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Abstract
We present a minimalistic representation model for the head direction (HD) system, aiming
to learn a high-dimensional representation of head direction that captures essential proper-
ties of HD cells. Our model is a representation of rotation group U(1), and we study both
the fully connected version and convolutional version. We demonstrate the emergence of
Gaussian-like tuning profiles and a 2D circle geometry in both versions of the model. We
also demonstrate that the learned model is capable of accurate path integration.
Keywords: U(1) rotation symmetry group, Group representation, Recurrent neural net-
work, Path integration

1. Introduction

Spatial navigation is a fundamental cognitive function shared across many species, from
insects to humans. A critical component of this navigational system is the perception of
direction, which allows animals to maintain a consistent representation of their orientation
in the environment. In mammals, this perception of direction is primarily mediated by the
head direction (HD) system, a network of neurons that collectively encode the animal’s
current head orientation relative to its environment (Taube et al., 1990a).

HD cells, discovered in the rat’s dorsal presubiculum (Rank, 1984; Taube et al., 1990b),
exhibit a remarkable property: they fire maximally when the animal’s head faces a specific
direction in the horizontal plane, regardless of location or ongoing behavior. Each cell has
a preferred direction, with firing rates decreasing as the head turns away, typically fol-
lowing a Gaussian-like tuning curve (Blair et al., 1997). Distributed across interconnected
brain regions (Taube, 2007), these cells form a neural “compass” maintaining consistent
directional representation (Cullen, 2019). Intriguingly, the HD system maintains direction
representation even without external sensory cues – a phenomenon known as path integra-
tion (McNaughton et al., 2006). This suggests that the HD system functions as a neural
integrator updating based on self-motion cues. Theoretical and computational models have
proposed that the HD system functions as a continuous attractor network, where the col-
lective activity of HD cells forms a stable “bump” of activity that can smoothly move to
represent di↵erent head directions (Zhang, 1996; Skaggs et al., 1994). These models often
represent the head direction on a ring, reflecting the circular nature of directional space.

In this paper, we propose a minimalist network model for the HD system to investigate
the core component for learning the direction representation, while maintaining su�cient
biological plausibility. Our approach is motivated by recent advancements in direction rep-
resentation learning in high-dimensional spaces (Cueva et al., 2019; Mante et al., 2013;
Yang et al., 2019; Maheswaranathan et al., 2019). We leverage the fact that head direc-
tion transformations form a representation of the rotation group U(1), acting on a ring of
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possible head direction representations. We present two versions of the model: a fully con-
nected version and a convolutional version. Both models aim to learn a high-dimensional
representation of head direction that exhibits key properties observed in biological HD sys-
tems. We demonstrate that our model can learn Gaussian-like tuning profiles for individual
cells and produce a representation that exhibits a clear circle geometry when visualized with
principal component analysis (PCA). The learned model is capable of accurate path integra-
tion. These emergent properties closely match the characteristics of biological HD systems,
providing insights into the computational principles that may underlie their function.

2. Model and Learning

2.1. General Framework

We represent head direction x 2 [0, 2⇡) in a continuous d-dimensional vector v(x) 2 Rd,
which is regarded as responses of putative HD cells and subjects to three constraints:

(1) Transformation rule: v(x + dx) = F (v(x), dx), where F is a function describing
changes in the representation v(x) from a change dx in direction. The set of transfor-
mations {F (·, dx), 8dx} and the set of representations {v(x), 8x 2 [0, 2⇡)} together form
a representation of the rotation symmetry group U(1), so that F (v(x), 0) = v(x), and
F (v(x), dx1 + dx2) = F (F (v(x), dx1), dx2). Here the addition in x+ dx is mod 2⇡.

(2) Nonnegativity constraint: v(x) � 0, reflecting neurons’ nonnegative firing rates.
(3) Unit norm constraint: |v(x)|2 =

Pd
i=1 vi(x)

2 = 1 corresponds to a constant total
activity of neurons regardless of direction x (to be one without loss of generality). This
implies the direction x is only represented by spatial patterns of neuronal responses rather
than summed responses, which has been widely used in neural coding (Pouget et al., 2003;
Dayan and Abbott, 2005).

