
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCALABLE MECHANISTIC NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Scalable Mechanistic Neural Network (S-MNN), an enhanced neural
network framework designed for scientific machine learning applications involving
long temporal sequences. By reformulating the original Mechanistic Neural Net-
work (MNN) (Pervez et al., 2024), we reduce the computational time and space com-
plexities from cubic and quadratic with respect to the sequence length, respectively,
to linear. This significant improvement enables efficient modeling of long-term
dynamics without sacrificing accuracy or interpretability. Extensive experiments
demonstrate that S-MNN matches the original MNN in precision while substantially
reducing computational resources. Consequently, S-MNN can drop-in replace the
original MNN in applications, providing a practical and efficient tool for integrating
mechanistic bottlenecks into neural network models of complex dynamical systems.

1 INTRODUCTION

The Mechanistic Neural Network (MNN) (Pervez et al., 2024) has recently emerged as a promising
approach in scientific machine learning. Unlike traditional black-box approaches for dynamical
systems (Chen et al., 2018; 2021; Kidger et al., 2021; Norcliffe et al., 2020) that primarily focus
on forecasting, MNN additionally learns an explicit internal ordinary differential equation (ODE)
representation from the noisy observational data that enables various downstream scientific analysis
such as parameter identification and causal effect estimation (Yao et al., 2024). Despite their
advantages, the original formulation of MNN faces significant scalability challenges. Specifically, the
computational time and memory usage severely limit the practical applicability of MNN to problems
involving long time horizons or high-resolution temporal data, such as climate recordings (Verma
et al., 2024), as the required computations become prohibitive even for the most advanced hardware.

Weekly Mean Temperature [°C]

0

10

20

30

40

Figure 1: 4-year sea surface temperature (SST)
forecasting using the Mechanistic Identifier (Yao
et al., 2024) and our Scalable Mechanistic Neural
Network (S-MNN).

The inefficiency stems from the matrix op-
erations required to solve the linear systems
associated with the MNN. In the original
framework, two solvers are provided: a dense
solver and a sparse solver. The dense solver
operates on dense matrices and employs
standard methods for solving linear systems,
resulting in cubic time and quadratic space
complexities with respect to the sequence
length. This computational inefficiency makes
it unsuitable for long sequences. The MNN
sparse solver, on the other hand, constructs
sparse matrices and uses iterative methods such
as the conjugate gradient algorithm to solve
the linear systems. While this reduces memory
usage by exploiting sparsity, the unstructured
sparsity patterns of the matrices prevent the
solver from fully leveraging the GPU’s parallelism potential. Additionally, iterative methods can
suffer from slow convergence and numerical inaccuracies, particularly for large-scale problems.

This work proposes a scalable variant of MNN (S-MNN) that reduces the computational time and
space complexities from cubic and quadratic with respect to the sequence length, respectively, to
linear, while maintaining on-par accuracy. As a result, we successfully demonstrate the real-world

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

applicability (Figure 1) of S-MNN on long-term climate data that the original MNN failed to handle.
Our main contributions are as follows:

• Complexity Reduction. We reformulate the original MNN’s underlying linear system by eliminat-
ing the slack variables and central difference constraints, and reducing the quadratic programming
problem to least squares regression (Section 3.1). This results in the left-hand side square matrix
having a banded structure, allowing us to employ efficient algorithms (Section 3.2). The time and
space complexities are reduced to linear with respect to the sequence length, making it suitable for
long-sequence modeling.

• Efficient Solver Design. We develop an efficient solver that leverages the inherent sparsity and
banded structure of the reformulated linear system (Section 3.2). The solver is optimized for GPU
execution, fully exploiting parallelism to achieve significant speed-ups.

• Long-Term Sequence Modeling for Science. We validate the effectiveness of our S-MNN through
experiments on various benchmarks, including governing equation discovery with the Lorenz
system (Section 5.2), solving the Korteweg-de Vries (KdV) partial derivative equation (Section 5.3),
and sea surface temperature (SST) prediction for modeling long real-world temporal sequences
(Section 5.4). Our results demonstrate that S-MNN matches the precision of the original MNN
while significantly reducing computational time and memory usage across the board.

2 OVERVIEW OF MECHANISTIC NEURAL NETWORKS

The Mechanistic Neural Network (MNN) by Pervez et al. (2024) consists of three components: a
mechanistic encoder, a specialized differentiable ordinary differential equation (ODE) solver based
on constrained optimization, and a mechanistic decoder. The mechanistic encoder, realized as a
neural network, generates a semi-symbolic representation of the underlying ODE from an input time
series, effectively learning the dynamics from the data. The solver then constructs and solves a linear
system that equivalently describes the original system. The mechanistic decoder processes the solver
solutions to the final outputs.

For tasks such as forecasting future sequences from past data, the encoder processes the input data
to produce the trajectory-specific semi-symbolic representation. Additionally, the encoder can be
designed to overcome the limitations of the linear ODE solver by learning parameters of nonlinear
basis functions (Brunton et al., 2016a), enabling the MNN to model nonlinear ODEs effectively.
The decoder is optional and their necessity depends on the specific task used for training.

Formally, given a multidimensional discretized time sequence x1,x2, . . . ,xT as the input, the
mechanistic encoder maps x1:T into semi-symbolic representations of a set of linear ODEs

R∑
r=0

c⊤r (t,x1:T)
dry

dtr
= d (t,x1:T) (1)

of the time t dependent variable y ∈ RV with the initial conditions

dry

dtr
= ur (x1:T) (2)

where V is the dimension of y, R is the highest derivative order, cr (t,x1:T) ∈ RV and FIX
d (t,x1:T) ∈ R are the coefficients, and ur (x1:T) ∈ RV represents the initial conditions.
cr (t,x1:T), d (t,x1:T), ur (x1:T), as well as the step sizes s (x1:T) for the time discretization
are learned by the encoder. The representation is compactly denoted as {c, d, u, s}. The MNN
solver then solves the linear ODE using this representation, producing the discretized output time
sequence y1,y2, . . . ,yT . The decoder takes y1:T as input and generates the final output sequence
z1, z2, . . . ,zT . A loss ℓ can be computed based on z1:T and the target data, and the encoder and
decoder networks are updated using gradient descent methods.

An illustrative example is the task of discovering a V -dimensional coefficient ξ ∈ RV for a
time-independent one-dimensional first-order ODE in the form of

dy/dt = g
(
ξ⊤ϕ (y)

)
(3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where ϕ : R → RV is a V -dimensional non-linear basis function, g : R → R is a differentiable
function. In this task, we first generate an initial ξ and specify the initial condition ur=0 = x1. We
fix c to ones where they are multiplied with the first-order derivatives, and zeros otherwise. The
step sizes s are determined by the dataset’s time increments. During each gradient descent iteration,
we set d = g

(
ξ⊤ϕ (x)

)
, and then the MNN solver solves for a discretized solution y1:T for Eq. 3.

We update ξ by minimizing the loss ℓ =
∑T

i=1 ∥yi − xi∥2.

3 SCALABLE MECHANISTIC NEURAL NETWORKS

In this section, we define the linear system for the Scalable Mechanistic Neural Network (S-MNN) in
Subsection 3.1, and present the solver’s implementation and complexity analysis in Subsection 3.2.

3.1 LINEAR SYSTEM FORMULATION

A linear ordinary differential equation (ODE) system can be characterized by a set of linear equations
involving the successive derivatives of an unknown time-dependent function y. Formally, in a system
with V variables (output dimensions), derivative orders up to R, and Q governing equations, the
state at T discrete time points can be described by a series of clauses

V∑
v=1

R∑
r=0

ct,q,v,ryt,v,r = dt,q, ∀t ∈ {1, . . . , T} , q ∈ {1, . . . , Q} , (4)

where yt,v,r is the r-th derivative of the v-th variable at t-th time point, ct,q,v,r is the corresponding
coefficient for the q-th governing equation, and dt,q is a constant term.

