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ABSTRACT

Generative world models (WMs) can now simulate worlds with striking visual
realism, which naturally raises the question of whether they can endow embodied
agents with predictive perception for decision making. Progress on this question
has been limited by fragmented evaluation: most existing benchmarks adopt open-
loop protocols that emphasize visual quality in isolation, leaving the core issue of
embodied utility unresolved, i.e., do WMs actually help agents succeed at embodied
tasks? To address this gap, we introduce World-In-World, the first open platform
that benchmarks WMs in a closed-loop world that mirrors real agent-environment
interactions. World-In-World provides a unified online planning strategy and
a standardized action API, enabling heterogeneous WMs for decision making.
We curate four closed-loop environments that rigorously evaluate diverse WMs,
prioritize task success as the primary metric, and move beyond the common focus
on visual quality; we also present the first data scaling law for world models in
embodied settings. Our study uncovers three surprises: (1) visual quality alone
does not guarantee task success—controllability matters more; (2) scaling post-
training with action-observation data is more effective than upgrading the pretrained
video generators; and (3) allocating more inference-time compute allows WMs to
substantially improve closed-loop performance. By centering evaluation on closed-
loop outcomes, World-In-World establishes a new benchmark for the systematic
assessment of WMs. Demo is provided at project page.
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Figure 1: We introduce the first open benchmark to evaluate world models by closed-loop task
success, analyze the link between task success and visual quality, and investigate scaling laws.
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1 INTRODUCTION

Recent advances in visual generation have sparked interest in world generation, a field focused on
the creation of diverse environments populated with varied scenes and entities, with applications in
entertainment, gaming, simulation, and embodied AI. The rapid progress in video generation (Brooks
et al., 2024; Yang et al., 2024b; Wan et al., 2025), 3D scene generation (Fridman et al., 2023; Chung
et al., 2023; Yu et al., 2024; Koh et al., 2023; Ling et al., 2025), and 4D scene generation (Bahmani
et al., 2024b; Xu et al., 2024; Bahmani et al., 2024a) has demonstrated high-quality individual scene
generation, highlighting the potential of these models as world generation systems.

Building on these developments, recent world generation systems (Yang et al., 2023b; Parker-Holder
& Fruchter, 2025; Li et al., 2025c; Ye et al., 2025; Lu et al., 2025; He et al., 2025c) show promise as
world models for embodied agents. Given an agent’s initial observation and a candidate action, such
systems predict the resulting video, thereby estimating the future state of the environment. These
action-conditioned simulators mirror human mental models by forecasting future states and can
provide missing context under partial observability. As a result, they offer a pathway to improved
decision-making for embodied tasks that rely on perception, planning, and control.

Despite this promise, the community lacks a unified benchmark that evaluates visual world models
through the lens of embodied interaction. Existing suites emphasize video generation quality (e.g.,
VBench (Huang et al., 2024)) or visual plausibility (e.g., WorldModelBench (Li et al., 2025b)). The
recent WorldScore (Duan et al., 2025) offers a unified assessment for models that take an image and a
camera trajectory as input. However, no current benchmark tests whether generated worlds actually
enhance embodied reasoning and task performance—for example, helping an agent perceive the
environment, plan and execute actions, and replan based on new observations within such a closed
loop. Establishing this evaluation framework is essential for tracking genuine progress across the
rapidly expanding landscape of visual world models and embodied AI.

0.325 0.350 0.375 0.400 0.425 0.450 0.475
Gen. Quality (Aesthetic+Image Quality)

55
56
57
58
59
60
61
62
63
64
65

Ta
sk

 S
uc

ce
ss

 R
at

e 
(%

)

SVD
Cosmos-P2

LTXVideo

Wan2.1

Wan2.2 5B

SE3DS
Pathdreamer

NWM SVD

LTXVideo

Wan2.1

Wan2.2 5B

Wan2.2 A14B

Hunyuan

Cosmos-P2

Runway Gen4
Zero-shot
Post-trained
Others

Figure 2: Task success rate vs. generation
quality from VBench. †: post-trained with
extra data. We defend that world models live
and die by their closed-loop success, not flaw-
less generated visuals.

In this work, we address this gap by proposing
World-In-World, which wraps generative World
models In a closed-loop World interface to measure
their practical utility for embodied agents. Specifi-
cally, we present a unified strategy for closed-loop on-
line planning and a standardized action API to seam-
lessly integrate diverse world models into closed-
loop tasks. The online planning strategy allows the
agent to look ahead by anticipating environmental
changes and task rewards before committing to an
action. The standardized action API harmonizes in-
put modalities expected by different world models,
so that each model can be controlled consistently
within the same evaluation protocol. In addition, we
introduce a post-training protocol that fine-tunes pre-
trained video generators using a modest amount of
action–observation data drawn from the same action
space as the downstream tasks, which allows us to
examine their adaptation potential and to characterize
a data scaling law.

World-In-World offers a fair, closed-loop world interface to evaluate diverse WMs. We benchmark
leading video generators (Wan et al., 2025; HaCohen et al., 2024; Kong et al., 2024) alongside
task-focused world models (Bar et al., 2025; Koh et al., 2023; 2021) in perception, navigation, and
manipulation settings. Our findings reveal three consistent trends: (1) high visual quality does not
necessarily translate into strong task success; (2) scaling post-training with action-observation data
is more effective than upgrading the pretrained video generators; and (3) increasing inference-time
compute via online planning substantially improves closed-loop performance. As shown in Figure 2,
world models with strong visual scores do not necessarily bring high success rates, which underscores
the need for closed-loop evaluation when judging WM practical value for embodied agents.

Our work makes three main contributions:
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• We introduce World-In-World, the first comprehensive closed-loop benchmark that evaluates
world models through the lens of embodied interaction, moving beyond the common focus on
generation quality.

• We propose a unified closed-loop planning strategy with a unified action API, enabling diverse
world models to be integrated and assessed within one framework across four embodied tasks.

• We discover that high visual quality does not necessarily guarantee task success, and demonstrate
how the performance of pretrained video generators can be substantially improved through training-
time data scaling and inference-time scaling.

2 WORLD-IN-WORLD: A CLOSED-LOOP INTERFACE FOR VISUAL WORLD
MODELS

Design overview. Our goal is to establish a benchmark that evaluates world-generation methods
by their utility for embodied agents. Unlike prior work focused on generative quality, we develop a
predictive-control framework to test how well a world model supports online decision-making. The
evaluation setting mirrors practical scenarios in embodied AI, emphasizing the interaction between
prediction, control, and reward under closed-loop operation.

We detail the unified strategy for closed-loop online planning (Section 2.1) and the unified action API
(Section 2.2), which together provide a common interface across tasks and models. We then describe
our task selection and evaluation protocol (Section 2.3). Finally, we present a post-training recipe
that adapts a pretrained video generator into a more effective embodied world model (Section 2.4).

Imagined Interactions Real Interactions Closed-loop online planning
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Figure 3: Closed-loop online planning in World-In-World: At time step t, the agent receives the
world state, represented by observation ot, and invokes a proposal policy πproposal (❶) to produce a
total of M candidate action plans. The unified action API (❷) transforms each plan into the control
inputs required by the world model. The world model (❸) then predicts the corresponding future
states as observations Ôt. The revision policy πrevision (❹) evaluates all rollouts and commits to the
best, yielding decision D⋆

t . This decision is applied in the environment, closing the interaction loop.

2.1 UNIFIED STRATEGY FOR CLOSED-LOOP ONLINE PLANNING

In Figure 3, we present a unified closed-loop strategy that uses visual world models for decision-
making. It cycles through proposal, simulation, and revision. In proposal, the agent generates
candidate plans; in simulation, each plan is rolled out by the world model to predict counterfactual
futures; in revision, the agent scores rollouts and refines its plan. Finally, the agent executes the
top-scoring plan in the environment, coupling model-based planning with real execution.

Let ot denote the agent’s egocentric observation at time step t.1 Define the agent’s future potential
action sequence of horizon L starting at time step t as Ât =

[
ât+1, ât+2, . . . , ât+L

]
, where each

1The observation may be RGB, RGB-D, or another sensory modality. For clarity, we use o as the generic
notation throughout.
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elementary action â is specified in either a continuous action space or a discrete action space, i.e.,
â ∈ V , with V denoting the set of action primitives available to the agent.

Our unified strategy can be formalized as a policy-guided beam search. The beam width corresponds
to the number of candidate plans M drawn from the proposal policy πproposal. At time step t, given
the current observation ot and the task goal g, the proposal policy πproposal samples M candidate
action sequences that serve as future candidate plans:

Â
(m)
t ∼ πproposal

(
A

∣∣ot, g
)
, m = 1, . . . ,M. (1)

Each candidate plan Â
(m)
t is subsequently transformed by the unified action API C into the control

inputs expected by the world model: I(m)
t = C

(
Â

(m)
t

)
, where I

(m)
t may include textual prompts,

camera trajectories, or low-level action sequences, depending on the required format of the chosen
world model. The visual world model gθ then performs a counterfactual rollout based on these control
inputs, predicting the future world states Ô(m)

t with horizon L:

Ô
(m)
t ∼ gθ

(
O

∣∣ot, I
(m)
t

)
, Ô

(m)
t =

[
ô
(m)
t+1, ô

(m)
t+2, . . . , ô

(m)
t+L

]
. (2)

Then, the candidate plans and their simulated rollouts
(
Â

(m)
t , Ô

(m)
t

)
are evaluated and revised by

the revision policy πrevision, which assigns a score to each trajectory and selects the decision that
maximizes the expected reward. In the most general form, we write

D⋆
t = πrevision

(
{ (Â(m)

t , Ô
(m)
t ) }Mm=1, ot, g

)
. (3)

Here, D⋆
t denotes the best decision according to πrevision at time step t. Depending on the task, D⋆

t
may represent a high-level answer, a recognition result, or a refined sequence of low-level actions,
which renders the framework more general than classical Model Predictive Control (MPC) (Morari &
H. Lee, 1999), where optimization is typically restricted to sequences of actions.

A common instantiation implements πrevision as a score-and-select operator S. When the decision is
an action sequence, selection is performed over the M candidate plans produced at time step t:

D⋆
t = Â

(m⋆)
t , where m⋆ = argmax

m∈{1,...,M}
S
(
Â

(m)
t , Ô

(m)
t

∣∣ot, g
)
. (4)

Here, S(·) denotes a task-specific scoring function that estimates the expected reward or utility of a
candidate plan based on its simulated outcomes. Alternatively, πrevision may synthesize or update a
new decision by aggregating information across the candidate set and their predicted consequences,
rather than selecting one candidate verbatim.

