
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Differentiable Distance Between
Hierarchically-Structured Data

Anonymous authors
Paper under double-blind review

Abstract

Many machine learning algorithms solving various problems are available for
metric spaces. While there are plenty of distances for vector spaces, much
less exists for structured data (rooted heterogeneous trees) stored in popular
formats like JSON, XML, ProtoBuffer, MessagePack, etc. This paper
introduces the Hierarchically-structured Tree Distance (HTD) designed
especially for these data. The HTD distance is modular with differentiable
parameters weighting the importance of different sub-spaces. This allows
the distance to be tailored to a given dataset and task, such as classification,
clustering, and anomaly detection. The extensive experimental comparison
shows that distance-based algorithms with the proposed HTD distance
are competitive to state-of-the-art methods based on neural networks with
orders of magnitude more parameters. Furthermore, we show that HTD is
more suited to analyze heterogeneous Graph Neural Networks than Tree
Mover’s Distance.

1 Introduction

Most machine learning tasks can be approached by algorithms relying on the existence of
distance. These tasks include classification (Fix & Hodges, 1951), anomaly detection (Breunig
et al., 2000; Knorr et al., 2000), clustering (Rdusseeun & Kaufman, 1987; Sibson, 1973)),
dimensionality reduction for visualization (McInnes et al., 2018), indexing methods for
fast retrieval (Zezula et al., 2006), explanation (Chen et al., 2019; Guidotti, 2022), and
density estimation (Williams & Rasmussen, 2006). A suitable distance on a dataset of
interest therefore makes all this vast prior art readily available for solving downstream tasks.
Distance is also essential for studying theoretical properties of algorithms (Chuang & Jegelka,
2022).

While for Euclidean spaces distances are well known, it is much harder to define them on
objects with variable dimensional objects such as trees or graphs. A particularly important
but neglected type of objects are those stored in structured data formats such as JSON,
XML, or Protobuffer. These formats are popular among engineers since they allow them to
logically organize data with increasing levels of detail, which is natural for humans. Moreover,
the contemporary internet experience relies on exchanging messages stored in these data
formats.

Data stored in structured data formats, further called HS-Trees are rooted trees of fixed
depth, where a large number of nodes have different semantics and structure and where
some nodes can have a fixed number of edges (and child). These properties were exploited in
some supervised learning methods (Socher et al., 2011; Shuai et al., 2016; Tai et al., 2015;
Cheng et al., 2018; Woof & Chen, 2020) offering properties not available for general graphs,
such as theoretical guarantees due to an extension of approximation theorem (Pevny &
Kovarik, 2019), and low computational complexity, as single pass from leaves to root (Mandlík
et al., 2022) is sufficient. Furthermore as shown in Chuang & Jegelka (2022) for graph
neural networks (GNN) based on message passing process samples from HS-Trees when the
computation graph is unrolled.

Despite the practical importance and ubiquity of HS-Trees, there is very little prior art
about distance on HS-Trees. In Šopík & Strenáčik (2022) (further called TED) tree-edit

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Properties of distance functions on attributed trees.

Differentiable Heterogeneous Metric Free Parameters Modular

Tree Mover’s Distance (TMD) ✓ ✗ ✗ ✓ ✗
Tree Edit Distance (TED) ✗ ✓ ✓ ✗ ✗
Hierarchically-structured Tree D. (HTD) ✓ ✓ ✓ ✓ ✓

distance is extended to HS-Trees. TED distance is parametrized by costs, but they are
non-differentiable, which complicates their optimization (metric learning) by efficient first-
order methods. Tree Mover’s Distance (TMD) (Chuang & Jegelka, 2022), proposed for
rooted homogeneous trees to study the generalization properties of GNNs, does not support
heterogeneous data. To address these shortcomings, this paper proposes HTD distance,
which exploits the recursive nature of the data format, allowing modular construction
by combining potentially different metrics on different levels of the tree. HTD distance is
parametrized by weights, which control importance on different parts. The distance is
differentiable, so it can be seamlessly incorporated into many modern algorithms, especially
in those optimizing the metric for the given problem (metric learning). The computation
complexity depends on the construction, specifically on the used distance on multisets. The
most general setting with Wasserstein distance has cubic complexity, but for many practical
problems, it is sufficient to use Haussdorf distance or Chamfer pseudo-distance with quadratic
complexity.

The performance of HTD distance is experimentally evaluated on i) supervised learning,
ii) anomaly detection, iii) analysis of heterogenous GNNs, (iv) clustering (presented in the
appendix due to lack of space), and (v) inside UMAP for visualization. The experimental
results show that distance-based algorithms with the proposed distance are competitive (and
frequently better) to state-of-the-art methods based on neural networks (Pevny & Kovarik,
2019; Mandlík et al., 2022) while having a few orders of magnitude fewer parameters. We
also show that the HTD better correlates with the performance of GNNs for heterogeneous
graphs than Tree Mover’s Distance with the homogenization (Chuang & Jegelka, 2022).

The paper is organized as follows. The next section formally defines HS-Trees and their
relation to GNNs for heterogeneous graphs. Section 3 defines the HTD distance and discusses
the impact of choices on its generality (theoretical guarantees) and computation complexity.
Section 4 reviews the related work. Experimental comparison on classification, anomaly
detection, analysis of GNNs, and application to visualization is shown in Section 5. The last
section summarizes the paper.

2 Background

This section first defines schema, which is an important concept in the definition of HS-Trees,
and then shows their relation to the computation graph of GNNs. The relation of HS-Trees
to data stored in structured formats, like JSON, is left to the Appendix C.

The HTD distance is defined for samples with the same schema. Schema corresponds to "data
type" in programming languages, message type in protocol buffers, schema in JSON (Pezoa
et al., 2016), and document type definition in XML files (Farrell & Lausen, 2007). Schema
defines the set of possible values, their semantics, and the structure of the data (type of
nodes and their branching). To prevent confusion, schemas are always denoted by blackboard
letters. x ∈ S denotes that sample x is from the schema S, but one may also say that sample
x has schema S.

The definition requires the introduction of elementary data types, which are simple data
types like numbers, tensors of fixed dimension, categorical variables, and strings. A second
key part of the schema is multiset, denoted as J·K, which corresponds in structured formats to
unordered arrays with possibly repeated elements. The third key component is the dictionary
(hashmap), which introduces heterogeneity into the data. Formal definition follows.
Definition 2.1 (Schema). The set of all schemas S, and the element of relation ‘∈’ is
defined recursively as follows:

1. Leaves: Let L be an elementary data type. Then L ∈ S.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

It holds x ∈ L if and only if x is of data type L.
2. Bags: Let A = JSK where S ∈ S. Then A ∈ S.

x ∈ A if and only if x = Jx1, . . . , xnK, where n ≥ 0 and xi ∈ S for each i = 1, . . . , n.
3. Dicts: Let D = {(ki,Si)}mi=1, where K = {k}ni=1 is a set of unique keys and Si ∈ S

for all i = 1, . . . ,m. Then D ∈ S.
x ∈ D if and only if x = {(ki, xi)}ni=1, where (ki, si) ∈ D and xi ∈ Si for each
i = 1, . . . , l.

HS-Trees is a union of all samples from all schema.

In Definition 2.1, Bags are used to represent multisets and sequences of arbitrary (including
empty) size. They are assumed to be permutation invariant; therefore, the position has to be
encoded through position encoding. Importantly, all items of the Bag have the same schema.
Models accepting Bags need to handle inputs of arbitrary lengths (or size) requiring some form
of aggregation which is either explicit through functions like mean, sum, and max (Muandet
et al., 2012; Zaheer et al., 2017; Pevný & Somol, 2017) or through recurrence (Hochreiter &
Schmidhuber, 1997). Dict represent Cartesian products of a fixed number of subspaces with
a fixed schema. Neural networks processing Dict typically projects individual subspaces to a
vector space and then concatenate the representations. The concatenation is impossible for
Bags because they can have arbitrary sizes. Universal approximation theorem for HS-Trees
has been proved in Pevny & Kovarik (2019).

