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Abstract

Many machine learning algorithms solving various problems are available for
metric spaces. While there are plenty of distances for vector spaces, much
less exists for structured data (rooted heterogeneous trees) stored in popular
formats like JSON, XML, ProtoBuffer, MessagePack, etc. This paper
introduces the Hierarchically-structured Tree Distance (HTD) designed
especially for these data. The HTD distance is modular with differentiable
parameters weighting the importance of different sub-spaces. This allows
the distance to be tailored to a given dataset and task, such as classification,
clustering, and anomaly detection. The extensive experimental comparison
shows that distance-based algorithms with the proposed HTD distance
are competitive to state-of-the-art methods based on neural networks with
orders of magnitude more parameters. Furthermore, we show that HTD is
more suited to analyze heterogeneous Graph Neural Networks than Tree
Mover’s Distance.

1 Introduction

Most machine learning tasks can be approached by algorithms relying on the existence of
distance. These tasks include classification (Fix & Hodges, 1951), anomaly detection (Breunig
et al., 2000; Knorr et al., 2000), clustering (Rdusseeun & Kaufman, 1987; Sibson, 1973)),
dimensionality reduction for visualization (McInnes et al., 2018), indexing methods for
fast retrieval (Zezula et al., 2006), explanation (Chen et al., 2019; Guidotti, 2022), and
density estimation (Williams & Rasmussen, 2006). A suitable distance on a dataset of
interest therefore makes all this vast prior art readily available for solving downstream tasks.
Distance is also essential for studying theoretical properties of algorithms (Chuang & Jegelka,
2022).

While for Euclidean spaces distances are well known, it is much harder to define them on
objects with variable dimensional objects such as trees or graphs. A particularly important
but neglected type of objects are those stored in structured data formats such as JSON,
XML, or Protobuffer. These formats are popular among engineers since they allow them to
logically organize data with increasing levels of detail, which is natural for humans. Moreover,
the contemporary internet experience relies on exchanging messages stored in these data
formats.

Data stored in structured data formats, further called HS-Trees are rooted trees of fixed
depth, where a large number of nodes have different semantics and structure and where
some nodes can have a fixed number of edges (and child). These properties were exploited in
some supervised learning methods (Socher et al., 2011; Shuai et al., 2016; Tai et al., 2015;
Cheng et al., 2018; Woof & Chen, 2020) offering properties not available for general graphs,
such as theoretical guarantees due to an extension of approximation theorem (Pevny &
Kovarik, 2019), and low computational complexity, as single pass from leaves to root (Mandlík
et al., 2022) is sufficient. Furthermore as shown in Chuang & Jegelka (2022) for graph
neural networks (GNN) based on message passing process samples from HS-Trees when the
computation graph is unrolled.

Despite the practical importance and ubiquity of HS-Trees, there is very little prior art
about distance on HS-Trees. In Šopík & Strenáčik (2022) (further called TED) tree-edit
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Table 1: Properties of distance functions on attributed trees.

Differentiable Heterogeneous Metric Free Parameters Modular

Tree Mover’s Distance (TMD) ✓ ✗ ✗ ✓ ✗
Tree Edit Distance (TED) ✗ ✓ ✓ ✗ ✗
Hierarchically-structured Tree D. (HTD) ✓ ✓ ✓ ✓ ✓

distance is extended to HS-Trees. TED distance is parametrized by costs, but they are
non-differentiable, which complicates their optimization (metric learning) by efficient first-
order methods. Tree Mover’s Distance (TMD) (Chuang & Jegelka, 2022), proposed for
rooted homogeneous trees to study the generalization properties of GNNs, does not support
heterogeneous data. To address these shortcomings, this paper proposes HTD distance,
which exploits the recursive nature of the data format, allowing modular construction
by combining potentially different metrics on different levels of the tree. HTD distance is
parametrized by weights, which control importance on different parts. The distance is
differentiable, so it can be seamlessly incorporated into many modern algorithms, especially
in those optimizing the metric for the given problem (metric learning). The computation
complexity depends on the construction, specifically on the used distance on multisets. The
most general setting with Wasserstein distance has cubic complexity, but for many practical
problems, it is sufficient to use Haussdorf distance or Chamfer pseudo-distance with quadratic
complexity.

The performance of HTD distance is experimentally evaluated on i) supervised learning,
ii) anomaly detection, iii) analysis of heterogenous GNNs, (iv) clustering (presented in the
appendix due to lack of space), and (v) inside UMAP for visualization. The experimental
results show that distance-based algorithms with the proposed distance are competitive (and
frequently better) to state-of-the-art methods based on neural networks (Pevny & Kovarik,
2019; Mandlík et al., 2022) while having a few orders of magnitude fewer parameters. We
also show that the HTD better correlates with the performance of GNNs for heterogeneous
graphs than Tree Mover’s Distance with the homogenization (Chuang & Jegelka, 2022).

The paper is organized as follows. The next section formally defines HS-Trees and their
relation to GNNs for heterogeneous graphs. Section 3 defines the HTD distance and discusses
the impact of choices on its generality (theoretical guarantees) and computation complexity.
Section 4 reviews the related work. Experimental comparison on classification, anomaly
detection, analysis of GNNs, and application to visualization is shown in Section 5. The last
section summarizes the paper.

2 Background

This section first defines schema, which is an important concept in the definition of HS-Trees,
and then shows their relation to the computation graph of GNNs. The relation of HS-Trees
to data stored in structured formats, like JSON, is left to the Appendix C.

The HTD distance is defined for samples with the same schema. Schema corresponds to "data
type" in programming languages, message type in protocol buffers, schema in JSON (Pezoa
et al., 2016), and document type definition in XML files (Farrell & Lausen, 2007). Schema
defines the set of possible values, their semantics, and the structure of the data (type of
nodes and their branching). To prevent confusion, schemas are always denoted by blackboard
letters. x ∈ S denotes that sample x is from the schema S, but one may also say that sample
x has schema S.