Once the best decision D⋆
t is executed in the environment, the agent acquires a new observation

at time step t+1. The unified strategy then re-enters the proposal-simulation-revision loop, using
the newly observed state to initiate the next round of proposal, simulation, and revision. In our
framework, both πproposal and πrevision can be instantiated flexibly: they may be pretrained modules,
such as large-scale vision-language models or diffusion policies, or simple rule-based heuristics.
In our experiments, we explore multiple instantiations to systematically explore the flexibility and
generality of our framework for different tasks.

2.2 UNIFIED ACTION API

In this section, we present a unified action API that transforms an action sequence A into control
inputs I that guide the world model, i.e., I=C(A). The action API is designed to be flexible so that
the same interface can serve a wide range of world models and tasks. It supports three principal types
of control information: (1) text prompt, (2) camera trajectory/viewpoint, and (3) low-level actions,
depending on the inputs expected by the chosen world model.

Text prompt. For image-and-text-to-video world models, the controller maps the intended action
sequence into a descriptive text prompt. A predefined template converts each primitive action into a
phrase, and concatenating these phrases yields the final prompt Itext.

Camera trajectory / viewpoint. For models that consume explicit viewpoints, the controller
translates A into a camera trajectory, e.g., each translation action moves the camera by 0.2m, and

4
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each rotation action changes the azimuth by 22.5◦. The resulting trajectory is represented as a
sequence

[
(xk, yk, ϕk)

]K
k=1

with (xk, yk) ∈ R2 and azimuth ϕk ∈ R.

Low-level actions. For world models that take discrete or continuous low-level actions as input,
the controller maps the action sequence A to the world model’s action vocabulary, yielding Aworld.
This mapping A 7→ Aworld applies the necessary transformations to maintain a unique and consistent
correspondence between the agent’s actions and the inputs expected by the world model.

2.3 COMPREHENSIVE EMBODIED TASKS

To evaluate the practical utility of visual world models in embodied tasks, we select a diverse set of
tasks that span multiple domains and stress distinct capabilities. We focus on four representative tasks:
Active Recognition (AR), Active Embodied Question Answering (A-EQA), Image-Goal Navigation
(ImageNav), and Robotic Manipulation, as illustrated in Figure 4. Taken together, these tasks
emphasize complementary aspects of embodied intelligence, including perception, navigation, and
object-level manipulation, and thus provide a comprehensive testbed for assessing how effectively
a visual world model supports online planning and decision-making. Below, we describe the tasks
included in our benchmark, and more detailed settings are provided in Appendix B.

Image-Goal Navigation

What is the 
target object 
bounded by 
the red box?

Step 1: <Front> view

Step 2: <Front> view

Navigate as needed and Identify the 
object marked by the red bbox.

Navigate as needed and answer the 
user’s <Query>.

How many 
cushions are on 

the red sofa?

Step 1: <Front> view

<Goal Image>

Step 1: <Front> view

Step 1

Step 2

Active Recognition

Active Embodied QA

Navigate to the location from which the 
<Goal Image> was captured.

Image-Goal Navigation

Robotic Manipulation

Use the robotic arm to slide the red 
block onto the blue target.

Figure 4: Top-left: Active Recognition (AR), the agent needs to identify a designated target under
occlusions or extreme viewpoints while minimizing navigation cost. Top-right: Image-Goal Naviga-
tion (ImageNav), the agent reaches the viewpoint matching a goal image, emphasizing success rate
and path efficiency. Bottom-left: Active Embodied Question Answering (A-EQA), the agent answers
an open-ended question after active exploration. Bottom-right: Robotic Manipulation, the agent
needs to control a robotic arm to complete tasks such as grasping and placement to specified targets.

Active Recognition (AR) is closely related to amodal recognition (Aydemir et al., 2013; Liu et al.,
2018; Yang et al., 2019; Fan et al., 2024; Bhattacharjee et al., 2025), in which the agent must
identify a designated target that may be observed from extreme viewpoints or be heavily occluded.
In addition, AR allows the agent to acquire additional observations through active exploration. All
AR experiments are conducted in the Habitat-Sim (Savva et al., 2019), encompassing 551 episodes
across 29 scenes from the validation split of Matterport3D (Chang et al., 2017). Within AR, the
visual world model assists two decision-making processes. For answering, synthetic views provide
auxiliary evidence that helps the agent reason about occlusions and extreme viewpoints that impede
recognition. For navigation, rollouts simulate the consequences of potential actions so that the agent
can choose a path that is more likely to yield informative observations.
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Image-Goal Navigation (ImageNav), also referred to as goal-conditioned visual navigation, requires
an embodied agent to reach a target position in a scene given a single reference image that specifies the
goal viewpoint. We construct 144 ImageNav episodes from 87 validation scenes of HM3D (Ramakr-
ishnan et al., 2021). In this task, the visual world model exclusively supports navigation decisions.
The agent simulates the outcomes of candidate action plans, selects the best option, executes the first
segment of that plan, and then replans with the newly observed state in a closed-loop manner.

Active Embodied Question Answering (A-EQA) requires an agent to answer open-ended natural-
language questions after actively exploring a 3D environment. Our evaluation set includes 184
questions across 54 indoor scenes from the official OpenEQA split (Majumdar et al., 2024) and the
HM3D validation set (Ramakrishnan et al., 2021). As in AR, the visual world model supports both
question answering and navigation. For answering, synthetic views generated by the world model
provide complementary perspectives that help resolve references to occluded or distant objects. For
navigation, the agent simulates high-level action plans using the world model’s predictions to choose
exploration strategies likely to reveal question-relevant information.

Robotic Manipulations are fundamental capabilities for embodied agents that must operate in real-
world interaction settings. We study how visual world models contribute to closed-loop manipulation
planning, evaluating performance on four RLBench (James et al., 2020) tasks with 50 episodes per
task. In our setting, the visual world model supports the agent in assessing candidate 7-DoF gripper
actions by providing visual evidence about anticipated object motions and interactions, which enables
a comparison of alternative plans before execution. The predicted outcomes then guide the selection
of actions that are more likely to achieve the specified objective, thereby linking visual prediction
accuracy to improvements in manipulation performance.

2.4 EXPLOITING WORLD MODELS VIA POST-TRAINING

To evaluate the feasibility of adapting pretrained video generators for embodied tasks, we introduce
a post-training procedure that aligns a pretrained model with the domain distribution and action
space of target environments. We perform fine-tuning separately on data from two simulators,
Habitat-Sim and CoppeliaSim, to match the corresponding task domains. For Habitat-Sim tasks (AR,
A-EQA, ImageNav), we post-train on a panoramic action-observation dataset collected from the
HM3D (Ramakrishnan et al., 2021) training split. For CoppeliaSim tasks (Robotic Manipulation),
we post-train on task demonstrations generated with RLBench (James et al., 2020). To assess
generalization rather than memorization, all Habitat-Sim data used for post-training are sourced from
scenes that are disjoint from our evaluation scenes, so the scenes in our evaluation tasks remain
unseen by the world models after post-training. Additional details regarding the training objective,
dataset construction, and training configuration are provided in Appendices C and D.

3 EVALUATION RESULTS AND ANALYSIS

In this section, we report quantitative results and key observations on the four embodied tasks
in Section 3.1, followed by ablation studies in Section 3.2. We evaluate visual world models
spanning image-based (PathDreamer (Koh et al., 2021), SE3DS (Koh et al., 2023)) and video-based
(SVD (Blattmann et al., 2023a), LTX-Video (HaCohen et al., 2024), Hunyuan (Kong et al., 2024),
Wan2.1 (Wan et al., 2025), Wan2.2 (Wan et al., 2025), Cosmos-Predict2 (Agarwal et al., 2025),
NWM (Bar et al., 2025)) approaches, covering major control interfaces. For video-based models,
we compare off-the-shelf versions with their post-trained variants, where the additional postfix “†”
denotes a post-trained video generator.

3.1 BENCHMARK RESULTS

World models can enhance the performance of the base proposal policy. Across AR, A-EQA,
ImageNav, and Manipulation, adding a visual world model consistently improves the performance of
the base proposal policy (e.g., a VLM policy, a heuristic policy, or a 3D diffusion policy), as shown in
Tables 1 to 3. For example, in AR, the best proprietary model (Runway Gen4) attains an accuracy of
64.79% while reducing the mean steps per episode to 4.06, compared to the VLM base policy with
an accuracy of 50.27% and mean steps 6.24. Similarly, in ImageNav, the best open-source model
Wan2.1† achieves a success rate of 45.14% with an average path length of 45.8, outperforming the
VLM base policy at 35.42% SR and 47.5 average length. In A-EQA, the top post-trained model
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Table 1: Active Recognition (AR) and Image-Goal Navigation (ImageNav) performance across
various models and base policies. Higher success rate (SR%), success weighted by path length
(SPL%), and lower mean trajectory length (Mean Traj.) are better. “†” denotes our post-trained
video generators. “A14B” denotes a mixture-of-experts configuration of Wan2.2 with an effective
model size of 14B during inference.

Model Details AR ImageNav

Model Type Method Control Type Input Type #Param. SR ↑ Mean Traj. ↓ SR ↑ Mean Traj. ↓ SPL ↑

Base Policy Heuristic (w/o WM) – RGB – 39.02 8.81 2.08 59.6 0.63

+ Video Gen.
Post-Train

SVD† Action RGB; Pano 1.5B 60.62 5.17 20.83 58.5 11.86
WAN2.1† Action RGB; Pano 14B 62.98 4.71 22.92 58.7 11.63

Base Policy VLM (w/o WM) – RGB 72B 50.27 6.24 35.42 47.5 25.88

+ Image Gen. PathDreamer Viewpoint RGB-D; Pano 0.69B 56.99 5.28 36.80 47.3 26.85
+ Image Gen. SE3DS Viewpoint RGB-D; Pano 1.1B 57.53 5.29 36.11 47.0 26.91
+ Video Gen. NWM Trajectory RGB 1B 57.35 5.68 40.28 47.1 27.83

+ Video Gen.
Zero-Shot

SVD Image RGB 1.5B 57.71 5.29 40.28 46.4 28.59
LTX-Video Text RGB 2B 56.08 5.37 36.81 47.5 25.85
Hunyuan Text RGB 13B 57.71 5.21 36.11 46.8 26.89
Wan2.1 Text RGB 14B 58.26 5.24 38.19 48.2 25.92
Wan2.2 Text RGB 5B 55.35 5.73 38.88 46.5 28.87
Cosmos-P2 Text RGB 2B 55.35 5.71 36.81 47.6 25.89
Wan2.2 Text RGB A14B 59.53 4.91 43.05 45.8 31.46
Runway Gen4 (proprietary) Text RGB – 64.79 4.06 - - -

+ Video Gen.
Post-Train

SVD† Action RGB; Pano 1.5B 60.98 5.02 43.05 46.0 30.96
LTX-Video† Action RGB; Pano 2B 57.53 5.49 38.89 47.4 27.47
WAN2.1† Action RGB; Pano 14B 62.61 4.73 45.14 45.8 32.10
Cosmos-P2† Action RGB; Pano 2B 60.25 5.08 41.67 45.5 30.29
Wan2.2† Action RGB; Pano 5B 56.26 5.15 38.89 46.7 28.24
Wan2.2† Action RGB; Pano A14B 62.43 4.67 46.53 44.6 34.61

Table 2: Active Embodied Question Answering
(A-EQA) performance.