2.1 Relation of HS-Trees to GNNs

The rest of this section emphasizes how the above definition of HS-Trees relates to computation
graphs of GNNs based on message passing (Xu et al., 2019). Let G = (V, E) be a homogeneous
graph with vertices with feature vectors {h0

vi}
|V|
i=1, h

0
vi ∈ Rd. GNNs update the representation

of graph’s ith vertex, hk
vi , in each (kth) iteration according to the formula:

hk
vi = fk

(
hk−1
vi , agg

(q
gk(hk−1

vj)|vj ∈ N (vi)
y))

, (1)

where fk and gk are feed-forward neural networks, agg is an aggregation function (e.g. mean,
max, sum), and N (vi) denote the set of neighbors of vi. The input to the update function (1)
is always an ordered pair consisting of hk−1

vi and the neighborhood
q
hk−1
vj)|vj ∈ N (vi)

y
,

which corresponds to a Dict. The reason for using Dict instead of Bag with two items is that
both children are semantically and structurally different. One represents the feature vector
of the vertex, while the other that of all its neighbors’. They also have a different schema: if
hk−1
i ∈ Hk−1 than the neighborhood

q
hk−1
vj |vj ∈ N (vi)

y
∈

q
Hk−1

y
). On the contrary, the

neighborhood corresponds to the Bag because its size differs between vertices while its items
are semantically and structurally the same, and they share the same schema. The sample
updating the hk

vi expressed as HS-Tree is therefore{
self = hk−1

vi ,neighborhood =
q
hk−1
vj |vj ∈ N (vi)

y}
. (2)

For example in Fig. 1a, inputs to function updating vertices v0, v1, . . . , v4 in the first iteration
are respectively{

self = h0
v0 , neighborhood =

q
h0
v1 , h

0
v2 , h

0
v3

y}
,

{
self = h0

v1 , neighborhood =
q
h0
v0 , h

0
v2

y}
,{

self = h0
v2 , neighborhood =

q
h0
v0 , h

0
v1

y}
,

{
self = h0

v3
, neighborhood =

q
h0
v0

y}
,{

self = h0
v4
, neighborhood =

qy}
.

Inputs in subsequent iterations are obtained accordingly. Due to the recursive nature, they
all belong to HS-Trees.

Let’s now assume heterogeneous graph G = ({Vr}l1, {Ers}
l,l
1,1), where Vr denotes the set of

vertices of rth type and Ers denotes set of edges between vertices Vr and Vs. Extensions of
GNNs to heterogeneous graphs (Schlichtkrull et al., 2018; Guan et al., 2024) update vertices
of each type Vr based on neighborhoods in all types of vertices defined by sets of edges

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0

1

2

3

4

(a) Homogeneous graph

0

1

2

3

4

5

(b) Heterogeneous graph with two types
of nodes distinguished by colors.

Figure 1: Illustrative examples of homogeneous and heterogeneous graph.

{Ers}ls=1. The update of a vertex vi of rth type in kth iteration can be written as

hk
vi = fk

r (hk−1
vi

, agg
(q

gkr1(h
k−1
vj)|vj ∈ Nr1(vi)

y)
, . . . , agg

(q
gkrl(h

k−1
vj)|vj ∈ Nrl(vi)

y)
), (3)

where Nrs(vi) is a neighborhood of vertex vi of the rth type with vertices of type s defined
by edges Ers, and fk

r , gr1, . . . , grl are feed-forward neural networks.

The input to the function updating the vertex of the rth type is, therefore, an ordered tuple
(in HS-Trees represented as Dict) consisting of the representation of the vertex from the
previous iteration and l representations of the neighborhood with different types of vertices.
Representing the input as a Dict puts each neighborhood in a different space, as they are
semantically different. The computation graph again unfolds into a tree through recursion.

For example in Fig. 1b, samples updating grey vertices {v0, v2, v4} in the first iteration are{
self = h0

v0 , blue neigh. =
q
h0
v1 , h

0
v3

y
, gray neigh. =

q
h0
v2

y}
,{

self = h0
v2 , blue neigh. =

q
h0
v1

y
, gray neigh. =

q
h0
v0

y}
,{

self = h0
v4 , blue neigh. =

qy
, gray neigh. =

qy}
,

and those updating blue vertices {v1, v3, v5} are{
self = h0

v1 , blue neigh. =
q
h0
v5

y
, gray neigh. =

q
h0
v0 , h

0
v2

y}
,{

self = h0
v3 , blue neigh. =

qy
, gray neigh. =

q
h0
v0

y}
,{

self = h0
v5 , blue neigh. =

q
h0
v1

y
, gray neigh. =

qy}
.

The input to the readout function is a Dict with l items, each being a Bag containing
representations of vertices of a given type.

3 Metric on HS-Trees

This section presents the HTD on the space of HS-Trees with the same schema. The con-
struction is recursive and assumes the existence of distances on leaves, bags, and dictionaries.
These choices determine the final properties. Therefore, they are discussed first, and then
HTD is defined in Section 3.4.

3.1 Metric on Leaves

Leaves contain various elementary data types (real numbers, tensors of fixed dimensions,
categorical variables, and strings). It is assumed the distance on Leaves exists, and its
definition is outside of the scope of this work, but the most common ones are listed below.

Distances between tensors on Euclidean spaces are usually measured by distances induced by
Lp norms, of which L1 and L2 are the most popular. Categorical data are usually encoded
as one-hot vectors, and distances induced by Lp norms collapse to zero / one if two values
are equal/unequal. Strings offer two conceptually different approaches. The first, such as
the Levenshtein (Levenshtein, 1966) or Jaro-Winkler distance (Winkler, 1990), are defined
directly on the space of all strings. A popular alternative is to measure the distance in the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 2: Short overview of various Bag distances, their acronyms, computational complexity,
and whether they are proper metrics.

name acronym complexity metric

Wasserstein Distance dWA O(n3) yes
Partial Wasserstein D. dPW O(n3) yes
Hausdorff Distance dHA O(n2) yes
Chamfer Distance dCH O(n2) no

Euclidean space to which the strings are projected, for example, by word2vec (Mikolov et al.,
2013), BERT (Devlin et al., 2019), or N-Grams (Hiemstra, 2009). While the latter approach
may not be proper distance on the space of strings, it better captures semantic similarity.

3.2 Metric on Dictionaries

Dicts can be viewed as a Cartesian product, which makes the product metric (Deza & Deza,
2009) a natural choice. To calibrate ranges of distances on different sub-spaces (corresponding
to different keys in the dictionary), we introduce weights wi, which are also used to reflect the
importance of individual parts. The resulting Weighted Product Metric (dWPM) is defined as
Definition 3.1 (Weighted product metric (dWPM)). Let {(Mi, di)}ni=1 be a set of arbitrary
metric spaces, then dWPM : (M1, . . . ,Mn)× (M1, . . . ,Mn) → R is defined as

dWPM

(
(x1, . . . , xn), (y1, . . . , yn)

)
=

(n∑
i=1

wi · di(xi, yi)
2
) 1

2

, (4)

where wi ∈ (0,+∞), xi, yi ∈ Mi for i ∈ 1, . . . , n, is a metric on the space M1×M2×· · ·×Mn.

The dWPM aggregates different data modalities present in the Cartesian Product structure
while satisfying the metric properties. When all spaces {Mi}ni=1 are the same, weights can
be set to {wi = 1}ni=1.