The definition requires the introduction of elementary data types, which are simple data
types like numbers, tensors of fixed dimension, categorical variables, and strings. A second
key part of the schema is multiset, denoted as J·K, which corresponds in structured formats to
unordered arrays with possibly repeated elements. The third key component is the dictionary
(hashmap), which introduces heterogeneity into the data. Formal definition follows.
Definition 2.1 (Schema). The set of all schemas S, and the element of relation ‘∈’ is
defined recursively as follows:

1. Leaves: Let L be an elementary data type. Then L ∈ S.
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It holds x ∈ L if and only if x is of data type L.
2. Bags: Let A = JSK where S ∈ S. Then A ∈ S.

x ∈ A if and only if x = Jx1, . . . , xnK, where n ≥ 0 and xi ∈ S for each i = 1, . . . , n.
3. Dicts: Let D = {(ki,Si)}mi=1, where K = {k}ni=1 is a set of unique keys and Si ∈ S

for all i = 1, . . . ,m. Then D ∈ S.
x ∈ D if and only if x = {(ki, xi)}ni=1, where (ki, si) ∈ D and xi ∈ Si for each
i = 1, . . . , l.

HS-Trees is a union of all samples from all schema.

In Definition 2.1, Bags are used to represent multisets and sequences of arbitrary (including
empty) size. They are assumed to be permutation invariant; therefore, the position has to be
encoded through position encoding. Importantly, all items of the Bag have the same schema.
Models accepting Bags need to handle inputs of arbitrary lengths (or size) requiring some form
of aggregation which is either explicit through functions like mean, sum, and max (Muandet
et al., 2012; Zaheer et al., 2017; Pevný & Somol, 2017) or through recurrence (Hochreiter &
Schmidhuber, 1997). Dict represent Cartesian products of a fixed number of subspaces with
a fixed schema. Neural networks processing Dict typically projects individual subspaces to a
vector space and then concatenate the representations. The concatenation is impossible for
Bags because they can have arbitrary sizes. Universal approximation theorem for HS-Trees
has been proved in Pevny & Kovarik (2019).

2.1 Relation of HS-Trees to GNNs

The rest of this section emphasizes how the above definition of HS-Trees relates to computation
graphs of GNNs based on message passing (Xu et al., 2019). Let G = (V, E) be a homogeneous
graph with vertices with feature vectors {h0

vi}
|V|
i=1, h

0
vi ∈ Rd. GNNs update the representation

of graph’s ith vertex, hk
vi , in each (kth) iteration according to the formula:

hk
vi = fk

(
hk−1
vi , agg

(q
gk(hk−1

vj )|vj ∈ N (vi)
y))

, (1)

where fk and gk are feed-forward neural networks, agg is an aggregation function (e.g. mean,
max, sum), and N (vi) denote the set of neighbors of vi. The input to the update function (1)
is always an ordered pair consisting of hk−1

vi and the neighborhood
q
hk−1
vj )|vj ∈ N (vi)

y
,

which corresponds to a Dict. The reason for using Dict instead of Bag with two items is that
both children are semantically and structurally different. One represents the feature vector
of the vertex, while the other that of all its neighbors’. They also have a different schema: if
hk−1
i ∈ Hk−1 than the neighborhood

q
hk−1
vj |vj ∈ N (vi)

y
∈

q
Hk−1

y
). On the contrary, the

neighborhood corresponds to the Bag because its size differs between vertices while its items
are semantically and structurally the same, and they share the same schema. The sample
updating the hk

vi expressed as HS-Tree is therefore{
self = hk−1

vi ,neighborhood =
q
hk−1
vj |vj ∈ N (vi)

y}
. (2)

For example in Fig. 1a, inputs to function updating vertices v0, v1, . . . , v4 in the first iteration
are respectively{

self = h0
v0 , neighborhood =

q
h0
v1 , h

0
v2 , h

0
v3

y}
,

{
self = h0

v1 , neighborhood =
q
h0
v0 , h

0
v2

y}
,{

self = h0
v2 , neighborhood =

q
h0
v0 , h

0
v1

y}
,

{
self = h0

v3
, neighborhood =

q
h0
v0

y}
,{

self = h0
v4
, neighborhood =

qy}
.

Inputs in subsequent iterations are obtained accordingly. Due to the recursive nature, they
all belong to HS-Trees.

Let’s now assume heterogeneous graph G = ({Vr}l1, {Ers}
l,l
1,1), where Vr denotes the set of

vertices of rth type and Ers denotes set of edges between vertices Vr and Vs. Extensions of
GNNs to heterogeneous graphs (Schlichtkrull et al., 2018; Guan et al., 2024) update vertices
of each type Vr based on neighborhoods in all types of vertices defined by sets of edges
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(a) Homogeneous graph

0

1

2

3

4

5

(b) Heterogeneous graph with two types
of nodes distinguished by colors.

Figure 1: Illustrative examples of homogeneous and heterogeneous graph.

{Ers}ls=1. The update of a vertex vi of rth type in kth iteration can be written as

hk
vi = fk

r ( hk−1
vi

, agg
(q

gkr1(h
k−1
vj )|vj ∈ Nr1(vi)

y)
, . . . , agg

(q
gkrl(h

k−1
vj )|vj ∈ Nrl(vi)

y)
), (3)

where Nrs(vi) is a neighborhood of vertex vi of the rth type with vertices of type s defined
by edges Ers, and fk

r , gr1, . . . , grl are feed-forward neural networks.

The input to the function updating the vertex of the rth type is, therefore, an ordered tuple
(in HS-Trees represented as Dict) consisting of the representation of the vertex from the
previous iteration and l representations of the neighborhood with different types of vertices.
Representing the input as a Dict puts each neighborhood in a different space, as they are
semantically different. The computation graph again unfolds into a tree through recursion.

For example in Fig. 1b, samples updating grey vertices {v0, v2, v4} in the first iteration are{
self = h0

v0 , blue neigh. =
q
h0
v1 , h

0
v3

y
, gray neigh. =

q
h0
v2

y}
,{

self = h0
v2 , blue neigh. =

q
h0
v1

y
, gray neigh. =

q
h0
v0

y}
,{

self = h0
v4 , blue neigh. =

qy
, gray neigh. =

qy}
,

and those updating blue vertices {v1, v3, v5} are{
self = h0

v1 , blue neigh. =
q
h0
v5

y
, gray neigh. =

q
h0
v0 , h

0
v2

y}
,{

self = h0
v3 , blue neigh. =

qy
, gray neigh. =

q
h0
v0

y}
,{

self = h0
v5 , blue neigh. =

q
h0
v1

y
, gray neigh. =

qy}
.

