
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE GRAPH’S APPRENTICE: TEACHING AN LLM
LOW-LEVEL KNOWLEDGE FOR CIRCUIT QUALITY
ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Logic synthesis is a crucial phase in the circuit design process, responsible
for transforming hardware description language (HDL) designs into optimized
netlists. However, traditional logic synthesis methods are computationally inten-
sive, restricting their iterative use in refining chip designs. Recent advancements
in large language models (LLMs), particularly those fine-tuned on programming
languages, present a promising alternative. This work proposes augmenting LLMs
with predictor networks trained to estimate circuit quality directly from HDL code.
To enhance performance, the model is regularized using embeddings from graph
neural networks (GNNs) trained on Look-Up Table (LUT) graphs, thereby incor-
porating lower-level circuit insights. The proposed method demonstrates superior
performance compared to existing graph-based RTL-level estimation techniques
on the established benchmark OpenABCD, while providing instant feedback on
HDL code quality.

1 INTRODUCTION

Rapid technological advancements in computing power has taken an increasingly important role
in the past decades in driving scientific research in biology (Schatz, 2012), chemistry (Akimov &
Prezhdo, 2015), physics (Dongarra & Keyes, 2024) and especially artificial intelligence, where it has
been estimated that at least half of all performance gains in the past ten years have stemmed from
hardware improvements alone (Hernandez & Brown, 2020; Dorner, 2021; Karpathy, 2022; Erdil &
Besiroglu, 2022; Ho et al., 2024). This ever-rising demand for compute power means that efficient
and effective electronic chip design has become increasingly critical.

Modern electronic chip design is a complex, multi-stage endeavor that begins with a chip architect
specifying the digital circuit’s functionality in a Hardware Description Language (HDL), such as
Verilog (Thomas & Moorby, 2008) or VHDL (Coelho, 2012). This HDL code is then subjected
to a series of transformations and optimizations, ultimately yielding a physical circuit design that
can be manufactured (LaMeres, 2023). In a previous era where circuits were small and limited
in functionality, this logic synthesis process was quick and the chip architect could quickly receive
feedback and iterate on its HDL code. However, with the increasing complexity of industrial designs,
which now can comprise hundreds of millions of logic gates (Amarú et al., 2017), even a single
synthesis run has become massively expensive. This has driven the need for alternate ways of
providing feedback on HDL code without running the actual logic synthesis process.

A natural way to tackle this problem is to train a machine learning model that can take the HDL code
as input, and output estimates of circuit quality such as wire length or delay that could have been
computed had the logic synthesis process been run. A few works have approached this topic, by
extracting graphical information about the code and using hand-designed statistics of those graphs
as features (Zhou et al., 2019; Sengupta et al., 2022; Fang et al., 2023). Although these works had
encouraging results, their performance has been limited by the relatively shallow understanding of
the semantics of the code that these statistics can provide.

Recently, Large Language Models fine-tuned on code, such as Code-T5 (Wang et al., 2021),
Codex (Chen et al., 2021), CodeGen Nijkamp et al. (2023), CodeLlama (Roziere et al., 2023) and
DeepSeek-Coder (Guo et al., 2024), have emerged that have proven remarkably successful on a

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

wide range of tasks (Zheng et al., 2023), most notably as code assistants such as Github Copilot1.
Although most models are generalists trained on general-purpose programming languages such as
C++ and Python, a few models, such as CodeGen-Verilog (Thakur et al., 2023), VeriGen (Thakur
et al., 2024), RTLCoder (Liu et al., 2023c) and CodeV (Zhao et al., 2024), have been specifically
trained on Verilog, the most popular HDL language. The analysis of these models, however, has
been so far limited to investigating their ability to generate realistic code, and an investigation of the
predictive power of those internal representations has been lacking.

In this work, we demonstrate for the first time that the hidden states computed by these novel Verilog
large language models contain rich insights which can be used to predict quality-of-result metrics
with higher accuracy than previous machine learning models. Namely, we feed Verilog code to the
state-of-the-art CodeV model, and train an inexpensive decoder neural network that uses the LLM’s
hidden states as features to predict area and delay. In addition, and critically, we regularize this
decoder to encourage its embeddings to resemble those of a graph neural network model trained on
Look-Up Table (LUT) graph, an intermediate representation used during the logic synthesis process.
The resulting decoder is shown to strongly outperform state-of-the-art baselines, and incidentally
shows that those novel Verilog language models extract in their hidden states surprisingly complex
insights about the circuits represented by raw code.