3.3 Metrics on Bags

Bags pose a unique challenge due to their varying size and the assumption of being permuta-
tion invariant. They can be seen either as sets (Nguyen et al., 2021), or multisets (Chuang
& Jegelka, 2022), where the latter is more general (Xu et al., 2019). Let’s denote Bags
bold-faced x = JxiKnx

i=1 and y = JyjK
ny

j=1 and their items normal-faced J·K are used instead of
usual {·} to emphasize that the bags can be multisets) Relating to Definition 2.1, we assume
items xi to be of schema M, xi ∈ M, and we denote we write x ∈ JMK for the bag.

A general formula for the Bag Metric is as follows:
Definition 3.2 (Bag Metric (dBM)). Let d be a distance between probability distributions
on M, α : N× N → R be a non-negative non-zero function, β ∈ R+ and dc be a distance on
N+, then dBM : M×M → R is defined as

dBM(x,y) = α(|x|, |y|) · d(x,y) + βdc(|x|, |y|), (5)
where x ∈ JMK and y ∈ JMK, is a metric between Bags with items on the space M.
Theorem 1. dBM is a multiset metric on JMK.

The theorem is the consequence of Proposition 3.9 of Bolt et al. (2022). The term βdc(n,m)
is needed for extending the distance on probability distributions to multisets.

Different settings of d, α, and β instantiates different distances of prior art. Fixing d
to a Wasserstein distance, dWA, we obtain Earth mover’s distance popular on 3D point
clouds (Nguyen et al., 2021) for α = 1 and β = 0,; Unnormalized Wasserstein distance used
in Chuang & Jegelka (2022) to define pseudometric on trees pseudometric for α(|x|, |y|) =
max(|x|, |y|) and β = 0; Earth mover’s distance with cardinality comparison (Bolt et al.,
2022) for α(|x|, |y|) = τ and β = 1− τ.

In Table 2, we present a list of distances on probability distributions used in our experiments,
along with one widely recognized pseudo-distance. The theoretical foundations and formulas

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Dict (a)

b: [Leaf]

c: [Bag]

Dict (e)

f: [Leaf]

g: [Leaf]

d: [Leaf]

(a) Schema

s1

a

cb d

e1 e2

f1 g1 f2 g2

(b) Sample 1

s2

â

ĉb̂ d̂

ê2ê1 ê3

f̂1 ĝ1 f̂2 ĝ2 f̂3 ĝ3

(c) Sample 2

dWPM dWPMdBM

f1

f2

g1

g2

f̂1 f̂2 f̂3

ĝ1 ĝ2 ĝ3

e1

e2

ê1 ê2 ê3
ĉ1

c1

b̂1

b1

d̂1

d1

â1

a1

(d) Schematics of the computation of the HTD between two samples.

Figure 2: Example of computation of the HTD between Sample 1 (b) and Sample 2 (c),
both having schema shown in Subfigure (a). The computation goes bottom up, starting
by computing pairwise distances between Leaves {f1, f2} and {f̂1, f̂2, f̂3}, and {g1, g2} and
{ĝ1, ĝ2, ĝ3}. Since they are children of a Dict e, the distance between nodes {e1, e2, ê1, ê2, ê3}
is computed using dWPM. Nodes c and ĉ are Bags; therefore, dBM is used to compute
the distance between them utilizing the previously computed distance on nodes e. The
computation is completed by computing distances between Leaves b and b̂, and d and d̂,
which are then combined together with the distance between c and ĉ using dWPM resulting
in the final distance on Sample 1 and Sample 2.

for these distances are provided in Appendix B. These distances are not the only ones
available, so we refer the reader to Mroueh et al. (2017) for an extensive overview.

3.4 Distance on HS-Tree

The above distances defined on Dicts and Bags did not make any assumptions on the set of
child items except that there exists a distance. This generality is important for the recursive
definition of distance on HS-Trees.
Definition 3.3 (HS-Tree distance (HTD)). Let H be an arbitrary fixed schema of HS-Trees
as defined in 2.1. Then the HTD distance dH on H is defined recursively:

1. Leaves: If H is a leaf, then distance dH is defined by a distance for the appropriate
data type (see Section 3.1).

2. Bags: If H = JIK is a Bag, then the distance dH is defined by a distance on (multi-
)sets (see Section 3.3) with distance on items dI being defined according to schema
I.

3. Dicts: Let H = {(ki,Si)}mi=1 be Dict. Then the distance dH is as a distance on
product of spaces (see Section 3.2), where distances dSi on sub-spaces are defined
according to schemas {Si}mi=1.

Theorem 2. Let H be an arbitrary fixed schema from HS-Trees. Then an HTD distance
exists on H.

The theorem is a consequence of the recursive definition. Formal proof is in Appendix D.

Example: The computation of HTD on samples from the Mutagenesis dataset is illustrated
in Fig. 2. The computation starts by computing all pairwise distances between Leaves (white
circles) with the same path to the root. Then, the computation progresses towards the root,
using either distance on Bags or Dicts according to the type of inner nodes.

The computational complexity and theoretical properties of HTD mainly depend on the
schema and the chosen distance function for the Bags. The universal choice is to use
metrics for multisets, but this can be computationally expensive due to the need to compare

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

distributions (see Appendix B). Many times, especially when items of Bags have infinite
support (e.g., one of their leaves is real), the probability that the set is multiset can be zero,
in which case computationally cheap distances for sets (e.g., Haussdorf) are sufficient.

Let assume two samples in Fig. 2 with cb, cf , cg, and cd being complexities of distances on
leaves and |f | denoting the size of Bags (which are assumed to be of equal size.) Assuming
the complexity of distance on Bags being cubic, the complexity of distance on samples is
O(|f |2(cf + cg) + |f |3 + cb + cd). The example is worked in detail in Appendix E.

4 Related Work

Tree-edit distance (Zhang & Shasha, 1989) (TED) quantifies structural dissimilarity between
rooted trees by calculating the minimum edit operations required for transformation. TED’s
applications range from computational biology to natural language processing (Sidorov
et al., 2015). TED has been extended to heterogeoenous trees (Bille, 2005) and to HS-
Trees in Šopík & Strenáčik (2022). Tree-edit distances are non-differentiable, and their
computational complexity is cubic (Demaine et al., 2009).

A pseudo-distance for rooted homogenous trees (TMD) with fixed depth was proposed
in Chuang & Jegelka (2022) to study properties of GNNs since the computational graph of
GNNs equals to a tree (Xu et al., 2019; Errica & Niepert, 2023). The drawbacks of TMD are
that it does not allow heterogeneous inner nodes and Leaves, it is not a proper distance, and
its computational complexity is cubic. Interestingly, TMD implicitly uses product metric (4)
with weights w = 1 and L1 distance to combine distance on features of the node with that of
the neighborhood. The HS-Trees formalism makes it explicit that TMD is a special case of
HTD for homogeneous graphs, using a different product metric and fixed weights.

Tree Kernels (Culotta & Sorensen, 2004; Schölkopf et al., 2004) transforms the tree structures
into strings, which are then compared by String Kernels (Lodhi et al., 2002) similar to the
Levenshtein distance. Kernels for sets viewed as samples from probability distributions have
been proposed (Gretton et al., 2005).

Several methodologies emerged for supervised learning on rooted trees (Tai et al., 2015; Cheng
et al., 2018; Socher et al., 2011; Mandlík et al., 2022; Woof & Chen, 2020), DAGs (Thost &
Chen, 2021), and sets (Zaheer et al., 2017), but none of them is using distance. Recently,
sum-product networks have been extended to HS-Trees (Papez et al., 2024), offering a
tractable probabilistic model.

