
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

50 Shades of Deceptive Patterns: A Unified Taxonomy,
Multimodal Detection, and Security Implications

Anonymous Author(s)

ABSTRACT
Deceptive patterns (DPs) are user interface designs deliberately
crafted to manipulate users into unintended decisions, often by
exploiting cognitive biases for the benefit of companies or services.
While numerous studies have explored ways to identify these de-
ceptive patterns, many existing solutions require significant human
intervention and struggle to keep pace with the evolving nature
of deceptive designs. To address these challenges, we expanded
the deceptive pattern taxonomy from security and privacy perspec-
tives, refining its categories and scope. We created a comprehensive
dataset of deceptive patterns by integrating existing small-scale
datasets with new samples, resulting in 6,725 images and 10,421 DP
instances from mobile apps and websites. We then developed DP-
Guard, a novel automatic tool leveraging commercial multimodal
large language models (MLLMs) for deceptive pattern detection. Ex-
perimental results show that DPGuard outperforms state-of-the-art
methods. Finally, we conducted an extensive empirical evaluation
on 2,000 popular mobile apps and websites, revealing that 23.61%
of mobile screenshots and 47.27% of website screenshots feature at
least one deceptive pattern instance. Through four unexplored case
studies that inform security implications, we highlight the critical
importance of the unified taxonomy in addressing the growing
challenges of Internet deception.

1 INTRODUCTION
Mobile apps and websites are pervasive in people’s daily lives,
through which people can accomplish different tasks such as chat-
ting, learning, gaming, browsing news, and shopping. However,
many forms of deception are embeddedwithin these services.While
people are often aware of and take action against scams, there are
more subtle deceptions integrated into the user interfaces they in-
teract with daily [11, 27]. These types of deception are referred
to as deceptive patterns, also known as dark patterns. They ex-
ploit cognitive biases through visual and linguistic manipulation,
tricking users into taking actions that may undermine their inter-
ests [8, 11, 15, 26]. For example, the Forced Continuity pattern
offers a free trial for app subscriptions while concealing the fact that
the subscriptionwill automatically renew. The Privacy Zuckering
pattern buries related terms of use in lengthy documents or makes
them difficult to find, often using with Preselection patterns to
mislead users and collect personal information without their aware-
ness. Falling for these tricks can not only lead to psychological
stress [5, 31], financial loss [46], and privacy breaches [3, 29, 42]
but also diminish user autonomy, ultimately compromising their
well-being and control over digital interactions and eroding digital
trust [5].

Efforts have been made to better understand deceptive patterns
through empirical studies, with the goal of establishing a compre-
hensive taxonomy and reporting on current practices [7, 11, 15, 21,
27, 37]. A plethora of research has enriched the taxonomy across

different platforms [11, 21, 27] and languages [18]. Recognizing
inconsistencies across these taxonomies, recent works [8, 26, 30]
sought to integrate them into a unified framework, facilitating
consistent understanding and enabling automated detection. How-
ever, these efforts primarily focus on the general characteristics
of deceptive patterns, often overlooking the privacy and security
implications, which have the potential to cause far more severe con-
sequences. Moreover, these studies are often limited in scale [11, 15],
which may not fully capture the broader distribution of deceptive
patterns, or are restricted to specific domains [27].

Meanwhile, legal entities are actively working to establish frame-
works for regulating and limiting the use of deceptive patterns [4,
12, 32]. However, with the sheer volume of apps and websites avail-
able – and the constant emergence of new ones and daily updates –
it is neither feasible nor practical for regulators to examine them all.
Fortunately, some attempt to automate the detection process using
machine learning methods [8, 26]. Mansur et al. [26] and Chen et
al. [8] concurrently proposed the first automated methods to lever-
age machine learning methods to first extract meta data from a
single user interface (UI) screenshot, and then use rule-based meth-
ods to identify the existence of deceptive patterns. However, their
rule-based methods have several limitations. First, as the taxonomy
evolves over time, these methods require significant maintenance
efforts to adapt to new changes. Second, even with manual updates,
rigid rules that lack an understanding of UI semantics are not ro-
bust enough, often failing to capture the complexity and subtlety of
deceptive patterns. For example, a Hidden Cost pattern (as shown
in Figure 9(b) in Appendix L) might offer a free service for 7 days
while concealing the price information that applies after the trial
period ends. Existing rule-based approaches struggle to detect such
deceptive patterns because the hidden information is not explicitly
shown. A nuanced change of text patterns will greatly deteriorate
the performance of their methods.

To bridge the gaps in current research, we begin by systemati-
cally analyzing existing taxonomies and develop a unified frame-
work, incorporating both category and scope-level considerations
(Section 3). Building on this, we create a comprehensive, cross-
platform dataset by merging existing datasets and incorporating
the latest trends in deceptive patterns. As a result, we collected
5,059 UIs from existing sources and manually added 1,666 trendy
UIs, resulting in a rich dataset of 3,348 deceptive UI images with
7,044 deceptive pattern instances, alongside 3,377 non-deceptive
UI images (i.e., benign images) (Note: one DP image may contain
multiple DP instances or patterns).

To support robust detection, we propose a deceptive pattern
guard, DPGuard, a novel framework that combines the strengths
of a mature classification model with advanced multimodal large
language models (MLLM) to capture subtle nuances in UIs and per-
form effective detection. DPGuard significantly reduces the burden
of manual inspection by enabling the model to automatically learn

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, 28 April – 2 May, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: A summary of recent studies on deceptive patterns.

Studies Platforms Key Contributions Year # of
DP InstancesWeb Mobile Taxonomy Dataset Detector

Brignull et al. [7] 2010 57
Gray et al. [15] 2018 112
Mathur et al. [27] 2019 1,818
LLE [11] 2020 1,787
Nazarov et al. [28] 2022 -
AidUI [26] 2023 301
UIGuard [8] 2023 1,600
Nie et al. [30] 2024 -

DPGuard (ours) 2024 7,044

(): the item is (not) supported by the study; -: not applicable.

and identify intricate patterns. Specifically, given a UI, it is first
processed by a binary classifier to determine whether deceptive pat-
terns are present. If classified as deceptive, the MLLM is employed
to identify the specific type of a deceptive pattern. In addition,
we introduce a novel prompting mutation technique, allowing the
MLLM to iteratively refine its prompts and accurately identify the
key features associated with each deceptive pattern. This adaptive
prompting method ensures that DPGuard can efficiently handle di-
verse scenarios, offering a robust and scalable solution for detecting
deceptive patterns across different platforms. To evaluate the effec-
tiveness of our proposed system, we evaluate each component and
the overall performance of DPGuard on the newly created dataset.
We further conducted an empirical evaluation on 2,000 UI images
collected from popular mobile apps and websites. In summary, our
contributions are as follows:

• We develop a unified deceptive pattern taxonomy by systemati-
cally analyzing existing ones, incorporating privacy and security
aspects from both category and scope-level refinements.

• We contribute a comprehensive, cross-platform deceptive pattern
dataset that captures both the most up-to-date data and a multi-
year timeline, offering rich insights for analyzing trends and
patterns over time.

• We propose DPGuard, a hybrid approach that combines a binary
classifier with a multimodal language model, which leverages
a prompt mutation strategy to optimize the optimal prompt,
achieving state-of-the-art performance.

• We conduct extensive experiments to evaluate the performance
of DPGuard, and provide unexplored case studies that inform
security implications.

2 RELATEDWORK
In this section, we introduce recent studies on deceptive patterns,
including works related to DP taxonomies and detection methods.
We summarized these studies in Table 1.
Deceptive pattern taxonomies. A pioneering work in deceptive
pattern research is a wiki-like website launched in 2010 [7], where
14 deceptive pattern categories are defined with example show-
cases, which also encourage end-users to report deceptive patterns
encountered in daily life via Twitter [6]. Mathur et al. [27] proposed
a refined taxonomy with 7 core categories and 15 subcategories,
analyzing 11K shopping websites. Later, AidUI, one of the state-
of-the-art (SOTA) deceptive pattern detection models, merged the
taxonomies [7, 15, 27] into a new taxonomy with 7 core categories
and 27 subcategories. Concurrently, Chen et al. [8] integrated ex-
isting deceptive pattern taxonomies, creating a unified taxonomy

with 5 core categories and 19 subcategories. These studies highlight
the pressing need for the taxonomy of deceptive patterns to evolve
as new UI designs and deceptive practices emerge with advancing
technologies. A “concept drift” issue may also arise, as changes
in deceptive practices can render existing taxonomies outdated.
Furthermore, most current research focuses primarily on deceptive
patterns from a UI design perspective, overlooking the significant
security and privacy risks these patterns pose. To address this gap,
we refine the taxonomy to not only account for evolving deceptive
practices but also incorporate categories specifically related to se-
curity and privacy, offering a more comprehensive classification
suited to contemporary contexts.
Deceptive pattern detection. To protect end-users’ best interests
and mitigate the risk of deception, various clustering algorithms
have been initially proposed to group similar deceptive pattern
(DP) images, which are then manually labeled as DP categories.
UIGuard [8] and AidUI [26] are two examples of approaches that
combining both deep learning and manual-defined rules for de-
tection. Specifically, UIGuard extracts property features, such as
element types and coordinates, and element relationships, from
Android app screenshots, through several deep learning models,
and then uses a rule table as a knowledge base to identify areas
where deceptive patterns may exist. Similarly, AidUI first detects
visual cues and extracts text information from UI images, then ana-
lyzes deceptive patterns based on spatial, textual, and color features.
AidUI further performs both segment-level and UI-level resolution
to localize deceptive patterns. These approaches, while valuable,
currently require significant manual effort for cluster labeling and
maintaining rule-based knowledge systems, which can make it chal-
lenging to adapt to concept drift. To streamline this process and
more effectively address evolving deceptive patterns, we propose
a new detection method that utilizes a multimodal large language
model. This multimodal approach allows for seamless adaptation to
new patterns with minimal effort, significantly reducing the need
for extensive human intervention.

3 TAXONOMY REFINEMENT
Deceptive patterns were initially viewed as a human-computer in-
teraction problem, defined as maliciously designed interfaces that
mislead users into unintended actions [11]. Consequently, previous
taxonomies often overlook security- and privacy-related exam-
ples. However, since some deceptive UI designs can lead to serious
security or privacy consequences, such as forced enrollment do
not provide “back” or “cancel” button so user can not make their
own decision but to submit their personal information to use the
provided service, but have not yet been included in a specific DP
category. We extended existing taxonomies [8] in this study to min-
imize such omissions. We reviewed and summarized taxonomies
from recent studies [8, 11, 26], examining the definitions of DP
categories and identifying overlaps or contradictions. To develop a
more fine-grained taxonomy that can be effectively applied to DP
detection, we refined the UIGuard taxonomy, as it is a pioneering
and SOTA work that integrates existing taxonomies into a unified
framework. Specifically, we refine the DP taxonomy at two levels:
category-level (adding or removing DP categories) and scope-level
(updating the scope of existing DP categories). We present our DP

2

• 0 • • 0
0 • • • 0 • 0 • • • 0 • • • 0 • 0 0 0 • • • • • • 0 • • • • • • • 0 0

• • • • •
•o

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

50 Shades of Deceptive Patterns: A Unified Taxonomy, Multimodal Detection, and Security Implications WWW ’25, 28 April – 2 May, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 2: Statistics for the new deceptive pattern dataset.

