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Abstract

In this work, Deep Learning Surrogate Models are employed to optimize the
quadrupole values in the initial section of the High Energy Beam Transport Line of
the IFMIF-DONES accelerator. Two Fourier Neural Operator models were trained:
one for predicting two-dimensional beam profiles and another for forecasting one-
dimensional beam statistics along the accelerator’s longitudinal axis. These models
offer up to 3 orders of magnitude speedup compared to traditional simulations, with
a trade-off of maintaining accuracy within percentage errors below 6%. Moreover,
their differentiability allows seamless integration with optimization algorithms,
enabling efficient tuning of quadrupole values to achieve specific beam objectives.
This approach offers a robust solution for enhancing the performance of IFMIF-
DONES accelerator and other scientific experiments.

1 Introduction

One of the key challenges in advancing nuclear fusion power plants is understanding the effects
of neutron irradiation on reactor materials [1]. To tackle this, the IFMIF-DONES (International
Fusion Materials Irradiation Facility DEMO Oriented Neutron Source) facility is developing a linear
accelerator that will produce a neutron spectrum resembling that of fusion reactions, achieved through
the collision of deuterons with a lithium target [2]. This research, conducted as part of the DONES-
FLUX project, explores the application of differentiable Deep Learning Surrogate Models (DLSMs)
in order to optimize the quadrupoles of the first section of the High Energy Beam Transport (HEBT-
S1) [3] in the IFMIF-DONES accelerator. DLSMs are deep learning-based models designed to
approximate complex physical, chemical, or biological processes, providing computationally efficient
substitutes for resource-intensive simulations [4]. Their differentiable nature enables their integration
with optimization algorithms, such as Gradient Descent (GD) [5], to identify parameter sets that
satisfy specific beam objectives. Neural operators (NOs) are a branch of DLSMs that extend neural
network architectures to approximate operators mapping between infinite-dimensional function spaces
[6]. This extension is particularly valuable for solving systems of partial differential equations, which
model physical phenomena. In these NO models, input functions a(x) are processed to predict output
functions u(x), as illustrated in Appendix A. The architecture includes a layer P that transforms the
input function into its first hidden representation. This is then processed through a series of kernels
with non-linear activation functions, culminating in the output representation generated by layer Q.
Notably, the Fourier Neural Operator (FNO), which is the chosen architecture for this work, leverages
the Fourier transform to compute these kernels [7]. This FNO architecture is selected for three key
reasons: it is purely data-driven, it is discretization invariant (unlike standard neural networks), and it
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has demonstrated success across various fields with positive results [8, 9, 10, 11, 12]. The trained
models are able to successfully predict deuteron beam functions along the longitude of the HEBT-S1,
which is displayed in the first panel of Fig. 1. For details on the methodology, refer to Section 2,
while the results are shown in Section 3 and the discussion and outlook are presented in Section 4.

2 Methodology

The workflow, outlined in Fig. 1, begins by constructing a lattice with HEBT-S1 measurements
from [3] (Appendix F). Following this, beam simulations were performed with OPAL [13]. Data
was generated from 8192 simulations of deuteron bunches with 100k particles3 traveling through the
lattice, with varying normal quadrupole magnetic field values kj ranging from 4 to 8 Tm−1. Given
the six quadrupoles in the system, the distances and signs of each element were fixed to prevent an
exponential increase in the number of possible combinations, and thus computational resources.