Our work makes the following main contributions:

1. We develop the first truly end-to-end machine learning model in the literature, named
VeriDistill, which can take raw Verilog code, without any preprocessing, and produce ac-
curate estimates of circuit area/delay metrics.

2. Moreover, we apply during training a novel knowledge distillation method which allows
to transfer low-level insights about the circuit, in the form of LUT graphs, back into the
machine learning predictor model.

3. We demonstrate through experiments that the combination of those two elements outper-
forms previous state-of-the-art baselines in a large-scale Verilog dataset and enhances the
model’s ability to transfer to out-of-distribution data.

4. Finally, we also demonstrate that both using LLM representations and the knowledge distil-
lation are essential, in that removing any one of these components brings the performance
back below the previous baselines.

The remainder of this paper is structured as follows. Section 2 provides an overview of the rele-
vant literature and background information. In Section 3, we present a detailed description of our
proposed methodology, including its key components and underlying assumptions. The efficacy of
our approach is then demonstrated through a series of experiments, which are reported in Section 4.
Finally, Section 5 summarizes our main findings, discusses their implications, and outlines potential
avenues for future research.

2 RELATED WORK

2.1 QUALITY-OF-RESULT PREDICTION FROM HDL CODE

Closest to ours is the work of Sengupta et al. (2022). Their approach consists in computing the
Abstract Syntax Tree (AST) induced by Verilog code, and extracting from this free vector- and
graph-based features. They then train several machine learning models to predict from these features
the total negative slack and dynamic power of the circuit. Among all the models evaluated, the
XGBoost Regressor performs best and achieves 95% R2-score. The analysis was however limited
to different runs of a single circuit and it is not clear how the performance would generalize to
different circuits. Since the Abstract Syntax Tree is essentially the raw Verilog code with extra
syntactic information, which can be obtained at little cost at inference time by a grammar parser, we
include it (along with variants) as baselines in our experimental section.

Further related is the work of Fang et al. (2023) and Fang et al. (2024b). They propose to pro-
cess Verilog code into a new representation called Simple Operator Graph (SOG), and test several

1https://github.com/features/copilot

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

machine learning models (Transformers, Random Forests, Graph Neural Networks and XGBoost
regressors) to predict path delay, module-level power and combinatorial area. Although achieving
promising results, computing the SOG requires expensive conversion of linguistic data into bit-level
operators using logic synthesis tool Yosys (Wolf et al., 2013), which is outside the scope of this
work.

Finally, some works take a step further and try to assist circuit design by annotating which parts
of HDL is most critical to achieved quality-of-result metrics. For example, Sengupta et al. (2023)
attempts to identify timing critical components based on path delay prediction. The AST of each
Verilog design is extracted and converted into a graph, with nodes representing IO ports, registers or
behavior logic. Behavioral paths are extracted from the graph and used for path-level feature gener-
ation. Delay labels of timing paths are generated using commercial synthesis tools, and are assigned
to corresponding behavior paths with the same start and end points. By training an XGBoost model
on the resulting features, the authors achieve an average classification accuracy of 91%. Also similar
is RTL-Timer (Fang et al., 2024a), which ensembles four bit-level circuit representations to predict
the post-logic synthesis endpoint arrival time. Such predictions can then be mapped to registers in
HDL code to identify critical code paths. Just as in the work of Fang et al. (2023), however, these
representations are bit-level rather than word-level and therefore require some degree of processing
by logic synthesis tools like Yosys.

2.2 LLMS FOR VERILOG

Large language models (LLMs) such as GPT (Ouyang et al., 2022) and Llama (Touvron et al., 2023)
have achieved exceptional success in various natural language tasks and have expanded their suc-
cess to programming languages as well. While decoder-only code LLMs such as Codex (Chen et al.,
2021) and CodeLlama (Roziere et al., 2023) have become the most popular due to their exceptional
performance in generation tasks like code generation and code translation, older encoder-only mod-
els such as CodeBERT (Feng et al., 2020) and encoder-decoder code LLMs such as CodeT5 (Wang
et al., 2021) have retained applications in code comprehension tasks such as clone detection and
code retrieval.

