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Abstract

Group Equivariant CNNs (G-CNNs) have shown
promising efficacy in various tasks, owing to their
ability to capture hierarchical features in an equiv-
ariant manner. However, their equivariance is
fixed to the symmetry of the whole group, lim-
iting adaptability to diverse partial symmetries
in real-world datasets, such as limited rotation
symmetry of handwritten digit images and lim-
ited color-shift symmetry of flower images. Re-
cent efforts address this limitation, one example
being Partial G-CNN which restricts the output
group space of convolution layers to break full
equivariance. However, such an approach still
fails to adjust equivariance levels across data. In
this paper, we propose a novel approach, Varia-
tional Partial G-CNN (VP G-CNN), to capture
varying levels of partial equivariance specific to
each data instance. VP G-CNN redesigns the
distribution of the output group elements to be
conditioned on input data, leveraging variational
inference to avoid overfitting. This enables the
model to adjust its equivariance levels according
to the needs of individual data points. Addition-
ally, we address training instability inherent in
discrete group equivariance models by redesign-
ing the reparametrizable distribution. We demon-
strate the effectiveness of VP G-CNN on both toy
and real-world datasets, including MNIST67-180,
CIFAR10, ColorMNIST, and Flowers102. Our
results show robust performance, even in uncer-
tainty metrics.
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(a) MNIST (b) Flowers102

Figure 1. Illustrative example of partial equivariance. (a) 180◦-
rotation of 6 is regarded as 9 but 7 is not. (b) The color-shifted
image of Barberton Daisy looks similar to Osteospermum.

1. Introduction
Convolutional Neural Networks (CNNs) have demonstrated
remarkable success in numerous computer vision tasks, ow-
ing to their ability to capture hierarchical features in an
equivariant manner. Other approaches, such as Group Equiv-
ariant CNNs (G-CNNs) (Cohen & Welling, 2016; 2017;
Weiler & Cesa, 2019; Romero et al., 2022), extend equivari-
ance to various symmetry groups, enhancing model robust-
ness across different transformations. However, a limitation
arises from the rigidity of these models, as the choice of the
equivariance group is fixed a priori.

In real-world scenarios, datasets often exhibit equivariance
to diverse types of transformations, and the nature of equiv-
ariance might not be the same across all data instances. For
example, in the classification of handwritten images like
MNIST, images of 6 or 9 may be described more naturally
by invariance to partial rotations between −90◦ and 90◦,
while a 180◦ rotation might distort the classification be-
tween 6 and 9, as shown in Fig. 1a. In contrast, the other
digits, 0, 1, 2, 3, 4, 5, 7, 8, may possess full equivariance to
rotation. The challenge then lies in developing a neural
network architecture that adapts the level of equivariance to
the specific needs of the data.

Existing efforts have addressed this issue, such as Partial
G-CNN (Romero & Lohit, 2022), which learns varying
levels of equivariance at different layers, or Relaxed G-CNN
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(Wang et al., 2022; van der Ouderaa et al., 2022), which
incorporates relaxed kernel design. In particular, Partial
G-CNN restricts the distribution of the output group space
to break full equivariance. They introduce a convolution
layer with a distribution whose support domain does not
cover all group elements, effectively breaking equivariance.
While this method has shown promising results, it imposes
the same level of equivariance for all data points.

In this paper, we introduce a new group equivariant convo-
lution that captures different levels of partial equivariance
in a data-specific manner. We redesign the distribution of
output group elements in Partial G-CNN to be conditioned
on the input. For efficient computation, the data-dependent
conditional distribution refers to features extracted from the
previous layer, as these contain information about the input
data. To train the conditional distribution without overfit-
ting, we adopt Variational inference, treating the group ele-
ments in each layer as random variables. Thus, the problem
becomes maximizing the evidence lower bound (ELBO),
consisting of the log-likelihood for classification and the
Kullback-Leibler (KL) divergence between the conditional
distribution and a certain prior for regularization. Therefore,
while the conditional distribution is regularized towards full
equivariance, if full equivariance is harmful for the given
data, it modifies the distribution to provide partial equivari-
ance. Additionally, we address the unstable training issue in
discrete group equivariance, which Partial G-CNN suffers
from, by redesigning the reparametrizable distribution of
the group elements. Our method, called Variational Partial
G-CNN (VP G-CNN), shows promising results in terms of
test accuracy and uncertainty metrics. It also demonstrates
the ability to detect different levels of equivariance for each
data point in one toy dataset, MNIST67-180, and three real-
world datasets: CIFAR10, ColorMNIST, and Flowers102.