Model Details A-EQA Performance

Model Type Method Ans. Score ↑ Mean Traj. ↓ SPL ↑

Base Policy VLM (w/o WM) 45.7 20.4 29.6

+ Image Gen. PathDreamer 46.0 20.4 29.3
+ Image Gen. SE3DS 45.8 20.3 29.4
+ Video Gen. NWM 47.1 20.5 30.1

+ Video Gen.

Wan2.1 45.7 20.1 28.8
Wan2.2 (5B) 46.3 20.3 31.4
LTX-Video 46.6 20.8 29.5
Cosmos-P2 46.6 21.0 31.3
Hunyuan 46.8 20.4 29.9
SVD 46.9 20.4 29.7
Wan2.2 (A14B) 47.2 20.7 31.9

+ Video Gen.
Post-Train

SVD† 46.4 21.1 30.1
Cosmos-P2† 46.5 20.6 30.1
Wan2.2† (5B) 47.5 20.8 30.7
Wan2.1† 48.2 20.7 31.6
LTX-Video† 48.6 20.7 31.8
Wan2.2† (A14B) 48.4 20.2 31.9

Table 3: Robotic manipulation performance
across various models and base policies.

Model Details Manipulation Performance

Model Type Method SR ↑ Mean Traj. ↓

Base Policy VLM (w/o WM) 44.5 2.52

+ Video Gen.

SVD 44.0 2.47
LTX-Video 44.5 2.46
Hunyuan 44.5 2.44
Wan2.1 44.0 2.51
Cosmos-P2 44.0 2.50

+ Video Gen.
Post-Train

SVD† 46.5 2.38
Cosmos-P2† 45.0 2.40

Base Policy 3D-DP (w/o WM) 24.0 5.21

+ Video Gen.
Post-Train

SVD† 44.7 4.41
Cosmos-P2† 38.0 4.79

Wan2.2† A14B reaches an answer score of 48.4 and SPL of 31.9, surpassing the VLM base policy
at 45.7 answer score and 29.6 SPL. These results support the effectiveness of our World-In-World
online planning framework with world models, in which the world model provides simulated future
states that inform better decisions.

World models struggle to simulate precise motion and dynamics in manipulation. The gains are
less pronounced for Robotic Manipulations (Table 3), likely because accurately modeling contact-rich
interactions and robot kinematics is significantly more challenging than predicting purely view
changes. For instance, the best post-trained model on manipulation (SVD†) reaches an SR of 46.5%
with a mean trajectory length of 2.38, only modestly above the VLM baseline at 44.5% SR and
2.52 mean length. This gap suggests that while current visual world models can effectively guide
perception and navigation, capturing fine-grained physical dynamics and action-conditioned object
motion remains an open challenge.
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Figure 5: (a) SR vs. generation quality in AR; generation quality is scored as the average of an
aesthetic predictor (Akio Kodaira, 2024) and an image-quality predictor (Ke et al., 2021), both
trained to match human preferences. (b) SR vs. controllability in AR; controllability is quantified as
1− LPIPS between ground-truth and predicted observations.
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Figure 6: SR vs. seen examples during post-
training. SR increases consistently with
more downstream data, revealing a clear
data-scaling trend for adaptation.
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Figure 7: SR vs. average number of world-
model inferences per episode. Increasing
the inference-time computation allocated to
each decision step leads to higher SR.

Post-training substantially boosts world-model utility. Our post-training adaptation yields consis-
tent improvements. Relative to off-the-shelf Wan2.1, Wan2.1† raises AR accuracy from 58.26% to
62.61% and ImageNav SR from 38.19% to 45.14% (Table 1). Likewise, SVD† improves AR accu-
racy from 57.71% to 60.98% and ImageNav SR from 40.28% to 43.05%. In A-EQA, LTX-Video†
increases the answer score from 46.6 to 48.6, and Wan2.1† from 45.7 to 48.2. These gains show that
aligning the generative model to the target domain and action space of the specific embodied tasks
improves downstream decision-making.

3.2 ABLATION AND FINDINGS

Fine-grained controllability matters more than visuals for task success. Although recent off-the-
shelf video generators like Wan2.1 produce visually appealing clips, they are driven by text prompts
with limited fine-grained low-level controls. Without adaptation, these models yield only small gains
on downstream embodied tasks. We further study the relation between controllability and the success
rate on AR. Here, controllability is defined as alignment between intended actions and the motions in
the model’s predictions. After action-conditioned post-training, alignment improves substantially and
SR rises accordingly. Figure 5(b) shows a clearer positive correlation than Figure 5(a), which depicts
SR versus generation quality (aesthetic and image-quality scores), and suggests that models that
respond reliably to low-level controls achieve higher SR. These results indicate that precise control,
not just visual quality, is critical for embodied world models to support effective decision-making.
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Data-size scaling for post-trained models. We study how post-training data size affects WM
performance (Wan2.2†, Wan2.1†, SVD†). Each WM is post-trained for one epoch on datasets from
400 to 80K instances. As shown in Figure 6, more post-training data consistently improves AR
performance: Wan2.1† rises from 60.25% to 63.34%, and SVD† from 56.80% to 60.98%. Wan2.2†
(A14B), despite substantially larger web-video pretraining, reaches nearly the same performance as
Wan2.1† after 40K post-training instances, suggesting that scaling action-conditioned post-training is
more effective for embodied utility than upgrading the pretrained generator. Moreover, larger models
(Wan2.1†, 14B) benefit more and saturate less than smaller ones (SVD†, 1.5B), indicating greater
capacity to absorb action-conditioned supervision.

Inference-time scaling for online planning with world models. Within our online planning
framework, the number of world-model inferences (simulated potential futures per episode) directly
affects task performance. As shown in Figure 7, increasing the average inferences per episode
for AR yields a clear positive correlation with SR. For example, increasing the average inference
count from 3 to 11 improves SR from 53.36% to 60.98% for SVD†. This suggests that allocating
more inference-time computation to simulate potential futures lets the planner make more informed
decisions, thereby improving overall performance.

Table 4: Post-training with different input con-
texts: front view vs. panorama.

Task Model Front View Panorama

SR ↑ Mean Traj. ↓ SR ↑ Mean Traj. ↓

AR

SVD† 57.89 5.04 60.98 5.02
Wan2.1† 62.25 4.82 62.61 4.73
Wan2.2† (5B) 57.16 5.08 56.26 5.15
Cosmos-P2† 58.98 4.94 60.25 5.08

ImageNav

SVD† 38.19 47.0 43.05 46.0
Wan2.1† 48.61 43.8 45.14 45.8
Wan2.2† (5B) 40.97 45.8 38.89 46.7
Cosmos-P2† 40.97 47.0 41.67 45.5

Global vs. local context for generation. We
study the effect of input context format. Specif-
ically, we compare post-trained models condi-
tioned on panoramic versus front-view input (Ta-
ble 4). Panoramic input provides a 360◦ field of
view, whereas front view offers a focused but lim-
ited perspective. For fairness, generated panora-
mas are converted to perspective views with the
same horizontal field of view during evaluation.
Although panoramic input offers richer global
context, it does not consistently yield large gains across all settings. Likely, panorama-to-perspective
conversion introduces resolution loss, degrading downstream perception and planning.

Table 5: Effect of world-model augmentation and
revision policy on ImageNav. SR and SPL are higher-
is-better; mean trajectory length is lower-is-better.
πproposal WM Type πrevision SR ↑ Mean Traj. ↓ SPL ↑
VLM None None 35.42 47.5 25.88
VLM SVD† VLM 43.05 46.0 30.96
VLM Wan2.1† VLM 45.14 45.8 32.10
VLM SVD† LPIPS 47.92 41.3 39.82
VLM Wan2.1† LPIPS 48.61 39.8 42.48

Effect of different revision policies. We
study how the revision policy affects task per-
formance by comparing a VLM-based revi-
sion policy with a simple LPIPS-based policy
that selects the candidate whose predicted ob-
servation is closest to the goal image in percep-
tual feature space. From Table 5, we see that
even a simple LPIPS-based revision policy
could improve the performance significantly:
SVD† obtains 47.92% SR and 39.82 SPL compared with 43.05% SR and 30.96 SPL using a VLM-
based revision policy and 35.42% SR and 25.88 SPL without any WM augmentation. Augmenting
the planner with action-conditioned WMs and applying a simple LPIPS-based revision can yield a
higher SR and more efficient navigation.

Table 6: Cross-domain post-training: WMs
post-trained on HSSD or HM3D and evaluated
on HM3D/MP3D (val) for AR and ImageNav.
WM Aug. Post-Train Env. AR ImageNav

SR ↑ Mean Traj. ↓ SR ↑ SPL ↑
w/o WM None 50.27 6.24 35.42 25.88
+SVD† HSSD 58.98 5.24 38.89 27.60
+Wan2.1† HSSD 62.98 4.78 42.36 31.18
+SVD† HM3D (train) 60.98 5.02 43.05 30.96
+Wan2.1† HM3D (train) 62.61 4.73 45.14 32.10

Domain transfer across scene distributions. We
evaluate cross-domain generalization by post-train-
ing WMs on the synthetic Habitat Synthetic Scenes
Dataset (HSSD) and testing them on our AR and
ImageNav suites built on the real-world scenes in
HM3D/MP3D (Table 6). Despite the synthetic-to-
real gap, HSSD-trained WMs still yield clear gains
over the VLM-only baseline (e.g., SVD† improves
AR SR from 50.27% to 58.98% and ImageNav SR
from 35.42% to 38.89%). Performance remains below in-domain post-training on HM3D (SVD†:
60.98% AR SR, 43.05% ImageNav SR), as expected under a stronger distribution shift. These results
indicate that post-training learns action-conditioned visual representations that transfer across scene
distributions, consistent with prior work on adaptable world models (Gao et al., 2025).
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4 DISCUSSION AND FUTURE DIRECTIONS

Generalization capacity of world models is critical for practical use. Most video generators are
pretrained on web videos. In unseen embodied environments, they may revert to training priors
or ignore action controls, yielding plausible but physically or semantically inconsistent rollouts
(see Figures 13 and 14). These deviations mislead planning and reduce success. Larger models or
more pretraining data can partly help, but robust generalization remains central. Future work should
prioritize strategies and action representations to improve transfer to novel environments, such as
unified action representations (Gao et al., 2025; Wang et al., 2025e; Zhi et al., 2025; Wang et al.,
2025d) and curriculum or domain-specific data collection (Zhao et al., 2025).

