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Abstract001

Summarization models have achieved impres-002
sive benchmark performance in recent years,003
sharing common strengths and weaknesses.004
In this work, we focus on source-based fea-005
tures that affect most summarization models.006
We show that documents have specific proper-007
ties that influence summarization performance.008
Therefore, we ask the question: can we pre-009
dict a document’s summarization performance010
without actually generating a summary? We011
introduce PreSumm, a system designed to pre-012
dict how well a general summarization system013
would perform on summarizing a certain docu-014
ment. Surprisingly, PreSumm demonstrates a015
high correlation with human evaluations with016
respect to automatic metrics, supporting the hy-017
pothesis that certain global document features018
consistently affect model performance across019
systems. We further demonstrate the model’s020
utility to enable efficient hybrid systems and to021
filter outliers and noise from datasets. Over-022
all, our findings underscore the importance023
of source-text-driven factors in summarization024
performance and offer insights into the limita-025
tions of current systems that could serve as the026
basis for future improvements.027

1 Introduction028

Recent years have witnessed a remarkable prolifer-029

ation of summarization models, with many achiev-030

ing impressive performance on widely used bench-031

marks. These models, often rooted in large-scale032

language modeling, represent a significant leap for-033

ward in natural language processing capabilities.034

Their high benchmark scores highlight advance-035

ments in capturing linguistic nuances, handling036

diverse textual structures, and generating coherent037

outputs.038

Despite these advancements, many summariza-039

tion models share inherent design principles and040

operational mechanisms, which contribute to both041

their successes and limitations. While they excel042
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Figure 1: An illustration comparing the traditional eval-
uation process (top) with our approach (bottom).

in producing grammatically correct and syntacti- 043

cally fluent summaries, they often struggle with 044

challenges such as logical reasoning and factual ac- 045

curacy, leading to issues like hallucinations. These 046

recurring challenges indicate that such models may 047

share intrinsic common strengths and weaknesses, 048

or they are influenced by comparable factors within 049

datasets. Identifying and analyzing these shared dy- 050

namics is essential to uncovering systemic patterns 051

that can inform future innovations in summariza- 052

tion. 053

In this work, we focus on identifying source- 054

text-driven factors that influence the performance 055

of summarization models. To that end, we in- 056

troduce PreSumm, a system designed to predict 057

the average performance of models summarizing a 058

document without actually generating a summary, 059

based on the document only. A success of Pre- 060

Summ points out that it can distinguish between 061

documents that most models summarize success- 062

fully, and those where performance falters. Analyz- 063

ing such a model can reveal critical source-based 064

features that challenge current systems, providing 065

deeper insights into the limitations of existing ap- 066

proaches and paving the way for targeted improve- 067
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ments in summarization technologies.068