The transformation rule defines a recurrent neural network vt = F (vt�1, dxt) that en-
ables path integration.

2.2. Model for local motion

For local motion dx, the first order Taylor expansion gives us

v(x+ dx) = F (v(x), dx) = F (v(x), 0) + F 0(v(x), 0)dx = v(x) + f(v(x))dx,

where f(v(x)) = F 0(v(x), 0) is the derivative of F (v(x), dx) with respect to dx evaluated at
dx = 0. This first-order Taylor expansion corresponds to the Lie algebra of the Lie group
formed by the transformations (F (v(x), dx), 8dx). For larger motion dx, we can also use
second-order Taylor expansion.

2.2.1. Fully Connected Version

In the fully connected version, we model local changes in direction as:

v(x+ dx) = v(x) +Bv(x)dx

where B 2 Rd⇥d is a learnable matrix, and dx 2 [�b, b] for a small b > 0. This formulation
allows for complex interactions between all dimensions of the representation, capturing
potential long-range dependencies in the neural code.
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2.2.2. Topographical Convolutional Version

In the topographical convolutional version, we place the neurons vi on a ring, and we model
local changes as v(x + dx) = v(x) + B ⇤ v(x)dx, where B is a learnable convolutional
operator, ⇤ denotes the 1D convolution operation with periodic boundary condition, and
dx 2 [�b, b] for a small b > 0. The convolutional nature of B is expressed as: (B ⇤ v(x))i =Pk

j=�k Bjv(i+j) mod d(x) where Bj are learnable weights of the convolutional kernel, and k
is the kernel size.

2.3. Learning Method

Our model learns two sets of parameters:
(1) V : the representations v(x) for all x 2 {k 2⇡

n , k = 0, ..., n�1}, where n is the number
of grid points. We denote these v(x) collectively as V . For a general continuous x, we
express v(x) as a linear interpolation between the two nearest grid points.

(2) B: the update matrix or kernel B.
We define a one-step loss function to train these parameters by minimizing the prediction

error of local changes:

L(V,B) = Ex,dx

⇥
|v(x+ dx)� F (v(x), dx)|2

⇤

This loss function focuses on the accuracy of single-step updates, eliminating the need
for backpropagation through time, which significantly simplifies the learning process and
reduces computational complexity.

The above loss function can be minimized by projected gradient descent, i.e., after a
gradient descent step or a step of Adam optimizer (Kingma and Ba, 2014), we set all negative
elements in each v(x) to 0, and then normalize each v(x) to have norm 1. Expectation Ex,dx

can be approximated by uniformly sampling x from [0, 2⇡) and dx from interval [�b, b]. The
detailed training algorithm and details on linear interpolation can be found in Appendix A.

3. Experiments and Results

We conduct a series of experiments to evaluate the performance and properties of our model
across various configurations. We explore dimensions d 2 {10, 20, 50, 100} and local range
b 2 {m2⇡

n ,m = 2, 5, 10, 20} for both the fully connected and convolutional versions of the
model. Here we fix n = 100 in all experiments.

3.1. Ring Structure in PCA Plot

We apply Principal Component Analysis (PCA) to the learned representations v(x) across
all directions as in Figure 1(a). The PCA plot of the first two principal components reveal
a clear ring structure. This emergent property demonstrates that our model has learned
a continuous, circular representation of head direction, mirroring both the topology of the
actual direction space and the attractor dynamics observed in biological HD systems.

The ring structure is consistent across both model versions, tested dimensions, and local
ranges. This result suggests that our high-dimensional representation e↵ectively captures
the underlying one-dimensional nature of head direction while providing computational
advantages, validating our model’s ability to capture essential features of biological head
direction systems despite its minimalistic design.
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(a) PCA (b) Tuning curves

Figure 1: (a) 2D and 3D PCA visualization of learned head direction representations. Col-
ors represent the discrete head direction indices from 0 to n, corresponding to
angles from 0° to 360°. (b) Tuning curves of a random sample of neurons, which
exhibit Gaussian-like tuning profiles. The x-axis represents the full 360° range of
head directions, centered on each neuron’s preferred direction (red dotted line) to
illustrate the circular nature of the representation.The green dotted line marks
direction index 0. Full tuning curves can be found in Appendix C.

