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ABSTRACT

Large Language Models (LLMs) have been widely adopted as task planners for Al
agents in sequential decision-making problems, leveraging their extensive world
knowledge. However, the gap between their general knowledge and environment-
specific requirements often leads to inaccurate plans. To address this, existing
approaches rely on frequent LLM queries to iteratively refine plans based on im-
mediate environmental feedback, which incurs substantial query costs. However,
this refinement is typically guided by short-term environmental feedback, limit-
ing LLMs from developing plans aligned with long-term rewards. We propose
Code Driven Planning with Domain-Adaptive SeleCtor (CoPiC). Instead of rely-
ing on frequent queries, CoPiC employs LLMs to generate a diverse set of high-
level planning programs, which iteratively produce and refine candidate plans. A
trained domain-adaptive selector then evaluates these candidates and selects the
one most aligned with long-term rewards for execution. Using high-level plan-
ning programs as planner and domain-adaptive selector as estimator, CoPiC im-
proves planning while significantly reducing query costs. Results in ALFWorld,
NetHack, and StarCraft I Unit Building show that CoPiC outperforms advanced
LLM-based baselines, achieving an average (1) 19.14% improvement in success
rate and (2) 79.39% reduction in token costs.

1 INTRODUCTION

Pre-trained on web-scale data, Large Language Models (LLMs) have shown remarkable potential
in zero-shot learning, commonsense understanding, and contextual reasoning (Bai et al., 2022; |Tou-
vron et al., 2023ajb). Consequently, recent studies have increasingly explored the use of LLM-based
planners to complete tasks in various environments like household scenarios (Brohan et al.| [2023}
Liang et al., 2023)) and games (Wang et al., 2023a:b)). These planners decompose high-level task in-
structions into coherent natural-language plans for environment execution. Compared to traditional
learning-based Al agents, LLM-based planners significantly improve both efficiency and applicabil-
ity, thanks to the advanced capabilities of LLMs.

However, the gap between general knowledge and specific environments often causes LLMs to have
hallucinations, resulting in plausible yet infeasible plans involving non-existent objects or unavail-
able actions. To address this issue and facilitate grounded planning, especially for complex tasks
involving multiple objects and diverse preconditions, most existing methods (shown on the left side
of Figure [T) allow LLMs to iteratively generate and refine plans using immediate environmental
observation, thereby improving their feasibility (Yao et al., 2022; |Shinn et al., [2024; Wang et al.,
2023b; [Sun et al., 2024). However, the frequent step-by-step observations lead to extremely high
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Figure 1: Difference between CoPiC and other planning paradigms: CoPiC leverages multiple high-
level planning programs to reduce LLM’s query costs, while a domain-adaptive selector is employed
to select high-quality plans aligned with long-term rewards.

LLM’s query costs. And the greedy search for plans by LLMs hampers the generation of long-term
rewarding plans, reducing planning efficiency and further escalating query costs.

In summary, directly generating and refining static plans tailored to specific observations fails to
adapt effectively to dynamic environments, resulting in high LLM’s query costs. Inspired by the
reliable code-generation capabilities of LLMs (Chen et al., |2021b} Hui et al., 2024} (Guo et al.|
2024), LLMs can potentially generate high-level planning programs that produces and refines plans
based on varying observations, thus reducing query costs compared to static plans. However, the
gap between LLMSs’ general knowledge and specific environments makes it challenging for a single
planning program to handle all environmental observations. To address this, we introduce a mixture-
of-experts (MoE) mechanism to generate multiple planning programs that produce diverse candidate
plans, alongside a domain-adaptive selector that evaluates these candidates to select the plan most
aligned with long-term rewards.

Inspired by these insight, we propose Code-Driven Planning with Domain-Adaptive SeleCtor
(CoPiC, as shown on the right side of Figure [T). CoPiC comprises two core modules: an LLM
planner and a domain-adaptive selector. The LLM planner generates multiple high-level planning
programs that interact with environment, producing and refining candidate plans iteratively, which
reduces the LLM’s query costs incurring by generating and refining static plans step-by-step. The
domain-adaptive selector evaluates these candidates and selects the one most aligned with long-
term rewards, further bridging the gap between LLMs’ general knowledge and environment-specific
requirements. Upon termination of the planning programs, CoPiC leverages execution results to
refine the planning programs and fine-tune the selector within a reinforcement learning framework,
ensuring continuous improvement and adaptation to dynamic environments. This paper makes the
following contributions:

* We propose a novel planning paradigm that combines an MoE mechanism, where each
planning program acts as an expert, with a domain-adaptive selector to bridge the gap
between LLMs’ generality and environmental specificity.

* We propose CoPiC, a framework consisting of an LLM planner that generates multi-
ple high-level planning programs and a domain-adaptive selector that selects the highest-
quality plan, enhancing planning performance while reducing LLMs query cost.

¢ We evaluated CoPiC in three environments: ALFWorld (Shridhar et al., [2020), NetHack
(Kiittler et al.l |2020), and StarCraft II Unit Building. The results demonstrate that CoPiC
significantly outperforms advanced and immediate feedback-based baselines, including
AdaPlanner (Sun et al.|[2024), Reflexion (Shinn et al.,2024)), Prospector (Kim et al.,2024)),
and REPL-plan (Liu et al., 2024b), achieving a 19.14% increase in success rate, a 79.39%
reduction in query costs, and a 30.43% decrease in the average number of interaction steps.
These findings highlight CoPiC’s ability to deliver superior planning performance while
reducing LLMs query overhead.
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2 RELATED WORKS

CoPiC is LLM-based, code-driven and containing a selector scoring module. Therefore, we mainly
review related works in these three areas. For a comprehensive overview, we also incorporate PDDL-
based methods into the related works.

LLM-based Planning To bridge the gap between LLMs and the environment, prior works often
adopt an immediate feedback paradigm, leveraging instant environmental feedback to refine plans.
ReAct (Yao et al) [2022) and Inner Monologue (Huang et al. [2022) use step-by-step execution
feedback to update actions, while Reflexion (Shinn et al., 2024)) incorporates a trial-and-error mech-
anism, generating reflective texts from historical feedback. While these methods improve planning
quality, they rely on extensive LLMs queries, resulting in high latency and limiting the generation
of long-term rewarding plans. In contrast, CoPiC, which reduces costs through program-driven plan
generation and improves domain adaptation via a selector module learned on domain experience.

LLM-based Planning with Scoring Some LL.M-based planning methods use a Scoring Module
to evaluate and select the best LLM-generated plans. For example, Prospector (Kim et al., [2024)
uses direct LLM scoring or pre-trained models with offline expert data. SayCan (Brohan et al.,
2023)) assesses skill feasibility and integrates it with LLM planning, while SayCanPay (Hazra et al.,
2024) further enhances efficiency by evaluating planning’s payoff. Thus, current methods rely on
two approaches: direct LLMs scoring (which lacks environmental priors and introduces scoring
errors) or pre-training scoring models with offline expert data (which is costly and poorly generalizes
to out-of-distribution data). In contrast, CoPiC introduces planning programs to dynamically and
efficiently generate online data, enabling selector fine-tuning and scoring without these limitations.

Program-Based Planning with LLMs Extensive research on code generation using LLMs un-
derpins the development of CoPiC. Key examples include Codex (Chen et al., [2021a)) for Python
function completion, AlphaCode for competitive programming, and studies like CodeT (Chen et al.},
2022), Self-Debugging (Chen et al.,2023)), and CodeRL (Le et al.,|2022) that explore LLM debug-
ging. Researchers have also applied LLMs to decision-making tasks, such as Code as Policies (Liang
et al., 2023), PROGPROMPT (Singh et al., [2023), AdaPlanner (Sun et al., |2024), REPL-Plan(Liu
et al., [2024b)), and SDG (Peng et al.| 2023)). AdaPlanner(Sun et al.,[2024) generates programmatic
plans for each individual task, which are essentially static and lack dynamism. REPL-Plan (Liu
et al.| 2024b) leverages the Read-Eval-Print-Loop (REPL) tool, recursively invoking REPL through
LLMs to generate new reusable APIs for planning. Unlike these methods, CoPiC produces multiple
dynamic planning programs for each task category, creating a set of reasonable candidate plans. A
domain-adaptive selector then samples the most rewarding plan, thus enhancing performance.

PDDL-based Planning with LLMs The Planning Domain Definition Language (PDDL) (Aero-
nautiques et al.| [1998)) is a human-readable, structured language for automated planning, defining
possible world states, actions with prerequisites and effects, an initial state, and desired goals. It
represents planning problems using a domain file (common elements across problems) and a prob-
lem file (specific initial states and goals). Recently, there has been growing interest in integrating
traditional PDDL-based planning with LLMs, as seen in works such as (Silver et al., [2022)), (Dagan
et al., 2023), and (Silver et al., 2024). However, in these approaches, LLMs are primarily used for
file completion or plan summarization, while actual planning relies on additional solvers to search
the problem space for solutions. In contrast, CoPiC eliminates the need for external solvers by
performing planning directly through programs generated by LLMs.

3 PRELIMINARY

3.1 PROBLEM FORMULATION

We explore the planning problem of LL.Ms-centric Al agent 7 to address a variety of natural lan-
guage described tasks Z within specific environments. We first formulate the planning problem
as a finite-horizon Partially Observable Markov Decision Process (POMDP) given by the tuple
(S,0,A,R, P, T). Here, S is state space, O is a set of observations retrieved from states via an
observation function O : S — O, A is the set of actions, R : @ — R is the reward function defined
in environment, P : § x A x § — [0, 1] is the stochastic transition function, Z is the space of
language described tasks.
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Figure 2: Overview of the CoPiC framework. CoPiC consists of two modules: an LLM planner that
generates multiple planning programs to produce candidate plans and a domain-adaptive selector
that selects the plan with the highest long-term reward. CoPiC alternates between the Planning Phase
(“1. Programs Generation via LLMs” and “2. Selector Scoring”) for generating and evaluating plans
and the Learning Phase (‘3. Programs Evolution with History Summarization” and “4. Selector
Fine-Tuning via RL”) for refining programs and improving the selector, progressively enhancing
adaptability and performance.

Given an instruction I € Z, the objective of the LLMs-centric Al agent 7 is to find a plan p to try to
fulfill I:

m(p|I,0) : T x O — A(AT) ey
where o € O is the observation, 7T signifies the total number of steps in the devised plan, A(-) refers
to the probability simplex function, and p € A(A”) is an action sequence with length of T'.

3.2 CoPIC

Previous mainstream paradigms (illustrated on the left side of Figure|[T)) address the aforementioned
problem by enabling LLMs to generate, iteratively refine, and correct plans based on immediate
environmental feedback. However, these approaches often incur substantial querying costs and limit
the agent’s ability to produce high-quality plans. In contrast, CoPiC employs efficient, low-cost
planning programs generated by LLMs, coupled with a domain-adaptive selector, to produce and
refine plans. This approach not only reduces querying costs but also improves the overall quality of
the plans. Specifically, CoPiC initializes a set of planning programs {p;}?_, utilizing LLMs. Each
program p; is tasked with outputting a plan p; based on I and o:

{pi(pilI,0) : T x O — A(AT)}, 2)
This results in a set of candidate plans {p;}1_,. To select the most domain-adaptive and holistic plan
p from these candidates, CoPiC introduces a domain-adaptive selector module:

Cé‘(p|0,1, {pz}?:l)

where 6 denotes the parameters of the selector module. Consequently, the combination of the set of
planning programs and the selector module forms our agent:

mo(pl1,0) = Co(plo, I, {pi(pil I, 0) }iZ1)

By integrating the efficiency of planning programs with the effectiveness of the domain-adaptive
selector, CoPiC significantly reduces LLMs querying costs while enhancing planning quality.

3)

“4)
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4 METHOD

As shown in Figure [2] CoPiC comprises two modules: an LLM Planner that generates multiple
planning programs to produce candidate plans and a Domain-Adaptive Selector that evaluates and
selects the plan with the highest long-term reward from candidates. CoPiC alternates between Plan-
ning Phase and Learning Phase.

During the Planning Phase, the LLM planner generates planning programs that iteratively interact
with environment, dynamically adjusting and producing candidate plans at each step. The domain-
adaptive selector then evaluates the candidates within the current context and selects the plan most
aligned with long-term rewards. During the Learning Phase, execution results are used to refine the
planning programs and fine-tune the selector within a reinforcement learning framework, enhancing
domain adaptability. These two phases alternate to progressively optimize both planning programs
and the selector. Detailed descriptions of these two phases are provided in the following subsections.

4.1 PLANNING PHASE
4.1.1 GENERATING PROGRAMS TO PRODUCE PLANS

This stage, composed of planning programs generation and plans generation, utilizes LLMs to gen-
erate planning programs that produce and refine plans.