Additionally, PreSumm offers several practical069

benefits that could improve the efficiency and ef-070

fectiveness of summarization workflows. One key071

advantage is its potential to enable hybrid systems072

where humans can focus their attention on difficult073

summary cases. For example, organizations often074

evaluate their output by relying on automatic met-075

rics or manual human evaluation, which can reveal076

poor-quality summaries that require further manual077

summarization—an expensive and time-consuming078

process. By leveraging PreSumm to identify low-079

performing documents in advance, organizations080

can prioritize these cases for manual summariza-081

tion or decide to opt-out before engaging in costly082

summarization workflows, thereby saving valuable083

resources and optimizing operational efficiency.084

Furthermore, PreSumm may identify outliers085

and noisy documents in the dataset that eventu-086

ally could enhance outcomes. An appealing exam-087

ple is multi-document summarization task, where088

one or more problematic documents might degrade089

the overall quality of the output. By filtering out090

such documents, PreSumm can help ensure more091

consistent, high-quality results across summariza-092

tion tasks. These practical applications highlight093

PreSumm’s potential as a valuable tool for improv-094

ing both the cost-effectiveness and performance095

of summarization systems. An illustration of our096

approach is presented in Figure 1.097

Surprisingly, PreSumm model showed a rela-098

tively high correlation with human evaluations with099

respect to automatic metrics, even though no sum-100

maries were generated in the process. This finding101

supports our hypothesis that certain global features102

of documents are consistently relevant across dif-103

ferent systems.104

Our results show that PreSumm outperforms105

comparable baselines in filtering out documents106

that require manual summarization (Sec. 6.1), or107

that hurt a multi document set (Sec. 6.2). Interest-108

ingly, we found that PreSumm assigns low scores to109

longer and more complex documents with a range110

of themes and perspectives (Sec. 7). By offer-111

ing deeper insights into the limitations of current112

summarization systems, PreSumm lays a strong113

foundation for targeted advancements and future114

improvements in the field.115

2 Related Work 116

Our work draws significant inspiration from Pre- 117

QuEL (Don-Yehiya et al., 2022), which introduces 118

a similar approach centered on machine translation. 119

PreQuEL aims to predict translation system per- 120

formance based solely on the source text. While 121

our motivation and general methodology align with 122

theirs, to the best of our knowledge, we are the 123

first to apply this approach to text summariza- 124

tion. By leveraging PreSumm, we have enhanced 125

summarization-specific applications and explored 126

features more relevant to summarization, making 127

our contributions distinct and novel. 128

While recent approaches (e.g., (Vig et al., 2022; 129

Zhang et al., 2024) focused on embedding represen- 130

tation and did not leverage explicit source-based 131

features, in the past, many summarization systems 132

relied on explicit document-based features. These 133

systems focused primarily on selecting key source 134

sentences for inclusion in the summary—a task 135

often framed as a classification problem. These 136

features ranged from the presence of cue phrases 137

(Gupta et al., 2011; Kulkarni and Prasad, 2010), 138

the inclusion of numerical data (Prasad et al., 2012; 139

Abuobieda et al., 2012), sentence length (Fattah 140

and Ren, 2009; Abuobieda et al., 2012), and sen- 141

tence position (Barrera and Verma, 2012; Fattah 142

and Ren, 2009; Abuobieda et al., 2012; Li et al., 143

2016), to discourse structure (Louis et al., 2010), 144

among others. While these studies employed such 145

features to generate summaries, one may suggest 146

a potential link between these features and the per- 147

formance of summarization models. However, this 148

property was not explicitly examined. In contrast, 149

our work explores system-independent document- 150

level features that impact the performance of mod- 151

ern summarization models in both abstractive and 152

extractive modes. 153

3 Task Definition 154

Our task is to predict the average performance of 155

summarization systems on a given document, us- 156

ing only the document as input. Averaging per- 157

formance across multiple systems can reveal key 158

properties of the document itself, while minimiz- 159

ing the influence of system-specific variability or 160

noise. Formally, let D represent a corpus of N text 161

passages, where each document is denoted as di. 162

PreSumm aims to estimate the average quality of 163

summaries generated by multiple systems for each 164

document. 165
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Specifically, consider M systems, denoted as166

s1, . . . , sM , where system si produces a summary167

for document dj that is scored as Si,j . The goal168

of PreSumm is to first be able to generate a func-169

tion f : D → R that predicts the average score170

assigned to the summaries of document dj across171

all systems:172

d∗j =
1

M

M∑
i

Si,j (1)173

This score, d∗j , reflects the average quality of174

the summaries generated by different systems for175

document dj . We could leverage this score to rank176

the documents by their potential performance.177

To evaluate the model’s performance on ranking178

documents, we measure the correlation between179

the predicted scores and the gold-standard scores,180

following standard practices for assessing summa-181

rization metrics (Fabbri et al., 2021).182

4 Dataset and Preliminary Analysis183

4.1 The RoSE Dataset184

The RoSE dataset (Liu et al., 2023) introduces a185

new method for annotating summarization datasets,186

which improves annotator agreement via Atomic187

Content Units (ACUs). The protocol tasks an anno-188

tator to convert a reference summary into atomic189

factual statements, then to compare the generated190

summary to these ACUs. The ACU score is defined191

as f(s,A) = |As|
|A| where |A| is the total number192

of ACUs for a given reference summary and |As|193

is the number of matched ACUs of the generated194

summary with respect to the reference.195

The authors manually evaluated over 22,000196

summary-level annotations across 2,500 docu-197

ments summarized by 28 top-performing systems198

on three datasets (CNN/DailyMail Nallapati et al.199

(2016), XSum Narayan et al. (2018), SamSum200

Gliwa et al. (2019)). This extensive manual eval-201

uation of diverse systems and datasets aligns well202

with our task, and we adopt the ACU score as the203

primary metric to predict. Data statistics can be204

found in Table 1.205

206

4.2 Preliminary Analysis - Do Systems Fail on207

The Same Documents?208

In this section, we investigate whether different209

systems tend to consistently fail or succeed across210

the same documents. Since each system generates211

Dataset Split #Doc #Sys. #ACU

CNNDM Test 500 12 5.6k
CNNDM Valid 1,000 8 11.6k

XSum Test 500 8 2.3k
SamSum Test 500 8 2.3k

Table 1: Distribution of RoSE Dataset. Taken from Liu
et al. (2023).

summaries for the same set of documents, their 212

performance scores can be used to rank the doc- 213

uments. Our hypothesis is that different systems 214

rank documents similarly, meaning the systems 215

on certain documents consistently perform well or 216

poorly across various systems. 217

To test this hypothesis, we measure the cor- 218

relation between the ACU scores of documents 219

on different systems. Specifically, we calculate 220

the correlation between system scores l and k as 221

corr(Sl,1..N , Sk,1..N ). We then compute the aver- 222

age correlation across all systems using the for- 223

mula: 224

2

M2 −M

M∑
l=1

l−1∑
k=1

corr(Sl,1..N , Sk,1..N ) (2) 225

We obtained a Kendall Tau correlation of 0.446 226

and a Spearman correlation of 0.565, indicating a 227

moderate agreement in document rankings across 228

systems. This suggests that many documents retain 229

their relative ranking, regardless of the system used 230

for summarization. These findings support our as- 231

sumption that certain document-specific features 232

significantly influence summarization performance. 233

As a result, it might be possible to predict a docu- 234

ment’s average summarization performance based 235

solely on its intrinsic characteristics. 236

5 Experiments 237

5.1 Models 238

We trained several models and examined their abil- 239

ity to rank the documents according to the average 240

score across all systems, d∗j = 1
M

∑M
i Si,j . The 241

RoSE dataset was divided into 80% train (2,000 242

documents) and 20% test (500 documents), where 243

we trained all models with a fixed number of 5 244

epochs. More implementation details are elabo- 245

rated in Appendix A.1. 246
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Regression. In this model, we trained the model247

