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Abstract

We examine in this paper the training and test set performance of
several equity factor models with a dataset of 20 years of data, 1,200
stocks and 100 factors.
First, we examine several models to forecast expected returns, which
can be used as baselines for more complex models: linear regression,
linear regression with an L1 penalty (lasso), constrained linear regres-
sion, xgboost and artificial neural networks.
Second, we present a unified framework for portfolio construction,
leveraging machine learning for the whole pipeline, from the factor
data to the portfolio weights, which scales to a large number of as-
sets and predictors. The results we obtain are interesting and non
trivial to interpret; non linear models models offer a more balanced
outcome considering test set Sharpe ratio and turnover but linear un-
constrained models show a good performance in the test set. We in-
troduce a model-free reinforcement learning model, which uses factors
to find the portfolio weights maximizing the information ratio.

1 Introduction

We will explore in this paper two of the most fundamental challenges of financial modeling,
namely predicting asset returns and covariance matrix of these and finding the optimal
weights in a portfolio – Asset Allocation. The traditional approach to quantitative portfolio
management is a 3-step process:

– First, forecast the expected returns of the assets under consideration, often, with a
linear regression and the covariance matrix of these returns;

– Second, use those forecasts to build a portfolio, through portfolio optimization.
– Third, consider market impact and transaction costs.

Those three steps can be at odds with one another: the first step often minimizes a sum of
squared residuals, which has no financial interpretation – the model will make compromises
to have good forecasts on average, including for assets that will not be used in the second
step.

Machine learning and deep learning have started to take over some of those tasks, in
particular the forecasting step using supervised learning methods.

Our contribution is twofold:

– First, we examine a few models to forecast future returns, which can be used as baselines
for more complex models:
· Linear regression;
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· Linear regression with an L1 penalty (lasso);
· Constrained linear regression;
· Neural network;

– Second, we present a unified framework for portfolio construction, leveraging machine
learning for the whole pipeline, from the data to the portfolio weights, which scales to
a large number of assets and predictors.
· We start with dozens of “investment factors”: quantities with proven (or believed)

predictive power on future returns;
· We combine them with a neural network, to capture nonlinearities and interactions,

to produce a “score”, rather than a return forecast;
· We turn those scores into portfolio weights, by normalizing them;
· We optimize the information ratio of the strategy – but the same approach would

work with any differentiable objective (drawdown, etc.)

In a follow-up paper, we will combine those approaches by

– Imposing monotonicity constraints on that neural network [Liu et al., 2020, You et al., 2017],
to reflect the expected direction in which the investment factors work – that prior knowl-
edge is important;

– Replacing the normalization of the portfolio weights with an actual portfolio optimiza-
tion – the optimization will then be a layer in the deep learning pipeline [Agrawal et al., 2019].

2 Literature Review

Factor models have been one of the major fields of research in finance from the seminal
papers [Fama and French, 2015], [Fama and French, 1993] and [Ross, 1976]. There have
been some prior attempts to go directly from data to portfolio weights, with “formulaic
portfolios”, using weights proportional to some measure of value [Arnott et al., 2005], some
power of capitalization [Fernholz, 2002, Vervuurt, 2015, Fernholz, 2005, Fernholz et al., 1998],
or a learned combination of both [Samo and Vervuurt, 2016]. Those attempts are limited
to a small number of assets and features [Zhang et al., 2020].
The book [Coqueret and Guida, 2020] offers a detailed coverage of machine learning meth-
ods. This paper is a follow-up to [Zoonekynd et al., 2017], with a different dataset and
nonlinear models. [Cong et al., 2020] develop a similar idea. Other excellent references
are [Gu et al., 2018]. In a very recent paper [de Prado, 2022] explores some of the flaws
of these models and suggests new lines of research for factor models.

3 Data and models

We use monthly stock-level data from [Coqueret and Guida, 2020] (20 years, 1200 stocks,
100 features):

– One-month forward returns;
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– Investment signals, e.g., earnings yield, momentum, etc.; for each investment signal, we
know in which direction it is supposed to be used: for instance, “earnings yield” has a
positive impact on future performance, while “volatility” has a negative impact;

We split the data into three periods:

– Training data: until 2016;
– Validation data: 2017–2018;
– Test data: 2019–present.

The data was pre-processed as follows:

– Transform each variable, separately for each date, to make it uniform on [−1, 1];
– Replace the missing values by 0.

We compare the following models:

– Linear regression, to forecast future returns;
– Linear regression with a lasso penalty, to forecast future returns; we have not used the

validation period to select a model on the regularization path, but arbitrarily picked
the most complex model using at most 10 predictors;

– Linear regression with a constraint on the sign of the coefficients;
– Non-linear model, implemented as a multi-layer perceptron (MLP), to predict future

returns, minimizing the sum of squared residuals;
– Linear model, outputting, not return forecasts, but (logarithms of unnormalized) port-

folio weights, and optimizing, not a sum of squared residuals, but the information ratio;
– Nonlinear model, outputting portfolio weights, and maximizing the information ratio.

More precisely, let i denote the stocks, t the dates, k the investment signals, xitk the value
of investment signal k for stock i at time t, yi,t+1 the log-returns of stock i on [t, t + 1].
The lasso finds the coefficents βk minimizing

1

N

∑
i,t

(∑
k

βkxikt − yi,t+1

)2

+ λ
∑
k

|βk| .

where λ is a parameter.

