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Abstract

Deep reinforcement learning agents are prone to goal misalignments. The black-
box nature of their policies hinders the detection and correction of such misalign-
ments, and the trust necessary for real-world deployment. So far, solutions learn-
ing interpretable policies are inefficient or require many human priors. We propose
INTERPRETER, a fast distillation method producing INTerpretable Editable tRee
Programs for ReinforcEmenT 1EaRning. We empirically demonstrate that INTER-
PRETER compact tree programs match oracles across a diverse set of sequential
decision tasks and evaluate the impact of our design choices on interpretability
and performances. We show that our policies can be interpreted and edited to
correct misalignments on Atari games and to explain real farming strategies.

1 Introduction

Why interpretability? The last decade has seen a surge in the performance of machine learning
models, in supervised learning [Krizhevsky et al., 2012, Vaswani et al., 2017] and in reinforcement
learning (RL) [Mnih et al., 2015, Schulman et al., 2017, Bhatt et al., 2024]. These achievements
rely on deep neural networks that are often described as black-box models [Murdoch et al., 2019,
Guidotti et al., 2018, Arr, 2020], trading interpretability for performance. In many real world tasks,
predictive models can hide undesirable biases, such as the ones listed by Guidotti et al. [2018], hin-
dering trustworthiness towards Al agents. Gaining trust is one of the main goals of interpretability
[Arr, 2020], along with informativeness requests, i.e. the ability for a model to provide informa-
tion on why and how decisions are taken. The computational complexity of such informativeness
requests can be measured objectively, and Barcel? et al. [2020] showed that multi-layer neural net-
works cannot answer these requests, at least not in polynomial time, whereas explicit structures, e.g.,
decision trees can.

Interpretable RL using transparent models as policies. In addition to trust and informative-
ness, the importance of interpretability is further highlighted in RL for addressing shortcut learning,
where agents learn to exploit spurious correlations instead of mastering the intended tasks. This
leads to poor generalization, often observed as goal misgeneralization in deep RL [di Langosco
et al., 2022]. Explainable methods, e.g. importance maps, have been used to pinpoint such flawed
strategies [Schramowski et al., 2020, Ras et al., 2022, Roy et al., 2022, Saeed and Omlin, 2023].
However, while these methods reveal which inputs affect decisions, they do not clarify how they are
used within the decision-making process, which is necessary for detecting and correcting misalign-
ments. Delfosse et al. [2024] show that using interpretable concepts as policy states (e.g. extracted
objects instead of pixels), and transparent policies, (i.e. for which the input transformation can
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Figure 1: INTERPRETER provides editable interpretable policy, as a Python tree programs, il-
lustrated on the Swimmer (left) and Pong (right) environments.

be followed, [Milani et al., 2022, Glanois et al., 2021]) ease the detection and correction of such
misalignment, as transparent policies allow experts interventions.

Transparency is not enough. Having an algorithm learning a transparent policy is not enough
to achieve interpretability. Imitation-based solutions like [Verma et al., 2018, Bastani et al., 2018,
Landajuela et al., 2021] might only require an oracle but return either transparent policies with too
many decision rules to be considered interpretable [Bastani et al., 2018] or are only tested on small
toy problems [Verma et al., 2018, Landajuela et al., 2021, Topin et al., 2021]. On the other hand,
Delfosse et al. [2023b, 2024] outputs transparent policies for various tasks but do require carefully
designed human primitives. Another approach is to search for a transparent policy among human-
designed polynomial equations with deep RL, and use a large language model (LLM) a posterirori
to explain the equations [Luo et al., 2024], but such explanations are more likely to emerge from the
LLM’s acquired knowledge of the RL tasks rather than its ability to understand polynomials.

Contributions. In this work, we introduce INTERPRETER, a policy distillation method that extracts
compact editable tree programs (cf. Figure 1). Our algorithm fits regularized oblique trees [Murthy
et al., 1994] to neural oracle such as DQN and PPO agents [Mnih et al., 2015, Schulman et al., 2017]
and convert them to editable Python programs. Specifically, our contributions are:

1. We introduce INTERPRETER, that extracts, without human priors, compact editable tree pro-
grams matching oracles for various RL tasks in few minutes.

2. We conduct ablation studies to identify the responsibility of INTERPRETER’s components on
the extracted policies’ performances.

3. We show that INTERPRETER tree programs can be interpreted and edited by human experts.

‘We now introduce the background on interpretable reinforcement learning.

2 Background and notations

A Markov decision process (MDP) M is a tuple (S, A, R, P,~y) [Puterman, 2014]. We consider
continuous states S C RP and discrete or continuous actions (dim(A4) > 1). R: S x A — Riis
the scalar reward function; and P : S x A — AS are the transition probabilities (p(s¢41 = s|a; =
a) ~ P). A discrete (resp. stochastic) policy is a mapping 7 : S — A (resp. 7 : S — AA).
A policy takes actions in an MDP through time and receives rewards R(s;, w(s¢)). Given a policy
m, the value of 7 in the state s after taking action a is the expected discounted cumulative reward:
Q7 (s,a) = R(s,a) + 7Es~p[Q7(s', m(s")], with 0 < v < 1.

Reinforcement learning algorithms [Sutton and Barto, 2018] look either for the optimal Q-function
Q* (Q*(s,a) > Q(s,a) forany Q, s, a) [Mnih et al., 2013, 2015, van Hasselt et al., 2016]; or for the
optimal policy 7* = argmax, E[>_, v*R(s¢, m(s¢))] [Schulman et al., 2017, Haarnoja et al., 2018].
Often we have Q* = Q™ and 7*(s) = argmax, Q*(s,a). Our goal is to find an interpretable
policy T whose performances are close to or equal to 7*. We first use reinforcement learning to
get 7* and/or Q™ and then consider two imitation learning methods to find 7°*.

Imitation learning transforms a reinforcement learning task into a sequence of supervised learning
ones. At each iteration ¢ of Dagger [Ross et al., 2010], 7 is fitted to a dataset of states collected with
T;_1 and actions given by 7* on those states [Ross et al., 2010]. )-Dagger [Bastani et al., 2018]
further re-weights state-action samples proportional to E,e Q™ (s,a) — minge 4 Q™ (s, a).
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Figure 2: INTERPRETER’s Distillation process. The MDP state-action space is simplified (idle
features and equivalent actions are masked), then an oblique tree policy imitates the oracle. Finally,
the policy is then translated to readable and executable code: experts can verify and edit.

3 Method

Imitation Learning routine. To find an interpretable tree program policy 7, INTERPRETER uses
two different imitation subroutines, depending on the nature of the oracle 7*. For MDPs with
discrete actions, if both the oracle policy 7* and the associated state-action value function Q™ are
accessible, the oracle data are collected with the (Q-Dagger subroutine from [Bastani et al., 2018],
described in section 2) and corresponding to line 2 of algorithm 1. On the other hand, if the action
space is continuous or only the oracle’s policy 7* is accessible, the oracle data are collected with
the Dagger subroutine (algorithm 1 of [Ross et al., 2010]). In later case, Bastani et al. [2018] still
recommend using the @)-Dagger routine (over Dagger) with log(m*(s,a)) to reconstruct Q™. In
practice, INTERPRETER performances do not depend on the imitation subroutine (cf. experiment 5).
Despite the associated runtime and memory costs for storing neural state-action value functions and
performing the forward passes (cf. line 15 of algorithm 1), we still use (-Dagger in the case above,
as it has better guarantee over Dagger when the Q™ (s, a) are well-estimated [Bastani et al., 2018].

