
(
TV 2R2

)
. Thus, both time and memory requirements now depend linearly on the

number of time points T , making the new method more scalable for longer trajectories.

4 RELATED WORK IN SCIENTIFIC MACHINE LEARNING

Scientific machine learning has emerged as a transformative field that combines data-driven ap-
proaches with domain-specific knowledge to model complex dynamical systems. Various specialized
methodologies have been developed to tackle different aspects of this challenge, particularly in
solving differential equations using neural networks and, to a lesser extent, inverse problems.

Models for Prediction. Neural Ordinary Differential Equations (Neural ODEs) (Chen et al., 2018;
2021; Kidger et al., 2021; Norcliffe et al., 2020) model continuous-time dynamics by parameterizing
the derivative of the hidden state with a neural network. Neural ODEs, however, are constrained
by the structure and sequential nature of ODE solvers and can be inefficient to train. Neural
Operators (Li et al., 2020b;a; 2024; 2021; Azizzadenesheli et al., 2024; Boullé & Townsend, 2023)
are designed to learn mappings between infinite-dimensional function spaces, enabling the modeling
of PDEs and complex spatial-temporal patterns. However, their focus on lower frequencies in the
Fourier spectrum can lead to poor prediction over longer roll-outs (Lippe et al., 2023).

Models for Discovery. The line of work on Sparse Identification of Nonlinear Dynamical Systems
(SINDy) (Kaheman et al., 2020; Brunton et al., 2016b;a; Kaptanoglu et al., 2021; Course & Nair,
2023; Lu et al., 2022; Rudy et al., 2017) aims to discover governing equations by identifying
sparse representations within a predefined library of candidate functions. However, SINDy is
only a generalized linear model that does not use neural networks and can struggle with highly
complex, noisy, or strongly nonlinear systems. Physics-informed networks and universal differential
equations (Raissi et al., 2019; Rackauckas et al., 2020) also work as discovery methods for inferring
unknown terms in PDEs. Symbolic regression methods (Udrescu & Tegmark, 2020; d’Ascoli et al.,
2023) constitute another line of work that aims to discover purely symbolic expressions from data.

Discussion. Mechanistic Neural Networks (MNNs) (Pervez et al., 2024) have been proposed as
a single framework for prediction and discovery. MNNs compute ODE representations from data
which provide a strong inductive bias for scientific ML tasks. However, MNN training introduces
significant challenges that require solving large linear systems during both the forward and backward
passes and demands substantial computational resources. Our method addresses this scalability
problem by reducing the computational complexity and enables applications on long sequences.

5 EXPERIMENTS

To demonstrate the effectiveness and scalability of our proposed Scalable Mechanistic Neural
Network (S-MNN), we conduct experiments across multiple settings in scientific machine learning
applications for dynamical systems including governing equation discovery for the Lorenz system
(Section 5.2), solving the Korteweg-de Vries (KdV) partial derivative equation (PDE) (Section 5.3),
and sea surface temperature (SST) prediction for modeling long real-world temporal sequences
(Section 5.4). We show that S-MNN matches the precisions and convergence rates of the original
MNN (Pervez et al., 2024) while significantly reducing computational time and GPU memory usage.
We also compare S-MNN with other state-of-the-art methods in these experiments. NEW
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5.1 STANDALONE VALIDATION

To assess the correctness of our solver in solving linear ordinary differential equations (ODEs), we
conducted a standalone validation. Our solver is designed to solve linear ODEs directly (Section 3.1)
without incorporating additional neural network layers or trainable parameters.

Experiment Settings. We selected five linear ODE problems from ODEBench (d’Ascoli et al.,
2024)—RC Circuit, Population Growth, Language Death Model, Harmonic Oscillator, and Harmonic
Oscillator with Damping—that are commonly used in various scientific fields such as physics and
biology, along with an additional third-order ODE. Mathematical details about these ODEs are
provided in Appendix B.1. For each problem, we discretized the time axis into 1,000 steps with
a uniform step size of 0.01 and applied our S-MNN solver.

Results and Discussion. We compared the numerical solutions obtained by our solver against the
corresponding closed-form solutions. Figure 2 presents the results, where we plot the solutions
y(t) along with their first and second derivatives y′(t) and y′′(t). The numerical results from our
solver closely match the analytical solutions, exhibiting negligible differences. These results confirm
that our solver is capable of correctly solving linear ODEs. In Appendix B.1, Table 3, we provide NEW
the exact errors for each benchmark, and the comparisons to the classic solvers RK45 (Dormand
& Prince, 1980; Shampine, 1986) and LSODA (Hindmarsh, 1983; Petzold, 1983).
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Figure 2: Standalone S-MNN solver validation results compared with the closed-form solutions.

5.2 COMPARATIVE ANALYSIS: DISCOVERY OF GOVERNING EQUATIONS
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Figure 3: Lorenz discovery loss over
first 1,000 optimization steps (exponen-
tial moving average factor = 0.9) using S-
MNN (ours) compared with the original
MNN dense and sparse solvers (Pervez
et al., 2024).

