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Abstract
The expected signature maps a collection of data
streams to a lower dimensional representation,
with a remarkable property: the resulting fea-
ture tensor can fully characterize the data gener-
ating distribution. This “model-free” embedding
has been successfully leveraged to build multi-
ple domain-agnostic machine learning (ML) al-
gorithms for time series and sequential data. The
convergence results proved in this paper bridge
the gap between the expected signature’s em-
pirical discrete-time estimator and its theoreti-
cal continuous-time value, allowing for a more
complete probabilistic interpretation of expected
signature-based ML methods. Moreover, when
the data generating process is a martingale, we
suggest a simple modification of the expected sig-
nature estimator with significantly lower mean
squared error and empirically demonstrate how it
can be effectively applied to improve predictive
performance.

1. Introduction
The signature transform of a stream of data is an infinite but
countable sequence of its “iterated integrals” summarizing
the input in a top-down fashion, meaning the informational
content of its terms decays factorially. Originally introduced
by Chen (1954) and serving as a fundamental object of
rough path analysis (Lyons et al., 2007), the signature

S = {S(X)[0,t] ∈ T ((Rd)), t ∈ [0, T ]},

of a path X = {Xt, t ∈ [0, T ]} ∈ C([0, T ],Rd) is a lift
(in the sense that it embeds X) to the space of continuous
functions over the tensor algebra T ((Rd)) possessing some
nice algebraic and geometric properties. When the path is of
bounded variation, the signature is defined as the sequence
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of iterated integrals of X, i.e. for t ∈ [0, T ], k ≥ 0

Sk(X)[0,t] =
∫
· · ·
∫

0≤s1≤...≤sk≤t

dXs1 ⊗ · · · ⊗ dXsk . (1)

In many practical applications the path X is taken to be
the piecewise linear interpolation of a discrete-time stream
of data, which is of bounded variation by construction.
Signature-based machine learning (ML) approaches (Lyons
& McLeod, 2024) thus often restrict the theoretical frame-
work to paths in BV([0, T ],Rd). In this setting, two funda-
mental properties of the signature that make it a desirable
non-parametric feature extraction method for sequential
data are the characterization result of Hambly & Lyons
(2005) and the universality approximation theorem of Levin
et al. (2016). Moreover, when the path X is understood
as a (realization of a) random process with distribution P
over BV([0, T ],Rd), the shuffle property of the signature
implies that all moments of the random variable S(X)[0,T ]

are determined by its expectation

ϕ(T ) := E[S(X)[0,T ]] ∈ T ((Rd)).

A natural question, known as the Hamburger moment prob-
lem (Fawcett, 2003), is thus whether the expectation of
the signature characterizes its law (and thus the law of the
path). When imposing a probability distribution P on X
the assumption of bounded variation paths becomes quite
restrictive: Brownian motion, the basic building block of
many stochastic models, has paths of infinite variation al-
most surely. Even if we observe a discrete-time stream of
data, we often still would like to define the process X as
a latent stochastic process of which we observe the linear
interpolation over some partition π of [0, T ], hereafter de-
noted by Xπ . We hence wish to make sense of the signature
of a stochastic process X with paths of unbounded variation.
For a given path X ∈ C([0, T ],Rd) of finite p-variation,
once we “lift” the process to a p-rough path (Lyons et al.,
2007, Definition 3.11) then the signature S of X is uniquely
defined1. Without delving into the details of rough path
theory, for our purposes it suffices to interpret the choice of
lift as fixing a notion of integration with respect to X: the
higher order signatures terms are then understood as iterated
integrals of the path X defined in this sense.

1This is the first fundamental theorem in the theory of rough
paths (Lyons et al., 2007, Theorem 3.7).
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Motivated by the fact that we can only ever observe the
process X over a discrete partition π of [0, T ] we restrict our
attention to the class of stochastic processes whose lift (and
hence signature) can be approximated by the lift (and hence
signature) of the bounded variation path Xπ . Following the
rough path literature we take such approximation in the p-
variation metric to define the notion of canonical geometric
stochastic process, cf. Definition 2.1. In Chevyrev & Lyons
(2016); Chevyrev & Oberhauser (2018) the authors provide
characterization results for the expected signature of canon-
ical geometric stochastic processes, i.e. conditions under
which the map P 7→ E[S(X)[0,T ]] is injective. Such charac-
terizing property of the expected signature has found practi-
cal use in a wide range of applications, ranging from classic
ML tasks (Lemercier et al., 2021; Triggiano & Romito,
2024; Schell & Oberhauser, 2023) to mathematical finance
(Lyons et al., 2021; Futter et al., 2023).

The expected signature is thus a highly informative quan-
tity and, consequently, methods for computing ϕ(T ) have
received considerable research interest. Such methods can
be broadly categorized into two classes: those employing an
analytical approach and those following a statistical one. An-
alytical methods aim to develop exact formulas for specific
classes of models. A first step in this direction was taken
in Ni (2012, Section 4) showing that the expected signature
of an Itô diffusion satisfies an explicit partial differential
equation (PDE). This result was subsequently generalized
in Cuchiero et al. (2023) to the class of signature-SDEs and
in Friz et al. (2022; 2024) to (discontinuous) semimartin-
gales. On the other hand, the statistical approach aims to
estimate ϕ(T ) directly from observed data, preserving the
model-free nature of the expected signature. For a given set
of observations X1,π, . . . ,XN,π one can form the estimator

ϕ̂N,π(T ) :=
1

N

N∑
n=1

S(Xn,π)[0,T ],

as illustrated in Figure 1, and study its in-fill |π| → 0 and
large-sample N → ∞ asymptotics. This line of work in-
cludes the explicit results of Ni (2012, Section 3.2) for
Brownian motion and of Passeggeri (2020) for fractional
Brownian motion with Hurst parameter H > 1/2 as well
as the preliminary results in Friz & Victoir (2010) for more
general semimartingales. Additionally, Schell & Oberhauser
(2023, Section 8) develops asymptotic results for processes
of bounded variation. In this work we provide a unifying set
of general conditions under which the expected signature
estimator ϕ̂N,π(T ) displays important asymptotic statistical
properties, namely consistency and asymptotic normality.
Our results allow for irregular2 observation partitions π
– possibly varying across samples – and for dependency

2Clearly, for the estimation problem to be well-posed, the se-
quence of partitions needs to be signature defining in the sense of
Definition 2.5.

across the samples X1,π, . . . ,Xn,π. The first main contri-
bution of this paper is thus to bridge the gap between the
empirical expected signature estimator and the expected
signature of a latent continuous-time stochastic process, un-
locking a more general probabilistic interpretation of several
ML algorithms and effectively moving beyond the expected
signature as a simple feature extraction method. This natu-
rally leads to the second theoretical contribution: by starting
from the continuous-time setting we devise a modification
of the expected signature estimator with significantly bet-
ter finite sample properties when the latent data generating
process is a martingale. The superior performance of this
modified estimator is empirically verified through various
experiments with expected signature-based ML algorithms
from the literature.

Figure 1. Estimating the expected signature estimation from a finite
collection of discretely-observed paths.

2. Theory
Let X = {Xt, t ∈ [0, T ]} denote a d-dimensional stochas-
tic process over the probability space (Ω,F ,P).
Definition 2.1. We say X is a canonical geometric stochastic
process of rough order p if there exists a sequence of parti-
tions ρ with |ρ| → 0 such that the limit in the p-variation
metric of the canonically lifted linearly interpolated process
Xρ exists in probability. Convergence in probability implies
almost sure convergence (along a subsequence) and hence
we can almost surely define the lift of X as such limit.

Remark 2.2. The definition of lift suggests this might de-
pend on the choice of the sequence of partitions ρ. In any
case, for a wide range of stochastic processes there exist
canonical lifts that satisfy our definition of canonical geo-
metric rough path. These include:

• Semimartingales: For p ∈ (2, 3) any semimartingale
can be lifted to a geometric p-rough path by defining
the lift via Stratonovich integration; the signature of
X then coincides with iterated Stratonovich integrals.
For any sequence of partitions ρ the lifts of the linear
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interpolations converge in p-variation metric to the
Stratonovich lift (Friz & Victoir, 2010, Chapter 14) and
hence X is a canonical geometric stochastic process in
the sense of Definition 2.1.

• Gaussian processes: Many Gaussian processes ad-
mit canonical lifts to geometric p-rough paths (Friz
& Victoir (2010, Theorem 15.34, Definition 15.35) and
Coutin & Qian (2002)) with the existence criterion for
such canonical lifts easily stated in terms of the co-
variance function. The definition of the lift implicitly
requires ρ to be any sequence such that Xρ converges
uniformly to X almost surely. For example, fractional
Brownian motion with Hurst parameter H > 1/4 can
be lifted to a geometric p-rough path with p > 1/H by
choosing ρ to be the sequence of dyadic partitions.

In what follows, we will assume the canonical geometric
stochastic process X has a canonical lift (i.e. a canonical
sequence of partitions ρ along which the lift is defined) and
unambiguously refer to it as the lift of X.

Let ρ denote a partition of [0, T ] with mesh |ρ| and Xρ =
{Xρ

t , t ∈ [0, T ]} the linear approximation of X over ρ, i.e.

Xρ
t = Xu +

t− u
v − uXu,v, t ∈ [u, v] ∈ ρ,

with Xu,v = Xv −Xu. The signature of the bounded varia-
tion path Xρ up to time t ∈ [0, T ] is defined by Equation (1)
through classic Riemann-Stieltjes integration and can thus
be computed by

S(Xρ)[0,t] =
⊗

[u,v]∈ρ[0,t]

exp⊗ Xρ
u,v, (2)

where ρ[0,t] denotes the restriction of ρ to [0, t]. The canoni-
cal lift of Xρ to a (geometric) p-rough path is(

1, S1(Xρ)[0,t], . . . , S
⌊p⌋(Xρ)[0,t]

)
∈ T ⌊p⌋ ((Rd

))
, (3)

for t ∈ [0, T ]. Definition 2.1 requires that there exists a se-
quence of partitions ρ for which this sequence of geometric
p-rough paths converges in probability in the p-variation
metric. A key result from rough path theory is that a ge-
ometric p-rough path has a full signature. Fixing the lift
of X via Definition 2.1, we thus have a uniquely specified
signature for X.
Definition 2.3. The signature of a canonical geometric
stochastic process X,

S = {S(X)[0,t] ∈ T ((Rd)), t ∈ [0, T ]},
is defined pathwise (on a set of full measure) as the unique
extension of the lift of X to a multiplicative functional of
arbitrary order in the sense of (Lyons et al., 2007, The-
orem 3.7). The elements of the signature are the rough
iterated integrals of X.

Remark 2.4. Taking ρ to be a sequence such that Defini-
tion 2.1 holds, by continuity of the extension map (Lyons
et al., 2007, Theorem 3.10), it immediately follows that the
signature of Xρ (truncated at level K ≥ ⌊p⌋) converges
in probability to the signature of X (up to level K) in the
p-variation topology. In particular, this implies that, for any
finite collection of words I,

SI(Xρ)[0,t]
P→ SI(X)[0,t]. (4)

Similar arguments imply that, when convergence to the lift
along ρ holds almost surely in the p-variation metric, then
also the higher order signature terms converge almost surely,
and, in particular, (4) holds in the almost sure limit.

In the following sections, we will be estimating the expected
signature at fixed time horizon T > 0. To develop the
properties of these estimators, it will be thus sufficient to
work with pointwise limits like (4) without having to deal
with the stronger pathwise p-variation convergence used to
define canonical geometric stochastic processes. This mode
of convergence will thus be sufficient to consider a sequence
of partitions as signature-defining.

Definition 2.5. Let X = {Xt, t ∈ [0, T ]} be a canonical
geometric stochastic process, we say that a sequence of
partitions π of the interval [s, t] ⊆ [0, T ] with |π| → 0 is
signature-defining if for any collection of words I,

SI(Xπ)[s,t]
P→ SI(X)[s,t], |π| → 0. (5)

2.1. Expected Signature Estimation

In this section, we assume we have access to N copies of X
discretely observed over possibly different partitions of the
interval [0, T ], i.e. each Xn,πN,n is an observation over πN,n

of a continuous-time latent process Xn, for n = 1, . . . , N .
We will focus on two observational schemes:

(ind) Repeatedly observe X through N independent ex-
periments, in which case the “underlying” signatures
S(Xn)[0,T ], for n = 1, . . . , N , are independent and
identically distributed.

(chop) Chop-up (and shift in time) a single observation of
the process {Xt, t ≥ 0} over a partition

Π(N) := πN,1 ∪ · · · ∪ ((N − 1)T + πN,N ),

of [0, NT ]. In this setting, we assume that the latent
sequence {Xn, n ≥ 1} taking values in C([0, T ];Rd)
is stationary, i.e. for k ∈ N, n1, . . . , nk ∈ N and n ≥
0,

(Xn1 , . . . ,Xnk)
L
= (Xn1+n, . . . ,Xnk+n), (6)
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and hence the signatures S(Xn)[0,T ] form a stationary
sequence. This assumption ensures the task of esti-
mating ϕI(T ) is well-posed. Note this condition is
slightly stronger than necessary but weaker than requir-
ing {Xt, t ≥ 0} to be stationary, cf. Proposition 2.13.

The first observational framework can be recast in the sec-
ond by appropriately pasting the Xn’s into a single process
{Xt, t ≥ 0}. Going forward we hence focus on the second
setting and refer to the large sample asymptotics N →∞
as long-span asymptotics. For any finite collection of words
I, we thus consider the estimator

ϕ̂
Π(N)
I (T ) :=

1

N

N∑
n=1

SI(Xn,πN,n)[0,T ]. (7)

We will be interested in the double asymptotics where, as the
number of signature evaluationsN increases, the granularity
of the discretized paths from which such signatures are
computed also increases, i.e.

|Π(N)| := max
1≤n≤N

|πN,n| → 0, N →∞.

We can decompose

ϕ̂
Π(N)
I (T )− ϕI(T )

=
1

N

N∑
n=1

(
SI(Xn,πN,n)[0,T ] − SI(Xn)[0,T ]

)
+

1

N

N∑
n=1

SI(Xn)[0,T ] − E
[
SI(X)[0,T ]

]
.

(8)

Under suitable conditions, we shall prove ϕ̂Π(N)
I (T ) is con-

sistent and asymptotically normal for ϕI(T ) by showing

1. each summand in the first term converges to zero in
Lm in the in-fill asymptotics |πN,n| → 0;

2. the second term, when inflated by
√
N , converges in

distribution to a normal random variable in the large
sample asymptotics N →∞.

2.1.1. IN-FILL ASYMPTOTICS

The convergence in probability (5) is not sufficient to show
consistency of the expected signature estimator. In this
section, we thus explore continuity conditions on the process
X ensuring the convergence holds in a stronger Lm sense.

Let {Fs,t, [s, t] ⊆ [0, T ]} be a family of sigma-algebras
such that, for [u, v] ⊆ [s, t] ⊆ [0, T ], Fu,v ⊆ Fs,t and, for
[s, t] ⊆ [0, T ], Xs,u is Fs,t-measurable for all u ∈ [s, t].

The following continuity assumptions will be used to state
the in-fill asymptotics.

Assumption 2.6. For all 0 ≤ s < u < t ≤ T ,

(Aα) ∥Xs,t∥Lp ≲ |t− s|α.

(Aβ) ∥EF0,s∨Ft,T
[Xs,u ⊗Xu,t]∥Lp/2 ≲ |t− s|β .

(Aγ) ∥EF0,s∨Ft,T
[Xs,u ⊗X⊗2

u,t]∥Lp/3 ≲ |t− s|γ ,
∥EF0,s∨Ft,T

[X⊗2
s,u ⊗Xu,t]∥Lp/3 ≲ |t− s|γ .

(Aδ) ∥EF0,s
[Xs,t]∥Lp ≲ |t− s|δ .

Remark 2.7. By the contraction property of the conditional
expectation, the strongest form of (Aβ), (Aγ) and (Aδ) is
obtained by setting Fs,t = σ(Xs,u, u ∈ [s, t]).

Theorem 2.8. Let k = maxI∈I |I| and, for m ≥ 2, set
p = mk. Assume X is a canonical geometric stochastic
process that satisfies one of the following:

(i) (Aα) for α > 1/2;

(ii) (Aα), (Aδ) for α = 1/2, δ ≥ 1;

(iii) (Aα), (Aβ) for α ∈ (1/3, 1/2], β > 1;

(iv) (Aα), (Aβ), (Aγ) for α ∈ (1/4, 1/3], β > 1, γ > 1;

with

ϵ =


2α− 1, if (i),
(2α− 1/2) ∧ (α+ δ − 1), if (ii),
3α ∧ β − 1, if (iii),
4α ∧ β ∧ γ − 1, if (iv),

(9)

and consider a signature-defining, cf. Definition 2.5, se-
quence of refining partitions {πn, n ≥ 1} of the interval
[0, T ] such that ∑

n≥1

|πn|ϵ <∞,

then the stronger convergence holds

SI(Xπn)[0,T ]
Lm

→ SI(X)[0,T ], n→∞, (10)

with rate O(∑n′≥n |πn′ |ϵ).

Proof. See Appendix B.1.

Remark 2.9. Note that, if {πn, n ≥ 1} is a sequence of
dyadic partitions with |πn| = 2−nT , then∑

n≥1

|πn|ϵ =
∑
n≥1

2−nϵT ϵ =
T ϵ

1− 2−ϵ
<∞,

and the rate of convergence is O(2−nϵ).
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2.1.2. LONG-SPAN ASYMPTOTICS

Theorem 2.10. Fix T > 0 and let {Xt, t ≥ 0} be a
stochastic process such that X1 = {Xt, t ∈ [0, T ]} satisfies
the assumptions of Theorem 2.8 with m > 2. Assume
{Xn, n ≥ 1} is stationary and ergodic and the sequence
of partitions {Π(N), N ≥ 1} is such tha,t for each n ≥ 1,
π·,n = {πN,n, N ≥ n} is a signature-defining sequence of
refining partitions, and∑

N ′≥N

|Π(N ′)|ϵ → 0, N →∞. (11)

Then the expected signature estimator (7) is

1. consistent, i.e. ϕ̂Π(N)
I (T )

L2

→ ϕI(T ) as N →∞.

If, moreover, {Xn, n ≥ 1} is strongly mixing with mixing
coefficient {α(n), n ≥ 1} such that, for ζ = m− 2 > 0,∑

n≥1

α(n)ζ/(2+ζ) <∞, (12)

and √
N
∑

N ′≥N

|Π(N ′)|ϵ → 0, N →∞, (13)

where ϵ is given in Equation (9), then the estimator is also

2. asymptotically normal, i.e.
√
N
(
ϕ̂
Π(N)
I (T )− ϕI(T )

)
L→ N (0,ΣI), N →∞,

as long as ΣI is strictly positive definite, where

ΣI =Var
(
SI(X1)[0,T ]

)
+ 2

∑
n≥2

Cov
(
SI(X1)[0,T ], S

I(Xn)[0,T ]

)
.

Proof. See Appendix B.2.

Remark 2.11. If {Π(N), N ≥ 1} is a sequence of ex-
panding dyadic refinements, i.e. for each n ≥ 1, π·,n is a
sequence of dyadic partitions with |πN,n| = 2−NT ,N ≥ n,
as in Remark 2.9, then |Π(N)| = 2−NT and, hence,
√
N
∑

N ′≥N

|Π(N ′)|ϵ = O(
√
N2−ϵN )→ 0, N →∞.

Corollary 2.12. Assume the conditions of Theorem 2.10
hold with Theorem 2.8.(ii) satisfied for some m > 4 and for
any T > 0. Assume furthermore we can characterize the
rate of convergence of Theorem 2.10.1 as ρ(N) ∼ N−υ for
some υ ∈ (0, 1). Then the kernel estimator

Σ̂
Π(N)
I =

∑
|n|≤hN

Σ̂
n,Π(N)
I ,

with hN = Nυ/2, non-overlapping cross-covariances

Σ̂
n,Π(N)
I =

1

M

M∑
m=1

[SI(XπN,(n+1)m−n)[0,T ] − ϕ̂Π(N)
I (T )]

× [SI(XπN,(n+1)m)[0,T ] − ϕ̂Π(N)
I (T )]T,

for M = ⌊N/(n+ 1)⌋ and

Σ̂
−n,Π(N)
I :=

(
Σ̂

n,Π(N)
I

)T
, n = 1, . . . , N − 1,

is consistent for ΣI, i.e. ΣΠ(N)
I

L2

→ ΣI as N → ∞, and
hence the CLT result of Theorem 2.10 can be made feasible.

Proof. See Appendix B.3.

Requiring {Xn, n ≥ 1} to be stationary and ergodic or
strongly mixing are high-level conditions. The following
results give stronger but easier-to-interpret conditions.

Proposition 2.13. Fix T > 0 and let {Xt, t ≥ 0} be a
stochastic process. Then3

{Xt, t ≥ 0} is stationary

=⇒ {Xt, t ≥ 0} has jointly stationary increments

=⇒ {Xn, n ≥ 1} is stationary.

If any of the above holds, and X1 is a canonical geometric
stochastic process, then, for any collection of words I,

{Xt, t ≥ 0} is strongly mixing

=⇒ {Xn, n ≥ 1} is strongly mixing.

Proof. See Appendix B.4.

One might expect a similar statement to hold for ergodicity,
but Remark B.6 shows that

{Xt, t ≥ 0} is ergodic ≠⇒ {Xn, n ≥ 1} is ergodic.

Strong mixing implies ergodicity and hence the second part
of Proposition 2.13 yields a sufficient condition (as far as
{Xn, n ≥ 1} is concerned) for both the consistency and
asymptotic normality results of Theorem 2.10. Strong mix-
ing is a somewhat restrictive assumption and hence one
might wish to find a set of interpretable conditions weaker
than strong mixing ensuring at least consistency of the esti-
mator. The following theorem gives such a condition when
{Xt, t ≥ 0} is a Gaussian process.

3We say {Xt, t ≥ 0} has jointly stationary increments if for
all n ∈ N, 0 ≤ si ≤ ti with i = 1, . . . , n, and t ≥ 0,

(Xs1,t1 , . . . ,Xsn,tn)
L
= (Xt+s1,t+t1 , . . . ,Xt+sn,t+tn). (14)
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Theorem 2.14. Fix T > 0 and let {Xt, t ≥ 0} be a
Gaussian process such that X = {Xt, t ∈ [0, T ]} is a
canonical geometric stochastic process satisfying4 (Aα)
with α ≥ 1/2 and p = 2. Assume the sequence of dyadic
partitions of [0, T ] is signature-defining for X and for each
N ≥ 1 let πN,n be the dyadic partition the interval [0, T ]
with mesh |πN,n| = 2−NT .

Suppose {Xt, t ≥ 0} has constant mean and time-
homogeneous increment covariance, i.e. ∀u, v, s, t, r ≥ 0

Cov (Xu,v,Xs,t) = Cov (Xu+r,v+r,Xs+r,t+r) ,

satisfying, for some decreasing θ : R+ → R+ with θ(t)→
0, t→∞ and

∫ T

0
θ(t)dt <∞ and m ∈ N,

(Aθ) ∥Cov (Xu,v,Xs,t) ∥ ≲ θ(|s− v|)|v − u||t− s|,

for all 0 ≤ u ≤ v < s ≤ t with |s−v| ≥ m
2 (|t−s|+|v−u|).

Then the expected signature estimator (7) is consistent, i.e.
ϕ̂
Π(N)
I (T )

P→ ϕI(T ) as N →∞.

Proof. See Appendix B.5.

2.2. Variance Reduction via Martingale Correction

In Section 2.1 we developed the necessary theory to es-
tablish the asymptotic properties of the estimator (7) for
the statistic ϕI(T ) = E[SI(X)[0,T ]], for any word I =
(i1, . . . , ik). This section aims to find an alternative estima-
tor with better finite sample properties when the process
X = {Xt, t ∈ [0, T ]} is a martingale. We restrict ourselves
to the independent observation setting, with the same par-
tition across samples, i.e. πN,n = π for n = 1, . . . , N . We
will hence be considering the estimator

ϕ̂N,π
I (T ) :=

1

N

N∑
n=1

SI(Xn,π)[0,T ], (15)

where the Xn,π are i.i.d. piecewise linear observations of
X over the partition5 π. We introduce the control-variate
modification of the estimator (15),

ϕ̂N,π,c
I (T ) :=

1

N

N∑
n=1

(
SI(Xn,π)[0,T ]−cSI

c(Xn,π)[0,T ]

)
, (16)

where, setting I−1 := (i1, . . . , ik−1),

SI
c (Xπ)[0,T ] :=

∑
[u,v]∈π

SI−1(Xπ)[0,u]X
(ik)
u,v .

4When α = 1/2, assume furthermore X satisfies (Aδ) with
δ ≥ 1 and p = 2k where k = maxI∈I |I|.

5Note that by Friz & Victoir (2010, Chapter 14) any sequence
of partitions with vanishing mesh size is signature-defining.

The correction term SI
c (Xπ)[0,T ] is inspired by considering

the continuous-time signature

SI(X)[0,T ] =

∫ T

0

SI−1(X)[0,s] ◦ dX(ik)
s ,

where the integral is defined in the Stratonovich sense.
To preserve the estimator’s unbiasedness while reducing
the variance we aim to find a mean-zero control variate
SI
c (X)[0,T ] that is highly correlated with SI(X)[0,T ]. A nat-

ural candidate is

SI
c (X)[0,T ] =

∫ T

0

SI−1(X)[0,s] dX(ik)
s ,

where the outermost integral is now interpreted in the Itô
sense. If X is a square-integrable martingale satisfying the
conditions of Jacod & Shiryaev (1987, Theorem I.4.40),
{SI

c (X)[0,t], t ∈ [0, T ]} is also a square-integrable martin-
gale with E[SI

c (X)[0,T ]] = 0. Going back to the discretized
setting, we note that, when X is a martingale, the discretized
correction term SI

c (Xπ)[0,T ] is also mean-zero and, hence,
the control variate estimator ϕ̂N,π,c

I (T ) has the same bias as
ϕ̂N,π
I (T ), but, when picking the optimal6

c = c∗π :=
Cov(SI(Xπ)[0,T ], S

I
c (Xπ)[0,T ])

Var(SI
c (Xπ)[0,T ])

,

it has reduced variance

Var(ϕ̂N,π,c∗π
I (T )) = (1− ρ2I,π)Var(ϕ̂N,π

I (T )),

where ρI,π := Corr(SI(Xπ)[0,T ], S
I
c (Xπ)[0,T ]).

In practice, to estimate c∗π, the most straightforward ap-
proach would be to use the sample variance and covariance.
In this case the estimator for c∗π is the slope of the simple lin-
ear regression of {SI(Xn,π)[0,T ], n = 1, . . . , N} against
{SI

c (Xn,π)[0,T ], n = 1, . . . , N} or, exploiting the mean
zero property of the control,

ĉ∗π =

∑N
n=1 S

I(Xn,π)[0,T ]S
I
c (Xn,π)[0,T ]∑N

n=1 S
I
c (Xn,π)2[0,T ]

.

In Appendix C.2 we propose an alternative estimator for c∗π
derived using the properties of the signature.
Remark 2.15. This variance reduction technique is not lim-
ited to processes X that are full martingales but can also
be applied to partial martingales, i.e. X such that only a
subset of the components is a martingale. In this case, we
can use the control variate expected signature estimator for
any word I = (i1, . . . , ik) such that X(ik) is a martingale.

6We assume throughout Var(SI
c (Xπ)[0,T ]) ∈ (0,∞).
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Even when the data generating process X is not a martingale,
the variance reduction achieved by the corrected estimator
(16) may outweigh the bias it introduces, leading to better
performance – in terms of mean squared error (MSE) – than
the classic estimator (15). In cases where the underlying pro-
cess cannot be assumed to be a martingale we thus suggest
to treat the martingale correction as a data transformation
applicable in the learning pipeline (a model hyper-parameter
in a similar spirit to the add-time or the lead-lag transform in
the signature context) whose usefulness may be empirically
ascertained via cross-validation.

3. Applications
3.1. Examples

We now consider a few concrete examples of continuous-
time stochastic processes satisfying the assumptions of The-
orem 2.10 and Theorem 2.14. Note that BM, CAR and
Heston are semimartingales and hence, by Remark 2.2, they
are canonical geometric stochastic processes such that any
sequence of partitions with vanishing mesh size is signature
defining. fBm is instead an example of a process that is not a
semimartingale but is a canonical geometric stochastic pro-
cess with dyadic signature-defining sequence of partitions
(Remark 2.2). Taking {Π(N), N ≥ 1} to be a sequence
of expanding dyadic partitions thus ensures the observa-
tional assumptions of Theorem 2.10 and Theorem 2.14 are
satisfied by all four processes, cf. Remark 2.11.

BM A standard Brownian motion {Bt, t ≥ 0}. It
can be easily checked it satisfies (Aα) and (Aδ), for any
α ≥ 1/2, δ ≥ 1 and p ≥ 2. Moreover, {Bt, t ≥ 0} has
stationary and independent increments and, hence, the (ind)
and (chop) sampling schemes are equivalent: in both cases
we can apply7 Theorem 2.10 to deduce consistency and
asymptotic normality of the expected signature estimator.

fBm A fractional Brownian motion {BH
t , t ≥ 0} with

Hurst parameter H > 1/2. BH satisfies (Aα) with α = H
(Appendix E.2.2) and, hence, Assumption 2.6 is fulfilled.
Under (ind) sampling, {BH,n, n ≥ 1} is trivially stationary
and strong mixing and, hence, we can apply Theorem 2.10.
When instead paths are obtained under (chop) we can apply8

Theorem 2.14, cf. Example E.2.2, to deduce consistency.