Long-horizon planning with world models remains challenging. In our experiments, visual world
models simulate short-term changes but struggle on long horizons due to limited mechanisms for
accumulating spatiotemporal history. We attempted to alleviate this issue by replacing front-view
inputs with panoramas to provide global context, but gains were inconsistent across models and tasks.
Future work should better encode and retrieve long-term dependencies, e.g., spatial memory (Zhou
et al., 2025b; Xiao et al., 2025; Li et al., 2025d; Yu et al., 2025a; Ren et al., 2025) and episode-level
memory (Cai et al., 2025; Guo et al., 2025), to maintain scene-level context and enable coherent
planning over extended horizons.

Precise modeling of interactions and dynamics remains difficult. For manipulation, capturing
contact-rich interactions, compliance, friction, and state changes of articulated or deformable objects
is essential. Current visual world models often miss these details, producing rollouts that violate
physics and degrade planning and control—consistent with our observations and prior analyses (Kang
et al., 2024; Li et al., 2025a). Promising directions include physics-guided motion generation (Wang
et al., 2025a; Zhang et al., 2025b; Akkerman et al., 2025), inferring or generating physical properties
to inform action-conditioned predictions (Cao et al., 2025; Gillman et al., 2025; Zhang et al., 2024),
and physics-aware reinforcement post-training (Wu et al., 2025; Liu et al., 2025). Integrating such
signals into conditioning pathways may improve fidelity when precise dynamics are required.

Stronger proposal and revision policies set the performance floor. The agent’s overall performance
depends on both world-model fidelity and the strength of the proposal and revision policies that
select and refine decisions. While simulated rollouts improve decision-making, base policies must
be effective to provide a reliable starting point, and strengthening them raises the ceiling. Future
work could explore stronger policies (Geng et al., 2025; Kim et al., 2025), and integration strategies
that deepen synergy between world models and decision-making (Neary et al., 2025), such as more
human-aligned reward models (Wang et al., 2024; Seneviratne et al., 2025; Rocamonde et al., 2023;
Wang et al., 2025c; Wu et al., 2025).

Computational cost and efficiency remain practical concerns. Incorporating world models into
model-based planning introduces additional computational overhead because multiple future roll-
outs must be simulated at each decision step. Although our experiments show that allocating more
inference-time computation to the world model improves task performance, this extra cost may be
impractical in settings with strict real-time constraints or limited hardware resources. Future work
should therefore investigate more efficient world-model architectures (Yang et al., 2025b; Kodaira
et al., 2025), training and inference strategies that enable near real-time rollouts (Huang et al., 2025;
Cui et al., 2025), and distillation techniques (Wang et al., 2025b; Agarwal et al., 2025) that reduce
computational demands while preserving the predictive fidelity of world models.

5 CONCLUSION

We introduce World-In-World, a closed-loop world interface and benchmark that evaluates gen-
erative world models via embodied interaction rather than isolated visual metrics. By unifying
heterogeneous controls, our action API enables any world model to serve as perception and planning
utilities for an embodied agent. Coupled with a unified closed-loop planning strategy that proposes,
simulates, and revises action plans, the benchmark measures agent performance on four demanding
tasks. Our experiments reveal large gaps between visual metrics and task success, underscoring the
need for closed-loop evaluation, and show that pretrained video generators improve with post-training
data scaling and inference-time scaling. We expect World-In-World to guide world models toward
not only striking visual realism but also reliable perception and planning in embodied scenarios.
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A RELATED WORK

Visual generation. Recent advances in diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Rombach et al., 2022; Brooks et al., 2024) have significantly improved the quality of image
generation (Rombach et al., 2022; Zhang et al., 2023) and video generation (Blattmann et al., 2023b;a;
Voleti et al., 2024; Xie et al., 2024), enabling temporally coherent and visually rich content synthesis
from text prompts or a single image. Image generators (Koh et al., 2021; 2023; Yu et al., 2023;
Sargent et al., 2024; Seo et al., 2024) allow us to synthesize novel views with conditions on targeted
viewpoints. Text-to-video generators such as Sora (Brooks et al., 2024) can generate minutes-long
videos from text. Extensions incorporating camera trajectories as conditioning signals (Yin et al.,
2023; Bar et al., 2025; He et al., 2025a;b; Zhou et al., 2025a; Bahmani et al., 2024a) push video
generation toward dynamic scenes. However, the absence of a unified conditioning framework
hinders integration into downstream applications (e.g., embodied decision making) and prevents fair
cross-method comparisons. Moreover, these generative methods remain passive: generated worlds are
treated as static backdrops and evaluated in an open-loop fashion using visual quality score (Huang
et al., 2024) or controllability score (Duan et al., 2025). In contrast, our work assesses not only
generation quality but also closed-loop task success within a physical simulation.

World models. Video-based generative models used as world models have shown effectiveness
across a range of domains, including games (Alonso et al., 2024; Yu et al., 2025b; Li et al., 2025c;
Ye et al., 2025; He et al., 2025c), manipulation (Du et al., 2023; Ko et al., 2023; Du et al., 2024;
Yang et al., 2024a; Zhen et al., 2025), autonomous driving (Gao et al., 2024; Hu et al., 2023), and
navigation (Bar et al., 2025; Wang et al., 2023; Koh et al., 2021), with extensions to broader embodied
tasks (Lu et al., 2025; Zhang et al., 2025a; Long et al., 2025; Yang et al., 2025c). However, current
evaluation frameworks for these world models are often limited to visual metrics (Duan et al., 2025;
Li et al., 2025b) or to a single embodied task in a narrow domain (Bar et al., 2025; Zhen et al., 2025).
The VP2 benchmark (Tian et al., 2023) moves toward a control-centric evaluation by measuring the
utility of video prediction models in model-based planning. However, its simple setting, including
limited task diversity and the use of earlier video prediction architectures, limits its relevance to
modern video generative models and more complex embodied scenarios. In contrast, our work
provides a broader evaluation across four closed-loop embodied tasks, systematically benchmarking
the practical utility of diverse world models that are pretrained on large-scale Internet video datasets.

B EMBODIED TASK DETAILS

This section details the setups for the four embodied tasks evaluated in World-In-World: Active
Recognition (AR) in Appendix B.1, Image-Goal Navigation (ImageNav) in Appendix B.2, Active Em-
bodied Question Answering (A-EQA) in Appendix B.3, and Robotic Manipulation in Appendix B.4.
We also describe the policies used across these tasks in Appendix B.5 and summarize the world
model details in Appendix B.6.
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B.1 ACTIVE RECOGNITION (AR)

All AR experiments are performed in Habitat-Sim using scenes from the validation split of Matter-
port3D (Chang et al., 2017). We focus on 29 scenes and curate a subset of 551 challenging episodes
adapted from the dataset released by prior work (Fan et al., 2024). Each episode is manually inspected
to ensure that it presents either an extreme viewpoint or a heavily occluded target object. These
conditions force the agent to actively explore the environment and to rely on its world model for
informed decision-making.

Task setup. In the AR setting, the agent is allowed at most K = 10 decision steps. At each step t,
the agent receives an RGB observation ot that includes a panoramic view and a front view with a
horizontal field of view of 90◦. The agent’s output at each step consists of answers to two multiple-
choice queries: (i) which object category ŷt matches the target. (ii) which navigation primitive at∈V
to execute next. For each query, the VLM selects the token with the highest likelihood, and the
associated probability is interpreted as the model’s confidence. After choosing at, the agent executes
the action, acquires the next observation, and proceeds to step t+1. The episode terminates when
either the step budget K is reached or the confidence of the predicted category ŷt exceeds 95%.

Integrating a world model. Within the AR pipeline, the world model supports decision-making
in two complementary ways that mirror the two queries above. For query (i), the model generates
synthetic future views that act as auxiliary evidence in addition to the real observation ot. These
additional cues help the agent reason about occlusions, extreme viewpoints, and other distribution
shifts that hinder recognition, as illustrated in Figure 8. For query (ii), agent will first generate
M candidate action sequences {Am

t }Mm=1, each of length L. Given each candidate plan and its
corresponding predicted observations, the agent estimates the value of alternative low-level control
sequences before committing to an action in the real environment. Unlike a baseline policy that
greedily chooses at+1 from ot alone, the agent equipped with a world model compares simulated
outcomes for all candidates and executes the sequence that is expected to yield the most informative
next view. When a world model is used, the planner proposes M = 2 candidate action sequences per
step, each with horizon L = 4.

What is the 
target object?

Planning Enhancement 

Act. 4: ForwardAct. 3: ForwardAct. 2: ForwardAct. 1: Turn Left

World Model

Perception Enhancement

Figure 8: In AR, the world model supports both queries (perception and planning). In this example,
the agent must identify a wooden door that is initially visible only from an extreme viewpoint. For
each candidate action sequence, the world model predicts future observations; these forecasts augment
the agent’s perception and inform the choice of the next action.

Bounding box annotation. The target object is marked by a red bounding box overlaid on the image.
For the current real observation ot, the box is obtained from Habitat ground-truth annotations. For
the predicted frames {ôi}t+L

i=t+1 produced by the world model, we apply SAM2 (Ravi et al., 2024) to
segment the target, seeding the segmenter with the ground-truth box from the current real observation
ot to maintain correspondence across time.

Metrics. AR performance is reported using two metrics: (1) Success Rate (SR), defined as the
fraction of episodes in which the final predicted label ŷ matches the ground-truth label y; and (2)
Mean Trajectory Length, defined as the average number of executed actions before the agent either
issues its final prediction or exhausts the step budget K.
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B.2 IMAGE-GOAL NAVIGATION (IMAGENAV)

Image-Goal Navigation (ImageNav), also known as goal-conditioned visual navigation, requires an
embodied agent to reach the target location depicted by a single reference image of the goal. The
environment is unknown, so the navigation policy must determine how to explore in order to locate
the goal efficiently. To examine how world models can assist, we create 144 ImageNav episodes
taken from 87 validation scenes of HM3D (Ramakrishnan et al., 2021).

Task setup. Each episode permits at most K = 20 decision steps. As in the AR setting, at step t
the agent receives an RGB observation ot comprising a panoramic view and a front view with a
horizontal field of view of 90◦. The agent then proposes a sequence of low-level navigation primitives
At = [at+1, at+2, . . . , at+L] with a maximum horizon of L = 5. The first L− 2 primitives from
the selected plan are executed in the real environment, after which the agent replans based on the
newly acquired observation. An episode is successful if, within the budget of K steps, the agent’s
position enters a sphere of radius Rg = 0.5,m centered at the location specified by the goal image g.