to predict the actual d∗j scores. The input is a doc-248

ument j and the target is d∗j . We leveraged the249

Longformer model (Beltagy et al., 2020) to allow a250

large input length of 4096 tokens required in many251

documents from our set. We added a regression252

head on top of the output of the 784 dimensional253

[CLS] token of the last layer of the Longformer.254

The regression head contains a feed forward com-255

ponent with an output of one dimension, which256

should predict the d∗j score. Additionally, we used257

a standard MSE loss function for training.258

Classification. Since some applications may only259

care about document rankings, we train an addi-260

tional model to rank the documents rather than261

predict their exact d∗j scores, we focused on rank-262

ing them directly based on pairwise comparisons.263

This approach aligns with our evaluation metric,264

which is based on correlation. Instead of predicting265

individual scores, we aim to determine which doc-266

ument in a pair should be ranked higher, and then267

aggregate these local decisions to form a global268

ranking.269

In this model, the input consists of a pair of270

documents, and the task is to classify whether the271

first document should be ranked higher than the272

second. We represent each document using em-273

beddings from a pre-trained Longformer model,274

concatenate the two embeddings, and feed the re-275

sult into a RankNet model (Burges et al., 2005).276

The target label for each pair of documents (i, j)277

is δij = 1d∗i>d∗j
, where 1 is an indicator function278

that equals 1 if the condition d∗i > d∗j is fulfilled,279

or 0 otherwise. The model is trained using a binary280

cross-entropy loss function.281

We generate all possible n2 pairs from the train-282

ing set to fine-tune the model and use all m2 pairs283

from the test set during evaluation. To derive the284

final global ranking, we follow the method outlined285

by Keswani and Jhamtani (2021), where the final286

score for document i is defined as S(i) =
∑

j δ̂ij,287

with δ̂ij representing the predicted outcome for the288

document pair (i, j). We then sorted S(i) scores289

for the final ranking.290

Frozen Weights. Given the relatively small291

amount of training data, we explored a model with292

fewer trainable parameters to better handle the lim-293

ited dataset. Specifically, we employed a variant294

of the regression model that demonstrated the best295

performance, freezing all weights except those in296

Model Kendall τ Pearson r Spearman

Document length -0.005 -0.048 -0.010
Count of Numbers -0.016 -0.106 -0.023
# Unique Named Entities -0.054 -0.134 -0.071
Flesch Reading Ease -0.016 0.030 -0.021
Flesch Kincaid Grade -0.0489 -0.0483 -0.0104
Regression (Ours) 0.321 0.463 0.460
Classification (Ours) 0.306 0.389 0.389
Frozen Weights (Ours) 0.279 0.406 0.403

Table 2: Test set correlations of different PreSumm
models

the regression head. 297

We also compared our trained models with some 298

simple baselines as follows. 299

Document Statistics. We explored several basic 300

statistics about the documents, including document 301

length by word, the number of numerical values, 302

and the number of unique named entities identified 303

using the NER module from the NLTK package. 304

All of these features might be associated to the 305

reading complexity of documents, where longer 306

documents with more numeric details and name 307

entities might be more complex to read. 308

Flesch–Kincaid Readability Tests. We applied 309

the Flesch Reading Ease test (Flesch, 1948) to mea- 310

sure how easy the document is to read, with scores 311

ranging from 1 to 100 where higher scores indicate 312

easier readability. Similarly, we used the Flesch- 313

Kincaid Grade Level to estimate the U.S. education 314

grade level required to understand the text, with 315

higher scores corresponding to a more advanced 316

reading level 317

5.2 Main Results 318

All models are evaluated by measuring their corre- 319

lation with the gold-standard ACU labels, which 320

reflects how well they ranked the documents. The 321

correlation scores are summarized in Table 2. Most 322

baselines show near-zero correlation, except for 323

the number of numeric values and named entities, 324

which exhibit a small negative correlation. This 325

suggests that an increased presence of numbers and 326

entities may lead to lower summarization model 327

performance. In contrast, most trained models 328

achieve a moderate correlation, supporting our hy- 329

pothesis that document ranking can, to some extent, 330

be predicted based solely on the document content. 331

The table shows that the Regression PreSumm 332

model outperformed the other models. More- 333

over, this model is also the most efficient one. 334
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Model Test Kendall Tau Pearson r Spearman

PreSumm w.o XSUM 0.294 0.433 0.423
PreSummOOD w.o XSUM 0.296 0.434 0.420

PreSumm XSUM only 0.246 0.362 0.352
PreSummOOD XSUM only 0.116 0.240 0.177

Table 3: Results of in and out of distribution regression
PreSumm models. Where OOD signifies that the Pre-
Summ model was not trained on the XSUM portion of
RoSE.

Unlike other supervised models, Regression pro-335

cesses each document only once. In contrast, the336

classification-based approach evaluates all possible337

pairs of documents, resulting in quadratic complex-338

ity. Additionally, the classification-based method339

requires an extra global aggregation step to consol-340

idate local pairwise predictions. Given its superior341

performance and simplicity, we selected the Re-342

gression model for the next experiments as our343

PreSumm method of choice.344

5.3 Out-of-Distribution Performance345

All PreSumm models (Table 2) were trained and346

evaluated on our train and test sets that contain347

source documents from CNNDM, XSUM, and348

SAMSUM. In this section, we examine how well349

these models perform when applied to documents350

from a different dataset with distinct properties.351

To estimate how the model would perform on352

out-of-distribution data, we trained a similar re-353

gression model without including the XSUM docu-354

ments of RoSE and evaluated its performance on355

out-of-distribution data.1356

We first compare this new model,357

PreSummw.o_XSUM, to the original PreSumm358

model in an "in-distribution" setting to ensure359

comparable performance. For this, we evaluate360

both models on a test set excluding XSUM, which361

mirrors the training data for PreSummw.o_XSUM.362

As shown in Table 3, the two models perform363

similarly, confirming their alignment. Details of364

the different training and test datasets used are365

provided in Table 4.366

Next, we assess PreSummw.o_XSUM on true out-367

of-distribution data, specifically the documents368

from XSUM. As expected, performance decreases.369

However, for most real-world applications and anal-370

yses, we are primarily interested in low-ranked doc-371

uments for filtering or analysis rather than the entire372

1We did not use the original PreSumm model itself, as we
did not exclude any dataset with ACU annotations from its
training due to the limited availability of such annotations.