Planning Programs Generation. It begins by generating planning program p(p|l, o) using “Init
Prompt” to instruct the LLM, as shown in “I. Planner Generation via LLMs” Figure 2] The general
structure of the prompt used for ALFWorld is presented in this figure, including the Python definition
of ALFWorld, an example of a different task type, and the task description that needs to be com-
pleted. Considering a single planning program’s limited sampling capability on plans may struggle
with complex tasks, we generate n (n > 1) planning programs {p;(p;|I, 0)}?_; for ensuring diverse
plans. Detailed prompts for all environments can be found in Appendix

Plans Generation. Subsequently, each policy p;(p;|I, o) takes the task instruction I and the current
observation o of the environment to generate a plan p; (see planning program in Appendix [[.3] for
details on how plan is generated), forming a set of candidate plans {p; }_,. Note that the generated
set of candidate plans has not yet interacted with the environment at this stage.

To aid understanding, we have added an example of a planning program for ‘Building SCV’ in
StarCraft II below. As we can see, the planning program is a program capable of interacting with
the environment in a closed-loop paradigm. The input to this program is the current observation
from the environment, and the output plan is an action sequence generated based on that
observation. This plan is then used to interact with the environment to advance task completion.

def planner(obs, action_space, task):
obs is a dict with the specified number of each resource/building/unit at the current game state;
action_space is a list of strings including all the available actions;
task is a unit dict: {"SCV": num_1}, with the goal of building num_1 SCVs.
plan_build, plan_unit, plan = [], [1, []
# infer the tech_tree for SCV
tech_tree = {"SCV": {"base_building": "COMMANDCENTER", "pre_dependency": [1}}
# when supply_left s less than 8, increasing supply_cap (BUILD SUPPLYDEPOT) is mecessary.
if obs["Resource"]["supply_left"] < 8:
if "BUILD SUPPLYDEPOT" in action_space: plan_build.append("BUILD SUPPLYDEPOT")
# gas is important, check if there is a need to collecting gas (BUILD REFINERY).
if obs["Resource"]["gas"] == 0 and "BUILD REFINERY" in action_space:
plan_build.append("BUILD REFINERY")
# Check the number of SCV that still need to be trained at the current game state.
scv_still_needed_num = task["SCV"] - obs["Unit"]["SCV"]
if scv_still_needed_num > O and f"TRAIN SCV" in action_space: plan_unit.append(f"TRAIN SCV")
# Analyze which 'building' are still needed for buildinig SCV at the current game state.
scv_base_building = tech_tree["SCV"] ["base_building"]
if obs["Building"] [scv_base_building] < 1 and f"BUILD {scv_base_building}" in action_space:
plan_build.append (f"BUILD {scv_base_building}")
while plan_build or plan_unit:
if plan_build: plan.append(plan_build.pop(0))
if plan_unit: plan.append(plan_unit.pop(0))
return plan
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4.1.2 SELECTOR SCORING ON CANDIDATE PLANS

The Selector module then evaluates {p; }"_; and samples the most adaptive and long-term rewarding
plan p to interact with the environment. The implementation of the Selector Cy is inspired by
TWOSOME(Tan et al.l [2024). As illustrated in the “2. Selector Scoring” section of Figure El,
Selector Cy is initialized from a tiny language model. Its scoring consists of three stages: calculation
of plans’ probability, plan text length regularization and normalization scoring of plan.

Calculation of Plans’ Probability. The selector begins by taking the “Selector Prompt” as input,
which includes the text description of the current observation, candidate plans, and a prompt in-
structing the selector to evaluate these plans. We denote the selector prompt as d., and the text
description of each plan from the planner as d,,,,7 = 1,...,n. The plan description d,,, for plan p;
can be represented as a sequence of tokens:

dp, = {w},w?, .., w)N}i=1,..,n (5)

where N; denotes the total number of tokens in d, .

Subsequently, Cy calculates the probability for the description of each plan in the context of the
selector prompt, based on the probability of the corresponding tokens in that description:

N;

dep) = [ [ prob(wf|dep, w}, ..., wf ™), i=1,...n (6)
k=1

prob(dy,

Plan Text Length Regularization. Due to the property of probability multiplication in language
models, longer plans with more text inherently have lower likelihoods. Therefore, we apply the
following regularization to eliminate the influence of plan text length:

logit(d,, |dep) = log(prob(dy,|dep)) / Wisi=1,...,n (7
Here W; denotes the number of words in p;. Based on the results from TWOSOME, we chose the
number of words W; over the number of tokens [V, for regularization.

Normalization Scoring of Plan. For language models, the sum of likelihoods for different sets of
candidate plans is inconsistent; hence, Cy scores plan p; by normalizing the logit of its description
using a softmax function:

exp(logit(dy, |d.p) / Temperature)
Z?zl exp(logit(d,,|d.p) / Temperature)

®)

score(p;) =

where Temperature is set to 1.0 for balancing exploration and exploitation during training and 0.0 for
deterministic outputs during testing. Therefore, the score of each plan corresponds to the probability
of its description. We then select the plan p by sampling according to these probabilities:

p = Co(L,0,{pi}i=1) ~ {(pi, score(pi)) }ioy ©)

After executing p, the environment transitions to a new observation o’ and provides a reward 7,
forming a transition (I, o, p, r, 0’) that is stored in a buffer, which is then used in the Learning phase.

4.2 LEARNING PHASE
4.2.1 PROGRAMS EVOLUTION WITH HISTORY SUMMARIZATION

The Programs Evolution with History Summarization iteratively improves the set of planning pro-
grams {p;(p;|I,0)}"_, by incorporating interaction history through in-context learning, as shown
in the “3. Programs Evolution with History Summarization” section on the left side of Figure 2] It
consists of history summarization and planning programs refinement.

History Summarization. After engaging with the environment across N episodes, the history of
the last M episodes (M < N) is summarized in the format: {(trajectory,, signal,)}~ /.. Here,
trajectory; = (of,p?,0},p},...) represents the record of interactions, and signal, € {True, False}
indicates whether the task was completed in the ith episode.
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Planning Programs Refinement. The successful examples, current planning programs, and history
summarization are then integrated into a “Feedback Prompt”, which enables the LLMs to evolve and
generate an improved set of planning programs. The LLM is tasked with analyzing failed trajecto-
ries in comparison to successful ones (e.g., attempting to open a container without approaching it
first). This comparative analysis reveals weaknesses in the planning programs, enabling targeted de-
bugging (see the case analysis in Appendix [F for a more intuitive understanding). By implementing
this approach, the LLMs can progressively refine the set of planning programs.

4.2.2 SELECTOR FINE-TUNING VIA RL

Selector fine-tuning via reinforcement learning (RL) enhances domain experience utilization and
ensures that the selector selects plans optimized for long-term rewards. To achieve this, CoPiC
employs a parameter-efficient LoRA training architecture within the Proximal Policy Optimization
(PPO) framework (Schulman et al.| [2017)) to fine-tune the Selector module.

LoRA. This process incorporates Low-Rank Adaptation (LoRA) (Hu et al, 2021) parameters and
Multilayer Perceptron (MLP) layers to the final transformer block of the Selector’s tiny language
model. These components function as the actor and critic in the PPO setup, respectively.

Fine-Tuning using PPO. Transitions from the replay buffer are used to fine-tune the Selector ac-
cording to the PPO objective (please see Eq[I1]in Appendix). During fine-tuning, only the LoRA
parameters and added MLP layers are updated, while the parameters of the language model itself
remain frozen. The planning and learning phases is detailed in Algorithm

5 RESULTS

| Pick | Examine | Clean | Heat | Cool | Pick Two
| SRt Cost] | SRT Cost] | SRT Cost] | SRT Cost] | SRT Cost] | SRT Cost]

Method

CoPiC (Ours) | 100.00 0.05M | 100.00 0.04M | 100.00 0.33M | 100.00 0.26M | 100.00 0.28M | 9529 0.06M
CoPiC (TSL) 100.00  0.04M | 100.00 0.04M | 100.00 0.29M | 96.52 0.27M | 100.00 0.25M | 100.00 0.09M
CoPiC (Lal) 84.17 0.08M | 78.89 0.09M | 78.71 0.42M | 80.87 0.33M | 78.10 037M | 7529 0.11M
AdaPlanner 100.00 0.63M | 64.44 195M | 91.61 0.89M | 76.52 0.74M | 89.52 1.57M | 87.06 1.58M
Reflexion 91.67 2.09M | 86.67 1.5IM | 7355 254M | 75.65 1.88M | 7333 146M | 81.18 1.65M
Prospector 7083 1.74M | 65.56 1.18M | 7548 2.15M | 82.61 1.48M | 8190 1.18M | 71.76  1.30M
REPL-plan 8250 0.66M | 8333 041M | 89.03 0.75M | 91.30 0.61M | 88.57 0.47M | 100.00 0.43M
LLM-DP 91.67 0.6IM | 95.56 0.2IM | 9290 0.78M | 92.17 0.81M | 9048 1.17M | 81.18 1.08M
GPT-3.5 250  0.56M | 16.67 04IM | 323 0.73M | 435 054M | 476 047M | 4.71 0.40M
Cot-Zero-Shot | 4.17 0.72M | 556 055M | 452 096M | 783 0.7IM | 476 0.65M | 10.59 0.52M
Cot-Few-Shot | 16.67 092M | 11.11 0.68M | 6.45 1.24M | 17.39 085M | 1429 0.78M | 11.76  0.65M
BUTLER 50.00 - 39.00 - 74.00 - 83.00 - 91.00 - 65.00 -

TWOSOME 71.67 032M | 7444 0.19M | 76.78 1.24M | 76.52 1.08M | 8095 1.12M | 81.18 0.72M

Table 1: Comparison of CoPiC and baselines in ALFWorld. M represents millions. CoPiC (TSL)
denotes CoPiC (Test Set Learning). CoPiC (LalJ) denotes CoPiC (LLM-as-a-Judge).

We conducted extensive experiments across three environments: ALFWorld (Shridhar et al., 2020),
NetHack (Kiittler et al., [2020), and StarCraft IT Unit Building. The results highlight that CoPiC: 1)
reduces querying costs while improving success rate (Sec[5.2), 2) exhibits superior data efficiency
(Sec[5.3), and 3) supports open-source LLMs (Sec[5.4.1)), underscores the significance of programs
evolution (Sec and the selector module (Sec[5.4.3).

5.1 EXPERIMENT SETUP

Environments 1) ALFWorld: A widely used benchmark in planning researches (Shinn et al.,
2024; Sun et al., [2024; [Kim et al., [2024; [Liu et al.| | 2024b)), comprising six complex household task
types. 2) NetHack: A roguelike game renowned for its intricate mechanics, with representative
tasks (Drink Water, Open Box/Chest, and Upgrade Exp Level to 3) designed to test agent’s planning
abilities. 3) StarCraft II Unit Building: A challenging resource management problem studied
in prior work (Churchill & Buro, 2011; Tang et al. 2018; [Elnabarawy et al., 2020} |Vinyals et al.,
2019), consisting of tasks with varying complexity: Easy (SCV and BattleCruiser), Medium (SCYV,
Thor, Banshee, and Raven), and Hard (SCV, SiegeTank, Medivac, VikingFighter, and Ghost). For a
detailed introduction to the environment, including task specifics and reward function design, please
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refer to Appendix [C] Note that the reward function design is straightforward and does not incorporate
any expert knowledge.

Baselines We selected baselines: (1) Immediate feedback-based LLM planning methods, includ-
ing vanilla LLM planning (GPT-3.5 / GPT-40), CoT-Zero-Shot, CoT-Few-Shot (Wei et al., [2022),
Reflexion (Shinn et al.| 2024)), AdaPlanner (Sun et al., 2024), Prospector (Kim et al., [2024),
REPL-plan (Liu et al., [2024b), and PDDL-based method LLM-DP(Dagan et al.| [2023)); See Sec
for difference of CoPiC with these baselines. (2) Non-LLM training-based methods, including
PPO (Schulman et al., [2017) (see Appendix [E.6] for PPO’s results and its detailed analysis), BUT-
LER (Shridhar et al.,|2020) and RL-based LLM Policy TWOSOME (Tan et al., 2024).

Metric We evaluated CoPiC against the baselines in two aspects: (1) Planning Quality—Success
Rate (SR 1) and Step |. SR is the percentage of tasks successfully completed during testing (higher
is better). Step is the number of environment interaction steps needed to complete tasks during
testing (lower is better). Since both SR and Step reflect planning quality, we place the results related
to Step in Appendix (2) Planning Efficiency—Token Cost (Cost |). The total token costs of
language model queries required to complete tasks, reflecting method efficiency and cost (lower is
better). Note that for CoPiC, the Cost includes the token costs of both LLMs and Selector’s tiny
language model.