Integrating a world model. In ImageNav, the agent answers only the navigation query of which
action sequence to execute next; therefore, the world model is used exclusively for planning enhance-
ment. The agent first enumerates several candidate action sequences. For each candidate, the world
model predicts the future observations that would follow if the sequence were executed from the
current state. The agent then scores each sequence by assessing how informative its predictions are
for locating the goal, and selects the sequence with the highest expected utility. When a world model
is used, the planner proposes M = 3 candidate action sequences at each decision step, with horizon
L = 5. The first L− 2 actions from the chosen sequence are carried out before the next cycle begins.

Metrics. We report three standard metrics for ImageNav: (1) Success Rate (SR), the fraction of
episodes in which the agent reaches the goal within the decision budget; (2) Mean Trajectory Length,
the average number of executed actions across all episodes; and (3) Success weighted by Path Length
(SPL), which accounts for both success and path efficiency. Formally, for a set of N episodes,

SPL =
1

N

N∑
i=1

Si
L∗
i

max
(
Li, L∗

i

) × 100%,

where Si ∈ {0, 1} indicates whether episode i is successful, L∗
i is the shortest path length from the

start position to the goal for episode i, and Li is the actual path length executed by the agent in that
episode.

B.3 ACTIVE EMBODIED QUESTION ANSWERING (A-EQA)

Active Embodied Question Answering (A-EQA) tasks an embodied agent with answering open-ended,
natural-language questions after actively exploring an environment. The questions span six broad
categories that are common in embodied QA: recognizing objects, recognizing object attributes,
recognizing object states, localizing objects, performing spatial reasoning, and performing functional
reasoning. Our evaluation set contains 184 questions distributed across 54 indoor scenes drawn from
the official OpenEQA split (Majumdar et al., 2024) and the validation set of HM3D (Ramakrishnan
et al., 2021).

Task setup. In A-EQA, there is no predefined navigation goal, so the agent must design its own
exploration strategy to gather sufficient visual evidence for answering the question. At every decision
step t, the agent receives a panoramic RGB observation that we decompose into four perspective
views, each with a horizontal field of view of 105◦ (see Figure 10). The exploration budget is limited
to 250 low-level actions; a single decision step can comprise multiple low-level actions, depending on
the high-level intent. An episode terminates when the budget is exhausted or when the agent outputs
a final answer ŷ.

For A-EQA, we implement a two-level policy that separates deliberation and control. The high-level
planner periodically issues one of two types of commands: (i) a textual instruction (for example,
“move to the hallway visible in the front view”), or (ii) the index of a landmark object detected
in the current panorama. Once a high-level command is produced, execution is delegated to the
low-level controller. If the command specifies a landmark, the controller uses depth data together
with a custom pathfinder to plan and follow a route to that landmark. If the command is a textual
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instruction, the controller generates a sequence of low-level actions to carry out the instruction. This
planner-controller loop continues until either the 250 atomic actions are consumed or the high-level
planner decides to emit the final answer ŷ.

How many 
cushions are on 

the red sofa?

: Candidate plans from WMs

: Executed plan

Figure 9: Overview of our embodied closed-loop evaluation for A-EQA. For each question, the
high-level planner proposes multiple candidate action plans and queries the world model to generate
the corresponding future observations. The agent then evaluates each plan together with its predicted
observations and selects the plan that maximizes the expected reward before executing it in the
environment.

Integrating a world model. In A-EQA, the world model is primarily used to strengthen the high-
level planner. At each high-level decision point, the planner samples M candidate action plans
and queries the world model to produce the corresponding predicted observations, as illustrated in
Figure 9. The agent then evaluates each plan-observation pair (Â(m)

t , Ô
(m)
t ) and chooses the plan

that maximizes the estimated reward under the current question context. This differs from the AR
setting, where perception and planning are evaluated through two separate queries. In A-EQA, the
high-level planner must both design a long-horizon exploration sequence and decide when to stop
exploring to output a final answer ŷ. Consequently, the world model supports a single unified query:
the predicted observations simultaneously refine the agent’s understanding of the scene and provide
forecasts for scoring alternative exploration plans. When a world model is enabled, the planner
proposes M = 3 candidate sequences per step, each with horizon L = 14. Unlike AR or ImageNav,
only the terminal predicted observation at step L is returned to the high-level planner for scoring,
rather than the full rollout over all L steps.

Curr. View: Front Curr. View: Left

Curr. View: Right Curr. View: Back

Figure 10: Illustration of the Set-of-
Marks (SoM) representation that en-
codes candidate navigable directions.
The high-level planner chooses among
these discrete landmarks when con-
structing candidate action plans.

Landmark detection and labeling. Landmark objects are
detected by first running YOLO-World to obtain bound-
ing boxes and then applying SAM2 to derive instance
masks (Ravi et al., 2024; Cheng et al., 2024). This detection
pipeline follows the Set-of-Marks (SoM) strategy (Yang
et al., 2023a) shown in Figure 10 and provides a discrete
set of navigable targets for high-level planning.

Metrics. A-EQA performance is evaluated with three met-
rics. (1) Answering Score: a large language model (e.g.,
GPT-4o) compares the agent’s final answer ŷ to the ground-
truth answer y and assigns a raw score in [1, 5], where 5
indicates a perfect match. We average the raw score across
episodes and then linearly map it to [0, 100]. (2) Mean
Trajectory Length. This is the average travel distance the
agent covers before either producing its final answer or
exhausting the step budget K, lower is better. (3) Success
weighted by Path Length (SPL): this metric rewards both
answer quality and navigation efficiency. For episodes in
which the agent fails to return an answer, we fall back to its
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blind LLM variant and set the SPL contribution to zero. Formally,

SPLA-EQA =
1

N

N∑
i=1

(
σi − 1

4

)
L∗
i

max
(
Li, L∗

i

) × 100%,

where N is the number of evaluation episodes, σi ∈ [1, 5] denotes the raw Answering Score for
episode i, L∗

i denotes the shortest-path length from the start to a viewpoint that affords a correct
answer, and Li denotes the actual path length executed by the agent in episode i. A higher value
indicates both more accurate answering and more efficient exploration.

B.4 ROBOTIC MANIPULATION

We study whether world models can improve low-level manipulation, which is a core capability
for embodied agents. Our evaluation covers four robotic manipulation tasks in RLBench (James
et al., 2020): Push Buttons, Slide Block to Color Target, Insert onto Square Peg, and Stack Cups.
RLBench is a widely used benchmark for robot learning. Each episode provides a natural-language
instruction that specifies the task objective, and the agent must control a 7-DoF robotic arm to satisfy
that objective. We prepare a total of 200 evaluation episodes, with 50 episodes for each task.

Task setup. At each decision step t, the agent receives an observation ot and proposes an action
sequence At =

[
at+1, at+2, . . . , at+L

]
, where each low-level action is parameterized as at =

[x, y, z, roll, pitch, yaw, gripper]. We consider two base policy settings with different horizons:
L = 5 for a VLM base policy that emits discrete actions, and L = 50 for a 3D diffusion base policy
that emits continuous actions. An episode is counted as a success if the specified goal g is achieved
within the step budget K.

Auxiliary Information of 
Object Positions:

{'object 1': [45, 13, 18], 
'object 2': [72, 20, 18], 
'object 3': [50, 42, 17], 
'object 4': [36, 42, 18], 
'object 5': [69, 39, 15]}

Task objective:
Slide the red block to 

magenta target

Figure 11: Illustration of the auxiliary
information provided to the VLM pol-
icy. The objects are marked with in-
dices, and their positions are given to
the VLM to facilitate decision-making.

When a VLM is the base policy, directly producing precise
low-level controls is challenging for current VLMs. Fol-
lowing (Yang et al., 2025a), we therefore introduce two
enhancements. First, we discretize the action space by
dividing the position components (x, y, z) into 100 bins
and the orientation components (roll, pitch, yaw) into 120
bins. Second, we augment the observations with object
index markers and provide precise object poses for indexed
objects so that the VLM can directly access spatial infor-
mation during planning (shown in Figure 11). Under this
configuration, the manipulation policy is allowed at most
K = 15 low-level action steps per episode. In contrast,
when using a 3D diffusion policy (Ke et al., 2024) as the
base policy, the controller naturally generates continuous
low-level actions, so we do not apply the discretization or
the additional indexing enhancements. In this configuration,
the manipulation policy is permitted at most K = 8 macro decision steps per episode.

Integrating a world model. As in ImageNav, we use the world model exclusively for planning
enhancement. The agent executes a propose, simulate, and revise loop so that it can reason about
the consequences of alternative plans before applying any action in the real environment. At each
decision step, the planner proposes M = 5 candidate action sequences. When the length of a
candidate sequence is shorter than the world model’s required action-conditioning length, the unified
action API linearly interpolates the sequence to the required length. Conversely, when the candidate
sequence is longer than required, the unified action API uniformly samples actions along the sequence
to match the world model’s input length. The planner then evaluates the simulated outcomes and
selects the sequence with the highest expected reward, and the loop repeats with updated observations.

Metrics. We report two standard metrics for manipulation tasks: (1) Success Rate (SR), the fraction
of episodes in which the agent reaches the goal within the decision budget; and (2) Mean Trajectory
Length, the average number of decision steps across all episodes.
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B.5 POLICIES IN EMBODIED TASKS

There are three types of policies in paper: the base policy, the proposal policy, and the revision policy.
The base policy is an independent policy that interacts with the environment without using a world
model, and when a world model is enabled, it is always the same as the corresponding proposal
policy. When a world model is integrated, the proposal policy generates multiple candidate action
sequences at each decision step, and the revision policy evaluates these candidates and selects one
based on the predicted rollouts produced by the world model.

B.5.1 BASE POLICIES AND PROPOSAL POLICIES

In our experiments, we employ two types of base policies for AR and ImageNav: a VLM policy
and a heuristic policy. For the VLM policy, we use Qwen2.5-VL-72B-Instruct-AWQ (Bai et al.,
2025) as the default base policy and as the proposal policy when integrated with a world model
to answer queries. For the heuristic policy, we implement a primitive action sampling mechanism
that draws actions from the action space according to the previously executed actions and a set
of handcrafted rules. Concretely, if there exists a previous action, then the next action must not
be its inverse (for example, a turn_left cannot be immediately followed by a turn_right).
In addition, we prevent excessively long subsequences of turns in the same direction by capping
the maximum number of consecutive turns to four. These rules help the heuristic policy to avoid
redundant back-and-forth movements and to explore the environment effectively.

For manipulation tasks, we likewise consider two base policies: a VLM policy and a 3D diffusion
policy. The VLM policy remains Qwen2.5-VL-72B-Instruct-AWQ by default. The 3D diffusion
policy follows 3D Diffuser Actor (Ke et al., 2024); we train it using the authors’ official code. To
encourage diverse action trajectory proposals, we drop its text input and modify the task-definition
scripts so that task variants occur with equal frequency during training. For each manipulation task,
the diffusion policy is trained on 120 demonstrations and used as the proposal policy to generate
short-horizon 7-DoF gripper action sequences within the planning loop.