The input to the readout function is a Dict with l items, each being a Bag containing
representations of vertices of a given type.

3 Metric on HS-Trees

This section presents the HTD on the space of HS-Trees with the same schema. The con-
struction is recursive and assumes the existence of distances on leaves, bags, and dictionaries.
These choices determine the final properties. Therefore, they are discussed first, and then
HTD is defined in Section 3.4.

3.1 Metric on Leaves

Leaves contain various elementary data types (real numbers, tensors of fixed dimensions,
categorical variables, and strings). It is assumed the distance on Leaves exists, and its
definition is outside of the scope of this work, but the most common ones are listed below.

Distances between tensors on Euclidean spaces are usually measured by distances induced by
Lp norms, of which L1 and L2 are the most popular. Categorical data are usually encoded
as one-hot vectors, and distances induced by Lp norms collapse to zero / one if two values
are equal/unequal. Strings offer two conceptually different approaches. The first, such as
the Levenshtein (Levenshtein, 1966) or Jaro-Winkler distance (Winkler, 1990), are defined
directly on the space of all strings. A popular alternative is to measure the distance in the
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Table 2: Short overview of various Bag distances, their acronyms, computational complexity,
and whether they are proper metrics.

name acronym complexity metric

Wasserstein Distance dWA O(n3) yes
Partial Wasserstein D. dPW O(n3) yes
Hausdorff Distance dHA O(n2) yes
Chamfer Distance dCH O(n2) no

Euclidean space to which the strings are projected, for example, by word2vec (Mikolov et al.,
2013), BERT (Devlin et al., 2019), or N-Grams (Hiemstra, 2009). While the latter approach
may not be proper distance on the space of strings, it better captures semantic similarity.

3.2 Metric on Dictionaries

Dicts can be viewed as a Cartesian product, which makes the product metric (Deza & Deza,
2009) a natural choice. To calibrate ranges of distances on different sub-spaces (corresponding
to different keys in the dictionary), we introduce weights wi, which are also used to reflect the
importance of individual parts. The resulting Weighted Product Metric (dWPM) is defined as
Definition 3.1 (Weighted product metric (dWPM)). Let {(Mi, di)}ni=1 be a set of arbitrary
metric spaces, then dWPM : (M1, . . . ,Mn)× (M1, . . . ,Mn) → R is defined as

dWPM

(
(x1, . . . , xn), (y1, . . . , yn)

)
=

( n∑
i=1

wi · di(xi, yi)
2
) 1

2

, (4)

where wi ∈ (0,+∞), xi, yi ∈ Mi for i ∈ 1, . . . , n, is a metric on the space M1×M2×· · ·×Mn.

The dWPM aggregates different data modalities present in the Cartesian Product structure
while satisfying the metric properties. When all spaces {Mi}ni=1 are the same, weights can
be set to {wi = 1}ni=1.

3.3 Metrics on Bags

Bags pose a unique challenge due to their varying size and the assumption of being permuta-
tion invariant. They can be seen either as sets (Nguyen et al., 2021), or multisets (Chuang
& Jegelka, 2022), where the latter is more general (Xu et al., 2019). Let’s denote Bags
bold-faced x = JxiKnx

i=1 and y = JyjK
ny

j=1 and their items normal-faced J·K are used instead of
usual {·} to emphasize that the bags can be multisets) Relating to Definition 2.1, we assume
items xi to be of schema M, xi ∈ M, and we denote we write x ∈ JMK for the bag.

A general formula for the Bag Metric is as follows:
Definition 3.2 (Bag Metric (dBM)). Let d be a distance between probability distributions
on M, α : N× N → R be a non-negative non-zero function, β ∈ R+ and dc be a distance on
N+, then dBM : M×M → R is defined as

dBM(x,y) = α(|x|, |y|) · d(x,y) + βdc(|x|, |y|), (5)
where x ∈ JMK and y ∈ JMK, is a metric between Bags with items on the space M.
Theorem 1. dBM is a multiset metric on JMK.

The theorem is the consequence of Proposition 3.9 of Bolt et al. (2022). The term βdc(n,m)
is needed for extending the distance on probability distributions to multisets.

Different settings of d, α, and β instantiates different distances of prior art. Fixing d
to a Wasserstein distance, dWA, we obtain Earth mover’s distance popular on 3D point
clouds (Nguyen et al., 2021) for α = 1 and β = 0,; Unnormalized Wasserstein distance used
in Chuang & Jegelka (2022) to define pseudometric on trees pseudometric for α(|x|, |y|) =
max(|x|, |y|) and β = 0; Earth mover’s distance with cardinality comparison (Bolt et al.,
2022) for α(|x|, |y|) = τ and β = 1− τ.

In Table 2, we present a list of distances on probability distributions used in our experiments,
along with one widely recognized pseudo-distance. The theoretical foundations and formulas
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Dict (a)

b: [Leaf]

c: [Bag]

Dict (e)

f: [Leaf]

g: [Leaf]

d: [Leaf]

(a) Schema

s1

a

cb d

e1 e2

f1 g1 f2 g2

(b) Sample 1

s2

â

ĉb̂ d̂

ê2ê1 ê3

f̂1 ĝ1 f̂2 ĝ2 f̂3 ĝ3

(c) Sample 2

dWPM dWPMdBM

f1

f2

g1

g2

f̂1 f̂2 f̂3

ĝ1 ĝ2 ĝ3

e1

e2

ê1 ê2 ê3
ĉ1

c1

b̂1

b1

d̂1

d1

â1

a1

(d) Schematics of the computation of the HTD between two samples.