7Brownian motion is a Gaussian process with constant mean
function and time-homogeneous covariance of the increments triv-
ially satisfying (Aθ) with θ ≡ 0 and m = 0, it thus also falls under
the scope of Theorem 2.14.

8The increments of fractional Brownian motion are not strongly
mixing (Mandelbrot & Van Ness, 1968) and, hence, we cannot
apply the second part of Theorem 2.10 to deduce asymptotic nor-
mality.

CAR A bidimensional Continuous-time Autoregressive
(CAR) process {Yt, t ≥ 0} of order p = 2 driven by
a standard Brownian motion with drift A = (A1, A2) ∈
(R2×2)2. The CAR process is defined as the first d = 2
entries of its pd = 4-dimensional state space representation
{Xt, t ≥ 0}: an Ornstein-Uhlenbeck process with drift and
diffusion

AA =

(
02×2 −I2×2

A2 A1

)
, Σ =

(
02×2 02×2

02×2 I2×2

)
,

(Lucchese et al., 2023; Marquardt & Stelzer, 2007). We can
apply the first set of conditions in Appendix D.1.2 to deduce
that {Xt, t ≥ 0} (and hence {Yt, t ≥ 0}) satisfies (Aα)
and (Aδ), for α = 1/2, δ = 1 and any p ≥ 2. Under (ind)
sampling we can hence apply Theorem 2.10. Moreover,
when AA has positive real parts of all eigenvalues and the
process is started in its stationary distribution, {Xt, t ≥ 0}
and {Yt, t ≥ 0} are stationary, ergodic and strongly mixing
with strong mixing coefficient α(t) = O(e−at), for some
a > 0 (Marquardt & Stelzer, 2007). We can hence apply
Proposition 2.13 to deduce that {Yn, n ≥ 1} is stationary
and strongly mixing with strong mixing coefficient α(n) =
O(e−anT ), i.e. satisfying Equation (12), for (any) ζ > 0.
Under (chop) sampling we can thus apply9 the consistency
and asymptotic normality results of Theorem 2.10.

Heston The joint price-variance dynamics of a Heston
model under the risk-neutral measure Q with zero interest
rate and no dividends, i.e. {(St, Vt), t ≥ 0} such that

dSt =
√
VtStdWS

t ,

dVt = κ(θ − Vt)dt+ ξ
√
VtdWV

t ,

where {WS
t , t ≥ 0} and {WV

t , t ≥ 0} are standard Brow-
nian motions with correlation ⟨WS ,WV ⟩t = ρt. Under the
Feller condition 2κθ > ξ2, the variance process is strictly
positive (and so is {St, t ≥ 0}). The Heston model is thus
an Itô diffusion with Lipschitz drift f : R+×R+ 7→ R2 and
1/2-Hölder continuous diffusion σ : R+×R+ 7→ R2×2. We
can thus apply the third case of Appendix D.1.2 to prove that
{(St, Vt), t ≥ 0} satisfies (Aα) and (Aδ) with α = 1/2,
δ = 1 and any p > 2 for deterministic initial conditions
S0 = s0 and V0 = v0. When paths are sampled under (ind)
we can hence apply Theorem 2.10 to deduce consistency and
asymptotic normality of the expected signature estimator.

3.2. Experiments

Quite a wide range of learning algorithms has been devel-
oped leveraging the properties of the expected signature.
The theory for such algorithms is usually developed under

9The CAR process is a Gaussian process satisfying (Aθ), cf.
Appendix E.2.1, and hence also falls under the scope of Theo-
rem 2.14.
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the assumption of bounded variation paths for the input pro-
cess X, assumed to be piecewise linear. The results in Sec-
tion 2.1 give the theoretical foundation for their probabilistic
interpretation when the underlying process X is an, arguably
more realistic, continuous-time stochastic process such as
the ones discussed in Section 3.1. In this section we review a
few algorithms from the literature, showcasing the practical
relevance of the asymptotic results of Section 2.1 and the po-
tential improvements achieved by the martingale correction
introduced in Section 2.2. Code and examples demonstrat-
ing the integration of the martingale correction into machine
learning algorithms, along with the simulation results from
the previous section, are available at https://github.
com/lorenzolucchese/esig. The code is designed
to be compatible with Python-based ML pipelines, support-
ing both numpy arrays and torch tensors.

3.2.1. TIME SERIES CLASSIFICATION

The first model we consider, introduced in Triggiano &
Romito (2024), falls under the general task of time series
classification, mapping an input path x ∈ Rd×M1 to a class
label c ∈ C. The input stream is interpreted as a discrete-
time realization of a Gaussian process, whose conditional
mean and covariance are learned parametrically. The ex-
pected signature of the latent Gaussian process, used as input
to a classification layer, is estimated by super-sampling the
process. Theorem 2.14 ensures this approach consistently es-
timates the expected signature of the latent continuous-time
Gaussian process, a fundamental step for the probabilistic
interpretation of the algorithm.

We replicate the synthetic data experiments of Triggiano &
Romito (2024) on the (FBM), (OU) and (Bidim) datasets.
The performance on the out-of-sample testing datasets of the
Gaussian Process augmented Expected Signature (GPES)
classifier with and without martingale correction is reported
in Table 1. The output of the GPES model is by construc-
tion stochastic and, hence, we repeat the evaluation of the
model with 10 different seeds. In Table 1 we report the
mean accuracy and standard error of the model with and
without martingale correction (MC), as well as the results
of an independent samples t-test between their accuracies.
The martingale correction significantly improves the perfor-
mance of the GPES model, a remarkable result considering
that most processes in the three datasets are not martingales.

3.2.2. PRICING PATH-DEPENDENT DERIVATIVES

The next application we consider is a purely financial one.
The objective is to price (and hedge) path-dependent deriva-
tives by decomposing them into a set of atomic Arrow-
Debreu-like securities. Let X = {Xt, t ∈ [0, T ]} be a price
process, i.e. a semimartingale over some probability space.
In Lyons et al. (2021, Proposition 4.5) the authors use the

Predictive Accuracy [%]
FBM OU Bidim

GPES 95.62 (0.18) 62.20 (0.70) 79.33 (0.46)
GPES-MC 95.26 (0.70) 88.26 (0.31) 88.97 (0.44)
t-stat 1.49 −101.92 −45.52
p-value 0.15 0.00 0.00

Table 1. Synthetic data experiments of Triggiano & Romito (2024):
GPES model without and with martingale correction (MC).

universality of the signature to show that a large class of
path-depend payoffs F can be arbitrarily well approximated
by a linear payoff on the signature, i.e.

price(F ) = EQ[ZTF ] ≈ ⟨f, ZTEQ[S(X̂LL)[0,T ]]⟩,

for a set of linear coefficients f ∈ T ((R4)∗) where Q is a
pricing measure for X, ZT a deterministic discount factor
over [0, T ] and X̂LL denotes the add-time lead-lag transform
of X. In Appendix F.2.2 we also discuss the corresponding
hedging problem.

Given a pricing model Q for X, we can hence price F via
Monte Carlo simulations. This provides a classic setting for
applying the martingale correction described in Section 2.2
since, under Q, the (discounted) price process X is a martin-
gale. In Figure 2, we compare the finite sample properties
of the expected signature estimator with and without martin-
gale correction when the price process is assumed to follow
a Brownian motion (BM); in the context of option pricing,
this is known as the Bachelier model. Similarly, in Figure 3,
we plot the densities of the two estimators under the Heston
dynamics10 (Heston). Both figures suggest the martingale
correction (blue) materially improves the classic estimator
(red), and hence more accurate pricing is achieved by the
modified estimator introduced in Section 2.2.

0.5 1.0

I
=
(0
,0
)

N = 20

0.5 1.0

N = 40

0.5 1.0

N = 80

−0.5 0.0 0.5

I
=
(1
,1
,0
)

−0.5 0.0 0.5 −0.5 0.0 0.5

φ̂
Π(N)
I (T ) (iid) φ̂

Π(N),c
I (T ) (iid) φI(T )

Figure 2. Distributions of expected signature estimators for BM.
The y-axis is in log-scale.

10In both simulations we fix T = 1 and consider π to be uniform
with mesh |π| = 2−⌊N/10⌋+1. This choice ensures the sequences
of partitions are signature-defining for both processes and satisfy
the conditions necessary for consistency and asymptotic normality,
cf. Remark 2.11.
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Figure 3. Distributions of expected signature estimators for the
Heston process with parameters s0 = 1, v0 = 0.1, θ = 0.1, κ =
0.6, ξ = 0.2 and ρ = −0.15. The y-axis is in log-scale.

3.2.3. DISTRIBUTIONAL REGRESSION FOR STREAMS

Introduced in Lemercier et al. (2021), the Signature of the
pathwise Expected Signature (SES) model aims to learn a
map from a collection of paths, understood as an empirical
measure on path space, to a scalar value, a task known
as distributional regression. Under appropriate conditions,
the authors show that linear functionals on the signature of
the pathwise expected signature are universal for weakly
continuous functions (Lemercier et al., 2021, Theorem 3.2).

We repeat two of the synthetic data experiments conducted
in Lemercier et al. (2021), analyzing the performance of the
SES model without and with martingale correction (MC).
We report the average out-of-sample mean-squared error
(MSE) and its standard deviation in Table 2 and Table 3,
as well as the t-statistic and p-value of a pairwise t-test
between the MSEs of the two models. While the results
do not yield statistical significance there still seems to be a
mild benefit in using the martingale correction, especially
considering that the processes of both experiments are not
martingales11.

Predictive MSE [×10−2]
r1 = 0.35× 3

√
V/N r2 = 0.65× 3

√
V/N

SES 1.27 (0.23) 0.09 (0.03)
SES-MC 1.31 (0.45) 0.07 (0.02)
t-stat −0.29 1.41
p-value 0.79 0.23

Table 2. Ideal gas experiment of Lemercier et al. (2021): SES
model without and with martingale correction (MC).

11In the first experiment, when the particle radii are large and
collisions are more frequent, one could argue the motion of the
gas particles to be amenable to that of pollen grains in water, the
original experiment which led to the “discovery” of Brownian
motion by Scottish botanist Robert Brown in 1827.

Predictive MSE [×10−3]
N = 20 N = 50 N = 100

SES 1.49 (0.39) 0.33 (0.13) 0.20 (0.08)
SES-MC 1.26 (0.48) 0.31 (0.09) 0.19 (0.05)
t-stat 0.87 0.63 0.29
p-value 0.43 0.56 0.79

Table 3. Rough volatility experiment of Lemercier et al. (2021):
SES model without and with martingale correction (MC).

4. Conclusions
In this paper, we established new estimation results for
the expected signature, a model-free embedding for col-
lections of data streams. Our consistency and asymptotic
normality results bridge the gap between the theoretically
“optimal” continuous-time expected signature and the em-
pirical discrete-time estimator that can be computed from
data. Moreover, we introduced a simple modification of
such an estimator with significantly better finite sample
properties under the assumption of martingale observations.
Our empirical results suggest that the modified estimator
might improve the performance of models employing ex-
pected signature computations even when the underlying
data generating process is not necessarily a martingale.
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Saint-Flour XXXIV-2004. Number no. 1908 in Differen-
tial Equations Driven by Rough Paths: École D’été de
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D.1.2 Itô diffusions

D.2 Long span conditions
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A. Informal Glossary
This informal glossary provides accessible explanations of selected technical terms and notational conventions used in this
paper, aimed at readers with little or no background in rough path theory. These intuitive definitions are intended to aid the
understanding of the theoretical framework presented in Section 2, particularly Definition 2.1. However, they remain closely
tied to more technical definitions – such as those of multiplicative functionals, rough paths, and geometric rough paths –
which require a more rigorous exposition of rough path theory. For a concise introduction to rough paths, we refer the reader
to Lyons et al. (2007), and for a treatment in the stochastic setting, to Friz & Victoir (2010).

p-variation The p-variation of a path is a measure of its regularity. For the purpose of our discussion it suffices to note that
paths that have finite p-variation for low p are more regular. A bounded variation (BV) path is a path with finite 1-variation
(also known as total variation). This regularity ensures there exists a well-defined notion of integral against this path (e.g. a
piecewise linear paths or continuously differentiable path) and, hence, we can easily define its signature as in Equation (2).
Many interesting stochastic processes (e.g. those driven by Brownian motion) have infinite 1-variation (i.e. are not BV) but
have finite p-variation for all p > 2 and, hence, defining their signature requires rough path theory.

Convergence in p-variation Convergence in the p-variation metric/topology is a pathwise mode of convergence (i.e. over
all points t ∈ [0, T ] simultaneously) that is (much) stronger than the pointwise (i.e. at fixed t ∈ [0, T ]) convergence required
to state and prove our results. See, for example, Remark 2.4.

Spaces of paths We denote by C([0, T ],Rd), resp. BV([0, T ],Rd), the space of Rd-valued continuous, resp. bounded
variation, paths over the interval [0, T ].

Mesh of a partition For a partition π = {0 = t0 < t1 < . . . < T} of [0, T ], we define its mesh as |π| = max[s,t]∈π |t−s|
where the maximum is taken over all sub-intervals of the partition.

Shuffle property The shuffle property of the signature is an algebraic property stating that the product of two signature
terms is a linear combination of higher-order signature terms. More precisely, the product of the signature terms correspond-
ing to words I and J is the sum of all signature terms indexed by words K of length |I| + |J | obtained by interleaving
I and J . In the context of the discussion on page 1 this means that all moments of the signature can be written as linear
combinations of higher order expected signature terms.

Signature indexing A word I = (i1, . . . , in) with i1, . . . , in ∈ {1, . . . , d} is a multi-index used to denote an entry
of the signature, i.e. a real-valued number. The length of the word, i.e. |I| = n, denotes the signature level, i.e. an
n-dimensional tensor, to which such entry belongs. For example SI(X)[0,T ], where I = (1, 2), denotes the (1, 2)-entry of
the second level of the signature (a matrix), while I = (2, 1, 1) denotes the (2, 1, 1)-entry of the third level of the signature
(a three-dimensional tensor).

Stochastic processes A continuous stochastic process X = {Xt, t ∈ [0, T ]} over a probability space (Ω,F ,P) is such
that, for each ω ∈ Ω, the realization X(ω) = {Xt(ω), t ∈ [0, T ]} ∈ C([0, T ],Rd). If one takes Ω = C([0, T ],Rd) and P a
probability measure over this path space then each ω ∈ Ω denotes a possible path realization of X. We thus say a property
holds pathwise or almost surely if the set of ω ∈ Ω for which that property holds has probability one.

Canonical geometric stochastic process We define a canonical geometric stochastic process as a continuous stochastic
process whose “higher order structure” can be approximated by the iterated integrals of its piecewise-linear interpolations
(in probability in the p-variation metric). Its signature is then defined as the limit of the signatures of its piecewise-linear
interpolations, i.e. the iterated integrals given in Equation (3). For clarity, we emphasize that canonicity here refers to the
aforementioned construction of the signature, not to the underlying probability space on which the process is defined.

B. Proofs of Section 2
B.1. Proof of Theorem 2.8

Sketch of proof. The main idea of the proof is to show the sequence of discretized signatures {Sk(Xπn)[0,T ], n ≥ 1} is
Cauchy in Lm. Since Lm is a Banach space this implies the sequence converges in Lm. By uniqueness of limits, we can

13



Learning with Expected Signatures: Theory and Applications

deduce this limit is the same as its P-limit, i.e. Sk(X)[0,T ]. To show the sequence is Cauchy in Lm we proceed inductively on
the signature level k′ ∈ {1, . . . , k} under the progressively weaker norm Lmk/k′

. The main ingredient of the inductive step is
a manipulation of the discrete-time signature (2), ensuring

Sk′
(Xπn+1)[τ0,τ1] − Sk′

(Xπn)[τ0,τ1], [τ0, τ1] ⊆ [0, T ],

can be written as a sum over time intervals πn+1,[τ0,τ1]. The inductive assumption is then verified by bounding this summation
using Lemma B.1 when a simple Minkowski bound is too weak. We use two different manipulations of the discrete-time
signature under assumptions (i), (iii) or (iv) and under assumption (ii): In the former case we use the classic representation
given in (2), while in the latter we rely on the “causal” representation of Lemma B.3. For clarity of exposition we thus divide
the proof of Theorem 2.8 into two parts.

We first establish a couple of useful lemmas which will be used repeatedly in the proof of this in-fill asymptotic results. The
first is a basic result which is also applied in the proof of the stochastic sewing lemma (Lê, 2020). In the following, let E
denote a Banach space.

Lemma B.1. Let {Zn, n = 1, . . . , N} be a finite sequence of E-valued random variables in Lm with m ∈ [2,∞) and let
{Gn, n = 1, . . . , N} be a filtration such that, for each n ∈ {1, . . . , N}, the variables Z1, . . . , Zn−1 are Gn-measurable.
Then ∥∥∥∥∥

N∑
n=1

Zn

∥∥∥∥∥
Lm

≤
N∑

n=1

∥EGn
[Zn]∥Lm + 2Cm

(
N∑

n=1

∥Zn∥2Lm

)1/2

.

Proof. ∥∥∥∥∥
N∑

n=1

Zn

∥∥∥∥∥
Lm

(i)

≤
∥∥∥∥∥

N∑
n=1

EGn [Zn]

∥∥∥∥∥
Lm

+

∥∥∥∥∥
N∑

n=1

(Zn − EGn [Zn])

∥∥∥∥∥
Lm

(ii)

≤
N∑

n=1

∥EGn [Zn]∥Lm + Cm

∥∥∥∥∥
N∑

n=1

∥Zn − EGn [Zn]∥2
∥∥∥∥∥
1/2

Lm/2

(iii)

≤
N∑

n=1

∥EGn [Zn]∥Lm + Cm

(
N∑

n=1

∥Zn − EGn [Zn]∥2Lm

)1/2

(iv)

≤
N∑

n=1

∥EGn
[Zn]∥Lm + Cm

(
N∑

n=1

(∥Zn∥Lm + ∥EGn
[Zn]∥Lm)2

)1/2

(v)

≤
N∑

n=1

∥EGn
[Zn]∥Lm + 2Cm

(
N∑

n=1

∥Zn∥2Lm

)1/2

,

by using in (i) the triangle inequality, in (ii) triangle inequality and the Burkholder-Davis-Gundy (BDG) inequality
(Burkholder et al., 1972) applied to the martingale {Mn, n = 1, . . . , N} with Mn =

∑n
i=1(Zi − EGi [Zi]), in (iii) and

(iv) the triangle inequality and in (v) the contraction property of conditional expectation.

Lemma B.2. Let p, p1, . . . , pl ∈ (0,∞) ∪ {+∞} be such that p−1
1 + . . . + p−1

l = p−1, then, for any set of tensors
A1 ∈ Lp1((Rd)⊗k1), . . . ,Al ∈ Lpl((Rd)⊗kl),

∥A1 ⊗ · · · ⊗Al∥Lp ≲ dl ∥A1∥Lp1 · · · ∥Al∥Lpl .

Proof.

∥A1 ⊗ · · · ⊗Al∥Lp ≤
∑

(w1,...,wl)∈Wk1+...+kl

∥Aw1
1 · · ·Awl

l ∥Lp

(∗)
≤

∑
(w1,...,wl)∈Wk1+...+kl

∥Aw1
1 ∥Lp1 · · · ∥Awl

l ∥Lpl
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≤ dk1+...+kl ∥A1∥Lp1 · · · ∥Al∥Lpl ,

whereWk = {1, . . . , d}k denotes the set of words of length k and, in (∗), we applied the classical Hölder inequality.

We also prove a useful lemma that allows us to write the k-th level signature of a piecewise linear path as a “causal” sum of
lower order signature terms, i.e. preserving time order. This will allow us to derive an in-fill result with assumptions on the
regularity of EF0,s [Xs,t], a more natural object than EF0,s∨Ft,T

[Xs,u ⊗Xu,t], when α = 1/2, i.e. Theorem 2.8 under (ii).

Lemma B.3. Let π be a partition of [0, T ] and let τ ∈ π. Then, for k ≥ 0, we can write

Sk+1(Xπ)[0,τ ] =

k∑
i=0

1

(1 + i)!

∑
[u,v]∈π[0,τ]

Sk−i(Xπ)[0,u] ⊗X⊗(i+1)
u,v .

Proof. Note that for k ≥ 0,

Sk+1(Xπ)[0,τ ] =
∑

[u,v]∈π[0,τ]

[
Sk+1(Xπ)[0,v] − Sk+1(Xπ)[0,u]

]
(∗)
=

∑
[u,v]∈π[0,τ]

[
k+1∑
i=0

Sk+1−i(Xπ)[0,u] ⊗
X⊗i

u,v

i!
− Sk+1(Xπ)[0,u]

]

=
∑

[u,v]∈π[0,τ]

k+1∑
i=1

Sk+1−i(Xπ)[0,u] ⊗
X⊗i

u,v

i!

=

k∑
i=0

1

(1 + i)!

∑
[u,v]∈π[0,τ]

Sk−i(Xπ)[0,u] ⊗X⊗(1+i)
u,v ,

where, in (∗), we use Chen’s relation and S(Xπ)[u,v] = exp⊗ Xu,v since Xπ is linear over [u, v] ∈ π.

B.1.1. PROOF OF THEOREM 2.8 UNDER (i), (iii) OR (iv)

Denote by {πn, n ≥ 1} the signature-defining sequence of refining partitions of the interval [0, T ]. Without loss of
generality, we can consider {πn, n ≥ 1} to be such that πn+1 is obtained from πn by adding at most one refinement in each
sub-interval, i.e., for each [s, t] ∈ πn, either [s, t] ∈ πn+1 or [s, u], [u, t] ∈ πn+1, for u ∈ (s, t). If not, one can consider a
super-sequence satisfying this property and then pass to the original subsequence.

In the following, for any n ≥ 1 and [s, t] ∈ πn, denote by πn,[s,t] the restriction of πn to [s, t] and, abusing notation slightly,
S(Xπn)[s,t] = S(Xπn,[s,t])[s,t].

Let [τ0, τ1] ∈ πN , for N ≥ 1, and note that, for any k ≥ 2 and n ≥ N , we can write

Sk(Xπn+1)[τ0,τ1] − Sk(Xπn)[τ0,τ1] =
∑

[s,t]∈πn,[τ0,τ1]

[
Sk(Xπn,t)[τ0,τ1] − Sk(Xπn,s)[τ0,τ1]

]
, (17)

where the partitions πn,s are defined as πn,s = πn+1,[0,s] ∪ πn,[s,T ], i.e., for each [s, t] ∈ πn, the partitions πn,s and πn,t
differ by at most one point u ∈ (s, t). Using Chen’s relation and the definition of the tensor product, we can write for each
[s, t] ∈ πn with refinement u ∈ (s, t),

Sk(Xπn,t)[τ0,τ1]−Sk(Xπn,s)[τ0,τ1]

=
∑

i1,i2,i3≥0
i1+i2+i3=k

Si1(Xπn+1)[τ0,s] ⊗
[
Si2(Xπn+1)[s,t] − Si2(Xπn)[s,t]

]
⊗ Si3(Xπn)[t,τ1]. (18)

Note that, for i2 ∈ {0, 1},
Si2(Xπn+1)[s,t] − Si2(Xπn)[s,t] = 0,
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and applying again Chen’s relation when i2 ≥ 2 yields

Si2(Xπn+1)[s,t] =

i2∑
j=0

Sj(Xπn+1)[s,u] ⊗ Si2−j(Xπn+1)[u,t] =
1

i2!

i2∑
j=0

(
i2
j

)
X⊗j

s,u ⊗X
⊗(i2−j)
u,t ,

where we used the fact that, if Y is linear over [s, t], then S(Y)[s,t] = exp⊗ Ys,t, which also implies

Si2(Xπn)[s,t] =
X⊗i2

s,t

i2!
=

(Xs,u +Xu,t)
⊗i2

i2!
=

1

i2!

∑
I∈{0,1}i2

⊗
i∈I

(
X⊗i

s,u ⊗X
⊗(1−i)
u,t

)
,

denoting by I ∈ {0, 1}i2 a binary number of length i2 with |I| =∑i∈I i and recalling that x⊗0 = 1,x⊗1 = x, for any
x ∈ Rd. We hence have that

Si2(Xπn+1)[s,t] − Si2(Xπn)[s,t] =
∑

I∈{0,1}i2

CI
⊗
i∈I

(
X⊗i

s,u ⊗X
⊗(1−i)
u,t

)
,

where for I ∈ {0, 1}i2 ,

CI =


1

i2!

[(
i2
|I|

)
− 1

]
, if I = (1, . . . , 1, 0, . . . , 0),

− 1

i2!
, otherwise.

Plugging this into Equation (17) via (18) and noting that CI = 0 for I ∈ {(0, . . . , 0), (1, . . . , 1)}, we can write, for any
N ≥ 1, [τ0, τ1] ∈ πN , n ≥ N and k ≥ 2,

Sk(Xπn+1)[τ0,τ1] − Sk(Xπn)[τ0,τ1]

=
∑

[s,t]∈πn,[τ0,τ1]

u∈(s,t)

∑
i1,i3≥0,i2≥2
i1+i2+i3=k

∑
I∈{0,1}i2

I≠(0,...,0),(1,...,1)

CI S
i1(Xπn+1)[τ0,s] ⊗

⊗
i∈I

(
X⊗i

s,u ⊗X
⊗(1−i)
u,t

)
⊗ Si3(Xπn)[t,τ1].

We now proceed inductively to show that, for any i ∈ {1, . . . , k} and any [τ0, τ1] ∈ πN with N ≥ 1, the sequence
{Si(Xπn)[τ0,τ1], n ≥ N} converges in Lmk/i with rate O(∑n′≥n |πn′ |ϵ) and

sup
N≥1

sup
[τ0,τ1]∈πN

∥Si(XπN )[τ0,τ1]∥Lmk/i <∞. (19)

k′ = 1. Note that for [τ0, τ1] ∈ πN with N ≥ 1 one has S1(Xπn)[τ0,τ1] = Xτ0,τ1 , for all n ≥ N , and

∥Xτ0,τ1∥Lmk ≲ |τ1 − τ0|α ≤ Tα <∞,

by Assumption (Aα). Hence S1(X)[0,T ] = X0,T ∈ Lmk and the statement holds trivially.