5 Experiments

The experiments are designed to show the properties of the proposed HTD. On classification
problems, we demonstrate the advantage of Differentiability, Modularity, and flexibility due
to Free Parameters. On the anomaly detection task, we again demonstrate the advantage
of flexibility. Finally, we demonstrate the advantage of the HTD for analysis of GNNs for
heterogeneous graphs as opposed to homogenization suggested in Chuang & Jegelka (2022).
We aimed to compare the methods under the same conditions and criteria. The implementa-
tion of HTD is available at https://anonymous.4open.science/r/HSTreeDistance1, and
experiments are available at https://anonymous.4open.science/r/HTDExperiments.

The experiments use eight datasets, consisting of six hierarchically structured datasets sourced
from Motl & Schulte (2015) (Mutagenesis, Hepatitis, Chess, Genes, Webkp, and Cora) and
two datasets (MUTAG and BZR) sourced from Morris et al. (2020). Some datasets were
originally graph datasets that were converted to tree-structured data. MUTAG and BZR were
transformed by reproducing methods of Chuang & Jegelka (2022). The difference between
Mutagenesis (Mut.) and MUTAG is that MUTAG is homogeneous, whereas Mutagenesis is
heterogeneous with additional features on Leaves.

7

https://anonymous.4open.science/r/HSTreeDistance1
https://anonymous.4open.science/r/HTDExperiments

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 3: UMAP projection of Genes dataset using HTD with default parameters on the left
and optimized parameters on the right. The total number of adjustable parameters is 21.

Table 3: Classification experiment results. Results are reported using an accuracy score. For
datasets, MUTAG and BZR homogeneous graphs were unrolled to trees up to depth L=4.

method Mut. Hepatitis Chess Genes Webkp Cora MUTAG BZR

HMIL 87.8 92.5 41.5 98.8 82.0 85.3 91.0 88.2
kNN-TED 86.5 64.0 36.4 44.2 46.0 27.3 87.7 83.5
kNN-TMD — — — — — — 87.7 84.7
SVM-TMD — — — — — — 92.2 87.6
kNN-HTD 96.4 92.3 52.5 100 86.1 85.2 92.8 91.8
SVM-HTD 96.4 92.3 48.6 100 85.3 80.6 93.7 89.8
GP-HTD 91.9 84.3 41.2 93.6 – – 75.7 87.3

5.1 Distance-based Classification

This experiment compares the proposed HTD to tree-edit distance (TED) adapted to HS-
Tree (Šopík & Strenáčik, 2022) and to the tree pseudo-distance (TMD) (Chuang & Jegelka,
2022), which is shown only on MUTAG and BZR as it requires homogenous trees. These
distances are used with the k-Nearest Neighbor classifier, with the Support Vector Machine,
and with the Gaussian Process. The HMIL classifier (Mandlík et al., 2022) based on neural
networks is used as the baseline. All experiments were repeated five times. The best
hyperparameters were selected according to accuracy on the validation set. Implementation
and experimental details, together with a list of hyper-parameters, are provided in Appendix A.
HTD treats the type of distance on Bags as hyperparameters, but weights of dWPM distance
on Dict are learned.

The results in Table 3 show that classifiers using the proposed HTD exhibit superior
performance to other methods on almost all datasets. kNN-HTD and SVM-HTD have
frequently performed better than HMIL classifier based on neural networks, but at the
expense of higher complexity during classification due to naive implementation of the kNN
classifier.

Free parameters: The good results of HTD are likely due to its flexibility introduced
mainly by weights in the distance on Dicts (see Equation 6). This is supported by the fact
that the Tree Mover’s Distance (TMD), whose parameters were selected heuristically, is
worse on MUTAG and BZR. The effect of good parameters is shown in Fig. 3 depicting
distances between points of the Genes dataset with HTD with default parameters (all equal
to one) and optimal parameters found by Contrastive learning (see below). An example of
semi-supervised clustering is shown in Appendix F.

Differentiability: We compare three methods to optimize weights: random sampling,
contrastive learning with Triplet loss (Weinberger & Saul, 2009), and kernel learning with the
Gaussian Process. The last two methods require differentiability with respect to parameters.
The results in Table 4 may suggest no significant difference between random sampling and
contrastive learning, but contrastive learning yields better accuracy 25 times while random
sampling is better only 13 times. Surprisingly, kernel learning with Gaussian Processes seems
to be the least effective method.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Classification performance with different methods of learning parameters for our
HTD (dHTD). Some combinations were not evaluated due to stability issues or excessive
computational demands of the method.

b.m. methods model Mut. Hepatitis Chess Genes Webkp Cora MUTAG BZR

H
au

sd
or

ff RS kNN 91.9 86.7 49.1 100 51.3 31.7 81.1 91.8
SVM 94.6 90.0 40.1 99.8 47.6 32.6 79.3 89.3

Triplets kNN 96.4 84.7 49.1 100 52.8 32.9 84.7 90.1
SVM 94.6 83.7 39.6 100 53.0 33.5 79.3 89.7

GP GP 91.9 81.3 38.4 99.8 – – 75.7 88.9

P
ar

ti
al

W
. RS kNN 91.9 86.7 52.5 98.8 49.9 74.6 91.9 89.7

SVM 92.8 88.3 42.4 67.9 47.9 63.8 93.7 85.6
Triplets kNN 95.5 92.3 48.6 100 – – 92.8 89.2

SVM 96.4 92.3 43.0 99.4 – – 93.7 89.3
GP GP 90.1 77.3 – – – – 92.1 86.1

C
ha

m
fe

r RS kNN 91.9 90.0 52.5 97.0 72.0 84.3 83.8 89.3
SVM 90.1 90.3 43.5 86.9 82.0 80.6 84.7 89.7

Triplets kNN 94.0 86.0 46.4 100 86.1 70.1 82.0 88.6
SVM 93.0 74.3 42.4 100 85.3 80.6 86.5 89.8

GP GP 91.9 84.3 41.2 93.6 – – 75.7 87.3

Modularity: The modularity of HTD is improved by selecting distances on Leafs and Bags.
We kept those on Leafs fixed and explored three options on Bags: the Chamfer Distance,
the Hausdorff Distance, and the Partial Wasserstein Distance. According to the results in
Table 4, Partial Wasserstein performs overall the best, which is in line with theory as it
is able to discriminate multisets. However, in all cases except one (MUTAG), the same
accuracy can be achieved either by Haussdorff or Chamfer distance, which computational
complexity scales quadratically instead of cubically (see Table 2). Only the MUTAG dataset
contains categorical Leaves, which requires the recognition of multisets. Other datasets have
at least one leaf with real values so distances on sets are, therefore, sufficient.

Heterogenity: Recall that the difference between Mutagenesis and MUTAG datasets is
that the latter was homogenized as needed for the TMD distance (Chuang & Jegelka, 2022).
Using the heterogeneous version with rich information in Leaves improves the accuracy by
3% and allows using the cheap Haussdorff with quadratic complexity. A similar experiment
reported below on GNNs led to the same results.

5.2 Distance-based Anomaly detection

This section demonstrates the advantage of HTD in k-Nearest Neighbor anomaly detector,
which provides a good baseline (Škvára et al., 2021). Since the HMIL classifier cannot be used
for anomaly detection, it has been excluded from the experiments. Contrastive learning for
tuning weights is impossible due to the lack of labels, but kernel learning with GP is possible.
The experimental protocol mirrored that for the classification tasks with few modifications
needed to adapt the datasets for the specific anomaly detection task. We accomplished this
by following the leave-one-in procedure described in Škvára et al. (2021). The evaluation
metric was also changed from accuracy to the AUC, which is usual in the anomaly detection
community.