Setting 1) The number of planning programs is set to n = 3 in CoPiC. 2) We use Tinyllama (Zhang
et al.} 2024) as the Selector’s language model for its lightweight nature and impressive performance.
3) For CoPiC and the baselines, GPT-3.5 serves as the base LLM for ALFWorld and StarCraft IT
Unit Building tasks. Given the complexity of NetHack (Jeurissen et al.l [2024), GPT-4o0 is used as
the base LLM. 4) The results are mean values of 5 seeds, and standard deviation can be found in
Table[I0]in Appendix. Additional details on settings can be found in Appendix

5.2 CoOPIC: 19.14% HIGHER SR, 79.39% LOWER COST

Environment | Nethack | StarCraft II Unit Building
Method | Drink Water | Open Box/Chest | Upgrade Exp Level to 3 | Hard

| SRT Cost] | SRt Cost] | SR?T Cost | | SRt Cost |
CoPiC (Ours) | 70.00 0.53M | 65.00 0.42M | 78.67 0.15M 100.00 0.06M
AdaPlanner 60.00 0.64M | 52.67 1.2IM | 67.67 1.25M 71.00 0.36M
Reflexion 58.67 1.07M | 50.00 1.91M | 69.67 2.12M 24.00 0.78M
Prospector 55.33 1.01M | 48.00 1.78M | 65.00 1.98M 68.00 0.68M
REPL-Plan 54.00 0.74M | 46.00 1.20M | 63.00 1.11IM 58.00 0.39M
GPT-40 3333 1.17M | 10.00 1.08M 0.00 1.82M 0.00 0.6M
Cot-Zero-Shot | 56.67 1.24M | 20.00 1.11M 3.33 1.68M 0.00 0.63M
Cot-Few-Shot | 33.33 1.38M | 16.67 1.52M | 10.00 2.47M 17.00 0.69M

Table 2: Comparison of CoPiC and baselines in Nethack and StarCraft IT Unit Building.

As shown in Table|l{and Table |2} CoPiC outperforms the advanced baselines (Reflexion, AdaPlan-
ner, Prospector and REPL-Plan) across three environments. On average, CoPiC achieves a 19.14%
increase in success rate (SR 1), and a 79.39% reduction in token costs (Cost ).

In ALFWorld, CoPiC achieved an 16.96% improvement in SR, and an 83.76% reduction in
Cost. And compared with AdaPlanner, which depends on task-specific prompts, CoPiC leverages
a domain-adaptive selector to holistically refine programs, eliminating the need for such customiza-
tion. Additionally, we constructed CoPiC(TSL)—that is, CoPiC with Test Set Learning—in
Table [I] to demonstrate that CoPiC can work under the same experimental setup as the baselines,
namely Test Set Online Learning. Despite this, CoPiC(TSL) still achieved a success rate that was
17.17% higher than the baselines, while reducing token consumption by 87.16%.

For NetHack, CoPiC achieved an 13.72% improvement in SR, and a 70.96 % reduction in Cost.
For challenging tasks like “Upgrade Exp Level to 3, CoPiC reduced LLMs queries by 96.11% while
improving SR by 10%, thanks to its ability to prioritize long-term rewarding strategies. Specifically,
the Selector module enabled CoPiC to identify that preserving a pet’s life is a more effective long-
term strategy for defeating monsters, highlighting its domain adaptability. In contrast, even though
the baselines explicitly include prompts to protect the pet, they still attack it for short-term rewards.
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1.2

—— CoPiC
AdaPlanner Open-Source LLMs | Method | SR Cost

1.0 —— i
e Befledon CoPiC (ours) | 100.00 0.82M
2 DeepSeek-Coder Adaplanner 79.78  7.14M
Y08 Reflexion 81.00 5.29M
§ CoPiC (ours) | 100.00 0.89M
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0.4 Instruct Adaplanner 64.29 1.82M
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Figure 3: Comparison of SR varying with Trials Table 3: Average performance comparison us-
for CoPiC, AdaPlanner and Reflexion on ALF- ing diverse open-source LLMs on ALFWorld.
World. “OOM?” indicates out-of-memory error.

In StarCraft II Unit Building, CoPiC demonstrated substantial improvements on Hard tasks, with a
44.75% increase in SR, and an 87.86% reduction in Cost. Results for Easy and Medium tasks
further support its superior performance (see Appendix [E)).

In summary, CoPiC consistently outperforms all baselines across key metrics in diverse environ-
ments, demonstrating its ability to generate long-term rewarding plans while maintaining high effi-
ciency. Unlike baselines like Reflexion, AdaPlanner and REPL-Plan, which rely on test-set learn-
ing, CoPiC, trained solely on training tasks, generalizes effectively to unseen test tasks without
incurring additional LLMs querying costs or requiring selector fine-tuning. This unique zero-
shot adaptation capability is enabled by its integration of planning programs and a domain-adaptive
selector. Additionally, examples of evolved planning programs can be found in Appendix [[|and [F

5.3 CoPiC REQUIRES LESS ENVIRONMENTAL DATA

Figure [3] presents the average learning curves of CoPiC, AdaPlanner, and Reflexion on ALFWorld.
Note that ‘Trials’ label on the x-axis is proportional to (o) the total number of interactions with en-
vironment, with a higher number of trials indicating more data. CoPiC demonstrates higher asymp-
totic performance while requiring less environmental data. The result indicates that, comparing to
the immediate feedback mechanisms used in AdaPlanner and Reflexion, CoPiC is more efficient
and domain-adaptive, enabling the selection of plans with long-term rewards and ultimately
delivering superior performance.

5.4 ABLATION

We conducted ablation studies to demonstrate that: 1) CoPiC also supports open-source LLMs.
2) The Programs Evolution module refines planning programs iteratively, enhancing overall per-
formance. 3) The Selector selects high-quality plans, thereby improving performance. Additional
ablation studies on the impact of the number of planning programs are provided in Appendix

5.4.1 CoPIC SUPPORTS OPEN-SOURCE LLMS

CoPiC supports both closed-source LLMs (e.g., GPT series) and open-source LLMs for generating
and refining planning programs. We evaluated CoPiC, AdaPlanner, and Reflexion on the ALF-
World benchmark using open-source LLMs like DeepSeek (Liu et al.| 2024a; |Guo et al.,[2024) and
Qwen2.5-14B (Yang et al., [2024} Hui et al.,|2024])). To ensure fairness, Qwen2.5-Coder-14B-Instruct
was used for CoPiC and AdaPlanner, as both employ code-based methods, while Qwen2.5-14B-
Instruct was applied to Reflexion, which follows a chat-style paradigm.As shown in Table[3] CoPiC
outperformed AdaPlanner by 26.29% in success rate while reducing cost with 85.09%. Re-
flexion struggled with Qwen2.5-14B due to limited context handling, resulting in invalid responses,
chat history accumulation, and eventual out-of-memory (OOM) errors. These results demonstrate
CoPiC’s superior compatibility and efficiency.
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5.4.2 PROGRAMS EVOLUTION REFINES PLANNING

To evaluate the impact of programs evolution, we conducted an experiment where CoPiC’s learned
selector was frozen, existing planning programs were discarded, and the LLMs was tasked with
generating and refining new planning programs using the frozen selector. The evolution curves are
shown in Figure f(a)l As illustrated, the average success rate (red curve) across three tasks
(Clean, Heat, Cool) in ALFWorld improved from 75.60% (initial) to 91.44% (2nd iteration)
and reached 100.00% (4th iteration). These results underscore the pivotal role of programs evo-
lution in refining planning programs and achieving high performance. Besides, a case of program
evolution was provided in Appendix

5.4.3 SELECTOR SCORING ENHANCES PLAN QUALITY

1.10

-+- w/ Critic-Heat
+-= W/ Critic-Cool
= w/ Critic-Average

E 0] w/o Critic-Heat
g o w/o Critic-Cool
" o w/o Critic-Average
n 0.85 o6 ; 2
v 0~ / / :
O ] /
E ] -
7] go4 /
an
—— Average
0.60 :
0 2 4 0 5 10
Trials Trials

(a) (b)

Figure 4: (a) Ablation on Programs Evolution: Evolution curves of program refinement for three
ALFWorld tasks—Clean, Heat, and Cool—along with their average performance. (b) Ablation on
Selector: Performance comparison of CoPiC with (w/) and without (w/o) the Selector in ALFWorld.

We implemented a variant of CoPiC without the selector, employing a strategy that randomly selects
plans from the candidate plans generated by the planning programs. As shown in Figure d(b)| under
the same cost (i.e., an equal number of interaction trials), the success rate with a selector is consis-
tently 20% to 60 % higher than without a selector across two tasks (Heat and Cool) on average.
This demonstrates that the selector not only reduces LLMs querying costs but also enables the se-
lection of higher-quality plans. In summary, these findings highlight the essential role of the selector
in empowering the LLMs to generate high-performance planning programs. Additionally, in Table
we also constructed CoPiC (LaJ), namely CoPiC with LLM-as-a-Judge, to illustrate that the
domain-adaptive selector presented in this paper outperforms an LLM lacking domain knowledge
(here, GPT-4.1). Compared with LLM-as-a-Judge (GPT-4.1-as-a-Judge), the RL-finetuned selector
improves the success rate by 19.88% and reduces token consumption by 27.14%. This improvement
arises because the RL-finetuned selector acquires domain-specific knowledge during interaction,
yielding more accurate plan evaluations than the prior-free LLM-as-a-Judge approach.

6 CONCLUSION AND DISCUSSION

In this paper, we propose Code Driven Planning with Domain-Adaptive SeleCtor (CoPiC), a novel
planning framework that utilizes LLMs for complex tasks. CoPiC uses LLMs to generate multiple
planning programs to iteratively refine plans, reducing the high query costs associated with step-
by-step static plan refinement. And a domain-adaptive selector is adopted to evaluate these plans,
selecting those best aligned with long-term rewards, further bridging the gap between LLMs’ gen-
erality and environment-specific needs. We assess CoPiC across three challenging environments:
ALFWorld, Nethack, and StarCraft I Unit Building. Our results show that CoPiC outperforms ad-
vanced baselines — Reflexion, AdaPlanner, Prospector and REPL-Plan — at a significantly reduced
cost. Looking ahead, we are committed to expanding CoPiC’s application to more complex tasks,
including full games of StarCraft II and Civilization, as well as more intricate real-world scenarios.
Additionally, we discussed the current limitations of CoPiC in Appendix [B]

10
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ensuring no violations of privacy. We have taken meticulous care to avoid any biases or discrimi-
natory outcomes throughout our research process. No personally identifiable information was used,
and no experiments were conducted that could raise privacy or security concerns. We are committed
to maintaining transparency and integrity throughout the entire research process.

8 REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure that the results presented in this paper are fully repro-
ducible. The code for CoPiC, along with the planning programs we generated, has been included in
the supplementary material. The experimental setup, including detailed configurations of hyperpa-
rameters, training and testing procedures, is meticulously described in Appendix [D|and Algorithm
[Il We are confident that these resources and detailed documentation will enable other researchers to
reproduce our work and build upon our findings to further advance the field.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

(1) We take LLM as the base model of CoPiC to generate planning programs. (2) We use LLMs to
assist in checking and correcting grammatical and spelling errors in this paper.

B LIMITATIONS

To facilitate the evolution of planning programs and the training of the selector, CoPiC requires
LLM to generate an initial planning program that can interact with the environment and acquire
experience, even if it is not optimal. Consequently, the LLM used should possess adequate code
generation capabilities. Additionally, since CoPiC is designed for planning-level tasks, scaling it to
more complex and real-world scenarios — such as perception-planning-control tasks involving robots
—requires integration with perception models and low-level controllers. We validated this scalability
of CoPiC in Appendix|E.7

C ENVIRONMENTS DETAILS

C.1 NETHACK

As shown in Netplay Jeurissen et al.| (2024), the primitive Nethack with the goal to retrieve the
Amulet of Yendor is impossible for LLM-based agent. Therefore, here we customized 3 poten-
tially completable tasks based on NetHack: Drink Water, Open Box/Chest, and Upgrade Exp Level,
thereby reasonably quantifying the performance of different approaches. Drink Water requires the
agent to find a sink or fountain in the environment and drink from it. Open Box/Chest requires
the agent to locate a box or chest in the environment and attempt to open it (e.g., using a key or by
kicking). Upgrade Exp Level to 3 requires the agent to kill monsters to reach level 3. All three
tasks are still conducted in the original NetHack environment, where the agent must still pay atten-
tion to various states such as HP, hunger, and whether poisoned, etc., while also needing to defeat
monsters to obtain food, equipment, and experience, etc. Therefore, these three tasks remain very
challenging. All tasks use sparse reward functions, granting a reward of 1 only upon successful task
completion and 0 otherwise.

C.2 STARCRAFT II UNIT BUILDING

StarCraft II is a famous real-time strategy (RTS) game, which encompasses resource management,
technological research, building order, and large-scale battles, all of which require strategic planning
and quick decision-making. The game presents a multifaceted planning environment due to its high-
dimensional action space, long-term planning horizon, and the need for both macro-management
and micro-operation, thus offering a demanding yet fertile ground for Al advancement.

Among the many challenges in StarCraft II, building order is one of the pivotal ones, focusing
on the types and orders of the buildings and units produced. An adeptly devised building order
can markedly elevate the probability of triumph. How to construct an optimal building order is a
sophisticated strategic dilemma, which has been explored through various methodologies, including
heuristic search |Churchill & Buro (2011)), reinforcement learning Tang et al.| (2018); [EInabarawy
et al.[(2020), and imitation learning |Vinyals et al.|(2019).

Therefore, taking into account the complexity nature of building order tasks, we designed a building
benchmark based on StarCraft II. Given instructions describing a target unit collection, the agent
needs to carefully plan resource collection, building sequence, and unit production until the task is
completed.