3.2. Gaussian-like Tuning Profiles

After training, we observe that individual dimensions of the learned representation v(x)
exhibit Gaussian-like tuning profiles as in Figure 1(b). Each dimension (or “cell”) in our
model responds maximally to a particular head direction and shows a smooth decrease in
activity for directions further from its preferred direction. This behavior closely resembles
the tuning curves observed in biological HD cells (e.g., McNaughton et al. (2006)).

3.3. Path integration

We evaluate our model’s capability for path integration, a crucial function of biological
head direction systems. Path integration involves updating the direction estimate based
on a sequence of incremental changes. Despite being trained with a one-step loss function,
our model demonstrates remarkable accuracy in multi-step path integration tasks. We test
the model’s ability to accurately track directional changes over 50 steps and recover the
final direction. Our experiments show that the model performs path integration with high
accuracy. Detailed procedure and results are provided in Appendix B.

4. Conclusion

We present a minimalistic representation model for the head direction system that captures
essential features of biological HD systems while maintaining computational e�ciency. Our
model demonstrates that key properties of HD cells, such as Gaussian-like tuning and a
ring structure, can emerge from a simple learning framework based on representing and
updating directions in a high-dimensional space.

4



Extended Abstract Track
Minimalistic model for head direction system

References

Hugh T Blair, Brian W Lipscomb, and Patricia E Sharp. Anticipatory time intervals of
head-direction cells in the anterior thalamus of the rat: implications for path integration
in the head-direction circuit. Journal of neurophysiology, 78(1):145–159, 1997.

Christopher J Cueva, Peter Y Wang, Matthew Chin, and Xue-Xin Wei. Emergence of func-
tional and structural properties of the head direction system by optimization of recurrent
neural networks. arXiv preprint arXiv:1912.10189, 2019.

Kathleen E Cullen. Vestibular processing during natural self-motion: implications for per-
ception and action. Nature Reviews Neuroscience, 20(6):346–363, 2019.

Peter Dayan and Laurence F Abbott. Theoretical neuroscience: computational and mathe-
matical modeling of neural systems. MIT press, 2005.

Ruiqi Gao, Jianwen Xie, Xue-Xin Wei, Song-Chun Zhu, and Ying Nian Wu. On path
integration of grid cells: isotropic metric, conformal embedding and group representation.
arXiv preprint arXiv:2006.10259, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo.
Universality and individuality in neural dynamics across large populations of recurrent
networks. Advances in neural information processing systems, 32, 2019.

Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-
dependent computation by recurrent dynamics in prefrontal cortex. nature, 503(7474):
78–84, 2013.

Bruce L McNaughton, Francesco P Battaglia, Ole Jensen, Edvard I Moser, and May-Britt
Moser. Path integration and the neural basis of the ’cognitive map’. Nature Reviews
Neuroscience, 7(8):663–678, 2006.

Alexandre Pouget, Peter Dayan, and Richard S Zemel. Inference and computation with
population codes. Annual review of neuroscience, 26(1):381–410, 2003.

JB Rank. Head-direction cells in the deep layers of dorsal presubiculum of freely moving
rats. In Soc. Neuroscience Abstr., volume 10, page 599, 1984.

William Skaggs, James Knierim, Hemant Kudrimoti, and Bruce McNaughton. A model of
the neural basis of the rat’s sense of direction. Advances in neural information processing
systems, 7, 1994.

Je↵rey S Taube. The head direction signal: origins and sensory-motor integration. Annual
Review of Neuroscience, 30(1):181–207, 2007.