Two FNO models were trained with 80% of the dataset, leaving the rest for testing. The first model,
a 2D FNO, predicts the normalized two-dimensional beam profile deuteron distributions ρx(x, z)
and ρy(y, z), where z (in m) represents the longitudinal position along the accelerator. As the
discretization of these two output functions is the same in all axes, they are treated as a general
output function ρ(x, z) with two channels, one for each transversal profile in x and y (in mm). The
second model, a 1D FNO, predicts the root mean square and maximum beam envelope size for
both transversal components (RMSx(z), RMSy(z), MAXx(z), MAXy(z)), as well as the particle
count n(z) divided by the total number of particles. Finally, the parameter space was explored using
the GD optimization algorithm Adam [14] to address the inverse problem, determining the optimal
quadrupole settings that achieve desired beam configurations at the end of the lattice. This is only
possible because the trained models are differentiable with respect to the input parameters, kj . The
loss function is described in C, and minimizes the distance between the target configuration and the
current one. The frameworks used are NVIDIA Modulus [15] and Pytorch [16]. Diagrams for both
models are displayed in Appendix A, while their hyperparameters are detailed in Appendix B.

Figure 1: (A) IFMIF-DONES HEBT sections and diagram of the S1 lattice with drift zones and
quadrupoles. (B) Deuteron beams simulation results from OPAL, with the beam statistics, profile
and footprints. (C) Training DLSMs for fast inference. (D) Optimization algorithms applied to the
differentiable models in order to solve inverse problems and obtain optimal parameters for design.

3These particles are injected as gaussian distributions with parameters seen in Table 5.
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3 Results

An example of prediction results for the 1D model is displayed in Fig. 2, where the predicted beam
statistics are compared to the simulated values. Overall, this 1D model has a maximum mean average
percentage error (MAPE) of 5.63%. For the 2D model, Fig. 3, shows a test case comparing the
predicted two-dimensional beam profile functions with simulated results. This model demonstrates a
mean absolute error (MAE) of 4.7·10−3 for ρx(x, z) and 5.6·10−3 for ρy(y, z). The speed up factor
is the same for both models, with inference times 103 times faster than OPAL simulations (Each
simulation takes approximately 20 seconds to complete). A comprehensive summary of the error
metrics (MAE and MAPE) for both models, covering all relevant variables, is provided in Appendix
I, allowing for a detailed assessment of their performance in the test set. Furthermore, a few n(z) test
predictions can be seen in Appendix J, as well as other test examples that are available in Appendix
G, offering a broader view of model performance under varied conditions.

Finally, Table 1 presents the results of the optimization process for five different examples, detailing
the target and achieved configurations for RMS and MAX evaluated at z = 10 m for both axes. The
table includes the optimized quadrupole settings, the time t in minutes required to reach a solution,
and the normalized number of particles as reported by OPAL during the evaluation. A fixed point of
n(10)/105 = 0.98 was used as optimization threshold for the losses, as can be seen in Appendix E,
so the solutions never lose more than 2% of the particles. The optimization process effectively meets
the predefined objectives in approximately 10 minutes, achieving minimal particle loss and ensuring
optimal beam performance. These results highlight the efficiency and effectiveness of the proposed
models, demonstrating their capability to deliver desired outcomes within practical time constraints.

4 Discussion

The trained FNO models demonstrate remarkable accuracy and speed in predicting beam statistics
and profile distributions, being up to 103 times faster than traditional OPAL simulations while
maintaining minimal error rates. This acceleration enables near-instantaneous inference of beam
properties, which, combined with the differentiable nature of the models, makes them ideal for
integration into optimization loops. These loops can be used to solve inverse problems, such as
identifying the optimal set of quadrupole values needed to achieve a desired beam configuration.

Figure 2: Test prediction results for the 1D beam statistics functions along the accelerator longitude
for the axes x and y. Blue: OPAL simulations. Red: FNO predictions. This example was obtained by
solving the inverse problem for the first objective in Table 1.
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Figure 3: Test prediction results for the 2D beam profile distributions along the accelerator longitude
for the axes x and y. Left: OPAL simulations. Middle: FNO predictions. Right: residual errors.