Oblique decision trees. One can imitate oracles with programs that make tests of linear combina-
tions of features. Many oracles learn oblique or more complex decision rules over an MDP state
space. This is illustrated in Figure 3 where a PPO neural oracle creates oblique partitions of the
state-space for the Pong environments. Programs that test only individual features would fail to fit
this partition (cf. Figure 3). We thus modify CART [Breiman et al., 1984], an algorithm returning
an axes-parallel trees for regression and supervised classification problems, for it to return oblique
decision trees. In addition to single feature tests, our oblique trees consider linear combinations of
two features with weights 1 and —1, e.g. for MDP states s; € RP, the oblique features values are
oblique __ 2 .

s; = {81 — Si0, Si2 — Si0 - Sip = 8§05y +--» Sip—1 — sip} € RP". For example, using an oracle
dataset with n state-actions pairs: (S, A = 7*(5)) ¢ R™(P+dim(4)) e obtain oblique decision
trees by fitting (S, SoPave A = r*(§)) ¢ R PP+)+dim(A)) - Given S, computing S°°/9"¢ can
be done efficiently by computing the values of the lower (or upper) triangles in the S® S — (S® S)T
tensor (excluding the diagonals) (cf. line 14 of Algorithm 1). We further demonstrate the superiority
of oblique trees in our experimental evaluation on a diverse set of RL tasks.
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Figure 3: Oracle decision rules are oblique illustrated on PPO for different state space partitions
of the Pong environment. Decisions boundaries are both oblique and parallel.
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The complexity of building the tree (line Table 1: Automated masking reduces the number of fea-
17 of algorithm 1) is O(pn log,(n)) when tures in MDP, illustrated on 8 Atari environments.

no maximum tree depth is given, and
O(an) with a maximum tree depth of D MDP Ast. Box. Free. Kang. Pong Sea. Spacel. Ten.
[Sani et al., 2018]. In particular, at itera- Full 100 8 48 196 12 172 176 16
tion ¢ of INTERPRETER the complexity of ~ Simplified 90 8 22 28 8 54 164 16
building the tree is O(p(p+1)itD), as roll-
outs of ¢ MDP transitions are aggregated (line 16) and oblique features are added to states (line 14).
This means that at each iteration ¢, the cost of computing an oblique tree is p + 1 times the cost of
computing an axes-parallel tree. In INTERPRETER we pass K the maximum number of leaf nodes
as an argument. A tree with K leaf nodes has 2K — 1 total nodes and a depth of at most D = K — 1.

Conversion into ready-to-use programs. After the imitation learning subroutine, INTERPRETER
converts the best evaluated oblique tree in line 18 into a Python program (cf. line 19), such as the
ones depicted in Figure 1. To do so, we turn the internal nodes of the tree into if-else statements. This
algorithmic step does not involve any randomness nor learning. This Python based representations
of our interpretable policies, unlike a tree plot, INTERPRETER can easily be edited, as shown in
section 4. Finally, we perform pruning to further simplify our programs by merging redundant
logical branches. We provide details and examples in Appendix F.

Algorithm 1: INTERPRETER

function INTERPRETER (7", M, K, N, t, Q“* = None)
if IsNotNone(Q”*) & IsDiscrete(A) then
L SampleWeighting() < EacaQ™ (s,a) — mingea Q™ (s, a)
else
| SampleWeghting() < 1
M <+ MaskldleFeatures(M)
(517 Soblique7 A7 W) — (Z)
for:=1,2,..., N do
if i = 1 then
| Si « rollouts(r*, M, t)
else
L S; < rollouts(T;—1, M, t)
S’fb”que — Triangles(gi ® S’l — (51 ® gl)T)
W; < SampleWeighting(S;, Q™)
(5«7 S«oblique7 A7 W) — (S«) Sroblique7 A7 W) U (517 S«;)blique’ Ai, Wz)
| Ti « CART((S, 89, A, W), K)
T* < BestTreeEvaluation({T1, ..., T }, M)

Prog < TreeToProgram(7"™")
return 7™, Prog

Let us now evaluate INTERPRETER’s performances, interpretability, and correction possibilities.

4 Experimental Evaluation

In this section, we evaluate the compact tree programs provided by INTERPRETER. Specifically, our
experimental evaluation aims at answering the following research questions: (Q1) Can compact IN-
TERPRETER tree programs match the oracles performances? (Q2) What are the key design choices
of INTERPRETER? (Q3) Can INTERPRETER’s programs be interpreted and modified by experts?

Metrics. For INTERPRETER, we denote the maximum number of leaf nodes, /X, the number of
different fitted trees N, and the number of transitions, ¢t. Given an MDP M, the oracle policy 7*,
and potentially its Q-value function, Q”*, from M to fit each tree, we report in the value of the
cumulative reward of the INTERPRETER tree programs, normalized by the oracle, and often average
it over multiple MDPs that have similar properties, such as A/ MuJoCo robots or M Atari games.



Benchmarks. We tested INTERPRETER on a set of common RL benchmarks: classic control, Atari
games, MuJoCo robot simulations [Todorov et al., 2012, Bellemare et al., 2012, Schulman et al.,
2015, van Hasselt et al., 2016, Schulman et al., 2017, Haarnoja et al., 2018]. In particular, for
Atari games, we use the stochastic version where actions have a non-zero probability to be repeated
as per the recommendations of [Machado et al., 2018] for best practices of RL training. We use
gymnasium [Towers et al., 2023] implementations of those benchmarks: we use -v4 version of
MuJoCo environments, -v5 version of Atari games, and the latest versions of classic control.

Object-centric Atari. To reduce the computational burden, and as object detection is not the core
focus of this work, we use the neurosymbolic states efficiently extracted by OCAtari [Delfosse et al.,
2023a] for INTERPRETER trees to map neurosymbolic states to actions. OCAtari extracts these states
from the RAM for each Atari environment, with similar accuracies as other extraction methods Lin
et al. [2020], Zhao et al. [2023]. These states list the depicted game objects x, y-coordinates rather
than pixels. For further details, we refer to the authors’ original publication.

Neural oracles. Most interpretable RL algorithms extract transparent policies from black-box ora-
cles, such as deep neural networks [Bastani et al., 2018, Verma et al., 2018, Delfosse et al., 2024].
For MuJoCo and classic control, we re-use oracles from stable-baselines3 zoo [Raffin, 2020];
the final policies obtained from a SAC agent training [Haarnoja et al., 2018], and from DQN [Mnih
et al., 2015] and PPO [Schulman et al., 2017] for classic control. For Atari tasks, we PPOs with
stable-baselines3 [Raffin et al., 2021] and the hyperparameters from [Schulman et al., 2017].
The oracles’ training curves are depicted in Figure 8, in the Appendix.

INTERPRETER hyperparameters. Unless stated otherwise, we do between 3 and 5 runs of INTER-
PRETER in every experiment. Given an oracle policy 7* and optionally its associated Q™ , each
run fits a total of N = 10 trees by aggregating ¢ = 10 transitions at each iteration. We vary the
imitation learning subroutines, the fitted tree classes, and the maximum number of nodes allowed
in each tree (2K with K the maximum number of leaf nodes passed to INTERPRETER). We use
the scikit-learn [Pedregosa et al., 2011] implementation of the CART decision tree algorithm
[Breiman et al., 1984] with default hyperparameters and K maximum leaf nodes. All experiments
are run on a single Intel Core i7-8665UQ1.90GHz. Our code is given in supplementary material.