In this experiment, we evaluate the capability of our
S-MNN in discovering the coefficients of the governing
equations for the Lorenz system following Section 5.1 in
the origin MNN paper (Pervez et al., 2024). The Lorenz
system is a set of nonlinear ODES known for its chaotic
behavior, making it a standard benchmark for testing
equation discovery methods in dynamical systems. The
governing equations are given by

dx/dt = σ (y − x) = a1x+ a2y

dy/dt = x (ρ− z)− y = a3x+ a4y + a5xz

dz/dt = xy − βz = a6z + a7xy

(15)

where a1, . . . , a7 ∈ R are the coefficients to be discovered.

Dataset. The dataset was generated by numerically
integrating the Lorenz system equations using the standard
parameters σ = 10, ρ = 28, and β = 8/3. We used
the initial condition x = y = z = 1 and integrated
over 10,000 time steps with a step size of 0.01 using the
scipy.integrate.odeint function from SciPy.
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Experiment Settings. We applied our solver to the same network architecture and dataset in Pervez
et al. (2024). We trained the model with the default settings: sequence length of 50 and batch size of
512. The training objective was to minimize the difference between the predicted and true trajectories
by optimizing the coefficients a1, . . . , a7. Then, to assess the scalability of our method, we measured
runtime and GPU memory consumption across different sequence lengths and batch sizes using
an NVIDIA H100 GPU with 80 GB of memory.

Results and Discussion. Figure 3 illustrates the loss convergence over the optimization steps for
our S-MNN solver compared to the original MNN dense and sparse solvers. The S-MNN achieves
similar convergence rates, confirming that the removal of slack variables does not compromise
accuracy. The final discovered coefficients a0, . . . , a7 are presented in Appendix B.2, Table 4, FIX
alongside results from the state-of-the-art method SINDy (Kaheman et al., 2020) for reference.

Table 1 summarizes the performance and GPU memory usage. Our S-MNN solver not only maintains
high accuracy but also offers substantial efficiency improvements. Specifically, compared to the
MNN dense solver, our method achieves a 4.9× speedup and reduces GPU memory usage by 50%
for the default setting (batch size 512, sequence length 50). The more significant improvement
in runtime compared to memory usage is expected, as our approach reduces runtime from O

(
T 3
)

to O (T ), and memory from O
(
T 2
)

to O (T ), with T denoting the sequence length. Our S-MNN
solver maintains high performance even with larger batch sizes and sequence lengths where the
MNN solvers run out of memory or become computationally infeasible.

Table 1: Performance and GPU memory usage comparisons between MNN (Pervez et al., 2024) and
S-MNN (ours) for the Lorenz discovery experiment.

Batch Size 512 512 512 64 4096
Sequence Length 50 5 500 50 50

Time per Optimization Step [ms]
MNN Dense 36.4 9.5 N/A1 10.0 208.1
MNN Sparse 104.4 76.5 >589.72 80.5 406.8

S-MNN 7.4 5.5 32.2 5.5 18.3

GPU Memory Usage [GiB]
MNN Dense 2.77 1.18 >80.001 1.33 14.85
MNN Sparse 1.69 0.93 9.832 0.96 7.96

S-MNN 1.38 1.32 1.96 1.33 1.81
1Out of memory error. 2Loss does not converge after a large number (200) of conjugate gradient iterations.

5.3 COMPARATIVE ANALYSIS: SOLVING PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Next, we evaluate the capability of our S-MNN in solving partial differential equations (PDE),
specifically focusing on the Korteweg-De Vries (KdV) equation, which is a third-order nonlinear
PDE that describes the propagation of waves in shallow water and is expressed as

∂y

∂t
+

∂3y

∂x3
− 6y

∂y

∂x
= 0, (16)

where y (x, t) represents the wave amplitude as a function of spatial coordinate x and time t. Solving
the KdV equation is challenging due to its nonlinearity and the involvement of higher-order spatial
derivatives, making it a popular benchmark for PDEs.

Dataset. We consider the KdV dataset provided by Brandstetter et al. (2022). The dataset consists of
512 samples each for training, validation, and testing. Each sample has a spatial domain of 256 meters
and a temporal domain of 140 seconds, discretized into 256 spatial points and 140 temporal steps.

Experiment Settings. We model the temporal evolution at each spatial point as an independent ODE.
A ResNet-1D architecture (Brandstetter et al., 2022) is employed to encode the temporal and spatial
dependencies in the input sequences and feed them into the mechanistic solver. The sequence length
is set to 10 seconds, and the model is trained to predict the wave profile over the next 9 seconds.
The model is trained for 800 epochs. We repeat the same experiment for the original MNN dense
and sparse solvers as well as our S-MNN solver.