Categories Definitions Cases # of Samples Collected

Mobile Website Subtotal

0 - No DP No deceptive pattern - 3,018 359 3,377
1 - Nagging An unexpected pop-up window keeps appearing repeatedly,

disrupting the user’s activities.
Pop-up Ads; pop-up to rate; pop-up to upgrade 410 183 593

2 - Roach Motel Easy to opt-in, but impossible or hard to opt out. Unable/hard to unsubscribe some services; unable/hard to get re-
fund; unable/hard to delete account

24 13 37

3 - Price Comparison
Prevention

Making a direct comparison with others is difficult Unable to copy and paste product name; unable to compare all other
plans at the same time

7 27 34

4 - Intermediate Cur-
rency

Users are distanced from real money by being prompted to
buy virtual currencies

Purchasing virtual coins, diamonds, gems, or credits is required to
continue using certain internal services.

38 6 44

5 - Forced Continuity Users are still charged after the service has expired. The subscription will automatically renew after the free trial or
discount period ends

51 29 80

6 - Hidden Costs The costs are not disclosed at the initial stage Delivery fee, shipping fee, service fee, tax fee, subscription fee are
not shown initially

38 113 151

7 - Sneak into Basket Additional charged items are added without the user’s se-
lection

A donation will be added to the bill to round it up; a charged service,
such as insurance, will be added to the bill

1 6 7

8 - Hidden Information Options or actions are made difficult for the user to read or
understand immediately

Relevant information, such as terms of service, is displayed in small,
greyed-out text; use hyperlinks for relevant information (e.g., terms
of service, agreement)

242 399 641

9 - Preselection Some choices are preselected by default Unnecessary options are preselected (e.g., cookies, data sharing,
policy, terms, agreement, notification); the expensive plan is prese-
lected by default

367 430 797

10 - Toying with Emo-
tion

Language, color, and style are used to evoke emotions, pres-
suring users into taking a certain action

Countdown timer/limited rewards; confirm shaming; fake scarcity
(high demand, low stock)

86 251 337

11 - False Hierarchy One option is made more prominent than other equally
available options

One button is more salient than the other (e.g., accept and close
button)

561 341 902

12 - Disguised Ad Ads pretend to be normal content Sponsored ads or content are disguised as banners or inserted in
the normal content

905 382 1,287

13 - Tricked Questions Confusing or overly complex wording is used to explain
something or ask questions

Double negation 5 5 10

14 - Small Close Button The button to close the current content is hard to identify The real close ads button is very small or hard to recognize 752 205 957
15 - Social Pyramid Users are prompted to share something with friends to

receive rewards or unlock features
Share unnecessary information with friends; invite friends to get
vouchers/credits/points/prizes

36 7 43

16 - Privacy Zuckering Unnecessary information is collected by default Forced to agree to agreements (e.g., terms of use or privacy policy)
before using the service

210 374 584

17 - Gamification Requires users to repeatedly perform actions to get some-
thing

Daily check-in rewards, lucky wheel 27 1 28

18 - Countdown on Ads Ads can only be closed once the countdown timer reaches
zero

The countdown timer on the ads 77 10 87

19 - Watch Ads to Un-
lock Features or Re-
wards

Unlock features or get rewards by watching ads Users are required to watch ads to access or unlock a tool, service,
or feature

71 0 71

20 - Pay to Avoid Ads Using money to remove ads Upgrade to the pro version or subscribe to a paid plan to remove
ads; pay for a service to eliminate ads

108 7 115

21 - Forced Enrollment Users are required to sign up or sign in before they can
access the service

Users are required to sign up or sign in on the application’s home
page before they can perform further actions; users are required to
sign up or sign in before they can continue viewing the content

150 89 239

Total Instances 7,184 3,237 10,421

taxonomy in Table 2, with specific refinements highlighted in blue.
This taxonomy includes 21 DP categories across 33 use cases, de-
signed to capture a wide range of security- and privacy-related
examples.
Category-level refinement. In the category-level refinement,
We made two modifications based on the 19 deceptive pattern
categories introduced in UIGuard.

We removed Bait-and-Switch category. According to the defi-
nition by Brignull et al. [7], Bait-and-Switch refers to a situation
where the user performs an action but receives an undesired result.
Although many studies [7, 8, 11, 15, 26, 28, 30] include this category
in their taxonomy, only two of them [7, 15] collectively reported
10 instances of this type, and another work [30] instead consid-
ered the Disguised ads as a case of Bait and Switch. We believe
the rarity of Bait-and-Switch examples is due to its overly broad
definition of an “undesired result”, which is often addressed by
other deceptive pattern categories with more specific definitions.

For example, as shown in Figure 9(a) Appendix L, if a user clicks a
UI element but is shown an ad instead, the case could be classified
as Disguised Ads. If the user repeatedly clicks on UI elements
and always receives ads, it would typically be reported as Nagging.
Additionally, we found that the concept of Bait-and-Switch over-
laps with other categories like Small Close Button, Watch Ads
to Unlock Features or Rewards, Hidden Costs, and Hidden
Information. Therefore, we removed the Bait-and-Switch cate-
gory to simplify the taxonomy. We reviewed the 10 instances from
prior works [7, 15], and identified all of them fall within these
scenarios.

We reintroduced Forced Enrollment into the taxonomy. In
previous studies, Forced Enrollment refers to situations where
users are required to sign up or sign in to use a service, even when
enrollment is unnecessary. Such DP can lead to serious security
or privacy concerns, as it often forces users to provide additional
personal information to access the service. Unlike prior work, our

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, 28 April – 2 May, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

taxonomy specifically includes a constraint: we only classify it as
“forced” enrollment when the user cannot skip the sign-up or sign-
in process, e.g., there are no “Go back” or “Cancel” buttons available
in the UI.

Seriousness analysis on Forced Enrollment: In the Alice (end-
user) and Bob (service provider) model, Bob poses a potential pri-
vacy risk if he mishandles or over-collects Alice’s data. If Alice is
forced to disclose sensitive information, her security goals—such as
confidentiality and privacy—may be compromised. Eve (an eaves-
dropper) could exploit this data to perform attacks like identity
theft, phishing, or unauthorized surveillance. Mallory (a malicious
actor) could further exploit the stored personal data to impersonate
Alice, commit financial fraud, or launch other types of attacks. In
some cases, Trent (a trusted third party) might be involved in man-
aging data or providing identity verification. However, if Alice is
forced to enroll, she may not trust Trent or Bob to securely handle
her data or ensure its use for legitimate purposes. This lack of trust
introduces vulnerabilities where Alice’s data could be mishandled
or misused by Bob, Trent, or even Eve and Mallory if their systems
are compromised.
Scope-level refinement. In the scope-level refinement, we retain
the existing deceptive pattern categories but expand some of their
scope to include additional security- and privacy-related examples.
Specifically, we expand the scope of five categories, i.e., Price
Comparison Prevention, Hidden Cost, Hidden Information,
Toying with Emotion, and Disguised Ads). We showcase one
example of Disguised Ads here and discuss the rest in Section 6
for in-depth analysis.

Chen et al. [8] defined Disguised Ads as DP instances where
developers present the sponsored ad pretending to be a normal
content and place it in the middle of the screen. However, we
found that the top and bottom ads banner should also be included
in this category as these instances are also disguised as normal
content, along with the potential risks they post, regardless of their
placement. See Figure 9(a) in Appendix L for an example.

Seriousness Analysis on Disguised Ads: In the Alice and Bob
model, if Alice accidentally clicks on a disguised advertisement
(ad), she could be unknowingly redirected to a website or service
controlled by Eve. By tricking Alice into clicking the ad, Eve (the
eavesdropper and advertiser) can collect Alice’s data, such as her
device information, browsing habits, or personal identifiers. Eve
may then track Alice across different websites or apps, building a
user profile and potentially violating her privacy. If the disguised ad
contains malicious content, Mallory could exploit Alice’s accidental
click to carry out malicious actions, such as phishing attacks or
malware installation. In this scenario, Trent, the app platform (e.g.,
Google Play), is expected to enforce clear labeling of ads to prevent
user deception. However, if Trent fails to strictly enforce these
guidelines, apps like Bob’s could continue using deceptive ads,
eroding user trust and compromising security.
Dataset creation. Overall, the unified taxonomy is underpinned
by the new dataset collated in principle through (i) merging and
annotating existing datasets and (ii) incorporating new, up-to-date
DP examples from additional resources (see Appendix for concrete
steps for data curation). The unified taxonomy ultimately includes
10,421 deceptive pattern instances, addressing the issue of scale.
To ensure comprehensiveness, our dataset features 5,269 images

Table 3: Statistics of dataset collection.

Data Sources
of Instances (UI Images)

Mobile Website

DP non-DP DP non-DP

From
Existing
Datasets

UIGuard 2,253 (1,204) 2,757 (2,757) 0 (0) 0 (0)
AidUI 332 (208) 110 (110) 167 (94) 59 (59)
LLE 865 (477) 150 (150) 0 (0) 0 (0)

New
Samples

WebUI 0 (0) 0 (0) 1,806 (643) 299 (299)
Popular Lists 716 (362) 1 (1) 905 (360) 1 (1)

Total 4,166 (2,251) 3,018 (3,018) 2,878 (1,097) 359 (359)

frommobile platforms, containing 7,184 instances, and 1,456 images
from websites, containing 3,237 deceptive pattern instances. The
dataset spans images from 2017 to 2024, ensure it is up-to-date. The
breakdown statistics of the sources of the dataset are reported in
Table 3. Additionally, our dataset also ensures every category has at
least 5 representative examples, which reduces the learning curve
for future research.

4 DPGUARD: DETECTION OF DECEPTIVE
PATTERNS

In this section, we propose a novel framework for DP detection,
which involves a hybrid approach that combines a binary classifier
with an MLLM, aiming to achieve SOTA performance.

4.1 Overview
To reduce manual efforts in deceptive pattern detection and address
the challenge of concept drift, we propose an automatic framework
that utilizes an MLLM for deceptive pattern detection. Specifically,
we design a mutation-based prompt engineering approach to en-
hance the MLLM’s performance in the task of DP detection. Addi-
tionally, to lower the practical cost of DP detection, we incorporate
a binary classifier before the MLLM module to determine whether
DP is present in the samples to be examined, ensuring that only
highly suspicious ones are passed to the MLLM for further analysis.
Figure 1 presents an overview of the proposed DPGuard framework,
detailing the process during offline training stages (binary classi-
fier training, prompt mutation with MLMM), and online inference
stages.