Assume the inductive hypothesis holds for all i ∈ {1, . . . , k′} with k′ ∈ {1, . . . , k − 1}. Then, for each [τ0, τ1] ∈ πN with
N ≥ 1 and n ≥ N , let∥∥∥Sk′+1(Xπn+1)[τ0,τ1]−Sk′+1(Xπn)[τ0,τ1]

∥∥∥
Lmk/(k′+1)

≤
∑

i1,i3≥0,i2≥2
i1+i2+i3=k′+1

∑
I∈{0,1}i2

I≠(0,...,0),(1,...,1)

|CI |
∥∥∥∥∥ ∑

[s,t]∈πn,[τ0,τ1]

u∈(s,t)

ZI
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

, (20)

where, for each [τ0, τ1] ∈ πN , πn with n ≥ N , i1, i3 ≥ 0, i2 ≥ 2 with i1 + i2 + i3 = k′ + 1 and I ∈ {0, 1}i2 , we define

ZI
[s,t] := Si1(Xπn+1)[τ0,s] ⊗

⊗
i∈I

(
X⊗i

s,u ⊗X
⊗(1−i)
u,t

)
⊗ Si3(Xπn)[t,τ1], [s, t] ∈ πn,[τ0,τ1] with u ∈ (s, t),
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keeping only the dependence on I for notational convenience. Note that, by applying Lemma B.2, the inductive hypothesis
and Assumption (Aα),

∥ZI
[s,t]∥Lmk/(k′+1) ≲

∥∥Si1(Xπn+1)[τ0,s]
∥∥
Lmk/i1

∥Xs,u∥|I|Lmk ∥Xu,t∥i2−|I|
Lmk

∥∥Si3(Xπn)[t,τ1]
∥∥
Lmk/i3

≲ |t− s|i2α,

and, hence, each ZI
[s,t] ∈ Lmk/(k′+1). Moreover, by a simple application of the triangle inequality,∥∥∥∥∥ ∑

[s,t]∈πn,[τ0,τ1]

u∈(s,t)

ZI
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≲
∑

[s,t]∈πn,[τ0,τ1]

u∈(s,t)

|t− s|i2α. (21)

Assumption (i) Hence, if α > 1/2, we have for each [τ0, τ1] ∈ πN , πn with n ≥ N , i1, i3 ≥ 0, i2 ≥ 2 with
i1 + i2 + i3 = k′ + 1 and I ∈ {0, 1}i2 ,∥∥∥∥∥ ∑

[s,t]∈πn,[τ0,τ1]

u∈(s,t)

ZI
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≲ |πn|2α−1|τ1 − τ0|. (22)

Assumption (iii) If α ∈ (1/3, 1/2] note that if I is such that i2 ≥ 3, then∥∥∥∥∥ ∑
[s,t]∈πn,[τ0,τ1]

u∈(s,t)

ZI
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≲ |πn|3α−1|τ1 − τ0|, (23)

but if i2 = 2 then the bound (21) is not strong enough. We can instead apply Lemma B.1 with the filtration {G[s,t], [s, t] ∈
πn} defined by

G[s,t] := Fs ∨ σ(Xv,w, [v, w] ∈ πn,[t,τ ]),
by noting that each ZI

[v,w] with w ≤ s is G[s,t]-measurable and mk/(k′ + 1) ≥ 2 for all k′ + 1 ≤ k. This implies∥∥∥∥∥ ∑
[s,t]∈πn,[τ0,τ1]

u∈(s,t)

ZI
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≤
∑

[s,t]∈πn,[τ0,τ1]

u∈(s,t)

∥∥∥EG[s,t]
[ZI

[s,t]]
∥∥∥
Lmk/(k′+1)

+

( ∑
[s,t]∈πn,[τ0,τ1]

u∈(s,t)

∥ZI
[s,t]∥2Lmk/(k′+1)

)1/2

≤
∑

[s,t]∈πn,[τ0,τ1]

u∈(s,t)

|t− s|β +

( ∑
[s,t]∈πn,[τ0,τ1]

u∈(s,t)

|t− s|4α
)1/2

≤ |πn|(β−1)∧(2α−1/2)
(
|τ1 − τ0|+ |τ1 − τ0|1/2

)
, (24)

where we used the fact that for I ∈ {(0, 1), (1, 0)},∥∥∥EG[s,t]
[ZI

[s,t]]
∥∥∥
Lmk/(k′+1)

(i)
=

∥∥∥∥∥Si1(Xπn+1)[τ0,s] ⊗ EG[s,t]

[⊗
i∈I

(
X⊗i

s,u ⊗X
⊗(1−i)
u,t

)]
⊗ Si3(Xπn)[t,τ1]

∥∥∥∥∥
Lmk/(k′+1)

(ii)

≤
∥∥Si1(Xπn+1)[τ0,s]

∥∥
Lmk/i1

∥∥∥∥∥EG[s,t]

[⊗
i∈I

(
X⊗i

s,u ⊗X
⊗(1−i)
u,t

)]∥∥∥∥∥
Lmk/2

∥∥Si3(Xπn)[t,τ1]
∥∥
Lmk/i3

(iii)

≲
∥∥EG[s,t]

[Xs,u ⊗Xu,t]
∥∥
Lmk/2

(iv)

≲
∥∥EF0,s∨Ft,T

[Xs,u ⊗Xu,t]
∥∥
Lmk/2
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(v)

≲ |t− s|β ,

by using in (i) measurability of Si1(Xπn+1)[τ0,s] and Si3(Xπn)[t,τ1] with respect to G[s,t], in (ii) Hölder inequality for
tensors Lemma B.2, in (iii) the inductive assumption (19) and the fact that ∥A⊗B∥ = ∥B⊗A∥ for any A,B ∈ Rd, in
(iv) the tower property and the contractive property of conditional expectation applied to G[s,t] ⊆ F0,s ∨ Ft,T and in (v)
Assumption (Aβ). Combining bound (24) when i2 = 2 and bound (23) when i2 ≥ 3 with α ∈ (1/3, 1/2], it follows that for
each [τ0, τ1] ∈ πN , πn with n ≥ N , i1, i3 ≥ 0, i2 ≥ 2 with i1 + i2 + i3 = k′ + 1 and I ∈ {0, 1}i2 ,∥∥∥∥∥ ∑

[s,t]∈πn,[τ0,τ1]

u∈(s,t)

ZI
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≲ |πn|(β−1)∧(3α−1)|τ1 − τ0|. (25)

Assumption (iv) A similar reasoning can be applied when α ∈ (1/4, 1/3] (and k ≥ 3) by considering the cases i2 ≥ 4,
i2 = 3 and i2 = 2 separately. The case i2 ≥ 4 follows directly from (21), the case i2 = 2 follows from (24) and the case
i2 = 3 can be shown in the same way as i2 = 2 with the only difference being that we require Assumption (Aγ) to show
that, for I ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)},∥∥∥EG[s,t]

[ZI
[s,t]]

∥∥∥
Lmk/(k′+1)

≲
∥∥EF0,s∨Ft,T

[
Xs,u ⊗X⊗2

u,t

]∥∥
Lmk/3 ≲ |t− s|γ ,

and, for I ∈ {(0, 1, 1), (1, 0, 1), (1, 1, 0)},∥∥∥EG[s,t]
[ZI

[s,t]]
∥∥∥
Lmk/(k′+1)

≲
∥∥EF0,s∨Ft,T

[
X⊗2

s,u ⊗Xu,t

]∥∥
Lmk/3 ≲ |t− s|γ ,

so that applying again Lemma B.1,∥∥∥∥∥ ∑
[s,t]∈πn,[τ0,τ1]

u∈(s,t)

ZI
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≤
∑

[s,t]∈πn,[τ0,τ1]

u∈(s,t)

∥∥∥EG[s,t]
[ZI

[s,t]]
∥∥∥
Lmk/(k′+1)

+

( ∑
[s,t]∈πn,[τ0,τ1]

u∈(s,t)

∥ZI
[s,t]∥2Lmk/(k′+1)

)1/2

≤
∑

[s,t]∈πn,[τ0,τ1]

u∈(s,t)

|t− s|γ +

( ∑
[s,t]∈πn,[τ0,τ1]

u∈(s,t)

|t− s|6α
)1/2

≤ |πn|(γ−1)∧(3α−1/2)
(
|τ1 − τ0|+ |τ1 − τ0|1/2

)
. (26)

Combining the cases i2 = 2, i2 = 3 and i2 ≥ 4 when α ∈ (1/4, 1/3] yields, for each [τ0, τ1] ∈ πN , πn with n ≥ N ,
i1, i3 ≥ 0, i2 ≥ 2 with i1 + i2 + i3 = k′ + 1 and I ∈ {0, 1}i2 ,∥∥∥∥∥ ∑

[s,t]∈πn,[τ0,τ1]

u∈(s,t)

ZI
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≲ |πn|(β−1)∧(γ−1)∧(4α−1)|τ1 − τ0|. (27)

Defining ϵ as in Equation (9), we can plug bounds (22), (25) and (27) into Equation (20) to deduce that∥∥∥Sk′+1(Xπn+1)[τ0,τ1] − Sk′+1(Xπn)[τ0,τ1]

∥∥∥
Lmk/(k′+1)

≲ |τ1 − τ0||πn|ϵ,

and, hence, under the assumption that
∑

n≥1 |πn|ϵ < ∞, for any [τ0, τ1] ∈ πN with N ≥ 1, the sequence
{Sk′+1(Xπn)[τ0,τ1], n ≥ N} is Cauchy in Lmk/(k′+1). Since Lmk/(k′+1) is a Banach space the sequence converges in
Lmk/(k′+1) to Sk′+1(X)[τ0,τ1] ∈ Lmk/(k′+1) (by uniqueness of limits) with rate∥∥∥Sk′+1(X)[τ0,τ1]−Sk′+1(Xπn)[τ0,τ1]

∥∥∥
Lmk/(k′+1)
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≤
∑
n′≥n

∥∥∥Sk′+1(Xπn′+1)[τ0,τ1] − Sk′+1(Xπn′ )[τ0,τ1]

∥∥∥
Lmk/(k′+1)

≲ |τ1 − τ0|
∑
n′≥n

|πn′ |ϵ.

And, to complete the inductive step for k′ + 1, note that for all N ≥ 1 and [τ0, τ1] ∈ πN ,∥∥∥Sk′+1(XπN )[τ0,τ1]

∥∥∥
Lmk/(k′+1)

≲
∥∥∥Sk′+1(X)[τ0,τ1]

∥∥∥
Lmk/(k′+1)

+ |τ1 − τ0|
∑
n′≥N

|πn′ |ϵ

≲
∥∥∥Sk′+1(X)[τ0,τ1]

∥∥∥
Lmk/(k′+1)

+ T
∑
n′≥1

|πn′ |ϵ.

B.1.2. PROOF OF THEOREM 2.8 UNDER (ii)

In what follows we shall simplify notation and denote EF0,t by Et.

Denote by {πn, n ≥ 1} the signature-defining sequence of refining partitions of the interval [0, T ]. Without loss of
generality, we can consider {πn, n ≥ 1} to be such that πn+1 is obtained from πn by adding at most one refinement in each
sub-interval, i.e. for each [s, t] ∈ πn either [s, t] ∈ πn+1 or [s, u], [u, t] ∈ πn+1 for u ∈ (s, t). If not, one can consider a
super-sequence satisfying this property and then pass to the original subsequence.

We start by showing inductively that, for any i ∈ {1, . . . , k},

sup
n≥1

sup
τ∈πn

∥Si(Xπn)[0,τ ]∥Lmk/i <∞. (28)

Note that the case i = 1 is trivial since, for any n ≥ 1 and τ ∈ πn, by (Aα)

∥S1(Xπn)[0,τ ]∥Lmk = ∥X0,τ∥Lmk ≲ τα ≲ Tα.

Next, for the inductive step, assume that (28) holds for all i ∈ {1, . . . k′} with k′ ≤ k − 1. Then, by using Lemma B.3, we
can bound for any n ≥ 1 and τ ∈ πn,

∥Sk′+1(Xπn)[0,τ ]∥Lmk/(k′+1)

(i)

≤
k′∑
i=0

1

(1 + i)!

∥∥∥∥∥∥
∑

[u,v]∈πn,[0,τ]

Sk′−i(Xπn)[0,u] ⊗X⊗(i+1)
u,v

∥∥∥∥∥∥
Lmk/(k′+1)

(ii)

≤
∑

[u,v]∈πn,[0,τ]

∥∥∥Sk′
(Xπn)[0,u] ⊗ Eu[Xu,v]

∥∥∥
Lmk/(k′+1)

+

 ∑
[u,v]∈πn,[0,τ]

∥∥∥Sk′
(Xπn)[0,u] ⊗Xu,v

∥∥∥2
Lmk/(k′+1)

1/2

+

k′∑
i=1

1

(1 + i)!

∑
[u,v]∈πn,[0,τ]

∥∥∥Sk′−i(Xπn)[0,u] ⊗X⊗(i+1)
u,v

∥∥∥
Lmk/(k′+1)

(iii)

≲
∑

[u,v]∈πn,[0,τ]

∥Eu[Xu,v]∥Lmk +

( ∑
[u,v]∈πn,[0,τ]

∥Xu,v∥2Lp

)1/2

+

k′∑
i=1

∑
[u,v]∈πn,[0,τ]

∥Xu,v∥i+1
Lmk

(iv)

≲
∑

[u,v]∈πn,[0,τ]

|v − u|δ +
( ∑

[u,v]∈πn,[0,τ]

|v − u|2α
)1/2

+

k′∑
i=1

∑
[u,v]∈πn,[0,τ]

|v − u|(i+1)α

(v)

≲ τ +
√
τ + τ ≲ T +

√
T ,
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where in (i) we applied the triangle inequality, in (ii) we bounded the i = 0 term by applying Lemma B.1 to the sequence
of random variables

Z[u,v] := Sk′
(Xπn)[0,u] ⊗Xu,v ∈ Lmk/(k′+1),

with filtration {Fu, [u, v] ∈ πn,[0,τ ]} and we bounded the i = 1, . . . , k′ terms by applying the triangle inequality, in (iii)
we applied the Hölder inequality given in Lemma B.2 and the inductive hypothesis Equation (28) for all signature levels up
to k′, in (iv) we used Assumptions (Aα) and (Aδ).

Proceeding again by induction, we will show the conclusion of the theorem holds by proving the stronger statement: For
each i ∈ {1, . . . , k}, for all N ≥ 1, τ ∈ πN and n ≥ N ,

∥Si(Xπn+1)[0,τ ] − Si(Xπn)[0,τ ]∥Lmk/i ≲ |πn|ϵ. (29)

The case k′ = 1 is again trivial since, for all N ≥ 1, τ ∈ πN and n ≥ N , S1(Xπn+1)[0,τ ] = X0,τ , and hence

∥S1(Xπn+1)[0,τ ] − S1(Xπn)[0,τ ]∥Lmk = 0.

For the inductive step, assume Equation (29) holds for all i ∈ {1, . . . , k′} with k′ ≤ k. Fix N ≥ 1, τ ∈ πN and n ≥ N ,
then we can write the telescoping sum

Sk′+1(Xπn+1)[0,τ ] − Sk′+1(Xπn)[0,τ ] =
∑

[s,t]∈πn,[0,τ]

[
Sk′+1(Xπn,t)[0,τ ] − Sk′+1(Xπn,s)[0,τ ]

]
, (30)

where the partitions πn,s are defined as πn,s = πn+1,[0,s] ∪ πn,[s,T ], i.e. for each [s, t] ∈ πn, the partitions πn,s and πn,t
differ by at most one point u ∈ (s, t). Note that, for each [s, t] ∈ πn with refinement u ∈ (s, t), we can apply Lemma B.3 to
write

Sk′+1(Xπn,t)[0,τ ] − Sk′+1(Xπn,s)[0,τ ]

=

k′∑
i=0

1

(1 + i)!

{
Sk′−i(Xπn,t)[0,s] ⊗X⊗(1+i)

s,u + Sk′−i(Xπn,t)[0,u] ⊗X
⊗(1+i)
u,t − Sk′−i(Xπn,s)[0,s] ⊗X

⊗(1+i)
s,t

+
∑

[v,w]∈πn,[t,τ]

[
Sk′−i(Xπn,t)[0,v] − Sk′−i(Xπn,s)[0,v]

]
⊗X⊗(1+i)

v,w

}

=

k′∑
i=0

1

(1 + i)!

{
Sk′−i(Xπn+1)[0,s] ⊗

[
X⊗(1+i)

s,u −X
⊗(1+i)
s,t

]
+

k′−i∑
j=0

Sk′−i−j(Xπn+1)[0,s] ⊗
X⊗j

s,u

j!
⊗X

⊗(1+i)
u,t

+
∑

[v,w]∈πn,[t,τ]

[
Sk′−i(Xπn,t)[0,v] − Sk′−i(Xπn,s)[0,v]

]
⊗X⊗(1+i)

v,w

}

=

k′∑
i=0

1

(1 + i)!

{
Sk′−i(Xπn+1)[0,s] ⊗

[
X⊗(1+i)

s,u +X
⊗(1+i)
u,t −X

⊗(1+i)
s,t

]

+

k′−i−1∑
j=0

1

(1 + j)!
Sk′−i−j−1(Xπn+1)[0,s] ⊗X⊗(1+j)

s,u ⊗X
⊗(1+i)
u,t

+
∑

[v,w]∈πn,[t,τ]

[
Sk′−i(Xπn,t)[0,v] − Sk′−i(Xπn,s)[0,v]

]
⊗X⊗(1+i)

v,w

}

=

k′∑
i=0

1

(1 + i)!

{
− Sk′−i(Xπn+1)[0,s] ⊗

∑
I∈{0,1}1+i

I̸=(0,...,0),(1,...,1)

⊗
l∈I

(
X⊗l

s,u ⊗X
⊗(1−l)
u,t

)

+

k′−i−1∑
j=0

1

(1 + j)!
Sk′−i−j−1(Xπn+1)[0,s] ⊗X⊗(1+j)

s,u ⊗X
⊗(1+i)
u,t
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+
∑

[v,w]∈πn,[t,τ]

[
Sk′−i(Xπn,t)[0,v] − Sk′−i(Xπn,s)[0,v]

]
⊗X⊗(1+i)

v,w

}
,

by noting that, for all [v, w] ∈ πn with w ≤ s, S(Xπn,t)[0,v] = S(Xπn,s)[0,v] = S(Xπn+1)[0,v] and when applying
Chen’s relation to S(Xπn,t)[0,u], setting S(Xπn,t)[s,u] = exp⊗ Xs,u since Xπn,t is linear over [s, u] ∈ πn,t. Plugging this
expression into Equation (30) and exchanging the orders of the summations we obtain

Sk′+1(Xπn+1)[0,τ ] − Sk′+1(Xπn)[0,τ ]

=

k′∑
i=0

1

(1 + i)!

{
−

∑
I∈{0,1}1+i

I≠(0,...,0),(1,...,1)

∑
[s,t]∈πn,[0,τ]

u∈(s,t)

Sk′−i(Xπn+1)[0,s] ⊗
⊗
l∈I

(
X⊗l

s,u ⊗X
⊗(1−l)
u,t

)

+

k′−i−1∑
j=0

1

(1 + j)!

∑
[s,t]∈πn,[0,τ]

u∈(s,t)

Sk′−i−j−1(Xπn+1)[0,s] ⊗X⊗(1+j)
s,u ⊗X

⊗(1+i)
u,t

+
∑

[v,w]∈πn,[0,τ]

( ∑
[s,t]∈πn,[0,v]

[
Sk′−i(Xπn,t)[0,v] − Sk′−i(Xπn,s)[0,v]

])
⊗X⊗(1+i)

v,w

}

=

k′∑
i=0

1

(1 + i)!

{
−

∑
I∈{0,1}1+i

I≠(0,...,0),(1,...,1)

∑
[s,t]∈πn,[0,τ]

u∈(s,t)

Sk′−i(Xπn+1)[0,s] ⊗
⊗
l∈I

(
X⊗l

s,u ⊗X
⊗(1−l)
u,t

)

+

k′−i−1∑
j=0

1

(1 + j)!

∑
[s,t]∈πn,[0,τ]

u∈(s,t)

Sk′−i−j−1(Xπn+1)[0,s] ⊗X⊗(1+j)
s,u ⊗X

⊗(1+i)
u,t

+
∑

[v,w]∈πn,[0,τ]

[
Sk′−i(Xπn+1)[0,v] − Sk′−i(Xπn)[0,v]

]
⊗X⊗(1+i)

v,w

}

=

k′∑
i=0

1

(1 + i)!

{ ∑
I∈{0,1}1+i

I≠(0,...,0),(1,...,1)

∑
[s,t]∈πn,[0,τ]

u∈(s,t)

Z1,I
[s,t] +

k′−i−1∑
j=0

1

(1 + j)!

∑
[s,t]∈πn,[0,τ]

u∈(s,t)

Z2,i,j
[s,t] +

∑
[v,w]∈πn,[0,τ]

Z3,i
[v,w]

}
.

We thus proceed to bound each of the summation terms over πn,[0,τ ] using Lemma B.1 and Assumptions (Aα) and (Aδ).

Let I ∈ {0, 1}1+i with I ≠ (0, . . . , 0), (1, . . . , 1) with i ∈ {1, . . . , k′}. Note that for all [s, t] ∈ πn,[0,τ ]

∥Z1,I
[s,t]∥Lmk/(k′+1) ≤

∥∥∥Sk′−i(Xπn+1)[0,s]

∥∥∥
Lmk/(k′−i)

∥Xs,u∥|I|Lmk ∥Xu,t∥1+i−|I|
Lmk ≲ |t− s|(1+i)α, (31)

by applying Lemma B.2, the uniform bound (28) and Assumption (Aα), hence Z1,I
[s,t] ∈ Lmk/(k′+1). When i = 1 we can

thus apply Lemma B.1 to the sequence {Z1,I
[s,t], [s, t] ∈ πn,[0,τ ], u ∈ (s, t)} with filtration {Fu, [s, t] ∈ πn,[0,τ ], u ∈ (s, t)}

to bound∥∥∥∥∥ ∑
[s,t]∈πn,[0,τ]

u∈(s,t)

Z1,I
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≤
∑

[s,t]∈πn,[0,τ]

u∈(s,t)

∥Eu[Z
1,I
[s,t]]∥Lmk/(k′+1) +

( ∑
[s,t]∈πn,[0,τ]

u∈(s,t)

∥Z1,I
[s,t]∥2Lmk/(k′+1)

)1/2

≲
∑

[s,t]∈πn,[0,τ]

u∈(s,t)

|t− s|α+δ +

( ∑
[s,t]∈πn,[0,τ]

u∈(s,t)

|t− s|4α
)1/2

≲ |πn|α+δ−1τ + |πn|2α−1/2
√
τ ≲ |πn|ϵ(τ +

√
τ), (32)
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where we used Equation (31) with i = 1 and

∥Eu[Z
1,I
[s,t]]∥Lmk/(k′+1) =

∥∥∥Sk′−i(Xπn+1)[0,s] ⊗Xs,u ⊗ Eu[Xu,t]
∥∥∥
Lmk/(k′+1)

≤
∥∥∥Sk′−1(Xπn+1)[0,s]

∥∥∥
Lmk/(k′−1)

∥Xs,u∥Lmk ∥Eu[Xu,t]∥Lmk ≲ |t− s|α+δ,

by applying Lemma B.2, the uniform bound (28) and Assumptions (Aα) and (Aδ). When i ≥ 2 we can directly apply the
triangle inequality and Equation (31) to bound∥∥∥∥∥ ∑

[s,t]∈πn,[0,τ]

u∈(s,t)

Z1,I
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≤
∑

[s,t]∈πn,[0,τ]

u∈(s,t)

∥Z1,I
[s,t]∥Lmk/(k′+1)

≲
∑

[s,t]∈πn,[0,τ]

u∈(s,t)

|t− s|(1+i)α ≲ |πn|3α−1τ ≲ |πn|ϵτ. (33)

Next, let i ∈ {0, . . . , k′} and j ∈ {0, . . . , k′ − i − 1}. We can proceed exactly as for Z1,I
[s,t] (applying Lemma B.1 when

i = j = 0 or the triangle inequality when i+ j ≥ 1) to show that under Assumptions (Aα) and (Aδ),∥∥∥∥∥ ∑
[s,t]∈πn,[0,τ]

u∈(s,t)

Z2,i,j
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≲ |πn|ϵ(τ +
√
τ). (34)

Finally, let i ∈ {0, . . . , k′}. We proceed in a similar way as for Z1,I
[s,t] and Z2,i,j

[s,t] but using the inductive hypothesis (29)
instead of the bound (28). Note that for all [s, t] ∈ πn,[0,τ ]

∥Z3,i
[s,t]∥Lmk/(k′+1) ≤

∥∥∥Sk′−i(Xπn+1)[0,s] − Sk′−i(Xπn)[0,s]

∥∥∥
Lmk/(k′−i)

∥Xs,t∥1+i
Lmk ≲ |πn|ϵ|t− s|(1+i)α, (35)

by applying Lemma B.2, the inductive hypothesis (29) and Assumption (Aα), hence Z3,i
[s,t] ∈ Lmk/(k′+1). When i = 0 we

can hence apply Lemma B.1 to the sequence {Z3,i
[s,t], [s, t] ∈ πn,[0,τ ]} with filtration {Fs, [s, t] ∈ πn,[0,τ ]} to bound

∥∥∥∥∥ ∑
[s,t]∈πn,[0,τ]

Z3,i
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≤
∑

[s,t]∈πn,[0,τ]

∥Es[Z
3,i
[s,t]]∥Lmk/(k′+1) +

( ∑
[s,t]∈πn,[0,τ]

∥Z3,i
[s,t]∥2Lmk/(k′+1)

)1/2

≲
∑

[s,t]∈πn,[0,τ]

|πn|ϵ|t− s|δ +
( ∑

[s,t]∈πn,[0,τ]

|πn|2ϵ|t− s|2α
)1/2

≲ |πn|ϵ(τ +
√
τ), (36)

where we used Equation (35) with i = 0 and

∥Es[Z
3,i
[s,t]]∥Lmk/(k′+1) =

∥∥∥(Sk′
(Xπn+1)[0,s] − Sk′

(Xπn)[0,s]

)
⊗ Es[Xs,t]

∥∥∥
Lmk/(k′+1)

≤
∥∥∥Sk′

(Xπn+1)[0,s] − Sk′
(Xπn)[0,s]

∥∥∥
Lmk/k′

∥Es[Xs,t]∥Lmk ≲ |πn|ϵ|t− s|δ,

by applying Lemma B.2, the inductive hypothesis (29) and Assumption (Aδ). When i ≥ 1, we can instead directly apply the
triangle inequality and Equation (35) to bound∥∥∥∥∥ ∑

[s,t]∈πn,[0,τ]

Z3,i
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

≤
∑

[s,t]∈πn,[0,τ]

∥Z3,i
[s,t]∥Lmk/(k′+1) ≲

∑
[s,t]∈πn,[0,τ]

|πn|ϵ|t− s|(1+i)α ≲ |πn|ϵτ. (37)

22



Learning with Expected Signatures: Theory and Applications

Combining bounds (32), (33), (34), (36) and (37) yields∥∥∥Sk′+1(Xπn+1)[0,τ ] − Sk′+1(Xπn)[0,τ ]

∥∥∥
Lmk/(k′+1)

≤
k′∑
i=0

1

(1 + i)!

{ ∑
I∈{0,1}1+i

I̸=(0,...,0),(1,...,1)

∥∥∥∥∥ ∑
[s,t]∈πn,[0,τ]

u∈(s,t)

Z1,I
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

+

k′−i−1∑
j=0

1

(1 + j)!

∥∥∥∥∥ ∑
[s,t]∈πn,[0,τ]

u∈(s,t)

Z2,i,j
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

+

∥∥∥∥∥ ∑
[s,t]∈πn,[0,τ]

Z3,i
[s,t]

∥∥∥∥∥
Lmk/(k′+1)

}

≲ |πn|ϵ(τ +
√
τ) ≲ |πn|ϵ(T +

√
T ),

which proves (29) with i = k′ + 1, completing the inductive step.

Setting i = k, N = 1 and τ = T in (29) yields

∥Sk(Xπn+1)[0,T ] − Sk(Xπn)[0,T ]∥Lm ≲ |πn|ϵ, n ≥ 1,

and hence, assuming
∑

n≥1 |πn|ϵ <∞, the sequence {Sk(Xπn)[0,T ], n ≥} is Cauchy in Lm. Since Lm is a Banach space,
the sequence converges in Lm to Sk(X)[0,T ] ∈ Lm (by uniqueness of limits) with rate

∥Sk(Xπn)[0,T ] − Sk(X)[0,T ]∥Lm ≤
∑
n′≥n

∥Sk(Xπn′+1)[0,T ] − Sk(Xπn′ )[0,T ]∥Lm ≲
∑
n′≥n

|πn|ϵ.

Remark B.4. When {πn, n ≥ 1} is a sequence of refining partitions with
∑

n≥1 |πn|ϵ <∞, the proof actually yields the
following (stronger) result

sup
τ∈πn

∥Sk(Xπn)[0,τ ] − Sk(X)[0,τ ]∥Lm ≲
∑
n′≥n

|πn′ |ϵ → 0, n→∞.

B.2. Proof of Theorem 2.10

Sketch of proof. The proof of this result relies on decomposition (8). We can combine Theorem 2.8 with assumption (11) to
show the first term in the decomposition vanishes in Lm, for m > 2. To show the full consistency result it thus suffices to
show the second term in (8) also vanishes in L2, which follows by Birkhoff’s ergodic theorem under the stated assumptions.
Similarly, for the asymptotic normality result, we combine Theorem 2.8 with assumption (13) to show the first term in the
decomposition vanishes in Lm when inflated by

√
N . The asymptotic normality of the second term can then be obtained by a

simple application of a central limit theorem (CLT) for dependent random variables.

Under the assumption that {Xn, n ≥ 1} is stationary and X1 satisfies the assumptions of Theorem 2.8 with m > 2, we have
that, for each n ≥ 1,

SI(Xn,πN,n)[0,T ]
Lm

→ SI(X)[0,T ], N →∞,
with rate O(∑N ′≥N |πN ′,n|ϵ). And hence∥∥∥∥∥ 1

N

N∑
n=1

(
SI(Xn,πN,n)[0,T ] − SI(Xn)[0,T ]

)∥∥∥∥∥
Lm

≲ max
1≤n≤N

∑
N ′≥N

|πN ′,n|ϵ ≤
∑

N ′≥N

|Π(N ′)|ϵ,

since |Π(N ′)| = max1≤n≤N ′ |πN ′,n|. Under assumption (11), we have thus established the first term in decomposition (8)
vanishes in Lm as N →∞ and therefore can focus on showing the second term also vanishes. Note that, under the stronger
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assumption (13), a similar reasoning can be applied when “blowing up” decomposition (8) by
√
N , and hence it suffices to

show the second term, when rescaled by
√
N , converges to a Gaussian random variable to establish the asymptotic normality

result.

We first prove the following somewhat technical result. In what follows we abuse notation slightly and write SI(·)[0,T ] to
denote SI(·).
Proposition B.5. Let X = {Xt, t ∈ [0, T ]} denote a canonical geometric stochastic process defined on the probability
space (Ω[0,T ] = C([0, T ];Rd),B[0,T ],P[0,T ]) by Xt = ω[0,T ](t) for t ∈ [0, T ] and ω[0,T ] ∈ Ω[0,T ]. Then for any collection
of words I there exists a measurable map SI : C([0, T ];Rd)→ R|I| such that

SI(ω[0,T ]) = SI(X)[0,T ], P[0,T ] − a.s.

Proof. By Remark 2.4 every canonical geometric stochastic process has at least one signature-defining sequence of partitions
over any [s, t] ⊆ [0, T ] given by the sequence ρ in Definition 2.1. Moreover, by passing to a subsequence if necessary, this
also guarantees the existence of a sequence of partitions ρ∗ along which (5) holds almost surely. Hence, there exists a Borel
set Ω′

[0,T ] ∈ B[0,T ] and a sequence of partitions ρ∗ with vanishing mesh such that for all ω[0,T ] ∈ Ω′
[0,T ],

SI
(
ωρ∗
[0,T ]

)
[0,T ]
→ SI

(
ω[0,T ]

)
[0,T ]

, |ρ∗| → 0,

and P[0,T ](Ω
′
[0,T ]) = 1. For every partition ρ∗ the map

ω[0,T ] ∈ Ω′
[0,T ] 7→ SI

(
ωρ∗
[0,T ]

)
[0,T ]
∈ R|I|,

is Ω′
[0,T ] ∩ B[0,T ]-measurable (by measurability of the sums and products of coordinate maps appearing in the discretized

signature) and hence also
ω[0,T ] ∈ Ω′

[0,T ] 7→ SI
(
ω[0,T ]

)
[0,T ]
∈ R|I|,

is Ω′
[0,T ] ∩ B[0,T ]-measurable (by measurability of the pointwise limit of measurable functions). We can hence extend

SI : Ω′
[0,T ] → R|I| to a measurable map on the whole of Ω[0,T ] = C([0, T ];Rd).