Table 5: Anomaly detection experiment result. Results are reported using the AUC score.

method Mut. Hepatitis Chess Genes Webkp Cora MUTAG BZR

kNN-TMD – – – – – – 86.1 71.3
kNN-TED 82.8 75.8 80.1 81.6 82.9 89.5 90.9 72.0
kNN-HTD 94.4 89.7 84.3 99.6 92.6 97.2 86.6 73.4
GP-HTD 90.0 78.5 84.4 96.4 – – 91.9 75.1

The average AUCs from five repetitions are presented in Table 5. The dominance of kNN-
HTD observed above is consistently replicated with few exceptions. TED works well on the
MUTAG dataset where kNN-TED performs on par with other methods. GP-HTD shows
some promises, but it is difficult to optimize without collapsing the optimization procedure.
Random sampling of weights with kNN is a faster and more reliable method.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Experimental results on heterogeneous and homogenized IMDB dataset.

(a) The correlation coefficient (multiplied by
100) between distances and GNNs.

homo-HTD hetero-HTD

homo-GNN 53 ± 0.2 50 ± 1.4
hetero-GNN 52 ± 0.9 58 ± 0.2

(b) The F1-score (macro) of GNN classifiers.

F1-score

homo-GNN 67.2 ± 1.6
hetero-GNN 70.9 ± 1.1
HetSANN (Hong et al., 2020) 72.0 ± N/A
MAGNN-AC (Jin et al., 2021) 60.8 ± N/A
SeHGNN (Yang et al., 2023) 67.1 ± 0.3
Simple-HGN (Lv et al., 2021) 63.5 ± 1.4

HTD - SVM 67.1 ± 0.6

5.3 Analysis of Graph Neural Networks

Tree-Movers Distance (TMD) has been introduced in Chuang & Jegelka (2022) to study the
stability of homogeneous GNNs (Hamilton et al., 2018) by showing that their output correlates
with the TMD distance, estimated as corr

(
{∥gnn(vi)− gnn(vj)∥2, d(vi, vj)}1000,1000i,j=1

)
where

gnn(v) is embedding of vertex v provided by GNN and d(vi, vj) is a distance between
computation trees of vertices vi and vj . The proposed HTD enables us to extend this
analysis to heterogenous GNNs since it adapts to their computational graph better than the
homogenization suggested in Chuang & Jegelka (2022).

We measure the correlation on IMDB dataset (Fu et al., 2020), which is a heterogeneous
graph with three types of nodes (actors, directors, movies) and four types of edges. The goal
to predict the type of the actor based on its neighborhood is solved by heterogeneous (Zhang
et al., 2019) and homogeneous GNNs. The homogeneous variant of IMDB was created by
method from PyTorch geometric (Fey & Lenssen, 2019), which corresponds to the method
recommended in Chuang & Jegelka (2022).

To demonstrate that the GNNs used for correlation analysis are well trained, Table 6b shows
an F1-score on the testing set. The table also shows scores of other prior art (Hong et al.,
2020; Jin et al., 2021; Yang et al., 2023; Lv et al., 2021) and for curiosity, an SVM classifier
with the proposed distance used in Section 5.1. The results show that heterogeneous GNNs
perform better than their homogeneous counterparts. Surprisingly, SVM with 6 parameters
for metric and 3600 of SVM multipliers performs frequently better than GNNs with orders
of magnitude more parameters.

The correlation coefficient between GNNs on heterogeneous and homogenized graphs and
HTD on heterogeneous and homogenized trees is shown in Table 6a. As expected, the
highest correlation occurs when the type of distance matches the type of computation
graph. Specifically, the heterogeneous/homogeneous tree distance correlates with heteroge-
neous/homogeneous GNNs, and the correlation decreases in the case of mismatch.

6 Conclusion

This paper introduced Hierarchically-Structured Tree Distance (HTD), measuring the distance
between samples emerging from popular data storage formats (e.g., JSON, XML, and
ProtoBuffer) and naturally representing message passes in heterogeneous GNNs. We have
demonstrated that this distance, paired with well-known distance and kernel-based algorithms,
can solve common machine learning tasks like classification, anomaly detection, visualization,
and clustering with performance frequently better than the state-of-the-art methods based
on neural networks with orders of magnitude more parameters. A good performance of HTD
is owed to its flexible differentiable parametrization, which allows it to be optimized for a
given problem by common metric-learning algorithms.

The HTD distance lays a foundation for future research of tree-structured data and the
development of new generative and self-supervised methods. We envision the use of HTD as
a reconstruction loss in variational and masked autoencoders, potentially leading to strong
pre-training methods for HS-Trees, which might be important for industry storing data in
structured formats.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

References
Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over

high-dimensional spaces. In SODA, volume 8, pp. 343–352, 2008.

Philip Bille. A survey on tree edit distance and related problems. Theoretical computer
science, 337(1-3):217–239, 2005.

George Bolt, Simón Lunagómez, and Christopher Nemeth. Distances for comparing multisets
and sequences, 2022. URL https://arxiv.org/abs/2206.08858.

G. Borgefors. Hierarchical chamfer matching: a parametric edge matching algorithm. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 10(6):849–865, 1988. doi:
10.1109/34.9107.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pp. 93–104, 2000.

Laetitia Chapel, Mokhtar Z. Alaya, and Gilles Gasso. Partial optimal tranport with
applications on positive-unlabeled learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 2903–2913. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper_files/paper/2020/file/1e6e25d952a0d639b676ee20d0519ee2-Paper.pdf.

Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su.
This looks like that: deep learning for interpretable image recognition. Advances in neural
information processing systems, 32, 2019.

Zhou Cheng, Chun Yuan, Jiancheng Li, and Haiqin Yang. Treenet: Learning sentence
representations with unconstrained tree structure. In IJCAI, pp. 4005–4011, 2018.

Veronika Cheplygina and David M. J. Tax. Characterizing multiple instance datasets. In Aasa
Feragen, Marcello Pelillo, and Marco Loog (eds.), Similarity-Based Pattern Recognition,
pp. 15–27, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24261-3.

Ching-Yao Chuang and Stefanie Jegelka. Tree mover’s distance: Bridging graph metrics and
stability of graph neural networks. Advances in Neural Information Processing Systems,
35:2944–2957, 2022.

Aron Culotta and Jeffrey Sorensen. Dependency tree kernels for relation extraction. In
Proceedings of the 42nd annual meeting of the association for computational linguistics
(ACL-04), pp. 423–429, 2004.

Erik D Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. An optimal decom-
position algorithm for tree edit distance. ACM Transactions on Algorithms (TALG), 6(1):
1–19, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019.

Michel Marie Deza and Elena Deza. Encyclopedia of Distances. Springer Berlin Heidelberg,
2009. doi: 10.1007/978-3-642-00234-2_1.

Federico Errica and Mathias Niepert. Tractable probabilistic graph representation learning
with graph-induced sum-product networks. arXiv preprint arXiv:2305.10544, 2023.

Joel Farrell and Holger Lausen. Semantic annotations for wsdl and xml schema. W3C
recommendation, 28, 2007.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Evelyn Fix and Joseph Lawson Hodges. Discriminatory analysis, nonparametric discrimina-
tion. 1951.

11

https://arxiv.org/abs/2206.08858
https://proceedings.neurips.cc/paper_files/paper/2020/file/1e6e25d952a0d639b676ee20d0519ee2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1e6e25d952a0d639b676ee20d0519ee2-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. Magnn: Metapath aggregated
graph neural network for heterogeneous graph embedding. In Proceedings of The Web
Conference 2020, WWW ’20. ACM, April 2020. doi: 10.1145/3366423.3380297. URL
http://dx.doi.org/10.1145/3366423.3380297.

Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical
dependence with hilbert-schmidt norms. In International conference on algorithmic learning
theory, pp. 63–77. Springer, 2005.

Mingyu Guan, Jack W Stokes, Qinlong Luo, Fuchen Liu, Purvanshi Mehta, Elnaz Nouri,
and Taesoo Kim. Hettree: Heterogeneous tree graph neural network. arXiv preprint
arXiv:2402.13496, 2024.