4.2 Binary Classifier
To ensure practicality and reduce costs, we first introduce a binary
classifier to filter out images with a low probability of being decep-
tive. To achieve a high-performance binary classifier, we train or
fine-tune several SOTA machine learning models or open-source
large language models, selecting the best-performing one based
on its F1-score on the test dataset. Further details of the models
and experiments can be seen in Section5.1. As a result, we used the
ResNet101 [17] model, replacing the last output layer as a binary
projection layer, and fine-tuning all layers.

During the inference phase, if the binary classifier determines
that the provided image does not contain any deceptive patterns,
we classify it as a non-DP image. Otherwise, the image is sent to
the MLLM for further categorical examination.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

50 Shades of Deceptive Patterns: A Unified Taxonomy, Multimodal Detection, and Security Implications WWW ’25, 28 April – 2 May, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Binary
Classifier
Dataset

Prompt
Engineering

Dataset

3,348 DP
Samples

3,377 non-
DP Samples

Binary Classifier
for DP Detection

A
ll D

P
 sam

ples

MLLM
(e.g., GPT4o)

Batch with
100 Samples

Balanced
Sampling

Initial
Prompt

System
Prompt

Prompt Queue

Best Prompt
in Round t

Quality Checker

Prompt
Mutation

Adding new actions

...

Deleting actions

Paraphrasing

Final Prompt

Testing
Sample

MLLM
(e.g., GPT4o)

DP Detection
Result

Select Best Classifier
based on F1-score

Binary Classifier Training Stage

Prompt Engineering Stage

Looping for T rounds,
or terminated if no updates for 3 rounds

DP Detection
(Inference Stage)

𝑝 1 𝑝 2 𝑝 3 𝑝 𝑛
⋯ ⋯

Update
the Queue

New Prompts

...
ResNet 101

VGG16UIGuard
AidUI
GPT4o

152 non-D
P

 Sam
ples

Training and/or Fine-tuning

if non-DP

if DP

DP Category

𝑝 𝑏

Figure 1: An overview of DPGuard framework.

Algorithm 1: A Mutation-based Prompt Engineering
Input: Initial prompt 𝑃0, System prompt 𝑃𝑠 , Mutation

instructions 𝑃𝑚 , Prompt queue 𝑄 , Queue size limit 𝑛,
Number of new prompts to be generated in each
round𝑚, Training dataset 𝐷 , Total mutation rounds
𝑇 , Multimodal language model𝑀 , Batch size 𝑏,
Similarity threshold 𝑠 .

Output: Best prompt 𝑝𝑏 .
1 𝑝𝑏 ← 𝑃0, 𝑄 ← ∅, 𝑡 ← 0;
2 𝑄.enqueue(𝑃0);
3 while 𝑡 < 𝑇 do
4 𝑞 ← ∅, 𝑙 ← 𝑛 +𝑚 −𝑄.size;
5 while 𝑞.length < 𝑙 do
6 𝑝 ← 𝑀 (𝑃𝑚, 𝑃𝑠 , 𝑝𝑏);
7 if similarity(𝑝, 𝑃0) > 𝑠 then
8 𝑞.attend(𝑝);
9 𝑄.extend(𝑞);

10 (𝑋,𝑌) ← random_sampling(𝐷,𝑏);
11 𝑌 ′ ← 𝑀 (𝑃𝑠 , 𝑄, 𝑋);
12 𝑄.sort(Loss(𝑌,𝑌 ′));
13 𝑄 ← 𝑄 [1 : 𝑛];
14 𝑝𝑏 ← 𝑄 [0];
15 𝑡 ← 𝑡 + 1;
16 return 𝑝𝑏

4.3 Prompt Engineering
For the selection of the MLLM, we choose a commercial MLLM as
the baseline, as recent research reports that commercial MLLMs,
such as GPT4 [34], Gemini [10], and Claude [2], outperform open-
source ones [9, 25, 48] in several downstream tasks [23]. However,
these commercialMLLMs do not support fine-tuningwith the image
modality, so we proposed a prompt engineering strategy to boost
MLLM’s performance in the specific task of DP detection, which
involves three key steps: prompt mutation, prompt quality checker,
and the maintenance of a prompt queue. We illustrate our prompt
engineering method in Algorithm 1.

Prompt mutation. Prompt mutation refers to a technique in
prompt engineering where variations or modifications are system-
atically applied to an original prompt to enhance the performance
of large language models in specific tasks. In this study, we revise
PromptBreeder [13] and adapt it to the specific nature of DP detec-
tion tasks. Specifically, we incorporate domain-specific knowledge
into the revised prompting strategy, enabling its application on
large datasets. Additionally, our prompt mutation approach lever-
ages GPT’s randomness in prompt generation and is designed to
work effectively across multiple modalities, including both text
and image. We first manually define the system prompt 𝑃𝑠 (which
provides some domain knowledge, such as descriptions for all DP
categories according to the definition in Table 2) and a simple ini-
tial prompt 𝑃0 (see Appendix E) asking MLLM to “detect if any
deceptive pattern in an image”. In each mutation round, we ask
MLLM to generate new prompts by performing one of the following
actions defined in mutation instructions 𝑃𝑚 : paraphrasing the cur-
rent prompt, adding some new actions (e.g., check UI color, check
UI text) or delete actions that may mislead detection (Line 6 in
Algorithm 1). Before the generated prompts are accepted, mutation
criteria are applied to ensure the prompts are of high quality.
Mutation criteria. Since prompt mutation in our architecture
is driven by randomness, the mutation criteria are designed to
ensure that prompts evolve in the desired direction, e.g., preserving
key semantics. Specifically, we use a sentence transformer [36] to
encode each prompt and calculate the cosine similarity between the
generated prompts at each mutation round and the initial prompt,
𝑃0 (Line 7 in Algorithm 1). To determine the similarity threshold 𝑠 ,
we conducted a pilot study by generating 90 prompts (30 mutated
prompts over 3 rounds), manually grouping them into good- and
poor-quality categories, and calculating the cosine similarities to 𝑃0
across the groups. We then identified a threshold that best separates
the two groups, which is set as 0.2.
Maintain the prompt queue. Considering that the cost of query-
ing MLLM in a multimodal manner is significantly higher than
for text-only queries, we randomly sampled 100 examples in a bal-
anced manner (ensuring approximately equal samples from each
DP category), rather than using the entire dataset, in each mutation
round to evaluate the performance of the newly generated prompts

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, 28 April – 2 May, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(Line 10 in Algorithm 1). However, this strategy may not yield
precise performance results. Therefore, we decided to maintain a
prompt queue as a buffer to select the best prompts across multiple
rounds of mutations.

As shown in Lines 11 to 13 in Algorithm 1, we sort the prompts
in the queue (including prompts stored in the last mutation rounds
and newly generated prompts) according to their loss against the
ground truth. The loss function we use is Binary Cross Entropy
Loss [35]. After sorting, we retain the top 𝑛 prompts in the queue
and select the first prompt as the best one, 𝑝𝑏 . In the next mutation
round, new prompts will be generated based on 𝑝𝑏 , continuing
this process until the maximum number of mutation rounds, 𝑇 , is
reached. Note that if 𝑝𝑏 has not been updated for 3 iterations, we
assume that the optimal prompt has been found and will terminate
the training process. After rounds of mutation and selection, the
best prompt 𝑝𝑏 will be recorded and used in the inference phase to
infer the type of deceptive patterns.

5 EVALUATION
In this section, we evaluate the performance of DPGuard through
comprehensive experiments and conduct an empirical study to as-
sess its effectiveness in real-world scenarios. The details on building
the new DP dataset and the process for collecting samples for the
empirical study are provided in Appendix D.2.

5.1 DPGuard Performance
To evaluate the effectiveness of DPGuard in DP detection, we first
report the module-level performance of the binary classifier and
MLLM on DP and non-DP instances respectively, and then present
the overall performance of the entire framework.
DP detection through a binary classifier. According to Sec-
tion 4.2, we analysed the performance of different binary classi-
fiers, including inference-only models, such as commercial MLLMs
(OpenAI GPT Series [33, 34]), the SOTA model UIGuard [8] and
AidUI [26], and trainable models (e.g., VGG [39], DenseNet [19],
and ResNet [17]). Specifically, for trainable/finetunable models, we
first perform data pre-processing (e.g., resizing the image and ap-
plying image embedding normalization), and then obtain the final
layer’s embedding from the model. We then mapped its shape to
2 and applied the sigmoid function to make a binary prediction.
The dataset used for fine-tuning the binary classifier is described
in Appendix C. We use the training set for fine-tuning and up-
dating hyper-parameters , the validation set for selecting the best
model, and the testing set for evaluating the final performance
for fine-tuned model. Table 4 reports the binary classification re-
sults, with the pre-trained ResNet101 model achieving the best
F1 performance (exceeding 0.87). We believe this represents satis-
factory performance, surpassing existing DP detection tools such
as UIGuard and AidUI. However, some DP examples may still be
misclassified as non-DP, which we view as a reasonable trade-off
between practical costs and detection performance.

Takeaway 1: A satisfactory binary classification on DP can
be achieved by fine-tuning pre-trained CNN models. However,
incorporating more accurate models into the framework could
further enhance overall performance.

Table 4: Performance of candidate binary classifiers.

Model On DP Instances On non-DP Instances

Precision Recall F1 Precision Recall F1

GPT4o 0.3805 0.7997 0.5156 0.9516 0.7515 0.8398
GPT4o-mini 0.3584 0.6041 0.4499 0.9131 0.7936 0.8492
UIGuard 0.3298 0.7088 0.4501 0.8788 0.5944 0.7091
AidUI 0.6473 0.8392 0.7308 0.7073 0.4595 0.5571
VGG16 0.6433 0.8096 0.7169 0.7666 0.5821 0.6618

DenseNet121 0.7346 0.6811 0.7068 0.7220 0.7709 0.7456
ResNet50 0.8808 0.8467 0.8635 0.8623 0.8934 0.8776
ResNet101 0.8638 0.8839 0.8769 0.8895 0.8703 0.8798

Table 5: MLLM performance on DP category determining.

Approaches Metrics Precision Recall F1

Fixed-prompt Micro avg 0.4974 0.5045 0.5009
Macro avg 0.3370 0.4768 0.3522

Prompt mutation Micro avg 0.4966 0.5577 0.5254
Macro avg 0.3904 0.5054 0.4131

Figure 2: Loss in each mutation round.