Figure 2: Example of computation of the HTD between Sample 1 (b) and Sample 2 (c),
both having schema shown in Subfigure (a). The computation goes bottom up, starting
by computing pairwise distances between Leaves {f1, f2} and {f̂1, f̂2, f̂3}, and {g1, g2} and
{ĝ1, ĝ2, ĝ3}. Since they are children of a Dict e, the distance between nodes {e1, e2, ê1, ê2, ê3}
is computed using dWPM. Nodes c and ĉ are Bags; therefore, dBM is used to compute
the distance between them utilizing the previously computed distance on nodes e. The
computation is completed by computing distances between Leaves b and b̂, and d and d̂,
which are then combined together with the distance between c and ĉ using dWPM resulting
in the final distance on Sample 1 and Sample 2.

for these distances are provided in Appendix B. These distances are not the only ones
available, so we refer the reader to Mroueh et al. (2017) for an extensive overview.

3.4 Distance on HS-Tree

The above distances defined on Dicts and Bags did not make any assumptions on the set of
child items except that there exists a distance. This generality is important for the recursive
definition of distance on HS-Trees.
Definition 3.3 (HS-Tree distance (HTD)). Let H be an arbitrary fixed schema of HS-Trees
as defined in 2.1. Then the HTD distance dH on H is defined recursively:

1. Leaves: If H is a leaf, then distance dH is defined by a distance for the appropriate
data type (see Section 3.1).

2. Bags: If H = JIK is a Bag, then the distance dH is defined by a distance on (multi-
)sets (see Section 3.3) with distance on items dI being defined according to schema
I.

3. Dicts: Let H = {(ki,Si)}mi=1 be Dict. Then the distance dH is as a distance on
product of spaces (see Section 3.2), where distances dSi on sub-spaces are defined
according to schemas {Si}mi=1.

Theorem 2. Let H be an arbitrary fixed schema from HS-Trees. Then an HTD distance
exists on H.

The theorem is a consequence of the recursive definition. Formal proof is in Appendix D.

Example: The computation of HTD on samples from the Mutagenesis dataset is illustrated
in Fig. 2. The computation starts by computing all pairwise distances between Leaves (white
circles) with the same path to the root. Then, the computation progresses towards the root,
using either distance on Bags or Dicts according to the type of inner nodes.

The computational complexity and theoretical properties of HTD mainly depend on the
schema and the chosen distance function for the Bags. The universal choice is to use
metrics for multisets, but this can be computationally expensive due to the need to compare
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distributions (see Appendix B). Many times, especially when items of Bags have infinite
support (e.g., one of their leaves is real), the probability that the set is multiset can be zero,
in which case computationally cheap distances for sets (e.g., Haussdorf) are sufficient.

Let assume two samples in Fig. 2 with cb, cf , cg, and cd being complexities of distances on
leaves and |f | denoting the size of Bags (which are assumed to be of equal size.) Assuming
the complexity of distance on Bags being cubic, the complexity of distance on samples is
O(|f |2(cf + cg) + |f |3 + cb + cd). The example is worked in detail in Appendix E.

4 Related Work

Tree-edit distance (Zhang & Shasha, 1989) (TED) quantifies structural dissimilarity between
rooted trees by calculating the minimum edit operations required for transformation. TED’s
applications range from computational biology to natural language processing (Sidorov
et al., 2015). TED has been extended to heterogeoenous trees (Bille, 2005) and to HS-
Trees in Šopík & Strenáčik (2022). Tree-edit distances are non-differentiable, and their
computational complexity is cubic (Demaine et al., 2009).

A pseudo-distance for rooted homogenous trees (TMD) with fixed depth was proposed
in Chuang & Jegelka (2022) to study properties of GNNs since the computational graph of
GNNs equals to a tree (Xu et al., 2019; Errica & Niepert, 2023). The drawbacks of TMD are
that it does not allow heterogeneous inner nodes and Leaves, it is not a proper distance, and
its computational complexity is cubic. Interestingly, TMD implicitly uses product metric (4)
with weights w = 1 and L1 distance to combine distance on features of the node with that of
the neighborhood. The HS-Trees formalism makes it explicit that TMD is a special case of
HTD for homogeneous graphs, using a different product metric and fixed weights.

Tree Kernels (Culotta & Sorensen, 2004; Schölkopf et al., 2004) transforms the tree structures
into strings, which are then compared by String Kernels (Lodhi et al., 2002) similar to the
Levenshtein distance. Kernels for sets viewed as samples from probability distributions have
been proposed (Gretton et al., 2005).

Several methodologies emerged for supervised learning on rooted trees (Tai et al., 2015; Cheng
et al., 2018; Socher et al., 2011; Mandlík et al., 2022; Woof & Chen, 2020), DAGs (Thost &
Chen, 2021), and sets (Zaheer et al., 2017), but none of them is using distance. Recently,
sum-product networks have been extended to HS-Trees (Papez et al., 2024), offering a
tractable probabilistic model.

5 Experiments

The experiments are designed to show the properties of the proposed HTD. On classification
problems, we demonstrate the advantage of Differentiability, Modularity, and flexibility due
to Free Parameters. On the anomaly detection task, we again demonstrate the advantage
of flexibility. Finally, we demonstrate the advantage of the HTD for analysis of GNNs for
heterogeneous graphs as opposed to homogenization suggested in Chuang & Jegelka (2022).
We aimed to compare the methods under the same conditions and criteria. The implementa-
tion of HTD is available at https://anonymous.4open.science/r/HSTreeDistance1, and
experiments are available at https://anonymous.4open.science/r/HTDExperiments.

The experiments use eight datasets, consisting of six hierarchically structured datasets sourced
from Motl & Schulte (2015) (Mutagenesis, Hepatitis, Chess, Genes, Webkp, and Cora) and
two datasets (MUTAG and BZR) sourced from Morris et al. (2020). Some datasets were
originally graph datasets that were converted to tree-structured data. MUTAG and BZR were
transformed by reproducing methods of Chuang & Jegelka (2022). The difference between
Mutagenesis (Mut.) and MUTAG is that MUTAG is homogeneous, whereas Mutagenesis is
heterogeneous with additional features on Leaves.
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Figure 3: UMAP projection of Genes dataset using HTD with default parameters on the left
and optimized parameters on the right. The total number of adjustable parameters is 21.