B.5.2 REVISION POLICIES

The revision policy is the component that refines the proposals produced by the proposal policy
using the world model rollouts. At each decision step t, the proposal policy outputs M candidate
action sequences {Â(m)

t }Mm=1, and the world model predicts the corresponding future observations
{Ô(m)

t }Mm=1. The revision policy

πrevision :
(
{(Â(m)

t , Ô
(m)
t )}Mm=1, ot, g

)
7→ D⋆

t

consumes these imagined trajectories together with the current observation ot and goal g, and
outputs the final decision D⋆

t . Depending on the task, D⋆
t may be a pure action decision (ImageNav,

Manipulation) or a joint action–answer decision (AR, A-EQA).

Score-and-select for action-only tasks. For Image-Goal Navigation and Robotic Manipulation,
the objective is to reach a goal state, and the revision policy only needs to choose which action
sequence to execute. In these settings, D⋆

t = Â⋆
t and πrevision is instantiated as a score-and-select

operator as in Equation (4) of the main paper:

Â⋆
t = Â

(m⋆)
t , m⋆ = arg max

m∈{1,...,M}
Sact

(
Â

(m)
t , Ô

(m)
t

∣∣ot, g
)
,

where Sact(·) is an action-centric scoring function that estimates the expected task reward of each
imagined trajectory (e.g., progress toward the goal).

In most experiments, we instantiate Sact with a VLM-based reward model: we use Qwen2.5-VL-
72B-Instruct-AWQ as the default revision policy to score candidate rollouts and to select the action
sequence with the highest predicted utility. For ablations, we also replace Qwen2.5-VL-72B-Instruct-
AWQ with InternVL3-78B-AWQ (Zhu et al., 2025); results in Table 7 show that world model
integration consistently improves performance regardless of the specific VLM used. In addition to
VLM-based scoring, we consider task-specific reward functions when a direct signal is available.
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Table 7: Task performance for InternVL3 variants with and without a world model. Higher SR%,
SPL%, and Ans. Score are better; lower Mean Traj. is better.

Model Details AR ImageNav A-EQA

Model Type Method SR ↑ Mean Traj. ↓ SR ↑ Mean Traj. ↓ SPL ↑ Ans. Score ↑ Mean Traj. ↓ SPL ↑

Base Policy InternVL3 (w/o WM) 49.91 7.06 13.19 60.30 7.46 47.28 20.45 31.22

+ Image Gen. SVD† 55.72 5.37 40.97 52.50 26.26 47.13 16.78 34.54

For example, in Image-Goal Navigation we also evaluate an LPIPS-based reward that measures
perceptual distance between predicted observations and the goal image, and use this score in place of
the VLM-based Sact.

Joint action–answer refinement for AR and A-EQA. For AR and A-EQA, each episode com-
bines action planning and question answering. Here, the world model rollouts are used not only
to guide the next action, but also to provide auxiliary visual evidence for the final answer (e.g.,
multi-view observations that reduce occlusions). This leads to a richer instantiation of the revision
policy than the pure score-and-select operator above.

At time step t, the output of πrevision is decomposed into an action component and an answer compo-
nent. Let ŷt denote the predicted answer (a category label for AR and a natural-language answer for
A-EQA). We write

D⋆
t =

(
Â⋆

t , ŷt
)
= πrevision

(
{(Â(m)

t , Ô
(m)
t )}Mm=1, ot, g

)
.

In our implementation, the action component Â⋆
t is still selected by a score-and-select rule with an

action scoring function Sact:

Â⋆
t = Â

(m⋆)
t , m⋆ = argmax

m∈{1,...,M}
Sact

(
Â

(m)
t , Ô

(m)
t

∣∣ot, g
)
,

while the answer component ŷt is obtained by aggregating predicted futures from all candidates:

ŷt = fans

(
ot, g, {Ô(m)

t }Mm=1

)
.

Here, Sact(·) again scores trajectories from the perspective of future task performance (for example,
preferring trajectories that move the agent toward informative views or closer to the target object),
and fans(·) is an answer head that consumes the current observation, the goal, and the set of predicted
futures as multi-view evidence. In practice, fans is implemented with the same vision-language model
as the proposal policy, which takes the frames as input and outputs the answer.

Thus, for AR and A-EQA, the revision policy operates in two coupled ways: it chooses how the agent
should move next via Sact and Â⋆

t , and it simultaneously uses the simulated rollouts as additional
context to produce a more informed answer ŷt. This joint action–answer refinement is a richer
instantiation of πrevision than the score-only operator in Equation (4), and is specific to tasks that
require both control and question answering.

B.6 WORLD MODELS IN EMBODIED TASKS

Output format. The world models evaluated in our framework fall into two categories according
to their native output format: perspective models and panoramic models. Perspective models, such
as NWM (Bar et al., 2025), LTX-Video (HaCohen et al., 2024), and Wan2.1 (Wan et al., 2025),
generate frames in a perspective view. Panoramic models, including PathDreamer (Koh et al., 2021),
SE3DS (Koh et al., 2023), and our post-trained variants, produce equirectangular panoramas. For
integration into our closed-loop pipeline, panoramic outputs are decomposed into perspective views,
which are then supplied to the agent. In A-EQA, the agent consumes four principal perspective views
(front, left, right, back) when they are available. In AR, the agent uses the view that contains the
target bounding box; if the box is not visible, we discard the generated frames until the predicted box
(from SAM2) enters the field of view. Unless otherwise specified, each perspective view image is
resized to 384× 384 pixels before being passed to the agent.

8



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Input format. Panoramic models are conditioned on an equirectangular panorama at a resolution of
576× 1024 pixels. Perspective models, when possible, take the current front-view observation with
resolution 480× 480 as input. Some models require additional modalities. SE3DS expects a depth
map, while PathDreamer requires both depth and a per-pixel semantic label map. For all depth-aware
models, we provide ground-truth depth from Habitat. For PathDreamer, the initial semantic map is
obtained by running a pretrained RedNet (Jiang et al., 2018) on the initial RGB-D frame to produce
per-pixel labels that match the required input specification.

C POST-TRAINING RECIPE FOR EMBODIED WORLD MODELS

In this section, we describe how an off-the-shelf video generation model is adapted, via post-training,
into an action-controllable world model suitable for embodied tasks. We first formalize the learning
objective and the action-observation alignment (Appendix C.1), and then detail the concrete post-
training setup used for tasks in Habitat-Sim and for Robotic Manipulations (Appendix C.2).

C.1 PROBLEM FORMULATION

Let x1∈R3×H×W denotes the initial RGB frame that conditions the generation process. Our goal is
to synthesize an N -frame video X =

[
x1, x2, . . . , xN

]
∈ R3×H×W×N , where X represents a plau-

sible sequence of future observations after executing a sequence of actions A =
[
a1, a2, . . . , aN

]
.

For tasks in Habitat-Sim, we adopt a discrete action space with ai ∈ V , where V is a finite set of
navigation primitives (e.g., Forward, Turn-Left, Turn-Right, Stop). For manipulation, we
use a continuous action space with ai ∈ R7, corresponding to 7-DoF end-effector poses. Actions
in Habitat-Sim specify relative transformations between consecutive observations. Since ai maps
xi−1 to xi, no action precedes the first frame. To maintain a one-to-one alignment between frames
and actions, we prepend a special token and set a1 = aNull. In contrast, for manipulation tasks
during post-training, actions are absolute end-effector poses expressed in the world frame, so there is
naturally a one-to-one correspondence between actions and frames.

We formulate future-observation synthesis with the world model gθ by learning the conditional
distribution pθ

(
X

∣∣x1, C(A)
)
, where C(A) denotes the control signal emitted by the unified action

API. This API converts the native action sequence A into the conditioning interface expected by
the pretrained video generator (for example, a text prompt, a camera trajectory, or a sequence of
low-level controls). This formulation yields action-conditioned rollouts that evolve from the initial
frame x1 according to the specified action sequence, thereby aligning the pretrained model with the
domain distribution and action space of the target embodied tasks.

C.2 POST-TRAINING CONFIGURATION

Table 8: Post-trained (action-conditioned) world models used in our experiments, with repositories
and training configurations.

World Model Domain Repository Frames (N ) Train Res. Notes

Post-training on Habitat-Sim data
Cosmos-Predict2† (Agarwal et al., 2025) Habitat-Sim github.com/nvidia-cosmos/cosmos-predict2 13 576× 1024 Official repo
LTX-Video† (HaCohen et al., 2024) Habitat-Sim github.com/Lightricks/LTX-Video-Trainer 17 576× 1024 Official repo
Wan2.1† (Wan et al., 2025) Habitat-Sim github.com/modelscope/DiffSynth-Studio 13 576× 1024 Official repo
Wan2.2 (5B)† (Wan et al., 2025) Habitat-Sim github.com/modelscope/DiffSynth-Studio 13 576× 1024 Official repo
Wan2.2 (A14B)† (Wan et al., 2025) Habitat-Sim github.com/modelscope/DiffSynth-Studio 13 576× 1024 Official repo
SVD† (Blattmann et al., 2023a) Habitat-Sim github.com/pixeli99/SVD_Xtend 14 576× 1024 Self-adapted based on repo
Post-training on manipulation data

Cosmos-Predict2† (Agarwal et al., 2025) Manipulation github.com/nvidia-cosmos/cosmos-predict2 13 480× 480 Official repo
SVD† (Blattmann et al., 2023a) Manipulation github.com/pixeli99/SVD_Xtend 14 448× 448 Self-adapted based on repo

For tasks in Habitat-Sim, we use panoramic observations as both the input and the output of the video
generators. We fine-tune the pretrained video generation models at a resolution of 576× 1024 and
train them to predict N future frames on our self-collected panoramic action-observation corpus from
Habitat-Sim. In these tasks, the action space is discrete and comprises four navigation primitives:
Forward 0.2m, Turn_Left 22.5◦, Turn_Right 22.5◦, and Stop. For manipulation
tasks, we use front-view observations as both the input and the output of the video generators. We
fine-tune the pretrained video generation models at a resolution of 480× 480 (Cosmos-Predict2) or
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448 × 448 (SVD) and train them to predict N future frames with continuous 7-DoF end-effector
poses as conditioning.

Unless otherwise stated, post-training uses 40K sampled instances for the Habitat-Sim tasks and
for the manipulation tasks. All models are initialized from their official pretrained weights and
adapted on the corresponding dataset for one epoch. We rely on the official implementations and the
recommended hyperparameters for fine-tuning whenever available; specific post-training details of
various world models are summarized below in Tables 8 and 9.

Table 9: All the world models and their details in World-In-World. “†” denotes post-trained (action-
conditioned) variants.

World Model Model Type Control Type Input Type #Param.