4.1 INTERPRETER performances match the oracle performances (Q1)

We test INTERPRETER on the aforementioned benchmarks using algorithm 1. As shown in Figure 4,
INTERPRETER tree programs composed of as few as 16 nodes can outperform their neural oracle
on classical control tasks and on Asterix, Pong and Spacelnvaders Atari games (cf. Appendix 9).
In particular, for PPO neural oracles on classic control tasks, INTERPRETER consistently outper-
form their neural counterparts. In general, INTERPRETER performances increase with the number
of nodes. With 64 nodes, INTERPRETER programs consistently match or surpass neural oracles’
performances on 6 out of 8 Atari tasks, and obtain comparable scores for the 2 others. For MuJoCo,
INTERPRETER match oracles for HalfCheetah and Swimmer, but fail at controlling Walker2d and
Hopper. Importantly, INTERPERTER’s trees and programs can be extracted within in a few minutes.
The greatest runtime bottleneck is MDP rollouts. Finally, when the training of neural RL agents
fails (i.e. has not converged), e.g., DQN curves on Figure 8, the imitation process is noisy, and the
INTERPRETER trees have poor oracle normalized performances, c¢f. DQN error bars in Figure 4.
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Figure 4: INTERPRETER matches oracles thanks to its design choices. From left to right: ablated
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4.2 INTERPRETER Ablation (Q2) Lunarlander-v2 CartPole-vl

Imitation learning subroutines.

We use INTERPRETER to extract decision
tree policies for classic control problems,
varying the imitation learning subroutine.
To do so, we force INTERPRETER use Q- orations T——

Dagger [Bastani et al., 2018] (c¢f. line 2 of  DON-K=16 PO K=16 — Q-DagGEr
Algorithm 1), even when the neural oracle e

is a stochastic policy 7* from a PPO agent. Figure 5: Q-Dagger does not improve sampling, shown
In that case, we use log 7™ as @Q-function. by the similar loss (to Dagger) during the extraction
As depicted in Figure 5, for a given oracle for different oracles and imitations.

and a given maximum number of nodes, Q-

Dagger and Dagger minimize the Q-Dagger loss E,c4Q™ (s,a) — mingea Q™ (s,a) similarly.
Bastani et al. [2018] show that (Q-Dagger trees have fewer nodes but are as good as Dagger trees on
their own implementation of the Pong environment. Our results on the original Pong Atari Learning
Environment contradict this claim, as shown in Figure 9, where for a given number of nodes both
Dagger and Q-Dagger trees perform similarly in average. This can be due to the fact that either (i)
Dagger trees are shorter than ()-Dagger trees when the oracle is not a well-estimated (-function
and/or (ii) the fitted trees do oblique tests and/or (iii) the nodes regularization is done by bounding
the number of leaves rather than the depth.

EaeaQ(s, @) —mingeaQ(s, a)

Oblique decision trees. We compare INTERPRETER’s tree program performances when fitting
classical axes-parallel trees [Breiman et al., 1984] — that have internal nodes such as “is the x-
coordinate of the player < v?” — with fitting oblique trees [Murthy et al., 1994] that have internal
nodes like “is the x-coordinate of the player — the previous x-coordinate of the player < v?”. On
Atari games (Figure 4), using oblique trees over ones for which decisions are parallel to the axes is
critical to match oracle performances. As demonstrated in a per-game ablation (¢f. Figure 9 in the
Appendix), no axes-parallel tree can get close to the oracle performances, even with a high number
of internal nodes. This is supported by our early observation (c¢f. Figure 3). Further, the linear
combinations of input features used in oblique tree programs do not hinder interpretability, as these
features are still very human understandable (representing e.g. distance over one axis). However,
for some complicated control problems, such as Tennis (Figure 9 in the Appendix) or Walker2d
(Figure 8, right), no oblique tree program matches the oracle performances even with 64 nodes.

Removing idle state features. As explained in Section 3, the oblique tree programs’ input features
is way higher than the one of parallel ones. This number will particularly explode in environments
such as Kangaroo, Seaquest, and Spacelnvaders, that have up to 200 total state features (cf. table
1). For these environments, the oblique tree extraction gives Out-of-Memory errors (reported as a
random scores) when fitting oblique decision trees programs, during the main loop of INTERPRETER
(line 17 of algorithm 1). However, many consider features can be constant. For example, the z-
coordinates of the player and the enemy in Pong, or the ladders coordinates in Kangaroo. We mask
such features, as are incorporated in the decision boundaries of if-else conditions. As shown in
Table 1, for Kangaroo and Seaquest, the number of feature can be divided (up to 5 times). As
depicted in Figure 4, there is a substantial performance gain obtained by masking idle features for
INTERPRETER oblique tree programs’ extraction in Atari environments.

4.3 INTERPRETER tree programs interpretability (Q3)

Inference speed. One proxy for the interpretability of machine learning models without relying
on human feedback is the inference computational complexity, which can be evaluated with code
runtimes [Lipton, 2016, Barcel6 et al., 2020]. INTERPRETER extracts oblique decision trees and
convert them to Python programs. We here compare the average inference speed of different poli-
cies during MDP rollouts, i.e. how fast the policy outputs actions given states. All the inference
speeds are measured without using pre-compiled code, neural network based oracles are instances
of PyTorch modules [Paszke et al., 2019]. The INTERPRETER trees and programs have 64 oblique
test nodes. Results show that Python programs inference takes in average 79us, compared to 2365
for scikit-learn tree class and 466 s PyTorch networks (cf. Table 2 in the appendix for detailed
results). The inference time is above all important for real world deployments of algorithms. As
explain in the introduction, these deployments also require high interpretability and trust levels.
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Figure 6: INTERPRETER is the most interpretable policy form and can easily be modified. Left:
auser study shows that INTERPRETER is more explainable, interpretable, trustworthy and adjustable
than other baselines, without sacrificing performances, contrary to the runner-up for these metrics
(NUDGE). Right: Its Python policies allow for easy corrections on 3 tasks variations.

User study. We compared the interpretability and performances of INTERPRETER against IN-
SIGHT [Luo et al., 2024], SCoBots [Delfosse et al., 2024] and NUDGE [Delfosse et al., 2023b].
We conducted a user study involving 19 machine learning practitioners. They were asked to evalu-
ate the explainability (i.e. ability to detect each input feature importance), interpretability (i.e. how
each element is used by the policy to select an action) and frust (i.e. ability to check if the agent
selects the correct action for the correct reasons) levels of policies extracted by each method on Pong
(as these policies are accessible for each method). Results are reported in Figure 6, and show that
INTERPRETER achieves the highest scores on each measurement. Contrary to its runner-up on these
metrics (NUDGE), INTERPRETER does not sacrifice performances for interpretability.

4.4 INTERPRETER tree programs edition (Q3)

We further showcase 3 modification possibilities on policies of INTERPRETER.

Seaquest contains ill-defined reward [Delfosse et al., 2024], as the game goal in the instruction
manual is to “retrieve as many treasure-divers as you can”>. However, the game does provide any
reward to the agent for saving each collected divers, but rather for killing enemies. Thus, both the
neural and Python policies do not bring collected divers back to the surface. By simply adding:
if diver_0.x > 0: return "UP" at the start of the 32 nodes INTERPRETER tree program,
we correct this suboptimal behavior. As shown in Figure 6 (Left), the agents are able to save at
least one diver in 98.5% of the cases (compared to 18.6% for the original agent). The complete and
modified INTERPRETER program is provided in Figure 11 in the Appendix.

Pong. RL policies can learn to achieve a misaligned goal, i.e. to rely on the enemy’s vertical position
for their decision process (instead of the ball’s one) [Delfosse et al., 2024], as the two object’s vertical
positions are 99.9% correlated. Our simple Pong program policy indeed uses Enemy .y in 1 out of 6
conditional tests (cf. the Pong policy in Figure 12). They introduce a LazyEnemy modified version of
the environment, where the Enemy remains still after returning the ball, showing that many policies
fail to generalize to this environment. We modify our policy by simply replacing Enemy .y with
Ball.y, and test this modified policy on both environments. This leads to equivalent performances
on the original training environment and prevents performance drops in the LazyEnemy variation
(cf. Figure 6). Compared to Delfosse et al. [2024], that retrain an oracle, while hiding the enemy,
we make one simple modification of the program, and do not need retraining.