Table 3: Classification experiment results. Results are reported using an accuracy score. For
datasets, MUTAG and BZR homogeneous graphs were unrolled to trees up to depth L=4.

method Mut. Hepatitis Chess Genes Webkp Cora MUTAG BZR

HMIL 87.8 92.5 41.5 98.8 82.0 85.3 91.0 88.2
kNN-TED 86.5 64.0 36.4 44.2 46.0 27.3 87.7 83.5
kNN-TMD — — — — — — 87.7 84.7
SVM-TMD — — — — — — 92.2 87.6
kNN-HTD 96.4 92.3 52.5 100 86.1 85.2 92.8 91.8
SVM-HTD 96.4 92.3 48.6 100 85.3 80.6 93.7 89.8
GP-HTD 91.9 84.3 41.2 93.6 – – 75.7 87.3

5.1 Distance-based Classification

This experiment compares the proposed HTD to tree-edit distance (TED) adapted to HS-
Tree (Šopík & Strenáčik, 2022) and to the tree pseudo-distance (TMD) (Chuang & Jegelka,
2022), which is shown only on MUTAG and BZR as it requires homogenous trees. These
distances are used with the k-Nearest Neighbor classifier, with the Support Vector Machine,
and with the Gaussian Process. The HMIL classifier (Mandlík et al., 2022) based on neural
networks is used as the baseline. All experiments were repeated five times. The best
hyperparameters were selected according to accuracy on the validation set. Implementation
and experimental details, together with a list of hyper-parameters, are provided in Appendix A.
HTD treats the type of distance on Bags as hyperparameters, but weights of dWPM distance
on Dict are learned.

The results in Table 3 show that classifiers using the proposed HTD exhibit superior
performance to other methods on almost all datasets. kNN-HTD and SVM-HTD have
frequently performed better than HMIL classifier based on neural networks, but at the
expense of higher complexity during classification due to naive implementation of the kNN
classifier.

Free parameters: The good results of HTD are likely due to its flexibility introduced
mainly by weights in the distance on Dicts (see Equation 6). This is supported by the fact
that the Tree Mover’s Distance (TMD), whose parameters were selected heuristically, is
worse on MUTAG and BZR. The effect of good parameters is shown in Fig. 3 depicting
distances between points of the Genes dataset with HTD with default parameters (all equal
to one) and optimal parameters found by Contrastive learning (see below). An example of
semi-supervised clustering is shown in Appendix F.

Differentiability: We compare three methods to optimize weights: random sampling,
contrastive learning with Triplet loss (Weinberger & Saul, 2009), and kernel learning with the
Gaussian Process. The last two methods require differentiability with respect to parameters.
The results in Table 4 may suggest no significant difference between random sampling and
contrastive learning, but contrastive learning yields better accuracy 25 times while random
sampling is better only 13 times. Surprisingly, kernel learning with Gaussian Processes seems
to be the least effective method.
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Table 4: Classification performance with different methods of learning parameters for our
HTD (dHTD). Some combinations were not evaluated due to stability issues or excessive
computational demands of the method.

b.m. methods model Mut. Hepatitis Chess Genes Webkp Cora MUTAG BZR

H
au

sd
or

ff RS kNN 91.9 86.7 49.1 100 51.3 31.7 81.1 91.8
SVM 94.6 90.0 40.1 99.8 47.6 32.6 79.3 89.3

Triplets kNN 96.4 84.7 49.1 100 52.8 32.9 84.7 90.1
SVM 94.6 83.7 39.6 100 53.0 33.5 79.3 89.7

GP GP 91.9 81.3 38.4 99.8 – – 75.7 88.9

P
ar

ti
al

W
. RS kNN 91.9 86.7 52.5 98.8 49.9 74.6 91.9 89.7

SVM 92.8 88.3 42.4 67.9 47.9 63.8 93.7 85.6
Triplets kNN 95.5 92.3 48.6 100 – – 92.8 89.2

SVM 96.4 92.3 43.0 99.4 – – 93.7 89.3
GP GP 90.1 77.3 – – – – 92.1 86.1

C
ha

m
fe

r RS kNN 91.9 90.0 52.5 97.0 72.0 84.3 83.8 89.3
SVM 90.1 90.3 43.5 86.9 82.0 80.6 84.7 89.7

Triplets kNN 94.0 86.0 46.4 100 86.1 70.1 82.0 88.6
SVM 93.0 74.3 42.4 100 85.3 80.6 86.5 89.8

GP GP 91.9 84.3 41.2 93.6 – – 75.7 87.3

Modularity: The modularity of HTD is improved by selecting distances on Leafs and Bags.
We kept those on Leafs fixed and explored three options on Bags: the Chamfer Distance,
the Hausdorff Distance, and the Partial Wasserstein Distance. According to the results in
Table 4, Partial Wasserstein performs overall the best, which is in line with theory as it
is able to discriminate multisets. However, in all cases except one (MUTAG), the same
accuracy can be achieved either by Haussdorff or Chamfer distance, which computational
complexity scales quadratically instead of cubically (see Table 2). Only the MUTAG dataset
contains categorical Leaves, which requires the recognition of multisets. Other datasets have
at least one leaf with real values so distances on sets are, therefore, sufficient.

Heterogenity: Recall that the difference between Mutagenesis and MUTAG datasets is
that the latter was homogenized as needed for the TMD distance (Chuang & Jegelka, 2022).
Using the heterogeneous version with rich information in Leaves improves the accuracy by
3% and allows using the cheap Haussdorff with quadratic complexity. A similar experiment
reported below on GNNs led to the same results.

5.2 Distance-based Anomaly detection

This section demonstrates the advantage of HTD in k-Nearest Neighbor anomaly detector,
which provides a good baseline (Škvára et al., 2021). Since the HMIL classifier cannot be used
for anomaly detection, it has been excluded from the experiments. Contrastive learning for
tuning weights is impossible due to the lack of labels, but kernel learning with GP is possible.
The experimental protocol mirrored that for the classification tasks with few modifications
needed to adapt the datasets for the specific anomaly detection task. We accomplished this
by following the leave-one-in procedure described in Škvára et al. (2021). The evaluation
metric was also changed from accuracy to the AUC, which is usual in the anomaly detection
community.