To sum up, our contributions can be summarized as follows:

1. We propose input-aware partially equivariant group
convolutions, which capture different levels of equiv-
ariance across data based on variational inference.

2. We resolve the unstable training issue of discrete group
equivariance involved in Partial G-CNN by redesign-
ing the reparametrizable distribution for the discrete
groups.

3. We demonstrate promising results on real-world
datasets: CIFAR10, ColoredMNIST, and Flowers102,
alongside demonstrating strong calibration perfor-
mance.

2. Preliminaries
2.1. Group Equivariance and Partial Equivariance

A representation of a group G on a Euclidean space Rn can
be defined as a function ρ mapping G to the general linear
group on Rn (i.e., the group of invertible n × n matrices
with matrix multiplication as group composition and identity
matrix as identity element), ensuring that ρ preserves the
composition operator and the identity element of the group.
When we possess representations of a group G in Euclidean
spaces X and Y , denoted as ρX and ρY respectively, a
function Φ : X → Y is termed equivariant to G if, for all
g ∈ G and x ∈ X , the following condition holds:

Φ
�
ρX (g)(x)

�
= ρY(g)

�
Φ(x)

�
. (1)

In simpler terms, this condition implies that Φ does not
actively utilize information that can be altered by group
elements g.

As a more general concept, partial group equivariance, or
partial equivariance, can be defined as follows:
Definition 2.1 ((S, ε,G)-Partial Equivariance). Let Ψ :
X → Y be a function and G be a group acting on X . The
function Ψ is partially G-equivariant with respect to a subset
S ⊆ X and an error threshold ε > 0 if the following holds,

sup
g∈G



Ψ(ρX (g)(x))− ρY(g)
�
Ψ(x)

�

 = 0, x ∈ S, (2)

sup
g∈G



Ψ(ρX (g)(x′))− ρY(g)
�
Ψ(x′)

�

 ≤ ε, x′ ∈ X \ S,

that is, it is equivariant on a given subset S and approxi-
mately equivariant outside S.

The set S is determined with respect to the given dataset
and group, typically defined as a subset of X that excludes
certain inputs known to possess specific symmetries. For
example, in the MNIST dataset with respect to the SO(2)
group, subset S includes digit images other than 6 and 9. No-
tice that for x ∈ S, the function Ψ must exhibit full equiv-
ariance, while for x /∈ S, it must exhibit ε-approximate
equivariance. This definition ensures that equivariance is
enforced on a specific subset S of the domain, while allow-
ing for ε-approximate equivariance with respect to inputs
outside S.
Definition 2.2 ((C, ε,G)-Partial Equivariance on Feature
Map). Let G be a group acting on F and Φ : F → F be
a map between functions f : G → Rd representing input
feature maps on group G. The function Φ is partially G-
equivariant with respect to a subset C ⊆ F and an error
threshold ε > 0 if for all u ∈ G, it satisfies that:

sup
g∈G

∥Φ(Lgf)(u)− (LgΦ(f))(u)∥ = 0, f ∈ C, (3)

sup
g∈G

∥Φ(Lgf ′)(u)− (LgΦ(f ′))(u)∥ ≤ ε, f ′ ∈ F \ C
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where Lg is the group representations of the group element
g.