Tennis. For this environment, INTERPRETER’s tree programs (i.e. 16 to 64 nodes) cannot match
the oracle’s performances. Tennis is a complicated variation of Pong, as it adds the y-coordinates.
However, oracle strategies can easily be divided into two sub-strategies, one where the agent is
above the net (on the upper part of the screen), and one where it is under (on the lower side). To
show the easy curriculum learning possibility offered by INTERPRETER, we extract two 32 nodes-
based code, based on a partition of the environment, based on the player’s position. We are thus
able to extract two policies, correctly performing only on one environment variation each, that we
call within a meta policy. This policy calls each expert policy, depending on the evaluation of
player.y - enemy.y > 0. This meta-policy (2x32) outperforms the 32 and 64 nodes ones (cf.
Figure 6). We have shown that the INTERPRETER code-based policies allow for easy corrections.

2https://atariage.com/instruction_seaquest.
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4.5 Real life use case of INTERPRETER tree programs for fertilization of soils (Q3)

In this last experiment, we distill a human if nitrogen - days_planting < -17.50:

expert policy for soil fertilization on the if nitrogen - grain_weight < 13.50:
gym-DSSAT gym environment Gautron et al. if nitrogen - days_planting < -39.50:
[2023]. Here, an RL agent has to learn to if nitrogen - maize_growing < -5.00:
manage a crop, based on an accurate simu- return "fertilizer_quant": 0.0

lated mechanistic model of plant growth. We else:

consider the task that consists in optimizing

. R . L. return "fertilizer_quant": 27.0
plant nitrogen absorption while penalizing

the application of fertilizer to minimize the elsiétum "fertilizer_quant": 0.0
economical and the environmental costs. We else:

extract an INTERPRETER’s Python program, if nitrogen - biomass < -930.64:
depicted in Figure 7. This program outputs return "fertilizer_quant": 54.0
the exact same actions as the human heuris- else:

tic given the soil state and obtain the same return "fertilizer_quant": 35.0

cumulative reward in average (correspond- .

ing to an accuracy of 100%). It also provides Figure 7: INTERPRETER can explain human
an interpretation of the human expert heuris- heuristic policies. INTERPRETER program with
tic that delivers a certain amount of fertilizer 100% accuracy on human oracle policy.

({27, 35, 54}) after {39, 45,80} days after seeding, respectively). The feature importance coincides
with agronomic principles and have been validated by an expert from the Consultative Group on In-
ternational Agricultural Research. The nitrogen requirements of corn vary depending on the growth
stage. They are important during the vegetative phase (plant growth) and the reproductive phase
(from flowering to grain filling). This is why it is essential to consider the number of days after
planting and the growth stage of the corn, as nitrogen requirements are highest during grain filling.

5 Related work

Explainable policies. Algorithms for policy verification, such as the fast oracle matching
VIPER [Bastani et al., 2018], only concentrate on optimizing an axes-parallel tree structure dis-
regarding interpretability by growing many nodes trees. Thus, VIPER trees are explainable in the
sense that one can always compute the set of rules verified by an MDP state that lead to an action,
but deep trees are not interpretable in the simulatability sense [Lipton, 2016], because humans can-
not themselves make the computations to explain actions chosen by the tree policy. Beyond VIPER,
work from the neuro-symbolic RL community can learn explainable policies without oracles but re-
quire either carefully designed low level policy primitives to facilitate learning [Qiu and Zhu, 2022]
or large language models to attempt to explain learned policies [Luo et al., 2024].

Interpretable policies. On the other hand, some algorithms are designed to direcly optimize (with or
without oracle knowledge) policies that are intrinsically interpretable. The recent SCoBots [Delfosse
et al., 2024] output interpretable policies as sets of rules using ECLAIRE [Zarlenga et al., 2021] to
match a PPO oracle. However, SCoBots require LLMs to define and experts to restrict the search
space of sets of rules. Furthermore, LLMs might rely on external integrated knowledge about the
game, acquired during their training phase, to explain the policy instead of providing accurate de-
scriptions of it. Despite that, SCoBots, to the best of our knowledge, is the first algorithm that can
consistently and automatically output interpretable policies for Atari games by using object-centric
representations [Bellemare et al., 2012, Delfosse et al., 2023a]. Prior to that, PIRL, Custard and
NUDGE [Verma et al., 2018, Topin et al., 2021, Delfosse et al., 2023b] were also able to learn inter-
pretable policies (programs, axes-parallel trees, and first-order logic respectively), but only on toy
problems, for which environments were specifically created. Outside of RL, program synthesis has
also been explored, e.g. on classification tasks [Ellis et al., 2021, Wiist et al., 2024].

In addition to distinguishing existing work by the level of interpretabiliy of their returned policies
and by their requirements for human and LLM interventions, we also distinguish the problems they
can solve. VIPER, NUDGE, INSIGHT and Custard only work for MDPs with discrete actions, while
the other algorithms work with any MDP. The above classification of existing interpretable RL
algorithms are summarized in Appendix table 3.



Symbolic states. Recent interpretable RL assume access to a deep learning based object extractor
that extract object-centric states from RGB inputs in game domains, such as SPACE [Lin et al.,
2020], SPOC [Delfosse et al., 2023c] or a finetuned FastSAM [Luo et al., 2024]. They train a neural
network based policy using existing deep RL algorithm from this object-centric states. Then, they
distill this policy into either directly interpretable (or transparent) first order logic-based NUDGE
agents [Delfosse et al., 2023b] or rule-based SCoBots [Delfosse et al., 2024], or into (not inter-
pretable) polynomial equations, within INSIGHT [Luo et al., 2024].

6 Limitations and future work

Decision tree algorithm. CART [Breiman et al., 1984] is a widely used decision tree learning
algorithm, however it chooses splits greedily w.r.t. a train set, which is suboptimal [Murthy and
Salzberg, 1995]. There is a whole line of work on decision tree learning algorithm, some specialize
in oblique trees [Murthy et al., 1994], others have better generalization performances [Mazumder
et al., 2022, Demirovic et al., 2022] and even better interpretability [Kohler et al., 2024]. One direct
future direction for INTERPRETER would be to try different decision tree algorithms in algorithm 1.

More expressive and general tree programs. Our INTERPRETER algorithm uses CART with
linear combinations of at most two features as input, we could also add linear combinations of more
features with coefficients different from 1 or include more complex functions of features such as
sinusoidal functions. It should also be possible to add an evolutionary routine [Eiben and Smith,
2015] to include loops in the policy search space. One could for example try to gather rules applied
on the same object types, to obtain e.g. conditional tests on all the enemies or on every missile in
environments like Seaquest or Spacelnvaders.

Complexity and state space. Exploring the solution space of policies defined over symbolic states
is necessary for interpretabiliy but comes with limitations. For example, in Seaquest, if the oxygen
bar level is not encoded in the symbolic states, the agent cannot learn to make decisions based
on the latter. In MsPacman, the walls can be considered part of the background [Lin et al., 2020,
Delfosse et al., 2023c], but are necessary to navigate the maze. Generally, identifying what symbolic
features are necessary to master each task is a difficult problem [Delfosse et al., 2024]. Furthermore,
the complexity of the input space grows with the number of symbols in the state-space. We have
proposed to mask idle state features, but there is no guarantee that this will sufficiently reduce the
complexity for the decision tree extraction to be done in a limited time. One way to overcome this
limitation would be to use e.g. a deep learning alternatives that would return the oblique tests to
consider for the tree programs given the whole state-action dataset [Kossen et al., 2021], but such
deep learning architecture complexity do not scale as much with the number of symbolic features.