Results and Discussion. Following Brandstetter et al. (2022), we report the testing error using the NEW

8
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rollout averaged normalized mean squared error (NMSE), defined as

NMSE =
1

T

T∑
t=1

∑
x (y (x, t)− ŷ (x, t))

2∑
x ŷ

2 (x, t)
(17)

where y (x, t) is the ground truth and ŷ (x, t) is the model output. Table 2 presents the NMSE results
for MNN and S-MNN, along with ResNet and FNO results taken from Brandstetter et al. (2022).
The results indicate that both S-MNN and the MNN dense solver significantly outperform the ResNet
and FNO models. Our S-MNN solver achieves slightly better accuracy than the MNN dense solver.
The MNN sparse solver failed to converge in this experiment. We also provide visualizations for
100-second predictions in Appendix B.3, Figure 6.

Table 2: KdV prediction error (NMSE) for ResNet (Brandstetter et al., 2022), FNO (Brandstetter
et al., 2022), MNN (Pervez et al., 2024), and S-MNN (ours). The errors are calculated on a 20-second
prediction sequence unless otherwise stated.

Method NMSE Method NMSE Method NMSE
ResNet 0.0223 FNO 0.0276 MNN Sparse Did Not Converge
ResNet-LPSDA-1 0.0200 FNO-LPSDA 0.0055 MNN Dense 0.00006
ResNet-LPSDA-2 0.0111 FNO-AR 0.0030 MNN Dense 0.00032 (40 sec)
ResNet-LPSDA-3 0.0155 FNO-AR-LPSDA 0.0010 S-MNN 0.00005
ResNet-LPSDA-4 0.0113 S-MNN 0.00037 (40 sec)

In terms of computational performance, the training time for S-MNN is significantly reduced to
10.1 hours compared to 38.0 hours for the MNN dense solver, indicating a substantial speedup.
Additionally, our method consumes less GPU memory, using 2.19 GiB versus 3.40 GiB for the
original solver. The MNN sparse solver did not converge within a reasonable time frame, taking 82.4
hours and 3.07 GiB without achieving satisfactory results.

5.4 REAL-WORLD APPLICATION: LONG-TERM SEA SURFACE TEMPERATURE FORECASTING

Error [°C]

4

2

0

2

4

Figure 4: Error visualization for the S-MNN 4-year
sea surface temperature (SST) prediction.

The ability to handle longer sequences and
larger batch sizes without sacrificing perfor-
mance positions our S-MNN as a powerful
tool for modeling complex dynamical systems.
In this section, we demonstrate a real-world
example use case: sea surface temperature
(SST) prediction. SST exhibits long periodic
features that can only be effectively captured
with long sequences.

Dataset. We use the SST-V2 dataset (Huang
et al., 2021), which provides weekly mean sea
surface temperatures for 1,727 weeks from De-
cember 31, 1989, to January 29, 2023, over a 1°
latitude × 1° longitude global grid (180 × 360).

Experiment Settings. We employ S-MNN and
MNN with the Mechanistic Identifier proposed by Yao et al. (2024) to predict SST data. The model
leverages mechanistic layers to capture the underlying dynamics of SST. We set the default batch
size to 12,960 (corresponding to 6,480 pairs of grid points and their randomly selected neighboring
points) and the sequence length (chunk length) to 208 weeks. The dataset is split so that the latest
chunk of measurements is reserved for testing while the remaining data is used for training. The
model is trained for 1,000 epochs. To evaluate the scalability and stability, we benchmark the model
with different sequence lengths. Besides S-MNN and MNN, we also conduct the experiment using NEW
Ada-GVAE (Locatello et al., 2020), which is also used as a baseline in Yao et al. (2024).
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Results and Discussion. Figure 1 visualizes the 4-year (208 weeks) prediction made by our S-MNN
with the Mechanistic Identifier. Figure 4 visualizes its prediction error over the ground truth. The
S-MNN effectively captures the spatial patterns of SST, demonstrating high predictive precision.

To quantitatively assess the performance and scalability, we measure the accuracy in terms of the
relative MSE (mean squared error over the standardized data), as well as the runtime and GPU FIX
memory usage across different sequence lengths. Figure 5 summarizes these results.

52 104 208 416 832 1727
Sequence Length [week]

0.00

0.02

0.04

0.06
Relative MSE (Mean Squared Error)

52 104 208 416 832 1727
Sequence Length [week]

0

10

20

30

40

50
Time per Epoch [s]

52 104 208 416 832 1727
Sequence Length [week]

0

20

40

60

80
GPU Memory Usage [GiB]

S-MNN MNN Dense MNN Sparse Ada-GVAE

Figure 5: Testing error, training runtime and GPU memory usage comparisons between S-MNN (ours),
MNN dense and sparse solvers (Pervez et al., 2024), and Ada-GVAE (Locatello et al., 2020) for SST
forecasting. Note that the x-axis is in log scale, so both runtime and memory consumption of S-MNN
increase linearly as expected.