Dataset Train/Test Datasets Used #Doc Model Trained On

All Train CNN, XSUM, SAM 2,000 PreSumm
All Test CNN, XSUM, SAM 500 N/A
w.o XSUM Train CNN, SAM 1,600 PreSummw.o_XSUM
w.o XSUM Test CNN, SAM 400 N/A
XSUM only Test XSUM 100 N/A

Table 4: Statistics on train and test sets used.

n PreSumm PreSumw.o_XSUM

10 0.406 0.405
15 0.338 0.380
20 0.430 0.364
30 0.332 0.226

Table 5: Ranking accuracy (in scale [-1,1]) of the n low
ranked documents over ‘XSUM only’ test dataset.

ranked set. When measuring the ranking accuracy 373

of only the n lowest-ranked documents, as detailed 374

in Table 5, the performance gap between PreSumm 375

and PreSummw.o_XSUM diminishes and, in some 376

cases, becomes negligible. Additional details are 377

provided in Appendix C. 378

Overall, our results indicate that for low-ranked 379

documents, the performance of PreSummw.o_XSUM 380

on out-of-distribution data is nearly equivalent to 381

that of the original PreSumm model. Furthermore, 382

in Section 6, we present two downstream applica- 383

tions where our model is used to filter low-ranked 384

documents and demonstrate its effectiveness with 385

out-of-distribution data. 386

6 Extrinsic Evaluation through 387

Downstream Tasks 388

In this section, we explore practical applications 389

that benefit from predicting in advance the summa- 390

rization model performance over documents. Addi- 391

tionally, these applications serve as extrinsic eval- 392

uations of our model. Specifically, we examine 393

two use cases: (1) identifying in advance the doc- 394

uments where models perform poorly to enable 395

manual summarization in hybrid systems, and (2) 396

filtering out noisy documents in a multi-document 397

summarization setting. 398

6.1 Selecting Documents for Manual 399

Summarization in Hybrid Systems 400

Here, we focus on a use case within a hybrid sum- 401

marization system, where a fixed percentage of 402

documents can be manually summarized within 403

the available budget. Accordingly, we aimed to 404

assess whether PreSumm can effectively identify, 405
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Based on Selection Type
BART Pegasus

Replace 10% Replace 20% Replace 10% Replace 20%

Source

Random 0.331+* 0.375+* 0.331+* 0.377+*

Num. Entities 0.339+* 0.421* 0.333+* 0.411+

Flesch 0.335+* 0.407+* 0.322* 0.409+

PreSumm 0.358 0.452 0.347 0.427
PreSummw.o_XSUM 0.359 0.440 0.346 0.432

Source + Sys.
Blanc 0.331+* 0.416* 0.326* 0.396+*

SummQa 0.339+* 0.421* 0.334 0.401+

Source + Sys.+ Ref.
Rouge 0.365 0.447 0.353 0.443
Bert 0.365 0.459 0.354 0.446
Meteor 0.357 0.453 0.345 0.435

Table 6: Averaged ACU scores of system summaries (from the ‘XSUM only’ test set) after replacing summaries
generated from the lowest-scoring documents and summaries (based on several metrics) with manual summaries.
Scores significantly worse than PreSumm or PreSummw.o_XSUM are marked with * and +, respectively.