Riccardo Guidotti. Counterfactual explanations and how to find them: literature review and
benchmarking. Data Mining and Knowledge Discovery, pp. 1–55, 2022.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on
large graphs, 2018.

Djoerd Hiemstra. N-Gram Models, pp. 1910–1910. Springer US, Boston, MA, 2009. ISBN
978-0-387-39940-9. doi: 10.1007/978-0-387-39940-9_935. URL https://doi.org/10.
1007/978-0-387-39940-9_935.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

Huiting Hong, Hantao Guo, Yucheng Lin, Xiaoqing Yang, Zang Li, and Jieping Ye. An
attention-based graph neural network for heterogeneous structural learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 34, pp. 4132–4139, 2020.

D.P. Huttenlocher, G.A. Klanderman, and W.J. Rucklidge. Comparing images using the
hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15
(9):850–863, 1993. doi: 10.1109/34.232073.

Di Jin, Cuiying Huo, Chundong Liang, and Liang Yang. Heterogeneous graph neural network
via attribute completion. In Proceedings of the web conference 2021, pp. 391–400, 2021.

Edwin M Knorr, Raymond T Ng, and Vladimir Tucakov. Distance-based outliers: algorithms
and applications. The VLDB Journal, 8(3):237–253, 2000.

VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions and Reversals.
Soviet Physics Doklady, 10:707, 1966.

E. Levina and P. Bickel. The earth mover’s distance is the mallows distance: some insights
from statistics. In Proceedings Eighth IEEE International Conference on Computer Vision.
ICCV 2001, volume 2, pp. 251–256 vol.2, 2001. doi: 10.1109/ICCV.2001.937632.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris Watkins. Text
classification using string kernels. Journal of machine learning research, 2(Feb):419–444,
2002.

Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming He, Chang Zhou,
Jianguo Jiang, Yuxiao Dong, and Jie Tang. Are we really making much progress? revisiting,
benchmarking and refining heterogeneous graph neural networks. In Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining, pp. 1150–1160,
2021.

Šimon Mandlík, Matěj Račinský, Viliam Lisý, and Tomáš Pevný. Jsongrinder.jl: automated
differentiable neural architecture for embedding arbitrary json data. Journal of Machine
Learning Research, 23(298):1–5, 2022. URL http://jmlr.org/papers/v23/21-0174.
html.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. Umap: Uniform
manifold approximation and projection. Journal of Open Source Software, 3(29):861, 2018.

12

http://dx.doi.org/10.1145/3366423.3380297
https://doi.org/10.1007/978-0-387-39940-9_935
https://doi.org/10.1007/978-0-387-39940-9_935
http://jmlr.org/papers/v23/21-0174.html
http://jmlr.org/papers/v23/21-0174.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space, 2013.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and
Marion Neumann. Tudataset: A collection of benchmark datasets for learning with graphs.
In ICML 2020 Workshop on Graph Representation Learning and Beyond (GRL+ 2020),
2020. URL www.graphlearning.io.

Jan Motl and Oliver Schulte. The CTU Prague relational learning repository. arXiv preprint
arXiv:1511.03086, 2015.

Youssef Mroueh, Chun-Liang Li, Tom Sercu, Anant Raj, and Yu Cheng. Sobolev gan. arXiv
preprint arXiv:1711.04894, 2017.

Krikamol Muandet, Kenji Fukumizu, Francesco Dinuzzo, and Bernhard Schölkopf. Learn-
ing from distributions via support measure machines. Advances in neural information
processing systems, 25, 2012.

Trung Nguyen, Quang-Hieu Pham, Tam Le, Tung Pham, Nhat Ho, and Binh-Son Hua.
Point-set distances for learning representations of 3d point clouds. CoRR, abs/2102.04014,
2021. URL https://arxiv.org/abs/2102.04014.

Victor M. Panaretos and Yoav Zemel. Statistical aspects of wasserstein dis-
tances. Annual Review of Statistics and Its Application, 6(1):405–431, mar 2019.
doi: 10.1146/annurev-statistics-030718-104938. URL https://doi.org/10.1146%
2Fannurev-statistics-030718-104938.

Milan Papez, Martin Rektoris, Vaclav Smidl, and Tomáš Pevný. Sum-product-set networks:
Deep tractable models for tree-structured graphs. In The Twelfth International Con-
ference on Learning Representations, 2024. URL https://openreview.net/forum?id=
mF3cTns4pe.

Tomas Pevny and Vojtech Kovarik. Approximation capability of neural networks on spaces
of probability measures and tree-structured domains. arXiv preprint arXiv:1906.00764,
2019.

Tomáš Pevný and Petr Somol. Using neural network formalism to solve multiple-instance
problems. In Advances in Neural Networks-ISNN 2017: 14th International Symposium,
ISNN 2017, Sapporo, Hakodate, and Muroran, Hokkaido, Japan, June 21–26, 2017,
Proceedings, Part I 14, pp. 135–142. Springer, 2017.

Felipe Pezoa, Juan L. Reutter, Fernando Suarez, Martín Ugarte, and Domagoj Vrgoč.
Foundations of json schema. In Proceedings of the 25th International Conference on
World Wide Web, WWW ’16, pp. 263–273, Republic and Canton of Geneva, CHE, 2016.
International World Wide Web Conferences Steering Committee. ISBN 9781450341431.
doi: 10.1145/2872427.2883029. URL https://doi.org/10.1145/2872427.2883029.

LKPJ Rdusseeun and P Kaufman. Clustering by means of medoids. In Proceedings of the
statistical data analysis based on the L1 norm conference, neuchatel, switzerland, volume 31,
1987.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov,
and Max Welling. Modeling relational data with graph convolutional networks. In The
semantic web: 15th international conference, ESWC 2018, Heraklion, Crete, Greece, June
3–7, 2018, proceedings 15, pp. 593–607. Springer, 2018.

Bernhard Schölkopf, Koji Tsuda, and Jean-Philippe Vert. Kernel methods in computational
biology. MIT press, 2004.

Bing Shuai, Zhen Zuo, Bing Wang, and Gang Wang. Dag-recurrent neural networks for
scene labeling. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3620–3629, 2016.

13

www.graphlearning.io
https://arxiv.org/abs/2102.04014
https://doi.org/10.1146%2Fannurev-statistics-030718-104938
https://doi.org/10.1146%2Fannurev-statistics-030718-104938
https://openreview.net/forum?id=mF3cTns4pe
https://openreview.net/forum?id=mF3cTns4pe
https://doi.org/10.1145/2872427.2883029

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Robin Sibson. Slink: an optimally efficient algorithm for the single-link cluster method. The
computer journal, 16(1):30–34, 1973.

Grigori Sidorov, Helena Gómez-Adorno, Ilia Markov, David Pinto, and Nahun Loya.
Computing text similarity using tree edit distance. In 2015 Annual Conference
of the North American Fuzzy Information Processing Society (NAFIPS) held jointly
with 2015 5th World Conference on Soft Computing (WConSC), pp. 1–4, 2015. doi:
10.1109/NAFIPS-WConSC.2015.7284129.

Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing natural scenes and
natural language with recursive neural networks. In Proceedings of the 28th international
conference on machine learning (ICML-11), pp. 129–136, 2011.

Abdel Aziz Taha and Allan Hanbury. An efficient algorithm for calculating the exact
hausdorff distance. IEEE transactions on pattern analysis and machine intelligence, 37
(11):2153–2163, 2015.

Kai Sheng Tai, Richard Socher, and Christopher D. Manning. Improved semantic represen-
tations from tree-structured long short-term memory networks, 2015.

Veronika Thost and Jie Chen. Directed acyclic graph neural networks. arXiv preprint
arXiv:2101.07965, 2021.