2.2. G-CNN and Partial G-CNN

The convolutional layers of CNNs for an image can be de-
scribed in terms of a function f : R2 → R3 that maps the
position of a pixel to its RGB vector and represents the input
image, and a kernel k : R2 → R3×d, where d is the output
feature dimension. They output (k ∗ f) : R2 → Rd defined
by (k ∗ f)(y) =

R
R2 k(x − y)f(x)dx. The convolutional

neural network exhibits translation equivariance due to the
property Lg(k ∗ f) = k ∗ Lgf , where Lg denotes a transla-
tion (shift) operation of image pixels: Lgf(x) = f(x − t).
Likewise, the convolutional layers of G-CNN utilize the
equivariance property of the convolution operation on an
extended space defined on a certain group G, which may
include a translation group.

Lifting convolution. We want to do the group convolution
on a group G, but the input like an image is typically a map
defined on a space E ⊆ Rm and so it needs to be lifted to
a map from the group G. The lifting convolution performs
this lifting. If there is an embedding of E to G so that E
can be regarded as a subgroup of G, we have, for an input
feature map f : E → R3 and a kernel map k : G → R3×d,
the following lifting convolution k ∗lift f : G → Rd: for all
u ∈ G,

(k ∗lift f)(u) =

Z
v∈E

k(v−1u)f(v)dµE(v) (4)

where elements in E are viewed as group elements in G,
and µE is the restriction of the left Haar measure of G to
the subgroup E. Under an appropriate condition, the lifting
convolution defined on group G is equivariant to the group
G, i.e. for all g ∈ G,

(k ∗lift Lgf)(u) = Lg(k ∗lift f)(u), (5)

where Lgf(u) = f(g−1u).

Group convolution. The group convolution generalizes
the regular convolution for equivariances with respect to
general groups. Once the inputs are feature maps from G,
the group equivariant convolution for an input feature map
f : G → Rd and a kernel k : G → Rd×n, where n is the
output feature dimension, is defined as follows:

(k ∗ f)(u) =
Z
v∈G

k(v−1u)f(v)dµG(v), (6)

where µG is the left Haar measure of the group G. Simi-
larly to the regular convolution, the group convolution is
G-equivariant, that is, k ∗ Lgf = Lg(k ∗ f).

Partial group convolution. Inspired by Augerino (Ben-
ton et al., 2020), Partial G-CNN (Romero & Lohit, 2022)
introduced a partially equivariant group convolution whose
output feature space is determined by a distribution q(u),
where u ∈ G. It modified the group convolution as follows:

(k ∗ f)(u) =
Z
v∈G

q(u)k(v−1u)f(v)dµG(v). (7)

For instance, when G is the 2-dimensional rotation group
SO(2) with radian values in [−π, π], the distribution q(u)
can be defined as the push forward of the exponential map
exp : g → G of the distribution Unif[R(−θ), R(θ)] on the
Lie algebra g, where θ is a learnable parameter on radian
space and R : R → so(2), and represents the maximum
possible rotations in R2. That is,

u = exp(t), t ∼ Unif[R(−θ), R(θ)]. (8)

If the full equivariance (i.e. θ = π) is harmful for train-
ing, the model modifies the θ to be less than π. However,
Partial G-CNN fails to guarantee the partial equivariance
for a non-empty S in Definition 2.1, when θ < π. This
is because, when θ becomes less than π, Partial G-CNN
loses equivariance to G for all x ∈ X . This departure from
equivariance violates the condition specified for a subset S
if S ̸= ∅. The model either exhibits full equivariance when
θ = π or broken equivariance when θ < π. For conve-
nience, we omit the exponential map and mapping R when
we describe the distribution of group elements, and write
q(u; θ) = Unif[−θ, θ] or q(u) = Unif[−θ, θ].