C.2.1 DESIGN DETAILS

Specifically, we design 3 level tasks: Easy (SCV and BattleCruiser), Medium (SCV, Thor, Banshee,
and Raven), Hard (SCV, SiegeTank, Medivac, VikingFighter, and Ghost).

The primary factor contributing to the escalation in task difficulty is the increase in the number of
unit types. Besides, each task comprises a variety of instructions, differentiated by distinct unit quan-
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tity combinations. For example, in Medium task, the instructions “(16 SCVs, 3 Thors, 3 Banshees,
4 Ravens)” and “(22 SCVs, 4 Thors, 3 Banshees, 5 Ravens)” exemplify this diversity.

C.2.2 REWARD FUNCTION

The following python program details the reward function for StarCraft II Unit Building.

HRAAHHRRRRARAAA Reward Function for StarCraft II Unit Building #AAHAHHHHHHHHHAHY

def building_ins_reward(self, obs, next_obs, parsed_ins):
# Reward for building construction: the increase in the number of the units to be trained
reward = 0
negative_reward_scale = -1
# 1. the increase in the number of the units to be trained
if isinstance(parsed_ins, dict):
units = parsed_ins.keys()
elif isinstance(parsed_ins, list):
# units = parsed_ins
raise NotImplementedError("parsed_ins should be a dict, not a list")

for k in units:
# reward on the change of the number of the units to be trained
c_k_obs, u_k_obs = self.obtain_unit_count(obs, k.upper())
c_k_next_obs, u_k_next_obs = self.obtain_unit_count(next_obs, k.upper())

k_obs = c_k_obs + u_k_obs
k_next_obs = c_k_next_obs + u_k_next_obs

if k_obs >= parsed_ins.get(k):
# negative reward for the units that have been trained enough
reward += negative_reward_scale * (k_next_obs - k_obs)
else:
if k_next_obs <= parsed_ins.get(k):
reward += k_next_obs - k_obs
else:
reward += ((parsed_ins.get(k) - k_obs) + negative_reward_scale * (k_next_obs -
< parsed_ins.get(k)))

return reward
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D EXPERIMENTAL SETTINGS DETAILS

D.1 FAIRNESS EXPLANATION

We quantify the number of tasks that the learning agent of each method must traverse in ALFWorld.
The results demonstrate that the number of tasks CoPiC needs to learn is comparable to that of
Reflexion and AdaPlanner. This finding validates the fairness of the comparison between CoPiC
and the baselines.

ALFWorld is a text-based virtual household environment featuring six distinct task types: Pick and
Place (Pick), Examine in Light (Examine), Clean and Place (Clean), Heat and Place (Heat), Cool
and Place (Cool), and Pick Two and Place (Pick Two). Each task type consists of a training task set,
a seen task set, and an unseen task set. Tasks in the seen task set consist of known task instances
{task-type, object, receptacle, room} that appear in the training set. Tasks in the unseen task set
consist of new task instances that do not appear in the training task set. The number of tasks in each
set is as follows:

Task Type | train  seen unseen

Pick 790 35 24
Examine 308 13 18
Clean 650 27 31
Heat 459 16 23
Cool 533 25 21
Pick Two 813 24 17
All 3553 140 134

Table 4: Number of tasks in each set of ALFWorld

Reflexion and AdaPlanner both learn directly from unseen test tasks. Reflexion is a framework
that reinforces language agents with a “trial-and-error” mechanism, repeating the process for each
task. AdaPlanner is a closed-loop planning method that generates and adjusts programs iteratively
to interact with each task. Therefore, both methods use the total 134 tasks from the unseen test set
during the learning process.

For CoPiC, we (1) learn from several training tasks and then deploy the learned planning
programs and selector to unseen test tasks without incurring additional LLM querying costs
or further selector fine-tuning. For each type of task, CoPiC selects 20 tasks randomly from the
training set for evolving planning programs and fine-tuning the selector. Therefore, (2) the total
number of tasks used for the six types of tasks during CoPiC’s learning is 20 x 6 = 120,
which is similar to the 134 tasks used in Reflexion and AdaPlanner. Notably, since fine-tuning
our selector is essentially a learning process for a neural network, we believe that learning on the
training set and then evaluating on the unseen test set constitutes a more appropriate setup.

We emphasize that, compared to the experimental setup of the baselines, CoPiC’s setup imposes
higher demands on the model, requiring it to generalize zero-shot to unseen tasks. Therefore,
CoPiC outperforms the baselines under more stringent setup. Besides, CoPiC can also perform
online learning on the test set same as baselines. Here we constructed such setup identical to that of
the baselines by allowing CoPiC to perform online learning on the test set, namely CoPiC(TSL) in
Table [T} Under this completely consistent setup, CoPiC(TSL) still achieved a success rate that was
17.17% higher than the baselines, while reducing token consumption by 87.16%.

D.2 DETAILED HYPERPARAMETERS

We detailed the hyperparameters appearing in Algorithm [I]of CoPiC in Table[3}
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Hyperparameters | Value

n 3
N 20
max_Trials 10
M 5
K 128

Table 5: The detailed hyperparameters used in CoPiC.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 STARCRAEFT II UNIT BUILDING

Here, we present the experimental results for the Easy and Medium tasks of the StarCraft II Unit
Building, as detailed in Table@ In the Easy task, CoPiC achieved the same success rate as advanced
baselines at a 88.48% cost reduction. In the Medium task, CoPiC’s success rate was 35.50% higher
than that of advanced baselines, while reducing the cost by 75.97%.

‘ Easy ‘ Medium
| SRT Cost| | SRT Cost]

CoPiC (Ours) | 100.00 0.07M 100.00 0.17M
AdaPlanner 100.00 0.41M | 64.00 0.53M

Method

Reflexion 100.00 0.89M | 64.00 0.98M
Prospector 100.00 091M | 71.00 0.95M
REPL-Plan 100.00 0.52M | 59.00 0.59M
GPT-3.5 3200 0.56M | 0.00  0.6M

Cot-Zero-Shot | 20.00  0.6M 0.00 0.63M
Cot-Few-Shot | 100.00 0.57M | 50.00 0.65M
PPO 0.00 - 0.00 -

Table 6: Results on the Easy and Medium tasks of StarCraft IT Unit Building. SR denotes Success
Rate and Cost denotes LLMs Querying Costs. Step in this Table means the metric Interact Steps

E.2 COMPARSION OF TOKEN COSTS BETWEEN PLANNER AND SELECTOR IN COPIC

LLMs \ Module Input Tokens  Output Tokens Total Tokens
GPT-35 LLMs Query 0.40M 0.05M 0.45M
’ TinyLlama Query 0.55M 0.02M 0.57M
LLMs Query 0.14M 0.02M 0.16M
DeepSeek-Coder | 01 lama Query  0.63M 0.03M 0.66M
LLMs Query 0.18M 0.03M 0.21M
DeepSeek-V3 | 1inLlama Query  0.65M 0.03M 0.68M
LLMs Query 0.11M 0.02M 0.13M
Qwen2.5-14B | o lama Query  0.64M 0.03M 0.67M

Table 7: Comparison on total tokens costs between LLMs querying and TinyLlama querying (selec-
tor) in CoPiC on ALFWorld. M is million.

In CoPiC, we compared the token consumption of LLMs in the Planner for generating and enhancing
planning programs with that of TinyLlama in the Selector for plan evaluation and fine - tuning, as
presented in Table [/l Despite consuming 2.72x tokens of LLMs, the cost of querying TinyLlama
(the selector) during training and testing is negligible due to its small size (1.1B), which is only 1/13
(Qwen2.5-14B) to 1/610 (DeepSeek-V3) of our LLMs.
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E.3 METRIC: STEP

Step refers to the number of environment interaction steps needed to complete tasks during test-
ing, reflecting planning quality (fewer steps indicate higher quality). As shown in Table 8] CoPiC
achieves a 30.43 % reduction in Step compared with advanced baselines, demonstrating its superior
planning quality.

Method | Pick | Examine | Clean | Heat | Cool | Pick Two

CoPiC (Ours) | 16.06 16.94 14.63 | 16.83 | 14.60 22.74
AdaPlanner 15.92 23.33 16.94 | 30.50 | 18.90 25.47

Reflexion 29.31 38.18 34.09 | 28.44 | 35.81 35.14
Prospector 18.10 24.33 21.29 | 26.26 | 21.71 26.67
REPL-Plan 21.11 18.29 2221 | 23.14 | 21.37 27.15
GPT-3.5 50.00 48.06 50.00 | 50.00 | 47.95 50.00

Cot-Zero-Shot | 48.92 49.28 50.00 | 50.00 | 50.00 50.00
Cot-Few-Shot | 45.29 45.00 47.35 | 43.74 | 43.90 45.06

Table 8: Comparison of CoPiC and baselines in ALFWorld on metric Step J.

E.4 ABLATION ON THE NUMBER OF PLANNING PROGRAMS

We conducted an ablation study on the number of planning programs in the StarCraft II Unit Build-
ing environment. Specifically, we froze the learned selector in CoPiC, discarded the existing plan-
ning programs, and instructed the LLM to generate new planning programs guided by the frozen
selector. The impact of varying the number of planning programs from 1 to 4 is summarized in
Table 9} The results show that multiple planning programs consistently succeeded in completing
all three task types, a feat unattainable by a single program. Thus, utilizing multiple planning
programs significantly outperforms relying on a single one. Additionally, among configurations
using 2 to 4 programs, the use of 3 programs achieved optimal performance at the lowest cost.
This balance avoids both the underrepresentation of essential technology trees caused by too few
programs and the increased complexity in the selector’s evaluation with too many programs.

E.5 STANDARD DEVIATION OF COPIC vS. BASELINES IN ALFWORLD

Tabel [I0] shows the standard deviation of the task success rate across 5 runs for each method in
ALFWorld. Owing to the stability of the planning programs (which produce the same output given
the same input) and the Selector’s acquisition of domain-specific knowledge, CoPiC exhibits more
stable performance than baselines.

E.6 RESULTS OF PPO ON ALFWORLD

Table [T1]shows the results of PPO in ALFWorld. We emphasize that we have thoroughly tuned the
hyperparameters of PPO, including batch size € [32, 64, 128, 256], clip ratio € [0.1, 0.2, 0.3], policy
learning rate € [5x 1077,5x 1075, 1x 107%,1x 107%,3x 1074, 1 x 103, and entropy coefficient

Task | Number SRT Cost|

n=1 067 0.16M
- n=2 100 0.10M
asy n=3 100 0.05M
n=4  1.00 0.08M

n=1 033 0.18M

. n=2 100 02IM
Medium | _ 3 100 0.14M
n=4 100 023M

n=1 033 0.13M

Hard n=2 100 0.11M
ar n=3  1.00 0.04M
n=4  1.00 0.08M

Table 9: Ablation on Planners in StarCraft II Unit Building. n is the number of planning programs.
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Method \ Pick Examine Clean Heat Cool Pick Two
CoPiC 0.00 0.00 0.00 0.00 0.00 4.40
AdaPlanner 0.00 10.30 6.32 7.58 6.32 4.40
Reflexion 791 10.89 6.58 12.17 17.74 8.65
Prospector 745 11.33 6.64  6.15 10.17  12.56
REPL-plan 7.17 10.54 8.31 7.28 7.13 0.00
GPT-3.5 3.33  9.30 4.08 6.74 3.01 5.76
CoT-Zero-Shot | 3.73 6.09 5.62 10.43  6.02 13.10
CoT-Few-Shot | 4.56 4.97 4.08 9.53 4.26 11.16

Table 10: Standard Deviation ({) of task success rate across 5 runs for each method

Method | Pick | Examine | Clean | Heat | Cool | Pick Two
| SRt Cost] | SRT Cost] | SRT Cost] | SRT Cost] | SRT Cost] | SRT Cost]

100.00 0.05M | 100.00 0.04M | 100.00 0.33M | 100.00 0.26M | 100.00 0.28M | 9529 0.06M
0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 -

CoPiC (Ours)
PPO

Table 11: Comparison of CoPiC and PPO in ALFWorld. M represents millions.

€ [0.001,0.01,0.1]. The vast observation and action spaces, combined with out-of-distribution
(OOD) test sets and sparse rewards, pose significant challenges. Consequently, PPO, without any
prior knowledge, is unable to effectively handle the planning tasks in ALFWorld, resulting in a
success rate that consistently remains at 0. Besides, Table [12]also listed other key hyperparameters
of PPO used in the results.

E.7 VALIDATING COPIC’S SCALABILITY USING ROBOSUITE

In this section, we validated the scalability of CoPiC. We conducted experiments with an URSe
robotic arm equipped with a two-finger gripper in Robosuite (Zhu et al., 2020), an environment
with visual observation inputs and continuous action outputs. The tasks we used include Lift,
Pick-and-Place, and Stack-Three-Cubes. To extend CoPiC to Robosuite, we provided some neces-
sary information about the environment, mainly the action space of the environment, which includes
actions such as move_gripper(posX, posY, posZ), open_gripper(), close_gripper(), etc. In the follow-
ing paragraphs, we first describe our workflow pipelines and then present the experimental results.