Zero-shot (no post-training)
PathDreamer (Koh et al., 2021) Image Gen. Viewpoint RGB-D; Pano 0.69B
SE3DS (Koh et al., 2023) Image Gen. Viewpoint RGB-D; Pano 1.1B
NWM (Bar et al., 2025) Video Gen. Trajectory RGB 1B
SVD (Blattmann et al., 2023a) Video Gen. Image RGB 1.5B
LTX-Video (HaCohen et al., 2024) Video Gen. Text RGB 2B
Hunyuan (Kong et al., 2024) Video Gen. Text RGB 13B
Wan2.1 (Wan et al., 2025) Video Gen. Text RGB 14B
Wan2.2 (Wan et al., 2025) Video Gen. Text RGB 5B
Wan2.2 (Wan et al., 2025) Video Gen. Text RGB A14B
Cosmos-Predict2 (Agarwal et al., 2025) Video Gen. Text RGB 2B
Runway Gen4 (Runway Research, 2025) Video Gen. Text RGB –
Post-trained (action-conditioned)

SVD† (Blattmann et al., 2023a) Video Gen. Action RGB; Pano 1.5B
LTX-Video† (HaCohen et al., 2024) Video Gen. Action RGB; Pano 2B
Wan2.1† (Wan et al., 2025) Video Gen. Action RGB; Pano 14B
Wan2.2† (Wan et al., 2025) Video Gen. Action RGB; Pano 5B
Wan2.2† (Wan et al., 2025) Video Gen. Action RGB; Pano A14B
Cosmos-Predict2† (Agarwal et al., 2025) Video Gen. Action RGB; Pano 2B

In Table 10, we summarize the computational resources required to post-train each world model
on ∼40k domain-specific clips collected from Habitat-Sim. This post-training stage is intentionally
lightweight and is several orders of magnitude less expensive than full pretraining. For 14B-parameter
variants, we adopt LoRA fine-tuning to reduce GPU memory usage, while all other models are
fine-tuned with full weights.

Table 10: Post-training resources for ∼40k domain clips per model. The procedure is lightweight and
substantially cheaper than full retraining.

Model Model Size GPU Memory (peak) H100 GPU-hours

SVD 1.5B 84 GB 29
LTX-Video 2B 61 GB 5
Wan2.1 14B 57 GB 74
Cosmos-Predict2 2B 71 GB 15

D POST-TRAINING DATASET CONSTRUCTION

For the post-training dataset used in manipulation tasks, we rely on the official RLBench code-
base (James et al., 2020) to generate data. Specifically, we produce 200 demonstrations for each
manipulation task. Each demonstration includes approximately 150 front-view RGB observations
together with the corresponding sequence of 7-DoF end-effector poses. These pose sequences are
aligned with the image observations and serve as the action labels during post-training. For the
tasks evaluated in Habitat-Sim (Savva et al., 2019), there is no existing pipeline for constructing a
large-scale dataset of panoramic action trajectories. To address this gap, we build a comprehensive
post-training dataset by sampling action trajectories from the training splits of indoor scenes in
HM3D (Ramakrishnan et al., 2021) and Matterport3D (Chang et al., 2017). Our trajectory sampling
procedure is described in Appendix D.1. A summary of the resulting dataset statistics is provided in
Table 11.

D.1 TRAJECTORY SAMPLING

10
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Algorithm 1 Three-stage construction of the post-training panoramic dataset
Input: scene mesh S, waypoint density ρ, weight α, filter radius rf , leaf ratio η
Output: set of panoramic trajectories T

// Stage 1: waypoint selection
1: S ← Area(S)
2: Nwp ← max

(
1400, ⌊ρS⌋

)
▷ target number of points

3: P ← UNIFORMSAMPLENAVIGABLE(S, Nwp)
4: build geodesic distance matrix D on P
5: for all pi ∈ P do ▷ leaf score s(i)
6: ecc(i)← maxj Dij

7: d̄(i)← 1
|P|−1

∑
j Dij

8: s(i)← ecc(i) + α d̄(i)

9: sort P by s(i) in descending order ▷ higher s(i) = more peripheral
10: W ← ∅
11: for all pi in sorted P do ▷ radius-based greedy pruning
12: if ∀w ∈ W : Diw ≥ rf then
13: W ←W ∪ {pi}

// Stage 2: path generation
14: T ← ∅
15: Nleaf ← ⌈ηNwp⌉
16: U ← W[:Nleaf] ▷ unvisited waypoints
17: c← RANDOMSAMPLE(U) ▷ random start
18: while U ̸= ∅ do
19: n← argminw∈U\{c} GEODESICDIST(c, w)
20: τ ← SHORTESTPATH(c, n) ▷ Habitat planner
21: record panoramic RGB-D frames along τ and append to T

// Stage 3: waypoint dynamic update
22: for all w ∈ W do
23: if ∃m ∈ τ : GEODESICDIST(m,w) < rf then
24: W ←W \ {w} ▷ mark as visited
25: recompute s(·) on updatedW , then sort in descending order
26: U ← W[:Nleaf] ▷ refresh unvisited set
27: c← n
28: return T

Statistic Value

Number of scenes 858
Panorama RGB frames 763,724
Action trajectories 439,213
Depth recorded ✓

Camera poses recorded ✓

Low-level actions recorded ✓

Table 11: Statistics of the post-training
panoramic dataset.

Our aim is to record physically reasonable trajectories
that resemble the exploration behavior of real agents in
indoor spaces. We follow three guiding principles: (i)
Diversity. The trajectories should cover many viewpoints
and actions so that the model sees the scene from different
perspectives and motion patterns. (ii) Plausibility. The
paths must respect physical constraints; the agent must not
move through walls or other solid objects. (iii) Manage-
ability. The data should be free of excessive redundancy
so that training remains balanced and efficient.

We implement these principles with a sampling procedure
shown in Algorithm 1 and described below.

1. Waypoint selection. For a scene of floor area S we set the waypoint density to ρ = 4 m−2 and
draw

Nwp = max
(
1400, ⌊ρS⌋

)
navigable points P uniformly across the scene. We construct a complete graph whose edge
weights Dij are the geodesic distances between points pi and pj . Each vertex i is assigned a leaf
score

s(i) = ecc(i) + α d̄(i),

11
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where ecc(i) = maxj Dij is the eccentricity, d̄(i) = (|P| − 1)−1
∑

j Dij is the mean geodesic
distance to all other vertices, and α = 1.7. Sorting vertices by s(i) in descending order, we
greedily build a waypoint setW that respects a minimum spacing of rf = 3m: a candidate v is
accepted only if Dvj ≥ rf for every waypoint j already chosen.

2. Path generation. We maintain a list U of unvisited waypoints, initialized with the top Nleaf
vertices of W . Starting from a random waypoint c ∈ U , we repeatedly move to the nearest
unvisited waypoint

n = arg min
w∈U\{c}

GEODESICDIST(c, w),

and use the Habitat path-finder to compute the shortest collision-free path τ from c to n. Panoramic
RGB-D frames are recorded at every step along τ and appended to the trajectory set T .

3. Waypoint dynamic update. After each segment τ we label any waypoint w with
GEODESICDIST(m,w) < rf for some path point m ∈ τ as visited and remove it from W .
We then recompute s(·) on the remaining vertices, resortW , and refresh the unvisited list

U ← W[:Nleaf].

The next segment starts from c ← n, and the loop continues until U is empty. This dynamic
reselection guarantees that peripheral regions are covered while avoiding redundant sampling in
interior corridors.

Figure 12: Top-down visualization of sampled waypoints in a scene. Red (left) and yellow (right)
dots are the final waypoints after radius-based pruning. The proposed strategy places waypoints
throughout peripheral regions while avoiding redundant interior points, yielding diverse and spatially
balanced trajectories.

Compared with random sampling of start and end waypoints, the above strategy distributes waypoints
across peripheral areas such as bedrooms while avoiding redundant paths through interior corridors.
The resulting dataset therefore offers a balanced and diverse set of viewpoints for post-training (see
Figure 12).

E VISUALIZING WORLD MODEL PREDICTIONS

We illustrate the behavior of several world models under identical action sequences generated by the
planner. Figure 13 and Figure 14 show example rollouts in which the action sequence consists solely
of Forward actions; a well-behaved model should yield pure forward motion. The figures contrast
models that follow the commands with those that drift or hallucinate, underscoring the importance
of precise action control for downstream embodied tasks. For further examples of good and bad
predictions, see Figures 15 to 18.
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Action Control: Forward
Good Example:

Bad Examples: 

Figure 13: Examples of good and bad predictions. The action sequence contains only Forward
actions. Models that violate this requirement yield observations that can mislead the planner.

Action Control: Forward
Good Example:

Bad Examples: 

Figure 14: Examples of good and bad predictions. The action sequence contains only Forward
actions. Models that violate this requirement yield observations that can mislead the planner.

13



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Good Examples:

Bad Examples: 

Figure 15: Additional examples of good and bad predictions.

Good Examples:

Bad Examples: 

Figure 16: Additional examples of good and bad predictions.
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Good Examples:

Bad Examples: 

Figure 17: Additional examples of good and bad predictions.
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Good Examples:

Bad Examples: 

Figure 18: Additional examples of good and bad predictions.
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F PROMPT TEMPLATES USED IN WORLD-IN-WORLD

In this section, we provide the exact prompt templates used in our experiments for four tasks in
World-In-World: (i) Active Recognition (AR), (ii) Image-Goal Navigation (ImageNav), (iii) Active
Embedded Question Answering (A-EQA), and (iv) Robotic Manipulation.

F.1 ACTIVE RECOGNITION (AR) PROMPT

AR Answerer Prompt

Please recognize the object in the image bounded by the red box.

AR Planner Prompt

You are an AI agent tasked with identifying a target object within an image—specifically, the
object enclosed by a red bounding box.
Your objective is to navigate toward a viewpoint that maximizes the target’s visibility and
recognition accuracy.
Instructions:

1. Based on the current {obs_key} observation, plan the next
<look_ahead_action_num> action(s) to take in sequence.

2. Use the following heuristics to guide planning:
• If the red-boxed object appears on the left side of the image, turning left often

improves visibility.
• If it appears on the right side, turning right is usually beneficial.
• If the object is partially occluded or obstructed, consider repositioning to bypass

the obstacle and refine your viewpoint.
3. Choose a sequence of actions that leads to a clear, centered, and unobstructed view

of the red-boxed object.

AR Answerer Additional Prompt (with WM Rollouts)

You now have a composite visualization formed by stitching imagined views from multiple
perspectives around your current position. These perspectives are centered on the target
object (enclosed within the red bounding box).
Use these synthesized views to:

• Improve object identification accuracy.
• Make more informed recognition decisions.

AR Planner Additional Prompt (with WM Rollouts)

You are now simulating imagined future trajectories by generating hypothetical actions and
their corresponding observations.
Use these imagined observations to:

• Evaluate the potential outcomes of different action sequences.
• Make informed navigation decisions by selecting the next best action based on

predicted future states and your current state.
Note:

• Each imagined frame is annotated with the specific action taken and its index at the
top of the image.