B.2.1. PROOF OF THEOREM 2.10, CONSISTENCY

The consistency result then follows by a simple application of Birkhoff’s ergodic theorem (Kallenberg, 2021, Theorem 25.6).
Let (Ω = C([0,∞);Rd),F = B[0,∞),P) denote the canonical space on which {Xt, t ≥ 0} is defined, i.e. P is the
law of {Xt, t ≥ 0}. Consider {Xn, n ≥ 1} as the sequence of C([0, T ];Rd)-valued random variables on the space12

(C([0, T ];Rd)∞,B∞[0,T ],P
∞
[0,T ]), where the probability measure P∞

[0,T ] is obtained by pushing forward P by the measurable
mapping

ω ∈ Ω 7→ {ωn
[0,T ], n ≥ 1} ∈ C([0, T ];Rd)∞,

where
ωn
[0,T ] := {ω((n− 1)T + t)− ω((n− 1)T ), t ∈ [0, T ]}.

If {Xn, n ≥ 1} is stationary and X = X1 is a canonical geometric stochastic process, then each Xn is also a canonical
geometric stochastic process on (C([0, T ];Rd),B[0,T ],P∗Xn) with signature given by the same measurable mapping
SI : C([0, T ];Rd) → R|I| given in Proposition B.5. We can then apply Birkhoff’s ergodic theorem (Kallenberg, 2021,
Theorem 25.6) to conclude

1

N

N∑
n=1

SI(Xn)[0,T ]
P−a.s.→ E[SI(X)[0,T ]], N →∞.

12Recall that if (E,B(E)) is a Borel measurable space and we equip E∞, i.e. the space of sequences with values in E, with the product
topology then

B(E∞) = ⊗n≥1B(E) := σ (∪n≥1(B(E)n × E∞)) ,

as long as E is second-countable.
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B.2.2. PROOF OF THEOREM 2.10, ASYMPTOTIC NORMALITY

We apply the dependent central limit theorem (CLT) given in Ibragimov (1962, Theorem 1.7) and extended to the multivariate
setting via the Cramér-Wold theorem. To apply this result we require {SI(Xn)[0,T ], n ≥ 1} to be stationary with
SI(Xn)[0,T ] ∈ L2+ζ and strongly mixing with strong mixing coefficient α(n), n ∈ N satisfying∑

n≥1

α(n)ζ/(2+ζ) <∞,

so that
ΣI = Var

(
SI(X1)[0,T ]

)
+ 2

∑
n≥2

Cov
(
SI(X1)[0,T ], S

I(Xn)[0,T ]

)
<∞,

and, if ΣI is strictly positive definite,

√
N

(
1

N

N∑
n=1

SI(Xn)[0,T ] − E[SI(X)[0,T ]]

)
L→ N (0,ΣI), N →∞.

Note that SI(Xn)[0,T ] ∈ L2+ζ for ζ > 0 is immediately obtained by applying Theorem 2.8 with m > 2. By measurability
of SI : C([0, T ];R) → R (Proposition B.5), σ(SI(Xn)) ⊆ σ(Xn), for all n ≥ 1, which implies {SI(Xn)[0,T ], n ≥ 1}
is also strongly mixing with strong mixing coefficient at most α(n), n ∈ N. The assumptions of Theorem 2.10 are thus
sufficient to deduce asymptotic normality of the expected signature estimator.

B.3. Proof of Corollary 2.12

Sketch of proof. In order to show that the CLT result of Theorem 2.10 can be made feasible we need to prove the kernel
estimator Σ̂Π(N)

I is consistent for the long-run covariance matrix ΣI. To do so, we first show that the kernelized estimator is
consistent for ΣI if, for each n ≥ 0, the cross-covariance estimator term Σ̂

n,Π(N)
I is consistent for Σn

I (with a “fast enough”
convergence rate). To show consistency of each cross-covariance term, we introduce an auxiliary process Yn obtained by
appropriately “stitching” the processes X1, . . . ,X1+n together. This choice of Yn, along with the shuffle property of the
expected signature, implies that each term in Σn

I can be expressed as a combination of terms from the expected signature of
Yn. The rest of the proof is thus devoted to showing that, under the assumptions of this Corollary, the process Yn satisfies the
conditions of Theorem 2.10.1, ensuring we can consistently estimate its signature terms and, in turn, the entries of Σn

I .

To make the CLT feasible one requires a consistent estimator for the long-run covariance of the sequence of random variables
{SI(Xn)[0,T ], n ≥ 1},

ΣI = Σ0
I + 2

∑
n≥1

Σn
I , where Σn

I = Cov
(
SI(X1)[0,T ], S

I(X1+n)[0,T ]

)
, n ≥ 0.

We consider the non-overlapping sample (cross-)covariances of the sequence {SI(Xn,πN,n)[0,T ], n = 1, . . . , N}, i.e. for
|n| ≤ N − 1,

Σ̂
n,Π(N)
I =

1

⌊N/(n+ 1)⌋

⌊N/(n+1)⌋∑
m=1

(
SI(XπN,(n+1)m−n)[0,T ] − ϕ̂Π(N)

I (T )
)(

SI(XπN,(n+1)m)[0,T ] − ϕ̂Π(N)
I (T )

)T
,

as estimators for Σn
I . Note that, for a fixed observation partition Π(N), we are only able to estimate Σn

I up to n = N − 1

with the quality of the estimator decreasing as n increases13. A natural choice would thus be to put less weight on Σ̂
n,Π(N)
I

13In this context, one might exploit the available data more efficiently by considering the full sample cross-covariances of the sequence
{SI(Xn,πN,n)[0,T ], n = 1, . . . , N}, i.e. for |n| ≤ N − 1,

1

N − n

N−n∑
m=1

(
SI(XπN,m)[0,T ] − ϕ̂

Π(N)
I (T )

)(
SI(XπN,m+n)[0,T ] − ϕ̂

Π(N)
I (T )

)T
,
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with n large than on Σ̂
n,Π(N)
I with small n. To do so, one can consider the kernel estimator

Σ̂
Π(N)
I =

N−1∑
n=−(N−1)

k

(
n

hN

)
Σ̂

n,Π(N)
I , Σ̂

−n,Π(N)
I :=

(
Σ̂

n,Π(N)
I

)T
, for n = 1, . . . , N − 1,

where k : R → [0, 1] is a decreasing kernel function continuous at zero with with k(0) = 1 and hN is an appropriately
chosen band-width parameter14. In what follows, and in the statement of Corollary 2.12, we set k to be the truncation kernel
k(x) = 1[−1,1](x) for simplicity, but other choices, such as the Bartlett kernel, might lead to better finite sample properties.
For each I, J ∈ I, if Σ̂n,Π(N)

I,J is consistent for Σn
I,J in L2 with monotonically decreasing rate r(M)→ 0 as the effective

sample size M = ⌊N/(n+ 1)⌋ → ∞, then

∥Σ̂Π(N)
I,J − ΣI,J∥L2 ≤

∑
|n|≤hN

∥∥∥Σ̂n,Π(N)
I,J − Σn

I,J

∥∥∥
L2

+

∣∣∣∣∣∣
∑

|n|>hN

Σn
I,J

∣∣∣∣∣∣
≤

∑
|n|≤hN

r(⌊N/(n+ 1)⌋) +

∣∣∣∣∣∣
∑

|n|>hN

Σn
I,J

∣∣∣∣∣∣ .
If the band-width hN → ∞ as N → ∞, then ΣI < ∞ ensures the second term vanishes. If, moreover, we set the rate
at which hN → ∞ to be slow enough to ensure also the first term converges to zero, then consistency of the estimators
Σ̂

n,Π(N)
I,J , for n ≥ 0, is inherited by Σ̂

Π(N)
I,J . Under the assumption r(M) ∼M−υ for υ ∈ (0, 1), one can set hN = Nυ/2.

We can hence focus on determining under which conditions, other than those of Theorem 2.10.2, the estimator Σ̂n,Π(N)
I,J is

consistent for Σn
I,J , for any n ≥ 0 and I, J ∈ I.

Note that, we can apply the shuffle identity to write, for I, J ∈ I,

Σ̂
0,Π(N)
I,J =

∑
K∈I�J

ϕ̂
Π(N)
K (T )− ϕ̂Π(N)

I (T )ϕ̂
Π(N)
J (T ),

and show consistency of this estimator for Σ0
I,J by applying the consistency result for the estimator of the expected signature

terms to K ∈ I � J for I, J ∈ I. We now attempt to apply a similar approach to the cross-covariance terms. To do so, we
introduce an Rnd-valued auxiliary process15 defined as Yn = {Yn

t , t ∈ [0, (n+ 1)T ]}, where

Yn
t =


X1

t∧T

X2
(t−T )+∧T

. . .
Xn+1

(t−nT )+∧T

, t ∈ [0, (n+ 1)T ] ⇐⇒ Yn
t =



X1
T

· · ·
Xi

T

Xi+1
s

0
· · ·
0


, t = iT + s, s ∈ [0, T ], 0 ≤ i ≤ n.

By construction, we have that, for any two words I, J ∈ I over the letters {1, . . . , d},
SI(X1)[0,T ] = SI(Yn)[0,(n+1)T ] and SJ(Xn+1)[0,T ] = Snd+J(Yn)[0,(n+1)T ].

I.e. we have re-written the two signature components of X1 and Xn over [0, T ] as time-overlapping signature components of
Yn over [0, (n+ 1)T ]. We can thus apply the shuffle product to deduce

SI(X1)[0,T ]S
J(Xn)[0,T ] = SI(Yn)[0,(n+1)T ]S

nd+J(Yn)[0,(n+1)T ] =
∑

K∈I�(nd+J)

SK(Yn)[0,(n+1)T ].

as estimators for Σn
I with n ≥ 0. The reason for using the non-overlapping sample covariance will become apparent once we introduce

the process Yn, which will be used to show consistency of the estimator Σ̂n,Π(N)
I for Σn

I by re-applying Theorem 2.10.1. To show
consistency of the full sample covariance estimator we would instead require the generalization of such result for time-overlapping
expected signature estimators.

14In the presence of conditional heteroskedasticity such estimators for the long-run covariance are known as Heteroskedasticity and
Autocorrelation Consistent (HAC) estimators (Newey & West, 1987). Note that decomposing the estimation of 2Σn

I into the sum of
Σ̂

n,Π(N)
I and its transpose ensures the resulting long-run covariance estimator Σ̂Π(N)

I is symmetric.
15We would like to thank Nicola Muca Cirone for suggesting this clever trick.
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We can thus re-write the (I, J)-th entry of Σn
I as

Σn
I,J = E

[
SI(X1)[0,T ]S

J(X1+n)[0,T ]

]
− E

[
SI(X1)[0,T ]

]
E
[
SJ(X1+n)[0,T ]

]
= E

[
SI(Yn)[0,(n+1)T ]S

nd+J(Yn)[0,(n+1)T ]

]
− E

[
SI(X)[0,T ]

]
E
[
SJ(X)[0,T ]

]
=

∑
K∈I�(nd+J)

E
[
SK(Yn)[0,(n+1)T ]

]
− E

[
SI(X)[0,T ]

]
E
[
SJ(X)[0,T ]

]
=

∑
K∈I�(nd+J)

ψK((n+ 1)T )− ϕI(T )ϕJ(T ),

and estimate it by
Σ̂

n,Π(N)
I,J =

∑
K∈I�(nd+J)

ψ̂
Π(N ;n)
K ((n+ 1)T )− ϕ̂Π(N)

I (T )ϕ̂
Π(N)
J (T ),

where, setting M = ⌊N/(n+ 1)⌋,

ψ̂
Π(N ;n)
K ((n+ 1)T ) :=

1

M

M∑
m=1

SK(YπN,m;n)[0,(n+1)T ],

and
Π(N ;n) = πN,1;n ∪ . . . ∪ ((M − 1)(n+ 1)T + πN,M ;n),

where for each m = 1, . . . ,M ,

πN,m;n = πN,(m−1)(n+1)+1 ∪ . . . ∪ (nT + πN,m(n+1)),

partitions [0, (n+ 1)T ] and

|Π(N ;n)| := max
1≤m≤M

|πN,m;n| = max
1≤m≤M

max
1≤i≤(n+1)

|πN,(m−1)(n+1)+i| ≤ |Π(N)|.

In order to apply the consistency result of Theorem 2.10 to ψ̂Π(N ;n)
K (nT ), we need to understand under which additional

conditions on {Xt, t ≥ 0}, other than those of Theorem 2.10, the process {Yn
t , t ≥ 0}, defined by

Yn
t =

∑
m≥1


Xm

(t−(m−1)T )+∧T

Xm+1
(t−mT )+∧T

. . .
Xm+n

(t−(m+n−1)T )+∧T

, t ≥ 0,

satisfies itself the assumptions of Theorem 2.10. Note that canonical geometricity of the stochastic process X (with lift-
defining sequence of partitions ρ, |ρ| → 0) and stationarity of {Xm, m ≥ 1} imply that each Xm is a canonical geometric
stochastic process and, hence, so is Yn (with lift-defining sequence of partitions ρn = ρ∪ (T +ρ)∪· · ·∪ (nT +ρ), |ρ| → 0).
Moreover, stationarity and ergodicity of {Xm, m ≥ 1} imply stationarity and ergodicity of {(Xm, . . . ,Xm+n), m ≥ 1}
and hence of the measurable transformation {Yn,m = f(Xm, . . . ,Xm+n), m ≥ 1}.
For fixed n ≥ 0 and m ≥ 1, each π·,m;n = {πN,m;n, ⌊N/(n+ 1)⌋ ≥ m} is a signature-defining sequence for Yn = Yn,1

over [0, (n + 1)T ] since each π·,n = {πN,n, N ≥ n} is a signature-defining sequence for X over [0, T ]. Moreover, by
construction of Π(N ;n), |Π(N ;n)| ≤ |Π(N)| → 0 whenever |Π(N)| → 0 as N →∞.

It thus remains to check that Yn = Yn,1 satisfies (Aα) and (Aδ) over [0, (n+ 1)T ] with α ≥ 1/2, δ ≥ 1 and p > 4k with
k = maxI∈I |I|. Clearly, as we are now considering the process over an arbitrarily long time span [0, (n+ 1)T ], we will
require {Xt, t ≥ 0} to satisfy (Aα) and (Aδ) with α ≥ 1/2, δ ≥ 1 and p > 4k not just over [0, T ] but for any 0 ≤ s ≤ t
with |t− s| ≤ T . This condition is automatically fulfilled when {Xt, t ≥ 0} is stationary (or, more generally, has jointly
stationary increments) and satisfies (Aα) and (Aδ) over [0, T ] with α ≥ 1/2, δ ≥ 1 and p > 4k with k = maxI∈I |I|.
It turns out that these conditions, only slightly stronger than those already required in Theorem 2.10 for the asymptotic
normality of ϕ̂Π(N)

I (T ), are sufficient to show that ψ̂Π(N ;n)
K ((n+ 1)T ) is consistent for ψK((n+ 1)T ), and thus Σ̂n,Π(N)

I,J

is consistent for Σn
I,J for any n ≥ 0 and I, J ∈ I.
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To show (Aα) holds for Yn with the same α ≥ 1/2 as {Xt, t ≥ 0} note that for 0 ≤ s ≤ t ≤ (n+ 1)T ,

∥Yn
s,t∥Lp ≤

n∑
i=0

∥Xi+1
(s−iT )+∧T,(t−iT )+∧T ∥Lp

≤
n∑

i=0

∥XiT+(s−iT )+∧T,iT+(t−iT )+∧T ∥Lp

≲
n∑

i=0

|(t− iT )+ ∧ T − (s− iT )+ ∧ T |α ≲ |t− s|α.

Next, to show that (Aδ) holds for Yn with the same δ ≥ 1 as {Xt, t ≥ 0}. Note that for 0 ≤ s ≤ t ≤ (n+ 1)T ,

∥Es[Y
n
s,t]∥Lp ≤

n∑
i=0

∥Es[X
i+1
(s−iT )+∧T,(t−iT )+∧T ]∥Lp

≤
n∑

i=0

∥Es[XiT+(s−iT )+∧T,iT+(t−iT )+∧T ]∥Lp

≤
n∑

i=0

1[0,(i+1)T ](s)∥EiT+(s−iT )+∧T [XiT+(s−iT )+∧T,iT+(t−iT )+∧T ]∥Lp

≤
n∑

i=0

|(t− iT )+ ∧ T − (s− iT )+ ∧ T |δ ≲ |t− s|δ.

B.4. Proof of Proposition 2.13

B.4.1. PROOF OF PROPOSITION 2.13, STATIONARY IMPLICATIONS

The first implication follows directly from the definitions of stationarity and joint stationarity of the increments. It remains
to show the latter implies stationarity of {Xn, n ≥ 1}, i.e. Equation (14) implies Equation (6). Under joint stationarity of
the increments, for all k ∈ N, n1, . . . , nk ∈ N and n ≥ 0,

P(Xn1 ∈ A1, . . . ,Xnk ∈ Ak)

= P(X(n1−1)T,(n1−1)T+t11
∈ B1

1 , . . . ,X(nk−1)T,(nk−1)T+tkmk
∈ Bk

mk
),

= P(X(n1+n−1)T,(n1+n−1)T+t11
∈ B1

1 , . . . ,X(nk+n−1)T,(nk+n−1)T+tkmk
∈ Bk

mk
),

= P(Xn1+n ∈ A1, . . . ,Xnk+n ∈ Ak),

for all A1, . . . , Ak cylinder sets of the form

Aj = {ω[0,T ] ∈ C([0, T ];Rd) : ω(tj1) ∈ Bj
1, . . . , ω(t

j
mj

) ∈ Bj
mj
},

for Bj
1, . . . , B

j
mj
∈ B(Rd), t1, . . . , tjmj

∈ [0, T ], mj ≥ 1. Noting that the collection of the sets A1× . . .×Ak is a semi-ring
that generates16 the σ-algebra Bk[0,T ], we can apply Caratheodory’s extension theorem to conclude that (6) holds.

16Recall that for a set I ⊆ R+, the Borel σ-algebra BI := B(C(I;Rd)) (w.r.t. the topology induced by ∥ · ∥∞) can be equivalently
defined by

BI = σ
(
ω ∈ C(I;Rd) : ω(t1) ∈ A1, . . . , ω(tn) ∈ An, t1, . . . , tn ∈ I, A1, . . . , An ∈ B(Rd), n ≥ 1

)
.

Moreover, if (E,B(E)) is a Borel measurable space and we equip Ek with the product topology, then

B(Ek) = B(E)k := σ(A1 × · · · ×Ak, A1, . . . , Ak ∈ B(E)) = σ(A1 × · · · ×Ak, A1, . . . , Ak ∈ G),

where G is a generating collection for B(E), i.e. B(E) = σ(G).
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Remark B.6. One might expect a similar statement as Proposition 2.13 for ergodicity, but the following counterexample
shows that

{Xt, t ≥ 0} is ergodic ≠⇒ {Xn, n ≥ 1} is ergodic.

Let {Xt, t ≥ 0} be an R-valued process such that

Xt = sin

(
πt

T
+ ϕ

)
, t ≥ 0,

and ϕ ∼ U([0, 2π]), inducing a probability measure P∞
[0,T ] on (Ω∞

[0,T ],B∞[0,T ]) where Ω[0,T ] = (C([0, T ],R). The process
is stationary and ergodic. Stationarity of {Xt, t ≥ 0} implies stationarity of {Xn, n ≥ 1} by Proposition 2.13. But the
shift-invariant set

I =
∏
n≥1

{ωn
[0,T ] ∈ I≥0 ∪ I≤0} ∈ B∞[0,T ],

where I≥0, I≤0 ∈ B[0,T ] are given by

I≥0 := {ω[0,T ] : ω[0,T ](t) ≥ 0, ∀t ∈ [0, T ]},
I≤0 := {ω[0,T ] : ω[0,T ](t) ≤ 0, ∀t ∈ [0, T ]},

has measure P∞
[0,T ](I) = P(ϕ ∈ [π/2, π] ∪ [3π/2, 2π]) = 1/2 /∈ {0, 1} and hence {Xn, n ≥ 1} is not ergodic.

B.4.2. PROOF OF PROPOSITION 2.13, STRONG MIXING IMPLICATIONS

We start by showing that strong mixing of {Xt, t ≥ 0} with strong mixing coefficient α(s), s ∈ R+ implies strong mixing
of the progressive increment process {XT

t , t ≥ 0} where

XT
t := X⌊t/T⌋T,t, t ≥ 0,

with strong mixing coefficient α′(s) ≤ α(s− 2T ), s ≥ 2T . This follows immediately from the definition of strong mixing
and the fact that for t ≥ 0,

σ(XT
u , u ≤ t) ⊆ σ(Xu, u ≤ t),

and for s ≥ 2T ,

σ(XT
u , u ≥ t+ s) ⊆ σ(Xu, u ≥ ⌊(t+ s)/T ⌋T ) ⊆ σ(Xu, u ≥ t+ (s− 2T )).

Next, we show that strong mixing of {XT
t , t ≥ 0} with strong mixing coefficient α′(s), s ∈ R+ implies strong mixing of

{Xn, n ≥ 1} with strong mixing coefficient α′′(n) ≤ α′((n− 1)T ), n ∈ N, and thus α′′(n) ≤ α((n− 3)T ), n ≥ 3. Let

X b
a := σ(XT

u , u ∈ [a, b]),

for a, b ∈ R+ with a ≤ b and let
Snm := σ(Xl, m ≤ l ≤ n),

for m,n ∈ N with m ≤ n. Then, by definition, for each n ∈ N,

XnT
(n−1)T = σ(X(n−1)T,(n−1)T+t, t ∈ [0, T ]) = Snn .

Thus for any m,n ∈ N with m ≤ n
Snm = XnT

(m−1)T .

Letting k ∈ N and A ∈ Sk−∞, B ∈ S∞k+n we thus have

|P(A ∩B)− P(A)P(B)| ≤ α′((n− 1)T )→ 0, k →∞.
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B.5. Proof of Theorem 2.14

Sketch of proof. As in the proof of Theorem 2.10, c.f. Appendix B.2, we can apply the in-fill result given in Theorem 2.8
to show the first term in decomposition (8) vanishes. For the second term, we show the sequence of random variables
{SI(Xn)[0,T ], n ≥ 1} satisfies a (weak) law of large numbers by verifying the auto-covariance decay condition (38). For
each fixed lag n ≥ 1, we start by bounding the auto-covariance of lagged discretized signatures {SI(Xρ,n)[0,T ], n ≥ 1}.
This step crucially relies on the Gaussian assumption when using Isserlis’ theorem to compute the expectation of the product
of (arbitrarily many) path increments. The required auto-covariance decay condition is then obtained in the in-fill limit along
a sequence of signature-defining partitions ρ by an application of Theorem 2.8.

Note that for any n ∈ N, 0 ≤ si ≤ ti for i = 1, . . . , n and t ≥ 0

(Xt+s1,t+t1 , . . . ,Xt+sn,t+tn)
L
= (Xs1,t1 , . . . ,Xsn,tn),

since both vectors are normally distributed with means

E[Xt+si,t+ti ] = E[Xsi,ti ] = 0,

for i = 1, . . . , n and covariances

Cov(Xt+si,t+ti ,Xt+sj ,t+tj ) = Cov(Xsi,ti ,Xsj ,tj ) = C(|ti − si|, |sj − ti|, |tj − sj |),

for i, j = 1, . . . , n. This implies {Xt, t ≥ 0} has jointly stationary increments and hence, by Proposition 2.13, {Xn, n ≥ 1}
is stationary. By Proposition B.5 the sequence {SI(Xn), n ≥ 1} is defined P-a.s. and is stationary.

Note that by Appendix E.1, X satisfies (Aα) for any p ≥ 2. When α = 1/2, it also satisfies (Aδ) with δ ≥ 1 for all p ≥ 2 by
assumption. We can thus apply Theorem 2.8 to obtain an L2 in-fill asymptotic result along a sequence of dyadic refinements.
By the discussion at the start of Appendix B.2, we can thus focus on showing the weak law of large numbers holds for
{SI(Xn), n ≥ 1}.
To apply the weak law of large number for dependent random variables, note that:

1. SI(Xn)[0,T ] ∈ L2, by the in-fill asymptotic result.

2. To show Cov
(
SI(Xn)[0,T ], S

I(Xm)[0,T ]

)
→ 0 as |m − n| → ∞, by stationarity of {Xn, n ≥ 1}, it is sufficient to

show that
Cov

(
Sk′

(X1)[0,T ], S
k′
(Xn)[0,T ]

)
→ 0, n→∞, (38)

for any 1 ≤ k′ ≤ k = maxI∈I |I|.

To show (38), we wish to find a bound on Cov(Sk′
(X1)[0,T ], S

k′
(Xn)[0,T ]) vanishing to zero as n→∞. Note that, by the

in-fill asymptotic result, along the signature-defining sequence of dyadic refinements, for all n ≥ 1 and 1 ≤ k′ ≤ k,

Cov
(
Sk′

(Xρ,1)[0,T ], S
k′
(Xρ,n)[0,T ]

)
→ Cov

(
Sk′

(X1)[0,T ], S
k′
(Xn)[0,T ]

)
, |ρ| → 0. (39)

To bound Cov(Sk′
(X1)[0,T ], S

k′
(Xn)[0,T ]), we can hence start by bounding the covariance between the discretized signa-

tures Cov(Sk′
(Xρ,1)[0,T ], S

k′
(Xρ,n)[0,T ]) and then let |ρ| → 0.

Let ρ be a dyadic partition of [0, T ] and note the form of the discretized signature

S(Xρ)[0,T ] =
⊗

[u,v]∈ρ

exp⊗ Xu,v,

implies

Sk′
(Xρ)[0,T ] =

∑
iρ∈Mk′

ρ

⊗
[u,v]∈ρ

X
⊗i[u,v]
u,v

i[u,v]!
,
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where
Mk′

ρ := {iρ := {i[u,v]}[u,v]∈ρ : 0 ≤ i[u,v] ≤ k′, [u, v] ∈ ρ,
∑

[u,v]∈ρ

i[u,v] = k′},

is the set of multindices over ρ with sum of components k′. Note that we can rewrite this as

Sk′
(Xρ)[0,T ] =

k′∑
j=1

∑
i1,...,ij≥1

i1+···+ij=k′

∑
· · ·

∑
[u1,v1]<···<[uj ,vj ]∈ρ

j⊗
l=1

X⊗il
ul,vl

il!

=

k′∑
j=1

∑
i1,...,ij≥1

i1+···+ij=k′

∑
· · ·

∑
[u1,v1]<···<[uj ,vj ]∈ρ

[
j∏

l=1

1

il!

]
k′⊗

x=1

Xulx ,vlx
,

where we first split the sum over the number of non-zero i[u,v] for each iρ ∈Mk′

ρ and then rewrite the tensor product by
introducing (l1, · · · , lk′) = (1, . . . , 1, 2, . . . , 2, . . . , j, . . . , j), where the index 1 is repeated i1 times, the index 2 is repeated
i2 times, and so on. We introduce the notation [u1, v1] <m′ [u2, v2] denoting at least m′ intervals between [u1, v1] and
[u2, v2] in ρ. When m′ = 0, we equivalently write < or <0 to denote the interval [u2, v2] being after [u1, v1] in ρ.

We then group the above summations over the intervals [u1, v1], . . . , [uj , vj ] over all possible combinations of time intervals
with at least one pair less than m steps away in the partition ρ. To do so, introduce the set17 variable I ⊕0 J ∈ Sj′,j,m
where I ∈ {1} × {0, 1}j−1 is such that |I| = I1 + . . . + Ij = j′ and J ∈ {1, . . . ,m}j−j′ where m is such that (Aθ)
holds. We can then recursively define, for l = 1, . . . , j,

[ul, vl](I ⊕0 J ) =
{

interval Jl steps after [ul−1, vl−1](I ⊕0 J ) if Il = 0,

[u|I1:l|, v|I1:l|] if Il = 1,

where |I1:l| = I1 + . . .+ Il, and write

Sk′
(Xρ)[0,T ] =

k′∑
j=1

∑
i1,...,ij≥1

i1+···+ij=k′

j∑
j′=1

∑
I⊕0J∈Sj′,j,m

∑
· · ·

∑
[u1,v1]<m1

···<m
j′−1

[uj′ ,vj′ ]∈ρ

[
j∏

l=1

1

il!

]
k′⊗

x=1

X[ulx ,vlx ](I⊕0J ),

where, for each l′ = 1, . . . , j′− 1, we have [ul′ , vl′ ] <ml′ [ul′+1, vl′+1], i.e. there are at least ml′ intervals between [ul′ , vl′ ]
and [ul′+1, vl′+1] in ρ, where

ml′ = ml′(I ⊕0 J ) =
j∑

l=1

Jl 1{|I1:l|=l′, Il=0}.

The structure of the tensor products in the summation is thus

X⊗i1
u1,v1 ⊗X⊗i2

u2
1,v

2
1
⊗ · · · ⊗X

⊗in1

u
n1
1 ,v

n1
1

⊗X
⊗in1+1
u2,v2 ⊗X

⊗in1+2

u2
2,v

2
2
⊗ · · · ⊗X

⊗in1+n2

u
n2
2 ,v

n2
2

⊗ · · · ,

where [u1, v1], [u
2
1, v

2
1 ], · · · , [un1

1 , vn1
1 ] are all less than m intervals apart and [u2, v2] is at least m intervals after [un1

1 , vn1
1 ]

(and so on)18.