We observe that the relative MSE averaged over both sequence length and batch size remains low for FIX
both the MNN and S-MNN solvers, with our S-MNN maintaining low MSE even for longer sequences
where the MNN solvers cannot run due to resource limitations. A slight increase in the relative FIX
MSE for longer sequences is expected, as modeling longer-term dependencies introduces increased
complexity, and the error accumulates over extended prediction horizons. Note that for the sequence
length of 1,727, we used the entire dataset for training, leaving no separate testing dataset for evalua-
tion, which is why no MSE results can be provided in Figure 5. Given the log-scale in the x-axis, we
observe that S-MNN demonstrates a linear increase in both runtime and memory consumption with re-
spect to sequence length, aligning with our theoretical complexities for time and space. In contrast, the
MNN solvers exhibit much steeper increases in memory usage due to their quadratic space complexity,
quickly exceeding the 80 GiB limit of our GPU for longer sequences. We were unable to run the
MNN dense solver for sequence lengths beyond 104 weeks and the sparse solver beyond 416 weeks.

6 CONCLUSION

This paper introduced the Scalable Mechanistic Neural Network (S-MNN), addressing the scalability
limitations of the original Mechanistic Neural Networks (Pervez et al., 2024) (MNN) by reducing
computational complexities to linear in sequence length for both time and space. This was achieved
by eliminating slack variables and central difference constraints, transitioning from quadratic pro-
gramming to least squares regression, and exploiting banded matrix structures within the solver. Our
experiments demonstrated that S-MNN retains the precision of the original MNN while significantly
enhancing computational efficiency. Given these substantial advantages, S-MNN can drop-in replace
the original MNN. We believe this advancement can provide a practical and efficient method for
embedding mechanistic knowledge into neural network models for complex dynamical systems.

Limitations and Future Work. While our S-MNN significantly enhances scalability, certain
components, such as the sequential for-loops in the Cholesky decomposition (Algorithm 3) and the
forward/backward substitution steps (Algorithm 4), still limit parallelism along the time dimension
due to inherent data dependencies. This sequential execution can become a bottleneck when the
batch and block sizes are small compared to the number of time steps, leading to underutilization
of GPU resources and increased CPU overhead from launching small GPU kernels. Although we
have employed CUDA Graphs to reduce this overhead, the fundamental sequential nature of the
algorithms remains unaddressed. For future work, we aim to develop algorithms that retain linear
time and space complexities but introduce full parallelism also across the time dimension.
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A THEORETICAL DERIVATIONS
NEW

A.1 DEFINITIONS OF A, b, W , AND y

A, b, W , and y are defined as follows. A, b, and W are only theoretical and they are not explicitly
constructed during computation. Only y is computed.

Define ¯̄̄
At,q,v = [ct,q,v,0, . . . , ct,q,v,R]

⊤ ∈ RR+1.

Define ¯̄At,q =
[
¯̄̄
A⊤

t,q,1, . . . ,
¯̄̄
A⊤

t,q,V

]⊤
∈ RV (R+1).

Define Āt =
[
¯̄At,1, . . . ,

¯̄At,Q

]⊤
∈ RQ×V (R+1).

Define Agov = Diag
(
Ā1, . . . , ĀT

)
∈ RTQ×n.

Define ˜̃Ainit = [I,0] ∈ R(Rinit+1)×(R+1).

Define Ãinit = Diag( ˜̃Ainit, . . . ,
˜̃Ainit︸ ︷︷ ︸

TinitV times

) ∈ RTinitV (Rinit+1)×TinitV (R+1).

Define Ainit =
[
Ãinit,0

]
∈ RTinitV (Rinit+1)×n.

Define Â+
t ∈ R(R+1)×(R+1) such that

[
Â+

t

]
i,j

=

{
0 if i > j,

sj−i
t / (j − i)! otherwise.

.

Define Â−
t ∈ R(R+1)×(R+1) such that

[
Â−

t

]
i,j

=

{
0 if i > j,

(−st)j−i
/ (j − i)! otherwise.

.

Define A+
t = Diag(Â+

t , . . . , Â
+
t︸ ︷︷ ︸

V times

) ∈ RV (R+1)×V (R+1).

Define A−
t = Diag(Â−

t , . . . , Â
−
t︸ ︷︷ ︸

V times

) ∈ RV (R+1)×V (R+1).

Define Asmooth forward =

A
+
1 −I

. . . . . .
A+

T−1 −I

 ∈ R(T−1)V (R+1)×n.

Define Asmooth backward =

−I A−
1

. . . . . .
−I A−

T−1

 ∈ R(T−1)V (R+1)×n.

Define

A =

 Agov

Ainit

Asmooth forward

Asmooth backward

 ∈ Rm×n. (18)

Define b̃t = [dt,1, . . . , dt,Q]
⊤ ∈ RQ.

Define bgov =
[
b̃⊤1 , . . . , b̃

⊤
T

]⊤
∈ RTQ.

Define ¯̄bt,v = [ut,v,0, . . . , ut,v,Rinit
]
⊤ ∈ RRinit+1.