DP category determining through MLLM. In our prompt muta-
tion strategy, there are three hyper-parameters: similarity threshold,
queue limits, and the number of mutation rounds. We select these
hyper-parameters through several pilot experiments. Please find
more details in Appendix J. To demonstrate the performance of our
prompt engineering, we use GPT4o with a fixed initial prompt as a
baseline, and compare it to the final best prompt after 25 rounds of
mutation, under queue size 15. We provide the initial prompt and
the final best prompt in Appendix E and Appendix F. As shown in
Table 5, the final prompt achieves 2.5% and 6.1% higher F1 scores
on both micro and macro averages, respectively. The results are
evaluated on 3,490 DP images (6,841 DP instances) from the prompt
mutation dataset. We further report the performance of the best
prompt in each round in Figure 2 in Appendix J. Due to the ran-
domness present in MLLM outputs and the fact that we evaluate
prompts and maintain the prompt queue using a batch of sam-
ples (e.g., 100 samples) in each round for cost considerations, we
acknowledge that the performance of prompts may vary across
mutation rounds, and additional rounds of mutation may yield
better prompts. However, the loss of our method (using a prompt
mutation strategy to enhance MLLM) for DP detection remains
lower than that of the SOTA methods, such as UIGuard.
Overall performance of DPGuard. We then compared the over-
all performance of DPGuard with two existing deceptive pattern
detection tools. The key results, including the micro and macro

6

....- Avg- Best • GPT4o - UIGuard - AidUI

0.9 --

0.8

~ 0.7

• 0.6

10 15 20 25

Number of round

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

50 Shades of Deceptive Patterns: A Unified Taxonomy, Multimodal Detection, and Security Implications WWW ’25, 28 April – 2 May, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 6: Performance (F1-score) comparison between DP-
Guard, UIGuard, and AidUI on mobile and website datasets.

DP Categories Mobile Website

Instances UIGuard AidUI DPGuard Instances AidUI DPGuard

No DP 3,018 0.8091 0.7812 0.9807 359 0.4338 0.8230
Nagging 409 0.4412 0.3454 0.3876 180 0.1163 0.4945
Roach Motel 24 - - 0.5484 13 - 0.4000
Price Comparison Pre-
vention

7 - - 0.0000 27 - 0.2381

Intermediate Currency 38 - - 0.6154 5 - 0.4286
Forced Continuity 48 0.0408 - 0.7059 26 - 0.3448
Hidden Costs 38 - - 0.2680 99 - 0.2519
Hidden Information 236 - - 0.4187 377 - 0.4535
Preselection 356 0.4546 0.3565 0.5466 413 0.3629 0.2753
Toying with Emotion 84 - 0.1389 0.3096 229 0.4251 0.5866
False Hierarchy 559 0.4188 0.0552 0.6535 320 0.0245 0.4360
Disguised Ad 883 0.1520 0.2551 0.8481 256 0.2096 0.8060
Small Close Button 747 0.9410 - 0.4906 160 - 0.2564
Social Pyramid 35 0.6349 - 0.5047 7 - 0.3243
Privacy Zuckering 206 0.7378 - 0.4073 367 - 0.5868
Gamification 27 0.3529 - 0.5000 1 0.0000 0.0000
Countdown on Ads 77 0.2128 0.0000 0.3952 10 - 0.4103
Watch Ads to Unlock
Features or Rewards

67 0.3488 - 0.0000 0 - 0.0000

Pay to Avoid Ads 106 0.7265 - 0.6277 7 - 0.1429
Forced Enrollment 149 - - 0.4383 89 - 0.3356

Micro avg 7,114 0.6672 0.5889 0.7316 2,945 0.3228 0.4989
Macro avg 7,114 0.2851 0.0878 0.4385 2,945 0.0715 0.3452

-: the DP category is not supported by the corresponding tool.

averages of F1-scores, are detailed in Table 6. More detailed re-
sults with precision and recall are provided in Tables 11 and 12
in Appendix K. Specifically, DPGuard achieves 0.6326, 0.6927 and
0.6613 on micro averaged precision, recall and F1-score, and 0.4122,
0.5698 and 0.4437 on macro averaged precision, recall and F1-score.
The result demonstrates that our DPGuard outperforms two SOTA
models across all evaluation metrics, advancing the performance
of deceptive pattern detection to a new level.

Takeaway 2: DPGuard outperforms the state-of-the-art models
in DP detection, increasing the F1-score to 0.73 (micro) and 0.44
(macro) on the mobile dataset, and 0.50 (micro) and 0.34 (macro)
on the website dataset.

5.2 Empirical Evaluation in the Wild
To offer valuable insights into how often people encounter the
potential threat of deceptive patterns, we conducted an empirical
study with real-world cases collected from popular mobile apps
and websites. We collected 2,905 mobile images and 9,396 website
images from 1,000 mobile apps (from AndroidZoo [1]) and 1,000
popular websites (based on Majestic Million list [20]). Details of
data collection are provided in Appendix D.2.

An analysis of images from mobile and website platforms reveals
that 23.61% of mobile images (686 out of 2,905) contain deceptive
patterns, with an average of 1.95 instances per image and standard
deviation is 0.88. Among these deceptive mobile UIs, the major-
ity (53.01%) contain two deceptive pattern instances, and 16.62%
contain more than two instances. In contrast, 47.27% of website
images (4,429 out of 9,369) feature deceptive patterns, with a higher
average of 2.87 instances per image and the standard deviation is
1.31. Within these deceptive website UIs, the majority (43.70%) also
contain two deceptive pattern instances, but a larger proportion
(45.94%) contain more than two instances. Based on these results,
we find that websites, on average, employ 23.66% more deceptive
pattern instances than mobile platforms. Upon a closer inspection

Figure 3: Distribution of number of deceptive instances per
deceptive images.

Figure 4: Distribution of detected deceptive instances in the
empirical study.

on the top categories of DP in mobile apps and websites (see Fig-
ure 4 (a) and Figure 4 (b)), the top three most frequent deceptive
pattern categories are False Hierarchy, Hidden Information
and Forced Enrollment for websites; while for mobile apps, the
top 3 DP categories are Nagging, Forced Enrollment and False
Hierarchy. We infer that such difference arises because mobile
application are more likely to have pop-up ads, while website are
more likely to display cookie consent notifications.

To validate the effectiveness of DPGuard in the wild, we ran-
domly selected 20 images each from mobile and website categories,
and manually annotated them. As a result, we identified 14 DP
images (5 mobile and 9 web) and 26 non-DP images (15 mobile and
11 web). Our binary classifier successfully identified 12 out of 14
(85.71%) deceptive images. Among the identified 12 deceptive im-
ages, DPGuard predicted 65 deceptive pattern instances, of which
45 were correct. The performance aligns with our experiments in
Section 5.1.

Takeaway 3: Based on our empirical evaluation, we found that
deceptive patterns are frequently present in popular applications.
Specifically, 23.61% of mobile app images and 47.27% of website
images were identified to contain DPs.

6 CASE STUDY
In this section, we provide unexplored case studies that inform
security implications for the expanded deceptive pattern categories.

6.1 Price Comparison Prevention
In UIGuard, Price Comparison Prevention focuses solely on
whether the product name can be copied and pasted for direct

7

60~------------------------~

30.17%

9.89%

53.21%

41.72%

11.67%

21.77%

5.15%
1.60%

of DP instances per deceptive images

3.35%

mobile
website

21.47%

40% ~-----------~ 40% ~-----------~

30% 27.JJ7 30%
29.47

21.02
20% 18.77

14.66
20% -15_70 16.65" 15.12

11.52 11.39 10.68
10%

(b) Websites

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, 28 April – 2 May, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

comparison with other markets. However, we found an example (as
shown in Figure 9(f) in Appendix L) where a user needs to manually
click ‘budget server’ or ‘performance server’ to switch between
other plans. In the previous deceptive pattern definition, this case
is classified as a non-deceptive example, but we believe there are
two risks for end-users.

In the context of Alice and Bob’s model, Alice is the customer,
while Bob represents the service provider. The updated definition
of Price comparison prevention now includes any action by
Bob that makes it difficult or impossible for Alice to compare differ-
ent plans or products directly. This deceptive pattern increases the
chances of Alice making a purchase decision without fully under-
standing her options, which could lead to overspending or choosing
a plan that does not serve her best interest. For the security risk,
Bob’s intentional obfuscation might push Alice into sharing her
payment information or making a financial commitment under
false pretenses. This increased exposure could make Alice vulner-
able to financial fraud. For the privacy risk, Bob prevents Alice
from comparing prices might force her to engage more with Bob’s
system, potentially collecting more of her personal data without
her realizing the extent of the tracking.

Thus, we believe it is important to expand the definition of price
comparison prevention to account for both potential security and
privacy risks.

6.2 Hidden Cost
The traditional definition of Hidden Cost in deceptive patterns
mainly focuses on the additional fee (e.g., deliver fee or service
fee) at the checkout stage. However, in people’s daily lives, there
is a case like the one in Figure 9(b) in Appendix L where the app
does not disclose its subscription fee after the free trial. Therefore,
we have expanded the scope to include any costs not disclosed at
the initial stage, which will now be recognized as a hidden cost
deceptive pattern.

In the Alice and Bob model, by not disclosing the subscription fee
at the free trial stage, Bob misleads Alice into thinking the service
might be free or cheaper than it actually is. This lack of transparency
not only risks Alice incurring unexpected financial charges but also
increases the likelihood that she will agree to “terms and conditions”
without fully understanding them. From a security perspective, this
could result in Alice unknowingly providing her payment infor-
mation, which might be exploited for unauthorized charges later.
From a privacy standpoint, since Alice might agree to terms that
allow Bob to collect and potentially sell her sensitive information,
it creates a significant risk of privacy invasion.

Therefore, the updated definition of hidden costs is a critical
deceptive pattern category, as it exposes Alice to financial exploita-
tion and unauthorized data sharing, making her more vulnerable
from both security and privacy perspectives.

6.3 Hidden Information
The definition of Hidden Information (i.e., a deceptive pattern that
makes the options/actions not immediately readable for the user)
as described by UIGuard is sufficient, but the use cases need to be
expanded to cover the case shown in Figure 9(e) in Appendix L,

where the developer can intentionally hide the privacy-related
information in a hyperlink.

By placing privacy-related information within a hyperlink, Bob
makes it less likely for Alice to notice or access important details
about data usage, risks, or conditions, even though the information
is technically provided. This tactic deceives Alice into thinking that
there are no significant risks, or at the very least, makes it incon-
venient for her to find out. In terms of privacy, Bob could conceal
permissions to access, share, or sell Alice’s sensitive information in
the linked text, thereby tricking her into relinquishing control over
her personal data.

Therefore, expanding the use cases for the hidden information
category is crucial, as it highlights how such tactics increase the
risk of unauthorized data exploitation, making users like Alice
vulnerable to privacy breaches.

6.4 Toying with Emotion
Toying with emotion in UIGuard is described as using language
or visual information to deceptive users into taking action based
on emotion. The use cases covered by UIGuard include countdown
offer or limited-time rewards. However, we have expanded the
use cases for covering some cases such as the one in Fiugre 9(c) in
Appendix L, where a developer uses fake scarcity (e.g., high-demand
or low-stock) for deceptive user into making irrational decisions.