Workflow Pipelines Overview
* Perception: Ultilize vision foundation models to transform RGB image inputs into text
inputs.
* Planning: CoPiC completes high-level planning based on the text inputs.
* Control: Use low-level controllers to convert the high-level plans into executable actions

in the environment to complete the tasks.

The details are as follows.

Hyperparameter | Value
epsilon 0.2
lambda (GAE) 0.9
critic learning rate le-5
mini batch size 32

epochs per update 10
value loss cofficient | 0.5
gamma 0.99

Table 12: Other key hyperparameters used in PPO.
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Method \ Lift Pick-and-Place = Stack-Three-Cubes
CoPiC 100.00 96.67 91.67
GPT-3.5 | 78.33 65.00 48.33

Table 13: Comparison of CoPiC and GPT-3.5 on Robosuite

(1) Perception: The input for the task is an RGB image. We first use GroundingDINO (Liu et al.,
2024c) to process the image and obtain the bounding boxes for all objects within it. Then, we
use SAM (Kirillov et al., |2023) to generate precise segmentation masks for the objects based on
the image and bounding boxes. Next, we process the image with DepthPro (Bochkovskii et al.,
2024) to obtain a depth map. By combining the camera intrinsic parameters, we back-project the
segmentation masks of the objects from pixel space to 3D space to obtain 3D point clouds, and take
the median of the point cloud as the position vector of the objects. We then describe the task in text
format based on the position vectors, in a format similar to: “Move the cube located at (0, 1.1, 0) to
the plate located at (2, 2.4, 0)”.

(2) Planning: CoPiC generates planning programs based on the “task text description” and
“the descriptions of action space” (including move_gripper(posX, posY, posZ), open_gripper(),
close_gripper(), etc.) to perform planning.

(3) Control: We use the predefined low-level controllers (i.e pre-defined APIs of
move_gripper(posX, posY, posZ), open_gripper(), close_gripper(), etc.) to ground the plan in the
environment.

Results: For each type of task, during the test, we randomly generated 20 layouts for the objects
based on a distribution different from that used in training. The success rate averaged over three
seeds of CoPiC and GPT-3.5 are as follows. GPT-3.5 refers to using GPT-3.5 directly for planning
in the Planning part of the workflow pipeline above (with the same action space information provided
as for CoPiC). As can be seen from the Table[I3] CoPiC achieved a success rate that was 32.23%
higher than that of GPT-3.5, demonstrating that CoPiC can be extended to tasks that require
visual perception, planning, and sophisticated control simultaneously.

E.8 COPIC 1s ROBUST ON TEMPERATURE VARIATION

In this section, we discuss the sensitivity of CoPiC to variations in temperature settings. The follow-
ing ablation studies on different temperatures demonstrate that temperature has a certain impact on
CoPiC’s performance and cost, but CoPiC is not highly sensitive to temperature variations. Overall,
CoPiC can adapt a broad range of temperature settings (0.2 ~ 0.8), thereby ensuring both the
diversity and quality of the plans.

Method | Pick | Examine | Clean | Heat | Cool | Pick Two

| SRt Cost| | SRt Cost] | SRT Cost] | SRt Cost| | SRT Cost] | SRT Cost]
CoPiC (0.2) | 100.00 0.12M | 90.00 0.08M | 9290 0.63M | 97.37 0.57M | 9524 0.38M | 92.94 0.11M
CoPiC (0.5) | 100.00 0.13M | 95.56 0.07M | 91.61 0.55M | 96.52 0.48M | 100.00 0.37M | 96.47 0.09M
CoPiC (0.6) | 100.00 0.05M | 100.00 0.04M | 100.00 0.33M | 100.00 0.26M | 100.00 0.28M | 95.29 0.06M
CoPiC (0.8) | 100.00 0.10M | 100.00 0.07M | 99.35 0.39M | 94.78 0.52M | 9143 0.29M | 97.65 0.07M

Table 14: The impact of temperature variations on CoPiC’s performance. CoPiC(0.2) denotes setting
the temperature of the LLM to 0.2, with the same logic applying to the other rows.

E.9 CoPIC CAN BENEFIT FROM EXPERIENCES OF OTHER TYPE OF TASKS.

In this section, we compared the performance of CoPiC’s planning programs initialized with
and without interaction experiences from the Pick task on the Clean, Heat, and Cool tasks in ALF-
World. The results are presented in Table It can be observed that with interaction experiences
from previously completed tasks incorporated as part of the prompt, the success rate of CoPiC’s
initially generated planning programs increased by 11.63%. This indicates that LLM can enhance
its capability to generate initial plans by leveraging existing experiences.
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Method | Clean Heat  Cool

CoPiC w Pick Exp | 43.87 5391 14.29
CoPiC w/o Pick Exp | 38.06 39.13  0.00

Table 15: Comparison of CoPiC with and without interaction experiences from Pick tasks.

Task \ GPT-3.5 DeepSeek-Coder  DeepSeek-V3  Qwen2.5-Coder-14B-Instruct  Qwen?2.5-14B-Instruct
Pick 0.2153 (0.2682)  0.3516 (0.4167)  0.3455 (0.3750) 0.4193 (0.5208) 0.2023 (0.3672)
Examine | 0.3342 (0.4062)  0.3177(0.4453)  0.3681 (0.3776) 0.3741 (0.3229) 0.3741 (0.4453)

Table 16: Quantification of Diversity

E.10 QUANTIFICATION OF DIVERSITY ON A SET OF PLANNING PROGRAMS

In this section, we present the quantification of diversity on a set of planning programs. When
generating planning programs, we set a relatively high temperature (0.6) for the LLMs and employed
multiple sampling to produce these programs. Given the large planning space of the tasks and the
lack of domain-specific experience in general-purpose LLMs, the programs generated through
multiple sampling exhibit sufficient diversity. Table |16| presents the quantitative diversity results
for a set of planning programs generated by each base model on the Pick and Examine tasks in
ALFWorld. The calculation formula is:

N-1 N
2
Diversity =1 — ——— sim(p;, p;) (10)
N(N -1) ; jz;-l ’

where sim(p;, p;) denotes the MinHash Jaccard Similarity between two planning programs. The
results in the table, with each entry formatted as Mean Diversity (Max Diversity) for three sets of
planning programs, each set comprising three programs generated by the LLM for the task, demon-
strate that the planning programs generated by CoPiC exhibit good diversity.

For the same task, the planning programs generated by the LLM may share the same overall logic.
For instance, the planning logic for the Cool task might consistently be ”find object — pick object
— cool object — find receptacle — place object”. The actual differences often manifest in the
specific implementation of a particular step, such as variations in the logic for “finding object”.
Below are two concrete examples, with Diversity = 0.2813. It can be observed that when the ob-
ject is not found, the first planning program will conduct simple exploration, while the second
planning program will attempt to first traverse the receptacles that may contain the object,
resorting to exploration only if no available receptacles are found. It can be observed that when
the object is not found, the first planning program will conduct simple exploration, while the
second planning program will attempt to first traverse the receptacles that may contain the ob-
ject, resorting to exploration only if no available receptacles are found. Due to the complexity
of the tasks, such differences in logic will exist among different programs.

def pick_cool_then_place(self, objecttype, receptacletype):
# Step 1: Find and Pick the object
if self.name2type(self.holding) != self.name2type(objecttype):
# Find the object
entity = self.find_object(objecttype)
if entity is Nome:
# Explore the environment to find the object
self.explore()
return
else:
# Go to the object's receptacle and take it
self.goto(entity.in_on)
r_entity = self.seen_entitys[entity.in_on]
if r_entity.openable and not r_entity.isopen:
self.open_receptacle(r_entity.name)
self .take(entity.name, entity.in_on)
return

else:
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# Step 2: Cool the object in a fridge

# Step 3: Find specified receptacle and Place the cooled object in it

def pick_cool_then_place(self, objecttype, receptacletype):
# Step 1: Find and Pick the object
if self.name2type(self.holding) '= self.name2type(objecttype):
# Find the object
entity = self.find_object(objecttype)
if entity is Nome:
# Find receptacletypes that can contain the object
r_types = self.find_canbe_contained(objecttype)
if r_types is None:
# Exzplore the environment to find the object
self.explore()
return
else:
# Check each receptacletype to find the object
for r_type in r_types:
r_entitys = self.find_receptacles(r_type)
if r_entitys is Nomne:
continue
for r_entity in r_entitys:
self.goto(r_entity.name)
if r_entity.openable and not r_entity.isopen:
self.open_receptacle(r_entity.name)
# Check if the object is inside the receptacle
if entity is Nome:
entity = self.find_object(objecttype)
if entity is not None:
break
if entity is not Nonme:
break
if entity is Nomne:
# Explore the environment to find the object
self.explore()
return
# Go to the object's receptacle and take it

else:
# Step 2: Cool the object in a fridge

# Step 3: Find specified receptacle and Place the cooled object in it
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E.11 ANALYSIS OF NUMBER OF PLANNING PROGRAMS ON SUPERHARD TASK

n | 2 3 4 5 6

SR1T | 32.00 44.00 72.00 96.00 92.00
Cost) | 1.71 2,14 392 242 388

Table 17: Results for varying n on SuperHard Task.

We further constructed the SuperHard task on the StarCraft I Unit Building environment, which
requires building all 17 Terran unit types. The results for varying values of n on this task are shown
in Table It can be seen that on the SuperHard task, the number of required planning programs
has also increased to 5. The performance of the n = 6 slightly drops compared with n = 5, because
a larger n raises the difficulty for the selector to pick the plan most aligned with the long-term
reward—a trade-off between the number of programs and performance. Overall, the greater variety
of unit types implies a more complex tech tree, and to fully construct this complex tech tree, more
planning programs are needed to work in coordination. And CoPiC’s diverse planning programs,
combined with the domain-adaptive selector, enable it to scale and tackle such complex tasks.

E.12 ANALYSIS OF THE SELECTOR’S FREQUENCY IN SWITCHING PLANNING PROGRAMS

Task \Pick Examine Clean Heat Cool Pick Two
Switch Interval \ 2.78 1.52 1.34 1.68 1.76 2.32

Table 18: The intervals at which the Selector switches planning programs.

The Table [18| shows the intervals at which the Domain-Adaptive Selector switches planning pro-
grams to generate plans in ALFWorld. The results indicate that for simpler tasks, such as Pick, the
switching intervals are longer (i.e., lower frequency), while for more complex tasks, such as Ex-
amine and Clean, the switching intervals are shorter (i.e., higher frequency). This finding suggests
that as task complexity increases, the number of necessary planning programs correspondingly rises.
Consequently, the selector needs to switch plans more frequently in these more challenging tasks to
adapt to their rising complexity. This also shows that generating a single planning program capable
of completing the task is difficult, whereas CoPiC produces diverse planning programs and, with the
domain-adaptive selector, accomplishes the task at a lower cost.

E.13 CoPiC’s ‘MINIMAL-EXAMPLE’ EXPERIMENT

Method ‘ Medium ‘ Hard |  SuperHard
| SRT Cost] | SRt Cost] | SRt Cost]
CoPiC (minimal-example) | 100.00 0.18M | 100.00 0.08M | 92.00 2.45M

CoPiC 100.00 0.17M | 100.00 0.06M | 96.00 2.42M
AdaPlanner 64.00 0.53M | 71.00 0.36M | 32.00 6.08M
Reflexion 64.00 0.98M | 24.00 0.78M | 34.00 6.74M
Prospector 71.00 0.95M | 68.00 0.68M | 42.00 7.02M
REPL-Plan 59.00 0.59M | 58.00 0.39M | 39.00 5.61M

Table 19: ‘Minimal-Example’ Results on the Medium, Hard and SuperHard tasks of StarCraft II
Unit Building. SR denotes Success Rate and Cost denotes LLMs Querying Costs.

In this section, we conducted an additional ‘minimal-example’ experiment on StarCraft I Unit
Building (SC2) to demonstrate that CoPiC’s high performance should not attributable to the effort
put into initial prompts, but from its core design of the iterative refinement of planning programs
and domain-adaptive selector. Specifically, we replaced the planning program example in CoPiC’s
prompt with the simplest possible SC2 task — Building SCV (i.e. the example provided in Sec
[.1.T) — thereby minimizing the environmental information conveyed by the prompt. The results are
summarized in the Table As we can see, (1) CoPiC(minimal-example) is almost identical to

24



Published as a conference paper at ICLR 2026

CoPiC in both success rate (97.33% vs. 98.67%) and cost (0.90M vs. 0.88M); (2) CoPiC(minimal-
example) still achieves a 45.17% higher success rate and 64.70% lower cost than the baselines.
This outcome confirms that CoPiC’s high performance is rooted in its architectural innovations, not
in prompt engineering.
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F PROGRAMS EVOLUTION PROCESS

In CoPiC, LLMs do not indiscriminately improve programs but instead analyze interaction histo-
ries to make targeted enhancements. We provide an example to illustrate this.

Old Interaction History (only key parts)

Obs: You are in the middle of a room. Looking quickly around you, you see ...
Your task is to: cool some egg and put it in microwave.