Let n ≥ 3 and define ρn = (n− 1)T + ρ. Then, for each word I = (w1, . . . , wk′) of length k′, we can write

Cov
(
SI(Xρ,1)[0,T ], S

I(Xρ,n)[0,T ]

)
17Here I ⊕0 J denotes pairing elements of J to the elements of I equal to 0.
18To help intuitive understanding consider the case where k′ = 2 and m = 1, then the above expression reduces to

S2(Xρ)[0,T ] =
∑

[u1,v1]∈ρ

X⊗2
u1,v1

2!
+

∑
[u1,v1]∈ρ

Xu1,v1 ⊗Xv1,w1 +
∑

[u1,v1]∈ρ

∑
[u2,v2]∈ρ

[u1,v1]<1[u2,v2]

Xu1,v1 ⊗Xu2,v2 ,
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=

k′∑
j1,j2=1

∑
i1,...,ij1≥1

i1+···+ij1=k′

∑
e1,...,ej2≥1

e1+···+ej2=k′

j1∑
j′1=1

j2∑
j′2=1

∑
I1⊕0J1∈Sj′1,j1,m

I2⊕0J2∈Sj′2,j2,m∑
· · ·
∑

[u1,v1]<m1
1
···<

m1
j′1−1

[uj′1
,vj′1

]∈ρ

[s1,t1]<m2
1
···<

m2
j′2−1

[sj′2
,tj′2

]∈ρn

[ j1∏
l=1

1

il!

][ j2∏
l=1

1

el!

]
Cov

(
k′∏

x=1

X
(wx)

[u
l1x

,v
l1x

](I1⊕0J1)
,

k′∏
x=1

X
(wx)

[s
l2x

,t
l2x

](I2⊕0J2)

)

=

k′∑
j1,j2=1

∑
i1,...,ij1≥1

i1+···+ij1=k′

∑
e1,...,ej2≥1

e1+···+ej2=k′

j1∑
j′1=1

j2∑
j′2=1

∑
I1⊕0J1∈Sj′1,j1,m

I2⊕0J2∈Sj′2,j2,m

∑
· · ·
∑

[u1,v1]<m1
1
···<

m1
j′1−1

[uj′1
,vj′1

]∈ρ

[s1,t1]<m2
1
···<

m2
j′2−1

[sj′2
,tj′2

]∈ρn

[ j1∏
l=1

1

il!

][ j2∏
l=1

1

el!

]

∑
p∈MP2

(2,k′)

∏
{(δ1,x1),
(δ2,x2)}∈p

Cov

(
X

(wx1
)δ1

[u
l1x1

,v
l1x1

](I1⊕0J1)
X

(wx1
)(1−δ1)

[s
l2x1

,t
l2x1

](I2⊕0J2)
, X

(wx2
)δ2

[u
l1x2

,v
l1x2

](I1⊕0J1)
X

(wx2
)(1−δ2)

[s
l2x2

,t
l2x2

](I2⊕0J2)

)
,

by using the fact that, for two collections of mean-zero normal random variables (Z0,1, . . . , Z0,k′) and (Z1,1, . . . , Z1,k′),
we can apply Isserlis’ theorem (Isserlis, 1918) to show

Cov (Z0,1 · · ·Z0,k′ , Z1,1 · · ·Z1,k′)

= E [Z0,1 · · ·Z0,k′Z1,1 · · ·Z1,k′ ]− E [Z0,1 · · ·Z0,k′ ]E [Z1,1 · · ·Z1,k′ ]

=
∑

p∈P 2
(2,k′)

∏
{(i1,i2),
(j1,j2)}∈p

E [Zi1,i2Zj1,j2 ]−

 ∑
q∈P 2

k′

∏
{i,j}∈q

E [Z0,iZ0,j ]

 ∑
r∈P 2

k′

∏
{i,j}∈r

E [Z1,iZ1,j ]


=

∑
p∈MP 2

(2,k′)

∏
{(i1,i2),(j1,j2)}∈p

E [Zi1,i2Zj1,j2 ]

=
∑

p∈MP 2
(2,k′)

∏
{(i1,i2),(j1,j2)}∈p

Cov (Zi1,i2 , Zj1,j2) ,

where P 2
(2,k′) denotes the set of all the pairings of {0, 1} × {1, . . . , k′}, P 2

k′ denotes the set of all the pairings of {1, . . . , k′}
and MP 2

(2,k′) denotes the set of all the pairings of {0, 1} × {1, . . . , k′} that contain at least one “mixed” pair, i.e. for all
p ∈MP 2

(2,k′) there exist {(i1, i2), (j1, j2)} ∈ p such that i1 ̸= j1.

Note that each [ul′ , vl′ ] for l′ = 1, . . . , j′1 appears in at least one covariance term. We proceed by cases:

• If [ul′ , vl′ ] appears in a pair with an interval [u∗, v∗] such that [ul′−1, vl′−1] < [u∗, v∗] < [ul′+1, vl′+1], then

|Cov(X(w)
[ul′ ,vl′ ]

, X
(q)
[u∗,v∗]

)| ≲ |vl′ − ul′ |,

by applying Assumption (Aα) with α ≥ 1/2 and the fact that ρ is dyadic (and hence uniform).

• If [ul′ , vl′ ] appears in a pair with an interval [u∗, v∗] such that [u∗, v∗] ≤ [ul′−1, vl′−1], then we have |ul′ − v∗| ≥
where [v1, w1] is the interval right-contiguous to [u1, v1] in ρ. If k′ = 2 and m = 2, instead

S2(Xρ)[0,T ] =
∑

[u1,v1]∈ρ

X⊗2
u1,v1

2!
+

∑
[u1,v1]∈ρ

Xu1,v1 ⊗Xv1,w1 +
∑

[u1,v1]∈ρ

Xu1,v1 ⊗Xw1,z1

+
∑

[u1,v1]∈ρ

∑
[u2,v2]∈ρ

[u1,v1]<2[u2,v2]

Xu1,v1 ⊗Xu2,v2 ,

where [u1, v1], [v1, w1], [w1, z1] are consecutive intervals in ρ.
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m/2(|v∗ − u∗|+ |vl′ − ul′ |) and

|Cov(X(w)
[ul′ ,vl′ ]

, X
(q)
[u∗,v∗]

)| ≲ θ(|ul′ − v∗|)|v∗ − u∗||vl′ − ul′ | ≲ θ(|ul′ − vl′−1|)|v∗ − u∗||vl′ − ul′ |,
by applying (Aθ).

• Similarly, if [ul′ , vl′ ] appears in a pair with an interval [u∗, v∗] such that [ul′+1, vl′+1] ≤ [u∗, v∗], then we have
|u∗ − vl′ | ≥ m/2(|vl′ − ul′ |+ |v∗ − u∗|) and

|Cov(X(w)
[ul′ ,vl′ ]

, X
(q)
[u∗,v∗]

)| ≲ θ(|u∗ − vl′ |)|vl′ − ul′ ||v∗ − u∗| ≲ θ(|ul′+1 − vl′ |)|vl′ − ul′ ||v∗ − u∗|.

• If [ul′ , vl′ ] appears in a pair with an interval [s∗, t∗] ∈ ρn, then

|Cov(X(w)
[ul′ ,vl′ ]

, X
(q)
[s∗,t∗]

)| ≲ θ((n− 2)T )|vl′ − ul′ ||t∗ − s∗|,
by applying (Aθ).

A similar reasoning applies to each [sl′ , tl′ ], for l′ = 1, . . . , j′2. Noting that at least one pairing is mixed across ρ and ρn we
can hence bound

|Cov
(
SI(Xρ,1)[0,T ], S

I(Xρ,n)[0,T ]

)
|

≲
k′∑

j1,j2=1

∑
i1,...,ij1≥1

i1+···+ij1=k′

∑
e1,...,ej2≥1

e1+···+ej2=k′

j1∑
j′1=1

j2∑
j′2=1

∑
I1⊕0J1∈Sj′1,j1,m

I2⊕0J2∈Sj′2,j2,m

∑
· · ·
∑

[u1,v1]<m1
1
···<

m1
j′1−1

[uj′1
,vj′1

]∈ρ

[s1,t1]<m2
1
···<

m2
j′2−1

[sj′2
,tj′2

]∈ρn

[ j1∏
l=1

1

il!

][ j2∏
l=1

1

el!

]

∑
p∈MP2

(2,k′)

θ((n− 2)T )|v1 − u1|θ(|u2 − v1|)|v2 − u2| · · · θ(|uj′1
− vj′1−1|)|vj′1 − uj′1

|

× |t1 − s1|θ(|s2 − t1|)|t2 − s2| · · · θ(|sj′2 − tj′2−1|)|tj′2 − sj′2 |

≲
k′∑

j1,j2=1

∑
i1,...,ij1≥1

i1+···+ij1=k′

∑
e1,...,ej2≥1

e1+···+ej2=k′

j1∑
j′1=1

j2∑
j′2=1

θ((n− 2)T )

×
( ∑

[u1,v1]∈ρ

|v1 − u1|
)( ∑

[u2,v2]∈ρ

θ(|u2|)|v2 − u2|
)
· · ·
( ∑

[uj′1
,vj′1

]∈ρ

θ(|uj′1
|)|vj′1 − uj′1

|
)

×
( ∑

[s1,t1]∈ρn

|t1 − s1|
)( ∑

[s2,t2]∈ρn

θ(|s2|)t2 − s2|
)
· · ·
( ∑

[sj′2
,tj′2

]∈ρn

θ(|sj′2 |)|tj′2 − sj′2 |
)

→ θ((n− 2)T )


k′∑

j1,j2=1

∑
i1,...,ij1≥1

i1+···+ij1=k′

∑
e1,...,ej2≥1

e1+···+ej2=k′

j1∑
j′1=1

j2∑
j′2=1

T 2

(∫ T

0

θ(t)dt
)j′1+j′2−2

 , |ρ| → 0.

Combining this bound with (39), we can conclude that, for all n ≥ 3,

|Cov
(
SI(X1)[0,T ], S

I(Xn)[0,T ]

)
| ≲ θ((n− 2)T )→ 0, n→∞,

i.e. we have shown (38). Hence, we can apply the weak law of large numbers of dependent random variables and the in-fill
asymptotics to obtain the desired consistency result.

C. Variance Reduction via Martingale Correction
In this Section 2.2 we considered a single control obtained by substituting the outermost Stratonovich integral with an
Itô integral. In principle, for a word of length |I| = k ≥ 2, one could consider 2k−2 distinct controls: for any subset
I ⊆ {2, . . . , k − 1}, one can obtain a control by changing each of the integrals with index in I ∪ {k} to Itô integrals. One
can then apply the controlled linear regression estimator (with only the intercept term as regressor) described in Appendix G.
This family of controls will likely be highly correlated and hence:
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• the improvements provided by each additional control might be quite marginal compared to the considerable increase
in computational cost;

• the estimator of the (inverse) variance matrix of the controls, needed to make the estimator feasible, might be quite
unstable.

Hence, for clarity of exposition and computational ease, throughout the rest of this work we only consider the control variate
estimator introduced in Section 2.2, i.e. for a fixed word I

ϕ̂N,π,c
I (T ) :=

1

N

N∑
n=1

(
SI(Xn,π)[0,T ] − cSI

c (Xn,π)[0,T ]

)
, (40)

where I−1 := (i1, . . . , ik−1) and
SI
c (Xπ)[0,T ] :=

∑
[u,v]∈π

SI−1(Xπ)[0,u]X
(ik)
u,v .

C.1. Martingale Continuity Criterion

If X is a martingale, then, by the Burkholder-Davis-Gundy (BDG) inequality (Burkholder et al., 1972), we can write a
stronger version of assumptions (Aα) in terms of the quadratic variation of X, for all 0 ≤ s ≤ t ≤ T

(Aα.M) ∥⟨X⟩s,t∥Lp/2 ≲ |t− s|2α.

Note that for many martingales assumption (Aα.M) holds with α = 1/2 and hence, since (Aδ) holds trivially, we can
usually apply Theorem 2.8 under (ii). Some non-trivial degenerate cases exist: For example, consider a one-dimensional
mean-zero Gaussian martingale over [0, 1] with covariance function C(s ∧ t) where C is the Cantor function. This process
has quadratic variation ⟨X⟩t = C(t) and hence – since the Cantor function is Hölder continuous with Hölder exponent
log3(2) – assumption (Aα.M) is satisfied with α = 1

2 log3 2 ∈ (1/4, 1/3]. In this case, one can easily check that (Aβ) and
(Aγ) hold by combining the independent increments and martingale property of X.

C.2. Estimating c∗π
In Section 2.2, we considered the following estimator for c∗π:

ĉ∗π,1 =

∑N
n=1 S

I(Xn,π)[0,T ]S
I
c (Xn,π)[0,T ]∑N

n=1 S
I
c (Xn,π)2[0,T ]

.

Alternatively, we can exploit the explicit form of the covariance and variance of the infeasible estimator and approximate

Cov(SI(Xπ)[0,T ], S
I
c (Xπ)[0,T ]) ≈ Cov(SI(X)[0,T ], S

I
c (X)[0,T ])

=
∑

J∈I�I

ψJ(T )−
1

2

∑
J∈I�I−2∗((ik−1,ik))

ψJ(T )

≈
∑

J∈I�I

ψ̂N
J (T )− 1

2

∑
J∈I�I−2∗((ik−1,ik))

ψ̂N
J (T )

≈
∑

J∈I�I

ψ̂N,π
J (T )− 1

2

∑
J∈I�I−2∗((ik−1,ik))

ψ̂N,π
J (T )

≈
∑

J∈I�I

ψ̂N,π,′
J (T )− 1

2

∑
J∈I�I−2∗((ik−1,ik))

ψ̂N,π,′
J (T ),

where

ψ̂N
J (T ) :=

1

N

N∑
n=1

SJ((X, ⟨X⟩)n)[0,T ], ψ̂N,π
J (T ) :=

1

N

N∑
n=1

SJ((X, ⟨X⟩)n,π)[0,T ],
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and

ψ̂N,π,′
J (T ) :=

1

N

N∑
n=1

SJ((Xn,π, ⟨X̂⟩n,π))[0,T ],

with ⟨X̂⟩π = {⟨X̂⟩πt , t ∈ [0, T ]} defined as

⟨X̂⟩πt =
∑

[u′,v′]∈π[0,u]

X2
u′,v′ +

t− u
v − uX

2
u,v, t ∈ [u, v].

Similarly, we can approximate

Var(SI
c (Xπ)[0,T ]) ≈ Var(SI

c (X)[0,T ]) ≈
∑

J∈I−1�I−1

ψ̂N,π
J∗((ik,ik))(T ) ≈

∑
J∈I−1�I−1

ψ̂N,π,′
J∗((ik,ik))(T ),

and hence we define the second estimator for c∗π as

ĉ∗π,2 =

∑
J∈I�I ψ̂

N,π,′
J (T )− 1

2

∑
J∈I�I−2∗((ik−1,ik))

ψ̂N,π,′
J (T )∑

J∈I−1�I−1
ψ̂N,π,′
J∗((ik,ik))(T )

=

∑N
n=1

(∑
J∈I�IS

J((Xn,π, ⟨X̂⟩n,π))[0,T ] − 1
2

∑
J∈I�I−2∗((ik−1,ik))

SJ((Xn,π, ⟨X̂⟩n,π))[0,T ]

)
∑N

n=1

∑
J∈I−1�I−1

SJ∗((ik,ik))((Xn,π, ⟨X̂⟩n,π))[0,T ]

.

Whether estimator ĉ∗π,1 or estimator ĉ∗π,2 is more precise, in terms of MSE, depends on the properties of the process X and
the expected signature word I being estimated by (40).

Lemma C.1. Let X = {Xt, t ∈ [0, T ]} be a square-integrable martingale satisfying Assumption (Aα.M), for some
α ≥ 1/2 and p = 4k where k = |I|. Assume that π is part of a sequence of refining partitions with mesh vanishing fast
enough, i.e. ∑

n≥1

|πn|2α−1/2 <∞.

Then the difference between the mean-square errors of the two estimators ĉ∗π,1 and ĉ∗π,2 for c∗π is approximately

E[(ĉ∗π,2 − c∗π)2]− E[(ĉ∗π,1 − c∗π)2] ≈
1

N

µY

µ3
Z

(
µY

µZ
(E[Z2

2 ]− E[Z2
1 ])− 2(E[Y Z2]− E[Y Z1])

)
,

where

Y = SI(X)[0,T ]S
I
c (X)[0,T ], Z1 = SI

c (X)2[0,T ], Z2 =
∑

J∈I−1�I−1

SJ∗((ik,ik))((X, ⟨X⟩))[0,T ],

and µY = E[Y ], µZ = E[Z1] = E[Z2].

Proof. See Appendix C.3.

In practical applications, the above expression cannot be evaluated exactly, but we can approximate it by its sample estimate

E[(ĉ∗π,2 − c∗π)2]− E[(ĉ∗π,1 − c∗π)2] ∝
1

N2

N∑
n=1

 µ̄Y

µ̄Z
((Zπ

2,n)
2 − (Zπ

1,n)
2)−

2∑
j=1

(Y π
j,nZ

π
2,n − Y π

j,nZ
π
1,n)

 .

where

µ̄Y =
1

2N

(
N∑

n=1

Y π
1,n +

N∑
n=1

Y π
2,n

)
, µ̄Z =

1

2N

(
N∑

n=1

Zπ
1,n +

N∑
n=1

Zπ
2,n

)
,
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and Y π
1,n, Z

π
1,n, Y

π
2,n, Z

π
2,n are given in Appendix C.3.

Another important discriminant when choosing between estimators ĉ∗π,1 and ĉ∗π,2 is usually computational cost. To compute
ĉ∗π,1 it suffices to regress {SI(Xn,π)[0,T ], n = 1, . . . , N} against {SI

c (Xn,π)[0,T ], n = 1, . . . , N}. Both samples need to
be computed to evaluate the control-variate estimator (40) and thus the extra computational cost of ĉ∗π,1 is just the cost of a
simple linear regression with sample size N , namely O(N). On the other hand, to compute ĉ∗π,2, one needs to compute all
the higher-order expected signature estimates ψ̂N,π,′

J (T ) with J ∈ I� I , J ∈ I� I−2 ∗ ((ik−1, ik)) and J = J ′ ∗ ((ik, ik))
for J ′ ∈ I−1� I−1, which has (naive) extra computational cost O(|π|−1Tk(d2k + (d+1)2k−1)) when parallelizing across
the N samples. In the in-fill limit, |π|−1T ≫ N and, hence, computing ĉ∗π,2 is significantly more expensive than computing
ĉ∗π,1.

C.3. Proof of Lemma C.1

Sketch of proof. To compare the two estimators ĉ∗π,1 and ĉ∗π,2 we exploit their structure as ratio estimators based on i.i.d.
observations of numerator random variables Y π

1 , Y π
2 and denominator random variables Zπ

1 , Z
π
2 respectively. We first show

that the two estimators are both (biased) estimators for c∗π = c∗π,1 = c∗π,2 where

c∗π,1 =
E[Y π

1 ]

E[Zπ
1 ]

and c∗π,2 =
E[Y π

2 ]

E[Zπ
2 ]

.

The first equality is trivial while the second requires several applications of Theorem 2.8 which are detailed in Lemma C.3.
We then derive a simple formula for the mean squared error of ratio estimators in terms of the means and variances of the
numerator and denominator random variables. Taking the limit |π| ↓ 0 and applying Theorem 2.8 to show the second order
statistics of Y π

1 , Y π
2 , Zπ

1 , Z
π
2 converge to those of Y1, Y2, Z1, Z2 yields the desired result.

Note that both ĉ∗π,1 and ĉ∗π,2 are ratio estimators of the form

ĉ∗π,j =
Ȳ π
j

Z̄π
j

=

∑N
n=1 Y

π
j,n∑N

n=1 Z
π
j,n

,

for random variables Y π
j,1, . . . , Y

π
j,N and Zπ

j,1, . . . , Z
π
j,N with j = 1, 2 given by i.i.d. copies of

Y π
1 = SI(Xπ)[0,T ]S

I
c (Xπ)[0,T ], Zπ

1 = SI
c (Xπ)2[0,T ],

and

Y π
2 =

∑
J∈I�I

SJ((Xπ, ⟨X̂⟩π))[0,T ] −
1

2

∑
J∈I�I−2∗((ik−1,ik))

SJ((Xπ, ⟨X̂⟩π))[0,T ],

Zπ
2 =

∑
J∈I−1�I−1

SJ∗((ik,ik))((Xπ, ⟨X̂⟩π))[0,T ].

By the standard theory of ratio estimators, these are biased estimators for

c∗π,j =
E[Y π

j ]

E[Zπ
j ]
,
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and applying a first-order Taylor expansion19 we can approximate the mean squared error as

E[(ĉ∗π,j − c∗π,j)2] ≈
1

E[Zπ
j ]

2
Var(Ȳ π

j ) +
E[Y π

j ]2

E[Zπ
j ]

4
Var(Z̄π

j )− 2
E[Y π

j ]

E[Zπ
j ]

3
Cov(Ȳ π

j , Z̄
π
j )

≈ 1

N

(
1

E[Zπ
j ]

2
Var(Y π

j ) +
E[Y π

j ]2

E[Zπ
j ]

4
Var(Zπ

j )− 2
E[Y π

j ]

E[Zπ
j ]

3
Cov(Y π

j , Z
π
j )

)
.

Note that

c∗π,1 =
E[SI(Xπ)[0,T ]S

I
c (Xπ)[0,T ]]

E[SI
c (Xπ)2[0,T ]]

=
Cov(SI(Xπ)[0,T ], S

I
c (Xπ)[0,T ])

Var(SI
c (Xπ)2[0,T ])

= c∗π,

and, as |π| → 0,

c∗π,2 =

∑
J∈I�I E[SJ((Xπ, ⟨X̂⟩π))[0,T ]]− 1

2

∑
J∈I�I−2∗((ik−1,ik))

E[SJ((Xπ, ⟨X̂⟩π))[0,T ]]∑
J∈I−1�I−1

E[SJ∗((ik,ik))((Xπ, ⟨X̂⟩π))[0,T ]]

(46)≈
∑

J∈I�I E[SJ((X, ⟨X⟩)π)[0,T ]]− 1
2

∑
J∈I�I−2∗((ik−1,ik))

E[SJ((X, ⟨X⟩)π)[0,T ]]∑
J∈I−1�I−1

E[SJ∗((ik,ik))((X, ⟨X⟩)π)[0,T ]]

(43)≈
∑

J∈I�I E[SJ((X, ⟨X⟩))[0,T ]]− 1
2

∑
J∈I�I−2∗((ik−1,ik))

E[SJ((X, ⟨X⟩))[0,T ]]∑
J∈I−1�I−1

E[SJ∗((ik,ik))((X, ⟨X⟩))[0,T ]]

=
Cov(SI(X)[0,T ], S

I
c (X)[0,T ])

Var(SI
c (X)2[0,T ])

(41),(42)≈ Cov(SI(Xπ)[0,T ], S
I
c (Xπ)[0,T ])

Var(SI
c (Xπ)2[0,T ])

= c∗π.

We refer to Lemma C.3 for the rigorous justification of the approximations (41), (42), (43), (46). Moreover, as |π| → 0, by
(41) and (42),

Y π
1

L2

→ SI(X)[0,T ]S
I
c (X)[0,T ] =: Y1, Zπ

1
L2

→ SI
c (X)2[0,T ] =: Z1,

and by combining (43) and (46),

Y π
2

L2

→
∑

J∈I�I

SJ((X, ⟨X⟩))[0,T ] −
1

2

∑
J∈I�I−2∗((ik−1,ik))

SJ((X, ⟨X⟩))[0,T ] =: Y2,

Zπ
2

L2

→
∑

J∈I−1�I−1

SJ∗((ik,ik))((X, ⟨X⟩))[0,T ] =: Z2.

Note that Y1 = Y2 =: Y but Z1 ̸= Z2 even though E[Z1] = E[Z2] =: µZ . When |π| is small we can thus approximate the
MSEs of ĉ∗π,1 and ĉ∗π,2 with respect to c∗π as

E[(ĉ∗π,1 − c∗π)2] ≈
1

N

(
1

µ2
Z

σ2
Y +

µ2
Y

µ4
Z

Var(Z1)− 2
µY

µ3
Z

Cov(Y, Z1)

)
,

19On the set |Z̄π
j − E[Zπ

j ]| < |E[Zπ
j ]|,

ĉπ,j = c∗π,j

(
1 +

Ȳ π
j − E[Y π

j ]

E[Y π
j ]

)(
1 +

Z̄π
j − E[Zπ

j ]

E[Zπ
j ]

)−1

= c∗π,j

(
1 +

Ȳ π
j − E[Y π

j ]

E[Y π
j ]

)(
1−

Z̄π
j − E[Zπ

j ]

E[Zπ
j ]

+O

((
Z̄π

j − E[Zπ
j ]

E[Zπ
j ]

)2
))

= c∗π,j +
1

E[Zπ
j ]

(Ȳ π
j − E[Y π

j ])−
E[Y π

j ]

E[Zπ
j ]

2
(Z̄π

j − E[Zπ
j ]) +O

((
Ȳ π
j − E[Y π

j ]

E[Y π
j ]

)(
Z̄π

j − E[Zπ
j ]

E[Zπ
j ]

))
.

For the approximation to be rigorous one needs to assume the probability of the set {ω : |Z̄π
j (ω)− E[Zπ

j ]| ≥ |E[Zπ
j ]|} approaches 0

faster than the speed at which the MSE conditional on this set explodes as N → ∞.
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and

E[(ĉ∗π,2 − c∗π)2] ≈
1

N

(
1

µ2
Z

σ2
Y +

µ2
Y

µ4
Z

Var(Z2)− 2
µY

µ3
Z

Cov(Y, Z2)

)
,

which differ by

E[(ĉ∗π,2 − c∗π)2]− E[(ĉ∗π,1 − c∗π)2] ≈
1

N

µY

µ3
Z

(
µY

µZ
(E[Z2

2 ]− E[Z2
1 ])− 2(E[Y Z2]− E[Y Z1])

)
.

Remark C.2. Note that we can “mix” the two estimators and form

ĉ∗π,2,1 =
Ȳ π
2

Z̄π
1

and ĉ∗π,1,2 =
Ȳ π
1

Z̄π
2

.

The discussion above ensures that, as |π| → 0, ĉ∗π,2,1 and ĉ∗π,1,2 have the same MSEs as ĉ∗π,1,1 = ĉπ,1 and ĉ∗π,2,2 = ĉ∗π,2,
respectively.

Lemma C.3. Assume that X satisfies (Aα.M) for some α ≥ 1/2 and p = 4k where k = |I|. Assume that π is part of a
sequence of refining partitions with mesh vanishing fast enough, i.e.∑

n≥1

|πn|2α−1/2 <∞.

Then the approximations (41), (42), (43), (46) hold as |π| → 0.

Proof. By Appendix C.1 X satisfies (Aα) with α ≥ 1/2 and p = 4k. Note that since X is a martingale (Aδ) holds trivially
and hence we can set ϵ = 1/2.

We can apply Theorem 2.8 to deduce that

SI(Xπ)[0,T ]
L4

→ SI(X)[0,T ], |π| → 0.

Moreover,

SI
c (Xπ)[0,T ]

L4

→ SI
c (X)[0,T ], |π| → 0.

since

∥SI
c (X)[0,T ] − SI

c (Xπ)[0,T ]∥L4

(i)

≤

∥∥∥∥∥∥SI
c (X)[0,T ] −

∑
[u,v]∈π

SI−1(X)[0,u]X(ik)
u,v

∥∥∥∥∥∥
L4

+

∥∥∥∥∥∥
∑

[u,v]∈π

(SI−1(X)[0,u] − SI−1(Xπ)[0,u])X
(ik)
u,v

∥∥∥∥∥∥
L4

(ii)

≤

∥∥∥∥∥∥
∫ T

0

SI−1(X)[0,s]dX(ik)
s −

∑
[u,v]∈π

SI−1(X)[0,u]X(ik)
u,v

∥∥∥∥∥∥
L4

+ 2C2

 ∑
[u,v]∈π

∥∥SI−1(X)[0,u] − SI−1(Xπ)[0,u]
∥∥2
L2k/(k−1) ∥X(ik)

u,v ∥2L2k

1/2

(iii)

≲

∥∥∥∥∥∥
∫ T

0

SI−1(X)[0,s]dX(ik)
s −

∑
[u,v]∈π

SI−1(X)[0,u]X(ik)
u,v

∥∥∥∥∥∥
L4

+ 2C2 sup
u∈π

∥∥SI−1(X)[0,u] − SI−1(Xπ)[0,u]
∥∥
L2k/(k−1)

 ∑
[u,v]∈π

|v − u|2α
1/2

(iv)→ 0, |π| → 0,
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by applying in (i) the triangle inequality, in (ii) Lemma B.1 with the natural filtration of X, in (iii) Theorem 2.8 to the
word I−1 with m = 2k/(k − 1) and in (iv) the definition of the Itô integral and Remark B.4.

Under these assumptions, we thus have

SI(Xπ)[0,T ]S
I
c (Xπ)[0,T ]

L2

→ SI(X)[0,T ]S
I
c (X)[0,T ], |π| → 0, (41)

and
SI
c (Xπ)2[0,T ]

L2

→ SI
c (X)2[0,T ], |π| → 0. (42)

Next, we consider the approximation (43). Note that X satisfies (Aα) (and trivially (Aδ)) with α ≥ 1/2 and p = 4k
while ⟨X⟩ satisfies (Aα) and (Aδ) both with exponent 2α ≥ 1 and p = 2k. By using a slightly more general version20 of
Theorem 2.8 applied to the process (X, ⟨X⟩), for any word J ∈ I � I or J ∈ I � I−2 ∗ ((ik−1, ik)) or J = J ′ ∗ ((ik, ik))
with J ′ ∈ I−1 � I−1 we have

SJ((X, ⟨X⟩)π)[0,T ]
L2

→ SJ((X, ⟨X⟩))[0,T ], |π| → 0, (43)

and hence for fixed N ≥ 1,

ψ̂N,π
J (T )

L2

→ ψ̂N
J (T ), |π| → 0.