in advance, documents that models are likely to fail406

on, allowing these documents to be prioritized for407

manual summarization. The goal is to maximize408

the overall score of the entire document set.409

For this experiment, we used the generated sum-410

maries of two systems from the RoSE dataset, Pe-411

gasus Zhang et al. (2020) and BART Lewis et al.412

(2020). For evaluation, we used the average of413

the human ACU scores, where instead of manually414

summarizing a selected document, we assigned it415

an ACU score of 1. For the manual summarization416

budget, we selected either 10% or 20% of the test417

set documents. To support the conclusion from418

Section 5.3—that out-of-distribution performance419

should be similar when focusing on low-ranked420

documents—we conducted the experiment on the421

XSUM-only test set. The same experiment was422

conducted on the All test set, yielding equivalent423

results, as shown in Table 9 in the Appendix. For424

statistical significance testing, we used the paired425

bootstrap test (Efron and Tibshirani, 1994) as ex-426

plained in (Berg-Kirkpatrick et al., 2012). The427

detailed algorithm is provided in Algorithm 1 in428

the Appendix.429

In addition to PreSumm, we evaluated several430

baseline methods. Baselines included Random se-431

lection and ranking methods based solely on the432

source document features, such as Flesch Read-433

ing Ease and the number of unique named enti-434

ties. We also tested reference-free metrics such435

as Blanc (Vasilyev et al., 2020) and SummQA436

(Scialom et al., 2019). However, a limitation of437

these reference-free metrics is that they require438

system-generated summaries, unlike PreSumm.439

For comparison, we included reference-based met-440

rics such as ROUGE-2 F1 (Lin, 2004), BERTScore441

F1 (Zhang et al., 2019), and METEOR (Baner- 442

jee and Lavie, 2005), which represent an upper 443

bound since they rely on both system and reference 444

summaries—resources unavailable in real-world 445

scenarios. 446

As shown in Table 6, both PreSumm and 447

PreSummw.o_XSUM significantly outperform all 448

source-only and reference-free baselines in most 449

cases, and approach the upper bound set by 450

reference-based metrics. Overall, these experi- 451

ments demonstrate that the PreSumm model can 452

effectively identify in advance documents that mod- 453

els are likely to fail on, optimizing the summariza- 454

tion process by saving time and resources. 455

6.2 Multi-Document Summarization 456

In a Multi-Document Summarization (MDS) task, 457

a set of documents on the same topic needs to be 458

summarized. However, these sets often include 459

noisy documents that can negatively impact model 460

performance Giorgi et al. (2023). Additionally, 461

summarizing a large number of documents poses 462

challenges due to high input length, which can be 463

costly or constrained by the token limits of certain 464

models. Conventional MDS approaches typically 465

concatenate all documents and truncate the input 466

to meet the model’s token limit or user budget, 467

leading to the exclusion of some documents. This 468

raises the question: can we achieve better results 469

by using PreSumm to identify and exclude noisy 470

documents from the set? 471

To test this, we adopted the MultiNews dataset 472

(Fabbri et al., 2019) as our MDS test set and used 473

the Pegasus summarization model (Zhang et al., 474

2020), to generate summaries. We conducted ex- 475

periments with token limits of 256, 512, and 1024. 476
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Token Lim. Order R-1 R-2 R-L

1024
original 0.458 0.185 0.243
PreSumm 0.461 0.189 0.246

512
original 0.439 0.172 0.235
PreSumm 0.444 0.179 0.240

256
original 0.398 0.147 0.215
PreSumm 0.402 0.153 0.219

Table 7: Multi-Document Summarization Table. Com-
paring rouge scores of summarizations generated from
the original order of the dataset, to PreSumms order.

In each experiment, we tested two variations: one477

where the documents were kept in their original478

order and truncated once the token limit was ex-479

ceeded, and another where the documents were480

reordered based on their PreSumm scores, with the481

lowest-scored documents placed at the end. It is im-482

portant to note that reordering the documents has483

an additional benefit—better document sequenc-484

ing can enhance summarization quality even with-485

out excluding documents, as suggested by Zhao486

et al. (2022). Thus, we aimed to determine whether487

combining PreSumm-based document exclusion488

with PreSumm-based reordering would lead to im-489

proved summarization outcomes.490

As shown in Table 7, the PreSumm-ordered doc-491

uments consistently achieve higher ROUGE scores492

compared to the original document order across all493

input length limits. PreSumm is significantly better494

across all metrics according to the Wilcoxon Rank495

Test (Wilcoxon, 1945), except for 1024-token limit496

with R-1 and R-L. This demonstrates that using497

PreSumm to identify independent documents that498

models are likely to summarize unsuccessfully is499

also effective in enhancing multi-document summa-500

rization settings, as such independent documents501

contribute noise to the entire document set.502

7 Analysis503

In this section, we aim to investigate PreSumm to504

better understand the properties that make a docu-505

ment less likely to be successfully summarized by506

various summarization systems. To that end, we507

examine the influence of document-based features508

over PreSumm (Section 7.1). Then, we conducted a509

manual analysis to reveal more insights and explain510

the automatic results (Section 7.2). Additional anal-511

ysis examines how PreSumm deals with different512

corruptions can be found in Appendix B.1.513

Feature Correlation

Document length -0.0956
Count of Numbers -0.0576
# of Unique Named Entities -0.120
Flesch Reading Ease 0.182
Flesch Kincaid Grade -0.166
Avg Loc of Salient Sent (top 10) -0.266
Avg Loc of Salient Sent (top 5) -0.305

Table 8: Pearson R Correlations of document features
to regression PreSumm predicted scores.

7.1 Document Feature Correlations 514

To gain deeper insights into which document-based 515

features most strongly influence the performance 516

of summarization systems over a certain document, 517

we analyzed the correlations between various doc- 518

ument characteristics and the PreSumm score at 519

the document level. For features, we leveraged the 520

baseline methods from Section 5.1, including the 521

document statistics and the reading ease tests. In 522

addition, we added the salient sentence location fea- 523

ture that uses the reference summary, and therefore 524

it could not be used as method in Section 5.1. 525

Salient Sentence Location. Previous work 526

pointed that the salient information in news docu- 527

ments tend to be at the beginning of the document 528

Lebanoff et al. (2019). As in this work we focus 529

on the news domain, we hypothesis that news doc- 530

ument that their main theme appear in the middle 531

of the document, or when there are several themes 532

in the paper, models might struggle to summarize 533

it successfully. Therefore, we would like to set the 534

location of the salient sentences in the document 535

as a feature. To determine the location of key sen- 536

tences within a document, we adopted a method 537

similar to Nallapati et al. (2017); Chen and Bansal 538

(2018), where each sentence in the document is 539

ranked by its similarity to the reference summary, 540

using ROUGE scores as the metric. We selected 541

the top-5 or top-10 most salient sentences, and their 542

positions were normalized by the total number of 543

sentences in the document. The average of these 544

normalized indices represents the typical location 545

of the most important sentences. 546

The correlation results are shown in Table 8. The 547

most strongly correlated feature is the location of 548

salient information. The negative correlation indi- 549

cates that the earlier the key information appears in 550

the document, the easier it is for the model to sum- 551

marize. This observation aligns with expectations, 552
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as this is a well-known characteristic of the news553