Act: go to countertop 1

Obs: On the countertop 1, you see a apple 1, a creditcard 1, a egg 1, a fork 2, a knife 2, a peppershaker
— 1, a plate 1, and a spoon 1.

Act: go to countertop 1 # Redundant action (comment just for explaining, not included in prompt)

Obs: Nothing happens. # No state change (comment just for explaining, not included in prompt)

The agent had already reached countertop 1 and identified egg 1. The logical next action should
be take egg 1, but the program redundantly re-executed go to countertop 1.

Original Planning Program (with Flaw)

def pick_cool_then_place(self, objecttype, receptacletype):
# First, pick up the object if we're not already holding it
if self.name2type(self.holding) '= self.name2type(objecttype):
# Find the object

# Check each receptacletype to find the object
for r_type in r_types:
# find and check each receptacle of receptacletype
r_entitys = self.find_receptacles(r_type)
if r_entitys is Nome:
continue
for r_entity in r_entitys:
self.goto(r_entity.name)
if r_entity.openable and not r_entity.isopen:
self.open_receptacle(r_entity.name)
return
else:
# We're holding the object - nmow we need to cool it

# After cooling, place the object in the target receptacle

Based on the interaction history, the LLM identified issue: the  pro-
gram navigated (self.goto(r_entity.name)) to receptacles and opened
(self.open_receptacle(r_entity.name)) them but failed to take the target object (egg 1 in
this case). The take action was entirely absent from the logic flow.

LLM-Enhanced Program

def pick_cool_then_place(self, objecttype, receptacletype):
# First check if we're already holding the object we need to cool
if self.name2type(self.holding) != self.name2type(objecttype):
# Find the object

# Check each receptacletype to find the object
# same as the old program
# New critical addition +++++++++++++
# Check if object is directly on this receptacle
if hasattr(r_entity, 'contents'):
for obj in r_entity.contents:
if self.name2type(obj.name) == self.name2type(objecttype):
self.take(obj.name, r_entity.name)
return

else:

# We have the object, now we need to cool it
# Find a fridge to cool the object

# Now place the cooled object in the target receptacle
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Key Improvement: Added explicit checks for object presence and a self.take() call to take the
target item after navigation.

New Interaction History (only key parts)

Obs: You are in the middle of a room. Looking quickly around you, you see ...
Your task is to: cool some egg and put it in microwave.

Act: go to countertop 1

Obs: On the countertop 1, you see a apple 1, a creditcard 1, a egg 1, a fork 2, a knife 2, a peppershaker
— 1, a plate 1, and a spoon 1.

Act: take egg 1 from countertop 1 # useful action

Obs: You pick up the egg 1 from the countertop 1.

We emphasize that while current LLM-based program improvement methods remain probabilistic,
CoPiC’s analysis of interaction histories provides two critical guarantees: (1) Problem Diagnosis:
Failures explicitly expose flawed logic (e.g., missing take actions), enabling targeted corrections.
(2) Measurable Progress: Enhancements to planning programs manifest either through increased
task success rates or the elimination of observed failure modes (e.g., redundant navigation due to
missing take logic).
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G PSEUDOCODE OF CoPIC

Algorithm 1 CoPiC

Input: Number of planning programs n, episodes N, total Trials max_T'rials, summary size M,
init_prompt, evolve_prompt, selector parameters 6, selector fine-tuning steps K

Output: Planning programs {p; }?_,, selector Cy

1: Initialize n, N, M, max_T'rials, init_prompt, evolve_prompt, 0, K
2: Initialize interaction history H < {}, replay buffer D <+ {}, environment step step < 0
3: Initialize success rate threshold threshold
4: Initialize {p;}}* ; using init_prompt
5: Setcur_Trials < 0
6: while True do
7. Set n_success < 0
8:  for episode =1to N do
9: Reset env, get instruction I, observation o
10: while not done do
11: Generate candidate plans {p; = p;(p;|I,0)}7,
12: Select plan p = Cy(I, 0, {pi}71)
13: Step environment with plan p, receive o', reward r, success flag signal, done flag done
14: Store (I, 0,p,r, 0, done) in buffer D
15: Store (I, 0, p, signal) in history H
16: n_success <— n_success + signal
17: if step % K == 0 then
18: Fine-tune selector 0 using buffer D via PPO objective shown in Eq
19: Reset buffer D
20: end if
21: 0+ 0o
22: end while
23:  end for
24:  if n_success/N > threshold then
25: break
26:  endif

27:  curd'rials <+ curTrials + 1
28:  if cur_Trials > max_Trials then

29: break
30:  end if
31:  Summarize the last M episodes in H as an interaction summary

32:  Evolve new planning programs {p;}""_; using evolve_prompt and interaction summary
33:  Reset history H

34: end while

35: Return {p;}7 ;, Cy

The PPO objective used for fine-tuning Selector is:

LEPO(0) = Ey[min(re(0) Ay, clip(r(0),1—€, 14+€)Ay) — 1 (Vo (s¢) — Ry )2 + o H[Cyl(04)] (11)

Co(pt|ot,I)
Co,yq (Ptloe,T)
Vp is the value function; H[Cy|(o;) is the entropy bonus.

where r4(0) = is the probability ratio; A, is an estimator of the advantage function;
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H PROMPT DETAILS

In this section, we detail the prompts of CoPiC used in ALFWorld, Nethack, and StarCraft IT Unit
Building.

H.1 PROMPTS IN ALFWORLD

H.1.1 INITIALIZATION-ALFWORLD

# You are a household agent. Here is some Python code defining a household environment:

# Entity class an object/receptacle in the environment, including its properties
class Entity:
def __init__(self, x*kwargs):
self.name = None
self.loc = None # location
self.in_on = None # the receptacle that the object is in/on
self.ishot, self.iscool, self.isclean = None, None, None
self.isopen, self.ison, self.istoggled = None, None, None
self.pickupable, self.openable, self.toggleable = None, None, None
self.heatable, self.coolable, self.cleanable = None, None, None
self.isobject, self.isreceptacle, self.isreceptacleobject = None, None, None
self.type = None
self.checked = None
for key, value in kwargs.items():
setattr(self, key, value)

assert self.name is not None
assert self.type is not None

# Entitys class stores all the entities in the environment

class Entitys:
# return the entity with the given name, where the format of the given name is similar to "apple 22".
def __getitem__(self, entity_name):

# Agent class represents the state of the agent, including its locationm,
# what it's holding, entities it has seen, as well as the actions it can take.
class Agent:
def __init__(self, ...):
self.holding = None
self.location = None
self.seen_entitys = Entitys()

# Here are some assistant methods the agent can using:
# return the receptacletypes that can contain the objecttype

def find_canbe_contained(self, objecttype: str):

# return an object(Entity) with the given objecttype
def find_object(self, objecttype: str):

# return a list of object(Entity) with the given objecttype
def find_objects(self, objecttype: str):

# return a receptacle(Entity) with the given receptacletype
def find_receptacle(self, receptacletype: str):

# return a list of receptacle(Entity) with the given receptacletype
def find_receptacles(self, receptacletype: str):

# name2type transforms a name to a type, like 'apple', 'apple 22' or 'appletype ' -> 'appletype '
def name2type(self, name: str):

# Here are the admissible actions the agent can take:

# Explore the environment and observe the entities in it.

def explore(self):

# Go to a receptacle
# For example: goto('countertop 1').
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# Only goto(receptacle.name) and goto(object.in_on) is allowed. goto(entity.loc) is prohibited.
def goto(self, receptacle):

# Take an object from a receptacle if the agent is not holding anything.
# For example: take('soapbar 1', 'towelholder 1')
def take(self, object, receptacle):

# Put an object in or on a receptacle if the agent is holding it.
# For example: put('soapbar 1', 'cabinet 1')
def put(self, object, receptacle):

# Open a receptacle and observe its contents.
# For example: open_receptacle('cabinet 1')
def open_receptacle(self, receptacle):

# Close an opened receptacle.
# For example: close_receptacle('cabinet 1')
def close_receptacle(self, receptacle):

# Clean an object with sinkbasin.
# For example: clean('soapbar 1', 'sinkbasin 1')
def clean(self, object, receptacle):

# Heat an object with a receptacle.
# For example: heat('tomato 1', 'microwave 1')
def heat(self, object, receptacle):

# Cool an object with a receptacle.
# For example: cool('pan 2', 'fridge 1')
def cool(self, object, receptacle):

# Turn on an object.
# For example: turn_on('desklamp 1')
def turn_on(self, object):

# Method need to be completed for the task: <task>
<task_method>:

# Now complete the “<task_method>" to solve the task by composing the agent's methods to interact with
<~ the environment.

# Here is an successful example of a solution to another type of task:
<example>

# Here is the actual task.

# <task>, that is, <task_method_desc>

# Referring to the successful example and its code, you should complete your solution function below:
<task_method>:

# Note: Do not directly call the “<example_method_name>" in the example. You should use its code as a
— reference.

H.1.2 EvOLUTION-ALFWORLD

<Init_prompt>
# Here is an example of a solution to the task:
<example>

# Here is the actual task.
# <task>, that is, <task_method_desc>

You have generated code of <task _method> to solve the task as follows:
<python_program_0>

<python_program_1>

<python_program_2>
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However, you executed the <task_method> function and get an interaction history as follows:
<interaction_history>

Let's think step by step. Referring to the successful case and the interaction history, you should
< generate superior solution functionm.

<task_method>:
# Note: Do not directly call the “<example method_name>" in the example. You should use its code as a
— reference.

H.2 PROMPTS IN NETHACK

H.2.1 INITIALIZATION-NETHACK

You are an agent who plays the rogue-like game NetHack 3.6.6 using a “Python™ program.

Here is a template for the “Python™ program that interacts with NetHack, and you need to fill in the
— template at the placeholders (i.e., “init", “update_init® and “core_function”) to accomplish a
< certain task in Nethack.

Here is the template:
* T “python
from netplay.core.skill_repository import SkillRepository
from netplay.nethack_agent.agent import NetHackAgent
from netplay.nethack_agent.skill_selection import *
from netplay.copic_agent.data import object_names, weapon_names, armor_names, \
ring names, amulet_names, tool_names, container_names, weptool_names, food_names, \
potion_names, scroll_names, spell_names, wand_names, coin_names, gem_names, \
rock_names, misc_names, questitem_names, object_can_pickup_names

class NethackTemplate(SimpleSkillSelector):

def init(self, agent, dict_obs: dict):

placeholder: Add variables for this specific skill selector...
i

def update_init(self, agent, dict_obs: dict) -> dict:

placeholder: Update variables for this specific skill selector...
wn

def core_function(self, agent, dict_obs: dict) -> SkillSelection:

placeholder: Fill in your core function here, using to interact with NetHack.
i

Here is an example of “init”, “update_init” and “core_function® for accomplishing the task 'Find an
— item'.

<example>

Now fill the template to accomplish the tasks 'Upgrade your experience level to 3 in the 1st depth' in
<~ Nethack.

H.2.2 EVOLUTION-NETHACK

<Init_prompt>

Now there are 3 “Python™ programs used to interact with Nethack to accomplish the tasks 'Upgrade your
— experience level to 3 in the 1st depth':

Program 1:

* " “python

{$python_program_0$}

Program 2:

* " “python

{$python_program_1$}

Program 3:
© " “python
{$python_program_2$}

At each step, each program provides a plan. Subsequently, an oracle scoring model selects the optimal
<~ plan from the 3 plans to interact with the environment.
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And the results of the 3 “Python™ programs are:
{$the_interaction_results$}

With the 3 reference programs and their results, I need you explore and develop a more optimal program to
— accomplish the task. In addition, the class in the optimized program still need to be named
<~ “NethackTemplate~.

H.3 PROMPTS IN STARCRAFT II UNIT BUILDING

H.3.1 INITIALIZATION-STARCRAFT II UNIT BUILDING

You are an AI capable of generating “Python™ programs to accomplish certain tasks in StarCraft II, and
< you have an in-depth understanding of all the knowledge about the Terran race in StarCraft II.

Here is an example for you to refer to on how to generate a program to accomplish the task:
<example>

The logic of the program's operation is to iteratively generate plans and interact with the game,
— ultimately completing the task.

Now your “task”™ is:
<task>
with the goal of training the specified quantities of the corresponding type of units in the game.

Now generate a program to accomplish this task. Your program should retain the comments from the program
< in the example. And your program should start with ' python" and end with "“""". The function name
< in your program should be “planner”, with parameters ~(obs, action_space, task).

H.3.2 EVOLUTION-STARCRAFT II UNIT BUILDING

<Init_prompt>

Now there are 3 "Python” programs used to interact with the environment:
Program 1:

* T “python

{$python_program_0$}

Program 2:

© " “python

{$python_program_1$}

Program 3:
© " “python
{$python_program_2$}

At each step, each program provides a plan. Subsequently, an Oracle scoring model selects the optimal
<~ plan from the 3 plans to interact with the environment.

And the results of the 3 "Python™ programs interacting with the environment is:
{$the_interaction_results$}

With the 3 reference programs and their result, I need you explore and develop a more optimal program to
<— accomplish the task.