In Alice and Bob’s model, by creating a false sense of scarcity,
such as displaying “high-demand” or “low stock” notifications, Bob
manipulates Alice’s emotions, pushing her to make hurried and
irrational decisions without fully considering the consequences.
From a security perspective, this sense of urgency may lead Alice
to overlook important details, such as verifying the legitimacy of
the service or transaction, making her more susceptible to scams
or fraudulent activities. In terms of privacy, Alice might quickly
provide her personal and financial information without carefully
reviewing the terms, potentially exposing her to data misuse or
unauthorized sharing.

Therefore, expanding the use cases of the “toying with emotion”
deceptive pattern is essential, as it underscores how emotionally
charged tactics can lead to impulsive actions, resulting in both
financial loss and increased vulnerability to security and privacy
breaches for users like Alice.

7 CONCLUSION
We have unified the deceptive pattern taxonomy, refining it with
24 subcategories that reflect both category and scope. This updated
taxonomy informs the unexplored deception in the wild. We also
introduced a novel approach that combines a binary classifier with
mutation-based prompt engineering to harness the capabilities of
multimodal large language models for deceptive pattern detection.
Our experiments demonstrate that DPGuard achieves state-of-the-
art performance in this area. We also provided unexplored real case
studies with security implications, fitting into the new taxonomy of
deceptive patterns. We hope that the unified taxonomy, multimodal
detection approach developed in this paper as well as unexplored
security implications can navigate the disruptions within the ever-
evolving realm of Internet deception.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

50 Shades of Deceptive Patterns: A Unified Taxonomy, Multimodal Detection, and Security Implications WWW ’25, 28 April – 2 May, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

AndroZoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories
(Austin, Texas) (MSR ’16). ACM, New York, NY, USA, 468–471. https://doi.org/
10.1145/2901739.2903508

[2] Anthropic. 2024. Claude. https://claude.ai/.
[3] Nataliia Bielova, Laura Litvine, Anysia Nguyen, Mariam Chammat, Vincent

Toubiana, and Estelle Hary. 2024. The Effect of Design Patterns on (Present and
Future) Cookie Consent Decisions. In Proceedings of the 33rd USENIX Security
Symposium (USENIX Security ’24). 2813–2830.

[4] European Data Protection Board. 2022. EDPB adopts Guidelines on Art. 60 GDPR,
Guidelines on dark patterns in social media platform interfaces, toolbox on
essential data protection safeguards for enforcement cooperation between EEA
and third country SAs. https://edpb.europa.eu/news/news/2022/edpb-adopts-
guidelines-art-60-gdpr-guidelines-dark-patterns-social-media-platform_en.

[5] Kerstin Bongard-Blanchy, Arianna Rossi, Salvador Rivas, Sophie Doublet, Vincent
Koenig, and Gabriele Lenzini. 2021. ” I am Definitely Manipulated, Even When I
am Aware of it. It’s Ridiculous!”-Dark Patterns from the End-User Perspective. In
Proceedings of the 2021 ACM Designing Interactive Systems Conference. 763–776.

[6] Harry Brignull. 2010. Twitter: Deceptive Design@darkpatterns. https://x.com/
darkpatterns.

[7] Harry Brignull, Mark Leiser, Cristiana Santos, and Kosha Doshi. 2010. Deceptive
patterns: user interfaces designed to trick people. https://old.deceptive.design/
main_page/index.html.

[8] Jieshan Chen, Jiamou Sun, Sidong Feng, Zhenchang Xing, Qinghua Lu, Xiwei
Xu, and Chunyang Chen. 2023. Unveiling the Tricks: Automated Detection of
Dark Patterns in Mobile Applications. In Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technology (UIST). 1–20.

[9] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao,
Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. 2023. InstructBLIP:
Towards General-purpose Vision-Language Models with Instruction Tuning.
arXiv:2305.06500 [cs.CV]

[10] Google DeepMind. 2024. Gemini Pro: Our best model for general performance
across a wide range of tasks. https://deepmind.google/technologies/gemini/pro/.

[11] Linda Di Geronimo, Larissa Braz, Enrico Fregnan, Fabio Palomba, and Alberto
Bacchelli. 2020. UI Dark Patterns and Where to Find Them: A Study on Mobile
Applications and User Perception. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1–14.

[12] California Privacy Protection Agency Enforcement Division. 2024. Avoiding
Dark Patterns: Clear and Understandable Language, Symmetry in Choice. https:
//cppa.ca.gov/pdf/enfadvisory202402.pdf.

[13] Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero,
and Tim Rocktäschel. 2023. Promptbreeder: Self-referential self-improvement
via prompt evolution. arXiv preprint arXiv:2309.16797 (2023).

[14] Google. 2024. Google Play Store. https://play.google.com/store/. Accessed:
2024-10-13.

[15] Colin M Gray, Yubo Kou, Bryan Battles, Joseph Hoggatt, and Austin L Toombs.
2018. The Dark (Patterns) Side of UX Design. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems. 1–14.

[16] HallofShame.com. 2022. Dark Patterns Hall of Shame. https://hallofshame.
design/.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Resid-
ual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 770–778.

[18] Shun Hidaka, Sota Kobuki, Mizuki Watanabe, and Katie Seaborn. 2023. Linguistic
Dead-Ends and Alphabet Soup: Finding Dark Patterns in Japanese Apps. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems.
1–13.

[19] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely Connected Convolutional Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 4700–4708.

[20] Dixon Jones. 2012. Majestic Million CSV now free for all, daily. Technical Report.
Majestic.

[21] Monica Kowalczyk, Johanna T Gunawan, David Choffnes, Daniel J Dubois,
Woodrow Hartzog, and Christo Wilson. 2023. Understanding Dark Patterns in
Home IoT Devices. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems. 1–27.

[22] UXP2 Lab. 2018. UXP2 DARK PATTERN. https://darkpatterns.uxp2.com/.
[23] Jian Li and Weiheng Lu. 2024. A Survey on Benchmarks of Multimodal Large

Language Models. arXiv preprint arXiv:2408.08632 (2024).
[24] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2017. DroidBot: A

Lightweight UI-Guided Test Input Generator for Android. In Proceedings of the
39th International Conference on Software Engineering Companion (ICSE-C). IEEE,
23–26.

[25] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen,
and Yong Jae Lee. 2024. LLaVA-NeXT: Improved reasoning, OCR, and world

knowledge. https://llava-vl.github.io/blog/2024-01-30-llava-next/
[26] SM Hasan Mansur, Sabiha Salma, Damilola Awofisayo, and Kevin Moran. 2023.

AidUI: Toward Automated Recognition of Dark Patterns in User Interfaces. In
Proceedings of the 45th International Conference on Software Engineering (ICSE).
IEEE/ACM, 1958–1970.

[27] Arunesh Mathur, Gunes Acar, Michael J Friedman, Eli Lucherini, Jonathan Mayer,
Marshini Chetty, and Arvind Narayanan. 2019. Dark patterns at scale: Findings
from a crawl of 11K shopping websites. Proceedings of the ACM on human-
computer interaction 3, CSCW (2019), 1–32.

[28] Dmitry Nazarov and Yerkebulan Baimukhambetov. 2022. Clustering of dark pat-
terns in the user interfaces of websites and online trading portals (E-Commerce).
Mathematics 10, 18 (2022), 3219.

[29] Trung Tin Nguyen, Michael Backes, and Ben Stock. 2022. Freely Given Consent?
Studying Consent Notice of Third-Party Tracking and Its Violations of GDPR in
Android Apps. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security (CCS). 2369–2383.

[30] Liming Nie, Yangyang Zhao, Chenglin Li, Xuqiong Luo, and Yang Liu. 2024.
Shadows in the Interface: A Comprehensive Study on Dark Patterns. Proceedings
of the ACM on Software Engineering 1, FSE (2024), 204–225.

[31] Ikechukwu Obi, Colin M Gray, Shruthi Sai Chivukula, Ja-Nae Duane, Janna
Johns, Matthew Will, Ziqing Li, and Thomas Carlock. 2022. Let’s Talk About
Socio-Technical Angst: Tracing the History and Evolution of Dark Patterns on
Twitter from 2010-2021. arXiv preprint arXiv:2207.10563 (2022).

[32] Australian Federal Register of Legislation. 2024. Competition and Consumer Act
2010. https://www.legislation.gov.au/C2004A00109/latest/text.

[33] OpenAI. 2024. GPT-4o mini: advancing cost-efficient intelligence. https://openai.
com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/.

[34] OpenAI. 2024. Hello GPT-4o. https://openai.com/index/hello-gpt-4o/.
[35] PyTorch. 2024. BCELoss. https://pytorch.org/docs/stable/generated/torch.nn.

BCELoss.html Accessed: 2024-10-13.
[36] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Em-
pirical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

[37] Zewei Shi, Ruoxi Sun, Jieshan Chen, Jiamou Sun, and Minhui Xue. 2024. The
Invisible Game on the Internet: A Case Study of Decoding Deceptive Patterns.
In Companion Proceedings of the ACM on Web Conference 2024. 521–524.

[38] Similarweb. 2024. Similarweb. https://www.similarweb.com/. Accessed: 2024-
10-13.

[39] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[40] Dewen Suo, Lei Xue, Runze Tan, Weihao Huang, and Guozi Sun. 2024. ARAP:
Demystifying Anti Runtime Analysis Code in Android Apps. arXiv preprint
arXiv:2408.11080 (2024).

[41] NSW Fair Trading. 2024. Dark patterns - tricks to make you spend more
online. https://www.nsw.gov.au/departments-and-agencies/fair-trading/dark-
patterns.

[42] Christine Utz, Martin Degeling, Sascha Fahl, Florian Schaub, and Thorsten Holz.
2019. (Un)Informed Consent: Studying GDPR Consent Notices in the Field. In
Proceedings of the 2019 ACM SIGSACConference on Computer and Communications
Security (CCS). 973–990.

[43] Sally Woellner. 2022. Dark Patterns: How design seeks to control us. https:
//www.youtube.com/watch?v=lJUW0iZzAaQ.

[44] Jason Wu, Siyan Wang, Siman Shen, Yi-Hao Peng, Jeffrey Nichols, and Jeffrey P
Bigham. 2023. Webui: A dataset for enhancing visual ui understanding with
web semantics. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1–14.

[45] Qinge Xie and Frank Li. 2024. Crawling to the Top: An Empirical Evaluation of
Top List Use. In International Conference on Passive and Active Network Measure-
ment. Springer, 277–306.

[46] Chang Yue, Chen Zhong, Kai Chen, Zhiyu Zhang, and Yeonjoon Lee. 2024. DARK-
FLEECE: Probing the Dark Side of Android Subscription Apps. In Proceedings of
the 33rd USENIX Security Symposium (USENIX Security ’24). 1543–1560.

[47] Xiangyu Zhang, Lingling Fan, Sen Chen, Yucheng Su, and Boyuan Li. 2023.
Scene-Driven Exploration and GUI Modeling for Android Apps. In 2023 38th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 1251–1262.