Kilian Q Weinberger and Lawrence K Saul. Distance metric learning for large margin nearest
neighbor classification. Journal of machine learning research, 10(2), 2009.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine
learning, volume 2. MIT press Cambridge, MA, 2006.

William E. Winkler. String comparator metrics and enhanced decision rules in the fellegi-
sunter model of record linkage. In Proceedings of the Section on Survey Research, pp.
354–359, 1990.

William Woof and Ke Chen. A framework for end-to-end learning on semantic tree-structured
data. arXiv preprint arXiv:2002.05707, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2019.

Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye, and Dongrui Fan. Simple and
efficient heterogeneous graph neural network. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 10816–10824, 2023.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. Advances in neural information processing systems,
30, 2017.

Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and Michal Batko. Similarity search: the
metric space approach, volume 32. Springer Science & Business Media, 2006.

Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V Chawla. Het-
erogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 793–803, 2019.

Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing, 18(6):1245–1262, 1989. doi:
10.1137/0218082.

Vít Škvára, Jan Franců, Matěj Zorek, Tomáš Pevný, and Václav Šmídl. Comparison of
anomaly detectors: Context matters, 2021.

Břetislav Šopík and Tomáš Strenáčik. Tree edit distance for hierarchical data compatible
with hmil paradigm, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A Implementation details

This section provides details about methods used in our experiments for parameter learning.
Specifically, the parameters we learn are the weights from dWPM. We outline the specifics of
each method and how they were used in the study. Additionally, Tables 7 and 8 lists ranges
of hyperparameters. These tables serve as a reference for understanding the settings and
configurations used in our experiments. It’s important to note that all experiments were
repeated five times with different train/validation/test splits, where the validation splits
were used for selecting the best hyperparameters, including HTD’s parameters.

Random Sampling The most naive but powerful method to set weights is random
sampling (RS). Weights are sampled from a predefined distribution, and the best model
(kNN and SVM) is selected according to the accuracy on the validation split. RS is inexpensive
to compute for a single realization of weights as it requires no gradients. However, to find
optimal parameters, hundreds or thousands of combinations (depending on the dataset)
must be evaluated. For our study, we evaluated 500 random realizations of weights for each
dataset.

Contrastive Learning The second approach used contrastive learning, which uses labels
and needs the distance function to be differentiable. We use the usual triplet loss (Weinberger
& Saul, 2009), Ltr, as

Ltr = max(d(xa, xp)− d(xa, xn) + 1, 0) + β · ∥θ − γ∥2,
where xa, xp, xn are the anchor, positive, and negative samples, respectively, and theta
represents the parameters of the metric d.

The process of sampling triplets xa, xp, xn for minibatches is often more important than
selecting appropriate values for β and γ. To address this, we explored three different
strategies: Random, Batch Hard, and Alternating.

1. Random: This method selects an anchor randomly, and then, depending on its
label, positive and negative samples are again sampled randomly.

2. Batch Hard: first samples a subset (batch) of samples and computes the pairwise
distance using the distance function d with the current θ. Then, it randomly samples
the anchor and creates the most difficult triplet by sampling the most distant
positive sample and the closest negative samples. This method encourages the
distance function d to distinguish the most challenging observations. However, it
may fail in the presence of multiple clusters and outliers.

3. Alternating: alternates between the Random and Batch Hard methods.

Kernel Learning with Gaussian Process Since HTD is a proper metric, it can be
readily used in a kernel function applicable within Support Vector Machines (SVMs) or
Gaussian processes. Optimization of kernel’s parameters for SVM is difficult to optimize,
but it is simpler in Gaussian Processes.

Gaussian Process acts as a probability distribution over training dataset x = {x1, . . . , xn}

GP (x) = N
(
m(x),K(x,x)

)
,

where m(x) is mean function and K(x,x) is covariance (kernel) matrix

K(x,x) =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn),


with respect to kernel function k, which we define as k(x, y) = exp(−d(x, y)).

This means that when maximizing the likelihood of a Gaussian process, we can compute
gradients not only with respect to the covariance matrix K or the kernel function k but
also with respect to the parameters of the distance function d. This enables us to use this
approach to learn the parameters of d.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: General hyperparameters for HTD.

hyperparameter value set

General Numeric Leaf metric L2-norm
Categorical Leaf metric L2-norm/

√
2

Dict metric dWPM

Bag metric dCH, dPW, dWA, dHA

Random dWPM weight distribution 0.35 · U(0, 100) + 0.65 · exp(9)
Sampling number of repetitions 500

Contrastive triple selection {Random, Batch Hard, Alternating}
Learning optimiser Adam

learning rate {1.0, 0.1, 0.01, 0.001}
β {0, 0.1, 0.001, 0.001,−0.001}
γ {0, 1}

Kernel kernels {Laplacian, Gaussian, Matérn32}
Learning optimiser {Adam, L-BFGS}

learning rate (for Adam) {1.0, 0.1, 0.01, 0.001}

Table 8: Hyperparameters and their ranges of HMIL, kNN, SVM and GP classifiers.

model parameter value set

General (CLF) split ratios 60%/20%/20% (train/valid/test)
(AD) split ratios 60%/20%/20% of normal data

0%/50%/50% of anomalies

HMIL maximum epochs {1000}
classifier number of neurons {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

aggregation function {mean,max,mean + max}
activation function {identity, relu}
batch size {16, 32, 64}
learning rate {0.001, 0.0005, 0.0001}
early stopping criterion validation accuracy
early stopping patience {30}

kNN number of neighbors {1, . . . , 150}

SVM γ−1 {0.1, 0.2, 0.3, . . . , 20.0}
kernels {Laplacian} exp(−γ · d(x, y))

B Distances for Probability Distributions

In this section, we list distances on probability distributions and sets and discuss their
theoretical properties, computational complexity, and underlying assumptions.

Wasserstein Distance: Let (M, d) be complete and separable metric space, then for
p ∈ [0,+∞] the p-Wasserstein distance between probability measures PX and PY on M with
finite p-moments is defined as

dWA(PX , PY) = inf
γ∈Π(PX ,PY)

(
E(X,Y)∼γ [d(X,Y)p]

)1/p
, (6)

where Π(PX , PY) is set of all joint probability distributions γ on M×M, whose marginals
are PX and PY .

The Wasserstein distance (Panaretos & Zemel, 2019) is a popular distance between two
probability distributions defined on the same metric space. It is applied to Bags by treating
them as two empirical distributions. The distance is popular in image processing, natural
language processing (NLP), and point cloud generation, where it is called Earth Mover’s
Distance (dEMD) (Andoni et al., 2008) or Mallows distance (Levina & Bickel, 2001). The
computational complexity of Wasserstein distance between two Bags x and y is cubic when
|x| = |y|.
Partial Wasserstein Distance: Let x = JxiKnx

i=1 and y = JyjK
ny

j=1 be two multisets
and dWA is Wasserstein Distance. W.L.O.G. assume that nx > ny, n0 = nx − ny, then
the Partial Wasserstein Distance between is defined as dPW(x,y) = dWA(x,y ∪ JϕKn0

k=1),
where ϕ is a special "null element" whose distance to other elements is maximum, i.e.,
d(ϕ, x) > d(y, x),∀x, y ∈ M.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

{ "logp": 4.23 ,

"inda": 0 ,

"atoms": [

{ "atom type": 22 ,

"bonds": [

{ "element": "c" , "charge": 0.2 } ,

{ "element": "h" , "charge": 0.1 }

] } , { "atom type": 7 ,

"bonds": [...]

}] }

(a) Example of JSON file.

Dict

logp: [Leaf - Number]

inda: [Leaf - Number]

atoms: Bag

Dict

bonds: Bag

Dict

element: [Leaf - String]

charge: [Leaf - Number]

atom type: [Leaf - Number]

(b) Mutagenesis dataset scheme.