Finally, making approximation (46) rigorous is a bit more challenging. Let us start by considering the case where
⟨X⟩ only appears in the outermost integral, i.e. J = (j1, . . . , jk′), where j1, . . . , jk′−1 ∈ {1, . . . , d} and jk′ ∈
{(1, 1), . . . , (1, d), . . . , (d, d)} for some k′ ∈ {1, . . . , 2k − 1}. Then, for any τ ∈ π,∥∥∥SJ((X, ⟨X⟩)π)[0,τ ] − SJ((Xπ, ⟨X̂⟩π))[0,τ ]

∥∥∥
L4k/(k′+1)

(i)
=

∥∥∥∥∥∥
k′∑
i=1

1

i!

∑
[u,v]∈π[0,τ]

SJ−i(Xπ)[0,u]X
(jk′−i+1)
u,v · · ·X(jk′−1)

u,v

(
⟨X⟩(jk′ )

u,v − ⟨X̂⟩π,(jk′ )
u,v

)∥∥∥∥∥∥
L4k/(k′+1)

(ii)

≤
k′∑
i=1

1

i!

∥∥∥∥∥∥
∑

[u,v]∈π[0,τ]

SJ−i(Xπ)[0,u]X
(jk′−i+1)
u,v · · ·X(jk′−1)

u,v

(
⟨X⟩(jk′ )

u,v −
(
X

(jk′ )
u,v

)2)∥∥∥∥∥∥
L4k/(k′+1)

(iii)

≤

 ∑
[u,v]∈π[0,τ]

∥∥∥∥SJ−1(Xπ)[0,u]

(
⟨X⟩(jk′ )

u,v −
(
X

(jk′ )
u,v

)2)∥∥∥∥2
L4k/(k′+1)

1/2

+

k′∑
i=2

1

i!

∑
[u,v]∈π[0,τ]

∥∥∥∥SJ−i(Xπ)[0,u]X
(jk′−i+1)
u,v · · ·X(jk′−1)

u,v

(
⟨X⟩(jk′ )

u,v −
(
X

(jk′ )
u,v

)2)∥∥∥∥
L4k/(k′+1)

(iii)

≤

 ∑
[u,v]∈π[0,τ]

∥∥∥∥SJ−1(Xπ)[0,u]

(
⟨X⟩(jk′ )

u,v −
(
X

(jk′ )
u,v

)2)∥∥∥∥2
L4k/(k′+1)

1/2

+

k′∑
i=2

1

i!

∑
[u,v]∈π[0,τ]

∥∥∥∥SJ−i(Xπ)[0,u]X
(jk′−i+1)
u,v · · ·X(jk′−1)

u,v

(
⟨X⟩(jk′ )

u,v −
(
X

(jk′ )
u,v

)2)∥∥∥∥
L4k/(k′+1)

(iv)

≤ sup
u∈π[0,τ]

∥∥∥SJ−1(Xπ)[0,u]

∥∥∥
L4k/(k′−1)

 ∑
[u,v]∈π[0,τ]

∥∥⟨X⟩u,v −X⊗2
u,v

∥∥2
L2k

1/2

+
k′∑
i=2

1

i!
sup

u∈π[0,τ]

∥∥∥SJ−i(Xπ)[0,u]

∥∥∥
L4k/(k′−i)

∑
[u,v]∈π[0,τ]

∥Xu,v∥i−1

L4k

∥∥⟨X⟩u,v −X⊗2
u,v

∥∥
L2k

(v)

≲ |π|4α−1√τ + |π|τ → 0, |π| → 0,

20To estimate the expected signature term corresponding to the word I = (i1, . . . , ik), it is sufficient to require (i), (ii), (iii), or (iv)
to be satisfied by X(i1), . . . , X(ik) with p1, . . . , pk such that p−1

1 + · · ·+ p−1
k ≤ m−1. In Theorem 2.8 we considered the case where

p1 = · · · = pk = p for clarity.
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by using in (i) Lemma B.3, in (ii) the triangle inequality and the definition of ⟨X̂⟩π, in (iii) Lemma B.1 with the natural
filtration of X (with respect to which X − ⟨X⟩ is a martingale) for the i = 1 term and the triangle inequality for the
i = 2, . . . , j terms, in (iv) Hölder inequality, in (v) Remark B.4 applied to X and J−i with p = 4k, m = 4k/(k′ − i) and
|J−i| = k′ − i for i = 1, . . . , k′ and∥∥⟨X⟩u,v −X⊗2

u,v

∥∥
L2k ≤ ∥⟨X⟩u,v∥L2k + ∥Xu,v∥2L4k ≲ |v − u|2α, (44)

by assumption (Aα.M) with α ≥ 1/2 and p = 4k. We have thus shown

sup
τ∈π

∥∥∥SJ((X, ⟨X⟩)π)[0,τ ] − SJ((Xπ, ⟨X̂⟩π))[0,τ ]
∥∥∥
L4k/(k′+1)

≲ |π|. (45)

This extends to any J = (j1, . . . , jk′ , . . . , jk′+m′) with m′ ≥ 0 and 1 ≤ k′, k′ +m′ ≤ 2k − 1, where, as above, jk′ ∈
{(1, 1), . . . , (1, d), . . . , (d, d)} and ji ∈ {1, . . . , d} for all other i ̸= k′. We proceed inductively on m′ = 0, . . . , 2k− k′− 1

to show Equation (45) holds for any J of this form in the L4k/(k′+m′+1) norm. The case m′ = 0 has been covered above.
Assume (45) holds for Jk′+m with m ∈ {0, . . . ,m′} and 0 ≤ m′ ≤ 2k − k′ − 1, then∥∥∥SJk′+m′+1((X, ⟨X⟩)π)[0,τ ] − SJk′+m′+1((Xπ, ⟨X̂⟩π))[0,τ ]

∥∥∥
L4k/(k′+m′+2)

(i)
=

∥∥∥∥m′+1∑
i=1

1

i!

∑
[u,v]∈π[0,τ]

[
SJk′+m′+1−i((X, ⟨X⟩)π)[0,u] − SJk′+m′+1−i((Xπ, ⟨X̂⟩π))[0,u]

]
X

(jk′+m′+2−i)
u,v · · ·X(jk′+m′+1)

u,v

+

k′+m′+1∑
i=m′+2

1

i!

∑
[u,v]∈π[0,τ]

SJk′+m′+1−i(Xπ)[0,u]

×X
(jk′+m′+2−i)
u,v · · ·

(
⟨X⟩(jk′ )

u,v − ⟨X̂⟩π,(jk′ )
u,v

)
· · ·X(jk′+m′+1)

u,v

∥∥∥∥
L4k/(k′+m′+2)

(ii)

≤
∥∥∥∥ ∑

[u,v]∈π[0,τ]

[
SJk′+m′ ((X, ⟨X⟩)π)[0,u] − SJk′+m′ ((Xπ, ⟨X̂⟩π))[0,u]

]
X

(jk′+m′+1)
u,v

∥∥∥∥
L4k/(k′+m′+2)

+

m′+1∑
i=2

1

i!

∥∥∥∥ ∑
[u,v]∈π[0,τ]

[
SJk′+m′+1−i((X, ⟨X⟩)π)[0,u] − SJk′+m′+1−i((Xπ, ⟨X̂⟩π))[0,u]

]
×X

(jk′+m′+2−i)
u,v · · ·X(jk′+m′+1)

u,v

∥∥∥∥
L4k/(k′+m′+2)

+

k′+m′+1∑
i=m′+2

1

i!

∥∥∥∥ ∑
[u,v]∈π[0,τ]

SJk′+m′+1−i(Xπ)[0,u]

×X
(jk′+m′+2−i)
u,v · · ·

(
⟨X⟩(jk′ )

u,v −
(
X

(jk′ )
u,v

)2)
· · ·X(jk′+m′+1)

u,v

∥∥∥∥
L4k/(k′+m′+2)

(iii)

≤ sup
u∈π[0,τ]

∥∥∥SJk′+m′ ((X, ⟨X⟩)π)[0,u] − SJk′+m′ ((Xπ, ⟨X̂⟩π))[0,u]
∥∥∥
L4k/(k′+m′+1)

( ∑
[u,v]∈π[0,τ]

∥Xu,v∥2L4k

)1/2

+

m′+1∑
i=2

1

i!
sup

u∈π[0,τ]

∥∥∥SJk′+m′+1−i((X, ⟨X⟩)π)[0,u] − SJk′+m′+1−i((Xπ, ⟨X̂⟩π))[0,u]
∥∥∥
L4k/(k′+m′−i+2)

×

( ∑
[u,v]∈π[0,τ]

∥Xu,v∥iL4k

)

+

k′+m′+1∑
i=m′+2

1

i!
sup

u∈π[0,τ]

∥∥∥SJk′+m′+1−i(Xπ)[0,u]

∥∥∥
L4k/(k′+m′+1−i)

( ∑
[u,v]∈π[0,τ]

∥Xu,v∥i−1

L4k∥⟨X⟩u,v −X⊗2
u,v∥L2k

)
(v)

≲ |π|
√
τ + |π|τ → 0, |π| → 0,

where in (i) we have used Lemma B.3, in (ii) triangle inequality, in (iii) Lemma B.1 with the natural filtration of X for
the i = 1 term, traingle inequality for the i = 2, . . . , k′ +m′ + 1 terms and Hölder inequality across all terms, in (iv) the
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inductive hypothesis for Jk′+m with m = 0, . . . ,m′ for the first two sups, Remark B.4 applied to X and Ji with p = 4k,
m = 4k/i and |Ji| = i for i = 1, . . . , k′ − 1 for the third sup and bounds (44) and (Aα) with p = 4k and α ≥ 1/2 for the
summations over π[0,τ ].

We have thus shown that for any word J ∈ I � I or J ∈ I � I−2 ∗ ((ik−1, ik)) or J = J ′ ∗ ((ik, ik)) for J ′ ∈ I−1 � I−1

we have
SJ((X, ⟨X⟩)π)[0,T ] − SJ((Xπ, ⟨X̂⟩π))[0,T ]

L2

→ 0, |π| → 0, (46)

and hence for fixed N ≥ 1,

ψ̂N,π
J (T )− ψ̂N,π,′

J (T )
L2

→ 0, |π| → 0.

D. Itô processes and diffusions
In this section we consider Itô processes and Itô diffusions: two common classes of models for continuous-time stochastic
processes. We start by providing sufficient conditions ensuring Assumption (2.6), needed for the in-fill asymptotics,
holds. We then focus on time-homogeneous Itô diffusions and discuss general conditions under which these processes are
stationary and strongly mixing, ensuring stationarity and strong mixing of {Xn, n ≥ 1} under (chop) observations (cf.
Proposition 2.13).

D.1. In-fill conditions

D.1.1. ITÔ PROCESSES

We consider the case where X is an Itô process, i.e. satisfies

Xt = X0 +

∫ t

0

bs ds+

∫ t

0

Vs dWs, t ∈ [0, T ],

where b = {bt, t ∈ [0, T ]} and V = {Vt, t ∈ [0, T ]} are progressively measurable d- and d× q-dimensional processes
such that

sup
s∈[0,T ]

∥bs∥Lp , sup
s∈[0,T ]

∥Vs∥Lp <∞, (47)

W = {Wt, t ≥ 0} is a q-dimensional Brownian motion and X0 ∈ Lp. The assumptions on b and V imply that for all
0 ≤ s ≤ t ≤ T , ∥∥∥∥∫ t

s

budu

∥∥∥∥
Lp

≤
∫ t

s

∥bu∥Lp du (48)

≤
(

sup
u∈[0,T ]

∥bu∥Lp

)
|t− s|, (49)

by Minkowski’s integral inequality, and∥∥∥∥∫ t

s

VudWu

∥∥∥∥
Lp

≲ E

[(
tr

∫ t

s

VuV
T
u du

)p/2]1/p
=

∥∥∥∥∫ t

s

∥Vu∥2du
∥∥∥∥1/2
Lp/2

≤
(∫ t

s

∥Vu∥2Lp du

)1/2

(50)

≤
(

sup
u∈[0,T ]

∥Vu∥Lp

)
|t− s|1/2, (51)

by Burkholder-Davis-Gundy (BDG) inequality (Burkholder et al., 1972), the formula for the quadratic variation of the Itô
integral, and Minkowski integral inequality. We can show (Aα) holds with α = 1/2 by noting that for all 0 ≤ s ≤ t ≤ T ,

∥Xs,t∥Lp ≤
∥∥∥∥∫ t

s

budu

∥∥∥∥
Lp

+

∥∥∥∥∫ t

s

VudWu

∥∥∥∥
Lp

≲ |t− s|+ |t− s|1/2 ≲ |t− s|1/2,
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by combining bounds (49) and (51).

Next, we can show (Aδ) holds with δ = 1 by noting that for all 0 ≤ s ≤ t ≤ T ,

∥Es[Xs,t]∥Lp =

∥∥∥∥Es

[∫ t

s

budu

]∥∥∥∥
Lp

≤
∥∥∥∥∫ t

s

budu

∥∥∥∥
Lp

≲ |t− s|,

where we use the martingale property of Itô integrals, contractive property of conditional expectation and the bound (49).

D.1.2. ITÔ DIFFUSIONS

Next, assume X is a (possibly time-inhomogeneous) Itô diffusion, i.e. satisfies

dXt = f(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [0, T ],

where W = {Wt, t ∈ [0, T ]} is a q-dimensional Brownian motion, f : [0, T ]× Rd → Rd, σ : [0, T ]× Rd → Rd×q and
X0 ∈ Lp. Itô diffusions form a subclass of Itô processes, which we already covered in Appendix D.1.1. Here, we give
conditions specific to Itô diffusions – i.e. in terms of f and σ – which imply condition (47).

• If f and σ are uniformly bounded on [0, T ]× Rd, then condition (47) immediately holds.

• Assume f and σ are Lipschitz continuous, i.e. for all s, t ∈ [0, T ] and x,y ∈ Rd,

∥f(t,x)− f(s,y)∥ ≤ Kf∥(t,x)− (s,y)∥ ≤ Kf (|t− s|+ ∥x− y∥),
∥σ(t,x)− σ(s,y)∥ ≤ Kσ∥(t,x)− (s,y)∥ ≤ Kσ(|t− s|+ ∥x− y∥).

Then, for all 0 ≤ s ≤ t ≤ T , we can bound

∥Xs,t∥Lp

=

∥∥∥∥∫ t

s

f(u,Xu)du+

∫ t

s

σ(u,Xu)dWu

∥∥∥∥
Lp

(i)

≲
∫ t

s

∥f(u,Xu)∥Lp du+

(∫ t

s

∥σ(u,Xu)∥2Lp du

)1/2

(ii)

≲ ∥f(s,Xs)∥Lp (t− s) +
∫ t

s

∥f(u,Xu)− f(s,Xs)∥Lp du

+ ∥σ(s,Xs)∥Lp (t− s)1/2 +
(∫ t

s

∥σ(u,Xu)− σ(s,Xs)∥2Lp du

)1/2

(iii)

≲
[
∥f(0,0)∥+Kf (s+ ∥Xs∥Lp)

]
(t− s) +Kf

(t− s)2
2

+

∫ t

s

Kf ∥Xs,u∥Lp du

+
[
∥σ(0,0)∥+Kσ(s+ ∥Xs∥Lp)

]
(t− s)1/2 +Kσ

(∫ t

s

∥(u,Xu)− (s,Xs)∥2Lp du

)1/2

(iv)

≲
[
∥f(0,0)∥+Kf (s+ ∥Xs∥Lp)

]
(t− s) +Kf

(t− s)2
2

+

∫ t

s

Kf ∥Xs,u∥Lp du

+
[
∥σ(0,0)∥+Kσ(s+ ∥Xs∥Lp)

]
(t− s)1/2 +Kσ

(∫ t

s

|u− s|2du
)1/2

+Kσ

(∫ t

s

∥Xs,u∥2Lp du

)1/2

(v)

≲ (1 ∨ ∥Xs∥Lp)(t− s)1/2 +
∫ t

s

∥Xs,u∥Lp du+

(∫ t

s

∥Xs,u∥2Lp du

)1/2

(vi)

≲ (1 ∨ ∥Xs∥Lp)(t− s)1/2 +
(∫ t

s

∥Xs,u∥2Lp du

)1/2

,
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by using in (i) triangle inequality and Equations (48) and (50), in (ii) triangle inequality, in (iii) Lipschitzianity of f
and σ, in (iv) triangle inequality, in (v) for all 0 ≤ s ≤ t ≤ T , s ≤ T ≲ 1 and (t−s)1/2+ϵ ≤ T ϵ(t−s)1/2 ≲ (t−s)1/2
for ϵ ≥ 0, and in (vi) Jensen’s inequality. Setting s = 0, since we assume X0 ∈ Lp, this is

∥X0,t∥Lp ≲ t1/2 +

(∫ t

0

∥X0,u∥2Lp du

)1/2

,

and we can apply Willett (1964, Lemma 2.2), a nonlinear generalization of the Gronwall inequality, to deduce for all
0 ≤ t ≤ T ,

∥X0,t∥Lp ≲ t1/2 +

(∫ t

0
exp{−Cs}sds

)1/2
1−

√
1− exp{−Ct}

≲ T 1/2 +
T

1−
√
1− exp{−CT}

<∞.

We can hence show the condition for Itô processes (47) holds by noting that X0 ∈ Lp and Lipschitzianity of f and σ
imply

∥f(t,Xt)∥Lp ≤ ∥f(0,0)∥+Kf (|t|+ ∥X0∥Lp + ∥X0,t∥Lp) <∞,
∥σ(t,Xt)∥Lp ≤ ∥σ(0,0)∥+Kσ(|t|+ ∥X0∥Lp + ∥X0,t∥Lp) <∞,

uniformly in t ∈ [0, T ], and hence (Aα) and (Aδ) hold with α = 1/2 and δ = 1, respectively.

• Assume f and σ are time-homogeneous such that f is Lipschitz continuous and σ is 1/2-Hölder continuous, i.e. for
all x,y ∈ Rd,

∥f(x)− f(y)∥ ≤ Kf∥x− y∥,
∥σ(x)− σ(y)∥ ≤ Kσ∥x− y∥1/2.

Then, for all 0 ≤ s ≤ t ≤ T , we can bound

∥Xs,t∥Lp =

∥∥∥∥∫ t

s

f(Xu)du+

∫ t

s

σ(Xu)dWu

∥∥∥∥
Lp

(i)

≲
∫ t

s

∥f(Xu)∥Lp du+

(∫ t

s

∥σ(Xu)∥2Lp du

)1/2

(ii)

≲ ∥f(Xs)∥Lp (t− s) +
∫ t

s

∥f(Xu)− f(Xs)∥Lp du

+ ∥σ(Xs)∥Lp (t− s)1/2 +
(∫ t

s

∥σ(Xu)− σ(Xs)∥2Lp du

)1/2

(iii)

≲
[
∥f(0)∥+Kf ∥Xs∥Lp ](t− s) +

∫ t

s

Kf ∥Xs,u∥Lp du

+
[
∥σ(0)∥+Kσ ∥Xs∥1/2Lp

]
(t− s)1/2 +K1/2

σ

(∫ t

s

∥Xs,u∥Lpdu

)1/2

(iv)

≲
(
1 ∨ ∥Xs∥Lp ∨ ∥Xs∥1/2Lp

)
(t− s)1/2 +

∫ t

s

∥Xs,u∥2Lp du+

(∫ t

s

∥Xs,u∥Lpdu

)1/2

,

by proceeding as in the previous case. Setting s = 0, since we assume X0 ∈ Lp, this is

∥X0,t∥Lp ≲ t1/2 +

∫ t

0

∥X0,u∥Lp du+

(∫ t

0

∥X0,u∥Lp du

)1/2

,
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and we can apply Dragomir (2003, Theorem 41), another nonlinear generalization of the Gronwall inequality, to deduce
for all 0 ≤ t ≤ T ,

∥X0,t∥Lp ≲ f(t) <∞.

We can hence show the condition for Itô processes (47) holds by noting that X0 ∈ Lp and the conditions on f and σ
imply

∥f(Xt)∥Lp ≤ ∥f(0)∥+Kf (∥X0∥Lp + ∥X0,t∥Lp) <∞,
∥σ(Xt)∥Lp ≤ ∥σ(0)∥+Kσ(∥X0∥Lp + ∥X0,t∥Lp)1/2 <∞,

uniformly in t ∈ [0, T ], and hence (Aα) and (Aδ) hold with α = 1/2 and δ = 1 respectively.

D.2. Long span conditions

D.2.1. ITÔ DIFFUSIONS

When developing conditions ensuring stationarity and ergodicity of an Itô diffusion it is natural to restrict {Xt, t ≥ 0} to
the case where it is time-homogeneous, i.e. satisfies

dXt = f(Xt)dt+ σ(Xt)dWt, t ≥ 0,

where W = {Wt, t ≥ 0} is a q-dimensional Brownian motion, f : Rd → Rd and σ : Rd → Rd×q . Assume:

• The diffusion coefficient σ : Rd → Rd×q is Lipschitz continuous and Σ := σσT : Rd → Rd×d is bounded and
uniformly elliptic, i.e.

inf
x∈Rd,ξ∈Rd\{0}

⟨ξ,Σ(x)ξ⟩
∥ξ∥2 > 0.

This is a classic PDE condition which ensures the transition densities are “nice”, i.e. continuous and bounded away
from zero (Friedman, 1964).

• The drift f : Rd → Rd is Lipschitz continuous and has negative radial part at∞, i.e.

lim sup
∥x∥→∞

〈
f(x),

x

∥x∥κ+1

〉
=: −Cκ ∈ [−∞, 0),

pushing the process towards the origin with strength21 controlled by κ ∈ [−1,∞). When κ = −1 assume further that
2C−1 > supx∈Rd TrΣ(x) and define

η∗f,Σ :=


∞, if κ > 0,

2C0/|||Σ|||, if κ = 0,

2Cκ/((1 + κ)|||Σ|||), if κ ∈ (−1, 0),
(2C−1 − supx∈Rd TrΣ(x)) /|||Σ|||, if κ = −1,

where |||Σ||| := supx∈Rd ∥Σ(x)∥.

These conditions are enough to ensure there exists a unique invariant probability measure µ on Rd with
∫
Rd e

η∥x∥µ(dx) <∞, if κ ≥ 0,∫
Rd e

η∥x∥1+κ

µ(dx) <∞, if κ ∈ (−1, 0),∫
Rd ∥x∥ηµ(dx) <∞, if κ = −1,

21Note that, for large ∥x∥, one has
〈
f(x), x

∥x∥

〉
≈ −Cκ∥x∥κ, and hence the strength of the pull grows as ∥x∥ increases when κ > 0

and decays as ∥x∥ increases when κ < 0.

44



Learning with Expected Signatures: Theory and Applications

for all η ∈ (0, η∗f,Σ), such that for any x ∈ Rd the transition probabilities22 {Pt(x, ·), t ≥ 0} converge to µ in total variation
distance with rates

∥Pt(x, ·)− µ∥TV ≤


c1e

−c2t(eη∥x∥ + c3), if κ ≥ 0,

c1e
−c2t

(1+κ)/(1−κ)

(eη∥x∥
1+κ

+ c3), if κ ∈ (−1, 0),
c1(1 + c2t)

−η/2(∥x∥η + c3), if κ = −1,

with c1, c2, c3 > 0 (Kulik, 2018, Theorem 3.3.4, 3.3.5 and 3.3.6).

Assuming X0 ∼ µ, the Itô diffusion {Xt, t ≥ 0} defines a stationary Markov process with X0 ∈ Lp for all p ≥ 2 when
κ > −1 and for all 2 ≤ p < η∗f,Σ when κ = −1. Recall that, by the discussion in Appendix D.1.2, when f and σ are
Lipschitz continuous, it is enough to have X0 ∈ Lp to ensure the process X = {Xt, t ∈ [0, T ]} satisfies Assumptions (Aα)
and (Aδ) with α = 1/2 and δ = 1, implying ϵ = 1/2. By Proposition 2.13 the chain {Xn, n ≥ 1} is stationary and, hence,
it remains to establish strong mixing of {Xn, n ≥ 1} to apply Theorem 2.10. The strong mixing coefficient of the stationary
Markov process {Xt, t ≥ 0} can be easily23 bounded by

α(t) ≤
∫
Rd

∥Pt(x, ·)− µ∥TV µ(dx) ≲


e−c2t, if κ ≥ 0,

e−c2t
(1+κ)/(1−κ)

, if κ ∈ (−1, 0),
(1 + c2t)

−η/2, if κ = −1,

and hence the process is strongly mixing. By Proposition 2.13 the chain {Xn, n ≥ 1} is also strongly mixing with coefficient
α′′(n) ≤ α((n−3)T ), n ≥ 3. It follows immediately that {Xn, n ≥ 1} is ergodic and hence, we can apply Theorem 2.10.1
to deduce that, letting |Π(N)| → 0 as N →∞ the expected signature estimator (7) is consistent for any expected signature
term when κ > −1 and for all expected signature terms with |I| < 1

2η
∗
f,Σ when κ = −1.

Finally, we note that for any ζ > 0

∑
n≥0

α′′(n)ζ/(2+ζ) ≲


∑

n≥1 e
−c2nTζ/(2+ζ) <∞, if κ ≥ 0,∑

n≥1 e
−c2(nT )(1+κ)/(1−κ)ζ/(2+ζ) <∞, if κ ∈ (−1, 0),∑

n≥1(1 + c2nT )
−ηζ/(4+2ζ) =∞, if κ = −1,

and hence, if κ > −1 and Π(N) is a sequence of expanding dyadic refinements, we can apply Theorem 2.10.2 to show that
the expected signature estimator (7) is also asymptotically normal.

22For the time-homogeneous Itô diffusion {Xt, t ≥ 0} these are defined by

Pt(x,A) := P(Xt ∈ A|X0 = x) = P(Xs+t ∈ A|Xs = x),

for all t, s ≥ 0, x ∈ Rd, A ∈ B(Rd).
23If {Xt, t ≥ 0}} is a stationary Markov process with stationary distribution µ and A ∈ F t

−∞, B ∈ F∞
t+s for t, s ≥ 0,

|P(A ∩B)− P(A)P(B)| = |E[1A1B ]− E[1A]E[1B ]|
=
∣∣E[1AE[E[1B |F t+s

−∞]|F t
−∞]]− E[1AE[1B ]]

∣∣
=
∣∣∣E [1A

(
E[E[1B |Xt+s]|Xt]− E[E[1B |Xt+s]]

)]∣∣∣
=

∣∣∣∣E [1A

(∫
Rd

hB(x)Ps(Xt, dx)−
∫
Rd

hB(x)µ(dx)
)]∣∣∣∣

≤ E
[
1A

∣∣∣∣∫
Rd

hB(x)(Ps(Xt, dx)− µ(dx))
∣∣∣∣]

≤ E [∥Ps(Xt, ·)− µ∥TV]

=

∫
Rd

∥Ps(x, ·)− µ∥TV µ(dx),

where hB : Rd 7→ [0, 1] is the measurable function defining the conditional expectation E[1B |Xt+s] = h(Xt+s).
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E. Gaussian Processes
We first exploit the properties of Gaussian random variables to show that, if a Gaussian process satisfies (Aα) for p = 2 and
some α > 1/4, then it satisfies (Aα) for any p ≥ 2 and the same α. Next, we show that two common examples of Gaussian
processes, Ornstein-Uhlenbeck processes and fractional Brownian motion, satisfy the assumptions of Theorem 2.14, i.e.
(Aα) with p = 2 and α ≥ 1/2, (Aδ) when α = 1/2 and (Aθ) for some decreasing θ : R+ → R+ with θ(t)→ 0, t→∞
and

∫ T

0
θ(t)dt <∞ and m ∈ N.

E.1. Gaussian Processes Continuity Criterion

Let X be a Gaussian process with mean function µ : [0, T ] → Rd. If X satisfies (Aα) with p = 2 and α > 1/4 and µ is
α-Hölder continuous, then it satisfies (Aα) for any p ≥ 2 and exponent α. Note that, by the inclusion of norms in Lp spaces,
it suffices to show this holds for arbitrarily large p. Choosing p = 2q even, we can write

∥Xs,t∥L2q ≤ ∥Xs,t − µs,t∥L2q + ∥µs,t∥

≲

(
E

[(
d∑

i=1

∣∣∣X(i)
s,t − µ(i)

s,t

∣∣∣2)q])1/2q + |t− s|α

=

 ∑
q1+...+qd=q
q1,...,qd≥0

(
q

q1, . . . , qd

)
E
[∣∣∣X(1)

s,t − µ(1)
s,t

∣∣∣2q1 · · · ∣∣∣X(d)
s,t − µ(d)

s,t

∣∣∣2qd]

1/2q

+ |t− s|α

(i)
=

 ∑
q1+...+qd=q
q1,...,qd≥0

(
q

q1, . . . , qd

) ∑
p∈P 2

2q1,...,2qd

∏
{i,j}∈p

Cov
(
X

(i)
s,t , X

(j)
s,t

)
1/2q

+ |t− s|α

(ii)

≲

 ∑
q1+...+qd=q
q1,...,qd≥0

(
q

q1, . . . , qd

) ∑
p∈P 2

2q1,...,2mk

∏
{i,j}∈p

|t− s|2α


1/2q

≲ |t− s|α,

where in (i) we apply Isserlis’ theorem (Isserlis, 1918) denoting by P 2
2q1,...,2qd

the set of all the pairings of S = {1}2q1 ∪
{2}2q2 ∪· · ·∪{d}2qd , i.e. all distinct ways of partitioning S into q1+ . . .+qd = q pairs, and in (ii) the fact that Assumption
(Aα) with p = 2 and α > 1/4 implies for all i, j = 1, . . . , d,

Cov(X
(i)
s,t , X

(j)
s,t ) ≤ |Cov(X(i)

s,t , X
(j)
s,t )|

≤ |E[X(i)
s,tX

(j)
s,t ]|+ |µ(i)

s,tµ
(j)
s,t |

≤ E[|X(i)
s,tX

(j)
s,t |] + |µ(i)

s,t||µ(j)
s,t |

≤ E[|X(i)
s,t |2]1/2E[|X(j)

s,t |2]1/2 + |µ(i)
s,t||µ(j)

s,t |
≤ ∥Xs,t∥2 + ∥µs,t∥2 ≲ |t− s|2α.