domain, where essential information is typically554

presented at the beginning.555

The Flesch Reading Ease and Flesch-Kincaid556

Grade Level scores show positive and negative cor-557

relations, respectively, indicating that more com-558

plex documents tend to result in poorer summa-559

rization model performance. In the same way, all560

basic document statistics show a relatively weak561

negative correlation, suggesting that greater docu-562

ment complexity—whether in length, the number563

of numerical values, or named entities—negatively564

impacts summarization performance.565

Overall, while the correlation scores and their566

signs are consistent with our expectations, none of567

the features exhibited strong correlations. Conse-568

quently, we conducted a manual analysis to shed569

light on new document-based insights.570

7.2 Manual Analysis571

To gain deeper insights into document performance,572

we conducted a manual analysis. Specifically, one573

of the authors read the 15 best and worst-ranked574

documents according to PreSumm predictions. In575

general, this analysis found a significant difference576

between the top-ranked documents and the bottom-577

ranked ones. More specifically, it revealed three578

distinct types of bottom-ranked documents:579

Content Complexity. The main and most com-580

mon characteristic of low-ranked documents is that581

they often cover complex topics, such as science582

or politics, which include numerous numbers, intri-583

cate details, and long, difficult-to-follow sentences584

and documents. In contrast, the top-ranked docu-585

ments were typically much shorter (some with only586

a single sentence), with simple words and topics.587

Coherence. Some bottom-ranked documents ex-588

hibited weak sentence-to-sentence connections or589

lacked sufficient background information, starting590

abruptly in the middle of a story, counting on spe-591

cific terms and knowledge of a specific unique field.592

Sometimes it happens because of the crawling pro-593

cess of documents, that includes the image caption594

or sub-headers in the middle of the text. Such595

crawling issues were also seen in the top-ranked596

documents, but less frequently.597

Theme Change: Some low-ranked documents598

contain multiple, almost disjointed themes, making599

it difficult to determine which theme should be pri-600

oritized in the summary. This issue was especially601

pronounced in cases where the main theme was in 602

the middle, requiring the model to go beyond its 603

usual focus at the beginning of the document. 604

Overall, the low-ranked documents were notably 605

more difficult to read, often requiring re-reading 606

of certain sentences for comprehension, whereas 607

the top-ranked documents were much more fluent 608

and easier to follow. Examples of documents with 609

these challenging types are provided in Appendix 610

D. 611

As discussed in Section 7.1, we identified some 612

correlations between specific features and the prop- 613

erties described here, such as results from Read- 614

ing Ease tests and the location of salient informa- 615

tion. However, these correlations were weak. Upon 616

closer analysis, we hypothesize that the underlying 617

reason may be the orthogonal nature of these fac- 618

tors in many cases. For instance, some low-ranked 619

documents are short and cover straightforward, day- 620

to-day topics, yet they suffer from coherence issues. 621

Such documents weaken the correlation with Read- 622

ing Ease scores. A comprehensive model would 623

likely need to integrate multiple parameters to cap- 624

ture these nuances effectively. 625

We also examined low-ranked documents based 626

on the gold labels of the averaged ACU scores. In- 627

terestingly, we observed similar patterns. However, 628

many of the low human-scored documents were 629

penalized for misalignment between the reference 630

summary and the document content. Since our 631

model does not rely on the reference summary, it 632

was unaffected by this factor and, therefore, did not 633

predict these documents as low-ranked. 634

These findings suggest that models tend to strug- 635

gle with cases where humans also face challenges 636

in reading. This observation is noteworthy because 637

factors like sentence length, which significantly 638

impact human readability, might not necessarily 639

challenge models with a large input context length. 640

8 Conclusion 641

In this work, we introduced PreSumm, a novel 642

approach that opens up new research avenues in 643

understanding the structural features that make a 644

document less likely to be summarized successfully. 645

Our findings suggest that documents that are more 646

complicated to read for humans are also ranked low 647

by PreSumm, implying the centrality of this feature 648

for summarization models. We hope these insights 649

will contribute to the design of more robust and 650

effective models in the future. 651
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9 Limitations652

Our study covers the RoSE dataset extensively and653

focuses on summarization of the news domain only.654

Therefore, we cannot explore the complete space655

of summarization systems and we are limited to656

both the datasets and summarization systems that657

RoSE provides due to our extensive use of the man-658

ual ACU score. Because of this, some of the re-659

sults could be due to other factors that relate to the660

dataset and would not generalize strongly outside661

of this study or to other domains.662

Although we showed in our work that our model663

works relatively well on out-of-distribution data,664

we did not examine dataset out of the news do-665

main. Therefore our conclusions are limited to this666

domain.667

In future works, we would seek to train a similar668

model on a larger dataset. However, using ACU669

scores would be difficult because of the human670

labor involved, which could be avoided by using671

an annotated metric to train on. However, will672

make us biased towards the chosen metric, which673

is another limitation.674

Out of distribution data is a major factor when675

it comes to model performance. To mitigate this676

would require greatly increasing the scope of the677

experiment and to train on a broader dataset for678

more accurate predictions.679

Overall, overcoming these limitations would ne-680

cessitate a much larger corpus with either a large681

set of automated or human annotated metrics to682

perform a similar study on a much larger set of the683

space of documents and summarization system.684
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A Appendix884