Although excellent on generalist programming languages like Python or C++, these models have
been trained on the relatively small amount of HDL code that is publicly available on the internet,
and therefore have performed poorly on Verilog benchmarks like VerilogEval (Liu et al., 2023b)
and RTLLM (Lu et al., 2024). This has motivated further work to build LLMs with a higher-degree
of knowledge of hardware description languages. Both CodeGen-Verilog (Thakur et al., 2023) and
VeriGen (Thakur et al., 2024) used a combination of customized Verilog datasets from code reposi-
tory website GitHub2 and various textbooks to fine-tune code LLMs. Finally, RTLCoder (Liu et al.,
2023c) used the GPT 3.5 language model (Brown et al., 2020) to generate further Verilog data, in
a form of data augmentation, while CodeV (Zhao et al., 2024) used the same model to generate
natural language description of real world Verilog code through multi-level summarization.

Besides Verilog code generation from natural language description, LLMs were also explored for
other EDA-related tasks. RTLFixer (Tsai et al., 2023) employed Retrieval-Augmented Generation
(RAG) and ReAct prompting techniques to interactively debug syntax errors in Verilog code, and
achieved remarkable improvement in success rates in the VerilogEval benchmark. ChipNemo (Liu
et al., 2023a) explored the application of LLMs in chip design process and adopted several domain
adaptation techniques to train an LLM for various applications including assistant chatbots, EDA
script generation, and bug summarization and analysis. Finally, ChatEDA (Wu et al., 2024) used
code LLMs as an agent to autonomously complete the entire chip design flow from HDL code to
the Graphic Data System Version II (GDSII) by managing task planning, script generation and task
execution. We refer the reader to the extensive survey of Zhong et al. (2023) for more details on the
application of LLMs in electronic design automation and future research directions in this field.

2www.github.com

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

module test(input D, C, R, RV,
 output reg Q);
 always @(posedge C, posedge R)
 if (R)
 Q <= RV;
 else
 Q <= D;
endmodule

Verilog LLM

Mean
Pool

Li
ne

ar
 +

 R
eL

U

Li
ne

ar
 +

 R
eL

U

Li
ne

ar

FNN
Verilog

Figure 1: The VeriDistill model. The code input is tokenized and fed to a Verilog-aware Large
Language Model (LLM), which produces a sequence of hidden state vectors, one per token. These
vectors are averaged, and fed to a small feedforward neural network (FNN) to produce the QoR
prediction. In practice, in our experiments we use CodeV-7B (Zhao et al., 2024) as Verilog LLM,
and use three layers with ReLU activations in the FNN.

2.3 ALIGNMENT OF LLM AND GNN EMBEDDINGS

The multimodal alignment regularizer we propose during training also relates to the broader litera-
ture on tuning large language models to align with a pre-trained graph neural network, to incorporate
its capabilities.

The work closest to ours is that of Mavromatis et al. (2023), who train a language model to perform
a node classification task while adding a regularizer that encourages the predictive distributions to
match a pre-trained graph neural network model. The language model makes predictions by passing
the graph as input, and extracting the representation corresponding to a final [CLS] classification
token. Also similar is Zou et al. (2023), which jointly trains a language model and a graph neural
network on a common “context graph prediction” task which encourage alignment of their repre-
sentations. They then discard the graph neural network and only keep the language model, so that
topological characteristics best captured by graph convolutions can be said to have been incorporated
in the language model.

More generally, there is a large literature on integrating pretrained graph neural networks with lan-
guage models by training an adaptive module (Liu et al., 2024; 2023d; Chai et al., 2023; Tang et al.,
2024; Cao et al., 2023), allowing the language model to receive inputs from the graph neural net-
work. Alternatively, multiple works have interlaced graph neural network layers and language model
layers (Yasunaga et al., 2021; Yang et al., 2021; Zhang et al., 2022; Yasunaga et al., 2022; Jin et al.,
2023). In either case, some kind of training is necessary to allow for interactions between the graph
neural network and the language model, although the result is not distillation of the graph neural
network’s perspective into the language model per se.