Evaluating interpretability. We have here evaluated the interpretability of INTERPRETER pro-
grams with an inference speed proxy and with limited user study. We should benchmark the inter-
pretability of our programs with a more diverse pool of users, such as non machine learning practi-
tioners, and could also make use of recently developed LLM code generation capabilities to explain
our programs in natural language [Bashir et al., 2024]. We then should evaluate the reliability of
using LLMs to accurately explain the policy without relying on accumulated knowledge.

Code. We have only provided the code to reproduce our experiments and a tutorial on a simple
demo task. We are building a Python package to use INTERPRETER with gym and PyTorch oracles.

7 Conclusion

We have introduced INTERPRETER that distills deep RL oracle into interpretable programs to in-
crease alignment and trust in automated sequential decision-making tasks. To do so, INTERPRETER
produces tree programs that make oblique tests of meaningful state features. We empirically showed
a state-of-the-art interpretability-performance trade-off: our programs match oracles and can be ex-
plained and edited by humans. Furthermore, INTERPRETER is a simple algorithm: its components
such as decision tree learning, features combinations, and programming language of the extracted
programs, can be varied easily. For future work, we believe that benchmarking and safeguarding
interpretability and alignment of policies to e.g. human values are interesting avenues. We hope our
work paves the way for future interpretable RL research.
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A Neural oracles

In this section we show the training curves of the neural oracles used in sections 4.1, 4.2. For
the the MuJoCo and classic control benchmarks (center and right on Figure 8), the neural or-
acles policies as well as training data are taken directly from the stable-baselines3 zoo,
i.e we do not run the training ourselves. For example, all the data for the SAC oracle on
Swimmer can be found at this url https://github.com/DLR-RM/rl-trained-agents/tree/
ca4371d8eef7c2eece81461£3d138d23743b2296/sac/Swimmer-v3_1. For OC Atari we train
the PPO agent from stable-baselines3 ourselves on a DGX cluster. We use the default [Schul-
man et al., 2017] hyperparameters on 2e7 timesteps. What we observe is that for most benchmarks
the deep reinforcement learning algorithms converged except for the DQN agents on classic control
tasks (Figure 8, center). We also show that some SAC oracle are too complex to be matched by
oblique tree prorgrams even high a high number of nodes (right of Figure 8).

— SACoracle
|- Hopper-va
-+ Walker2d-va

normalized INTERPETER

Figure 8: Detailed oracle training curves for Atari, mujoco and classic control environments, as well
as the performance evolution of the oracles for different tree sizes for complex control tasks.
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Figure 9: Detail ablation of INTERPRETER.

In this section, we ablate INTERPRETER on OC Atari games. We remove each element of method 3
to get four distinct algorithms. Figure 9 clearly shows that each independent component of INTER-
PRETER participates in its performances.

INTERPRETER: the default implementation of algorithm 1.
INTERPRETER-axes-parallel-DT: we fit axes-parallel trees to oracles rather than oblique ones.
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INTERPRETER-full-MDP: we do not mask idle MDP features during the imitation. In addition the
performances we show in 1 the share of idle features for each game.

INTERPRETER-forced-Q-Dagger: even though the given oracle is the stochastic policy 7* returned
by a PPO, we also pass Q™ = logn* to "force" the Q-Dagger weighting during the imitation
subroutine.

C Detailed inference time per game

Table 2: INTERPRETER Programs are more resource efficient. Inference speed comparisons

(in 107°s) of programs, scikit-learn decision trees and PyTorch netowrks on different gym
environments. For all environments, our compact programs show faster inference time.
Asterix ~ Boxing  Freeway Kanga. Pong Seaquest
Program 1.05+044 1471058 0.85+024 1.241033 1.0l 024 0.97x0.17
sklearntree 26.0+160 30.64s501 20.8+042 21.7+x041 2044178 23.1+049
Neural Net. 38. 1465  58.5+144 385453 384488 332 465  38.3+725
Spacelnv  Tennis HalfCh. Hopper  Swimmer Walker2d
Program 1.07+022 094036  0.18+004 0.25+004 0.19+0.03 0.25+0.06
sklearntree 409+9220  20.3+045 16.5+172 20.2+15  19.4+413 23.8+401
Neural Net. 41.9+104  34.8428 5424200 66.6+22 56.3+20s8 60.9+185

D Feature importances for shortcut learning identification.

In this section we look at the feature importances of tree programs with 16 total nodes returned
by INTERPRETER on MuJoCo and Atari. Some clear importances are for the Hopper robot that
needs to move forward by jumping on one leg: INTERPRETER bases its control on the z-coordinates
of the torso. Some other clear importances are: for Pong where program bases its decision on
the y-distance between the player’s pad and the ball; for Freeway where the most important is the
chicken’s y-speed; for Asterix it is the y-distance to the collectible... For Seaquest and Kangaroo
where the goals are respectively to save divers and to get up to save its joey, we notice that the most
important INTERPRETER concepts for the oracle do not include those goals. When visualizing the
oracle network or the INTERPRETER tree program playing those games we indeed notice that they
resepctively fight sharks and fight monkeys which are rewarded by the MDP but that are not the
original games goals.
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Swimmer-v4 Alien_0.x - Bullet 0, rev x
angle_thigh_joint - angle_left_foot_joint e e e Y eV x
angle_left_thigh_joint - velocity_z_coordinate Riien 33 prev x - Alier. 31x Spacelnvaders
velocity_x_coordinate_top - angle_vel_leg_hinge Elgygﬁ 8 ;resliye%_glp(r)e‘\)/rexv X
- Enei 0.x
z_coordinate_top - angle_top Bail 0/ Ballonadym S’y Tennis

Mujoco Walker2d-v4

Atari

Figure 10: Feature importances on Mujoco (Left) and Atari (Right) environments.
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E Extracted programs

In this section, we show some programs autonomously learned by INTERPRETER.

if diver_0.x > 0: # edited
return "UP"
if Player_O.prev_x - Shark_0.prev_x <= 0.51:
if Player_O.prev_y - Shark_O.prev_y <= -0.56:
if Shark_0.y - Submarine_1.prev_x > 1.24 and Player_O.prev_x - Shark_0.x <= -0.71:
return "DOWNRIGHTFIRE"
else:
return "DOWNFIRE"
else:
if Diver_1.prev_y - Shark 2.y <= 0.92:
if Player_O.prev_x - Shark 0.x <= -0.58 or Shark_O.prev_y - Submarine_1.prev_x
return "UPRIGHTFIRE"
else:
if Shark_0.y <= 0.93:
return "UPFIRE"
else:
return "DOWNFIRE"
else:
return "DOWNRIGHTFIRE"
else:
if Shark_0.y <= 0.53:
if Player_O.prev_x - Submarine_O.prev_y <= 0.13:
return "UPLEFTFIRE"
else:
if Diver_1.y - Shark _O.prev_y <= 1.87:
if Player_O.prev_y - PlayerMissile_O.prev_y <= -0.31:
return "DOWNFIRE"
else:
return "DOWNLEFT"
else:
return "DOWNLEFT"
else:
if Shark 0.y - PlayerMissile O.prev_y <= 0.18:
if Player_O.prev_x - Shark _0.x <= 1.22:
return "UPFIRE"
else:
return "UPLEFTFIRE"
else:
return "DOWNLEFTFIRE"