Color equivariance Hm. We aim to achieve equivariance
not only with respect to the standard group SE(2), but also
concerning color shifts. In (Lengyel et al., 2023), color
equivariance is defined as being equivariant to changes in
hue. It is explained that the Hue-Saturation-Value (HSV)
color space represents hue using an angular scalar value, and
shifting hue involves a straightforward additive adjustment
followed by a modulo operation. When translating the HSV
representation into the three-dimensional RGB space, a hue
shift corresponds to a rotation along the (1, 1, 1) diagonal
vector. Color equivariance is established in terms of a group
by defining Hm, which consists of multiples of 360/m◦ ro-
tations around the (1, 1, 1) vector in R3. Hm is a subgroup
of SO(3), the group of all rotations about the origin in R3.
The group operation is matrix multiplication, acting on the
continuous space of RGB pixel values in R3. Consequently,
color-equivariant convolutions can be constructed using dis-
crete SO(3) convolutions when the RGB pixels of an image
are treated as R3 vectors forming three-dimensional point
clouds.

3



Variational Partial Group Convolutions for Input-Aware Partial Equivariance

3. Variational Partial G-CNN
3.1. Input-Aware Partial Convolution

In order to achieve partial equivariance defined in Defini-
tion 2.1, we need to make the distribution q(u) input-aware,
and design q(u|x) for each input x. One approach is to
put q(u|x) for every layer, but doing so would be memory-
inefficient, especially for the continuous group convolutions.
This approach requires retaining the group elements sam-
pled from q(u|x) for all convolution layers during feed-
forwarding.

Therefore, for partial equivariance, our new convolution at
layer l+1 uses q(u|f (l)) where f (l) is the output of the pre-
vious layer l. Since as a feature, f (l) contains information
about the input data, this scheme has a potential to identify
data-specific equivariance, while being memory-efficient.
Concretely, we modify the convolutions in Eqs. 4 and 6 as
follows:

(k ∗lift f)(u) =

Z
v∈E

q(u|f)k(v−1u)f(v)dµE(v),

(k ∗ f)(u) =
Z
v∈G

q(u|f)k(v−1u)f(v)dµG(v).

(9)

The distribution q(u|f) here must be partially equivariant in
order to achieve partial equivariance in these convolutions.
For example, if the input f is the image of digit 7 or 8,
which require full equivariance to SO(2), q(u|f) can be just
the uniform distribution for all rotations in R2: q(u|f) =
Unif[−π, π]. Note that in this case, q(u|f) is equivariant
to SO(2) in the following sense: q(u|f) = q(gu|Lgf) for
all g ∈ SO(2). On the other hand, for the images of digit
6 or 9, which require only partial equivariance to SO(2),
q(u|f) can be a uniform distribution with a narrower range,
such as Unif[−π/2, π/2], or just a dirac-delta distribution
δ(u). Note that in this case, q(u|f) may fail to satisfy the
equivariance condition, i.e., q(u|f) ̸= q(gu|Lgf) for some
g ∈ G. The next proposition gives one sufficient condition
for ensuring partial equivariance of our convolutions:

Proposition 3.1. Assume that the conditional distribution
q(u|f) is partially equivariant with respect to a group G
and an equivariant subset C ⊆ F in the following sense:

sup
g∈G

∥q(u|f)− q(gu|Lgf)∥ = 0, f ∈ C,

sup
g∈G

∥q(u|f ′)− q(gu|Lgf ′)∥ ≤ ε, f ′ ∈ F \ C, (10)

where Lgf(u) = f(g−1u), and kernel k and input f of the
group convolutions defined in Eq. 9 are bounded. Then, the
group convolutions are also partially equivariant to G and
C.

The proof is presented in Appendix A.1. For continuous
groups, the integrals in the convolutions are intractable, so

Figure 2. Architecture of Variational Partial Group Convolutions.
The colored boxes are the features at each layer and the white
boxes are zero features removed out by the distribution q(ujf),
where u = rϕ(f, ϵ).

we typically employ Monte Carlo approximation to esti-
mate the convolution operation by uniformly sampling from
the Haar measure dµG. Thus, the approximate partially
equivariant group convolution is determined as follows:

(k ∗ f)(uj) =
X
vi

q(uj |f)k(v−1
i uj)f(vi). (11)

Now, we describe how the distribution q(u|f) can be
trained and implemented using variational inference with
the reparametrization trick.