Your program should retain the comments from the program in the example. And your program should start
< with """ “python" and end with ""~°". The function name in your program should be “planner”, with
< parameters " (obs, action_space, task).
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I PLANNING PROGRAMS FROM COPIC

In this section, we provide examples of planning programs evolving from CoPiC in ALFWorld,
NetHack, and StarCraft IT Unit Building (hereafter referred to as SC2 for simplicity). To avoid
overly long chapters, we present only the planning programs for the “pick and place”, “upgrade
exp level to 37, and “Hard (SCV, SiegeTank, Medivac, VikingFighter, Ghost)” tasks in the three
environments, respectively. Planning programs for other tasks in each environment can be found in

the supplementary material.

1.1 PLANNING PROGRAMS IN ALFWORLD

1.1.1 PICK AND PLACE

HRARRARAAARARAA program 1 HARHHHHHHAHIHEH
def pick_and_place(self, objecttype, receptacletype):
# Check if the agent is already holding an object
if self.holding is not None:
# If holding an object, put it down first
self.put(self.holding, self.location)

# Pick the object with the given objecttype
if self.name2type(self.holding) '= self.name2type(objecttype):
# Find the object
entity = self.find_object(objecttype)
if entity is Nome:
# Find receptacletypes that can contain the object
r_types = self.find_canbe_contained(objecttype)
if r_types is None:
# Explore the environment
self.explore()
return
else:
# Check each receptacletype for the object
for r_type in r_types:
r_entitys = self.find_receptacles(r_type)
if r_entitys is Nomne:
continue
for r_entity in r_entitys:
self.goto(r_entity.name)
if r_entity.openable and not r_entity.isopen:
self.open_receptacle(r_entity.name)
return

# Place the object in the receptacle

r_entity = self.find_receptacle(receptacletype)

if r_entity is not None:
self.goto(r_entity.name)
if r_entity.openable and not r_entity.isopen:

self.open_receptacle(r_entity.name)

self.put(objecttype, r_entity.name)

else:
# If the receptacle is not found, explore the environment
self.explore()

HARBHARHHARAAAR progTam 2 HHAHHHHHHAHHHHRH
def pick_and_place(self, objecttype, receptacletype):
# Find an object of the given type
object_entity = self.find_object(objecttype)
if object_entity is None:
# If the object is not found, explore the environment
self.explore()
return

# Go to the receptacle that contains the object
self.goto(object_entity.in_on)
receptacle_entity = self.seen_entitys[object_entity.in_on]

# If the receptacle ts not open, open it
if receptacle_entity.openable and not receptacle_entity.isopen:
self.open_receptacle(receptacle_entity.name)

# Take the object
self.take(object_entity.name, object_entity.in_on)

# Find the receptacle where the object will be placed
receptacle_entities = self.find_receptacles(receptacletype)
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if receptacle_entities is None:
# If the receptacle type is not found, explore the environment
self.explore()
return

# Go to the receptacle where the object will be placed
self.goto(receptacle_entities[0].name)

# Put the object in the receptacle
self .put(object_entity.name, receptacle_entities[0].name)

HARAHRRAATHAAIE prOgTam 3 HHHAHHHANHHAAIY

def pick_and_place(self, objecttype, receptacletype):
# Find the object of the given type
object_entity = self.find_object(objecttype)

if object_entity is None:
# If object not found, explore the environment
self.explore()
return

# Go to the receptacle type
receptacle_entities = self.find_receptacles(receptacletype)

if receptacle_entities is None:
# If receptacle not found, explore the environment
self.explore()
return

# Iterate through receptacles to find a suitable one
for receptacle_entity in receptacle_entities:
if not receptacle_entity.isopen and receptacle_entity.openable:
# Open the receptacle if it's closed and can be opened
self.open_receptacle(receptacle_entity.name)

return

elif receptacle_entity.isopen and object_entity.in_on == receptacle_entity.name:
# If receptacle is open and object is already in it, do nothing
return

elif not object_entity.in_on:
# If object is mot in any receptacle, take it
self.take(object_entity.name, object_entity.in_on)
return

elif not receptacle_entity.ison:
# If receptacle is mot holding anything, put the object in it
self.put(object_entity.name, receptacle_entity.name)
return

[.2 PLANNING PROGRAMS IN NETHACK

1.2.1 UPGRADE EXP LEVEL TO 3

HARBHARHHARAAAR program 1 HHAHHHHHHABHHHRHE
class NethackTemplate(SimpleSkillSelector):

def init(self, agent, dict_obs: dict):

nin

Initialize variables for this specific skill selector...

wun

self.monster_list = []

def update_init(self, agent, dict_obs: dict) -> dict:

nin

Update wvariables for this specific skill selector...
win
self.monster_list = []
for monster in dict_obs.get("Close Monsters", []) + dict_obs.get("Distant Monsters", []):
if "tame " not in monster["item_name"] and monster["item_name"] not in ["shopkeeper", "gas
< spore"]:
self .monster_list.append(monster)

def core_function(self, agent, dict_obs: dict) -> dict:

Functionality of this function: Upgrade experience level to 3 in the 1st depth.

nwun

current_level = int(dict_obs["Stats"]["level"])
thoughts_obs_prefix = f"Current level is {current_level}. Trying to reach level 3."

if current_level >= 3:
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observations = thoughts_obs_prefix + " Accomplished the task."

reasoning = "Reached level 3."
speak = "I have reached level 3. Task accomplished."
skill = {
"name": "finish_task"
}
else:

if not self.monster_list:
observations = thoughts_obs_prefix + " No eligible monsters found."

reasoning = "No eligible monsters found. Need to explore further."
speak = "No eligible monsters found. Exploring further."
skill = {
"name": "explore_level"
}
else:

for monster in self.monster_list:
x, y = monster["x"], monster["y"]
if agent.get_path_to(x, y):
observations = thoughts_obs_prefix + f" Found a monster {monster['item_name'l]} to
— attack."
reasoning = f"Found a monster {monster['item_name'l} at ({x}, {y})."
speak = f"Attacking the monster {monster['item_name']} at ({x}, {y})."

skill = {
"name": "melee_attack",
"x": ox,
"ytiy
break
else:
observations = thoughts_obs_prefix + " No path to any monster."
reasoning = "No valid path to any monster. Need to explore further."
speak = "No path to any monster. Exploring further."
skill = {
"name": "explore_level"
}

json_dict = {
"thoughts": {
"observations": observations,
"reasoning": reasoning,
"speak": speak
},
"skill": skill
}

return json_dict

HHAAHHRHAAHAAAA DrOgTam 2 HAHHHHHHHHARARN
class NethackTemplate(SimpleSkillSelector):

def init(self, agent, dict_obs: dict):
# variables for this specific skill selector..
self.target_level = 3
self.corpse_locations = [1 # Save locations of corpses to eat them later if needed
self.tame_monsters = ["tame ", "shopkeeper", "gas spore"]

def update_init(self, agent, dict_obs: dict) -> dict:
for room in [dict_obs.get("Rooms", {"current_room": {"content_description":
< [ ["current_room"]] + \
dict_obs.get ("Rooms", {"other_rooms": []})["other_rooms"]:
for item in room["content_description"]:
if "corpse" in item["item_name"] and (item["x"], item["y"]) not in self.corpse_locations:
self.corpse_locations.append((item["x"], item["y"1))

def core_function(self, agent, dict_obs: dict) -> SkillSelection:

nin

Upgrade your ezperience level to 3 in the 1st depth

wun

stats = dict_obs["Stats"]
current_level = stats["level"]
thoughts_obs_prefix = f"I'm currently at experience level {current_levell}."

if current_level >= self.target_level:
observations = thoughts_obs_prefix + f" I've reached the target experience level
— {self.target_levell}."
reasoning = "I need to finish the task."
speak = f"I've reached the target experience level {self.target_level}. Task accomplished."

skill = {
"name": "finish_task"
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}
else:
# Check for nearby monsters to attack
for category in ["Close Monsters", "Distant Monsters"]:

for monster in dict_obs.get(category, [1):
if "tame " not in monster["item_name"] and monster["item_name"] not in
<> self.tame_monsters:
x, y = monster["x"], monster["y"]
distance = agent.get_distance_to(x, y)
if agent.get_path_to(x, y):
observations = thoughts_obs_prefix + f" I found an attackable monster:
— {monster['item_name'l} at ({x}, {y})."
if distance > 1:
reasoning = f'"The monster is {distance} steps away, moving closer to
— attack."
speak = f'"Moving closer to attack the {monster['item_name']}."

skill = {
"name": "move_to",
"yt ox,
gy
else:

reasoning = f"The monster is within reach, attacking it now."
speak = f"Attacking the {monster['item_name']}."

skill = {
"name": "melee_attack",
vy ox,
gy
return {

"thoughts": {
"observations": observations,
"reasoning": reasoning,
"speak": speak
1,
"skill": skill
}

# If no enemies found, check food status
if stats["hunger"] in ["weak", "fainting", "starved"]:
# Check inventory for food
for key, item in dict_obs.get("Inventory", {}).items():
if item["item_name"] in food_names:
observations = thoughts_obs_prefix + " Found food in inventory."

reasoning = "I'm hungry and need to eat."
speak = "Eating some food from the inventory."
skill = {
"name": "eat",
"item_letter": key
}
return {
"thoughts": {
"observations": observations,
"reasoning": reasoning,
"speak'": speak
1,
"skill": skill
}

# If no food in inventory, look for corpses to eat
if self.corpse_locations:
x, y = self.corpse_locations.pop(0)
if agent.get_path_to(x, y):
observations = thoughts_obs_prefix + f" Found a corpse at ({x}, {y}) to eat."
if agent.get_distance_to(x, y) > 1:

reasoning = "The corpse is far away, moving closer."
speak = "Moving closer to the corpse to eat it."
skill = {
"name": "move_to",
[T
tX,
gy
else:
reasoning = "The corpse is nearby, eating it now."
speak = "Eating the corpse from the ground."
skill = {
"name": "eat_from_ground",
[T
P,
gy
return {
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"thoughts": {
"observations": observations,
"reasoning": reasoning,
"speak': speak
1,
"skill": skill
}

# If there's nothing to attack or eat, ezplore the level
observations = thoughts_obs_prefix + " No enemies or food found nearby."

reasoning = "I need to explore the level further."
speak = "Exploring the level to find monsters or food."
skill = {
"name": "explore_level"
}
return {

"thoughts": {
"observations": observations,
"reasoning": reasoning,
"speak": speak
},
"skill": skill
}

HARBHHAHHHARRAAR program 3 HHHHHHHHAHHHHIH
class NethackTemplate(SimpleSkillSelector):

def init(self, agent, dict_obs: dict):

nin

Initialize variables for this specific skill selector...
self .monsters_to_avoid = ["shopkeeper", "gas spore"]
self.food_items = set()
self.last_move = None

def update_init(self, agent, dict_obs: dict) -> dict:

nin

Update variables for this specific skill selector...
for room in [dict_obs.get("Rooms", {"current_room": {"content_description":
—  [1}}) ["current_room"]] + \
dict_obs.get ("Rooms", {"other_rooms": []})["other_rooms"]:

for item in room["content_description"]:
if item["item_name"] in food_names:
self.food_items.add((item["x"], item["y"1))

def core_function(self, agent, dict_obs: dict) -> SkillSelection:

nn

Functionality of this function: Upgrade experience level to 3 in the 1st depth.
win
# Check for current ezperience level
current_exp = dict_obs["Stats"]["exp"]
if current_exp >= 60: # Assume level 3 is reached at 60 experience points

return {

"thoughts": {
"observations": f"Current experience is {current_expl}.",

"reasoning": "Experience level 3 has been achieved.",

"speak": "I have reached experience level 3. Task accomplished."
1,
"skill": {

"name": "finish_task"
}

}

# Find and attack monsters
for monster in dict_obs.get("Close Monsters", [1):
if "tame " not in monster["item_name"] and monster["item_name"] not in
< self.monsters_to_avoid:
x, y = monster["x"], monster["y"]
if agent.get_path_to(x, y):
return {
"thoughts": {
"observations": f"Found monster {monster['item_name'l} at ({x}, {y}).",
"reasoning": f"The monster {monster['item_name']} is in attacking range.",
"speak": f"Attacking {monster['item_name']}."

},

"skill": {
"name": "melee_attack",
g ox,
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sy
}

# Handle hunger

hunger_status = dict_obs["Stats"]["hunger"]

if hunger_status in ["hungry", "weak", "fainting", "starved"]:

if dict_obs["Inventory"]:
for key, item in dict_obs["Inventory"].items():
if item["item_name"] in food_names:
return {
"thoughts": {

"observations": f"Hungry status detected. Found {item['item_name']} in
— inventory.",
"reasoning": f"Need to eat {item['item_name'l]} to avoid starvation.",
"speak": f"Eating {item['item_name']} to survive."