Table 5: Anomaly detection experiment result. Results are reported using the AUC score.

method Mut. Hepatitis Chess Genes Webkp Cora MUTAG BZR

kNN-TMD – – – – – – 86.1 71.3
kNN-TED 82.8 75.8 80.1 81.6 82.9 89.5 90.9 72.0
kNN-HTD 94.4 89.7 84.3 99.6 92.6 97.2 86.6 73.4
GP-HTD 90.0 78.5 84.4 96.4 – – 91.9 75.1

The average AUCs from five repetitions are presented in Table 5. The dominance of kNN-
HTD observed above is consistently replicated with few exceptions. TED works well on the
MUTAG dataset where kNN-TED performs on par with other methods. GP-HTD shows
some promises, but it is difficult to optimize without collapsing the optimization procedure.
Random sampling of weights with kNN is a faster and more reliable method.
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Table 6: Experimental results on heterogeneous and homogenized IMDB dataset.

(a) The correlation coefficient (multiplied by
100) between distances and GNNs.

homo-HTD hetero-HTD

homo-GNN 53 ± 0.2 50 ± 1.4
hetero-GNN 52 ± 0.9 58 ± 0.2

(b) The F1-score (macro) of GNN classifiers.

F1-score

homo-GNN 67.2 ± 1.6
hetero-GNN 70.9 ± 1.1
HetSANN (Hong et al., 2020) 72.0 ± N/A
MAGNN-AC (Jin et al., 2021) 60.8 ± N/A
SeHGNN (Yang et al., 2023) 67.1 ± 0.3
Simple-HGN (Lv et al., 2021) 63.5 ± 1.4

HTD - SVM 67.1 ± 0.6

5.3 Analysis of Graph Neural Networks

Tree-Movers Distance (TMD) has been introduced in Chuang & Jegelka (2022) to study the
stability of homogeneous GNNs (Hamilton et al., 2018) by showing that their output correlates
with the TMD distance, estimated as corr

(
{∥gnn(vi)− gnn(vj)∥2, d(vi, vj)}1000,1000i,j=1

)
where

gnn(v) is embedding of vertex v provided by GNN and d(vi, vj) is a distance between
computation trees of vertices vi and vj . The proposed HTD enables us to extend this
analysis to heterogenous GNNs since it adapts to their computational graph better than the
homogenization suggested in Chuang & Jegelka (2022).

We measure the correlation on IMDB dataset (Fu et al., 2020), which is a heterogeneous
graph with three types of nodes (actors, directors, movies) and four types of edges. The goal
to predict the type of the actor based on its neighborhood is solved by heterogeneous (Zhang
et al., 2019) and homogeneous GNNs. The homogeneous variant of IMDB was created by
method from PyTorch geometric (Fey & Lenssen, 2019), which corresponds to the method
recommended in Chuang & Jegelka (2022).

To demonstrate that the GNNs used for correlation analysis are well trained, Table 6b shows
an F1-score on the testing set. The table also shows scores of other prior art (Hong et al.,
2020; Jin et al., 2021; Yang et al., 2023; Lv et al., 2021) and for curiosity, an SVM classifier
with the proposed distance used in Section 5.1. The results show that heterogeneous GNNs
perform better than their homogeneous counterparts. Surprisingly, SVM with 6 parameters
for metric and 3600 of SVM multipliers performs frequently better than GNNs with orders
of magnitude more parameters.

The correlation coefficient between GNNs on heterogeneous and homogenized graphs and
HTD on heterogeneous and homogenized trees is shown in Table 6a. As expected, the
highest correlation occurs when the type of distance matches the type of computation
graph. Specifically, the heterogeneous/homogeneous tree distance correlates with heteroge-
neous/homogeneous GNNs, and the correlation decreases in the case of mismatch.

6 Conclusion

This paper introduced Hierarchically-Structured Tree Distance (HTD), measuring the distance
between samples emerging from popular data storage formats (e.g., JSON, XML, and
ProtoBuffer) and naturally representing message passes in heterogeneous GNNs. We have
demonstrated that this distance, paired with well-known distance and kernel-based algorithms,
can solve common machine learning tasks like classification, anomaly detection, visualization,
and clustering with performance frequently better than the state-of-the-art methods based
on neural networks with orders of magnitude more parameters. A good performance of HTD
is owed to its flexible differentiable parametrization, which allows it to be optimized for a
given problem by common metric-learning algorithms.

The HTD distance lays a foundation for future research of tree-structured data and the
development of new generative and self-supervised methods. We envision the use of HTD as
a reconstruction loss in variational and masked autoencoders, potentially leading to strong
pre-training methods for HS-Trees, which might be important for industry storing data in
structured formats.
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A Implementation details

This section provides details about methods used in our experiments for parameter learning.
Specifically, the parameters we learn are the weights from dWPM. We outline the specifics of
each method and how they were used in the study. Additionally, Tables 7 and 8 lists ranges
of hyperparameters. These tables serve as a reference for understanding the settings and
configurations used in our experiments. It’s important to note that all experiments were
repeated five times with different train/validation/test splits, where the validation splits
were used for selecting the best hyperparameters, including HTD’s parameters.

Random Sampling The most naive but powerful method to set weights is random
sampling (RS). Weights are sampled from a predefined distribution, and the best model
(kNN and SVM) is selected according to the accuracy on the validation split. RS is inexpensive
to compute for a single realization of weights as it requires no gradients. However, to find
optimal parameters, hundreds or thousands of combinations (depending on the dataset)
must be evaluated. For our study, we evaluated 500 random realizations of weights for each
dataset.

Contrastive Learning The second approach used contrastive learning, which uses labels
and needs the distance function to be differentiable. We use the usual triplet loss (Weinberger
& Saul, 2009), Ltr, as

Ltr = max(d(xa, xp)− d(xa, xn) + 1, 0) + β · ∥θ − γ∥2,
where xa, xp, xn are the anchor, positive, and negative samples, respectively, and theta
represents the parameters of the metric d.

The process of sampling triplets xa, xp, xn for minibatches is often more important than
selecting appropriate values for β and γ. To address this, we explored three different
strategies: Random, Batch Hard, and Alternating.