3 METHODOLOGY

We now present our VeriDistill approach in detail. As described in the introduction, turning a high-
level description of a circuit in a Hardware Description Language like Verilog into a physical de-
scription ready for manufacturing is a computationally expensive process involving several steps,
each with an associated intermediate representation describing progressively lower-level elements
of the circuit. Our goal is to predict low-level quality-of-result metrics, like area and delay, from the
highest-level representation, namely the HDL code.

3.1 MODEL

Our model takes as input Verilog code, which is fed to a Large Language Model (LLM). This LLM
has been specifically fine-tuned on Verilog code generation. The code is first split into a sequence
of tokens, which are then fed in parallel in the LLM. As an output, the LLM produces a sequence
of high-dimensional “hidden state” vectors, one for each token that is inputted to the LLM. We
average these hidden states, producing a single vector. This vector is then fed to a feedforward
neural network, composed of several linear layers with nonlinear activations, which finally outputs
the QoR estimate. A diagram is provided as Figure 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

module test(input D, C, R, RV,
 output reg Q);
 always @(posedge C, posedge R)
 if (R)
 Q <= RV;
 else
 Q <= D;
endmodule

Verilog LLM

Mean
Pool

Li
ne

ar
 +

 R
eL

U

Li
ne

ar
 +

 R
eL

U

Li
ne

ar

LUT Graph
(obtained at high cost
for training instances)

G
C

N
 +

 B
N

G
C

N
 +

 B
N

G
C

N

M
ea

n
M

ax

Li
ne

ar
 +

 R
eL

U

Li
ne

ar
 +

 R
eL

U

Li
ne

ar

FNN

Graph Convolutions

Auxiliary GNN (pretrained)

VeriDistill Model

Verilog

FNN

Figure 2: The training procedure. The Verilog training examples are passed to the VeriDistill model,
which produces predictions of the QoR metric. These predictions are scored against the true QoR
values by a mean-squared error supervised learning loss. In addition, the LUT graph representa-
tion resulting from logic optimization is fed to an auxiliary GNN model, pretrained to perform the
same QoR prediction task. The hidden representations at the last layer of both the VeriDistill and
GNN models is extracted, and a mean-square error knowledge distillation loss encourages these two
representations to be similar, despite having different inputs. Both the pretrained GNN and LLMs
modules are kept frozen during training.

3.2 TRAINING

We train the model as follows. We assume we have access to a training set of circuits with Verilog
code for which the expensive logic synthesis process has been performed, so that we know their
QoR metric (such as area or delay). In addition, as an intermediate product of the logic synthesis
process, an LUT graph is produced immediately following the logic optimization phase, which we
save. This yields a collection of training triples D = {(XVerilog, XLUT, yQoR)}.

3.2.1 SUPERVISED LEARNING

Given such a dataset, we treat our problem by supervised machine learning. The LLM, which has
been pretrained on Verilog code, is kept frozen, so that only the FNN gets updated. In a training step,
the Verilog code XVerilog is fed to the VeriDistill model to produce a prediction ŷQoR. This prediction
is compared in mean-squared error loss with the true QoR metric yQoR as a supervised learning loss

LSL =
(
ŷQoR − yQoR

)2
. (1)

3.2.2 LOW-LEVEL KNOWLEDGE DISTILLATION

In practice, training only with the supervised learning loss leads to limited performance. One poten-
tial explanation is that there is too much of a gap between a high-level circuit description like Verilog
and the low-level metrics we purport to predict. Intuitively, to perform high-quality predictions, we
would want the model to possess some degree of understanding of lower-level circuit design while
still only taking Verilog code as input.

We propose the following approach to address this problem. Prior to training, we pretrain a Graph
Neural Network (GNN) to predict the same QoR metric as VeriDistill, but from the Look-Up-Table
(LUT) graph XLUT of the circuit obtained after optimization using Yosys (Wolf et al., 2013). This
graph, which can be seen as an alternative to the more popular And-Inverter Graph (AIG) format,
is particularly suitable for GNN training as it is compact with rich node information. Moreover, as
a circuit representation, it sits intermediate between a high-level description of the circuit encoded

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

in the Verilog code, and a physical circuit description from which the QoR metrics such as area and
delay can be read. Prediction from LUT graphs is thus easier than prediction from Verilog code, but
not completely trivial either.