Initial values ut,v,r are specified for each yt,v,r up to time point Tinit (1 ≤ Tinit ≤ T) and derivative
order Rinit (0 ≤ Rinit ≤ R):

yt,v,r = ut,v,r, ∀t ∈ {1, . . . , Tinit} , v ∈ {1, . . . , V } , r ∈ {0, . . . , Rinit} . (5)

To ensure the smoothness of the trajectory, i.e., that the computed higher-order derivatives are
consistent with the derivatives of lower-order terms, we introduce smoothness constraints. We define
the forward and backward smoothness constraints using the Taylor expansions of the function y
at time points t and t+ 1 respectively:

yt+1,v,r =

R∑
r′=r

sr
′−r

t

(r′ − r)!
yt,v,r′ , ∀t ∈ {1, . . . , T − 1} , v ∈ {1, . . . , V } , r ∈ {0, . . . , R} , (6)

yt,v,r =

R∑
r′=r

(−st)r
′−r

(r′ − r)!
yt+1,v,r′ , ∀t ∈ {1, . . . , T − 1} , v ∈ {1, . . . , V } , r ∈ {0, . . . , R} . (7)

where st is the time span between time points t and t+ 1.

Combining the constraints Eqs. 4, 5, 6, and 7 yields a linear system. In total there are m constraints
and n unknown variables where

m = TQ+ TinitV (Rinit + 1) + 2 (T − 1)V (R+ 1) and n = TV (R+ 1) . (8)

We arrange the unknown variables yt,v,r into a vector y ∈ Rn, the left-hand side coefficients into
a matrix A ∈ Rm×n, and the right-hand side into a vector b ∈ Rm. The linear system can then be
compactly represented as Ay = b.

This system is over-determined (m > n) under typical conditions (T > 1) and can be solved for
y using least squares regression. To balance the contributions of different constraints, we weight the
smoothness constraints (Eqs. 6 and 7) by srt . Additionally, we introduce optional importance weights
wgov, winit, wsmooth ∈ R, applied to the governing equations (Eq. 4), initial conditions (Eq. 5), and
smoothness constraints (Eqs. 6 and 7), respectively. This flexibility allows for emphasizing specific
aspects of the model during optimization. These weights are encoded into a diagonal matrix W ,
and the solution for y is then given by:

y (c, d, u, s) =
(
A⊤WA

)−1
A⊤Wb. (9)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Note that y is differentiable with respect to c, d, u, and s. We provide more details on the NEW
formulations of A, b, W , and y in Appendix A.1.

Our S-MNN formulation has three key differences from the original MNN formulation in Pervez
et al. (2024): (1) the slack variables in the smoothness constraints are removed; (2) the forward and
backward smoothness constraints are extended to the highest order (r = R), replacing the central
difference constraints; (3) the quadratic programming is replaced by a least squares regression. For NEW
a supplementary description of the aforementioned MNN aspects, please refer to Appendix C.

Also note that, unlike the finite difference method which approximates derivatives by discretizing
differential equations, our approach formulates a linear system to directly involve the derivative terms.

3.2 SOLVER DESIGN, ARCHITECTURE, AND ANALYSIS

The primary motivation for our improvement is our observation that, if we remove the slack variables,
the matrix A will exhibit a specific sparsity pattern that can be exploited for computational and
memory gains. A direct implementation based on the dense matrix A using Eq. 9 incurs cubic time
complexity and quadratic space complexity due to matrix multiplication and inversion. However, by
analyzing the sparsity pattern of A, we find that 1−O (1/T) of the values in the intermediate steps FIX
are zero and do not need to be computed or stored. In more detail, Eq. 9 can be decomposed into
two steps: (1) a matrix-matrix multiplication M =

(
A⊤W

)
A and a matrix-vector multiplication

β =
(
A⊤W

)
b; (2) solving for y via the linear system My = β. The key idea is to structure

M as a banded matrix. Observing the constraints, we note that the coefficients at time point t
are directly related only to those at time points t − 1, t, and t + 1. By ordering the variables by t,
we can arrange M into a banded matrix. Specifically, the variable yt,v,r is placed at the position
((t− 1)V + v − 1) (R+ 1) + r + 1 in the vector y, and the columns of matrix A are ordered
accordingly. The resulting M is a symmetric matrix in a block-banded form:

M =


M1 N⊤

1

. . .

N1 M2
. . .

. N⊤
T−1

. . . NT−1 MT

 (10)

where each block is a square matrix of size V (R+ 1). It is important to note that such a banded
form is only possible after removing the slack variables from the original MNN formulation, as the
slack variables introduce direct relationships between components at all time points.

For the matrix M , only the non-zero blocks Mt and Nt need to be computed and stored. This can
be achieved using efficient dense matrix operations with appropriately formatted dependencies c,
d, u, and s. The matrix A does not need to be explicitly constructed. We present the detailed forward
pass calculations for computing M and β in Appendix A.2 and omit them in this subsection. The
backward pass is supported by automatic differentiation.

For solving the linear system My = β, we propose an efficient GPU-friendly algorithm
(Algorithm 1). Specifically, because M = A⊤WA, M is positive-definite, and we can factorize FIX
M to a banded lower triangular matrix P and a block diagonal lower triangular matrix L using
blocked versions of LDL and Cholesky decompositions such that

PLL⊤P⊤ = M (11)
where P and L are partitioned into block matrices in the same form as M :

P =


I

. . .

P1 I
. . .

.
. . . PT−1 I

 and L =


L1

. . .

L2
. . .
. . .
. . . LT

 . (12)

with each block as a square matrix of size V (R+ 1) and the diagonal blocks of P as an
identity matrix I . We also partition β and y into sub-vectors, β =

[
β⊤
1 ,β

⊤
2 , . . . ,β

⊤
T

]⊤
and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

y =
[
y⊤
1 ,y

⊤
2 , . . . ,y

⊤
T

]⊤
. We then use forward and backward substitution to solve the following

sequence of equations:

Pβ′ = β, Lβ′′ = β′, L⊤β′′′ = β′′, P⊤y = β′′′. (13)

The main advantage of this algorithm is that only the blocks Pt and Lt in the matrices P and L need
to be computed and stored, which limits the computational complexities of the LDL and Cholesky
decompositions and the subsequent forward and backward substitutions to be linear in T . In contrast,
explicitly computing M−1 or L−1 would involve dense or triangular-dense full-size matrices and
should be avoided.

Interestingly, for the backward pass of My = β, the back-propagated gradients of M and β have
elegant analytic solutions that enable further (constant factor) speed-ups compared to automatic
differentiation. Assuming that the final loss is ℓ, and given ∂ℓ/∂y, the gradients are

∂ℓ

∂β
= M−1 ∂ℓ

∂y
and

∂ℓ

∂M
= − ∂ℓ

∂β
y⊤. (14)

The proof can be found in Appendix A.3. Algorithm 2 details the backward pass. Computing ∂ℓ/∂β
involves solving a similar linear system using the banded matrix M , and ∂ℓ/∂M is a vector outer
product that can be efficiently computed for the non-zero blocks Mt and Nt. The matrices P , L,
and the solution y can be stored during the forward pass and reused for the backward pass. NEW

In Appendix A.4, we present the training (Algorithm 5) and testing (Algorithm 6) procedures for a
generic application of our S-MNN framework to help readers have a better overview.

Algorithm 1: Solver Forward Pass
Input: M1:T ,N1:T−1,β1:T

Output: L1:T ,P1:T−1,y1:T

1 L1:T ,P1:T−1

← DECOMPOSE (M1:T ,N1:T−1);
2 y1:T ← SUBSTITUTE (L1:T ,P1:T−1,β1:T);

Algorithm 3: Decompose
Input: M1:T ,N1:T−1

Output: L1:T ,P1:T−1

1 L1:T ,P1:T−1 ←M1:T ,N1:T−1;
2 for t← 1 to T do

/* blockwise Cholesky */
3 if t > 1 then
4 Pt−1 ← Pt−1L

−⊤
t−1;

5 Lt ← Lt − Pt−1P
⊤
t−1;

6 end
7 Lt ← CHOLESKY (Lt);

// standard Cholesky
8 end
9 for t← 1 to T − 1 in parallel do

/* to blockwise LDL */
10 Pt ← PtL

−1
t ;

11 end

Algorithm 2: Solver Backward Pass

Input: L1:T ,P1:T−1,y1:T ,
∂ℓ

∂y1:T

Output: ∂ℓ
∂M1:T

, ∂ℓ
∂N1:T−1

, ∂ℓ
∂β1:T

1 ∂ℓ
∂β1:T

← SUBSTITUTE
(
L1:T ,P1:T−1,

∂ℓ
∂y1:T

)
;

2 for t← 1 to T in parallel do
3 ∂ℓ

∂Mt
← − ∂ℓ

∂βt
y⊤
t ;

4 end
5 for t← 1 to T − 1 in parallel do
6 ∂ℓ

∂Nt
← − ∂ℓ

∂βt+1
y⊤
t − yt+1

∂ℓ
∂β⊤

t
;

7 end

Algorithm 4: Substitute
Input: L1:T ,P1:T−1,α1:T

Output: α1:T

1 for t← 2 to T do
/* forward substitute */

2 αt ← αt − Pt−1αt−1;
3 end
4 for t← 1 to T in parallel do
5 αt ← L−⊤

t

(
L−1

t αt

)
;

6 end
7 for t← T − 1 to 1 do

/* backward substitute */
8 αt ← αt − P⊤

t αt+1;
9 end

Numerical Stability Considerations. An important aspect of our solver design is the numerical
stability offered by the direct method of Cholesky decomposition compared to iterative methods
like the conjugate gradient (CG) algorithm. Both direct and iterative methods have errors influenced
by the condition number κ of the matrix. However, direct methods tend to be more stable in practice

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

because they compute an exact solution up to machine precision. In contrast, CG is iterative and
can suffer from error accumulation across iterations, especially when the matrix is ill-conditioned or
when the number of iterations is limited for computational reasons. This is crucial in our applications,
where accurate solutions are necessary for modeling chaotic systems.