The sign-constrained linear regression (or nonnegative OLS) is a similar optimization
problem, looking for the coefficients βk minimizing the sum of squared residuals

1

N

∑
i,t

(∑
k

βkxikt − yi,t+1

)2

with the penalty replaced by constraints ∀k βk ≥ 0 if all the signals have a positive
predictive power on future returns.

The nonlinear model looks for a non-linear map φ, parametrized as

Rn −→ Rm −→ Rm −→ R
x 7−→ Ax 7−→ σAx 7−→ BσAx
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where A ∈ Rm×n, B ∈ R1×m are unknown matrices and σ(u) = (1 + e−u)−1 is the
elementwise sigmoid function. A deeper neural network would be defined as

φ(x) = BσAlσAk−1 · · ·σA1x.

Note that there is no sigmoid transform for the output: we want unbounded, both positive
and negative return forecasts.
The end-to-end models, computing weights optimizing the information ratio, are a little
more complex, but they can be described as a sequence of simple steps:

ŷi,t+1 =
∑
k

βkxikt score (it could be a nonlinear function)

w̃i,t = exp ŷi,t+1 unnormalized weights

wi,t =
w̃i,t∑
j

w̃j,t
portfolio weights

ỹi,t+1 = eyi,t+1 − 1 stock ratio-returns on [t, t+ 1]

r̃t+1 =
∑
i

wi,tỹi,t+1 portfolio ratio-returns on [t, t+ 1]

rt+1 = log(1 + r̃t+1) portfolio log-returns on [t, t+ 1]

µ =
1

T

∑
rt average portfolio log-returns

σ =

√
1

T − 1

∑
t

(rt − µ)2 portfolio volatility

IR =
µ

σ
information ratio

Those end-to-end models can also be interpreted as a form of reinforcement learning:

– The state is given by the current values of the predictors, the current portfolio holdings,
the past portfolio returns;

– The actions are the possible portfolio holdings;
– The reward is zero except for the last time step, when it is the information (or Sharpe)

ratio.

Since the model is differentiable (in particular, the actions are continuous and, more
importantly, the reward is not given exogenously, but computed, in a known way), we
can use a policy gradient algorithm. The last two models also use “mini-batches”: at
each iteration, we do not estimate the objective function on the whole training data, but
on a random subset of stocks and a random interval of dates. Since the objective is not
additive, this is closer to bagging than deep learning mini-batches.

For neural networks, we use the Adam optimization algorithm, with the default parame-
ters.
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To compare the models, we built quintile portfolios from their outputs and looked at the
performance (returns, volatility, information ratio, turnover, etc.) of the corresponding
long-short portfolios.

We provide reproducible code for all the computations.1

4 Results

Figures 1, 2 and 3 show the performance of the strategies tested:

– The (unconstrained, unpenalized) linear model performs best (this is surprising), but
its turnover is very high;

– The constrained linear model does not perform well (this is surprising as well);
– The performance of the lasso is decent, and its turnover lower;
– The nonlinear model to forecast returns presents convergence problems: quite often,

the optimization remains stuck around a poor-quality solution;
– The nonlinear model to optimize the information ratio has a good performance and the

lowest turnover.

Figure 4 shows the variables used by the lasso.

Figure 5 shows the relation between some of the predictors and the output of the nonlinear
model: the relations are always simple, monotonic or V- (or Λ-)shaped, with an occasional
glitch around 0 corresponding to missing values.

Model Portfolio CAGR (%) AnnVol (%) IR Turnover (%)
unconstrained LS 21.9 12.4 1.77 52
lasso 26 LS 15.7 13.7 1.14 25
constrained LS 9.9 14.7 0.67 21
nonlinear LS 16.6 12.4 1.33 44
IR LS 15.5 14.6 1.07 17
IR nonlinear LS 20.9 16.0 1.31 10

Figure 1: Performance of the long-short strategies tested

1https://github.com/zoonek/2020-12_ML_in_Finance
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Model Portfolio CAGR (%) AnnVol (%) IR Turnover (%)
unconstrained 5 31.4 19.5 1.61 26
constrained 5 21.1 22.0 0.96 11
nonlinear 5 25.1 21.0 1.20 22
xgboost L 18.4 14.2 1.29 50
IR 5 23.1 19.2 1.20 9
IR nonlinear 5 27.5 20.3 1.36 6

Figure 2: Performance of the long-only strategies tested, for comparison with
[Coqueret and Guida, 2020] (“xgboost”)
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Figure 3: Wealth curves of the quintile portfolios
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Figure 4: Predictors used in the lasso model
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Figure 5: Different ways of examining the relation between each predictor
and the output of the nonlinear model maximizing the information ratio:
copula density, hexagonal bins, and median-per-quantile. In each plot, the
predictor is on the horizontal axis, the variable to predict (future returns) on
the vertical axis).
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5 Conclusion

We examine in this paper the training and test set performance of several factor models.
First, we examine a few models to forecast expected returns, which can be used as baselines
for more complex models: linear regression, linear regression with an L1 penalty (lasso),
constrained linear regression, xgboost, artificial neural networks. Second, we present a
unified framework for portfolio construction, leveraging machine learning for the whole
pipeline, from the data to the portfolio weights, which scales to a large number of assets
and predictors.
The results we obtain are interesting and non trivial to interpret: non linear models
offer a more balanced outcome considering test set Sharpe ratio and turnover, but linear
unconstrained models show a good performance in the test set. We introduce a model-free
reinforcement learning model, which uses factors to find the portfolio weights maximizing
the information ratio.
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