The GNN architecture we adopt is composed of a sequence of graph convolutions, followed by joint
mean and max pooling, and a sequence of linear layers. We pretrain it using the supervised learning
loss (1) until good predictive performance is achieved. Then, during the VeriDistill training, we keep
the GNN weights frozen and we propose to encourage the last-layer activations of the VeriDistill
model z(−1)

VeriDistill to resemble those of the GNN model z(−1)
GNN , despite these models operating on

different inputs. We perform this simply by adding a mean-square error loss

LKD =
∥∥z(−1)

VeriDistill − z
(−1)
GNN

∥∥2
2

(2)

in the total loss. As the weights of the GNN are pretrained and kept frozen while the VeriDistill
model is being trained, this is effectively a form of knowledge distillation from the GNN to the
VeriDistill model.

3.2.3 TOTAL LOSS

We balance the importance given to the knowledge distillation compared to the supervised learning
objective using a hyperparameter factor α, yielding the final loss

L = αLSL + (1− α)LKD.

A diagram describing the VeriDistill training process is provided as Figure 2.

4 EXPERIMENTS

This section is organized as follows: We begin by presenting the implementation details of our
experimental setup in Section 4.1, including hardware, model, and training hyperparameters. Next,
we describe the dataset used and the data preprocessing steps for training and evaluation in Section
4.2. We then introduce the baseline methods and their implementation details in Section 4.3. Finally,
we present the results on the main datasets and a study on unseen out-of-distribution circuits in
Sections 4.4 and 4.5.

4.1 EXPERIMENTAL SETUP

For our experiments, we use the following implementation of the model. We use CodeV-7B (Zhao
et al., 2024) as Verilog LLM, and use three layers with ReLU activations in the feedforward neural
network. The model takes as input strings, which are broken into a sequence of the 32,016 possible
tokens in CodeV-7B’s vocabulary. The language model processes these inputs into a sequence of
the same length, made up of 512-dimensional vectors. After mean pooling, the resulting vector is
passed to the feedforward neural network, which uses 512-dimensional activations, before making
the final prediction. In particular, this architecture means that the last-layer activations z(−1)

VeriDistill are
512-dimensional.

The auxiliary GNN teacher model takes a LUT graph with 16-dimensional node attributes, and
passes it through three 64-dimensional graph convolutional layers interleaved with batch normaliza-
tion layers. After concatenation of the mean and max pooling outputs, the 128-dimensional vector
is passed through three 512-dimensional linear layers with ReLU activations before the final predic-
tion. Thus, in particular, the last-layer activations z(−1)

GNN are 512-dimensional, matching with those
of the VeriDistill model.

We implement VeriDistill and the baselines using the PyTorch and PyG libraries. Models which
do not use our knowledge distillation procedure are trained using the ReduceLROnPlateau scheduler
with initial learning rate 1e-3, patience set to 30 epochs and factor set to 0.5. In contrast, models
involving our knowledge distillation procedure are trained using the CosineAnnealingLR Loshchilov
& Hutter (2017) scheduler, with an initial learning rate of 1e-3 and number of iterations set to 50.
We start the training process with α = 0.5, and increase α to 0.75 and 1 at epochs 150 and 250. The
idea is put less emphasis on knowledge distillation at every warm re-start. We find that this approach

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10 12 14
Log Area

0

200

400

600

800

1000

1200

Fr
eq

ue
nc

y

Distribution of Log Area

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Log Delay

0

500

1000

1500

2000

2500

Fr
eq

ue
nc

y

Distribution of Log Delay

0 1000 2000 3000 4000 5000 6000
Number of Tokens

0

1000

2000

3000

4000

Fr
eq

ue
nc

y

Distribution of Number of Tokens in Verilog Instances

Figure 3: Distribution of labels and the number of tokens in the Verilog dataset.

results in marginal gain compared to other optimization methods. All models are trained until full
convergence. Details about the training resources and times can be found in Appendix C.

OpenROAD provides two optimization recipes for the logic synthesis process: ”ABC AREA=1”
for area optimization and ”ABC SPEED=1” for timing optimization. The results reported under
Section 4.4 are produced under area optimization. We report the results under delay optimization in
Appendix D. we find that our approach works as well under different recipe optimization settings.