A.1 Implementation Details885

The SummEval models were built using the Long-886

former architecture, each with distinct output heads887

and training methodologies tailored to the task.888

All models were trained for 5 epochs with a889

learning rate of 1e-6, using an 80%-20% train-890

validation split of the dataset. The base model used891

was the "allenai/longformer-base-4096" (Beltagy892

et al., 2020), configured to handle the maximum893

sequence length.894

A.1.1 Regression Head895

For regression tasks, a single linear layer was added896

to map the 768-dimensional CLS token embedding897

to a one-dimensional output, representing the pre-898

dicted score.899

A.1.2 Classification Head900

For classification tasks, the Longformer backbone901

was paired with a more complex classification head.902

This head comprised a feedforward neural network903

with the following structure: a linear layer mapping904

768 dimensions to 512, a ReLU activation, and a905

second linear layer reducing 512 dimensions to906

a single scalar output. During the forward pass,907

the model computed individual scores from two908

heads, denoted as s1 and s2, and generated the909

final probability by subtracting these scores and910

applying the sigmoid function.911

A.1.3 Frozen Weights912

The Frozen Weights model followed the same train-913

ing procedure as the regression model but kept the914

weights of the Longformer backbone fixed, allow-915

ing only the output layer to be updated during train-916

ing.917

B Analysis 918

B.1 Document-Based Transformations 919

To further investigate the influence of document- 920

based features on model performance, we explored 921

how the predicted score of a document changes 922

when specific features are perturbed. By comparing 923

the predicted scores before and after these transfor- 924

mations, we can gauge the importance PreSumm 925

places on each feature. Intuitively, the transforma- 926

tions causing the largest change in predicted scores 927

should indicate which features have the greatest 928

impact on document performance in summariza- 929

tion. We applied these transformations to our test 930

set. Below, we detail the transformations applied. 931

Removing content. We tested several removal 932

strategies: removing the first sentence (often 933

critical for summarization), removing 5 or 10 934

salient sentences (as defined in Section 7.1), 935

and randomly removing 30% of the words or 936

sentences to disrupt fluency and coherence. 937

Additionally, we removed all sentences ex- 938

cept the first three or last three to assess the 939

importance of content location. 940

Moving content. Given that salient information 941

location was identified as a key feature in Sec- 942

tion 7.1, we moved the salient sentences to 943

the end of the document. We also randomly 944

shuffled all sentences to disrupt coherence. 945

Replacing content. We replaced named entities 946

to test the impact on consistency. We also 947

introduced contradictions by adding negation 948

sentences and corrupted the grammar by con- 949

verting all verbs to their lemma forms. 950

As expected, the most impactful corruptions, 951

with the highest changes in predicted scores, were 952

removing the 10 most salient sentences and remov- 953

ing all content except for the last three sentences. 954

Other significant transformations included deleting 955

30% of the words, removing 5 salient sentences, 956

and shuffling sentences randomly. 957

Surprisingly, moving the salient sentences to the 958

end of the document had little effect, despite the 959

location of salient information being one of the 960

most influential features in Section 7.1. 961

Interestingly, content replacement, such as gram- 962

mar corruption or adding contradictions, did not 963

significantly affect PreSumm’s performance. It also 964

appears that strong perturbations, such as deleting 965
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Based on Selection Type
BART Pegasus

Replace 10% Replace 20% Replace 10% Replace 20%

Source

Random 0.425* 0.478* 0.394* 0.452*

Num. Entities 0.437* 0.508* 0.416 0.486*

Flesch 0.427* 0.494* 0.403* 0.472*

PreSumm 0.451 0.525 0.423 0.499

Source + Sys.
Blanc 0.435* 0.512* 0.416 0.496
SummQa 0.434* 0.502* 0.414 0.481*

Source + Sys.+ Ref.
Rouge 0.459 0.540 0.432 0.515
Bert 0.454 0.527 0.429 0.507
Meteor 0.459 0.538 0.433 0.516

Table 9: Averaged ACU scores of system summaries (from the ‘All’ test set) after replacing summaries generated
from the lowest-scoring documents and summaries (based on several metrics) with manual summaries. Scores
significantly worse than PreSumm are marked with *.

Transformation Src. Trans. Delta

Remove 10 salient sentences 0.528 0.428 -0.100
Keep last 3 sentences 0.528 0.441 -0.0877
Delete 30% of words 0.528 0.470 -0.0584
Remove 5 salient sentences 0.528 0.476 -0.0523
Randomly Shuffle of Sentences 0.528 0.486 -0.0427
Move 10 salient sentences to end 0.528 0.502 -0.0269
Keep first 3 sentences 0.528 0.553 0.0246
Remove first sentence 0.528 0.506 -0.0225
Move 5 salient sentences to end 0.528 0.509 -0.0199
Replace names w/ from bank 0.528 0.512 -0.0163
Replace names w/ spacy name 0.528 0.518 -0.0102
Corrupt Grammar 0.528 0.520 -0.008
Append contradictions 0.528 0.533 0.005
Delete 30% of sentences 0.528 0.530 0.00150

Table 10: Predicted scores of documents before a trans-
formation (Src.) and after (Trans.)