3.2. Variational Inference of q(u|f)

If we train q(u|f) with only the classification loss, since it
encompasses all features f , it may overfit by tending to be-
come another classifier itself, leading to a trivial distribution.
To prevent this situation, we adopt variational framework to
train the distribution q(u|f). Our goal is to maximize the
log-likelihood log p(y|x) for x, y from a dataset D and it
can be described as follows:

log p(y|x) (12)

=

Z
G

log p(y|f (0), u(1), . . . , u(L))ΠLl=1p(u
(l))dµG(u

(l)),

where x = f (0), L is the number of layers of the model,
and u(l) is the output group elements at layer l.

To estimate the approximate posterior q(u(l)|f (l)) at layer
l, we maximize the evidence lower bound (ELBO) of the
log-likelihood in Eq. 12:

LVP =

E{u(l)}L
l=1

�
log

p(y|f (0), {u(l)}Ll=1)Π
L
l=1p(u

(l))

ΠLl=1q(u
(l)|f (l))

�
, (13)

where the expectation is over {u(l)}Ll=1 ∼ ΠLl=1q(u
(l)|f (l)).

Then, ED[log p(y|x)] ≥ LVP and by maximizing LVP,
we can maximize the log-likelihood indirectly. The ap-
proximate posterior q(u(l)|f (l)) is the partially equivariant
distribution shown in Eq. 9.
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Figure 3. As the LKLD increases, the distribution p(ujf) expands,
but upon reaching a certain point where LCLS is affected, the
distribution becomes constrained.

In fact, ELBO can be viewed as two components consisting
of maximizing likelihood for classification and minimizing
Kullback-Leibler (KL) divergence between the approximate
posterior q(u(l)|f (l)) and prior p(u(l)) for regularization.

LVP = LCLS −
LX
l=1

L
(l)
KLD,

LCLS = Eu(1);:::;u(L)

�
log p(y|f (0), u(1), . . . , u(L))

�
L

(l)
KLD = DKL

�
q(u(l)|f (l))



p(u(l))
�
. (14)

The prior distribution is set to be a uniform distribution in
which the probabilities of every group elements are the same,
which corresponds to the full equivariance. Therefore, the
model regularize q(u|f) to preserve the full equivariance
but if the full equivariance is harmful for training, it adjust
the distribution q(u|f) far from the uniform distribution.
This principle is illustrated in Fig. 3. In practice, a hard
regularization of the KL divergence is possible to disturb
training of the target model. Therefore, we control strength
of LKLD by adopting a coefficient λ ∈ [0, 1],

LVP = LCLS − λ

LX
l=1

L
(l)
KLD. (15)

λ is a hyperparameter that user can assign.

To efficiently train the distribution q(u|f), we need to esti-
mate the gradient of the loss with low variance. Thanks to
reparametrization trick (Kingma & Welling, 2014), if we
design the distribution possible to allow the backpropaga-
tion, we get estimates of the gradient with low variance. The
gradient of ELBO can be estimated as follows:

∇�LCLS = E�(1);:::;�(L)

�
∇� log p�(y|x, z(1), . . . ,z(L))

�
,

∇�L
(l)
KLD = ∇�DKL

�
q�(z

(l)|f (l))


p(z(l))

�
= E�(l)

�
∇� log

p(z(l))

q�(z(l)|f (l))

�
, (16)

where z(l) = r
(l)
� (f (l), ϵ(l)) and θ, ϕ are the parameters

of the classifier p� and the group element encoder r�, re-
spectively, and θ includes ϕ because the classifier shares

parameter with the encoder. The architecture of the input-
aware partial group convolution is summarized in Fig. 2.

The partially equivariant distribution q(u(l)|f (l)) is sampled
by uniformly drawing noise ϵ and feed-forward through
the group element encoder r�. The reparametrizable en-
coder is designed differently across the continuous group
and the discrete group. Although our method is able to apply
multi-dimensional continuous and dicrete groups when ap-
propriate distribution is defined, we narrow down the scope
to the continuous two-dimensional rotation group SO(2)
and the discrete color-shift group Hm, which are widely
tackled in the examples of the partial equivariance.