Complexity Analysis. The original MNN dense (exact) solver described in Pervez et al. (2024)
has time complexity O

(
T 3V 3R3

)
and space complexity O

(
T 2V 2R2

)
, for time T , V variables,

and R derivative orders. The original sparse (approximate) solver working via conjugate gradient has
both time and space complexities O

(
T 2V 2R2

)
. In our proposed exact S-MNN, the time complexity

is reduced by a Θ(T 2) factor to O
(
TV 3R3

)
from the MNN dense solver, and the space complexity

is reduced to O
(
TV 2R2

)
. Thus, both time and memory requirements now depend linearly on the

number of time points T , making the new method more scalable for longer trajectories.

4 RELATED WORK IN SCIENTIFIC MACHINE LEARNING

Scientific machine learning has emerged as a transformative field that combines data-driven ap-
proaches with domain-specific knowledge to model complex dynamical systems. Various specialized
methodologies have been developed to tackle different aspects of this challenge, particularly in
solving differential equations using neural networks and, to a lesser extent, inverse problems.

Models for Prediction. Neural Ordinary Differential Equations (Neural ODEs) (Chen et al., 2018;
2021; Kidger et al., 2021; Norcliffe et al., 2020) model continuous-time dynamics by parameterizing
the derivative of the hidden state with a neural network. Neural ODEs, however, are constrained
by the structure and sequential nature of ODE solvers and can be inefficient to train. Neural
Operators (Li et al., 2020b;a; 2024; 2021; Azizzadenesheli et al., 2024; Boullé & Townsend, 2023)
are designed to learn mappings between infinite-dimensional function spaces, enabling the modeling
of PDEs and complex spatial-temporal patterns. However, their focus on lower frequencies in the
Fourier spectrum can lead to poor prediction over longer roll-outs (Lippe et al., 2023).

Models for Discovery. The line of work on Sparse Identification of Nonlinear Dynamical Systems
(SINDy) (Kaheman et al., 2020; Brunton et al., 2016b;a; Kaptanoglu et al., 2021; Course & Nair,
2023; Lu et al., 2022; Rudy et al., 2017) aims to discover governing equations by identifying
sparse representations within a predefined library of candidate functions. However, SINDy is
only a generalized linear model that does not use neural networks and can struggle with highly
complex, noisy, or strongly nonlinear systems. Physics-informed networks and universal differential
equations (Raissi et al., 2019; Rackauckas et al., 2020) also work as discovery methods for inferring
unknown terms in PDEs. Symbolic regression methods (Udrescu & Tegmark, 2020; d’Ascoli et al.,
2023) constitute another line of work that aims to discover purely symbolic expressions from data.

Discussion. Mechanistic Neural Networks (MNNs) (Pervez et al., 2024) have been proposed as
a single framework for prediction and discovery. MNNs compute ODE representations from data
which provide a strong inductive bias for scientific ML tasks. However, MNN training introduces
significant challenges that require solving large linear systems during both the forward and backward
passes and demands substantial computational resources. Our method addresses this scalability
problem by reducing the computational complexity and enables applications on long sequences.

5 EXPERIMENTS

To demonstrate the effectiveness and scalability of our proposed Scalable Mechanistic Neural
Network (S-MNN), we conduct experiments across multiple settings in scientific machine learning
applications for dynamical systems including governing equation discovery for the Lorenz system
(Section 5.2), solving the Korteweg-de Vries (KdV) partial derivative equation (PDE) (Section 5.3),
and sea surface temperature (SST) prediction for modeling long real-world temporal sequences
(Section 5.4). We show that S-MNN matches the precisions and convergence rates of the original
MNN (Pervez et al., 2024) while significantly reducing computational time and GPU memory usage.
We also compare S-MNN with other state-of-the-art methods in these experiments. NEW

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.1 STANDALONE VALIDATION

To assess the correctness of our solver in solving linear ordinary differential equations (ODEs), we
conducted a standalone validation. Our solver is designed to solve linear ODEs directly (Section 3.1)
without incorporating additional neural network layers or trainable parameters.

Experiment Settings. We selected five linear ODE problems from ODEBench (d’Ascoli et al.,
2024)—RC Circuit, Population Growth, Language Death Model, Harmonic Oscillator, and Harmonic
Oscillator with Damping—that are commonly used in various scientific fields such as physics and
biology, along with an additional third-order ODE. Mathematical details about these ODEs are
provided in Appendix B.1. For each problem, we discretized the time axis into 1,000 steps with
a uniform step size of 0.01 and applied our S-MNN solver.

Results and Discussion. We compared the numerical solutions obtained by our solver against the
corresponding closed-form solutions. Figure 2 presents the results, where we plot the solutions
y(t) along with their first and second derivatives y′(t) and y′′(t). The numerical results from our
solver closely match the analytical solutions, exhibiting negligible differences. These results confirm
that our solver is capable of correctly solving linear ODEs. In Appendix B.1, Table 3, we provide NEW
the exact errors for each benchmark, and the comparisons to the classic solvers RK45 (Dormand
& Prince, 1980; Shampine, 1986) and LSODA (Hindmarsh, 1983; Petzold, 1983).

5
10

y(
t)

RC Circuit

20
40

Population

0.25

0.50
Language Death

0.25
0.00
0.25

Harmonic

0.0
0.1

Harmonic Damping

0.5

0.0
Third-Order

2.5

0.0

y′
(t) 5

10

0.0

0.2

0.5
0.0
0.5

0.2
0.0

1

0

0 10
t

0

1

y′
′ (t

)

0 10
t

1
2

0 10
t

0.1

0.0

0 10
t

0.5
0.0
0.5

0 10
t

0.5
0.0

0 10
t

0

1

Closed-Form Solution S-MNN Solution

Figure 2: Standalone S-MNN solver validation results compared with the closed-form solutions.

5.2 COMPARATIVE ANALYSIS: DISCOVERY OF GOVERNING EQUATIONS

0 200 400 600 800 1000
Optimization Step

10 2

10 1

100

101

102
Lorenz Discovery Loss

S-MNN
MNN Dense
MNN Sparse

Figure 3: Lorenz discovery loss over
first 1,000 optimization steps (exponen-
tial moving average factor = 0.9) using S-
MNN (ours) compared with the original
MNN dense and sparse solvers (Pervez
et al., 2024).

In this experiment, we evaluate the capability of our
S-MNN in discovering the coefficients of the governing
equations for the Lorenz system following Section 5.1 in
the origin MNN paper (Pervez et al., 2024). The Lorenz
system is a set of nonlinear ODES known for its chaotic
behavior, making it a standard benchmark for testing
equation discovery methods in dynamical systems. The
governing equations are given by

dx/dt = σ (y − x) = a1x+ a2y

dy/dt = x (ρ− z)− y = a3x+ a4y + a5xz

dz/dt = xy − βz = a6z + a7xy

(15)

where a1, . . . , a7 ∈ R are the coefficients to be discovered.

Dataset. The dataset was generated by numerically
integrating the Lorenz system equations using the standard
parameters σ = 10, ρ = 28, and β = 8/3. We used
the initial condition x = y = z = 1 and integrated
over 10,000 time steps with a step size of 0.01 using the
scipy.integrate.odeint function from SciPy.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Experiment Settings. We applied our solver to the same network architecture and dataset in Pervez
et al. (2024). We trained the model with the default settings: sequence length of 50 and batch size of
512. The training objective was to minimize the difference between the predicted and true trajectories
by optimizing the coefficients a1, . . . , a7. Then, to assess the scalability of our method, we measured
runtime and GPU memory consumption across different sequence lengths and batch sizes using
an NVIDIA H100 GPU with 80 GB of memory.