[48] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. 2023.
MiniGPT-4: Enhancing Vision-Language Understanding with Advanced Large
Language Models. arXiv preprint arXiv:2304.10592 (2023).

9

https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508
https://claude.ai/
https://edpb.europa.eu/news/news/2022/edpb-adopts-guidelines-art-60-gdpr-guidelines-dark-patterns-social-media-platform_en
https://edpb.europa.eu/news/news/2022/edpb-adopts-guidelines-art-60-gdpr-guidelines-dark-patterns-social-media-platform_en
https://x.com/darkpatterns
https://x.com/darkpatterns
https://old.deceptive.design/main_page/index.html
https://old.deceptive.design/main_page/index.html
https://arxiv.org/abs/2305.06500
https://deepmind.google/technologies/gemini/pro/
https://cppa.ca.gov/pdf/enfadvisory202402.pdf
https://cppa.ca.gov/pdf/enfadvisory202402.pdf
https://play.google.com/store/
https://hallofshame.design/
https://hallofshame.design/
https://darkpatterns.uxp2.com/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://www.legislation.gov.au/C2004A00109/latest/text
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/hello-gpt-4o/
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCELoss.html
https://arxiv.org/abs/1908.10084
https://www.similarweb.com/
https://www.nsw.gov.au/departments-and-agencies/fair-trading/dark-patterns
https://www.nsw.gov.au/departments-and-agencies/fair-trading/dark-patterns
https://www.youtube.com/watch?v=lJUW0iZzAaQ
https://www.youtube.com/watch?v=lJUW0iZzAaQ

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, 28 April – 2 May, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

APPENDIX
A EXISTING DP DATASETS
To raise awareness about deceptive patterns, several instances have
been collected and posted on websites [7, 16, 22, 41], social plat-
forms [6], and YouTube videos [43]. To the best of our knowledge,
Mathur et al. [27] is the first study to systematically construct a
large-scale deceptive pattern dataset. In this work, 11,000 shopping
websites were analyzed, resulting in the collection of 1,818 decep-
tive pattern instances in the AGM-D dataset. Geronimo et al. [11]
analyzed 240 popular mobile apps by simulating end-user interac-
tions with these apps, recording them for analysis, and released the
deceptive pattern instances as the LLE dataset. AidUI constructed
context-DP [26] by collecting 175 mobile images from LLE and 83
website images in the wild. Additionally, UIGuard [8] constructed
a dataset with 4,999 manually labelled non-deceptive images and
1,353 deceptive images of 1,660 deceptive instances from 1,023 mo-
bile app. However, existing deceptive pattern (DP) datasets cannot
achieve both comprehensiveness (e.g., UIGuard and LLE focus on
single platforms) and large scale (e.g., less than 500 examples in
AidUI) simultaneously. Furthermore, due to the aforementioned
concept drift issue, the examples collected in previous research may
become outdated and may not represent new deceptive pattern
practices. Therefore, in this study we constructed a new dataset by
merging and relabeling existing datasets and incorporating new
DP examples from additional resources.

B NEW DATASET CREATION
We constructed a new DP dataset (SADP) by (i) merging and an-
notating existing datasets and (ii) incorporating new, up-to-date
DP examples from additional resources. The statistics of the newly
created dataset are reported in Table 3.
Merging existing datasets. We gathered 5,059 UI images includ-
ing 4,906 mobile app screenshots and 153 website interfaces from
3 existing DP datasets, i.e., UIGuard [8], AidUI [26], and LLE [11].
Specifically, in UIGuard, we manually checked and removed du-
plicate and high-similarity UI images, and corrected some labels.
Finally, we selected 1,204 out of 1,353 deceptive pattern images,
including 2,253 deceptive pattern instances, and 2,757 out of 4,999
non-deceptive pattern images. We included all of the 471 UI im-
ages from AidUI and re-labeled them, resulting in 499 DP instances
from 302 images and 169 non-DP instances from 169 images. We
obtained 173 videos from LLE and extracted DP images according
to the timestamps of the deceptive patterns. To address the image
overlap between LLE and AidUI, we first merged all the LLE exam-
ples into our dataset and manually eliminated duplicate and similar
images through a review process Finally, we collected 627 images, of
which 150 are non-deceptive images and 477 are deceptive images
with 865 deceptive pattern instances.
Incorporating new DP examples. All the existing available
datasets primarily focus on mobile platforms. However, we recog-
nize that deceptive patterns can also exist on website platforms.
There is one related work that performs deceptive pattern collec-
tion on shopping websites [27], but most of the products have been
removed, and this dataset focuses only on the shopping category.

For these reason, we incorporated additional measures, such as
collecting UI images from WebUI [44] (a dataset containing 400,000

webpage screenshots) and from popular lists (i.e., Google Play [14]
for mobile apps and SimilarWeb [38] for websites.), to enhance the
number of website images and ensure that our dataset is up-to-
date. We obtained 1,666 images from this process. Specifically, we
manually checked 2,000 randomly sampled images from WebUI,
resulting in 942 images, of which 1,806 contained deceptive patterns.
Furthermore, we manually collected and analyzed 50 apps and 50
websites from Hong Kong, Australia, Ireland, and the United States
in May 2024. We focused primarily on the moments when deceptive
patterns appeared. After images collection and manual review, as
a result, we collected 724 images, of which 722 include deceptive
patterns and 2 are non-deceptive.
Dataset annotation. Our annotation team consists of 3 annotators
and 1 advisor who is an expert in deceptive patterns. After training
on the knowledge and definitions of DP, the advisor evaluated the
annotators’ performance on 50 randomly selected samples from
all DP categories. The average annotation accuracy was 88%. The
team then convened to discuss and resolve any annotation conflicts,
refining their labeling standards.With the refined standards in place,
each annotator independently annotated the entire dataset. At the
end of the annotation process, the team collaboratively examined
conflict cases and voted to determine the final label.
Dataset Statistics Summary. As shown in Table 2, our dataset
DPGuard includes 6,725 UI images and 10,421 deceptive pattern in-
stances, addressing the issue of scale. To ensure comprehensiveness,
our dataset features 5,269 images from mobile platforms, contain-
ing 7,184 instances, and 1,456 images from websites, containing
3,237 deceptive pattern instances. The dataset spans images from
2017 to 2024, ensure it is up-to-date. Additionally, our dataset also
ensure every category has at least 5 representative examples, which
reduces the learning curve for future research.

C DATASET FOR DPGUARD EVALUATION
In DPGuard, there are two components: the binary classifier and
the mutation-based prompt fine-tuned MLLM. To evaluate the per-
formance of these two components, we used the dataset we con-
structed in Section B. Additionally, we removed all examples in
the Sneak into Basket and Tricked Question category because
examples for these two labels are rare, and the related work on
these categories is too limited. Finally, we collected 3,348 deceptive
UI images and 3,377 non-deceptive UI images.
BinaryClassifierDataset: To reduce the impact of class imbalance
bias on our binary classifier, we used full deceptive pattern dataset,
in which the ratio of non-deceptive to deceptive examples is nearly
1:1, to fine-tune a pre-trained convolution neural network. For fine-
tuning, we split the dataset into training, validation and testing sets
with a ratio of 6:2:2, using random seed 42. We ran the training for
10 epoch.
Prompt Mutation Dataset: For the prompt mutation part, we con-
sidered the effectiveness of our binary classifier and the inference
cost. We reduced the dataset for non-deceptive UI images by taking
the average number of all the deceptive pattern images across 21
classes as our target number for non-deceptive UI images. After
filtering, we reserved 20% of the dataset as our testing set and used
the remaining 80% for fine-tuning in each round. For each round,

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

50 Shades of Deceptive Patterns: A Unified Taxonomy, Multimodal Detection, and Security Implications WWW ’25, 28 April – 2 May, 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

we followed the setup of Promptbreeder [13], which randomly sam-
ples a batch of 100 examples as batch examples. To better fit our
task, we applied a special strategy: we selected at least 5 examples
from each category to obtain a batch of 100 UI Images. This strategy
ensures each category is represented in the batch.

D EMPIRICAL EVALUATION IN THE WILD
D.1 Methodology
For the empirical study, we first collected Android application pack-
ages (APKs) for mobile and domains for websites. Then, we em-
ployed UI exploration tools to obtain screenshots from the collected
APKs and domains. To ensure the quality of the collected UI images,
we designed two different strategies for mobile and website data
post-processing.

For mobile images, we designed a three-step process to eliminate
undesired screenshots. In Step 1, we eliminated APKs that were
not able to run or collect screenshots. In Step 2, we removed highly
similar images within the same app by setting a similarity thresh-
old. In Step 3, we removed common images that did not contain
any useful information (e.g., blank screens, app info pages, etc.) by
another similarity threshold.

For website images, before performing UI exploration, we sent
HTTP GET requests to verify that each website returned a 200 OK
status code. After that, we performed UI exploration and captured
a screenshot for the visited URL.

During the screenshot collection stage, we used the code pro-
vided by WebUI [44] as a template, where WebUI employs crawlers
to capture website screenshots from a list of domains. We made four
modifications to adapt it to our specific goals. First, we limited the
exploration waiting list to websites from the same domain where
the data was collected. Second, we introduced a hashmap to ensure
that each domain could explore a maximum of 20 pages. Third,
instead of adding all candidate webpages one by one, we shuffled
and randomly selected up to five webpages to add to the list. Finally,
we removed WebUI’s codebase pruning strategy, allowing more
webpages to become candidates for exploration.

We then used file size to filter out images that did not contain any
useful information as smaller files typically contain less information.
After collecting the image data from the wild, we ran DPGuard on
it and randomly sampled some data for manual review to assess
the actual performance of our model in the wild.

D.2 Dataset
To provide valuable insights into deceptive pattern in the wild, we
conducted an empirical study by collecting a UI images dataset
consisting of 12,301 UI images, including 2,905 UI Images from 770
out of 1,000 mobile applications and 9,396 website images from 765
out of 1,000 domains.

For mobile applications, we randomly selected 1,000 Android
Package Kit (APK) released in 2024, collected by AndroZoo [1], one
of the largest and fastest-growing datasets of Android applications.
We applied random selection because Androzoo lacks ranking in-
formation. After collecting the APKs, we initially attempted to use
SceneDroid [47], the latest automated Android GUI collection tool,
to gather GUI data from these 1,000 Apks. However, in our tiny
experiment, we found that only 6/40 Apks successfully recorded

Figure 5: Reasons of removing screenshots in step3

Figure 6: Number of images distributed in an app

screenshot. After contacting the authors, we learned that only few
apps were able to collect screenshots due to the significant changes
in android attack and defense environment caused by the upgrade
of android [40]. As a result, we switched to Droidbot [24], for UI
exploration and recording UI screenshots.