Rotation SO(2) (continuous). Similar to Partial G-
CNN (Romero & Lohit, 2022), we can define q(u|f) a
uniform distribution Unif[−θ, θ] but θ is calculated from
encoding of the input feature, θ = e�(f), θ ∈ [0, 1], then
r�(f, ϵ) is described as

r�(f, ϵ) = ϵπ · e�(f), ϵ ∼ Unif[−1, 1]. (17)

If θ = 1, the probabilities of all group elements are the
same, while if θ = 0, the distribution becomes a dirac-delta
distribution whose value is non-zero only at zero-rotation.
This distribution is reparametrizable so we can estimate the
gradient as in Eq. 16 with low variance.

Color-shift Hm (discrete). The color-shift group Hm has
m number of group elements and each represents 360/m◦

rotations around the (1, 1, 1) vector in the three-dimensionl
RGB vector space. To sample group elements in such a
discrete group, Partial G-CNN utilizes Gumbel-Softmax
trick (Maddison et al., 2017) with Straight-Through esti-
mation but it suffers from unstable training (Romero &
Lohit, 2022). We observe that the distribution p(u) with
learnable parameters irregularly change their distribution
during training and this may be due to the multi-modality
of Gumbel-Softmax. Therefore, we propose another proba-
bility distribution that samples the discrete group without
Gumbel-Softmax and mimick the distribution described in
the continuous group.

For sampling, we first encode the input feature to θ =
e�(f), θ ∈ [0,∞) and sample {ϵi}mi=1 from a discrete uni-
form distribution Unif{1, 2, . . . ,m}, corresponding to the
uniform distribution in the continuous group. Then, we
compute importance weights for each ϵi as

wi =
exp(ϵi/θ)Pm
i=1 exp(ϵi/θ)

. (18)

Here, θ determines smoothness of the softmax function
across each ith component; if θ is large enough, wi con-
verges to almost uniform. Now using Straight-Through
estimator, we select which group element in {ui}mi=1 should
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be non-zero.

q(ui jf ) =

(
1; if wi > 1

m � � ,
0; otherwise,

(19)

where� 2 [0; 1=m] is a hyperparameter that determines
how easy to be selected as non-zero. As� increases, the
difference in magnitude betweenwi decreases, and more
elements surpass the threshold. Conversely, as� decreases,
the difference in magnitude betweenwi increases, and fewer
elements surpass the threshold. This principle is analogous
to the distribution of continuous groups. For example, if�
is zero,wi should be greater than1=m to be non-zero so it
always select only one group elements, whereas if� is 1=m,
it always select every elements in the group. The model
trains value of� so that it decides how many group elements
are appropriate for given input. For instance,m = 3 , � =
7=12, f � i gm

i =1 = f 3; 2; 1g, and then the threshold1=m �
� = 0 :25. For � = 1 , f wi g = f 0:67; 0:24; 0:09g and0:67
is the only value larger than0:25, thereby onlyu1 is selected.
For � = 3 , f wi g = f 0:45; 0:32; 0:23g and0:45; 0:32 are
above the threshold, thusu1 andu2 are selected. Since at
least one of the softmax result in Eq. 18 form candidates
should be greater than1=m, Eq. 19 always selects at least
one group elements.

3.3. Implementation

Utilizing the input-aware partial group convolution for ev-
ery layers would be the best strategy to gain performance.
However, there are limitations to performance improvement
compared to the increase in parameters. Hence, throughout
the experiments we set a portion of layers to be the input-
aware partial convolution in a network. In fact, once at
least one of the convolutional layers exhibits input-aware
partial equivariance, the entire network becomes partially
equivariant.

Proposition 3.2. If at least one of the convolutional layers
in a G-CNN is partially equivariant to a groupG and an
equivariant subsetC � F , and its activation functions are
equivariant with respect toG andL-Lipschitz continuous,
and its kernel functions are bounded, then the entire G-CNN
is also partially equivariant toG andC.