1. Random: This method selects an anchor randomly, and then, depending on its
label, positive and negative samples are again sampled randomly.

2. Batch Hard: first samples a subset (batch) of samples and computes the pairwise
distance using the distance function d with the current θ. Then, it randomly samples
the anchor and creates the most difficult triplet by sampling the most distant
positive sample and the closest negative samples. This method encourages the
distance function d to distinguish the most challenging observations. However, it
may fail in the presence of multiple clusters and outliers.

3. Alternating: alternates between the Random and Batch Hard methods.

Kernel Learning with Gaussian Process Since HTD is a proper metric, it can be
readily used in a kernel function applicable within Support Vector Machines (SVMs) or
Gaussian processes. Optimization of kernel’s parameters for SVM is difficult to optimize,
but it is simpler in Gaussian Processes.

Gaussian Process acts as a probability distribution over training dataset x = {x1, . . . , xn}

GP (x) = N
(
m(x),K(x,x)

)
,

where m(x) is mean function and K(x,x) is covariance (kernel) matrix

K(x,x) =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn),


with respect to kernel function k, which we define as k(x, y) = exp(−d(x, y)).

This means that when maximizing the likelihood of a Gaussian process, we can compute
gradients not only with respect to the covariance matrix K or the kernel function k but
also with respect to the parameters of the distance function d. This enables us to use this
approach to learn the parameters of d.
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Table 7: General hyperparameters for HTD.

hyperparameter value set

General Numeric Leaf metric L2-norm
Categorical Leaf metric L2-norm/

√
2

Dict metric dWPM

Bag metric dCH, dPW, dWA, dHA

Random dWPM weight distribution 0.35 · U(0, 100) + 0.65 · exp(9)
Sampling number of repetitions 500

Contrastive triple selection {Random, Batch Hard, Alternating}
Learning optimiser Adam

learning rate {1.0, 0.1, 0.01, 0.001}
β {0, 0.1, 0.001, 0.001,−0.001}
γ {0, 1}

Kernel kernels {Laplacian, Gaussian, Matérn32}
Learning optimiser {Adam, L-BFGS}

learning rate (for Adam) {1.0, 0.1, 0.01, 0.001}

Table 8: Hyperparameters and their ranges of HMIL, kNN, SVM and GP classifiers.

model parameter value set

General (CLF) split ratios 60%/20%/20% (train/valid/test)
(AD) split ratios 60%/20%/20% of normal data

0%/50%/50% of anomalies

HMIL maximum epochs {1000}
classifier number of neurons {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

aggregation function {mean,max,mean + max}
activation function {identity, relu}
batch size {16, 32, 64}
learning rate {0.001, 0.0005, 0.0001}
early stopping criterion validation accuracy
early stopping patience {30}

kNN number of neighbors {1, . . . , 150}

SVM γ−1 {0.1, 0.2, 0.3, . . . , 20.0}
kernels {Laplacian} exp(−γ · d(x, y))

B Distances for Probability Distributions

In this section, we list distances on probability distributions and sets and discuss their
theoretical properties, computational complexity, and underlying assumptions.

Wasserstein Distance: Let (M, d) be complete and separable metric space, then for
p ∈ [0,+∞] the p-Wasserstein distance between probability measures PX and PY on M with
finite p-moments is defined as

dWA(PX , PY ) = inf
γ∈Π(PX ,PY )

(
E(X,Y )∼γ [d(X,Y )p]

)1/p
, (6)

where Π(PX , PY ) is set of all joint probability distributions γ on M×M, whose marginals
are PX and PY .

The Wasserstein distance (Panaretos & Zemel, 2019) is a popular distance between two
probability distributions defined on the same metric space. It is applied to Bags by treating
them as two empirical distributions. The distance is popular in image processing, natural
language processing (NLP), and point cloud generation, where it is called Earth Mover’s
Distance (dEMD) (Andoni et al., 2008) or Mallows distance (Levina & Bickel, 2001). The
computational complexity of Wasserstein distance between two Bags x and y is cubic when
|x| = |y|.
Partial Wasserstein Distance: Let x = JxiKnx

i=1 and y = JyjK
ny

j=1 be two multisets
and dWA is Wasserstein Distance. W.L.O.G. assume that nx > ny, n0 = nx − ny, then
the Partial Wasserstein Distance between is defined as dPW(x,y) = dWA(x,y ∪ JϕKn0

k=1),
where ϕ is a special "null element" whose distance to other elements is maximum, i.e.,
d(ϕ, x) > d(y, x),∀x, y ∈ M.
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{ "logp": 4.23 ,

"inda": 0 ,

"atoms": [

{ "atom type": 22 ,

"bonds": [

{ "element": "c" , "charge": 0.2 } ,

{ "element": "h" , "charge": 0.1 }

] } , { "atom type": 7 ,

"bonds": [...]

} ] }

(a) Example of JSON file.

Dict

logp: [Leaf - Number]

inda: [Leaf - Number]

atoms: Bag

Dict

bonds: Bag

Dict

element: [Leaf - String]

charge: [Leaf - Number]

atom type: [Leaf - Number]

(b) Mutagenesis dataset scheme.

Figure 4: An example of a JSON file and the scheme of the (simplified) Mutagenesis
dataset (Cheplygina & Tax, 2015). The term Leaf represents nodes with elementary data
types, while Bag and Dict is equal to Array and Object, respectively.

Partial Wasserstein Distance is tailored to multisets (Chapel et al., 2020; Chuang & Jegelka,
2022) because the Wasserstein distance cannot differentiate between two multisets containing
identical elements with different cardinalities, for example, x = J1, 2, 1, 2K and y = J1, 2K.
This problem is pertinent to all metrics designed for probability distributions and sets (which,
by definition, removes the duplicates). The Partial Wasserstein Distance solves the problem
by extending the space M where elements of the Bag live with a special null element, ϕ.
When computing a distance, a null element is used to equalize the cardinality. In the above
example, this would correspond to transforming y into y′ = J1, 2, ϕ, ϕK.

dPW with α(n,m) = max(n,m) and β = 0 in Equation (5) is used in (Chuang & Jegelka,
2022) to define pseudo-distance on homogeneous trees with fixed depth, used to analyze
graph neural networks with sum aggregation function. dPW is used in this paper exclusively
with this setting.