4.2 DATASETS

We train and evaluate on two separate datasets. The first dataset is used for training, validation,
and testing of all the methods, while OpenABCD contains out-of-distribution circuits aiming to
challenge VeriDistill and determine its ability to generalize.

Customized Dataset To train and evaluate our proposed method, we collect 18.4k Verilog ex-
amples provided by Pei et al. (2024) and 5.8k from Thakur et al. (2022). These Verilog examples
are obtained from open-source GitHub repositories and textbooks and have been verified for syntax
correctness. We use an open-sourced EDA platform OpenROAD Ajayi et al. (2019) with 7nm tech-
nology PDK provided to conduct logic synthesis and record post-synthesis labels of area and delay.
We convert the AIG graphs obtained after logic optimization into LUT graphs and save them for
training the auxiliary GNN model.

Note that a substantial fraction of the code snippets end up being functionally incorrect and failing
some stage of the logic synthesis pipeline. Since we require functionally correct examples for their
QoR metric to be well-defined, we removed such examples during the preprocessing. In addition,
although not strictly a problem for our method, one of the competing baselines requires extracting
the Abstract Syntax Tree (AST) of the Verilog, which is obtained by running a parser on the code.
The parser was unable to produce AST representations for a small fraction of the instances (FRAC-
TION%), which we removed from consideration. The resulting dataset, after filtering bad examples,
ended up having 16k examples, which we split into training, validation, and test sets with a ratio of
0.75/0.1/0.15, respectively.

We depict the distribution of labels and the number of tokens in Verilog instances in Figure 3.
As mentioned in prior work by Zhao et al. (2024) , Verilog data scarcity is a common challenge
in developing machine learning tools for RTL level tasks. We note that the majority of Verilog
instances contain less than 2000 tokens, with the corresponding circuits having a small area and
delay.

OpenABCD Additionally, we consider data provided by Chowdhury et al. (2021) to evaluate the
transferability of our method to unseen circuits. The OpenABCD dataset consists of functionally di-
verse designs such as bus communication protocols, computing processors, digital signal processing
cores, cryptographic accelerators and system controllers.

4.3 BASELINES

While numerous prior works have attempted to predict post-synthesis circuit quality at the RTL-
stage, none of them perform prediction directly from source Verilog files. Several works rely on

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method Area Delay

MAE ↓ R2 ↑ MAPE ↓ RSE ↓ MAE ↓ R2 ↑ MAPE ↓ RSE ↓
LUT-GNN (Teacher) 0.280 0.933 0.437 0.067 0.251 0.918 0.050 0.082
AST-XGBoost 0.773 0.745 1.494 0.362 0.521 0.632 0.096 0.565
AST-GNN 0.867 0.660 1.365 0.34 0.622 0.520 0.116 0.480
AST-GNN w/ KD 0.898 0.670 1.327 0.33 0.654 0.561 0.122 0.439
CodeV + Decoder 0.991 0.614 1.901 0.386 0.718 0.443 0.141 0.557
VeriDistill 0.495 0.862 0.629 0.138 0.415 0.728 0.076 0.272

Table 1: The performance of different Verilog models on the test dataset, where the best result for
each metric is bolded. In addition, we report the performance of the teacher model trained on the
LUT graphs, which serves as an upper-bound.

lower-level circuit representation that requires extra processing using logic synthesis tools (Zhou
et al., 2019; Fang et al., 2023). Using low-level circuit representation as input is advantageous for
the circuit quality prediction task but it is unfair to compare them to our method which takes un-
processed Verilog as input, as reliance on external processing tools makes their computation fragile
and in some cases prohibitively expensive.

We adopt the method proposed by Sengupta et al. (2022) as our baseline. It relies on AST represen-
tations that can be easily converted from Verilog source files. We implement the method based on
description in Sengupta et al. (2022). Verilator (Snyder, 2004) is used to convert each source Verilog
into its respective AST representation, which can be represented as a graph. The nodes in the graph
represent one of the following five semantic categories from the source Verilog (root, variable,
operation, constant, edge), while edges are created between nodes with connections.