E.2. Gaussian Processes Covariance Decay Condition

E.2.1. ORNSTEIN-UHLENBECK PROCESS

If {Xt, t ≥ 0} is a stationary mean-zero d-dimensional Ornstein-Uhlenbeck process, i.e. a mean-zero Gaussian process
with covariance

C(s, t) := Cov(Xs,Xt) = e−A|t−s|Σ,

where Σ = Var(Xt) and the drift matrix parameter A ∈ Rd×d has positive real parts of all eigenvalues, then we can show
that:

• (Aα) holds with α = 1/2 and p = 2. Note that for all 0 ≤ s ≤ t ≤ T ,

∥Xs,t∥2L2 = E[tr(Xs,t ⊗Xs,t)]
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= tr(Var(Xt) + Var(Xs)− 2Cov(Xs,Xt))

= 2 tr((Id − e−A|t−s|)Σ)

≤ 2 ∥Id − e−A|t−s|∥ ∥Σ∥
≤ 2 (∥A∥|t− s|e∥A∥|t−s|) ∥Σ∥
≲ |t− s|.

• (Aδ) holds for any p ≥ 2 with δ = 1. Using the integral representation of the OU process, one can easily verify that for
all 0 ≤ s ≤ t ≤ T , Es[Xt] := E[Xt|Fs] = e−A|t−s|Xs, where {Ft, t ∈ [0, T ]} is the natural filtration of X. Then,
for all 0 ≤ s ≤ t ≤ T ,

∥Es[Xs,t]∥Lp = ∥(e−A|t−s| − Id)Xs]∥Lp ≤ ∥Id − e−A|t−u|∥ ∥Xs∥Lp ≲ |t− s|.

• The covariance of the increments is homogeneous since, for all u, v, s, t ≥ 0,

Cov (Xu,v,Xs,t) = Cov (Xv,Xt)− Cov (Xv,Xs)− Cov (Xu,Xt) + Cov (Xu,Xs)

= (e−A|t−v| − e−A|s−v| − e−A|t−u| + e−A|s−u|)Σ,

depends only on the relative distances |t− v|, |s− v|, |t− u| and |s− u|.

• The covariance of the increments satisfies Assumption (Aθ) with m = 0 and θ(t) = e−λAt where λA is a constant
depending on the drift matrix A ∈ Rd×d. For all 0 ≤ u ≤ v < s ≤ t,

∥Cov (Xu,v,Xs,t) ∥ = ∥e−A|s−v|(e−A|t−s| − Id − e−A|t−s|−A|v−u| + e−A|v−u|)Σ∥
= ∥e−A|s−v|(e−A|t−s| − Id)(Id − e−A|v−u|)Σ∥
= ∥e−A|s−v|∥ ∥Id − e−A|t−s|∥ ∥Id − e−A|v−u|∥ ∥Σ∥
≲ e−λA|s−v||t− s||v − u|,

where, in the last step, we use the fact that A ∈ Rd×d has positive real parts of all eigenvalues to find λA ∈
(0,minλ∈σ(A) Re(λ)) such that ∥e−At∥ ≲ e−λAt for all t ≥ 0.

Note that (Aα) and (Aδ) could have been alternatively established by noting that the OU process is an Itô diffusion with
Lipschitz continuous coefficients and applying the results of Appendix D.1.2.

E.2.2. FRACTIONAL BROWNIAN MOTION

If {XH
t , t ≥ 0} is a (one-dimensional) fractional Brownian motion with Hurst parameter H > 1/2, i.e. a mean-zero

Gaussian process with covariance

CH(s, t) := Cov(XH
s , X

H
t ) =

1

2
(|t|2H + |s|2H − |t− s|2H),

then we can show that:

• (Aα) holds with α = H > 1/2 (and p = 2) since ∥XH
s,t∥L2 = |t− s|H .

• The covariance of the increments is homogeneous since for all u, v, s, t ≥ 0,

Cov
(
XH

u,v, X
H
s,t

)
= Cov

(
XH

v , X
H
t

)
− Cov

(
XH

v , X
H
s

)
− Cov

(
XH

u , X
H
t

)
+Cov

(
XH

u , X
H
s

)
=

1

2
(|s− v|2H + |t− u|2H − |t− v|2H − |s− u|2H),

depends only on the relative distances |t− v|, |s− v|, |t− u| and |s− u|.
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• The covariance of the increments satisfies Assumption (Aθ) with m = 3 and θ(t) = t2H−2. For all 0 ≤ u ≤ v < s ≤ t
with |s− v| ≥ 3/2(|t− s|+ |v − u|),

|Cov
(
XH

u,v, X
H
s,t

)
|

=
1

2
||s− v|2H + |t− u|2H − |t− v|2H − |s− u|2H |

=
1

2

∣∣∣|s− v|2H
+

∞∑
n=0

(2H) · · · (2H − n+ 1)

n!
|s− v|2H−n(|t− u| − |s− v|)n

−
∞∑

n=0

(2H) · · · (2H − n+ 1)

n!
|s− v|2H−n(|t− v| − |s− v|)n

−
∞∑

n=0

(2H) · · · (2H − n+ 1)

n!
|s− v|2H−n(|s− u| − |s− v|)n

∣∣∣
=

1

2

∣∣∣ ∞∑
n=2

(2H) · · · (2H − n+ 1)

n!
|s− v|2H−n

[
(|t− s|+ |v − u|)n − |t− s|n − |v − u|n

]∣∣∣
=

1

2
|s− v|2H−2

∣∣∣ ∞∑
n=2

(2H) · · · (2H − n+ 1)

n!
|s− v|−(n−2)

n−1∑
j=1

(
n

j

)
|t− s|j |v − u|n−j

∣∣∣
≤ 1

2
|s− v|2H−2|t− s||v − u|

×
∞∑

n=2

|(2H) · · · (2H − n+ 1)|
(n− 2)!

|s− v|−(n−2)
n−2∑
j=0

(
n− 2

j

)
|t− s|j |v − u|(n−2)−j

≤ 1

2
|s− v|2H−2|t− s||v − u||2H||2H − 1|

∞∑
n=0

|s− v|−n(|t− s|+ |v − u|)n

≤ 1

2
|s− v|2H−2|t− s||v − u||2H||2H − 1|

(
1− |t− s|+ |v − u||s− v|

)−1

≤ |2H||2H − 1||s− v|2H−2|t− s||v − u|,

by using the fact that that x 7→ f(x) = x2H is analytic for any x > 0 and |s− v| ≥ 3/2(|t− s|+ |v − u|).

F. Machine Learning Algorithms with Expected Signatures
Signatures of paths have found widespread use in the machine learning community, with applications ranging from character
recognition (Graham, 2013; Xie et al., 2018) to medical diagnosis (Pérez Arribas et al., 2018). Taking the signature
of a stream of data is essentially a feature extraction method mapping raw stream-like data to a lower-dimensional but
highly-informative latent space. The theoretical foundations for their efficacy range from the characterization result of
Hambly & Lyons (2005) to the universal approximation theorem (Levin et al., 2016, Theorem 3.1). As discussed in the
introduction, when dealing with collections of paths, the characterization results of Fawcett (2003), Chevyrev & Lyons
(2016) and Chevyrev & Oberhauser (2018) give strong theoretical justification for the use of the expected signature as a
feature extraction method.

While dealing with a collection of paths is arguably a less common setting than a single stream of data, the literature still
provides a wide range of machine learning algorithms leveraging expected signatures24. These cover many different tasks
(from distributional regression to generative modeling) and applications (from ECG classification to option pricing). In
this section, we review five of these machine learning algorithms discussing how the martingale correction introduced in
Section 2.2 can be applied to the expected signature computation step to improve performance. Before diving into each

24The GPES algorithms, discussed in Section 3.2.1, actually takes as input a single stream of data and applies a data augmentation
technique to form a collection of paths.
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specific application in detail, we discuss some general considerations on the use of the martingale correction term in practice.

F.1. Martingale Correction in Applications

In Section 2.2, we considered the same framework as in the rest of this work, namely the setting where X is a continuous-time
stochastic process and Xπ is a piecewise-linear interpolation of the discrete-time observation of such process along the
partition π. It is important to note that, while some applications have a natural underlying latent continuous-time model
(Lyons et al., 2021) others do not (Lemercier et al., 2021). In any case, we do not necessarily require the “background”
continuous-time model X to be defined to apply the control-variate estimator (40) with c = ĉ∗1,π. Letting π = {0 = t0 <
t1 < · · · < tM = T}, one can easily see that it is sufficient for the discrete-time process {Xm = Xtm , m = 0, . . . ,M} to
be a discrete-time martingale with respect to Fm = σ(X1, . . . ,Xm) for the control variate estimator to have the same bias
but lower variance than the naive expected signature estimator. In what follows all path observations are inevitably sampled
at discrete points in time and hence, abusing notation slightly, in some places we drop the dependence on the partition π.
Whether X is a continuous-time process or a sequence of observations in discrete time should be clear from the context.

Machine learning methods based on signature methods often apply augmentations to the raw streams of data before
computing the signature, cf. Lyons & McLeod (2024, Section 2.5). For example, a path augmentation which is often found to
improve model performance is the lead-lag transform. Combining the previous observation on discrete-time martingales with
Remark 2.15, we can easily see that the control variate expected signature estimator can also be employed when the lead-lag
augmentation is applied to the raw data, i.e. when the d-dimensional discrete-time martingale {Xm, m = 1, . . . ,M} is
embedded into the 2d-dimensional process

X′ = {(X1,X1), (X2,X1), (X2,X2), . . . , (XM ,XM−1), (XM ,XM )} = {X′
m′ , m′ = 2, . . . , 2M + 2}.

Note that for each m′ = 2, . . . , 2M + 2, if m′ = 2m then X′
m′ = (Xm,Xm), X′

m′+1 = (Xm+1,Xm) and

E[X′
m′+1|X′

1, . . . ,X
′
m′ ] = (E[Xm+1|X1, . . . ,Xm],Xm) = (Xm,Xm),

and if m′ = 2m+ 1 then X′
m′ = (Xm+1,Xm), X′

m′+1 = (Xm+1,Xm+1) and

E[X′
m′+1|X′

1, . . . ,X
′
m′ ] = (Xm+1,Xm+1).

and hence the leading components, i.e. the first d entries of X′, form a discrete-time martingale with respect to the natural
filtration of X′. By Remark 2.15, we can hence apply the control variate expected signature estimator (40) for any word
I = (i1, . . . , ik) ∈ {1, . . . , 2d}k with ik ∈ {1, . . . , d}.
Finally, in some applications, we may not have a strong prior on whether the process being modeled is a martingale or not.
In this case, we may consider the martingale correction as a model configuration hyperparameter to be tuned, just like the
lead-lag path augmentation discussed above. In the model training phase we can then apply a cross-validation procedure to
learn whether applying the martingale correction to (some of) the expected signature terms improves the performance of the
model.
Remark F.1. Both the signature transform and the expected signature transform are general methods applicable to any
machine learning task dealing with (collections of) streams of data. These can thus always be used as out-of-the-box feature
extraction methods when little domain knowledge is available. On the other hand, when task-specific information is known,
incorporating such knowledge in the machine learning model will most likely improve performance.
Remark F.2. It is important to note there is also a wide range of machine learning methods based on signature kernels
(Kiraly & Oberhauser, 2019; Chevyrev & Oberhauser, 2018; Lemercier et al., 2021; Salvi et al., 2021). This bypasses the
need to explicitly estimate the expected signature and hence we cannot directly apply the martingale correction developed in
Section 2.2.

F.2. Algorithms

F.2.1. TIME SERIES CLASSIFICATION (TRIGGIANO & ROMITO, 2024)

In the Gaussian Process augmented Expected Signature (GPES) classifier, the input stream x ∈ Rd×M1 is interpreted
as a discrete-time realization of a Gaussian process X ∼ GP(µ(t),Σ(t)) at points π1 = {0 = t1 < . . . < tM1 = T},
i.e. a realization of Xπ. Values of the process over a fixed set of in-fill points π2 = {s1 < . . . < sM2} can thus be
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sampled25 from the conditional distribution of Xπ2 given the input Xπ1 , i.e. the conditional distribution Xπ2 |Xπ1 =
x ∼ N (µx,π1,π2 ,Σx,π1,π2). The expected signature of the process X is then estimated from a collection of samples
X1,π1∪π2 , . . . ,XN,π1∪π2 such that Xn,π1 = x and Xn,π2 ∼ N (µx,π1,π2 ,Σx,π1,π2) for n = 1, . . . , N . In Triggiano &
Romito (2024), the authors emphasize the theoretical and empirical importance of the tensor normalization introduced
in Chevyrev & Oberhauser (2018), ensuring the resulting expected robust signature is characteristic for a larger class
of processes. An important component of the GPES model is thus the (truncated at level k) tensor normalization λC :
TK(Rd) → TK(Rd), controlled by the hyperparameter C. For more details on the effect of the tensor normalization
procedure and a sensitivity analysis26 with respect to the hyper-parameter C we refer to Triggiano & Romito (2024).
When applying the martingale correction to the GPES model27 we subtract the correction term ĉ∗1S

I
c(Xk,π1∪π2)[0,T ] to each

SI(Xk,π1∪π2)[0,T ], i.e. before taking the empirical expectation over the paths. This modification of the original algorithm
highlighted in green in Algorithm 1. The final layer of the GPES model then maps the expected signature to a class by
a combination of a linear transformation and a softmax output activation. The forward pass through the GPES model is
summarized in Algorithm 1.

Algorithm 1 Gaussian Process augmented Expected Signature (GPES) classifier, forward pass
hyperparameters Signature truncation level k ∈ N, tensor normalization parameter C ∈ R+, data augmentation size

N ∈ N, in-fill partition π2 ∈ ∆M2

[0,T ] s.t. M2 ∈ N.
parameters Biases bµ ∈ Rdµ , bΣ ∈ RdΣ , bout ∈ Rdout and weights Wµ ∈ Rdµ×din , WΣ ∈ RdΣ×din , Wout ∈ Rdout×dsig

where din ← (dM1 +M1 +M2), dµ ← dM2, dΣ ← dM2(dM2 + 1)/2, dsig ← (d+ . . .+ dk) and dout ← |C|.
input x ∈ Rd×M1 and π1 ∈ ∆M1

[0,T ].
1: µx,π1,π2

← bµ +Wµ(x, π1, π2).
2: Lx,π1,π2 ← bΣ +WΣ(x, π1, π2) and Σx,π1,π2 ← Lx,π1,π2L

T
x,π1,π2

.
3: for n ∈ {1, . . . , N} do
4: Xn,π1 ← x.
5: Sample Xn,π2 ∼ N (µx,π1,π2

,Σx,π1,π2
).

6: Signature of Xn,π1∪π2 : Sn = S≤k(Xn,π1∪π2)[0,T ]−ĉ∗1S≤k
c (Xn,π1∪π2)[0,T ] ∈ Rdsig .

7: Tensor normalization: Sn ← λC(S
n).

8: end for
9: Expected signature ES← 1

N

∑N
n=1 S

n.

output ĉ← softmax(bout +WoutES).

Note that, unlike classic Gaussian process regression where the prior mean is assumed to be constant µ(t) ≡ µ and the prior
covariance function

Σ : [0, T ]→ Rd×d,

is parameterized by a kernel and posteriors are computed by combining standard properties of the multivariate normal
distribution and the kernel trick28, in the GPES model the conditional mean and covariance functions

(x, π1, π2) ∈ Rd×M1 ×∆M1

[0,T ] ×∆M2

[0,T ]
∼= RdM1+M1+M2 7→

{
µx,π1,π2

∈ Rd×M2 ∼= RdM2 ,

Σx,π1,π2
∈M(Rd×M2) ∼= RdM2×dM2 ,

are parametrized by linear transformations

µx,π1,π2 = bµ +Wµ(x, π1, π2),

Σx,π1,π2
= Lx,π1,π2

LT
x,π1,π2

, Lx,π1,π2
= bΣ +WΣ(x, π1, π2),

25Super-sampling the input data to a collection of realizations from a Gaussian process, can be effectively understood as a regularization
by noise technique.

26Choosing a very large value of C is in practice equivalent to not applying a tensor normalization.
27Note that the GPES algorithm estimates the expected signature conditional on Xn,π1 = x, so technically the martingale correction is

biasing the estimator.
28The Gaussian process regression model is then fitted by tuning the kernel hyperparameters (either via maximum likelihood or

cross-validation).
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where Lx,π1,π2
is a lower triangular matrix. The parameters bµ,bΣ,Wµ,WΣ are learned along with the output layer

parameters bout,Wout in the training phase via numerical optimization, in Triggiano & Romito (2024) the authors use simple
stochastic gradient descent (SGD). If the timestamps π1 of the observations x are not provided, they need to be fixed and
can be regarded as hyperparameters of the model. The (way the) in-fill partition (is chosen) is instead always chosen a-priori,
with a natural choice for π2 being the set of mid-points of π1. Other model hyperparameters include the signature truncation
level k, the size of the augmentation N and the constant C controlling the strength of the tensor normalization, as well as
the training procedure’s hyperparameters (learning rate, batch size etc.).

In Section 3.2.1 we replicate the synthetic data experiments of Triggiano & Romito (2024). These consist of three datasets:

(FBM) Two equally balanced classes with samples generated according to a standard Brownian motion and a fractional
Brownian motion with Hurst parameter H = 0.26 (both in dimension d = 1).

(OU) Two equally balanced classes with samples generated according to two different Ornstein-Uhlenbeck (OU) processes
(both in dimension d = 1).

(Bidim) Six equally balanced classes with samples generated according to six different bi-dimensional stochastic processes
(d = 2).

When fitting the models we take the optimal hyperparameters cross-validated by Triggiano & Romito (2024)29 and apply
cross-validated SGD to the training dataset. That is, we use 80% of the training dataset to iterate through SGD parameter
updates, while keeping the remaining 20% of the training dataset (the validation set) to determine when the procedure has
converged without overfitting. As described in (Triggiano & Romito, 2024) the presence of the tensor normalization step
often leads to exploding gradients in the training procedure. We thus repeat the SGD routine over 5 different parameter
initializations and pick the model with best validation performance.

F.2.2. PRICING PATH-DEPENDENT DERIVATIVES (LYONS ET AL., 2021)

While the authors of Lyons et al. (2021) consider a more general setting, for brevity, we focus on the case where the
(discounted) price process X is assumed to be a semimartingale. Let X = {Xt, t ∈ [0, T ]} be a semimartingale on the
probability space (Ω = C([0, T ],R),F ,P) and denote by Ω̂LL

T the set of realized (time and lead-lag augmented) price
signatures, i.e.

Ω̂LL
T = {S(X̂LL)[0,T ] ∈ T ((R4)) : X̂ = {(t,Xt), t ≥ 0}},

where we refer to Lyons et al. (2021, Definition 2.14 and Example 2.15) for the definition of the lead-lag augmentation but,
for the purposes of our discussion, it is sufficient to note that it is uniquely defined through Stratonovich integration. The
authors then consider the market (Ω̂LL

T ,B(Ω̂LL
T ), {Ft, t ∈ [0, T ]}, P̂LL) where P̂LL is the push-forward of P onto Ω̂LL

T . By
defining the set of derivative payoffs as all measurable F : Ω̂LL

T → R, i.e. for a given price realization X the holder of the
derivative receives F (S(X̂LL)[0,T ]), in Lyons et al. (2021, Proposition 4.5) the authors use the universality of the signature
to show that any continuous payoff F can be arbitrarily well approximated by a linear payoff30. In particular, this implies
the price of any such F can be decomposed as

EQ[ZTF (S(X̂LL)[0,T ])] ≈ ⟨f, ZTEQ[S(X̂LL)[0,T ]]⟩,

for a set of linear coefficients f ∈ T ((R4)∗) where Q is a pricing measure for X and ZT is a deterministic discount
factor over [0, T ]. The set of signature payoffs {SI(X̂LL)[0,T ], I ∈ W({1, 2, 3, 4})} can thus be understood as a set of
Arrow-Debreu securities spanning the set of continuous path-dependent derivatives F . Similarly, in Lyons et al. (2021,
Proposition 4.6) the authors show that linear trading strategies are dense in the space of admissible trading strategies A, here
defined as the set of all continuous functions θ : S(X̂)[0,t] 7→ θ(S(X̂)[0,t]) over the stopped at t ∈ [0, T ] time-augmented
price path signatures, i.e.

θ(S(X̂)[0,t]) ≈ ⟨ℓ, S(X̂)[0,t]⟩, ∀t ∈ [0, T ],

29The only hyperparameter we modify is the truncation level k which we set to 4 for computational reasons (in the original paper the
optimal value was found to be 5 or 6, depending on the dataset). The hyperparameters an the training and testing routines used to produce
the results in Table 1 can be found at https://github.com/lorenzolucchese/gp-esig-classifier.

30Note that the approximation of F by f does not depend on the choice of probability measure P, i.e. it is a pathwise density result. In
Algorithm 2 and Algorithm 3 we thus assume that f has been estimated offline (i.e. for any model) by linearly regressing F (ω) against ω
for a large set of ω ∈ Ω̂LL

T .
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for a set of linear coefficients ℓ ∈ T ((R2)∗). These two results are then combined in Lyons et al. (2021, Theorem 4.7) to
show that the solution of the quadratic P-hedging problem31

θ∗ = argmin
θ∈A

EP

(F (S(X̂LL)[0,T ])− p0 −
∫ T

0

θ(S(X̂)[0,t])dXt

)2
 , (52)

can be arbitrarily well approximated by the solution of a linear signature quadratic hedging problem, i.e.

θ∗(S(X̂)[0,t]) ≈ ⟨ℓ∗, S(X̂)[0,t]⟩, t ∈ [0, T ],

where ℓ∗ ∈ T ((R2)∗) can be computed by

ℓ∗ = argmin
ℓ∈T ((R2)∗)

⟨(f − p0∅+ ℓ4)�2,EP[S(X̂LL)[0,T ]]⟩.

Algorithm 2 Pricing Path-Dependent Derivatives with Expected Signatures
hyperparameters Signature truncation levels k, number of Monte Carlo samples N ∈ N.
parameters Risk-neutral measure Q, deterministic discount factor ZT ∈ R+, linear approximator f ∈ T k((R4)∗).
input Derivative payoff F : Ω̂LL

T → R.
1: Sample N trajectories X1, . . . ,XN ∼ Q.
2: Compute time-augmented lead-lag transforms X̂n,LL for n ∈ {1, . . . , N}.
3: Compute Sn ∈ T k((R4)) s.t. Sn

I ← SI(X̂n,LL)[0,T ], |I| ≤ k for n ∈ {1, . . . , N}.
4: Estimate Φ ∈ T k((R4)) s.t. ΦI ← ϕ̂N,ĉ1

I (T ), |I| ≤ k from {X̂n,LL}Nn=1.
output Price p = ⟨f, ZTΦ⟩.

Algorithm 3 Hedging Path-Dependent Derivatives with Expected Signatures
hyperparameters Signature truncation levels k, number of Monte Carlo samples N ∈ N.
parameters Real-world measure P, initial capital p0 ∈ R, linear approximator f ∈ T k((R4)∗).
input Derivative payoff F : Ω̂LL

T → R.
1: Sample N trajectories X1, . . . ,XN ∼ P.
2: Compute time-augmented lead-lag transforms X̂n,LL for n ∈ {1, . . . , N}.
3: Compute Sn ∈ T k((R4)) s.t. Sn

I ← SI(X̂n,LL)[0,T ], |I| ≤ k for n ∈ {1, . . . , N}.
4: Estimate Φ ∈ T k((R4)) s.t. ΦI ← ϕ̂N,ĉ1

I (T ), |I| ≤ k from {X̂n,LL}Nn=1.
5: ℓ̂∗ ← infℓ∈T ⌊k/2⌋((R2)∗)⟨(f − p0∅+ ℓ4)�2,Φ⟩.

output Hedging strategy t 7→ ⟨ℓ̂∗, S(X̂)[0,t]⟩, t ∈ [0, T ].

These theoretical results suggest both a pricing and a hedging strategy for path-dependent derivatives based on expected
signatures32, summarized in Algorithm 2 and Algorithm 3. Both algorithms make use of expected signature estimation
via Monte Carlo simulations, an approach that provides a classic setting for applying the martingale correction described
in Section 2.2 (recall that by Remark 2.15 and the Lead-Lag discussion in Appendix F.1 we apply the correction only to
signature terms with the process X appearing in the outer integral). Note that price processes under P (as considered in the
hedging setting) are usually not martingales and hence it is not clear whether the variance reduction for the Monte Carlo
estimator of the expected signature obtained via the martingale correction offsets the introduced bias. On the other hand,
under Q, the fundamental theorem of option pricing ensures the discounted asset price process X is a (local) martingale and
hence the martingale correction is exact.

31For conciseness here we only discuss the quadratic hedging problem, in Lyons et al. (2021) the authors obtain results for general
polynomials which allows them to also approximate the optimal hedge under exponential utility.

32As discussed in Pérez Arribas et al. (2018, Section 6.1) the expected signature under the measure Q can alternatively be estimated in
a model-free way from the market prices of a large enough set of exotic derivatives, yielding the implied expected signature. Here we
assume the measures P and Q have been appropriately calibrated to market data.
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F.2.3. DISTRIBUTIONAL REGRESSION FOR STREAMS (LEMERCIER ET AL., 2021)

The machine learning model we consider in Section 3.2.3 is perhaps the most natural one when working with expected
signatures. Introduced in Lemercier et al. (2021), the Signature of the pathwise Expected Signature (SES) model aims
to learn a map from a collection of paths X1, . . . ,XN ∈ X ⊆ Lip([0, T ],Rd), understood as an empirical measure on
path space µ = 1

N

∑N
n=1 δXn ∈ P(X ), to a corresponding scalar value f(µ) ∈ R. The task of learning such function

f : P(X )→ R from a finite number of (possibly noisy) observations {(µi, yi)}i∈Itrain is known as distributional regression.
Under appropriate conditions, by combining the characterizing property of the expected signature and the universality of
the signature, the authors show that linear functionals on the signature of the pathwise expected signature are universal for
weakly continuous functions f : P(X )→ R (Lemercier et al., 2021, Theorem 3.2). The training and testing of the SES
model is summarized in Algorithm 4 with the step at which can apply the martingale correction highlighted in green.

Algorithm 4 Signature of pathwise Expected Signature (SES), training and testing
hyperparameters Signature truncation levels: k1, k2 ∈ N. Linear regression regularizers.
input {({Xn}n∈Ni , yi)}i∈Itrain , {({Xn}n∈Ni , yi)}i∈Itest where Xn ∈ Rd×M and yi ∈ R.

1: d1 ← d+ · · ·+ dk1 and d2 ← d1 + · · ·+ dk2
1 .

2: for i ∈ Itrain ∪ Itest do
3: Pathwise expected signature of {Xn}n∈Ni

:Φi ∈ Rd1×M ,Φi
I,m← ϕ̂

Ni,ĉ
∗
1

I (tm), |I|≤k1, 1≤m≤M .
4: Signature of Φi: Si ← S≤k2(Φi)[0,T ] ∈ Rd2 .
5: end for
6: Fit linear regression: β̂ = (β̂0, . . . , β̂d2

)← LinearRegressionFit({(Si, yi)}i∈Itrain).
7: Predict using fitted linear regression: {ŷi}i∈Itest ← LinearRegressionPredict(β̂, {Si}i∈Itest).

output Performance metric: L({ŷi}i∈Itest , {yi}i∈Itest).

In Section 3.2.3 we repeat two of the synthetic data experiments conducted in Lemercier et al. (2021), analyzing the
performance of the SES model without and with martingale correction (MC). In the first experiment (Lemercier et al., 2021,
Section 5.2), the task is to infer the temperature of an ideal gas from the paths of N = 20 particles moving in a box. The
dynamics of the system are inevitably linked to the radius of the particles, with larger particle radii resulting in more frequent
collisions. Two settings33 are therefore considered, one with smaller particle radii r1 = 0.35× 3

√
V/N and one with larger

particle radii r2 = 0.65× 3
√
V/N . The second experiment (Lemercier et al., 2021, Section 5.3) concerns the estimation of

the mean-reversion parameter in a rough volatility model. More precisely, the task is to infer the value of a ∈ [10−6, 1]
from a sample {σn

π}Nn=1 of (discretely observed) paths σn = {σn
t , t ∈ π} over the partition π = {0, 0.01, . . . , 2} with

continuous-time dynamics

dZt = −a(Zt − µ)dt+ νdBH
t , σt = expZt, t ∈ [0, 2],

where {BH
t , t ∈ [0, 2]} is a fractional Brownian motion with Hurst parameter H = 0.2, µ = 0.5, ν = 0.3 and Z0 = 0.5.