Hausdorff Distance: Let x = JxiKnx
i=1 and y = JyjK

ny

j=1 be two sets of points in some metric
space (M, d), the Hausdorff distance (Huttenlocher et al., 1993) is computed as

dHA(x,y) = max
{
max

i
min
j

d(xi, yj),max
j

min
i
(xi, yj)

}
. (7)

Hausdorff distance measures the similarity between two sets of points in a metric space. It is
used in image analysis, shape recognition, and pattern matching. The naive implementation
has quadratic complexity, but efficient algorithms (Taha & Hanbury, 2015) with linear
complexity in expectation exist.

Chamfer (pseudo-) Distance: Let x = JxiKnx
i=1 and y = JyjK

ny

j=1 be two sets of points
in some metric space (M, d), then Chamfer pseudo-distance (Huttenlocher et al., 1993) is
computed as

dCH(x,y) =
1

|x|
∑
i

min
j

d(xi, yj) +
1

|y|
∑
j

min
i

d(xi, yj). (8)

Chamfer pseudo-distance (Borgefors, 1988) (violates triangular inequality) also measures
similarity between two sets of points as the minimum cumulative distance needed to transform
one point set into another. Its computational complexity is quadratic, which makes it a more
popular option than expensive Wasserstein distance.

C Relation of HS-Trees and JSONs

This section uses the JSON format as a prototypical example of hierarchical formats. Data
in JSON format are stored by combining elementary data types: Strings, Numbers, Booleans,
and Null with two composite data types: Objects and Arrays.
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The elementary data types corresponds to Leaf in HS-Trees, as they do not have children.
Distances for these data types exist and are discussed in Section 3.1.

Object is a key-value dictionary in which the key is restricted to String, and values can be
any JSON data type. Keys must be unique and serve as a semantic data identifier in the
corresponding value field. Object therefore corresponds to Dict in HS-Trees.

Array is a sequence of elements of any JSON data type with arbitrary length. In general,
items of the array do not have to be of the same data type (schema in the terminology of this
paper), but we impose this restriction as it is very common in the industry. This work also
assumes the data in arrays to be unordered, which can be restored using position encoding.
With that, Arrays maps to Bag in HS-Trees.

For example, in Fig. 4a, the value corresponding to the key bonds is a Bag. Values in this
bag are Dicts. The first dictionary in this array contains key-value pairs "element": "c",
and "charge":0.2. The values corresponding to these keys: "c" and "0.2" are Leaves, as
they are elementary types.

D Proof of Theorem 2

Theorem 2. Let H be an arbitrarily fixed schema of HS-Trees. Then, an HTD distance
exists in H.

Proof. Due to the recursive construction of the set of all schemas, the proof is carried by
induction.

Let H be a schema with depth 0, which means that all samples x ∈ H are trees with depth 0,
i.e. they are Leaves. Then H is an elementary data type, and the distance can be computed
by an appropriate choice listed in Section 3.1.

Carrying the induction, we now assume to be able to define distance for all schemas of depth
l− 1, and we want to define distance on samples of schema H with depth l, where l > 0. Let
x, y ∈ H, then the top-node of x and y is either of type Bag or Dict.

Let’s first assume roots to be Bags and denote {xi}ni=1 and {yj}mj=1 items (childs) of x and
y respectively. By definition of HS-Trees and their schema 2.1, all items xi and yi have the
same schema I with a depth l − 1, and by induction assumption, there exists a distance
dI. The existence of dI is sufficient to define a distance between (multi)-sets as discussed in
Section 3.3.

Alternatively, roots are Dict. Then x = {(ki, xi)}ni=1 and y = {(ki, yi)}ni=1, where {ki}ni=1 are
unique keys and xi, yi are corresponding values with the schema Si of length at most l − 1.
By induction principle, there exist distances dSi on Si, which are the sufficient condition
to define distance between x, y using for example the weighted product metric discussed in
Section 3.2.

E Example of computing the complexity

Let’s demonstrate the complexity of the distance between two samples in Fig. 2. For simplicity,
we assume that Bags (labeled c) have the same length. The computation starts by computing
distances between Leaf nodes f and g. Although L2 metric has linear complexity with respect
to its dimension, denoted by cf and cg, the Bag distances requires to compute all pairwise
distances and therefore the complexity with respect to their number, i.e. O(|f |2(cf + cg)),
where |f | represents the number of Leaves with label f. The complexity of the dWPM for
e is the sum of complexities of leaves, which was already included. The complexity of
computing distance on Bags of node with label c is either cubic, which makes the complexity
O(|f |2(cf + cg) + |f |3), or quadratic which yields complexity O(|f |2(cf + cg + 1)). To finish
the computation of distance, we need to compute the distance of Leaves b and d and add
it to the distance c. The final complexity is therefore O(|f |2(cf + cg) + |f |3 + cb + cd) or
O(|f |2(cf + cg + 1) + cb + cd).
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(a) Dendrogram

(b) Pairwise Distance Matrix

(c) UMAP projection

Figure 5: Visualization of hierarchical clustering results on the Genes dataset using (a)
Dendrogram, which represents the clustering structure based on pairwise distances, (b)
Pairwise Distance Matrix heatmap, and (c) UMAP projection colored by labels. The distance
matrix is computed using HTD and ordered to match the branches of the dendrogram.

F Semi-Supervised Clustering

In this experiment, we demonstrate that HTD can also be effectively used for clustering. We
opted for a semi-supervised clustering approach because, as shown in Section 5, learning
optimal parameters allows HTD to better fit the dataset. Initially, a randomly selected 20
percent of the labeled data was used to learn the parameters through contrastive learning,
after which the pairwise distance matrix (PDM) for the entire dataset was computed. Many
clustering algorithms can then be applied directly once the PDM is available. Figure 5a
shows the dendrogram produced by hierarchical clustering on the Genes dataset. The results
indicate two large clusters along with several smaller ones, consistent with the UMAP
projection of this dataset shown in Figure 5c and computed using the same PDM.
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