After running the 1,000 APKs, we initially collected 12,740 UI
images and performed the data post-processing mentioned in Sec-
tionD.1. In step1, we eliminate 41 APKs that could not run because
DroidBot requires Android 9 API 28, while the eliminated APKs
require at least API 29. Before proceeding to step 2 and step 3, we
randomly selected 20 APKs from 7 application category and manu-
ally created a ground truth of how many images should remain in
each steps which can help determine the similarity threshold for
step 2 and step 3.

In step2, based on the ground truth, we expected to retain 172
images that are unique from these 20 APKs. We experimented
with threshold of 0.85,0.90,0.95, resulting in 87,126 and 175 images
remaining, respectively. This indicate that the best threshold for
step2 was 0.95. After applying this threshold, we delete 5,779 and
keep 6,961 images from step 2.

In step3, we manually reviewed 50 APKs to identify UI images
with meaningless information. We conducted experiments with the
same three different threshold (0.85, 0.90, 0.95) within the same 20
APKs. The ground truth in step 3 was 116 images. After setting the
step 2 threshold to 0.95, we experimented with the three thresholds
and found 58,103,137 images remaining, respectively. Therefore, the
best threshold for stage3 was 0.90. After applying with this thresh-
old, we eliminated 4,056 UI images and keep 2,905. The reason for
elimination in step 3 is illustrated in Figure 5. In total, after running
770 app, we collected 2,905 UI Images from mobile application, and
the distribution is shown in Figure 6.

11

1750~--------------------------~

.g 1500

"' ~ 1250
~
~ 1000

l 750

~ 500

: 250

1404

959
808

262 224-
139 98 55 49 33 18

225 ~--------------------------~

200

175

150

§: 125
<(

o 100

" 75

so

25

205

155

107

59 __

55 48

35 31

19 15 9
1 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
of images per App

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, 28 April – 2 May, 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Figure 7: Status code and error count

Figure 8: The number of visited webpages within a domain.

For website images, we selected the top 1000 websites listed on
Majestic Million [20], one of the most recognized website ranking
list [45]. Then we executed the instructionmentioned in Section D.1.
Figure 7 shows the distribution of returned status information.

After that, we followed the instructions to set a filter to only
keep website images with a file size greater than 8KB because
our investigation found that images smaller than 8KB are mostly
incorrect responses, such as blank web pages or pages with no data.
As a result, we collected 9,396 website images from 765 domains.
Figure 8 provides the details on how many website images were
collected per domain.

E INITIAL PROMPT
Now I provided you one image or sequence of images, please help
me to detect whether the given image include any deceptive pattern
or not.

F FINAL PROMPT
Kindly conduct a comprehensive analysis of the given image to
identify any deceptive patterns, employing the provided taxonomy.
While examining the image, consider the following categories of
deceptive patterns:

1. **Nagging**: Spot any repetitive and unexpected pop-up win-
dows that disrupt user activities. 2. **Roach Motel**: Identify sce-
narios where opting in is easy, but opting out is complicated or
obscure. 3. **Price Comparison Prevention**: Detect any elements
that hinder direct comparisons of prices or plans. 4. **Intermediate
Currency**: Look for instances where virtual currencies are used
to obscure real financial costs. 5. **Forced Continuity**: Examine if
users are charged after a trial period ends without clear advance no-
tice. 6. **Hidden Costs**: Check for the late disclosure of additional

costs such as taxes, delivery, or service fees. 7. **Sneak into Basket**:
Identify if items not actively selected by users are automatically
added to the shopping cart. 8. **Hidden Information**: Ensure that
essential options or actions are not concealed or difficult to find. 9.
Preselection: Look for cases where options are preselected by
default, without explicit user consent. 10. **Toying with Emotion**:
Evaluate design elements such as language, colors, or styles that are
intended to elicit emotional responses and pressure users into mak-
ing decisions. 11. **False Hierarchy**: Observe if any option is made
to appear more significant than other equivalent choices. 12. **Dis-
guised Ads**: Detect if advertisements are designed to resemble
normal content. 13. **Tricked Questions**: Identify any confus-
ing or misleadingly worded questions. 14. **Small Close Button**:
Check if close buttons are too small to be easily located or clicked.
15. **Social Pyramid**: Look for incentives encouraging users to
share content with friends for rewards. 16. **Privacy Zuckering**:
Assess if default options necessitate sharing unnecessary personal
information. 17. **Gamification**: Note if users are required to re-
peatedly perform tasks to earn rewards. 18. **Countdown on Ads**:
Identify if timers restrict users from closing ads immediately. 19.
Watch Ads to Unlock: Check if users must watch advertisements
to access particular features or rewards. 20. **Pay to Avoid Ads**:
Note if users are charged to remove adverts. 21. **Forced Enroll-
ment**: Determine if users must sign up or sign in before they can
utilize the service.

Additional steps for a thorough review: - **UI Color and Text**:
Assess the user interface design elements such as color schemes and
text that might manipulate user decisions. Focus particularly on
color contrasts and overall readability. - **Information Visibility**:
Verify that critical information is easily accessible without reliance
on hidden links or convoluted navigation paths. - **User Experience
Flow**: Evaluate the user journey to ensure smooth navigation with
minimal interruptions. - **Call-to-Action Design**: Examine the
visibility and clarity of call-to-action buttons and links compared to
dismissive or less prominent options. - **Consistency**: Ensure that
design elements and user expectations remain consistent across
different pages or sections.

Your detailed review and precise identification of any deceptive
patterns in this image are crucial to understand their impact and
effectiveness.

G MUTATION CRITERIA THRESHOLD
Here we present examples of generated prompts that are relevant
(irelevant) to the initial prompt in Table 7 (Table 8). For these ex-
amples, we also report the cosine similarity results to show case
how we determine the mutation criteria threshold.

H EXPERIMENT SETTINGS
Fine-tuning the pre-trained binary classifier required the most com-
putational resources. For this part, we utilized a machine with an
Intel(R) Xeon(R) Gold 5318Y CPU @ 2.10GHz, 2 * A100 80GB PCIe
GPUs, 256GB memory, and a 2TB hard drive. The prompt fine-
tuning and detection were performed on a MacBook Pro M1 Max
with OpenAI/Google API access. For the empirical study, we used
20TB of cloud storage to store the generated data, and the task of
extracting UI images for both mobile and web platforms was also

12

1000~--------------------------,

750

500

250

765

97 37 21 15 13 11 7 7 6 4 3 2 2 2 2 2

Error/Status Code

1 1 1 1

600---------------------------~

500 -----------------478--

400

300

200 183

100

0 ~~-s~_1_,3_5~"'"0_2~.2 __ 1 ~1-,1 ~1~.1-----'or--ro_or-__,o_o,-------;o_~~
1 2 3 4 5 6 7 a 9 10 11 12 13 14 15 16 11 1a 19 20

of visited webpages within a domain

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

50 Shades of Deceptive Patterns: A Unified Taxonomy, Multimodal Detection, and Security Implications WWW ’25, 28 April – 2 May, 2025, Sydney, Australia

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 7: Relevant Prompt Similarity Result
Prompts Content Similarity

Initial Prompt Here is the image, detect if any deceptive pattern in it or not. 1.0000

Prompt 1 Assess the image for any deceptive patterns in the interface design. Confirm the absence of disruptive pop-up windows that interrupt user tasks. Ensure that
all options are neutral by default, with consent checkboxes in place to avoid any unintended agreements. Look for any hidden costs that are only revealed at
the final payment page. Advertisements should be clearly labeled, separate from main content, and come with accessible close buttons. Verify that all forms
are clear, avoiding any confusing language. Transparency in data collection must be ensured, giving users control over their personal data, with terms and
conditions easily accessible. Check the ease with which users can log out, unsubscribe, or delete their accounts. Look out for any emotional manipulation
tactics such as countdown timers, fake scarcity, or confirm shaming. Evaluate overall design clarity, ensuring color schemes, text readability, and layout are
user-friendly. Be vigilant for social pressure tactics or mandatory sign-ins. Confirm all relevant actions and options are visible and accessible. Ensure pricing
and plan comparisons are straightforward and easily comparable with other markets. Check for transparency in the use of intermediate currencies, ensuring
users understand the true monetary value. Prevent the automatic addition of items to the shopping basket. Identify any ads disguised as regular content and
ensure they have large, easily located close buttons.

0.2025

Prompt 2 Review the user interface meticulously to identify any deceptive design tactics. Ensure that all crucial information is prominently displayed in clear, legible
fonts and that important links are easily accessible. Verify the absence of preselected options and that the shopping cart includes only items users have
explicitly chosen. Be vigilant for manipulative strategies like countdown timers, exaggerated scarcity, and guilt-inducing language. Design buttons to be
large, easy to click, and highly visible, using contrasting colors. Use clear, straightforward language, avoiding confusing constructs like double negatives.
Disclose all costs, including taxes and fees, upfront and clearly. Confirm that necessary services can be accessed without mandatory sign-ups or unnecessary
data collection. Document any deceptive patterns through screenshots for further analysis. Assess any gamification elements to ensure they don’t enforce
exploitative repetitive tasks. Check that privacy settings do not default to automatic data sharing. Ensure close buttons are sufficiently large and easy to locate.
Clearly differentiate ads from regular content and avoid intrusive pop-ups. Ensure transparency with virtual currencies, making users aware of their real
monetary values. Simplify the comparison process for products and plans, optimizing UI text size and color for readability and accessibility. Validate that all
buttons and links are intuitive and fully operational.

0.2516

Prompt 3 Evaluate the image for any deceptive patterns by searching for repeated pop-up interruptions, automatically selected choices that might trick users, delayed
disclosures of additional costs, and advertisements that blend in as regular content. Verify the visibility and accessibility of close buttons, ensure the
transparency and simplicity of any questions posed, and confirm that requests for personal data are justified. Also, review whether the color schemes, font
styles, and layout arrangements serve to deceive or pressure users into unintended actions.

0.5784

Table 8: Irelevant Prompt Similarity Result
Prompts Content Similarity

Initial Prompt Here is the image, detect if any deceptive pattern in it or not. 1.0000

Prompt 1 Paraphrase the original prompt and add actions loss 0.0594

Prompt 2 Evaluate the user interface for its functionality and design elements, including layout, colors, and text to ensure user-friendliness and clarity. 0.0827

Prompt 3 Perform an exhaustive evaluation of the user interface, with particular attention to color harmony, legibility of text, and a consistent design language. Ensure
intuitive navigation with prominently positioned and clearly labeled essential buttons and features. Be vigilant for deceptive patterns including incessant
pop-ups, hidden functionalities, falsely emphasized buttons, tiny close buttons, and mandatory data submission. Suggest concrete improvements to elevate
user satisfaction, refine the overall user experience, and streamline the interface design. Check the efficacy of calls-to-action, confirm logical user pathways,
ensure all interactions are user-friendly, and validate adherence to accessibility standards.

0.100

carried out on the same MacBook Pro. For Droidbot, we set up
5 Android virtual emulators running Google Pixel 3a, featuring 4
cores, 2GB of memory, and Android 9 (API Level 29) on arm64-v8a
architecture. For web UI images, we used one coordinator process
and 24 threads to send the requests.