<= -3.89:

Figure 11: Program to play Seaquest returned by INTERPRETER. The first two lines have been edited

by hand to allow the save of divers.

if Player.y - Ball.y <= -0.59:
if Ball.x <= -0.61:
return "RIGHT"
else:
if Player.y - Ball.y <= -0.81:
return "LEFT"
else:
return "NOOP"
else:
if Ball.x <= 0.05:
if Enemy.y <= 0.25:
return "LEFT"
else:
return "RIGHT"
else:

if Ball.x - Ball.y > -0.20 and Player.y - Ball.y > -0.43:

return "RIGHT"
else:
return "NOOP"

Figure 12: Program to play Pong returned by INTERPRETER. Achieving a score of 15.5.
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F Program simplification

We here show how programs can further be simplified, by merging redundant branches. To reduce
the number of nodes/if-else statements in the program, one can for example replace the first block
of the following code by the second one:

if Ball.x - Ball.y <=
return "NOOP"
else:
if Player.y - Ball.y
return "NOOP"
else:
return "UP"

# can be written as

if (Ball.x - Ball.y)
return "UP"
else:
return "NOOP"

-0.20:

<= -0.43:

> -0.20 and (Player.y - Ball.y > -0.43):

This mainly improves human interpretability, as decisions for specific actions are gathered together.

G Related work summary table

In table 3 we summarize existing explainable RL work and compare w.r.t to their required oracle
knowledge, their domain ranges, on what problems they were tested, and on the level of explainabil-
ity they provide. Among the algorithms that require at least an oracle policy, INTERPETER is the
most versatile and well-tested method.

Table 3: Existing interpretable RL algorithms and their specifications.

Name Prior Knowledge M Benchmarks | Programs

INTERPRETER mor Q) All All Interpretable
VIPER mand Q Aez? Toy Explainable
PIRL 7 or () and Primitives All Toy Interpretable
SCoBots 7 or @ and Primitives and LLM All Atari Interpretable
NUDGE Primitives Aezp Atart Interpretable
LEAPS-based Domain Specific Languages AeZzr Karel Interpretable
Demo2Code & Code as Policies LLM AeR? Robotics Interpretable
INSIGHT LLM Aezr Atari Explainable
Custard Primitives AeZr Toy Interpretable
m-PRL Primitives All All Explainable
Differentiable Trees Detailed tree sturcture AeZr Toy Explainable
m-PRL Primitives All All Explainable

H User study details

Hereafter is provided the detailed questions used during our user studies. We have reached out to Al
experts. We have collected and aggregated the answers of 19 participants.
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Interpretable policies - user study

You are participating in a user study on interpretability of reinforcement policies.
The policy is the function responsible for choosing an action for a specific state.
You will be presented with 4 different policy types, coming from 4 different methods.
You are asked to explain which policy is, in your opinion, the most interpretable.

Sign in to Google to save progress. Further information

* Specifies a required question

Visual rendering of the Pong environment.

Please look at each policy first

We kindly ask you to look at all of the 4 evaluated policies before answering the
questions. You do not have to carefully read them, just understand each principle before
you report your evaluations

Policy 1 description

This policy is encoded with polynomials equation, that rely on the last 4 observed states.

For this policy, x-player,4 corresponds to the last observed x position. It first extract 4

learned features (t1 to t4) and combine them to evaluate each action. The action with the

highest evaluation is selected.

Policy 1

£ =(=0.31Xgtayert = 0.19%piayer2 = 0.19%ptayers = 0.34Xp1yers = 0.018Xpa1 = 0.014Xpy2 =
0.0713Xp513 = 0.014Xp514 = 1.0Xenemy1 +0.36Xenemya = 0.02Yp1agert = 0.021Y515per2 =
O*Ozzyplaysrj -0.01 Syp\ayem = 0.018Ypa,1 = 0.018Y4a12 = 0.015Ypa,3 = 0.018Yy4 =
0.13Yenemy1 = 0.017Yenemy2 = 0.018Yenemys = 0.017Yenemy s — 0.95)2

t=1

b3 =(=0.26Xpiayer,1 = 0.14Xg1ayer2 = 0.34X 010603 = 0.12Xp1ayers = 1.0Xenemys = 0.027Ypiayers =
0.14Yp10er2 = 0.23Ypiagers = 0-3%piayera = 0.013Yp51,1 = 0.013Yba12— 0.012Ya5—
0.012Yenemy 1 = 0-2Yenem> = 0-28Yenemy3 = 0-31Venemya = 0.83)°

t, =(0.11xplayer,1 +0.24Xyyer> +0.17Xpiayer3 +0.14X1ayera +0.013Xenemy s +0.37Ypiapers
+0.15Y1ayer2 +0-085Y 513,614 +0.51Venemy,1 +0.013Yenemy +1 0

NOOP = - 0.15t, - 0.53t, +0.24t; +0.31t,
UP = - 1.1t, +0.15t, - 0.21t; - 0.041t,
DOWN =1.3t, +0.95t, +0.11t, - 0.32t,

Please check all policies before answering
Gentle reminder, please give a look at the other policies before answer the following
questions.

Description of the Pong environment.

These policies are from agents trained on the Pong environments. In this environment,
the agent controls the green paddle (on the right).

Its goal is to touch the ball (with its paddle) by adjusting its vertical position (on the y-
axis) and return past the enemy's paddle (orange, on the left).

At each step, the agent observes the position (horizontal: x axis and vertical: y axis) of
the ball, its green paddle, and the enemy's orange paddle. The values of the positions are
normalized, but can be translated back to pixel values. We provide you with the policies
using the normalized values.

It has to select an action between move the paddle UP, move it DOWN or do nothing
(NOOP).

Please provide your name: * *

My answer

Do you accept that your answer may be used in a research publication ? * *

O Yes
O No No

Evaluation of interpretability

In the following, you are asked to evaluate for each method:

1. the level ofinherent explainability: are you able to understand how crucial property
(e.g. player's vertical position) of the state is for the agent's decision. If this element was
to change it a certain way, would that impact the decision.

2. the level of interpretability : can you follow how each element is used by the policy to
select an action.

3. the level of trust you have in each of these policies: can you check that it selects the
correct action for the correct reasons. These action lead to a consistent behavior.

4. your ability to easily correct the programs, in case of suboptimal behavior

Explainability level * *

00 1 2 3 4 5566 7 8 99 10

Nt O0000000000O

explainable explainable

Interpretability level * *

00 1 2 3 4 5566 7 8 99 10

Nt O00000000O00O |y

interpretable interpretable

Trust level * *
00 1 2 3 4 55 66 7 8 99 10

1 do not trust o O O O O O O O O O O 1 fully trust

Adjustment level * *
00 1 2 3 4 5566 7 8 99 10

| cannot change O O O O O O O O O O O | can easily

anything correct

Policy 2 description

This policy is encoded in a set of consecutive rules. The first rules for each the condition
is True is selected (otherwise NOOP). It uses functions such as LT (linear trajectory), D
(distance), C(center), ... etc.

For this policy, the actions LEFT and LEFTFIRE correspond to DOWN, while RIGHT and
RIGHTFIRE correspond to UP.