Define b̄t =
[
¯̄b⊤t,1, . . . ,

¯̄b⊤t,V

]⊤
∈ RV (Rinit+1).
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Define binit =
[
b̄⊤1 , . . . , b̄

⊤
Tinit

]⊤ ∈ RTinitV (Rinit+1).

Define
b =

[
b⊤gov, b

⊤
init,0

⊤]⊤ ∈ Rm. (19)

Define wgov = [w2
gov, . . . , w

2
gov︸ ︷︷ ︸

TQ times

]⊤ ∈ RTQ.

Define winit = [ w2
init, . . . , w

2
init︸ ︷︷ ︸

TinitV (Rinit+1) times

]⊤ ∈ RTinitV (Rinit+1).

Define ¯̄wt =
[(
wsmooths

0
t

)2
, . . . ,

(
wsmooths

R
t

)2]⊤ ∈ RR+1.

Define w̄t = [ ¯̄w⊤
t , . . . , ¯̄w

⊤
t︸ ︷︷ ︸

V times

]⊤ ∈ RV (Rinit+1).

Define wsmooth =
[
w̄⊤

1 , . . . , w̄
⊤
T−1

]⊤ ∈ R(T−1)V (R+1).

Define w =
[
w⊤

gov,w
⊤
init,w

⊤
smooth,w

⊤
smooth

]⊤ ∈ Rm.

Define
W = diag (w) ∈ Rm×m. (20)

Define ¯̄yt,v = [yt,v,0, . . . , yt,v,R]
⊤ ∈ RR+1.

Define ȳt =
[
¯̄y⊤
t,1, . . . , ¯̄y

⊤
t,V

]⊤ ∈ RV (R+1).

Define
y =

[
ȳ⊤
1 , . . . , ȳ

⊤
T

]⊤ ∈ Rn. (21)

A.2 COMPUTE M AND β

Define matrix Ct ∈ RQ×V (R+1) such that [Ct]q,i = ct,q,v,r where v = ⌊(i− 1) / (R+ 1)⌋+ 1 and
r = (i− 1) mod (R+ 1).

Define vector dt = [dt,1, dt,2, . . . , dt,Q]
⊤ ∈ RQ.

Define constant matrix Ut ∈ {0, 1}V (R+1)×V (R+1) such that

[Ut]i,j =

{
1 if t ≤ Tinit and ((i− 1) mod (R+ 1)) ≤ Rinit and i = j,

0 otherwise.
(22)

Define vector ut ∈ RV (R+1) such that

[ut]i =

{
ut,v,r if t ≤ Tinit and r ≤ Rinit,

0 otherwise,
(23)

where v = ⌊(i− 1) / (R+ 1)⌋+ 1 and r = (i− 1) mod (R+ 1).

Define constant matrix F ∈ R(R+1)×(R+1) such that

[F ]i,j =

{
0 if i > j,

1/ (j − i)! otherwise.
(24)

Define matrix S+
t = diag

(
s0t , s

1
t , . . . , s

R
t

)
∈ R(R+1)×(R+1).

Define matrix S−
t = diag

(
(−st)0 , (−st)1 , . . . , (−st)R

)
∈ R(R+1)×(R+1).

Define matrix S2
t = diag

(
s0t , s

2
t , . . . , s

2R
t

)
∈ R(R+1)×(R+1).
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Define matrix S∗
t ∈ R(R+1)×(R+1) such that

S∗
t =


(
S+
1

)⊤
F⊤FS+

1 + S2
1 if t = 1,(

S−
T−1

)⊤
F⊤FS−

T−1 + S2
T−1 if t = T,(

S+
t

)⊤
F⊤FS+

t +
(
S−
t−1

)⊤
F⊤FS−

t−1 + S2
t + S2

t−1 otherwise.

(25)

Define matrix S∗∗
t = −

(
S+
t

)⊤
FS+

t −
(
S−
t

)⊤
F⊤S−

t ∈ R(R+1)×(R+1) .

Define block diagonal matrix St = Diag(S∗
t , . . . ,S

∗
t︸ ︷︷ ︸

V times

) ∈ RV (R+1)×V (R+1).

Then, Mt, Nt, and βt can be computed as

Mt = w2
govC

⊤
t Ct + w2

initUt + w2
smoothSt, ∀t ∈ {1, . . . T} , (26)

Nt = w2
smoothDiag(S∗∗

t , . . . ,S∗∗
t︸ ︷︷ ︸

V times

), ∀t ∈ {1, . . . T − 1} , (27)

βt = w2
govC

⊤
t dt + w2

initut, ∀t ∈ {1, . . . T} . (28)

A.3 GRADIENTS OF M AND β

In this proof, we use the subscripts h, i, j, k to denote the element index, e.g., yk is the k-th component
of vector y, Mi,j is the element in the i-th row and j-th column of matrix M , and Mi,: is the row
vector in the i-th row of M .