We implement three variants of the AST-based method:

AST-XGBoost We compute the following features: (i) the total number of input bits, (ii) the total
number of output bits, (iii) the longest path in the AST, (iv) the frequency of each node type in the
graph and (v) the frequency of each logic type in the graph. The features are concatenated to form
a feature vector with 108 features 3. We perform a thorough hyper-parameter selection using grid
search and employ early stopping to prevent over-fitting.

AST-GNN w/o KD The AST-GNN model takes in the following features per node: (i) the total
number of input bits, (ii) the total number of output bits, (iii) the node semantic type and (iv)
the node operation type. Each feature is represented via a one-hot vector and is projected to a 4-
dimensional space via a linear layer. The final node features consist of a (4 × 4) = 16-dimensional
vector. We cap the number of input/output bits to 200, since 99.9 percent of the nodes in the dataset
have less than 200 input/outputs. The AST-GNN model utilizes the same hyperparameters and
architecture as the auxiliary GNN model used for the knowledge distillation objective in VeriDistill.

AST-GNN w/ KD We propose a third baseline, where the AST-GNN model is guided by the
LUT GNN model. The baseline utilizes the same student-teacher knowledge distillation as our
method. We introduce this baseline to demonstrate the effectiveness of utilizing an LLM in the
student network.

4.4 MAIN RESULTS

We first summarize the results of our main experiment, where we train and test the model on the
large Customized Dataset (see Section 4.2). Table 1 outlines the performance of different models
on the test set. As can be seen, our proposed method, utilizing both CodeV as an encoder and
knowledge distillation, outperforms other baselines across all the metrics, especially with area pre-
diction. Interestingly, simply using a decoder on the LLM representation performs worse than the

3108 = 1 + 1 + 1 + 5 + 100 features coming from feature categories (i)...., (v)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

2 0 2 4 6 8 10

predictions

2

0

2

4

6

8

10

lo
g

ar
ea

AST- XGBoost

2 0 2 4 6 8 10

predictions

2

0

2

4

6

8

10

lo
g

ar
ea

AST-GNN

2 0 2 4 6 8 10

predictions

2

0

2

4

6

8

10

lo
g

ar
ea

AST-GNN w/ KD

4 2 0 2 4 6 8 10

predictions

2

0

2

4

6

8

10

lo
g

ar
ea

CodeV + Decoder

4 2 0 2 4 6 8 10

predictions

2

0

2

4

6

8

10

lo
g

ar
ea

VeriDistill

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

predictions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g

de
la

y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

predictions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g

de
la

y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

predictions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g

de
la

y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

predictions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g

de
la

y

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

predictions

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

lo
g

de
la

y

Figure 4: Prediction vs. target on test data. The predicted values using different methods are plotted
against the targets. (Top) Area prediction. (Bottom) Delay prediction.

60 40 20 0 20 40 60
40

30

20

10

0

10

20

30

LUT-GNN

40 20 0 20 40

30

20

10

0

10

20

AST-GNN w/ KD

40 20 0 20 40

40

20

0

20

40

60

CodeV + Decoder

80 60 40 20 0 20 40 60

30

20

10

0

10

20

30

VeriDistill

Figure 5: t-SNE representation of the last hidden representation of models on the test data. Color
represents the target value (log-area).

previous state-of-the-art, while knowledge distillation on the AST-GNN model has almost no ef-
fect. Only when both are used together is there profound impact on performance, which suggests
our knowledge distillation procedure is crucial in fully exploiting the richness of the CodeV LLM
representations.

We can further insight on the benefits of our combined approach by analyzing scatter plots of the
predictions against the targets, shown in Figure 4. As can be seen, most models’ good performance
is mostly concentrated on circuits with small delay and area, at the expense of larger circuits, perhaps
because the latter are more rare in the training set. In contrast, our model performs mostly uniformly
well on circuits on every size. This contrast is particularly pronounced when comparing against the
same model without knowledge distillation (CodeV+Decoder), which indicates that our knowledge
distillation procedure is crucial in allowing our model to perform well across the whole range of
circuit sizes.