Furthermore, as highlighted in other studies, such as [17], the significantly reduced inference times
allow DLSMs to serve as environments for Deep Reinforcement Learning agents [18], where the
sheer number of training steps required would not be feasible with traditional simulators. These
results highlight the powerful synergy between DLSMs and other deep learning techniques, offering
new possibilities for enhancing optimization and control in complex scientific facilities, such as the
IFMIF-DONES accelerator, that will benefit future nuclear fusion power plants. The next phase of
this research will address the limitation of quadrupole range by tackling the exponential growth in
computational resources needed as the number of magnetic elements increases. This is the reason
why only the HEBT-S1 section has been optimized. Future work will expand these techniques to
other parts of the accelerator and explore models with additional channels, incorporating particle
momentum data to provide the optimization algorithm with information of the phase space, widely
used in particle accelerators [19].

Table 1: Optimization summary. These are just a few varied examples, but the algorithm is able to
find solutions, as long as they exist in the space of possible solutions. Some of the footprints achieved
with these solutions can be seen in Appendix D.

Target (mm) Achieved (mm) kj (Tm−1) t (min) n(10)/105

RMSx RMSy MAXx MAXy RMSx RMSy MAXx MAXy k1 k2 k3 k4 k5 k6

5.4 2.4 18.0 8.0 5.4 2.4 17.9 8.0 5.9 -7.1 6.9 -5.2 5.0 -6.3 10.42 1.00
4.7 2.6 16.0 7.0 4.7 2.6 15.6 6.9 5.1 -5.7 7.6 -6.4 5.1 -6.0 3.42 0.99
2.5 3.4 9.0 12.0 2.6 3.1 8.9 12.0 5.0 -8.0 7.4 -7.7 5.0 -6.9 10.44 1.00
3.0 3.0 11.0 10.0 3.0 3.0 10.5 9.8 5.3 -6.7 7.9 -8.0 5.0 -6.0 1.52 0.99
6.4 8.5 22.0 30.0 6.3 8.5 21.5 27.0 5.4 -6.2 7.9 -6.3 5.4 -7.2 3.34 0.99

11.8 10.4 38.9 33.0 11.7 10.3 39.0 32.5 5.0 -6.3 7.9 -6.6 5.9 -7.5 10.45 0.99
16.5 1.0 50.0 3.4 16.5 1.0 49.8 3.3 6.5 -7.5 7.1 -5.6 6.5 -5.8 2.30 0.99
9.8 10.2 33.4 37.3 9.8 10.2 32.5 31.3 5.0 -6.0 7.6 -6.3 5.6 -7.4 3.7 0.99
7.0 6.6 23.5 19.5 7.0 6.0 23.2 19.5 6.4 -7.8 6.2 -5.0 5.0 -7.8 10.43 0.99

13.3 4.3 48.6 14.2 13.3 4.3 45.7 13.6 5.5 -6.5 7.7 -6.5 6.2 -6.4 1.48 0.99
7.7 11.6 25.9 29.9 7.7 11.6 25.9 29.4 6.0 -5.0 5.1 -6.0 5.0 -7.3 4.31 0.98
4.2 13.1 14.5 37.5 4.1 13.1 14.5 36.7 5.0 -5.5 5.0 -6.9 5.0 -7.6 10.47 0.99
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A FNO architecture

Figure 4: Top: FNO architecture from [7]. It processes input functions a(x) to predict output
functions u(x), where x is the discretization space of the problem. The input is first transformed into
a hidden representation by a layer P . This hidden representation is then passed through a series of
layers where kernels are computed using the Fourier transform. After processing, the final layer Q
produces the output function u(x). The Fourier transform enables the FNO to efficiently compute
these kernels, making it a key feature of this architecture.Bottom: inputs and outputs of the trained
models. The quadrupole values kj (where j stands for the quadrupole number, from 1 to 6) are
taken as constants formatted as tensors with the dimensions of the output functions (with the same
discretization). The functions f(z) represent the beam statistics one-dimensional functions presented
in the main text and the number of particles, while ρ are the 2D beam profile distributions for both
axes x and y.
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B Hyperparameters

Table 2: NVIDIA Modulus FNO architecture hyperparameters for both models. If there are two
values, the first corresponds to the one dimensional model. The hyperparameters were chosen based
in positive results from previous works.