Policy 2 (1/2)

IF (0.0917 | 1.0000)[(ED(Player1,Ball1) <= -1.2444) AND (Enemy1.y[t-1] <= -0.051)] OR (0.0955 |

1.0000)[(D(Player1,Ball1).y <= 0.6356) AND (ED(Player1,Ball1) <= -1.2444) AND
(LT(Enemy1,Player1).y > 0.0884) AND (LT(Player1,Ball1).y <= 0.0781)] OR (0.0966 |

1.0000)[(LT(Ball1,Ball1).x <= -2.4804) AND (LT(Ball1,Enemy1).x > -0.8434) AND (LT(Player1,Ball1).x

>0.3434)] OR (0.0971 | 1.0000)[(Ball1.y <= 0.3469) AND (D(Player1,Enemy1).y <=1
(LT(Ball1,Enemy1).y > 1.2496)] OR (0.0997 | 1.0000)[(D(Player1,Ball1).y <= -0.7089)

1.0000)[(D(Enemy1,Ball1).y <=-0.6761) AND (DV(Ball1).x <= -0.2477) AND (Enemy1.y <= 0.1317)
AND (LT(Enemy1,Player1).y > -0.8251) AND (LT(Player1,Ball1).y <=-0.1017)] OR (0.8575 |
1.0000)[(LT(Ball1,Player1).x <= -0.4534) AND (LT(Enemy1,Ball1).y > 0.5509)] OR (0.8866 |
1.0000)[(Ball1.x > 1.1111) AND (DV(Ball1).x <= -0.372) AND (LT(Ball1 Enemy1).y > 0.4359) AND

(LT(Enemy1,Player1).x <= -0.5486)] THEN RIGHTFIRE

IF (0.1963 | 1.0000)[(DV(Player1).y <= 1.0061) AND (LT(Enemy1,Ball1).y <= -0.3765) AND
(Player1.y <= 0.5449)] OR (0.2026 | 1.0000)[(ED(Player1,Ball1) <= -1.283) AND (LT(Enemy1,Ball1).y
>-0.3765) AND (LT(Player1,Player1).x > 0.3894) AND (V(Player1).x <= 1.2976)] OR (0.2822 |
1.0000)[(D(Enemy1,Ball1).y <= -1.1379) AND (DV(Player1).y > 0.0033) AND (Player1.y <= 0.3218)

AND (V(Player1).x <= 0.216)] OR (0.3124 | 1.0000)[(D(Enemy1,Ball1).y <= 0.0936)

(LT(Player1,Enemy1).x > 0.0673)] OR (0.5998 | 1.0000)[(C(Player1,Enemy1).y > 1.6676) AND

(D(Player1,Ball1).y <= 0.6949) AND (LT(Enemy1,Player1).y <=-0.0033)] OR (0.6133

1.0000)[(C(Player1,Enemy1).y > 1.275) AND (DV(Ball1).x > 0.2497) AND (LT(Ball1 Enemy1).y >
-0.8891) AND (LT(Enemy1,Ball1).y <= 0.0257)] OR (0.6140 | 1.0000)[(D(Player1,Ball1).y > 0.1017)

AND (Enemy1.y[t-1] >-0.6471) AND (LT(Ball1,Enemy1).y <= -0.2139) AND (LT(Ball1,

-0.7072) AND (LT(Ball1,Player1).y > 0.9352)] OR (0.6162 | 1.0000)[(Ball1.y > 0.9122) AND
(LT(Ball1,Enemy1).y <=-0.8103)] OR (0.6177 | 1.0000)[(Ball1.y >-0.3441) AND (LT(Ball1 Enemy1).y

<=-0.6384) AND (LT(Ball1,Enemy1).x <=-0.5385)] THEN LEFTFIRE

IF (0.2451 ] 1.0000)[(Ball1.x > -0.4959) AND (Enemy1.y <= -0.3729) AND (LT(Enemy1,Ball1).y <=
0.6016)] OR (0.5661 | 1.0000)[(D(Player1,Enemy1).y <= 0.418) AND (DV(Player1).y > -0.4524) AND
(Enemy1.y <=-0.1894) AND (LT(Player1,Ball1).y > 0.0981) AND (V(Enemy1).x <=-0.2862) AND

(V(Enemy1).x > -0.4639) AND (V(Player1).x <= 0.892)] OR (0.5780 | 1.0000)[(Ball1.x]

AND (D(Player1,Ball1).y <= 0.2995) AND (DV(Player1).y > -0.9082) AND (D(Enemy1,Ball1).y <=
2.9158) AND (D(Enemy1,Ball1).y > -0.83) AND (DV(Ball1).x <= 0.2497) AND (LT(Enemy1,Player1).y

<=-0.5572) AND (LT(Enemy1,Player1).y >-2.0275) AND (LT(Player1,Ball1).y <= 0.05!
(LT(Player1,Ball1).y >-0.0967) AND (Player1.y[t-1] <= 0.2106)] OR (0.8152 |
1.0000)[(D(Enemy1,Ball1).y <= 0.2476) AND (ED(Player1,Ball1) <= 0.2956) AND
(LT(Enemy1,Player1).x <=-0.3492) AND (LT(Player1,Ball1).y > 0.2783)] OR (0.8266 |
1.0000)[(DV(Player1).y > 1.3707) AND (LT(Enemy1,Ball1).y > 0.5967)] OR (LT(Ball1,|

-0.6139) AND (LT(Enemy1,Player1).x > -0.5088) AND (Player1.y[t-1] > 0.2106)] OR (0.8315 |

1.0000)[(ED(Player1,Ball1) <= -1.1579) AND (LT(Enemy1,Player1).y <= -2.0275)]
OR(LT(Enemy1,Playert).y <= -2.0277)] THEN NOOP

Explainability level * *

00 1 2 3 4 5566 7

(OXORORORONORORORONONO)

8 99 10

Not
explainable

Interpretability level * *
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interpretable i

99 10
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00 1 2 3 4
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55 66 7 8 99 10

I do not trust

Adjustment level * *

00 1 2 3 4 5566 7
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anything

8 99 10

Policy 3 description

This policy is encode as logic rules. It uses predicates (in purple) evaluated on the
detected objects (in red). Each rule value is evaluated according to the valuation function

of each predicate. Then, the rule is multiplied with its weight (on the left). E:

Policy 2 (2/2)

IF (0.4241 | 1.0000)[(Ball1.x > 1.0875) AND (D(Player1,Ball1).y <= 0.2204) AND (D(Player1,Ball1).y

>-0.3926) AND (LT(Enemy1,Ball1).y <= -0.4178) AND (V(Player1).x <= -0.1897)] OR (0.4791 |
1.0000)[(LT(Enemy1,Ball1).y > 0.5628)] OR (0.5181 | 1.0000)[(Ball1.x > 0.4258) AND

.2407) AND
OR(0.6706 |

(V(Ball1).x > 8.2212)] OR (0.6782 | 1.0000)[(DV(Ball1).y > 6.8821)] OR (0.7189 |

1.0000)[(DV(Ball1).x <= -0.9937) AND (LT(Enemy1,Bali1).y > 0.1883)] OR (0.7267 |

(D(Enemy1,Ball1).y <=-0.7787) AND (D(Player1,Ball1).y <= 0.2401) AND (DV(Ball1).x <= -0.9937)]
OR (0.5634 | 1.0000)[(D(Player1,Ball1).y <= 0.6356) AND (DV(Ball1).y >-0.3641) AND
(ED(Player1,Enemy1) <=-0.2204) AND (Enemy1.y <=-0.7399) AND (LT(Enemy1,Ball1).y > 0.1768)]
OR (0.6460 | 1.0000)[(D(Player1,Ball1).y <= 0.2995) AND (LT(Enemy1,Ball1).y > 0.5306) AND
(LT(Enemy1,Player1).x >-0.5486)] OR (0.6760 | 1.0000)[(LT(Enemy1,Ball1).y > 0.147) AND

1.0000)[(DV(Ball1).x <= -0.745) AND (LT(Enemy1,Ball1).y > 0.2356) AND (V(Player1).x <= 1.0272)]