Results and Discussion. Figure 3 illustrates the loss convergence over the optimization steps for
our S-MNN solver compared to the original MNN dense and sparse solvers. The S-MNN achieves
similar convergence rates, confirming that the removal of slack variables does not compromise
accuracy. The final discovered coefficients a0, . . . , a7 are presented in Appendix B.2, Table 4, FIX
alongside results from the state-of-the-art method SINDy (Kaheman et al., 2020) for reference.

Table 1 summarizes the performance and GPU memory usage. Our S-MNN solver not only maintains
high accuracy but also offers substantial efficiency improvements. Specifically, compared to the
MNN dense solver, our method achieves a 4.9× speedup and reduces GPU memory usage by 50%
for the default setting (batch size 512, sequence length 50). The more significant improvement
in runtime compared to memory usage is expected, as our approach reduces runtime from O

(
T 3
)

to O (T), and memory from O
(
T 2
)

to O (T), with T denoting the sequence length. Our S-MNN
solver maintains high performance even with larger batch sizes and sequence lengths where the
MNN solvers run out of memory or become computationally infeasible.

Table 1: Performance and GPU memory usage comparisons between MNN (Pervez et al., 2024) and
S-MNN (ours) for the Lorenz discovery experiment.

Batch Size 512 512 512 64 4096
Sequence Length 50 5 500 50 50

Time per Optimization Step [ms]
MNN Dense 36.4 9.5 N/A1 10.0 208.1
MNN Sparse 104.4 76.5 >589.72 80.5 406.8

S-MNN 7.4 5.5 32.2 5.5 18.3

GPU Memory Usage [GiB]
MNN Dense 2.77 1.18 >80.001 1.33 14.85
MNN Sparse 1.69 0.93 9.832 0.96 7.96

S-MNN 1.38 1.32 1.96 1.33 1.81
1Out of memory error. 2Loss does not converge after a large number (200) of conjugate gradient iterations.

5.3 COMPARATIVE ANALYSIS: SOLVING PARTIAL DIFFERENTIAL EQUATIONS (PDES)

Next, we evaluate the capability of our S-MNN in solving partial differential equations (PDE),
specifically focusing on the Korteweg-De Vries (KdV) equation, which is a third-order nonlinear
PDE that describes the propagation of waves in shallow water and is expressed as

∂y

∂t
+

∂3y

∂x3
− 6y

∂y

∂x
= 0, (16)

where y (x, t) represents the wave amplitude as a function of spatial coordinate x and time t. Solving
the KdV equation is challenging due to its nonlinearity and the involvement of higher-order spatial
derivatives, making it a popular benchmark for PDEs.

Dataset. We consider the KdV dataset provided by Brandstetter et al. (2022). The dataset consists of
512 samples each for training, validation, and testing. Each sample has a spatial domain of 256 meters
and a temporal domain of 140 seconds, discretized into 256 spatial points and 140 temporal steps.

Experiment Settings. We model the temporal evolution at each spatial point as an independent ODE.
A ResNet-1D architecture (Brandstetter et al., 2022) is employed to encode the temporal and spatial
dependencies in the input sequences and feed them into the mechanistic solver. The sequence length
is set to 10 seconds, and the model is trained to predict the wave profile over the next 9 seconds.
The model is trained for 800 epochs. We repeat the same experiment for the original MNN dense
and sparse solvers as well as our S-MNN solver.

Results and Discussion. Following Brandstetter et al. (2022), we report the testing error using the NEW

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

rollout averaged normalized mean squared error (NMSE), defined as

NMSE =
1

T

T∑
t=1

∑
x (y (x, t)− ŷ (x, t))

2∑
x ŷ

2 (x, t)
(17)

where y (x, t) is the ground truth and ŷ (x, t) is the model output. Table 2 presents the NMSE results
for MNN and S-MNN, along with ResNet and FNO results taken from Brandstetter et al. (2022).
The results indicate that both S-MNN and the MNN dense solver significantly outperform the ResNet
and FNO models. Our S-MNN solver achieves slightly better accuracy than the MNN dense solver.
The MNN sparse solver failed to converge in this experiment. We also provide visualizations for
100-second predictions in Appendix B.3, Figure 6.

Table 2: KdV prediction error (NMSE) for ResNet (Brandstetter et al., 2022), FNO (Brandstetter
et al., 2022), MNN (Pervez et al., 2024), and S-MNN (ours). The errors are calculated on a 20-second
prediction sequence unless otherwise stated.

Method NMSE Method NMSE Method NMSE
ResNet 0.0223 FNO 0.0276 MNN Sparse Did Not Converge
ResNet-LPSDA-1 0.0200 FNO-LPSDA 0.0055 MNN Dense 0.00006
ResNet-LPSDA-2 0.0111 FNO-AR 0.0030 MNN Dense 0.00032 (40 sec)
ResNet-LPSDA-3 0.0155 FNO-AR-LPSDA 0.0010 S-MNN 0.00005
ResNet-LPSDA-4 0.0113 S-MNN 0.00037 (40 sec)

In terms of computational performance, the training time for S-MNN is significantly reduced to
10.1 hours compared to 38.0 hours for the MNN dense solver, indicating a substantial speedup.
Additionally, our method consumes less GPU memory, using 2.19 GiB versus 3.40 GiB for the
original solver. The MNN sparse solver did not converge within a reasonable time frame, taking 82.4
hours and 3.07 GiB without achieving satisfactory results.

5.4 REAL-WORLD APPLICATION: LONG-TERM SEA SURFACE TEMPERATURE FORECASTING

Error [°C]

4

2

0

2

4

Figure 4: Error visualization for the S-MNN 4-year
sea surface temperature (SST) prediction.

The ability to handle longer sequences and
larger batch sizes without sacrificing perfor-
mance positions our S-MNN as a powerful
tool for modeling complex dynamical systems.
In this section, we demonstrate a real-world
example use case: sea surface temperature
(SST) prediction. SST exhibits long periodic
features that can only be effectively captured
with long sequences.

Dataset. We use the SST-V2 dataset (Huang
et al., 2021), which provides weekly mean sea
surface temperatures for 1,727 weeks from De-
cember 31, 1989, to January 29, 2023, over a 1°
latitude × 1° longitude global grid (180 × 360).

Experiment Settings. We employ S-MNN and
MNN with the Mechanistic Identifier proposed by Yao et al. (2024) to predict SST data. The model
leverages mechanistic layers to capture the underlying dynamics of SST. We set the default batch
size to 12,960 (corresponding to 6,480 pairs of grid points and their randomly selected neighboring
points) and the sequence length (chunk length) to 208 weeks. The dataset is split so that the latest
chunk of measurements is reserved for testing while the remaining data is used for training. The
model is trained for 1,000 epochs. To evaluate the scalability and stability, we benchmark the model
with different sequence lengths. Besides S-MNN and MNN, we also conduct the experiment using NEW
Ada-GVAE (Locatello et al., 2020), which is also used as a baseline in Yao et al. (2024).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Results and Discussion. Figure 1 visualizes the 4-year (208 weeks) prediction made by our S-MNN
with the Mechanistic Identifier. Figure 4 visualizes its prediction error over the ground truth. The
S-MNN effectively captures the spatial patterns of SST, demonstrating high predictive precision.

To quantitatively assess the performance and scalability, we measure the accuracy in terms of the
relative MSE (mean squared error over the standardized data), as well as the runtime and GPU FIX
memory usage across different sequence lengths. Figure 5 summarizes these results.

52 104 208 416 832 1727
Sequence Length [week]

0.00

0.02

0.04

0.06
Relative MSE (Mean Squared Error)

52 104 208 416 832 1727
Sequence Length [week]

0

10

20

30

40

50
Time per Epoch [s]

52 104 208 416 832 1727
Sequence Length [week]

0

20

40

60

80
GPU Memory Usage [GiB]

S-MNN MNN Dense MNN Sparse Ada-GVAE

Figure 5: Testing error, training runtime and GPU memory usage comparisons between S-MNN (ours),
MNN dense and sparse solvers (Pervez et al., 2024), and Ada-GVAE (Locatello et al., 2020) for SST
forecasting. Note that the x-axis is in log scale, so both runtime and memory consumption of S-MNN
increase linearly as expected.