Its proof is described in Appendix A.2. For example, in the
CIFAR10 dataset, we apply the input-aware partial group
convolution in the lifting convolution and the last group
convolution only. In the Flower102 dataset, we apply it in
the last two group convolution only. In addition, we use
light-weighted encodere� , which calculate� as in Eqs. 17
and 18, consisting of two global average pooling layers,
two one-dimensional convolution, and one linear layer. The
detailed architecture is described in Appendix C.

4. Related Work

Group equivariant networks. G-CNN (Cohen & Welling,
2016) proposed a convolutional neural network architecture
ensuring equivariance to a group of input transformations,
including translation, rotation, and re�ection, thereby en-
hancing the model's ability to learn and generalize from
data with inherent symmetries in a given dataset. Steerable
CNN (Cohen & Welling, 2017) introduced a framework
for constructing rotation-equivariant convolutional neural
networks, enabling ef�cient and �exible modeling of rota-
tional symmetries in image data by leveraging the theory of
group representations.E(2)-CNN (Weiler & Cesa, 2019)
demonstrated constraints based on group representations,
simplifying them to irreducible representations and provid-
ing a general solution forE(2), thereby covering continu-
ous group equivariance for images. CEConv (Lengyel et al.,
2023) extended equivariance from geometric to photometric
transformations by incorporating parameter sharing over
hue shifts, interpreted as a rotation of RGB vectors, offering
enhanced robustness to color changes in images.

Approximate equivariance. RPP (Finzi et al., 2021) in-
volved placing one equivariant neural network (NN) and one
non-equivariant NN in parallel, with a prior imposed on the
parameters of each NN. In contrast, PER (Kim et al., 2023)
replaced the two components with a single non-equivariant
NN and introduced a regularizer to drive the non-equivariant
NN towards equivariance. Relaxed G-CNN (Wang et al.,
2022) introduced a small linear kernel to G-CNN, which
slightly breaks the group equivariance of the model. In
Partial G-CNN (Romero & Lohit, 2022), a distribution of
group elements in the output was adopted, allowing group
convolutions to consider only a subset of group elements in
the hidden space.

Input-aware automatic data augmentation. MetaAug-
ment (Zhou et al., 2021) presents an ef�cient approach to
learning a sample-aware data augmentation policy for im-
age recognition by formulating it as a sample reweighting
problem, where an augmentation policy network adjusts
the loss of augmented images based on individual sample
variations. AdaAug (Cheung & Yeung, 2022) learns adap-
tive data augmentation policies in a class-dependent and
potentially instance-dependent manner, addressing the limi-
tations of methods like AutoAugment (Cubuk et al., 2019)
and Population-based Augmentation (Ho et al., 2019) by ef-
�ciently adapting augmentation policies to speci�c datasets.
InstaAug (Miao et al., 2023) learns input-speci�c augmen-
tations automatically by introducing a learnable invariance
module that maps inputs to tailored transformation param-
eters, facilitating the capture of local invariances. Singhal
et al. (2023) designed a method to capture multi-modal par-
tial invariance by parameterizing the distribution of instance-
speci�c augmentation using normalizing �ows.
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Figure 4.Partial equivariance trained on MNIST67-180. The x-
axis represents the rotation angle of the input and the y-axis rep-
resents the model's con�dence for the corresponding class. The
model exhibits equivariance to rotations on semi-circle for image
6, whereas it shows full equivariance for image 7.

5. Experiments

In commonly addressed tasks, approximate equivariance of-
ten manifests in forms such as rotation and color shifts. To
evaluate VP G-CNN's partial equivariance in rotations, we
conduct experiments on two datasets: MNIST67-180 and
CIFAR10 (Krizhevsky & Hinton, 2009). For color shifts,
we assess performance on long-tailed colorMNIST, which
exhibits full equivariance for color shifts but has imbalanced
classes, and on Oxford Flower102 (Nilsback & Zisserman,
2008), where partial equivariance is data-speci�c, as de-
picted in Fig. 1b. We compare our model with four baseline
methods: ResNet (T(2)-CNN), G-CNN, Partial G-CNN, and
InstaAug. InstaAug (Miao et al., 2023) is an AutoAugment
technique that learns the appropriate distribution of augmen-
tations for each data instance. Detailed hyperparameters
used to train VP G-CNN and the baselines are listed in Ap-
pendix B. The source code demonstrating the experiements
in colorMNIST and Flowers102 is available athttps:
//github.com/yegonkim/partial_equiv .