Rewrite y = M−1β as
yk =

∑
h

[
M−1

]
k,h

βh. (29)

Differentiate yk with respect to βi,
∂yk
∂βi

=
[
M−1

]
k,i

. (30)

Differentiate l with respect to βi using the chain rule,

∂ℓ

∂βi
=
∑
k

∂ℓ

∂yk

∂yk
∂βi

=
∑
k

[
M−1

]
k,i

∂ℓ

∂yk
=
[
M−⊤]

i,:

∂ℓ

∂y
. (31)

FIX
Express the derivative in vector form,

∂ℓ

∂β
= M−⊤ ∂ℓ

∂y
. (32)

Because M is symmetric, M−1 is also symmetric,

∂ℓ

∂β
= M−1 ∂ℓ

∂y
. (33)

Differentiate yk with respect to Mi,j ,

∂yk
∂Mi,j

=
∂
(∑

h

[
M−1

]
k,h

βh

)
∂Mi,j

=
∑
h

βh

∂
[
M−1

]
k,h

∂Mi,j
. (34)

Differentiate of
[
M−1

]
k,h

with respect to Mi,j ,

∂
[
M−1

]
k,h

∂Mi,j
= −

[
M−1

]
k,i

[
M−1

]
j,h

. (35)
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Substitute the derivative back into the expression,

∂yk
∂Mi,j

= −
[
M−1

]
k,i

∑
h

[
M−1

]
j,h

βh = −∂yk
∂βi

yj . (36)

Differentiate l with respect to Mi,j using the chain rule,

∂ℓ

∂Mi,j
=
∑
k

∂ℓ

∂yk

∂yk
∂Mi,j

= −yj
∑
k

∂ℓ

∂yk

∂yk
∂βi

= −yj
∂ℓ

∂βi
. (37)

Express the derivative in matrix form,

∂ℓ

∂M
= − ∂ℓ

∂β
y⊤. (38)

NEW

A.4 OVERALL TRAINING AND TESTING ALGORITHMS

Algorithms 5 and 6 present the training and testing procedures for a generic application em-
ploying our S-MNN framework. We utilize a trainable encoder θenc, a trainable decoder θdec,
a training dataset Xtrain, and a testing dataset Xtest. During training, the encoder and de-
coder are updated using gradient descent methods. In testing, we obtain the set of decoded
outputs Z and the corresponding losses L. The lines highlighted in yellow boxes are par-
ticularly pertinent to S-MNN. Specifically, during training, L1:T , P1:T−1, and y1:T are com-
puted in the forward pass and reused in the backward pass. In testing, these quantities are
computed but discarded after subsequent computations, as they are not needed beyond that
point. The word “AutoDiff” in Algorithm 5 is the abbreviation of automatic differentiation.

Algorithm 5: Train a Epoch
Input: θenc, θdec,Xtrain

Output: θenc, θdec
1 for x← a batch in Xtrain do
2 c, d, u, s← θenc (x);
3 Compute M1:T ,N1:T−1,β1:T using c, d, u, s ;

// Appendix A.2

4 L1:T ,P1:T−1,y1:T ← SOLVERFORWARDPASS (M1:T ,N1:T−1,β1:T ) ;
// Algorithm 1, which calls Algorithms 3 and 4

5 z ← θdec (y1:T );
6 Compute loss ℓ using z;
7 Compute gradient ∂ℓ

∂z (AutoDiff);
8 Compute gradients ∂ℓ

∂θdec
, ∂ℓ
∂y1:T

(AutoDiff);

9 ∂ℓ
∂M1:T

, ∂ℓ
∂N1:T−1

, ∂ℓ
∂β1:T

← SOLVERBACKWARDPASS
(
L1:T ,P1:T−1,y1:T ,

∂ℓ
∂y1:T

)
;

// Algorithm 2, which calls Algorithm 4

10 Compute gradients ∂ℓ
∂c ,

∂ℓ
∂d ,

∂ℓ
∂u ,

∂ℓ
∂s (AutoDiff) ;

11 Compute gradient ∂ℓ
∂θenc

(AutoDiff);
12 Update θenc, θdec using

∂ℓ
∂θenc

, ∂ℓ
∂θdec

;
13 end
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Algorithm 6: Test
Input: θenc, θdec,Xtest

Output: Z,L
1 Initialize Z,L ← ∅,∅;
2 for x← a batch in Xtest do
3 c, d, u, s← θenc (x);
4 Compute M1:T ,N1:T−1,β1:T using c, d, u, s ;

// Appendix A.2

5 L1:T ,P1:T−1,y1:T ← SOLVERFORWARDPASS (M1:T ,N1:T−1,β1:T ) ;
// Algorithm 1, which calls Algorithms 3 and 4

6 z ← θdec (y1:T );
7 Compute loss ℓ using z;
8 Z,L ← Z ∪ {z} ,L ∪ {ℓ}
9 end

B FURTHER EXPERIMENTAL DETAILS

B.1 STANDALONE VALIDATION

We list the linear ODEs used for the validation experiment and their closed-form solutions. There are
five ODEs from ODEBench (d’Ascoli et al., 2024) and an additional third-order ODE. c0, c1, c2 are
constant numbers. u0 = y (0), u0 = y (0), u1 = y′ (0), u2 = y′′ (0) are initial values.