Figure 4: An example of a JSON file and the scheme of the (simplified) Mutagenesis
dataset (Cheplygina & Tax, 2015). The term Leaf represents nodes with elementary data
types, while Bag and Dict is equal to Array and Object, respectively.

Partial Wasserstein Distance is tailored to multisets (Chapel et al., 2020; Chuang & Jegelka,
2022) because the Wasserstein distance cannot differentiate between two multisets containing
identical elements with different cardinalities, for example, x = J1, 2, 1, 2K and y = J1, 2K.
This problem is pertinent to all metrics designed for probability distributions and sets (which,
by definition, removes the duplicates). The Partial Wasserstein Distance solves the problem
by extending the space M where elements of the Bag live with a special null element, ϕ.
When computing a distance, a null element is used to equalize the cardinality. In the above
example, this would correspond to transforming y into y′ = J1, 2, ϕ, ϕK.

dPW with α(n,m) = max(n,m) and β = 0 in Equation (5) is used in (Chuang & Jegelka,
2022) to define pseudo-distance on homogeneous trees with fixed depth, used to analyze
graph neural networks with sum aggregation function. dPW is used in this paper exclusively
with this setting.

Hausdorff Distance: Let x = JxiKnx
i=1 and y = JyjK

ny

j=1 be two sets of points in some metric
space (M, d), the Hausdorff distance (Huttenlocher et al., 1993) is computed as

dHA(x,y) = max
{
max

i
min
j

d(xi, yj),max
j

min
i
(xi, yj)

}
. (7)

Hausdorff distance measures the similarity between two sets of points in a metric space. It is
used in image analysis, shape recognition, and pattern matching. The naive implementation
has quadratic complexity, but efficient algorithms (Taha & Hanbury, 2015) with linear
complexity in expectation exist.

Chamfer (pseudo-) Distance: Let x = JxiKnx
i=1 and y = JyjK

ny

j=1 be two sets of points
in some metric space (M, d), then Chamfer pseudo-distance (Huttenlocher et al., 1993) is
computed as

dCH(x,y) =
1

|x|
∑
i

min
j

d(xi, yj) +
1

|y|
∑
j

min
i

d(xi, yj). (8)

Chamfer pseudo-distance (Borgefors, 1988) (violates triangular inequality) also measures
similarity between two sets of points as the minimum cumulative distance needed to transform
one point set into another. Its computational complexity is quadratic, which makes it a more
popular option than expensive Wasserstein distance.

C Relation of HS-Trees and JSONs

This section uses the JSON format as a prototypical example of hierarchical formats. Data
in JSON format are stored by combining elementary data types: Strings, Numbers, Booleans,
and Null with two composite data types: Objects and Arrays.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The elementary data types corresponds to Leaf in HS-Trees, as they do not have children.
Distances for these data types exist and are discussed in Section 3.1.

Object is a key-value dictionary in which the key is restricted to String, and values can be
any JSON data type. Keys must be unique and serve as a semantic data identifier in the
corresponding value field. Object therefore corresponds to Dict in HS-Trees.

Array is a sequence of elements of any JSON data type with arbitrary length. In general,
items of the array do not have to be of the same data type (schema in the terminology of this
paper), but we impose this restriction as it is very common in the industry. This work also
assumes the data in arrays to be unordered, which can be restored using position encoding.
With that, Arrays maps to Bag in HS-Trees.

For example, in Fig. 4a, the value corresponding to the key bonds is a Bag. Values in this
bag are Dicts. The first dictionary in this array contains key-value pairs "element": "c",
and "charge":0.2. The values corresponding to these keys: "c" and "0.2" are Leaves, as
they are elementary types.

D Proof of Theorem 2

Theorem 2. Let H be an arbitrarily fixed schema of HS-Trees. Then, an HTD distance
exists in H.

Proof. Due to the recursive construction of the set of all schemas, the proof is carried by
induction.

Let H be a schema with depth 0, which means that all samples x ∈ H are trees with depth 0,
i.e. they are Leaves. Then H is an elementary data type, and the distance can be computed
by an appropriate choice listed in Section 3.1.

Carrying the induction, we now assume to be able to define distance for all schemas of depth
l− 1, and we want to define distance on samples of schema H with depth l, where l > 0. Let
x, y ∈ H, then the top-node of x and y is either of type Bag or Dict.

Let’s first assume roots to be Bags and denote {xi}ni=1 and {yj}mj=1 items (childs) of x and
y respectively. By definition of HS-Trees and their schema 2.1, all items xi and yi have the
same schema I with a depth l − 1, and by induction assumption, there exists a distance
dI. The existence of dI is sufficient to define a distance between (multi)-sets as discussed in
Section 3.3.

Alternatively, roots are Dict. Then x = {(ki, xi)}ni=1 and y = {(ki, yi)}ni=1, where {ki}ni=1 are
unique keys and xi, yi are corresponding values with the schema Si of length at most l − 1.
By induction principle, there exist distances dSi on Si, which are the sufficient condition
to define distance between x, y using for example the weighted product metric discussed in
Section 3.2.

E Example of computing the complexity

Let’s demonstrate the complexity of the distance between two samples in Fig. 2. For simplicity,
we assume that Bags (labeled c) have the same length. The computation starts by computing
distances between Leaf nodes f and g. Although L2 metric has linear complexity with respect
to its dimension, denoted by cf and cg, the Bag distances requires to compute all pairwise
distances and therefore the complexity with respect to their number, i.e. O(|f |2(cf + cg)),
where |f | represents the number of Leaves with label f. The complexity of the dWPM for
e is the sum of complexities of leaves, which was already included. The complexity of
computing distance on Bags of node with label c is either cubic, which makes the complexity
O(|f |2(cf + cg) + |f |3), or quadratic which yields complexity O(|f |2(cf + cg + 1)). To finish
the computation of distance, we need to compute the distance of Leaves b and d and add
it to the distance c. The final complexity is therefore O(|f |2(cf + cg) + |f |3 + cb + cd) or
O(|f |2(cf + cg + 1) + cb + cd).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Dendrogram

(b) Pairwise Distance Matrix

(c) UMAP projection

Figure 5: Visualization of hierarchical clustering results on the Genes dataset using (a)
Dendrogram, which represents the clustering structure based on pairwise distances, (b)
Pairwise Distance Matrix heatmap, and (c) UMAP projection colored by labels. The distance
matrix is computed using HTD and ordered to match the branches of the dendrogram.

F Semi-Supervised Clustering

In this experiment, we demonstrate that HTD can also be effectively used for clustering. We
opted for a semi-supervised clustering approach because, as shown in Section 5, learning
optimal parameters allows HTD to better fit the dataset. Initially, a randomly selected 20
percent of the labeled data was used to learn the parameters through contrastive learning,
after which the pairwise distance matrix (PDM) for the entire dataset was computed. Many
clustering algorithms can then be applied directly once the PDM is available. Figure 5a
shows the dendrogram produced by hierarchical clustering on the Genes dataset. The results
indicate two large clusters along with several smaller ones, consistent with the UMAP
projection of this dataset shown in Figure 5c and computed using the same PDM.

19

	Introduction
	Background
	Relation of HS-Trees to GNNs

	Metric on HS-Trees
	Metric on Leaves
	Metric on Dictionaries
	Metrics on Bags
	Distance on HS-Tree

	Related Work
	Experiments
	Distance-based Classification
	Distance-based Anomaly detection
	Analysis of Graph Neural Networks

	Conclusion
	Implementation details
	Distances for Probability Distributions
	Relation of HS-Trees and JSONs
	Proof of Theorem 2
	Example of computing the complexity
	Semi-Supervised Clustering