Hyperparameter Value

scheduler tf_exponential_lr
optimizer adam
loss sum
decoder.nr_layers 1
decoder.layer_size 256-512
fno.dimension 1-2
fno.nr_fno_layers 4
fno.fno_modes 12
scheduler.decay_rate 0.95
scheduler.decay_steps 1000
training.max_steps 10000
batch_size.grid 32-8
batch_size.validation 32-8

Table 3: Optimization hyperparameters for GD.

Hyperparameter Value

scheduler exponential_lr
optimizer adam
loss custom distance
scheduler.gamma 0.999
max_steps 100000
early_stop_loss 0.005
learning_rate 1

C Loss function

The custom loss function is defined as the euclidean distance between the RMSi target configuration
(subindex T ) and the current one, plus penalization terms that punish out of bound solutions. These
are computed for the quadrupoles, for the MAXi variables and for the number of particles n to
establish a threshold. The described loss components are displayed below:

d(RMST,i, RMSi) =

√√√√ N∑
i=1

(RMST,i −RMSi)
2 (1)

f(x, u, l, w) =


(x− u)× w if x > u

(l − x)× w if x < l

0 if l ≤ x ≤ u

(2)

Where x describes kj , MAXi and n. The values l and u stand for the lower and upper bounds of each
variable, respectively. The quadrupoles ranges are set between 4 and 8 Tm−1, the MAXi ranges are
set between 0 and the target to reach and the n range is set from 0.98 to 1. The weights w are 10 for
both MAX variables and 100 for the quadrupoles and n. The index i defines the x and y coordinates
and j stands for the number of quadrupoles.
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D Footprints

Figure 5: Examples of footprints achieved in OPAL with the optimal quadrupole parameters found
for 6 of the targets from Table 1.
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E Losses distributions

Figure 6: Normalized number of particles n(z) for some of the simulations, which indicate losses in
the accelerator. The dashed line corresponds to the 0.98 threshold used in the optimization algorithm,
to exclude solutions with losses above that number. The histogram represents the particles distribution
at the end of the lattice.

F OPAL lattice parameters and dataset creation

The following tables summarize the parameters for the lattice.in file that OPAL requires to perform
the simulations. As stated in the main text, the quadrupole values range from 4 to 8 T ·m−1. 8192
simulations are performed varying these values and keeping the remaining fixed. Roughly 20% of
the instances are used for training, that is 6560 elements for training and 1632 for testing. Once
each simulation is finished, its data functions are transformed to tensors for creating HDF5 files.
The FNO implementation of nvidia-modulus requires input tensors of shape [Variable, N, channel,
discretization]. The variables are explained in Section 2 and Appendix A. Each instance of the 1D
model has 199 values for z and each instance of the 2D model has shape (200, 201) for (x, z) or
(y, z). The (x, y) coordinates are confined within a circular aperture of radius 50 mm, defining the
two-dimensional spatial domain. The z coordinate ranges from 0 to 10 m, representing the depth or
longitudinal extent of the lattice.
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Table 4: Magnetic elements dimensions, length and edge where it starts relative to the beginning of
the lattice. The aperture radius of all the elements is r= 50 mm.

Element Length (m) Edge (m)

DR1 (Drift) 1.00 0.00
Q1 (Quadrupole) 0.25 1.00
DR2 (Drift) 0.60 1.25
Q2 (Quadrupole) 0.25 1.85
DR3 (Drift) 0.60 2.10
Q3 (Quadrupole) 0.25 2.70
DR4 (Drift) 1.65 2.95
Q4 (Quadrupole) 0.25 4.60
DR5 (Drift) 1.50 4.85
Q5 (Quadrupole) 0.25 6.35
DR6 (Drift) 1.50 6.60
Q6 (Quadrupole) 0.25 8.10
DR7 (Drift) 1.65 8.35

Table 5: Important parameters for the OPAL-T configuration.in file. Variables are given as they
appear in the file. Fields are: particles information, injection, integration and solver.