Je↵rey S Taube, Robert U Muller, and James B Ranck. Head-direction cells recorded from
the postsubiculum in freely moving rats. I. Description and quantitative analysis. Journal
of Neuroscience, 10(2):420–435, 1990a.

5



Extended Abstract Track
Je↵rey S Taube, Robert U Muller, and James B Ranck. Head-direction cells recorded
from the postsubiculum in freely moving rats. II. E↵ects of environmental manipulations.
Journal of Neuroscience, 10(2):436–447, 1990b.

Dehong Xu, Ruiqi Gao, Wen-Hao Zhang, Xue-Xin Wei, and Ying Nian Wu. Conformal
isometry of lie group representation in recurrent network of grid cells. In Sophia San-
born, Christian Shewmake, Simone Azeglio, Arianna Di Bernardo, and Nina Miolane,
editors, Proceedings of the 1st NeurIPS Workshop on Symmetry and Geometry in Neural
Representations, volume 197 of Proceedings of Machine Learning Research, pages 370–
387. PMLR, 2023.

Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T Newsome, and
Xiao-Jing Wang. Task representations in neural networks trained to perform many cog-
nitive tasks. Nature neuroscience, 22(2):297–306, 2019.

Kechen Zhang. Representation of spatial orientation by the intrinsic dynamics of the head-
direction cell ensemble: a theory. Journal of Neuroscience, 16(6):2112–2126, 1996.

Appendix A. Training Details

A.1. Learning Algorithm

We use Adam optimizer(Kingma and Ba, 2014) to minimize the loss function. The algorithm
proceeds as follows:

Algorithm 1: Learning Head Direction Representation
Input: Number of directions n, dimension d, learning rate ⌘, number of iterations T
Output: Learned representations v(xk) and transition function F
Initialize v(xk) for xk = k 2⇡

n , k = 0, 1, . . . , n� 1;
Initialize B (matrix or convolutional kernel);
for t 1 to T do

Sample a batch of (x, dx) pairs;
Compute the loss L for the batch;
Update v(xk) and B using gradients of L and learning rate ⌘;
for k  0 to n� 1 do

v(xk) max(v(xk), 0) ; // Enforce non-negativity

v(xk) project(v(xk)) ; // Project onto unit sphere

end

end

return v(x) and B

A.2. Continuous Representation and Linear Interpolation

To achieve a continuous representation, we define v(x) at discrete points xk = k 2⇡
n for

k = 0, 1, . . . , n� 1, and use linear interpolation for intermediate values:
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v(x) = (1� w)v(xbkc) + wv(xdke)

where k = n
2⇡x, w = k�bkc, and b·c, d·e denote floor and ceiling functions respectively.

A.3. Second-Order Fully Connected Version

For larger local motion range b (specifically, b = 202⇡
n in our experiments), we employ a

second-order model to capture higher-order dynamics:

v(x+ dx) = v(x) +Bv(x)dx+ Cv(x)d2x

where C 2 Rd⇥d is another learnable matrix. This second-order term allows the model to
better account for changes over larger directional steps.

A.4. Model parameters

In our training process, we use n = 100 discrete directions. The model was trained for
200,000 epochs with a batch size of 256, using an Adam optimizer (Kingma and Ba, 2014)
with an initial learning rate of 4e-5. A learning rate scheduler (ReduceLROnPlateau) is
employed with a factor of 0.8 and patience of 5000 epochs to adapt the learning rate during
training. For the convolutional model, we use a kernel size of 3. An example training loss
curve can be found in Figure 2.

Figure 2: Training loss

Appendix B. Path Integration

Path integration is the process of updating a direction estimate based on a sequence of
incremental changes. In the context of our direction representation model, we use path
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integration to track changes in direction over time and recover the final direction (Gao
et al., 2021; Xu et al., 2023).

B.1. Experiment procedure

Let x0 2 [0, 2⇡) be the initial direction, and (dx1, dx2, . . . , dxn) be a sequence of directional
shifts. Given our direction representation function v(x) 2 Rd and the update function
F (v, dx), we track the changes in the direction representation as follows: v0 = v(x0),
vt = F (vt�1, dxt), t = 1, ..., n, where vt represents the direction representation after t steps.