Model architecture for SE(2). The groupSE(2) con-
sists of translationsT(2) and rotationsSO(2). Similar to
Partial G-CNN forSE(2), we employ the extended version
of G-CNN proposed by Finzi et al. (2020), Continuous Ker-
nel Convolution (CKConv) (Romero et al., 2022). However,
we use the input-aware partial group convolution as de�ned
in Eq. 9, and we parametrized the convolutional kernelsk
as SIRENs (Sitzmann et al., 2020). The overall structure
is based on ResNet (He et al., 2016) and it consists of one
lifting convolution, two residual blocks, and one last linear
layer. According to Proposition 3.2, we apply the input-
aware convolution on the lifting convolution and the last
group convolution and the other convolutions are all partial
group convolution of Partial G-CNN. We de�neq(ujf ) the
straight-through distribution as proposed in Eq. 17.

MNIST67-180 (toy dataset). Inspired by MNIST6-180,
as introduced in (Romero & Lohit, 2022), we created a new
classi�cation dataset named MNIST67-180. This dataset is
derived from the MNIST handwritten dataset (LeCun et al.,

Table 1.Test accuracy on CIFAR10 withSE(2)-CNNs.P andVP
denote that their architecture includes Partial and VP convolutional
layers, respectively.X in the InstaAug column means the training
is conducted with the augmentation of InstaAug.

Group #Elems. Partial InstaAug CIFAR10

T(2) 1 - - 82:0� 0:2

X 81:9� 0:4

SE(2)

4
- - 83:9� 0:3

X 81:2� 1:8

P - 85:1� 0 :6

VP - 85:1� 0 :4

8
- - 86:8� 0:6

X 82:4� 0:5

P - 87:3� 0 :4

VP - 87:6� 0 :2

2010) and consists of images labeled as either 6 or 7, along
with their corresponding180� -rotated versions labeled as 9
and 7, respectively. Consequently, images of 6 should be
classi�ed as 6 within a rotation range of[� 90� ; 90� ], and as
9 within other angles of rotation. Meanwhile, images of 7
should always be classi�ed as 7, regardless of the angle of
rotation. We demonstrate the learned partial equivariance
for some of the data.

We plot the probabilities of assigning the label 6 for image
6 and the label 7 for image 7 with respect to the test sam-
ples of MNIST67-180 rotated at whole angles in[0� ; 360� ].
As shown in Fig. 4, the model learns to predict image
6 as 6 within the rotation range of[� 90� ; 90� ], while it
learns to predict image 7 as 7 within the rotation range of
[� 180� ; 180� ]. This proves that our VP G-CNN learns an
appropriate level of equivariance that varies for each type of
data.

CIFAR10. We verify that VP G-CNN for rotation also
works well in the widely-used image classi�cation bench-
mark, CIFAR10. CIFAR10 is a collection of natural object
images, such as airplanes, dogs, and so on, and it does not
exhibit partial equivariance because the class should not
change even if we rotate the image. However, the training
and test datasets do not contain rotated images; they only
pose upright. This leads partial group convolutions to be
partially equivariant. As shown in Table 1, Partial G-CNN
and VP G-CNN show competitive performance compared to
fully equivariant G-CNN (3rd and 7th rows). This explains
that partial equivariance is helpful in CIFAR10. Since the
equivariance levels across the data do not differ enough, Par-
tial G-CNN (5th and 9th rows) and VP G-CNN (6th and 10th
rows) show comparable performance. On the other hand, In-
staAug (4th and 8th rows) presents poor performance even
when applied in the regular CNN. This is caused by the
unstable training of InstaAug.
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