• Pay attention to the presence of red bounding boxes indicating the target object. If
the target is not visible in a frame, this indicates a poor action.

17
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• You should adjust your action selection strategy to avoid such failure states.

F.2 IMAGE-GOAL NAVIGATION (IMAGENAV) PROMPT

ImageNav Planner Prompt

You are an AI navigation agent tasked with locating the position from which the goal image
was captured. Your objective is to plan a sequence of actions that leads to a position where
the goal image is clearly visible, centered in the front view, and appears to have been taken
within at your current position.
Inputs: You are provided with a sequence of images:

1. First, the current egocentric observation: {obs_key}.
2. Last, the goal image: a reference image that represents the target viewpoint you are

trying to reach.
Task:

1. Based on the input images, plan the next <{look_ahead_action_num}> ac-
tion(s) in order.

2. Optimize for:
• Alignment: The goal image should be centered in the front view.
• Proximity: Your position should match the goal image’s capture point.
• Visibility: The goal image should appear clear and unobstructed in your current

front view.

ImageNav Planner Prompt (with WM Rollouts)

You are an AI navigation agent tasked with locating the position from which the goal image
was captured. Your objective is to plan a sequence of actions that leads to a position where
the goal image is clearly visible, centered in the front view, and appears to have been taken
within at your current position.
Inputs: You are provided with:

1. The goal image: a reference image that represents the target viewpoint you are
trying to reach.

Task:
1. Based on the input images, plan the next <{look_ahead_action_num}> ac-

tion(s) in order.
2. Optimize for:

• Alignment: The goal image should be centered in the front view.
• Proximity: Your position should match the goal image’s capture point.
• Visibility: The goal image should appear clear and unobstructed in your current

front view.

F.3 ACTIVE EMBEDDED QUESTION ANSWERING (A-EQA) PROMPT

A-EQA High-Level Planner Prompt

You are an embodied navigation and question-answering agent specialized in indoor scene
understanding. Your goal is to either answer the user’s question directly from the current
observation or propose a high-level navigation planning to gather more information.
User Query:
{question}

18
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Inputs:
You are provided with the following:

1. A stitched panoramic image with annotations — composed of multiple directional
images captured from your current position (the name of each view is labeled on the
top of the image). Each detected object is annotated with its contour and a unique
object index.

2. A stitched panoramic image without annotations — visually identical but without
overlays, serving as a clean reference.

3. A dictionary mapping detected objects to their corresponding perspective views and
object indices in the annotated image:
Format: {{view_id: {{object_index: object_name}}}}
Current mapping: {detected_objs}

Note all the provided images are in the formt of {obs_key}.
Task Description:
Your task is to:

1. Analyze the visual information from each perspective direction.
2. Identify all possible exits and doorways in the environment.
3. Give one high-level navigation plan to further explore the scene in order to answer

the User Query.
4. If the answer to the question is fully evident from the current observation, provide it

directly. Otherwise, set your current answer to “None”.
Output Format:
Return your response as a dictionary with the following structure: {
’Reason’: <Your visual reasoning and analysis>,
’Action Plan’: <Description of your next high-level
navigation plan>,
’Chosen View’: <One of: ’front’, ’left’, ’right’, or
’back’, indicating the view you are going to further explore
in your Action Plan>,
’Chosen Landmark’: <Index of the selected object landmark
from the annotated stitched image, or ’None’>
’Answer’: <Your answer to the User Query, or ’None’>
}
Constraints:

• Provide exactly one high-level action, including one ’Chosen View’ and one
’Chosen Landmark’.

• If no suitable annotated object is available in your desired direction, set ’Chosen
Landmark’ to ’None’ and describe your intended action in the ’Action
Plan’ field.

• Each ’Action Plan’ should include a clear and executable instruction and
stop condition.
– Good Example: ’Action Plan’: "Pass through the doorway
(object index "3") in the front view, and stop once
inside the next room."
– Good Example: ’Action Plan’: "Approach the sofa (object
idx "10") in the left view, and stop once we can see
the objects on it."
– Bad Example: ’Action Plan’: "Move into the kitchen area
visible in the view and stop once inside the kitchen." –
kitchen area is not a specific object and not clear how to get there.

• If a landmark is selected, it must correspond to a visible, annotated object in the
stitched image.
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• Do not select unlabeled objects — they typically indicate previously visited or
non-informative regions.

• Populate ’Answer’ only when you are confident the question can be answered
from the current observation. Otherwise, set ’Answer’: ’None’ in the dictio-
nary.

Tips:
• If you observe a door in a closed state, it means you cannot pass through it.
• If the current observation shows that your previous plan has not yet been completed,

it is acceptable to propose a similar plan again to continue pursuing the same goal.
• Leverage human spatial habits to guide your planning. For instance, if the goal

involves finding a television, selecting a nearby sofa may be effective, as these often
appear together in living spaces.

A-EQA Low-Level Planner Prompt

You are now performing low-level navigation action planning for an indoor scene explo-
ration task.
Inputs:
You are provided with:

1. An updated RGB image with annotations, representing the egocentric view of your
current environment:

• Detected objects are annotated with contours and unique object indices with
square text boxes.

2. A high-level navigation plan represented as a dictionary with two fields:
• ’Action Plan’: A description of the intended navigation strategy.
• ’Chosen Landmark’: The object index of the selected landmark from the

annotated image to approach, or ’None’ if no landmark is selected (in which
case follow the ’Action Plan’ description).

The current high-level plan is: {high_level_plan}
Note all the provided images are in the format of {obs_key}.
Task:
Your task is to:

1. Analyze the visual scene and identify your position relative to the goal.
2. Determine the next low-level action(s) to take in sequence, up to a maximum of

<{look_ahead_action_num}> steps.
Constraints:

• You must generate less than {look_ahead_action_num} low-level actions.
• The actions sequence should align with the goal descripted in high-level ’Action
Plan’ and ’Chosen Landmark’.

• If the navigation goal or selected landmark in the high-level plan is either:
– not visible in the current observation, or
– already reached (i.e., centered, unobstructed, and close),

then your only action should be “stop”.
Tips:

• If the landmark object is partially occluded or obstructed, consider repositioning to
bypass the obstacle before approaching it directly.

• Choose actions that meaningfully move the agent toward the selected landmark or
fulfill the intent of the high-level plan.

• Maintain spatial awareness: understand the relationship between your egocentric
view and the direction of the target.
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A-EQA High-Level Planner Additional Prompt (with WM Rollouts)

In addition to your current (real) observations, you are now provided with simulated out-
comes—low-resolution reconstructions that represent the potential result of executing future
navigation plans. These simulated outcomes are designed to help you better understand your
surroundings and support more informed navigation planning.
Each simulated outcome includes:

• Proposed High-Level Plan: A hypothetical navigation strategy used to generate
the simulated result.

• Simulated Observation: A stitched panoramic image showing what the environ-
ment might look like after following the proposed plan.

You should use this information to:
• Evaluate the potential effectiveness and correctness of the proposed high-level

strategies.
• Make informed decisions by selecting your next high-level plan based on both the

simulated information and your current real observation.
Notes:

• Object indices remain consistent across simulated and real observations.
• Simulated outcomes are NOT fully accurate. If you believe you can answer the

user query based on simulation alone, you should NOT provide a final answer yet.
Instead, select a high-level plan that will lead to a real observation and validate your
answer afterward.

Your current simulated outcomes are:

F.4 ROBOTIC MANIPULATION PROMPT

Manipulation Planner Prompt

You are a Franka Panda robot with a parallel gripper. You can perform various tasks and
output a sequence of gripper actions to accomplish a given task with images of your status.
The input space, output action space and color space are defined as follows:
Input Space
You are given the following inputs:

1. Human Instruction: A natural language command specifying the manipulation
task goal.

2. Object Dictionary:
• Each object is represented by a unique index (e.g., object 1) and mapped to a

3D discrete coordinate [X, Y, Z].
3. Annotated Scene Image:

• Each object in the image is annotated with:
– A circle point marker with
– A unique object index, which corresponds to the object dictionary.

• There is a red XYZ coordinate frame located in the top-left corner of the table.
– The XY plane represents the surface plane of the table (Z = 0).
– The valid coordinate range for X, Y, Z is: [0, {}].

Output Action Space
• Each output action is represented as a 7D discrete gripper action in the following

format: [X, Y, Z, Roll, Pitch, Yaw, Gripper state].
• X, Y, Z are the 3D discrete position of the gripper in the environment. It follows the

same coordinate system as the input object coordinates.
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• The allowed range of X, Y, Z is [0, {}].
• Roll, Pitch, Yaw are the 3D discrete orientation of the gripper in the environment,

represented as discrete Euler Angles.
• The allowed range of Roll, Pitch, Yaw is [0, {}] and each unit represents {} degrees.
• Gripper state is 0 for close and 1 for open.

Color space
• Each object can only be described using one of the colors below:
["red", "maroon", "lime", "green", "blue", "navy",
"yellow", "cyan", "magenta", "silver", "gray", "olive",
"purple", "teal", "azure", "violet", "rose", "black",
"white"],

{}

Manipulation Planner Additional Prompt (with WM Rollouts)

You are now provided with simulated outcomes in addition to your real-time observations.
These outcomes are low-resolution predictions of what the scene may look like after executing
hypothetical action plans.
They are intended to help you reason about the environment and make more informed
decisions.
Simulated Outcome Structure
Each simulated-outcome item includes:

• Proposed Action Plan: The sequence of gripper actions that led to the simulated
result.

• Simulated Observation: The simulated result after following the proposed plan.
How to Use This Information
You must consider both:

1. Your current real observation of the environment, and
2. The provided simulated outcomes.

Use these to:
• Evaluate how well each proposed plan satisfies the task objective.
• Identify if any proposed plan fully achieves the instruction goal.
• If a proposed plan appears valid and effective, you may adopt it directly as your

final response.
• If no plan fully meets the goal, generate a revised or entirely new action plan,

guided by insights from the simulations and the real-world scene.
Additional Notes

• Simulated outcomes are approximate. Treat them as helpful forecasts, not absolute
truth.

• You must analyze these hypothetical action plans and their simulated outcomes
in the reasoning_and_reflection field of the returned JSON (e.g., their
differences and why you choose one over another).

• Always prioritize correctness and robustness in the final executable plan.
You are now given the following simulated outcomes:
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G USE OF LANGUAGE MODELS

We used large language models strictly as writing assistants for language refinement: grammar
correction, style tightening, phrasing alternatives, and minor reorganization for clarity and brevity.
No prompts involved technical ideation, modeling, implementation, data analysis, or result selection.
All suggested edits were reviewed by the authors, and the technical content, experiments, results, and
conclusions are author-generated and author-validated. LLM assistance did not affect the substance
of the work.
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