RC-circuit (charging capacitor), (c0, c1, c2) = (0.7, 1.2, 2.31), (u0) = (10),

y

c1
+ c2

dy

dt
= c0, (39)

y = c0c1 + (u0 − c0c1) exp

(
− t

c1c2

)
. (40)

Population growth (naive), (c0) = (0.23), (u0) = (4.78),

c0y −
dy

dt
= 0, (41)

y = u0 exp (c0t) . (42)

Language death model for two languages, (c0, c1) = (0.32, 0.28), (u0) = (0.14),

(c0 + c1) y +
dy

dt
= c0, (43)

y =
c0

c0 + c1
−
(

c0
c0 + c1

− u0

)
exp (− (c0 + c1) t) . (44)

Harmonic oscillator without damping, (c0) = (2.1), (u0, u1) = (0.4,−0.03),

c0y +
d2y

dt2
= 0, (45)

y = u0 cos (t
√
c0) +

u1√
c0

sin (t
√
c0) . (46)

Harmonic oscillator with damping, (c0, c1) = (4.5, 0.43), (u0, u1) = (0.12, 0.043),

c0y + c1
dy

dt
+

d2y

dt2
= 0, (47)

y = exp
(
−c1

2
t
)(

u0 cos

(
t

2

√
4c0 − c21

)
+

c1u0 + 2u1√
4c0 − c21

sin

(
t

2

√
4c0 − c21

))
. (48)
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Additional third-order ODE, (u0, u1, u2) = (0,−1, 1),
dy

dt
+

d2y

dt2
+

d3y

dt3
= 0, (49)

y = u0+u1+u2+exp

(
− t

2

)(
− (u1 + u2) cos

(√
3

2
t

)
+

√
3

3
(u1 − u2) sin

(√
3

2
t

))
. (50)

NEW
In Table 3, we present the relative MSE (mean squared error over standardized data) and
CPU runtime for RK45 (Dormand & Prince, 1980; Shampine, 1986), LSODA (Hindmarsh,
1983; Petzold, 1983), and our S-MNN method. RK45 and LSODA were evaluated using the
scipy.integrate.solve ivp function from SciPy. We run all solvers on CPUs (AMD EPYC
7513 32-Core Processor). This experiment serves as a sanity check to validate the correctness of our
solver. S-MNN achieves a relative MSE below 10−6 in all cases, indicating excellent agreement with
closed-form solutions. While S-MNN may not be the optimal solver for these pure ODE-solving
tasks, it offers additional features, such as batched GPU processing and differentiability, which are
not available in the classical solvers.

Table 3: Accuracy and performance comparisons between RK45 (Dormand & Prince, 1980; Shampine,
1986), LSODA (Hindmarsh, 1983; Petzold, 1983), and S-MNN (ours). The ODE problems are
denoted using their initial letter: RC Circuit, Population, Language Death, Harmonic, Harmonic
Damping, and Third-Order. Some high-order results are not applicable to low-order ODEs.

Solver R P L H D T

Relative MSE

y (t)
RK45 9.3e-12 2.9e-11 2.2e-11 1.7e-10 1.2e-10 6.7e-12

LSODA 4.5e-11 3.5e-10 9.2e-11 1.1e-09 1.5e-09 7.4e-11
S-MNN 4.8e-12 9.4e-12 2.6e-11 9.5e-08 2.1e-07 1.0e-09

y′ (t)
RK45 - - - 1.5e-10 1.4e-10 4.4e-12

LSODA - - - 7.6e-10 1.8e-09 5.9e-11
S-MNN - - - 7.7e-08 2.3e-07 6.8e-10

y′′ (t)
RK45 - - - - - 2.7e-12

LSODA - - - - - 6.0e-11
S-MNN - - - - - 4.3e-09

Runtime (CPU) [ms]
RK45 1.5 1.1 1.6 5.1 6.6 3.7

LSODA 1.1 0.9 1.3 5.0 5.0 2.9
S-MNN 22.2 22.2 22.1 23.8 23.8 26.1

B.2 LORENZ DISCOVERY

Table 4 lists the discovered coefficients after final fine-tuning, along with the results from the state-of-
the-art method SINDy (Brunton et al., 2016a). Our S-MNN closely matches the ground truth, SINDy,
and both the original MNN solvers, with only minor differences observed.

Table 4: Discovered coefficients for the Lorenz system using SINDy (Kaheman et al., 2020),
MNN (Pervez et al., 2024), and S-MNN (ours).