Variable Value

Particle Deuteron
Number of particles 100000
Energy 40 MeV

Injection type Gauss
σx,y,z 28 mm
σpx,py

0.023·10−3

σpz
0.039·10−3

MAXSTEPS 10000
DT 1.65·10−10

ZSTOP 10
METHOD PARALLEL-T

FIELDSOLVER FFT
MX,Y,T 16
PARFFTX,Y,T true
BCFFTX,Y,T open
BBOXINCR 1
GREENSF STANDARD
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G Predictions examples (1D)

Figure 7: Two more examples for the one-dimensional beam statistics predicted by the model and
compared to simulations. Blue: OPAL simulations. Red: FNO predictions. These two solutions
correspond to other two configurations of Table 1.
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H Predictions examples (2D)

Figure 8: Two more examples for the two-dimensional beam profile distributions predicted by the
model and compared to simulations. Left: OPAl simulations. Middle: FNO predictions. Right:
residual errors.

I Model errors

Table 6: FNO 1D Model errors evaluated in all the test set.

Variable MAPE (%) MAE

RMSx(z) 4.38 0.11
RMSy(z) 5.63 0.16
MAXx(z) 3.92 0.30
MAXy(z) 3.76 0.39
n(z) 0.92 0.01
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Table 7: FNO 2D Model errors evaluated in all the test set.

Variable MAE

ρx(x, z) 4.7·10−4

ρy(y, z) 5.6·10−4

J FNO model predictions for the number of particles

Figure 9: Test examples of the model predictions for the number of particles along z.

K System specifications

Table 8: System specifications

GPU Model NVIDIA GeForce RTX 3060
CUDA version 12.2

CPU Model Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz
CPUs 12

Table 9: Software

Software/Code Version
OS Ubuntu 22.04.4 LTS (Docker)
nvidia-modulus.sym 1.5.0
OPAL 2022.1.0
openmpi 4.1.4
Torch 2.3.0
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We successfully trained the FNO models to achieve the reported speed im-
provements and accuracy, and effectively implemented the 1D model within an optimization
loop to determine the optimal quadrupole settings that satisfy the beam requirements.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The high computational cost of simulations necessitated limiting the optimiza-
tion to only the S1 section of the HEBT, with fixed ranges and signs for the quadrupoles.
Expanding parameters would require over 8,000 simulations, making it impractical. There-
fore, we adopted a modular approach.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: no theoretical results are presented, its all applied models.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Even though the code is not provided, architecture, lattice, hyperparameters
and frameworks are fully specified either in the main text or appendices.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: While all utilized tools and methods are open source and publicly available,
the IFMIF-DONES consortium’s policies restrict the sharing of specific data and code
associated with this research.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: refer to dataset creation and hyperparameters tables in the appendices. Al-
though hyperparameters choice is not discussed, they are based on previous works results.
FNO models are very robust to hyperparameters.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: uncertainty estimation in FNO models is still a research topic. Time constraints.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: refer to system specifications appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work complies with the NeurIPS Code of Ethics by using only open-source
tools and publicly available data, with no involvement of human subjects or sensitive data.
We prioritize privacy, transparency, and responsible use of our models, avoiding potential
risks such as security vulnerabilities or discrimination.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: the paper implies indirect contributions to nuclear fusion, which will have an
enormous impact in the future. However, no direct impact is discussed, besides the results
helping scientific facilities.

18

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No risk of misuse as the models are not shared, and they are only used to find
optimal quadrupole values in linear accelerators.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: everything is either publicly available or open source and properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: dataset creation and model training are explained in the text.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects nor crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects were used, therefore there is no related risk.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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