We observe that the relative MSE averaged over both sequence length and batch size remains low for FIX
both the MNN and S-MNN solvers, with our S-MNN maintaining low MSE even for longer sequences
where the MNN solvers cannot run due to resource limitations. A slight increase in the relative FIX
MSE for longer sequences is expected, as modeling longer-term dependencies introduces increased
complexity, and the error accumulates over extended prediction horizons. Note that for the sequence
length of 1,727, we used the entire dataset for training, leaving no separate testing dataset for evalua-
tion, which is why no MSE results can be provided in Figure 5. Given the log-scale in the x-axis, we
observe that S-MNN demonstrates a linear increase in both runtime and memory consumption with re-
spect to sequence length, aligning with our theoretical complexities for time and space. In contrast, the
MNN solvers exhibit much steeper increases in memory usage due to their quadratic space complexity,
quickly exceeding the 80 GiB limit of our GPU for longer sequences. We were unable to run the
MNN dense solver for sequence lengths beyond 104 weeks and the sparse solver beyond 416 weeks.

6 CONCLUSION

This paper introduced the Scalable Mechanistic Neural Network (S-MNN), addressing the scalability
limitations of the original Mechanistic Neural Networks (Pervez et al., 2024) (MNN) by reducing
computational complexities to linear in sequence length for both time and space. This was achieved
by eliminating slack variables and central difference constraints, transitioning from quadratic pro-
gramming to least squares regression, and exploiting banded matrix structures within the solver. Our
experiments demonstrated that S-MNN retains the precision of the original MNN while significantly
enhancing computational efficiency. Given these substantial advantages, S-MNN can drop-in replace
the original MNN. We believe this advancement can provide a practical and efficient method for
embedding mechanistic knowledge into neural network models for complex dynamical systems.

Limitations and Future Work. While our S-MNN significantly enhances scalability, certain
components, such as the sequential for-loops in the Cholesky decomposition (Algorithm 3) and the
forward/backward substitution steps (Algorithm 4), still limit parallelism along the time dimension
due to inherent data dependencies. This sequential execution can become a bottleneck when the
batch and block sizes are small compared to the number of time steps, leading to underutilization
of GPU resources and increased CPU overhead from launching small GPU kernels. Although we
have employed CUDA Graphs to reduce this overhead, the fundamental sequential nature of the
algorithms remains unaddressed. For future work, we aim to develop algorithms that retain linear
time and space complexities but introduce full parallelism also across the time dimension.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

Throughout this work, we have strictly adhered to the ICLR Code of Ethics. All datasets utilized in
our experiments are publicly available and widely recognized within the scientific community. We
ensure that these datasets do not contain any personally identifiable information or sensitive content.
Our work does not involve human subjects, animals, or any form of personal data collection. We have
thoroughly considered potential dual-use concerns and do not foresee any harmful applications of our
methods. There are no conflicts of interest to declare, and no external sponsorship influenced the
outcomes of this research. All experiments were conducted with integrity and transparency.

REPRODUCIBILITY STATEMENT

We are committed to ensuring that our work is transparent and reproducible. To facilitate this, we
share the source code of both our S-MNN solver and experiments as part of the supplementary
materials. The code is documented and includes instructions for setting up the environment, running
the simulations, and reproducing the results presented in our paper. By making our resources openly
available and providing detailed explanations, we aim to enable the research community to validate
and build upon our findings.

REFERENCES

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and
Anima Anandkumar. Neural operators for accelerating scientific simulations and design. Nature
Reviews Physics, pp. 1–9, 2024. 6

Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. arXiv preprint
arXiv:2312.14688, 2023. 6

Johannes Brandstetter, Max Welling, and Daniel E. Worrall. Lie point symmetry data augmentation
for neural PDE solvers. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári,
Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning, ICML 2022,
17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Re-
search, pp. 2241–2256. PMLR, 2022. URL https://proceedings.mlr.press/v162/
brandstetter22a.html. 8, 9

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of
sciences, 113(15):3932–3937, 2016a. 2, 6, 19

Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Sparse identification of nonlinear dynamics
with control (sindyc). IFAC-PapersOnLine, 49(18):710–715, 2016b. 6

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary
differential equations. Advances in Neural Information Processing Systems, 2018. 1, 6

Ricky T. Q. Chen, Brandon Amos, and Maximilian Nickel. Learning neural event functions for
ordinary differential equations. International Conference on Learning Representations, 2021. 1, 6

Kevin Course and Prasanth B Nair. State estimation of a physical system with unknown governing
equations. Nature, 622(7982):261–267, 2023. 6

Stéphane d’Ascoli, Sören Becker, Alexander Mathis, Philippe Schwaller, and Niki Kilbertus.
Odeformer: Symbolic regression of dynamical systems with transformers. arXiv preprint
arXiv:2310.05573, 2023. 6

Stéphane d’Ascoli, Sören Becker, Philippe Schwaller, Alexander Mathis, and Niki Kilbertus. Ode-
former: Symbolic regression of dynamical systems with transformers. In The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenRe-
view.net, 2024. URL https://openreview.net/forum?id=TzoHLiGVMo. 7, 18

11

https://proceedings.mlr.press/v162/brandstetter22a.html
https://proceedings.mlr.press/v162/brandstetter22a.html
https://openreview.net/forum?id=TzoHLiGVMo

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

J.R. Dormand and P.J. Prince. A family of embedded runge-kutta formulae. Journal of Compu-
tational and Applied Mathematics, 6(1):19–26, 1980. ISSN 0377-0427. doi: https://doi.org/
10.1016/0771-050X(80)90013-3. URL https://www.sciencedirect.com/science/
article/pii/0771050X80900133. 7, 19

A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In R. S. Stepleman (ed.),
Scientific Computing, pp. 55–64, Amsterdam, 1983. North-Holland. 7, 19

Boyin Huang, Chunying Liu, Viva Banzon, Eric Freeman, Garrett Graham, Bill Hankins, Tom
Smith, and Huai-Min Zhang. Improvements of the daily optimum interpolation sea surface
temperature (doisst) version 2.1. Journal of Climate, 34(8):2923 – 2939, 2021. doi: 10.
1175/JCLI-D-20-0166.1. URL https://journals.ametsoc.org/view/journals/
clim/34/8/JCLI-D-20-0166.1.xml. 9

Kadierdan Kaheman, J Nathan Kutz, and Steven L Brunton. Sindy-pi: a robust algorithm for parallel
implicit sparse identification of nonlinear dynamics. Proceedings of the Royal Society A, 476
(2242):20200279, 2020. 6, 8, 19

Alan A Kaptanoglu, Jared L Callaham, Aleksandr Aravkin, Christopher J Hansen, and Steven L
Brunton. Promoting global stability in data-driven models of quadratic nonlinear dynamics.
Physical Review Fluids, 6(9):094401, 2021. 6

Patrick Kidger, Ricky T. Q. Chen, and Terry J. Lyons. ”hey, that’s not an ode”: Faster ode adjoints
via seminorms. International Conference on Machine Learning, 2021. 1, 6

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020a. 6

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020b.
6

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhat-
tacharya, Andrew M. Stuart, and Anima Anandkumar. Fourier neural operator for paramet-
ric partial differential equations. In 9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO. 6

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/JMS Journal of Data Science, 1(3):1–27, 2024. 6

Phillip Lippe, Bastiaan S. Veeling, Paris Perdikaris, Richard E Turner, and Johannes Brandstetter.
PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=Qv6468llWS. 6

Francesco Locatello, Ben Poole, Gunnar Raetsch, Bernhard Schölkopf, Olivier Bachem, and Michael
Tschannen. Weakly-supervised disentanglement without compromises. In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pp. 6348–6359. PMLR, 13–18 Jul 2020. URL
https://proceedings.mlr.press/v119/locatello20a.html. 9, 10

Peter Y Lu, Joan Ariño Bernad, and Marin Soljačić. Discovering sparse interpretable dynamics from
partial observations. Communications Physics, 5(1):206, 2022. 6

Alexander Norcliffe, Cristian Bodnar, Ben Day, Nikola Simidjievski, and Pietro Liò. On second
order behaviour in augmented neural odes. Advances in neural information processing systems, 33:
5911–5921, 2020. 1, 6