Method a1 a2 a3 a4 a5 a6 a7
Ground Truth -10 10 28 -1 -1 -8/3 1

SINDy -10.000 10.000 27.998 -1.000 -1.000 -2.667 1.000
MNN Dense -10.0003 10.0003 27.9760 -0.9934 -0.9996 -2.6660 0.9995
MNN Sparse -10.0055 10.0061 27.7165 -0.9304 -0.9937 -2.6641 0.9990

S-MNN -10.0003 10.0004 27.9915 -0.9968 -0.9997 -2.6664 1.0000
NEW

B.3 KORTEWEG-DE VRIES (KDV) PREDICTION

Figure 6 illustrates a comparison between the ground truth solution, the prediction obtained from
the original MNN dense solver, and that from our S-MNN. Both models produce predictions that
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closely align with the ground truth, demonstrating that our S-MNN effectively captures the intricate
dynamics of the KdV equation. The MNN sparse solver cannot converge in this experiment and its
result is not shown.
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Figure 6: Visual comparisons between the ground truth, the MNN dense solver (Pervez et al., 2024),
and our S-MNN solver for 100-second KdV predictions.

NEW

C COMPONENTS FROM THE ORIGINAL MECHANISTIC NEURAL NETWORK

The original Mechanistic Neural Network (MNN) (Pervez et al., 2024) solver approximates
continuous-time dynamics through time discretization. Our modifications in S-MNN provide alterna-
tive approximation methods that improve efficiency without sacrificing accuracy. While our main
focus was on presenting these improvements, for completeness, we briefly describe the components
from the original MNN that we have modified or discarded. The symbols and notations used below
are inherited from Section 3 and they may be different from Pervez et al. (2024).

C.1 SLACK VARIABLES AND SMOOTHNESS CONSTRAINTS

Both S-MNN and MNN share the same constraints for the governing equations (Eq. 4) and initial
values (Eq.5). However, unlike the smoothness constraints in S-MNN, which are formulated as
equalities (Eqs. 6 and 7), the original MNN (Pervez et al., 2024) models the smoothness constraints
as inequalities (Eqs. 54, 55, and 56): the approximation errors bounded by a slack variable ϵ ∈ R.

The forward and backward Taylor approximation errors in MNN are defined as:

Eforward
t,v,r = yt+1,v,r −

R∑
r′=r

sr
′−r

t

(r′ − r)!
yt,v,r′ , (51)

Ebackward
t,v,r = yt,v,r −

R∑
r′=r

(−st)r
′−r

(r′ − r)!
yt+1,v,r′ . (52)

For the highest (R-th) order derivative, the central difference approximation error is used instead of
the forward/backward approximation errors:

Ecentral
t,v,r = (yt+2,v,r − yt,v,r)− (st + st+1) yt+1,v,r+1. (53)
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The smoothness constraints are expressed as inequalities involving the slack variable ϵ:

srt
∣∣Eforward

t,v,r

∣∣ ≤ ϵ, ∀t ∈ {1, . . . , T − 1} , v ∈ {1, . . . , V } , r ∈ {0, . . . , R− 1} , (54)

srt
∣∣Ebackward

t,v,r

∣∣ ≤ ϵ, ∀t ∈ {1, . . . , T − 1} , v ∈ {1, . . . , V } , r ∈ {0, . . . , R− 1} , (55)

(st + st+1)
R−2 ∣∣Ecentral

t,v,R−1

∣∣ ≤ ϵ, ∀t ∈ {1, . . . , T − 2} , v ∈ {1, . . . , V } . (56)

C.2 QUADRATIC PROGRAMMING FORMULATION

In the original MNN, the approximation problem is formulated as a linear programming (LP)
problem: minimize ϵ while satisfying the linear equalities (Eqs. 4 and 5) and inequalities (Eqs. 54,
55, and 56). Specifically, the LP problem is:

minimize ϵ

subject to A′y′ ≥ b′, (57)

where A′ ∈ Rm′×(n+1), b′ ∈ Rm′
, y′ =

[
ϵ,y⊤]⊤ ∈ Rn+1, and m′ is the total number of

constraints.

However, solving ODEs using LP within neural networks poses challenges: the solutions are not
continuously differentiable, and efficient solvers are lacking. To address these issues, the LP problem
is relaxed to a quadratic programming (QP) problem:

minimize
γ

2
y′⊤y′ +∆⊤y′

subject to A′y′ = b′, (58)

where ∆ =
[
δ,01×n

]⊤ ∈ Rn+1, and γ, δ ∈ R are hyperparameters.

In QP (Eq. 58), ϵ2 is a minimized term. As an approximation, the absolute value operations |·| in
Eqs. 54, 55, and 56 are dropped.

Notably, the QP solution of y′ involves inverting the square matrix M ′ = A′⊤A′ which is not a
banded matrix due to the slack variable ϵ. Consequently, solving this system has a time complexity
of O

(
T 3V 3R3

)
, where T is the number of time steps, V is the number of variables, and R is the

highest order of derivatives considered.
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