I EVALUATION METRICS
The deceptive pattern detection task is essentially a multi-label
classification task. Like many classification tasks, we use precision,
recall and F1-Score as our evaluation metric.
• Precision: The precision formula is 𝑇𝑃

𝑇𝑃+𝐹𝑃 . In our task, True Pos-
itive (TP) refers to an image that contains the specified deceptive
pattern, and the model correctly predicts that the image includes
the specified deceptive pattern. False Positive (FP) refers to an
image that does not contain the specified deceptive pattern, but
the model incorrectly predicts that it does. Precision in our task
indicates how accurate the model’s positive predictions are.

• Recall: The formula of recall is 𝑇𝑃
𝑇𝑃+𝐹𝑁 where TP is the same as

defined for precision, and FN refers to an image that contains the
specified deceptive pattern, but the model incorrectly predicts
that the image does not include the specified pattern. In our task,
recall represents how well our model can identify all the positive
examples.

• F1-score: The formula is 2∗𝑃∗𝑅
𝑃+𝑅 , the F1 score is used to balance

the trade-off between precision and recall. It reports the har-
monic mean of precision and recall, providing a single metric
that reflects the balance between the two.
For each metric, we report both micro and macro average scores

to demonstrate the effectiveness of our model. The micro approach
calculates the total true positives, false negatives, and false positives
across all classes, then computes the F1 score. This method treats
every individual classification equally, regardless of the class. On
the other hand, the macro approach calculates the arithmetic mean
of each term for every class. It treats all classes equally by averaging
the terms without considering the proportion of instances in each
class.

J HYPER-PARAMETER
The first was to determine the threshold for mutation checker.
We applied the methodology described in Section 16, and Table
9 reports the similarity between relevant/irrelevant prompt and
initial prompt. Based on the result, we select 0.2 as the threshold
for the mutation checker. A detailed list of the prompts and its
similarity data in Appendix G. The second is to check whether the
queue size affects the lifetime of each mutated prompt. Within a
limited budget, we tested two queue size, and Table 10 report the

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

WWW ’25, 28 April – 2 May, 2025, Sydney, Australia Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 9: The similarity between the relevant/irrelevant
prompt and the initial prompt. P1,P2,P3 refers to the
first,second,three prompt we sampled

P1 P2 P3

Relevant 0.2025 0.2516 0.5784
Irrelevant 0.0594 0.0527 0.1000

Table 10: Mutated Prompt Lifetime with Different Queue Size

Queue Size Mean Std

5 1.6129 2.1253
15 4.4118 4.8332

queue size of 15 resulted a longer lifetime than queue size of 5.

Therefore, we selected the queue size as 15. The third experiment
is about the number of rounds, within our limited budget, we set
the maximum number of round to 25. The loss is defined as “1
- F1 score”, “avg” refers to the average loss of all prompts in the
queue, and “best” refers to the loss of the best prompt in each round.
Figure 2 illustrates that our prompt mutation strategy stabilizes
and reaches the minimum loss at round 24.

K DETAILED SOTA PERFORMANCE
COMPARISON

K.1 Mobile
K.2 Website
L EXAMPLE OF DECEPTIVE PATTERNS

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

50 Shades of Deceptive Patterns: A Unified Taxonomy, Multimodal Detection, and Security Implications WWW ’25, 28 April – 2 May, 2025, Sydney, Australia

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 11: Performance Comparison between All SOTA on Mobile Platform

Categories # of
Instances

UIGuard AidUI DPGuard

Precision Recall F1 Precision Recall F1 Precision Recall F1

No DP 3,018 0.8128 0.8055 0.8091 0.7151 0.8608 0.7812 0.9830 0.9785 0.9807
Nagging 409 0.6462 0.3350 0.4412 0.2822 0.4450 0.3454 0.3650 0.4132 0.3876
Roach Motel 24 - - - - - - 0.4474 0.7083 0.5484
Price Comparison Pre-
vention

7 - - - - - - 0.0000 0.0000 0.0000

Intermediate Currency 38 - - - - - - 0.5283 0.7368 0.6154
Forced Continuity 48 1.0000 0.0208 0.0408 - - - 0.5915 0.8750 0.7059
Hidden Costs 38 - - - - - - 0.2203 0.3421 0.2680
Hidden Information 236 - - - - - - 0.4023 0.4364 0.4187
Preselection 356 0.3325 0.7187 0.4546 0.2855 0.4747 0.3565 0.6549 0.4691 0.5466
Toying with emotion 84 - - - 0.1136 0.1786 0.1389 0.1968 0.7262 0.3096
False Hierarchy 559 0.4324 0.4061 0.4188 0.7619 0.0286 0.0552 0.6277 0.6816 0.6535
Disguised Ad 883 0.5923 0.0872 0.1520 0.5854 0.1631 0.2551 0.7937 0.9105 0.8481
Small Close Button 747 0.9897 0.8969 0.9410 - - - 0.6785 0.3842 0.4906
Social Pyramid 35 0.7143 0.5714 0.6349 - - - 0.3750 0.7714 0.5047
Privacy Zuckering 206 0.7162 0.7608 0.7378 - - - 0.4407 0.3786 0.4073
Gamification 27 0.8571 0.2222 0.3529 - - - 0.4545 0.5556 0.5000
Countdown on Ads 77 0.5882 0.1299 0.2128 0.0000 0.0000 0.0000 0.2568 0.8571 0.3952
Watch Ads to unlock
features or rewards

67 0.7895 0.2239 0.3488 - - - 0.0000 0.0000 0.0000

Pay to avoid ads 106 0.6923 0.7642 0.7265 - - - 0.7195 0.5566 0.6277
Forced Enrollment 149 - - - - - - 0.2891 0.9060 0.4383

micro avg 7,114 0.7151 0.6253 0.6672 0.5923 0.5855 0.5889 0.7055 0.7598 0.7316
macro avg 7,114 0.4165 0.2701 0.2851 0.1247 0.0978 0.0878 0.4102 0.5312 0.4385

Table 12: Performance Comparison between All SOTA on Website

AidUI DPGuard

Category Instances Precision Recall F1 Precision Recall F1

No DP 359 0.3205 0.6713 0.4338 0.8512 0.7967 0.8230
Nagging 180 0.1923 0.0833 0.1163 0.4103 0.6222 0.4945
Roach Motel 13 - - - 0.2703 0.7692 0.4000
Price Comparison Prevention 27 - - - 0.3333 0.1852 0.2381
Intermediate Currency 5 - - - 0.3333 0.6000 0.4286
Forced Continuity 26 - - - 0.2222 0.7692 0.3448
Hidden Costs 99 - - - 0.2025 0.3333 0.2519
Hidden Information 377 - - - 0.4363 0.4721 0.4535
Preselection 413 0.4006 0.3317 0.3629 0.3973 0.2107 0.2753
Toying with emotion 229 0.5652 0.3406 0.4251 0.5341 0.6507 0.5866
False Hierarchy 320 0.6667 0.0125 0.0245 0.3744 0.5219 0.4360
Disguised Ad 256 0.3814 0.1445 0.2096 0.7782 0.8359 0.8060
Small Close Button 160 - - - 0.4054 0.1875 0.2564
Social Pyramid 7 - - - 0.2000 0.8571 0.3243
Privacy Zuckering 367 - - - 0.6966 0.5068 0.5868
Gamification 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Countdown on Ads 10 - - - 0.2759 0.8000 0.4103
Watch Ads to unlock features or rewards 0 - - - 0.0000 0.0000 0.0000
Pay to avoid ads 7 - - - 0.1429 0.1429 0.1429
Forced Enrollment 89 - - - 0.2102 0.8315 0.3356
micro avg 2945 0.3621 0.2912 0.3228 0.4691 0.5328 0.4989
macro avg 2945 0.1148 0.0720 0.0715 0.3216 0.4588 0.3452

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

WWW ’25, 28 April – 2 May, 2025, Sydney, Australia Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

(a) Disguised Ads (b) Hidden Cost (c) Toying With Emotion (d) Forced Enrollment

(e) Hidden Information (f) Price Comparison Prevention

Figure 9: Examples of deceptive patterns

16

Try OuoUngo Plus. First w~ek l.s
on us! 1!11

~,.,,. ;,,r., ,1

LJ
t-·,u,.,,,1,.,..,.w
en .. :..... ,.
llllliZlml US/:2$

11
\;lo,H•>'l•~..,.,~tl•"'••l'-
...... e,,,~T<,~
•--•1u1,.
"' ... ~--· ~-
B-.c:ml USS4~

Please agree to the cookie use
U)· chel>IIQ 'i,)I(' '""""ll'ff IOI~ Stol•IIO of coo- U QI!~ 0$,,,, 1oen,...-e $:I! f.r,:;t~~htx.,.i,ltu $!1~ unpt end

ll$G•~l in ou· ef'v-; to ser,ice ,e-,._,1-e,n1 ,.., well,-, .,,G$P!d"'O c'>enu. ~°J'lr<; :<den<,P°''ft,. 4.ddi: ,)t!.,n.-,w hr,e
;I,: l)f!Qe,: I'll -~111·-,~..:)\;itJf ,_,,.,n ~vt,11111 .rllhll\'~ ',:;,ill)·dw,d,;, •M)ich ~\.ld\,,:i: ~VU It.JI;/,: .u lit: l--~\ll«J IJII tlJUI !,lu-,,;,: lrJ-

<"hr•,IIIJ 'M ~•v,..,,,-..M";/>' ~v~r

mn'"'•nri:::iMII! ,-., ~

,],c,dfta•••"~t~jl:. E

-

"~«-·, ·-•• .;.~ ... - ... ·-•MIO,

~,
15 -.

Linkode:f

Best Dedic-3ted Server Hosting Pars

JC n Ltnke,Uln

I··
1--···►••• .. ,'(

~ ,.. ~ ,

	Abstract
	1 Introduction
	2 Related Work
	3 Taxonomy Refinement
	4 DPGuard: Detection of Deceptive Patterns
	4.1 Overview
	4.2 Binary Classifier
	4.3 Prompt Engineering

	5 Evaluation
	5.1 DPGuard Performance
	5.2 Empirical Evaluation in the Wild

	6 Case Study
	6.1 Price Comparison Prevention
	6.2 Hidden Cost
	6.3 Hidden Information
	6.4 Toying with Emotion

	7 Conclusion
	References
	A Existing DP datasets
	B New Dataset Creation
	C Dataset for DPGuard Evaluation
	D Empirical evaluation in the wild
	D.1 Methodology
	D.2 Dataset

	E Initial Prompt
	F Final prompt
	G Mutation Criteria Threshold
	H Experiment Settings
	I Evaluation Metrics
	J Hyper-parameter
	K Detailed SOTA Performance Comparison
	K.1 Mobile
	K.2 Website

	L Example of deceptive patterns