B.2. Recovering the Final Direction

After obtaining the final representation vn, we recover the corresponding direction xn by
maximizing the inner product between vn and v(x) over all possible x:

xn = arg max
x2[0,2⇡)

hvn, v(x)i

This maximization leverages the property that v(x) should be most similar to vn when x is
close to the true final direction.

B.3. Evaluation Metrics

Path integration is evaluated using two local range scenarios: b = 2⇡
n radians, and b =

m2⇡
n radians, where m is the multiple of the basic angular step size used during training.

In both cases, each step’s motion dx is sampled uniformly from the range [�b, b]. The
model estimates the direction after each step, with and without re-encoding. For path
integration with re-encoding, we first decode v ! x̂ to the 1D head direction angle via x̂ =
argmaxx02[0,2⇡)hv, v(x0)i, and then encode v  v(x̂) back to the neuron space intermittently.
Since our model is trained in a 1-step manner, this approach aids in rectifying the errors
accumulated in the neural space throughout the transformation. Errors are calculated as
the average angular di↵erence between the true and estimated directions over all steps in
a sequence, measured in radians. The “local range = 2⇡

n error” column represents results
for the unit angular step range 2⇡

n , while the “local range = m2⇡
n error” column shows

results using the larger range the model was trained with. The table presents these errors
for di↵erent model architectures (varying in dimension d and training range multiple m),
comparing performance with and without re-encoding for both scenarios.

Appendix C. Additional Results

In Figure 1(b), we sampled 4 neurons to show the tuning curves. Here we attach the full
tuning curves with d = 100. We observe that all neurons representations in v(x) exhibit
Gaussian-like tuning profiles.
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Table 1: Path integration results. m represents the multiple of the unit angular step size
(2⇡n ) used for training and evaluation in the larger range scenario. Errors are
reported as the average angular di↵erence in radians over all steps in a sequence.
Results are shown for two local motion range scenarios, b = 2⇡

n and b = m2⇡
n . In

both settings, location motions dx are uniformly sampled from the range [�b, b].

Architecture d m local range =2⇡
n error (radians) local range = m2⇡

n error (radians)

without re-encoding with re-encoding without re-encoding with re-encoding

Fully-connected 100 2 0.000 0.000 0.069 0.000
100 5 0.007 0.000 0.765 0.010
100 10 0.044 0.000 1.069 0.232
100 20 0.356 0.000 1.362 0.179

50 2 0.000 0.000 0.028 0.000
50 5 0.000 0.000 0.036 0.000
50 10 0.008 0.000 0.872 0.167
50 20 0.363 0.000 0.149 0.182

20 2 0.000 0.000 0.008 0.000
20 5 0.001 0.000 0.024 0.009
20 10 0.079 0.000 0.188 0.153
20 20 0.385 0.000 0.186 0.154

10 2 0.196 0.000 0.044 0.000
10 5 0.000 0.000 0.047 0.014
10 10 0.000 0.000 1.287 0.563
10 20 0.000 0.000 0.897 0.338

Convolutional 100 2 0.000 0.000 0.110 0.000
100 5 0.002 0.000 0.832 0.000
100 10 0.056 0.000 1.252 0.184
100 20 0.035 0.000 1.322 0.107

50 2 0.000 0.000 0.070 0.000
50 5 0.001 0.000 0.293 0.000
50 10 0.008 0.000 0.866 0.167
50 20 0.360 0.000 1.239 0.180

20 2 0.000 0.000 0.088 0.000
20 5 0.000 0.000 0.239 0.000
20 10 0.105 0.000 0.883 0.287
20 20 0.035 0.000 0.144 0.180

10 2 0.000 0.000 0.065 0.000
10 5 0.002 0.000 0.125 0.014
10 10 0.005 0.000 0.323 0.028
10 20 0.003 0.000 0.225 0.096
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Figure 3: Full tuning curves with d = 100
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