The performance of the model is evaluated with increasingly large collections of paths as inputs, i.e. N = 20, 50, 100. As
expected, the model becomes more accurate as the number of paths increases. We refer to Lemercier et al. (2021) for more
details on the two experimental setups.

In both experiments, we keep the same training-evaluation pipeline as the one considered in the original paper, namely
nested k-fold cross-validation with 5 outer folds for evaluation and 3 inner folds for hyperparameter selection (including the
signature truncation k1 and a Lasso regularization parameter). The code used to produce the results of Table 2 and Table 3 is
available at https://github.com/lorenzolucchese/distribution-regression-streams.

F.2.4. SYSTEMATIC TRADING (FUTTER ET AL., 2023)

The last application we consider is also motivated by a financial application and can be understood as a natural extension of
the quadratic hedging problem (52). In Futter et al. (2023) the authors consider the same setup as in Lyons et al. (2021) but
allow the trading strategy θ ∈ A to depend on the signature of the augmented process

Ẑ = {(t,Xt, ft), t ∈ [0, T ]} ∈ C([0, T ],R1+d+q),

33V = 3cm3 denotes the volume of the box in which the particles are moving.
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where X = {Xt, t ∈ [0, T ]} ∈ C([0, T ],Rd) is a d-dimensional price process and F = {ft, t ∈ [0, T ]} ∈ C([0, T ],Rq)
is a set of q observable but not tradable factors (or signals) influencing X, and to trade in d assets. Again motivated by a
universality result of the signature the authors approximate any such trading strategy by a linear one, i.e.

θi(S(Ẑ)[0,t]) ≈ ⟨ℓi, S(Ẑ)[0,t]⟩, i ∈ {1, . . . , d}, t ∈ [0, T ],

for some set of linear functionals ℓ1, . . . , ℓd ∈ T ((R1+d+q)∗). The authors then show that an explicit solution to the
path-dependent mean-variance problem

ℓ∗1, . . . , ℓ
∗
d = argmin

ℓ1,...,ℓd∈Tk((R1+d+q)∗)
Var(PnLT )≤∆

EP[PnLT ], where PnLT =

d∑
i=1

∫ T

0

⟨ℓi, S(Ẑ)[0,t]⟩dXi
t ,

for arbitrary truncation level k ∈ N can be read from the entries of

1

2λ∆
Σ−1

sig µsig ∈ Rdsig , dsig = d+ . . .+ d(1 + d+ q)k,

where µsig ∈ Rdsig and Σsig ∈ Rdsig×dsig and λ∆ ∈ R+ only depend34 on the expected signature EP[S(ẐLL)[0,T ]].

A standard way of applying the sig-trading strategy in practice is given in Algorithm 5. Note that in real financial markets
price and signal paths cannot be resampled and hence the collection {(Xn,Fn)}Nn=1 can only be obtained by chopping-and-
shifting a single long observation {(Xt, ft), t ∈ [0, NT ]}. In this respect, the sig-trading algorithm provides a striking
example of a setting where the sampling scheme cannot be considered i.i.d. and hence one needs to resort to the results of
Theorem 2.10 to obtain theoretical guarantees for the expected signature estimator.

A silent but fundamental assumption35 is that the market dynamics of the collection of past price-factor paths {(Xn,Fn)}Nn=1

used to estimate the expected signature will be the same as those of the future price-factor process (X∗,F∗) to which the
trading strategy will be applied. Using the martingale correction for estimating (some of the entries of) the expected signature,
induces a bias to “ignore” the drift component of the signature term. For example, the first level of the martingale-corrected
expected signature is always zero. This might be a desirable feature to avoid over-fitting the trading strategy to spurious
drifts in the data (for example in the price processes X (Buehler et al., 2022)) while capturing higher order effects. As with
other applications discussed in this section, the usefulness of the martingale correction in Algorithm 5 can be empirically
cross-validated.

Algorithm 5 Signature Trading
hyperparameters Signature truncation level k, maximum variance ∆ ∈ R+.
input Collection of price-factor paths {(Xn,Fn)}Nn=1 where Xn = {Xn

t , t ∈ [0, T ]} ∈ C([0, T ],Rd) and Fn = {fnt , t ∈
[0, T ]} ∈ C([0, T ],Rq) for n ∈ {1, . . . , N}.

1: Set Ẑ← {(t,Xt, ft), t ∈ [0, T ]}.
2: Compute time-augmented lead-lag transforms Ẑn,LL for n ∈ {1, . . . , N}.
3: Estimate Φ ∈ T k((R1+d+q)) s.t. ΦI ← ϕ̂N,ĉ1

I (T ), |I| ≤ k from {Ẑn,LL}Nn=1.
4: Compute λ∆, µsig,Σsig from corresponding entries of Φ.
5: Extract ℓ̂∗i from corresponding entries of (2λ∆Σsig)

−1µsig for i ∈ {1, . . . , d}.
output Trading strategy t 7→ ⟨ℓ̂∗i , S(Ẑ∗)[0,t]⟩, i ∈ {1, . . . , d}, t ∈ [0, T ] for new (X∗,F∗).

G. Controlled Linear Regression
In this section, we introduce the notion of controlled linear regression. The main rationale is to exploit as much information
as possible in the training phase to make the coefficient estimators as precise as possible. We start by considering the
following linear model

y = β1x1 + . . .+ βpxp + ϵ = xTβ + ϵ,

34As in the mean-variance optimal portfolio, the variance scaling parameter λ∆ ∈ R+ also depends on the target variance ∆.
35Clearly, this assumption is not specific to the sig-trading strategy but applies to any trading strategy that tries to learn patterns from

the past to profit in the future.
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and assume we observe the training data {(yn, xn,1, . . . , xn,p), n = 1, . . . , N}, i.e.

yn = β1xn,1 + . . .+ βpxn,p + ϵn = xT
nβ + ϵn, n = 1, . . . , N,

where, given the design matrix X ∈ RN×p, the errors {ϵn, n = 1, . . . , N} are

• mean zero, i.e. E[ϵn|X] = 0 for n = 1, . . . , N ,

• homoskedastic, i.e. E[ϵ2n|X] = σ2 ∈ [0,∞) for n = 1, . . . , N , and

• uncorrelated, i.e. E[ϵnϵm|X] = 0 for n,m = 1, . . . , N with n ̸= m.

For any test observation x∗ = (x∗,1, . . . , x∗,p) ∈ Rp we thus have the best possible prediction (in terms of MSE) for y∗ is

E[y∗|x∗] = xT
∗β =: ŷ∗(β),

and plugging in an estimator β̂ for β yields the predictor

ŷ∗(β̂) = xT
∗β̂.

Note that, under the assumptions introduced above, the mean squared error of such a predictor can be decomposed as

E
[
(ŷ∗(β̂)− y∗)2

∣∣X,x∗

]
= E

[
ϵ2∗
∣∣X,x∗

]
+ E

[
(ŷ∗(β̂)− ŷ∗(β))2

∣∣X,x∗

]
= σ2 + E

[
(ŷ∗(β̂)− ŷ∗(β))2

∣∣X,x∗

]
.

Under the assumptions discussed above minimizing the mean squared error of the predictor relative to the target y∗ is thus
equivalent to minimizing the mean squared error of the predictor relative to the infeasible best prediction ŷ∗(β).

G.1. Controlled Ordinary Least Squares (OLS) estimation

Classic OLS estimation The usual OLS estimator for β = (β1, . . . , βp) ∈ Rp is given by36

β̂X = (XTX)−1XTy,

which, by the Gauss-Markov theorem, is known to be the best linear unbiased estimator (BLUE): for any λ = (λ1, . . . , λp) ∈
Rp,

E
[
(λTβ̂X − λTβ)2

∣∣X] = min
β̃X∈LUE(X,y)

E
[
(λTβ̃X − λTβ)

∣∣X] ,
where LUE(X,y) is the set of all linear and unbiased estimator for β, i.e. β̃X = C(X)y for some X-measurable matrix
C(X) ∈ Rp×N and E[β̃X|X] = β. By applying the BLUE property, we can show that ŷ∗(β̂X) is the best37 predictor across
all predictors formed from linear and unbiased estimators, i.e.

E
[
(ŷ∗(β̂X)− ŷ∗(β))2

∣∣X,x∗

]
≤ E

[
(ŷ∗(β̃X)− ŷ∗(β))2

∣∣X,x∗

]
,

for all β̃X ∈ LUE(X,y). Note that here we applied the mean-zero uncorrelated errors assumption.

Controlled OLS estimation Let us now assume we can additionally observe the “control” random variables {zn =
(zn,1, . . . , zn,k) ∈ Rk, n = 1, . . . , N}. We shall assume the controls are available for training, i.e. when estimating β, but
for predicting, i.e. when forecasting y∗ we will have access to x∗ but not to z∗. Given the original design matrix X ∈ RN×p,
we now assume the errors and the controls are jointly

• mean zero, i.e. E[(ϵn, zn)|X] = 0 ∈ Rk+1 for n = 1, . . . , N ,

36Here, and in all other estimators discussed in this section, the dependence on y is dropped from the notation.
37In terms of mean squared error (MSE). Recall that for unbiased estimators, the MSE is equal to the estimator’s variance.
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• homoskedastic, i.e. E[(ϵn, zn)⊗2|X] = Σ ∈ R(k+1)×(k+1) for n = 1, . . . , N for some Σ symmetric positive definite,

• uncorrelated, i.e. E[(ϵn, zn)⊗(ϵm, zm)|X] = 0 ∈ R(k+1)×(k+1) for n,m = 1, . . . , N with n ̸= m.

In what follows we partition

Σ =

(
σ2 Σy,z

Σz,y Σz

)
,

Remark G.1. Throughout the whole section, unless stated otherwise, we consider the original design matrix X and the new
observation x∗ ∈ Rp to be fixed with random controls Z and errors ϵ.

As discussed above, fixing the design matrix X ∈ RN×p and a test observation x∗ = (x∗,1, . . . , x∗,p) ∈ Rp, the predictor

ŷ∗(β̂X) = xT
∗β̂X,

is unbiased for the statistic ŷ∗(β) = xT
∗β ∈ R. We hence introduce the control variate predictor

ŷ∗(β̂X,Z,λ) = ŷ∗(β̂X) + λT
1Zλ2,

where Z ∈ RN×k is the control design matrix while λ1 ∈ RN and λ2 ∈ Rk are measurable in X and x∗. Under the
assumptions discussed above the controlled predictor can be shown to be unbiased and attains a minimum38 in variance
when

λ∗
1 = X(XTX)−1x∗ and λ∗

2 = −Σ−1
z Σz,y.

38Note that since Z and ϵ are assumed to be jointly spherical given X (and x∗) the variance of the controlled predictor is given by

Var(ŷ∗(β̂X,Z,λ)|X,x∗)

= Var(xT
∗(X

TX)−1XT(Xβ + ϵ) + λT
1Zλ2|X,x∗)

= xT
∗(X

TX)−1XTE[ϵϵT|X,x∗]X(XTX)−1x∗ + 2xT
∗(X

TX)−1XTE[ϵλT
2Z

T|X,x∗]λ1 + λT
1E[Zλ2λ

T
2Z

T|X,x∗]λ1

= σ2xT
∗(X

TX)−1x∗ + 2λT
2Σz,yx

T
∗(X

TX)−1XTλ1 + λT
2Σzλ2λ

T
1λ1.

Setting partial derivatives in λ1 and λ2 equal to zero

∂λ1Var(ŷ∗(β̂X,Z,λ)|X,x∗) = 2λT
2Σz,yx

T
∗(X

TX)−1XT + 2λT
2Σzλ2λ1 = 2λT

2(Σz,yx
T
∗(X

TX)−1XT +Σzλ2λ1) = 0,

∂λ2Var(ŷ∗(β̂X,Z,λ)|X,x∗) = 2λT
1X(XTX)−1x∗Σz,y + 2λT

1λ1Σzλ2 = 2λT
1(X(XTX)−1x∗Σz,y + λ1Σzλ2) = 0,

yields as non-trivial (i.e. such that λ1,λ2 ̸= 0) stationary point λ∗
1 = X(XTX)−1x∗ and λ∗

2 = −Σ−1
z Σz,y . By taking second derivatives

we can compute the Hessian at the stationary point to be

∂λ∂λT Var(ŷ∗(β̂X,Z,λ)|X,x∗)
∣∣∣
λ=λ∗

= 2

(
Σy,zΣ

−1
z Σz,yIN×N −X(XTX)−1x∗Σy,z

−Σz,yx∗(X
TX)−1XT x∗(X

TX)−1x∗Σz

)
,

which is positive (semi)definite since Σ is positive definite and hence λ∗ is a minimum. To show the assumption that Σ is positive definite
implies the Hessian is positive (semi)definite we use the following result from linear algebra theory: a symmetric block matrix

M =

(
A B
BT D

)
,

where A is square is positive (semi)definite if and only A and D−BTA−1B are positive (semi)definite. Applying this result to the
Hessian at λ∗ note that A = Σy,zΣ

−1
z Σz,yIN×N is trivially positive (semi)definite since Σy,zΣ

−1
z Σz,y ≥ 0 by positive definitness of

Σz, and

D−BTA−1B = x∗(X
TX)−1x∗

(
Σz −

Σz,yΣy,z

Σy,zΣ
−1
z Σz,y

)
,

is positive (semi)definite since x∗(X
TX)−1x∗ ≥ 0 by positive definitness of XTX and Σz − (Σy,zΣ

−1
z Σz,y)

−1Σz,yΣy,z is positive
(semi)definite by applying the converse of the previous statement to the positive (semi)definite matrix

M′ =

(
Σy,zΣ

−1
z Σz,y Σy,z

Σz,y Σz

)
.
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For any x∗ = (x∗,1, . . . , x∗,p) ∈ Rp we thus have

ŷ∗(β̂X,Z,λ
∗) = xT

∗(X
TX)−1XTy − xT

∗(X
TX)−1XTZΣ−1

z Σz,y = xT
∗β̂X,Z,Σ = ŷ∗(β̂X,Z,Σ),

yielding the infeasible (in the sense that it depends on the unknown quantity Σ) estimator

β̂X,Z,Σ = (XTX)−1XT(y − ZΣ−1
z Σz,y) = β̂X − (XTX)−1XTZΣ−1

z Σz,y.

Note that, given X, β̂X,Z,Σ is unbiased (by mean zero property of the controls). Moreover, for any test observation
x∗ = (x∗,1, . . . , x∗,p) ∈ Rp,

Var(xT
∗β̂X,Z,Σ|X,x∗)

= Var(xT
∗β̂X|X,x∗) + Var(xT

∗(X
TX)−1XTZΣ−1

z Σz,y|X,x∗)

− 2Cov(xT
∗β̂X,x

T
∗(X

TX)−1XTZΣ−1
z Σz,y|X,x∗)

= σ2xT
∗(X

TX)−1x∗ +Σy,zΣ
−1
z Σz,yx

T
∗(X

TX)−1x∗ − 2Σy,zΣ
−1
z Σz,yx

T
∗(X

TX)−1x∗

= (σ2 − Σy,zΣ
−1
z Σz,y)x

T
∗(X

TX)−1x∗

≤ σ2xT
∗(X

TX)−1x∗ = Var(xT
∗β̂X|X,x∗),

with equality iff Σz,y = 0. In other words, as long as the controls are correlated with the target, we obtain a better prediction
by using β̂X,Z,Σ instead of the OLS estimator β̂X and the quality of the prediction increases as the correlation between y
and z increases. The variance reduction factor is constant across test observations and is given by

Var(xT
∗β̂X,Z,Σ|X,x∗)

Var(xT
∗β̂X|X,x∗)

=

(
1− Σy,zΣ

−1
z Σz,y

σ2

)
.

Remark G.2. Note that when X = 1 ∈ RN , x∗ = 1 and Z ∈ RN , we estimate µ∗ = E[y] with the OLS estimator
µ̂∗ = β̂ = ȳ and the simplest control variate estimator

µ̂c
∗ = ȳ − Cov(y, z)

Var(z)
z̄,

since λ∗
1 =

1

N
1 ∈ RN and λ∗2 = −Cov(y, z)

Var(z)
, which has reduced variance by a factor of (1− Corr(y, z)).

In practice, the correlation matrix Σ is usually unknown; hence, to make the estimator β̂X,Z,Σ feasible, we need to estimate
it. Under the assumptions discussed above, the most natural candidate is given by the sample estimates

Σ̂z,y =
1

N
ZTy and Σ̂z =

1

N
ZTZ,

yielding the feasible estimator
β̂X,Z,Σ̂ = (XTX)−1XT(I − Z(ZTZ)−1ZT)y.

This can be equivalently understood as regressing y on the control Z (i.e. projecting y onto the space spanned by Z) and
then regressing the residual onto X. The resulting estimator will likely be biased (given X), with its exact finite sample
properties depending on the distribution of (X,Z)|ϵ.

When ϵ depends linearly on Z, i.e.
ϵ = Zα+ η,

we can write
y = Xβ + Zα+ η,

and hence we know that the joint OLS estimator obtained from the design matrix (X Z) ∈ RN×(p+k), i.e.(
β̂X,Z

α̂X,Z

)
=

[(
XT

ZT

)(
X Z

)]−1(
XT

ZT

)
y =

(
XTX XTZ
ZTX ZTZ

)−1(
XTy
ZTy

)
.
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By using some simple algebraic manipulations for block matrices, we can extract the first p entries of the joint OLS estimator,
i.e. the estimator for β, as

β̂X,Z = β̂X,Z,Σ̂′ = β̂ − (XTX)−1XTZ(ZTZ− ZTX(XTX)−1XTZ)−1(ZTy − ZTX(XTX)−1XTy),

i.e. β̂X,Z,Σ with Σ estimated by

Σ̂′
z,y =

1

N
ZT(I −X(XTX)−1XT)y and Σ̂′

z =
1

N
ZT(I −X(XTX)−1XT)Z.

Note these are the covariance and variance estimators obtained when projecting Z onto the orthogonal complement of the
space spanned by X. Under the assumptions introduced above, these are also unbiased for Σz,y and Σz. This provides a
second feasible controlled estimator for β.

If we fix both X and Z and assume η satisfies the Gauss-Markov conditions, then the joint OLS estimator is the BLUE for
(β,α). Extending the classic OLS estimator β̂X to (β̂X, α̂X,Z) we obtain another linear and unbiased estimator for (β,α).
It follows from the Gauss-Markov theorem that for any x∗ ∈ Rp, setting λ = (x∗,E[z∗|X,Z,x∗] = 0), one has

E
[
(ŷ∗(β̂X,Z)− ŷ∗(β))2

∣∣X,Z,x∗

]
≤ E

[
(ŷ∗(β̂X)− ŷ∗(β))2

∣∣X,Z,x∗

]
,

and hence, by the tower property of conditional expectation,

E
[
(ŷ∗(β̂X,Z)− ŷ∗(β))2

∣∣X,x∗

]
≤ E

[
(ŷ∗(β̂X)− ŷ∗(β))2

∣∣X,x∗

]
.

Using the forms of the variances of β̂X and β̂X,Z we can compute

E
[
(ŷ∗(β̂X,Z)− ŷ∗(β))2

∣∣X,x∗

]
= σ2xT

∗E[(XT(I − Z(ZTZ)−1ZT)X)−1
∣∣X]x∗,

E
[
(ŷ∗(β̂X)− ŷ∗(β))2

∣∣X,x∗

]
= σ2xT

∗(X
TX)−1x∗,

and thus quantify the MSE reduction factor as

E
[
(ŷ∗(β̂X,Z)− ŷ∗(β))2

∣∣X,x∗

]
E
[
(ŷ∗(β̂X)− ŷ∗(β))2

∣∣X,x∗

] =
xT
∗E[(XT(I − Z(ZTZ)−1ZT)X)−1

∣∣X]x∗

xT
∗(X

TX)−1x∗
,

which we note does not depend on σ2.

Given X and Z, augmenting the first feasible controlled estimator β̂X,Z,Σ̂ to an estimator for (β,α), yields a linear but
biased (at least in the β components) estimator. Whether β̂X,Z,Σ̂ or β̂X,Z yields a better predictor cannot thus be deduced
from the Gauss-Markov theorem. As we will see in the numerical experiments discussed in the next section, which estimator
performs better depends on the properties of the data generating process.

G.2. Simulation study

In the previous section we introduced two feasible control estimators, β̂X,Z,Σ̂ and β̂X,Z, for the parameters β ∈ Rp. We
showed that when

ϵ = Zα+ η,

and η|Z,X is mean-zero, uncorrelated and homoskedastic then ŷ∗(β̂X,Z) is always a better predictor than the one formed
by the classic OLS estimator ŷ∗(β̂X). This leaves unanswered the question of how β̂X,Z,Σ̂ performs relative to β̂X,Z (and
β̂X). We address this question empirically in Table 4 with the following experimental setup.

We consider N = 1, 000 i.i.d. samples from the model

y = β0 + β1x1 + β2x2 + ϵ,
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with β0 = −1, β1 = 6, β2 = 8 and
ϵ = σ(ρz +

√
1− ρ2η),

with η ∼ N (0, 1) ⊥ z ∼ N (0, 1) independently of X. We thus have Corr(y, z|x) = Corr(ϵ, z) = ρ and ϵ ∼ N (0, σ2) ⊥ X.
We fix N = 1, 000 samples x1 ∼ N (0, 1) ⊥ x2 ∼ N (1, 1) to obtain X ∈ RN×3 and evaluate the performance of the
predictor on the new observation x∗1 = 0, x∗2 = 1. For each estimator, we report an estimate of the root mean square error

RMSE(ŷ∗(β̂), ŷ∗(β)) =
√
E
[
(ŷ∗(β̂)− ŷ∗(β))2

∣∣X,x∗

]
,

obtained over 10, 000 Monte Carlo samples (i.e. keeping X and x∗ fixed and resampling Z ∈ RN and η ∈ RN ). We
highlight with a single asterisk (*) RMSEs that are lower than the uncontrolled OLS estimator’s RMSE with high statistical
significance (t-test p-value across the Monte Carlo samples less than 0.001). When one of the two proposed estimators
outperforms the other with high statistical significance we highlight the corresponding RMSE with double asterisks (**).

β̂X β̂X,Z,Σ̂ β̂X,Z β̂X,Z,Σ

σ ρ RMSE RMSE (% of β̂X) RMSE (% of β̂X) RMSE (% of β̂X)

5

0.00 0.1572 0.1579 100.46% 0.1573 100.03% 0.1572 100.00%
0.25 0.1588 0.1550* 97.57% 0.1538** 96.86% 0.1489 93.75%
0.50 0.1581 0.1368* 86.48% 0.1358** 85.86% 0.1186 75.00%
0.75 0.1592 0.1052* 66.08% 0.1043** 65.52% 0.0697 43.75%
1.00 0.1606 0.0164* 10.21% 0.0000** 0.01% 0.0000 0.00%

10

0.00 0.3144 0.3146 100.06% 0.3145 100.03% 0.3144 100.00%
0.25 0.3177 0.3082* 97.03% 0.3077** 96.86% 0.2978 93.75%
0.50 0.3163 0.2719* 85.97% 0.2715* 85.86% 0.2372 75.00%
0.75 0.3185 0.2088* 65.57% 0.2086* 65.52% 0.1393 43.75%
1.00 0.3211 0.0164* 5.11% 0.0000** 0.00% 0.0000 0.00%

20

0.00 0.6289 0.6286 99.96% 0.6291 100.03% 0.6289 100.00%
0.25 0.6353 0.6154* 96.86% 0.6154* 96.86% 0.5956 93.75%
0.50 0.6325 0.5429* 85.83% 0.5431* 85.86% 0.4744 75.00%
0.75 0.6369 0.4169* 65.46% 0.4173* 65.52% 0.2786 43.75%
1.00 0.6422 0.0164* 2.55% 0.0000** 0.00% 0.0000 0.00%

40

0.00 1.2578 1.2569 99.93% 1.2582 100.03% 1.2578 100.00%
0.25 1.2707 1.2300** 96.80% 1.2307* 96.86% 1.1913 93.75%
0.50 1.2651 1.0853** 85.79% 1.0862* 85.86% 0.9488 75.00%
0.75 1.2738 0.8336** 65.44% 0.8346* 65.52% 0.5573 43.75%
1.00 1.2845 0.0164* 1.28% 0.0000** 0.00% 0.0000 0.00%

Table 4. RMSEs of the classic OLS estimator β̂X, the two feasible control estimators β̂X,Z,Σ̂ and β̂X,Z, and the infeasible optimal
control estimator β̂X,Z,Σ. A single asterisk (*) indicates feasible RMSEs that are lower than the uncontrolled classic OLS estimator’s
RMSE with high statistical significance (t-test p-value across the 10,000 Monte Carlo samples less than 0.001). A double asterisk (**)
indicates the feasible control estimator’s RMSE is lower than the other feasible control estimator’s RMSE with high statistical significance.

As expected, as the correlation between the control and the target ρ increases, the performance gain obtained by using either
of the feasible control estimators increases. The joint-OLS estimator outperforms the standard OLS estimator by the same
amount across different signal-to-noise ratios while β̂X,Z,Σ̂’s relative performance changes. Comparing β̂X,Z,Σ̂ and β̂X,Z

we note the results suggest that for high signal-to-noise ratios39 the joint-OLS estimator β̂X,Z slightly outperforms β̂X,Z,Σ̂

while for lower signal-to-noise ratios the latter estimator performs marginally better. Consider the two edge cases:

39Here we define the signal-to-noise ratio as std(xTβ)/σ where std(xTβ) measures the variablity of the explainable part of the model
(signal) and σ measures the variability in the error ϵ (noise). In Table 4 the signal component of the model is kept fixed and hence higher
σ denotes lower signal-to-noise ratio.
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• when there is no error, i.e. σ = 0, β̂X,Z,Σ̂ performs worse than β̂X (= β̂X,Z) as it is adding uninformative variability
to the estimator;

• when there is no signal, i.e. X = 1 ∈ RN , β̂X,Z,Σ̂ and β̂X,Z both reduce to the classic control variates estimators, cf.
Remark G.2, but the former is more precise as it estimates λ∗

2 = −Σ−1
z Σz,y using the knowledge that the control is

mean zero.

Next, we investigate the empirical performance of β̂X,Z,Σ̂ and β̂X,Z when the dependency between Z and ϵ is non-linear
but (Z, ϵ)|X are still jointly mean-zero, uncorrelated (across samples) and homoskedastic. Keeping the same design matrix
X as in Table 4 and the same parameters β = (−1, 6, 8) we now let

ϵ = σκf(z) + σ
√
1− κ2η,

with η ∼ N (0, 1) ⊥ z ∼ N (0, 1) independently of X. By choosing f(z) such that E[f(z)] = 0 and E[f(z)2] = 1 we
have E[ϵ] = 0 and E[ϵ2] = σ2. Moreover, choosing κ = Cov(z, f(z))−1ρ ensures that Corr(y, z|x) = Corr(ϵ, z) = ρ. We
investigate the following three dependence functions:

(sq) f(z) =
z2 + z − 1√

3
;

(cube) f(z) =
z3√
15

;

(exp) f(z) =
ez −√e√
e2 − e

.

The code used to produce the results of Table 4 and Table 5 can be found at https://github.com/
lorenzolucchese/controlled-linear-regression.

We also experimented with multiplicative noise (ϵ ∝ f(z) η), heavier tailed errors (η ∼ t3) and different dataset sizes
(N ∈ {100, 1000, 10000}). The results are similar to the ones reported in Table 4 and Table 5: the two control estimators
outperform the classic OLS estimator as long as ρ > 0 while the differences in performance between the two control
estimators are statistically significant but small.
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β̂X β̂X,Z,Σ̂ β̂X,Z β̂X,Z,Σ

f ρ RMSE RMSE (% of β̂X) RMSE (% of β̂X) RMSE (% of β̂X)

(sq)

0.00 0.3144 0.3146 100.06% 0.3145 100.03% 0.3144 100.00%
0.25 0.3174 0.3084* 97.14% 0.3075** 96.88% 0.2976 93.75%
0.50 0.3202 0.2772* 86.57% 0.2761** 86.25% 0.2401 75.00%
0.75
1.00

(cube)

0.00 0.3144 0.3146 100.06% 0.3145 100.03% 0.3144 100.00%
0.25 0.3184 0.3088* 97.00% 0.3083* 96.83% 0.2985 93.75%
0.50 0.3184 0.2736* 85.95% 0.2734* 85.86% 0.2388 75.00%
0.75 0.3222 0.2125* 65.96% 0.2123* 65.90% 0.1409 43.75%
1.00

(exp)

0.00 0.3144 0.3146 100.06% 0.3145 100.03% 0.3144 100.00%
0.25 0.3178 0.3085* 97.07% 0.3078** 96.85% 0.2979 93.75%
0.50 0.3182 0.2741* 86.13% 0.2734** 85.92% 0.2387 75.00%
0.75 0.3191 0.2091* 65.53% 0.2081** 65.20% 0.1396 43.75%
1.00

Table 5. RMSEs of the classic OLS estimator β̂X, the two feasible control estimators β̂X,Z,Σ̂ and β̂X,Z, and the infeasible optimal
control estimator β̂X,Z,Σ. A single asterisk (*) indicates feasible RMSEs that are lower than the uncontrolled classic OLS estimator’s
RMSE with high statistical significance (t-test p-value across the 10,000 Monte Carlo samples less than 0.001). A double asterisk (**)
indicates the feasible control estimator’s RMSE is lower than the other feasible control estimator’s RMSE with high statistical significance.
Empty values indicate setups that are not achievable for the given correlation ρ and dependence function f .
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