1.0000)[(LT(Ball1,Player1).y
1.0000)[(D(Player1,Ball1).y

OR (0.7375 | 1.0000)[(D(Player1,Ball1).y <= 0.2599) AND (DV(Ball1).x <= -0.745) AND
(LT(Enemy1,Ball1).y > 0.1842)] OR (0.7800 | 1.0000)[(DV(Ball1).x <= -8.5779)] OR (0.7800 |
0.1638) AND (LT(Enemy1,Ball1).y > 0.5865)] OR (0.7937 |
0.096) AND (DV(Ball1).x <= -0.9937) AND (LT(Enemy1,Ball1).y >

0.1659)] OR (0.7990 | 1.0000)[(DV(Ball1).y > 6.3909)] OR (0.8330 | 1.0000)[(DV(Ball1).y > 7.005)]

OR (0.8762 | 1.0000)[(LT(Enemy1,Ball1).y > 0.5628) AND (Player1.y[t-1] > 1.1239)] OR (0.8990 |

| 1.0000)[(D(Player1,Ball1).y <= 0.2797) AND (LT(Enemy1,Ball1).y > 0.5628)] OR (0.9015 |

1.0000)[(LT(Enemy1,Ball1).y > 0.1601) AND (V(Ball1).x > 9.8652)] OR (0.9087 |

1.0000)[(D(Player1,Ball1).y

Enemy1).y >

1.0000)[(D(Player1,Ball1).y <= 0.3192) AND (LT(Enemy1,Ball1).y > 0.5628)] OR (0.9217 |
.2401) AND (LT(Enemy1,Ball1).y > 0.5865)] OR (0.9351 |
1.0000)[(LT(Player1,Ball1).y <= -0.0181) AND (V(Ball1).x > 9.8652)] THEN RIGHT

IF (0.5094 | 1.0000)[(LT(Enemy1,Player1).x > 1.206) AND (V(Ball1).x > 0.0798)] OR (0.5098 |

1.0000)((DV(Player1).y > 0.8238) AND (ED(Player1,Ball1) <=-1.6523) AND (Enemy1.y[t-1] <=

[t-1] <= 0.2369)

04) AND

1.0954)] OR (0.5451 | 1.0000)[(C(Player1,Enemy1).y <=-1.7581) AND (D(Player1,Ball1).y
0.9519) AND (DV(Ball1).y <= 0.1272) AND (ED(Player1,Ball1) <= 0.4612) AND (ED(Player1 Ball1) >
-1.2069) AND (LT(Enemy1,Ball1).y <= 0.2721) AND (LT(Enemy1,Enemy1).x > -0.0393)] OR (0.5670 |
1.0000)((D(Player1,Enemy1).y > 1.2818) AND (ED(Player1,Ball1) > -0.0316) AND (V(Enemy1).x <=
-0.1085)] OR (0.5696 | 1.0000)[(D(Player1,Ball1).y > 0.2401) AND [LT(Enemy1,Player1).y > 0.0049)]
OR (0.6164 | 1.0000)[(D(Player1 Enemy1).y > 0.3842) AND (DV(Ball1).y <= 0.1272) AND
(DV(Enemy1).y <= 0.5079) AND (Enemy1.y[t-1] <=-0.372) AND (LT(Ball1,Enemy1).y > -0.7974)

AND (LT(Ball1,Player1).y <=-0.6658) AND (LT(Enemy1,Enemy1).x > -3.0168)] OR (0.6242 |

1.0000)[(C(Player1,Enemy1).y > 0.6792) AND (D(Enemy1,Ball1).y > 0.0936) AND
(LT(Ball1,Player1).y > 2.4043)] OR (0.6396 | 1.0000)((Ball1 x[t-1] <=-0.0231) AND
(D(Player1,Enemy1).y <= 0.6031) AND (DV(Ball1).x > 0.001) AND (Enemy1.y > 0.1775) AND
(LT(Player1,Ball1).y <= -0.117)] OR (0.6446 | 1.0000)[(DV(Ball1).y <= 0.25) AND (DV(Player1).y >

Player1).x <=

0.8238) AND (ED(Player1,Ball1) >-0.4118) AND (Enemy1.y[t-1] <= 1.0954) AND (LT(Ball1,Ball1).x >
0.3106) AND (LT(Player1,Enemy1).y >-1.0363) AND (V(Enemy1).x > 0.2469) AND (V(Player1).x >
0.4864)] OR (0.6735 | 1.0000)[(Enemy1.y >-0.3271) AND (LT(Ball1,Ball1).x <=-1.8784) AND
(LT(Player1,Ball1).x > 0.5749)] OR (0.6754 | 1.0000)[(C(Enemy1,Ball1).y >-1.4068) AND (Player1.y

>0.2995)] THEN LEFT

IF (0.5577 | 1.0000)[(DV(Ball1).x > 0.747) AND (ED(Player1,Ball1) <=-0.0818) AND

(LT(Ball1,Enemy1).x <=-0.5385) AND (LT(Player1,Enemy1).x > -0.7338)] OR (0.5953 |
1.0000)[(DV(Ball1).x > 0.747) AND (ED(Player1,Enemy1) <= -0.6485) AND (LT(Player1,Enemy1).x >

-0.7338)] THEN FIRE

Policy 3
0.38: UP:- type(O1, Ball), type(02, Player), above(O1, 02), going_right(O1)
0.42: UP:- type(O1, Ball), type(O2, Player), above(proj_y(O1, 02), 02)

Fully 0.25: UP:- type(O1, Enemy), type(O2, Player), above(proj_y(O1, 02), 02)

explainable

0.47: DOWN:- Lype(O1, Ball), type(O2, Player), above(02, O1), going_right(O1)
0.32: DOWN:- type (01, Ball), type(02, Enemy), below(proj_y(O1, 02), 02), going_right(01)
0.21: DOWN:- type(O1, Player), type(O2, Ball), below(proj_y(02, O1), O1), going_right(02)
0.23: NOOP:- type(O1, Enemy), type(02, Ball), closeby(O1, 02)
0.03: NOOP:- Lype(O1, Ball), type(O2, Player), closeby(O1, 02)
0.01: NOOP: type(O1, Ball), type(02, Ball), above(O1, 02)

Fully

nterpretable
Explainability level * *

00 1 2 3 4 5566 7 8 99 10
Nt - O000000000O0
explainable
| fully trust
Interpretability level * *
00 1 2 3 4 5566 7 8 99 10
Nt Q0000000000
interpretable
| can easily
correct

Trust level * *

00 1 2 3 4 55 66 7 8 99

ach rule thus

has a valuation. The valuations of the rules that encode the same action are then

aggregated using a softor to obtain the final valuation of each action.
The action with the highest valuation is selected

Fully
explainable

Fully
interpretable

| do not trust O O O O O O O O O O O I fully trust



Adjustment level * *

00 1 2 3 4 5566 7 8 99 10

| cannot change O O O O O O O O O O O | can easily

anything correct

Policy 4 description

This policy is encoded within python code. Each object is passed to the function, and
there properties are accessed through their corresponding attributes. The selected
action is the returned one.

Policy 4

if Playery - Bally
if Ballx <= -0.61:
turn "UP"
elif Playery - Bally <=
rn "DOWN

eturn "NOOP"

if Ball
if Enemy.y <
"DOWN
"up"

Bally) > -0 and (Playery - Bally > -
"up"

"NOOP"

Answer

My answer

Sending Page 1 of 1 Delete all entries

Never share passwords using Google forms

This content was not created by Google and is not supported by Google either. Report misuse - Terms of use -
Privacy policy

GoogleForms
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Open feedback (optional)Sans titre
What would you do to improve the explainability, interpretability and trust of each of
these.
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