12

https://www.sciencedirect.com/science/article/pii/0771050X80900133
https://www.sciencedirect.com/science/article/pii/0771050X80900133
https://journals.ametsoc.org/view/journals/clim/34/8/JCLI-D-20-0166.1.xml
https://journals.ametsoc.org/view/journals/clim/34/8/JCLI-D-20-0166.1.xml
https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=Qv6468llWS
https://openreview.net/forum?id=Qv6468llWS
https://proceedings.mlr.press/v119/locatello20a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Adeel Pervez, Francesco Locatello, and Stratis Gavves. Mechanistic neural networks for scientific
machine learning. In Forty-first International Conference on Machine Learning, ICML 2024,
Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=pLtuwhoQh7. 1, 2, 4, 6, 7, 8, 9, 10, 19, 20

Linda Petzold. Automatic selection of methods for solving stiff and nonstiff systems of ordinary
differential equations. SIAM Journal on Scientific and Statistical Computing, 4(1):136–148, 1983.
doi: 10.1137/0904010. URL https://doi.org/10.1137/0904010. 7, 19

Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar,
Dominic Skinner, and Ali Jasim Ramadhan. Universal differential equations for scientific machine
learning. CoRR, abs/2001.04385, 2020. URL https://arxiv.org/abs/2001.04385. 6

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://
doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125. 6

Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of
partial differential equations. Science advances, 3(4):e1602614, 2017. 6

Lawrence F. Shampine. Some practical runge-kutta formulas. Mathematics of Computation, 46(173):
135–150, 1986. 7, 19

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020. 6

Yogesh Verma, Markus Heinonen, and Vikas Garg. Climode: Climate and weather forecasting with
physics-informed neural odes. arXiv preprint arXiv:2404.10024, 2024. 1

Dingling Yao, Caroline Muller, and Francesco Locatello. Marrying causal representation learning
with dynamical systems for science. Advances in Neural Information Processing Systems, 37,
2024. 1, 9

13

https://openreview.net/forum?id=pLtuwhoQh7
https://openreview.net/forum?id=pLtuwhoQh7
https://doi.org/10.1137/0904010
https://arxiv.org/abs/2001.04385
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A THEORETICAL DERIVATIONS
NEW

A.1 DEFINITIONS OF A, b, W , AND y

A, b, W , and y are defined as follows. A, b, and W are only theoretical and they are not explicitly
constructed during computation. Only y is computed.

Define ¯̄̄
At,q,v = [ct,q,v,0, . . . , ct,q,v,R]

⊤ ∈ RR+1.

Define ¯̄At,q =
[
¯̄̄
A⊤

t,q,1, . . . ,
¯̄̄
A⊤

t,q,V

]⊤
∈ RV (R+1).

Define Āt =
[
¯̄At,1, . . . ,

¯̄At,Q

]⊤
∈ RQ×V (R+1).

Define Agov = Diag
(
Ā1, . . . , ĀT

)
∈ RTQ×n.

Define ˜̃Ainit = [I,0] ∈ R(Rinit+1)×(R+1).

Define Ãinit = Diag(˜̃Ainit, . . . ,
˜̃Ainit︸ ︷︷ ︸

TinitV times

) ∈ RTinitV (Rinit+1)×TinitV (R+1).

Define Ainit =
[
Ãinit,0

]
∈ RTinitV (Rinit+1)×n.

Define Â+
t ∈ R(R+1)×(R+1) such that

[
Â+

t

]
i,j

=

{
0 if i > j,

sj−i
t / (j − i)! otherwise.

.

Define Â−
t ∈ R(R+1)×(R+1) such that

[
Â−

t

]
i,j

=

{
0 if i > j,

(−st)j−i
/ (j − i)! otherwise.

.

Define A+
t = Diag(Â+

t , . . . , Â
+
t︸ ︷︷ ︸

V times

) ∈ RV (R+1)×V (R+1).

Define A−
t = Diag(Â−

t , . . . , Â
−
t︸ ︷︷ ︸

V times

) ∈ RV (R+1)×V (R+1).

Define Asmooth forward =

A
+
1 −I

.
A+

T−1 −I

 ∈ R(T−1)V (R+1)×n.

Define Asmooth backward =

−I A−
1

.
−I A−

T−1

 ∈ R(T−1)V (R+1)×n.

Define

A =

 Agov

Ainit

Asmooth forward

Asmooth backward

 ∈ Rm×n. (18)

Define b̃t = [dt,1, . . . , dt,Q]
⊤ ∈ RQ.

Define bgov =
[
b̃⊤1 , . . . , b̃

⊤
T

]⊤
∈ RTQ.

Define ¯̄bt,v = [ut,v,0, . . . , ut,v,Rinit
]
⊤ ∈ RRinit+1.

Define b̄t =
[
¯̄b⊤t,1, . . . ,

¯̄b⊤t,V

]⊤
∈ RV (Rinit+1).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Define binit =
[
b̄⊤1 , . . . , b̄

⊤
Tinit

]⊤ ∈ RTinitV (Rinit+1).

Define
b =

[
b⊤gov, b

⊤
init,0

⊤]⊤ ∈ Rm. (19)

Define wgov = [w2
gov, . . . , w

2
gov︸ ︷︷ ︸

TQ times

]⊤ ∈ RTQ.

Define winit = [w2
init, . . . , w

2
init︸ ︷︷ ︸

TinitV (Rinit+1) times

]⊤ ∈ RTinitV (Rinit+1).

Define ¯̄wt =
[(
wsmooths

0
t

)2
, . . . ,

(
wsmooths

R
t

)2]⊤ ∈ RR+1.

Define w̄t = [¯̄w⊤
t , . . . , ¯̄w

⊤
t︸ ︷︷ ︸

V times

]⊤ ∈ RV (Rinit+1).

Define wsmooth =
[
w̄⊤

1 , . . . , w̄
⊤
T−1

]⊤ ∈ R(T−1)V (R+1).

Define w =
[
w⊤

gov,w
⊤
init,w

⊤
smooth,w

⊤
smooth

]⊤ ∈ Rm.

Define
W = diag (w) ∈ Rm×m. (20)

Define ¯̄yt,v = [yt,v,0, . . . , yt,v,R]
⊤ ∈ RR+1.

Define ȳt =
[
¯̄y⊤
t,1, . . . , ¯̄y

⊤
t,V

]⊤ ∈ RV (R+1).

Define
y =

[
ȳ⊤
1 , . . . , ȳ

⊤
T

]⊤ ∈ Rn. (21)

A.2 COMPUTE M AND β

Define matrix Ct ∈ RQ×V (R+1) such that [Ct]q,i = ct,q,v,r where v = ⌊(i− 1) / (R+ 1)⌋+ 1 and
r = (i− 1) mod (R+ 1).

Define vector dt = [dt,1, dt,2, . . . , dt,Q]
⊤ ∈ RQ.

Define constant matrix Ut ∈ {0, 1}V (R+1)×V (R+1) such that

[Ut]i,j =

{
1 if t ≤ Tinit and ((i− 1) mod (R+ 1)) ≤ Rinit and i = j,

0 otherwise.
(22)

Define vector ut ∈ RV (R+1) such that

[ut]i =

{
ut,v,r if t ≤ Tinit and r ≤ Rinit,

0 otherwise,
(23)

where v = ⌊(i− 1) / (R+ 1)⌋+ 1 and r = (i− 1) mod (R+ 1).

Define constant matrix F ∈ R(R+1)×(R+1) such that

[F]i,j =

{
0 if i > j,

1/ (j − i)! otherwise.
(24)

Define matrix S+
t = diag

(
s0t , s

1
t , . . . , s

R
t

)
∈ R(R+1)×(R+1).

Define matrix S−
t = diag

(
(−st)0 , (−st)1 , . . . , (−st)R

)
∈ R(R+1)×(R+1).

Define matrix S2
t = diag

(
s0t , s

2
t , . . . , s

2R
t

)
∈ R(R+1)×(R+1).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Define matrix S∗
t ∈ R(R+1)×(R+1) such that

S∗
t =


(
S+
1

)⊤
F⊤FS+

1 + S2
1 if t = 1,(

S−
T−1

)⊤
F⊤FS−

T−1 + S2
T−1 if t = T,(

S+
t

)⊤
F⊤FS+

t +
(
S−
t−1

)⊤
F⊤FS−

t−1 + S2
t + S2

t−1 otherwise.

(25)

Define matrix S∗∗
t = −

(
S+
t

)⊤
FS+

t −
(
S−
t

)⊤
F⊤S−

t ∈ R(R+1)×(R+1) .