},
"skill": {
"name": "eat",
"item_letter": key
}

}
for x, y in self.food_items:
if agent.get_path_to(x, y):
return {
"thoughts": {
"observations": f"Hungry status detected. Found food on the ground at ({x},

= {ybH.",
"reasoning": "Need to move to the food to eat it.",
"speak": "Moving to food to avoid starvation."
},
"skill": {
"name": "move_to",
"t ox,
gy

¥
else:
self.food_items.discard((x, y))

# Explore the level to find monsters or items

return {

"thoughts": {
"observations": "No immediate actions to take.",
"reasoning": "Exploring the level to find monsters to gain experience.",
"speak": "Exploring the level."

1,

"skill": {
"name": "explore_level"

}

1.3 PLANNING PROGRAMS IN SC2

1.3.1 HARD

HARARHRHAHARAAA DTOgTam 1 HAHHHHAHHHARARH
import math
def planner(obs, action_space, task):
AR
Parameters:
obs 15 a dict with the following format:
{
"Resource": {
"supply_cap": 15,
"supply_left": 3,
"gas": 0
},
"Building": {
"COMMANDCENTER": 1,
"BARRACKS": 0,
"SUPPLYDEPOT": 0,
"REFINERY": 0,
VZame
},
"Unit": {
"scvr: 12,
"SIEGETANK": 0,
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with the specified number of each resource/building/unit in the current game state
action_space is a list of strings including all the available actions

task is a unit dict:

{
"sev': "mum_1",
"SIEGETANK": "num_2",
"VIKINGFIGHTER": "num_3",
"MEDIVAC": "num_4",
"GHOST": "num_5",

}

with the goal of training the specified quantities of the corresponding type of units in
the game.
e
plan_build = []
plan_unit = []

# infer the tech_tree from the unit of the task
tech_tree = {
"scvt: {
"base_building": "COMMANDCENTER",
"pre_dependency": {3},
},
"SIEGETANK": {
"base_building": "FACTORYTECHLAB",
"pre_dependency": {
1: "FACTORY",
2: "BARRACKS",
},
},
"VIKINGFIGHTER": {
"base_building": "STARPORT",
"pre_dependency": {
1: "STARPORTTECHLAB",
2: "STARPORT",

},
},
"MEDIVAC": {
"base_building": "STARPORT",
"pre_dependency": {
1: "STARPORT",
},
},
"GHOST": {
"base_building": "BARRACKSTECHLAB",
"pre_dependency": {
1: "BARRACKS",
2: "GHOSTACADEMY",
.
}

¥
# obtain the base_building for the technology
base_buildings = {k: v["base_building"] for k, v in tech_tree.items()}

1

when supply_left is less than 8, increasing supply_cap (BUILD SUPPLYDEPOUT) is necessary.
Iy
if obs["Resource"] ["supply_left"] < 8:
if "BUILD SUPPLYDEPOT" in action_space:
plan_build.append("BUILD SUPPLYDEPOT")

gas %s important, check if there is a need to collecting gas (BUILD REFINERY).
if "BUILD REFINERY" in action_space and obs["Resource"]["gas"] == 0:
plan_build.append("BUILD REFINERY")

Check the 'unit' that still need to be trained in the current game state, and add f'TRAIN {unit}'
to the plan_unit for each unit in units. You need to ensure that f'TRAIN {unit}' is in the
action_space.
rr
unit_still_needed_num = {unit: max(0, target_num - obs["Unit"][unit]) for unit, target_num in
— task.items(Q}
for unit, target_num in unit_still_needed_num.items():

if f"TRAIN {unit}" in action_space and target_num > O:

plan_unit.append(f"TRAIN {unitl}")
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calculate the number still needed for each base_building in the task
ri
scale_of_scv_per_base_building = 16
scale_of_otherunit_per_base_building = 8
base_building_needed_num = {building: O for _, building in base_buildings.items()}
for unit, target_num in task.items():
if unit == "SCV":
base_building_needed_num[base_buildings[unit]] += math.ceil(task[unit] /
— scale_of_scv_per_base_building)
else:
base_building_needed_num[base_buildings[unit]] += math.ceil(task[unit] /
— scale_of_otherunit_per_base_building)

Based on the tech_tree, analyze which 'building' are still needed for each unit in the task at the
current game state. Then add f'BUILD {building}' to the plan_build for each building in required
buildings. You need to ensure that f'BUILD {building}' is in the action_space.

o

Il

for unit, tech in tech_tree.items():
pre_dependency = tech.get("pre_dependency")
base_building = tech.get("base_building")
# first check pre_dependency, as only when the pre_dependency is met can the base_building be
<~ constructed.
if pre_dependency:
pre_dependency = dict(sorted(pre_dependency.items(), key=lambda x: x[0]))
for priority, building in pre_dependency.items():
# only need 1 for each building in pre_dependency
if f"BUILD {building}" in action_space and obs["Building"] [building] ==
plan_build.append (f"BUILD {building}")

# then check the base_building
if £"BUILD {base_building}" in action_space and obs["Building"] [base_building] <
<+ base_building_needed_num[base_building]:

plan_build.append (f"BUILD {base_building}")

# miz the plan_build and plan_unit alternately to get the plan
plan = []
while plan_build or plan_unit:
if plan_build:
plan.append(plan_build.pop(0))
if plan_unit:
plan.append(plan_unit.pop(0))

# return the first 5 actions as a plan
return plan[:5]

HARBHARRHARIAAR progTam 2 HHAHHHHHHARHHHRE
import math
def planner(obs, action_space, task):
[N
Parameters:
obs is a dict with the following format:
{
"Resource": {
"supply_cap": 15,
"supply_left": 3,
"gas": 0
},
"Building": {
"COMMANDCENTER": 1,
"BARRACKS": 0,
"SUPPLYDEPOT": 0,
"REFINERY": 0,
7
},
"Unit": {
"scvr: 12,
"MARINE": 0,
V72
}
}

with the specified number of each resource/building/unit in the current game state
action_space is a list of strings including all the available actions

task is a unit dict:
{
"SCV": "num_1",
"SIEGETANK": "num_2",
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"VIKINGFIGHTER": "num_3",
"MEDIVAC": "num_4",
"GHOST": "num_5",
}
with the goal of training the specified quantities of the corresponding type of units in
— the game.
plan_build = []
plan_unit = []

tech_tree = {
"sev': {
"base_building": "COMMANDCENTER",
"pre_dependency": {},
},
"SIEGETANK": {
"base_building": "FACTORYTECHLAB",
"pre_dependency": {
1: "FACTORY",
2: "ARMORY",
},
},
"VIKINGFIGHTER": {
"base_building": "STARPORTTECHLAB",
"pre_dependency": {
1: "STARPORT",
},
},
"MEDIVAC": {
"base_building": "STARPORT",
"pre_dependency": {
1: "STARPORT",
},
},
"GHOST": {
"base_building": "GHOSTACADEMY",
"pre_dependency": {
1: "BARRACKSTECHLAB",
2: "BARRACKS",
},
}
¥
base_buildings = {k: v["base_building"] for k, v in tech_tree.items()}

if obs["Resource"]["supply_left"] < 8:
if "BUILD SUPPLYDEPOT" in action_space:
plan_build.append("BUILD SUPPLYDEPOT")

if "BUILD REFINERY" in action_space and obs["Resource"]["gas"] ==
plan_build.append("BUILD REFINERY")

unit_still_needed_num = {unit: max(0, target_num - obs["Unit"][unit]) for unit, target_num in
< task.items()}
for unit, target_num in unit_still_needed_num.items():
if f"TRAIN {unit}" in action_space and target_num > O:
plan_unit.append(f"TRAIN {unit}")

scale_of_scv_per_base_building = 16
scale_of_otherunit_per_base_building = 8
base_building_needed_num = {building: O for _, building in base_buildings.items()}
for unit, target_num in task.items():
if unit == "SCV":
base_building_needed_num[base_buildings[unit]] += math.ceil(task[unit] /
< scale_of_scv_per_base_building)
else:
base_building_needed_num[base_buildings[unit]] += math.ceil(task[unit] /
— scale_of_otherunit_per_base_building)

for unit, tech in tech_tree.items():

pre_dependency = tech.get("pre_dependency")

base_building = tech.get("base_building")

if pre_dependency:
pre_dependency = dict(sorted(pre_dependency.items(), key=lambda x: x[0]))
for priority, building in pre_dependency.items():

if f"BUILD {building}" in action_space and obs["Building"] [building] ==
plan_build.append(f"BUILD {building}")

if f"BUILD {base_building}" in action_space and obs["Building"] [base_building] <
<+ base_building_needed_num[base_building]:
plan_build.append(£f"BUILD {base_building}")
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plan = []
while plan_build or plan_unit:
if plan_build:
plan.append(plan_build.pop(0))
if plan_unit:
plan.append(plan_unit.pop(0))

return plan[:5]

HHAARHRHARHAAAA prOgram 3 HAHHHHAHHHARHAHH
import math
def planner(obs, action_space, task):
[N
Parameters:
obs 15 a dict with the following format:
{
"Resource": {
"supply_cap": 15,
"supply_left": 3,
"gas": 0
},
"Building": {
"COMMANDCENTER": 1,
"BARRACKS": 0,
"SUPPLYDEPOT": 0,
"REFINERY": 0,
/.
},
"Unit": {
"scvr: 12,
"MARINE": 0,
/.
}
}

with the specified number of each resource/building/unit in the current game state
action_space is a list of strings including all the available actions

task is a unit dict:

{
"SCV": "num_1",
"SIEGETANK": "num_2",
"VIKINGFIGHTER": "num_3",
"MEDIVAC": "num_4",
"GHOST": "num_5",

7}

with the goal of training the specified quantities of the corresponding type of units in
— the game.

plan_build = []

plan_unit = []

# infer the tech_tree from the unit of the task
tech_tree = {
"scvt: {
"base_building": "COMMANDCENTER",
"pre_dependency": {},

},
"SIEGETANK": {
"base_building": "FACTORYTECHLAB",
"pre_dependency": {
1: "FACTORY",
2: "ARMORY",
},
},

"VIKINGFIGHTER": {
"base_building": "STARPORTTECHLAB",
"pre_dependency": {
1: "STARPORT",
},
},
"MEDIVAC": {
"base_building": "STARPORT",
"pre_dependency": {
1: "SUPPLYDEPOT",
2: "BARRACKS",
},
},
"GHOST": {
"base_building": "GHOSTACADEMY",
"pre_dependency": {

42




Published as a conference paper at ICLR 2026

)

I

1: "BARRACKSTECHLAB",
2: "FACTORY",
},
}
¥
# obtain the base_butilding for the technology
base_buildings = {k: v["base_building"] for k, v in tech_tree.items()}

rr

when supply_left is less than 8, increasing supply_cap (BUILD SUPPLYDEPOT) %s necessary.
if obs["Resource"]["supply_left"] < 8:
if "BUILD SUPPLYDEPOT" in action_space:
plan_build.append ("BUILD SUPPLYDEPOT")

gas is important, check if there is a need to collecting gas (BUILD REFINERY).
rr
if "BUILD REFINERY" in action_space and obs["Resource"]["gas"] ==
plan_build.append("BUILD REFINERY")

Check the 'unit' that still need to be trained in the current game state, and add f'TRAIN {unit}’'
to the plan_unit for each unit in units. You need to ensure that f'TRAIN {unit}' is in the
action_space.
unit_still_needed_num = {unit: max(0, target_num - obs["Unit"][unit]) for unit, target_num in
< task.items()}
for unit, target_num in unit_still_needed_num.items():

if f"TRAIN {unit}" in action_space and target_num > O:

plan_unit.append(f"TRAIN {unitl}")

calculate the number still needed for each base_building in the task
scale_of_scv_per_base_building = 16
scale_of_otherunit_per_base_building = 8
base_building_needed_num = {building: O for _, building in base_buildings.items()}
for unit, target_num in task.items():
if unit == "SCV":
base_building_needed_num[base_buildings[unit]] += math.ceil(task[unit] /
< scale_of_scv_per_base_building)
else:
base_building_needed_num[base_buildings[unit]] += math.ceil(task[unit] /
— scale_of_otherunit_per_base_building)

Based on the tech_tree, analyze which 'building' are still needed for each unit in the task at the
current game state. Then add f'BUILD {building}' to the plan_build for each building in required
buildings. You need to ensure that f'BUILD {building}' %s in the action_space.
for unit, tech in tech_tree.items():

pre_dependency = tech.get("pre_dependency")

base_building = tech.get("base_building")

# first check pre_dependency, as only when the pre_dependency is met can the base_building be

— constructed.

if pre_dependency:

pre_dependency = dict(sorted(pre_dependency.items(), key=lambda x: x[0]))
for priority, building in pre_dependency.items():
# only need 1 for each building in pre_dependency
if f"BUILD {building}" in action_space and obs["Building"] [building] ==
plan_build.append (f"BUILD {building}")

# then check the base_building
if f"BUILD {base_building}" in action_space and obs["Building"] [base_building] <
< base_building_needed_num[base_building]:

plan_build.append(f"BUILD {base_building}")

# miz the plan_build and plan_unit alternately to get the plan
plan = []
while plan_build or plan_unit:
if plan_build:
plan.append(plan_build.pop(0))
if plan_unit:
plan.append(plan_unit.pop(0))

# return the first 5 actions as a plan
return plan[:5]
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