30% of sentences, did not lead to large differences966

in scores. This might be because these artificial cor-967

ruptions are not natural and therefore deviate too968

much from the patterns seen during model training,969

causing the model to mispredict their impact on970

summarization performance.971

C Compare Accuracy on Low-ranked972

Documents973

In our main evaluation (Table 2 we used Kendall-974

tau correlation. In this correlation we compare975

a pair (xi,yi) to (xj ,yj) for all i, j. If xi > xj976

and yi > yj , or xi < xj and yi < yj these pairs977

are concordant, and the final correlation score is978

increased.979

In order to measure the ranking of the low-980

ranked documents only, we applied the same981

Algorithm 1 PreSumm vs method X Paired Boot-
strap Significance Test

1: Input: Test set of documents, PreSumm
scores, X scores, averaged ACU scores

2: Output: p-value
3: Extract the current difference in performance

between PreSumm filtering and X filtering, de-
noted as original_diff.

4: Initialize s = 0
5: for each document, with 3 scores: averaged

ACU, PreSumm score, X score do
6: Sample n instances with replacement from

the test set (same number of instances, each
document can appear more than once)

7: Filter 10% or 20% of documents according
to PreSumm, and average the ACU scores to
get PreSumm_filter_score

8: Filter 10% or 20% of documents accord-
ing to X, and average the ACU scores to get
X_filter_score

9: if PreSumm_filter_score - X_filter_score >
2 × original_diff then

10: s = s+ 1
11: end if
12: end for
13: Repeat steps 2-5 for b = 10000 iterations.
14: Compute p_val = s

b
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Kendall-tau process, but considered only pairs that982

one of them is one of the n low-ranked docu-983

ments. This way, we compare each of the low-984

ranked documents to all other documents, and985

therefore measuring the accuracy of its ranking (in986

a [-1,1] scale). In Table 5 we showed the the perfor-987

mance over low-ranked documents is higher, and988

PreSummw.o_XSUM preforms almost equivalently to989

PreSumm.990

D Example Documents991

In tables 11 and 12 are examples of documents992

from the data that were annotated with different993

challenges.994
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Challenging Char-
acteristics

Document

Coherence Judge Thokozile Masipa did the same for the lawyers
on Thursday, urging them to make good use of the
upcoming fortnight break for the Easter holidays.
In that spirit, here are a few questions that have
been niggling me in recent days.
Tweet your thoughts and suggestions to @BBCAndrewH.
I will be taking a week off and then focusing on
South Africa’s general election before returning to
the hard benches of Courtroom GD on 5 May.

Theme Change The images, taken by Syd Shelton, from Pontefract,
include pictures of The Clash, Misty in Roots and
The Specials.
The collection also features photos taken at the
Rock Against Racism Carnival at Victoria Park,
Hackney, which attracted a crowd of 100,000.
The show runs from Friday to 3 September at the
Impression Gallery.
The Rock Against Racism (RAR) movement formed in
response to controversial remarks made by Eric
Clapton in 1976.
In the following years, RAR staged marches,
festivals and more than 500 concerts in the UK in
a bid to fight racism through music.
Shelton, who studied Fine Art in Leeds and
Wakefield, said he became involved with the movement
after returning to the UK from America in 1976.
He said: Ï was appalled at the state of race
relations in Britain, in particular things like
the Black and White Minstrel Show and the signs I
saw in some windows saying ’No Blacks, No Dogs, No
Irish’.
Ït was a pretty serious situation and I always
loved music and very quickly hooked up with the
people that had set up RAR.
Ït was a bizarre mixture of people, photographers,
graphic designers, writers, actors and, of course,
musicians.
Ẅe were very lucky in the sense that we tuned in
to that explosion of punk and UK reggae and brought
the two together. That said more about what RAR
was about than any of the slogans we may have
shouted from the stage.¨
He added: Ï hope the exhibition shows that you can
change things and you can actually take a stand,
even in the most difficult of situations.
Ïf it inspires people to be photographers that
would be great but I hope it will also inspire
people to fight against racism and inequality.

Table 11: Examples of documents from the set of 15 with the lowest predicted scores by PreSumm, accompanied by
their main characteristics that made them challenging for annotators to read.

14



Challenging Char-
acteristics

Document

Content Welsh language minister Alun Davies told AMs it
would help efforts to reach that goal stay on the
right track.
Targets to meet growing demand for Welsh-speaking
teachers and public sector workers will also be
set.
Culture committee chairwoman Bethan Jenkins said
AMs had been told 70% more Welsh-medium teachers
were needed.
Mr Davies responded that around a third of teachers
in Wales could speak Welsh, and that the challenge
was to see if more of them would be willing to teach
through the medium of Welsh.
Earlier this month, Welsh language commissioner
Meri Huws called for r̈adical changeïn the education
system to ensure all children under the age of
seven were ïmmersedïn Welsh.":

Content He said new forests would slow flooding by trapping
water with their roots.
The idea of r̈ewildingẗhe uplands is catching on fast
as parts of Britain face repeated flooding, with
more rainfall on the way.
Environment Secretary Owen Paterson said he would
seriously consider innovative solutions like
rewilding.
The government has been criticised for being slow to
capitalise on the benefits of capturing rain where
it falls.
Lord Rooker, a Labour peer, said too much emphasis
had been attached to the look of the countryside
rather than practical considerations like trapping
water.
Ẅe pay the farmers to grub up the trees and hedges;
we pay them to plant the hills with pretty grass and
sheep to maintain the chocolate box image, and then
wonder why we’ve got floods,ḧe said.
The idea of reintroducing forests into catchments
has been strongly supported by several leading
scientists.
The government is sponsoring a handful of catchment
trials to assess the potential of the upstream
areas to catch water and send it slowly downhill.
...

Table 12: Examples of documents from the set of 15 with the lowest predicted scores by PreSumm, accompanied by
their main characteristics that made them challenging for annotators to read.
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