Define block diagonal matrix St = Diag(S∗
t , . . . ,S

∗
t︸ ︷︷ ︸

V times

) ∈ RV (R+1)×V (R+1).

Then, Mt, Nt, and βt can be computed as

Mt = w2
govC

⊤
t Ct + w2

initUt + w2
smoothSt, ∀t ∈ {1, . . . T} , (26)

Nt = w2
smoothDiag(S∗∗

t , . . . ,S∗∗
t︸ ︷︷ ︸

V times

), ∀t ∈ {1, . . . T − 1} , (27)

βt = w2
govC

⊤
t dt + w2

initut, ∀t ∈ {1, . . . T} . (28)

A.3 GRADIENTS OF M AND β

In this proof, we use the subscripts h, i, j, k to denote the element index, e.g., yk is the k-th component
of vector y, Mi,j is the element in the i-th row and j-th column of matrix M , and Mi,: is the row
vector in the i-th row of M .

Rewrite y = M−1β as
yk =

∑
h

[
M−1

]
k,h

βh. (29)

Differentiate yk with respect to βi,
∂yk
∂βi

=
[
M−1

]
k,i

. (30)

Differentiate l with respect to βi using the chain rule,

∂ℓ

∂βi
=
∑
k

∂ℓ

∂yk

∂yk
∂βi

=
∑
k

[
M−1

]
k,i

∂ℓ

∂yk
=
[
M−⊤]

i,:

∂ℓ

∂y
. (31)

FIX
Express the derivative in vector form,

∂ℓ

∂β
= M−⊤ ∂ℓ

∂y
. (32)

Because M is symmetric, M−1 is also symmetric,

∂ℓ

∂β
= M−1 ∂ℓ

∂y
. (33)

Differentiate yk with respect to Mi,j ,

∂yk
∂Mi,j

=
∂
(∑

h

[
M−1

]
k,h

βh

)
∂Mi,j

=
∑
h

βh

∂
[
M−1

]
k,h

∂Mi,j
. (34)

Differentiate of
[
M−1

]
k,h

with respect to Mi,j ,

∂
[
M−1

]
k,h

∂Mi,j
= −

[
M−1

]
k,i

[
M−1

]
j,h

. (35)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Substitute the derivative back into the expression,

∂yk
∂Mi,j

= −
[
M−1

]
k,i

∑
h

[
M−1

]
j,h

βh = −∂yk
∂βi

yj . (36)

Differentiate l with respect to Mi,j using the chain rule,

∂ℓ

∂Mi,j
=
∑
k

∂ℓ

∂yk

∂yk
∂Mi,j

= −yj
∑
k

∂ℓ

∂yk

∂yk
∂βi

= −yj
∂ℓ

∂βi
. (37)

Express the derivative in matrix form,

∂ℓ

∂M
= − ∂ℓ

∂β
y⊤. (38)

NEW

A.4 OVERALL TRAINING AND TESTING ALGORITHMS

Algorithms 5 and 6 present the training and testing procedures for a generic application em-
ploying our S-MNN framework. We utilize a trainable encoder θenc, a trainable decoder θdec,
a training dataset Xtrain, and a testing dataset Xtest. During training, the encoder and de-
coder are updated using gradient descent methods. In testing, we obtain the set of decoded
outputs Z and the corresponding losses L. The lines highlighted in yellow boxes are par-
ticularly pertinent to S-MNN. Specifically, during training, L1:T , P1:T−1, and y1:T are com-
puted in the forward pass and reused in the backward pass. In testing, these quantities are
computed but discarded after subsequent computations, as they are not needed beyond that
point. The word “AutoDiff” in Algorithm 5 is the abbreviation of automatic differentiation.

Algorithm 5: Train a Epoch
Input: θenc, θdec,Xtrain

Output: θenc, θdec
1 for x← a batch in Xtrain do
2 c, d, u, s← θenc (x);
3 Compute M1:T ,N1:T−1,β1:T using c, d, u, s ;

// Appendix A.2

4 L1:T ,P1:T−1,y1:T ← SOLVERFORWARDPASS (M1:T ,N1:T−1,β1:T) ;
// Algorithm 1, which calls Algorithms 3 and 4

5 z ← θdec (y1:T);
6 Compute loss ℓ using z;
7 Compute gradient ∂ℓ

∂z (AutoDiff);
8 Compute gradients ∂ℓ

∂θdec
, ∂ℓ
∂y1:T

(AutoDiff);

9 ∂ℓ
∂M1:T

, ∂ℓ
∂N1:T−1

, ∂ℓ
∂β1:T

← SOLVERBACKWARDPASS
(
L1:T ,P1:T−1,y1:T ,

∂ℓ
∂y1:T

)
;

// Algorithm 2, which calls Algorithm 4

10 Compute gradients ∂ℓ
∂c ,

∂ℓ
∂d ,

∂ℓ
∂u ,

∂ℓ
∂s (AutoDiff) ;

11 Compute gradient ∂ℓ
∂θenc

(AutoDiff);
12 Update θenc, θdec using

∂ℓ
∂θenc

, ∂ℓ
∂θdec

;
13 end

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 6: Test
Input: θenc, θdec,Xtest

Output: Z,L
1 Initialize Z,L ← ∅,∅;
2 for x← a batch in Xtest do
3 c, d, u, s← θenc (x);
4 Compute M1:T ,N1:T−1,β1:T using c, d, u, s ;

// Appendix A.2

5 L1:T ,P1:T−1,y1:T ← SOLVERFORWARDPASS (M1:T ,N1:T−1,β1:T) ;
// Algorithm 1, which calls Algorithms 3 and 4

6 z ← θdec (y1:T);
7 Compute loss ℓ using z;
8 Z,L ← Z ∪ {z} ,L ∪ {ℓ}
9 end

B FURTHER EXPERIMENTAL DETAILS

B.1 STANDALONE VALIDATION

We list the linear ODEs used for the validation experiment and their closed-form solutions. There are
five ODEs from ODEBench (d’Ascoli et al., 2024) and an additional third-order ODE. c0, c1, c2 are
constant numbers. u0 = y (0), u0 = y (0), u1 = y′ (0), u2 = y′′ (0) are initial values.

RC-circuit (charging capacitor), (c0, c1, c2) = (0.7, 1.2, 2.31), (u0) = (10),

y

c1
+ c2

dy

dt
= c0, (39)

y = c0c1 + (u0 − c0c1) exp

(
− t

c1c2

)
. (40)

Population growth (naive), (c0) = (0.23), (u0) = (4.78),

c0y −
dy

dt
= 0, (41)

y = u0 exp (c0t) . (42)

Language death model for two languages, (c0, c1) = (0.32, 0.28), (u0) = (0.14),

(c0 + c1) y +
dy

dt
= c0, (43)

y =
c0

c0 + c1
−
(

c0
c0 + c1

− u0

)
exp (− (c0 + c1) t) . (44)

Harmonic oscillator without damping, (c0) = (2.1), (u0, u1) = (0.4,−0.03),

c0y +
d2y

dt2
= 0, (45)

y = u0 cos (t
√
c0) +

u1√
c0

sin (t
√
c0) . (46)

Harmonic oscillator with damping, (c0, c1) = (4.5, 0.43), (u0, u1) = (0.12, 0.043),

c0y + c1
dy

dt
+

d2y

dt2
= 0, (47)

y = exp
(
−c1

2
t
)(

u0 cos

(
t

2

√
4c0 − c21

)
+

c1u0 + 2u1√
4c0 − c21

sin

(
t

2

√
4c0 − c21

))
. (48)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Additional third-order ODE, (u0, u1, u2) = (0,−1, 1),
dy

dt
+

d2y

dt2
+

d3y

dt3
= 0, (49)

y = u0+u1+u2+exp

(
− t

2

)(
− (u1 + u2) cos

(√
3

2
t

)
+

√
3

3
(u1 − u2) sin

(√
3

2
t

))
. (50)

NEW
In Table 3, we present the relative MSE (mean squared error over standardized data) and
CPU runtime for RK45 (Dormand & Prince, 1980; Shampine, 1986), LSODA (Hindmarsh,
1983; Petzold, 1983), and our S-MNN method. RK45 and LSODA were evaluated using the
scipy.integrate.solve ivp function from SciPy. We run all solvers on CPUs (AMD EPYC
7513 32-Core Processor). This experiment serves as a sanity check to validate the correctness of our
solver. S-MNN achieves a relative MSE below 10−6 in all cases, indicating excellent agreement with
closed-form solutions. While S-MNN may not be the optimal solver for these pure ODE-solving
tasks, it offers additional features, such as batched GPU processing and differentiability, which are
not available in the classical solvers.

Table 3: Accuracy and performance comparisons between RK45 (Dormand & Prince, 1980; Shampine,
1986), LSODA (Hindmarsh, 1983; Petzold, 1983), and S-MNN (ours). The ODE problems are
denoted using their initial letter: RC Circuit, Population, Language Death, Harmonic, Harmonic
Damping, and Third-Order. Some high-order results are not applicable to low-order ODEs.

Solver R P L H D T

Relative MSE

y (t)
RK45 9.3e-12 2.9e-11 2.2e-11 1.7e-10 1.2e-10 6.7e-12

LSODA 4.5e-11 3.5e-10 9.2e-11 1.1e-09 1.5e-09 7.4e-11
S-MNN 4.8e-12 9.4e-12 2.6e-11 9.5e-08 2.1e-07 1.0e-09

y′ (t)
RK45 - - - 1.5e-10 1.4e-10 4.4e-12

LSODA - - - 7.6e-10 1.8e-09 5.9e-11
S-MNN - - - 7.7e-08 2.3e-07 6.8e-10

y′′ (t)
RK45 - - - - - 2.7e-12

LSODA - - - - - 6.0e-11
S-MNN - - - - - 4.3e-09

Runtime (CPU) [ms]
RK45 1.5 1.1 1.6 5.1 6.6 3.7

LSODA 1.1 0.9 1.3 5.0 5.0 2.9
S-MNN 22.2 22.2 22.1 23.8 23.8 26.1

B.2 LORENZ DISCOVERY

Table 4 lists the discovered coefficients after final fine-tuning, along with the results from the state-of-
the-art method SINDy (Brunton et al., 2016a). Our S-MNN closely matches the ground truth, SINDy,
and both the original MNN solvers, with only minor differences observed.

Table 4: Discovered coefficients for the Lorenz system using SINDy (Kaheman et al., 2020),
MNN (Pervez et al., 2024), and S-MNN (ours).

Method a1 a2 a3 a4 a5 a6 a7
Ground Truth -10 10 28 -1 -1 -8/3 1

SINDy -10.000 10.000 27.998 -1.000 -1.000 -2.667 1.000
MNN Dense -10.0003 10.0003 27.9760 -0.9934 -0.9996 -2.6660 0.9995
MNN Sparse -10.0055 10.0061 27.7165 -0.9304 -0.9937 -2.6641 0.9990

S-MNN -10.0003 10.0004 27.9915 -0.9968 -0.9997 -2.6664 1.0000
NEW

B.3 KORTEWEG-DE VRIES (KDV) PREDICTION

Figure 6 illustrates a comparison between the ground truth solution, the prediction obtained from
the original MNN dense solver, and that from our S-MNN. Both models produce predictions that

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

closely align with the ground truth, demonstrating that our S-MNN effectively captures the intricate
dynamics of the KdV equation. The MNN sparse solver cannot converge in this experiment and its
result is not shown.

0.5

0.0

0.5

1.0

1.5

2.0

Pr
ed

ict
io

n
of

 y
(x

,t
)

0 100 200
0

20

40

60

80

100
Ground Truth

0 100 200
0

20

40

60

80

100
MNN Dense

0 100 200
0

20

40

60

80

100

t [s]

S-MNN

0.10

0.05

0.00

0.05

0.10

Er
ro

r o
f y

(x
,t

)

0 100 200
x [m]

0

20

40

60

80

100

0 100 200
x [m]

0

20

40

60

80

100

0 100 200
x [m]

0

20

40

60

80

100

t [s]

Figure 6: Visual comparisons between the ground truth, the MNN dense solver (Pervez et al., 2024),
and our S-MNN solver for 100-second KdV predictions.

NEW

C COMPONENTS FROM THE ORIGINAL MECHANISTIC NEURAL NETWORK

The original Mechanistic Neural Network (MNN) (Pervez et al., 2024) solver approximates
continuous-time dynamics through time discretization. Our modifications in S-MNN provide alterna-
tive approximation methods that improve efficiency without sacrificing accuracy. While our main
focus was on presenting these improvements, for completeness, we briefly describe the components
from the original MNN that we have modified or discarded. The symbols and notations used below
are inherited from Section 3 and they may be different from Pervez et al. (2024).

C.1 SLACK VARIABLES AND SMOOTHNESS CONSTRAINTS

Both S-MNN and MNN share the same constraints for the governing equations (Eq. 4) and initial
values (Eq.5). However, unlike the smoothness constraints in S-MNN, which are formulated as
equalities (Eqs. 6 and 7), the original MNN (Pervez et al., 2024) models the smoothness constraints
as inequalities (Eqs. 54, 55, and 56): the approximation errors bounded by a slack variable ϵ ∈ R.

The forward and backward Taylor approximation errors in MNN are defined as:

Eforward
t,v,r = yt+1,v,r −

R∑
r′=r

sr
′−r

t

(r′ − r)!
yt,v,r′ , (51)

Ebackward
t,v,r = yt,v,r −

R∑
r′=r

(−st)r
′−r

(r′ − r)!
yt+1,v,r′ . (52)

For the highest (R-th) order derivative, the central difference approximation error is used instead of
the forward/backward approximation errors:

Ecentral
t,v,r = (yt+2,v,r − yt,v,r)− (st + st+1) yt+1,v,r+1. (53)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

The smoothness constraints are expressed as inequalities involving the slack variable ϵ:

srt
∣∣Eforward

t,v,r

∣∣ ≤ ϵ, ∀t ∈ {1, . . . , T − 1} , v ∈ {1, . . . , V } , r ∈ {0, . . . , R− 1} , (54)

srt
∣∣Ebackward

t,v,r

∣∣ ≤ ϵ, ∀t ∈ {1, . . . , T − 1} , v ∈ {1, . . . , V } , r ∈ {0, . . . , R− 1} , (55)

(st + st+1)
R−2 ∣∣Ecentral

t,v,R−1

∣∣ ≤ ϵ, ∀t ∈ {1, . . . , T − 2} , v ∈ {1, . . . , V } . (56)

C.2 QUADRATIC PROGRAMMING FORMULATION

In the original MNN, the approximation problem is formulated as a linear programming (LP)
problem: minimize ϵ while satisfying the linear equalities (Eqs. 4 and 5) and inequalities (Eqs. 54,
55, and 56). Specifically, the LP problem is:

minimize ϵ

subject to A′y′ ≥ b′, (57)

where A′ ∈ Rm′×(n+1), b′ ∈ Rm′
, y′ =

[
ϵ,y⊤]⊤ ∈ Rn+1, and m′ is the total number of

constraints.

However, solving ODEs using LP within neural networks poses challenges: the solutions are not
continuously differentiable, and efficient solvers are lacking. To address these issues, the LP problem
is relaxed to a quadratic programming (QP) problem:

minimize
γ

2
y′⊤y′ +∆⊤y′

subject to A′y′ = b′, (58)

where ∆ =
[
δ,01×n

]⊤ ∈ Rn+1, and γ, δ ∈ R are hyperparameters.

In QP (Eq. 58), ϵ2 is a minimized term. As an approximation, the absolute value operations |·| in
Eqs. 54, 55, and 56 are dropped.

Notably, the QP solution of y′ involves inverting the square matrix M ′ = A′⊤A′ which is not a
banded matrix due to the slack variable ϵ. Consequently, solving this system has a time complexity
of O

(
T 3V 3R3

)
, where T is the number of time steps, V is the number of variables, and R is the

highest order of derivatives considered.

21

	Introduction
	Overview of Mechanistic Neural Networks
	Scalable Mechanistic Neural Networks
	Linear System Formulation
	Solver Design, Architecture, and Analysis

	Related Work in Scientific Machine Learning
	Experiments
	Standalone Validation
	Comparative Analysis: Discovery of Governing Equations
	Comparative Analysis: Solving Partial Differential Equations (PDEs)
	Real-world Application: Long-term Sea Surface Temperature Forecasting

	Conclusion
	Theoretical Derivations
	Definitions of , , , and
	Compute and
	Gradients of and
	Overall Training and Testing Algorithms

	Further Experimental Details
	Standalone Validation
	Lorenz Discovery
	Korteweg-De Vries (KdV) Prediction

	Components from the Original Mechanistic Neural Network
	Slack Variables and Smoothness Constraints
	Quadratic Programming Formulation