Finally, in Figure 5, we present the t-SNE projection of the last hidden space representations on the
test data from the teacher model (Zteacher) trained for predicting log-area, alongside those from the
LLM-based models. As can be seen, the resulting t-SNE representation of the VeriDistill model
appears very similar to the one of the LUT-GNN teacher model. Most importantly, the t-SNE of the
LUT-GNN model appears to have captured a clear left-to-right pattern in log-area, which shows that
the teacher model’s representations have captured a very precise prediction pattern for log-area. This
linear pattern has been transferred just as well to VeriDistill. On the contrary, the t-SNE projection
of the AST-GNN w/ KD does not exhibit the same vivid pattern as VeriDistill does, where the
homogeneity of clusters is abrupter by points of different colors. Finally, the plot of the CodeV +
Decoder appears much more like an undefined mass, where the log-area values are mixed together
indiscriminately.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Area (MAE ↓) Delay (MAE ↓)
IP IO Nodes Edges w/o KD w/ KD w/o KD w/ KD

spi 492 4219 8676 2.083 0.893 0.049 0.053
sasc 260 613 1351 0.738 1.375 0.284 0.319
i2c 305 1169 2466 1.986 1.662 0.329 0.571
simple spi 296 930 1992 0.816 1.142 0.553 0.071
wb conmax 4197 47840 97755 4.807 3.541 0.372 1.312
vga lcd 34385 105334 227731 6.109 5.063 0.238 0.021
aes secworks 5691 40778 84160 4.043 3.434 0.604 0.33
sha256 2985 15816 32647 2.374 1.749 0.4 1.46
ss pcm 194 462 896 0.844 0.367 0.413 0.462
fir 761 4558 9467 2.455 1.132 0.718 0.25
idft 75022 241552 520523 5.975 4.494 0.379 0.258
des3 area 367 4971 10006 2.828 1.298 0.441 0.467
ethernet 21153 67164 144750 6.32 5.743 0.52 0.62
dft 75014 245046 527509 5.999 4.576 0.347 0.152
dynamic node 5283 18094 38763 5.793 5.616 1.307 1.244
tv80 997 11328 23017 5.049 2.544 1.544 0.864
pci 6586 19547 42251 4.392 2.303 0.163 0.668
fpu 1041 29623 59655 4.326 2.519 2.301 1.275
usb phy 222 487 1064 1.682 1.266 0.283 0.007
aes xcrypt 3780 45840 93485 5.493 3.786 1.506 0.795
iir 935 6978 14397 2.585 2.026 0.493 0.301
aes 1212 28925 58379 3.912 1.43 0.321 0.181
mem ctrl 2149 16307 37146 3.504 2.397 0.609 0.28
Avg. 3.657 2.624 0.616 0.520

Table 2: OpenABCD results. VeriDistill with or without KD have been trained on customized
datasets and used to predict post-synthesis area and delay of OpenABCD circuits without any fine-
tuning. Mean Absolute Error (MAE) between estimated and actual logarithmic values are reported
for area and delay. IO, Node and Edges represent the number of primary inputs/outputs, AIG nodes
and AIG edges of the circuits.

4.5 ADDITIONAL OUT-OF-DISTRIBUTION RESULTS

Finally, we evaluate how our knowledge-distillation procedure can impact the ability of the trained
model to generalize to new out-of-distribution circuits. For this, we take our model, trained with and
without knowledge distillation on our Customized Dataset, and apply it to instances in the Open-
ABCD benchmark (see Section 4.2). As can be seen in Table 2, our knowledge distillation procedure
systematically improves the LLM-based model’s ability to transfer prediction performance on out-
of-distribution instances, which differ significantly from those seen during training.

5 CONCLUSION

In summary, in this work we propose a novel procedure to predict quality-of-result electronic circuit
metrics from Verilog code, by training a small neural network model on Verilog LLM representations
with a knowledge distillation regularizer which align its internal activations with those of a low-
level GNN model. We show that this new model, which we call VeriDistill, outperforms previous
approaches in prediction accuracy.

Besides the clear practical value of our method, our results highlight the surprising phenomenon
that Verilog LLMs appeared to have learned more abstract characteristics regarding the circuit rep-
resented by the code, which can be exploited to predict ultimate circuit quality with higher accuracy
than any previous method. In essence, Verilog LLMs might have learned to do a mini “logic syn-
thesis”, despite having only been trained to perform language modeling. However, our results also
highlight the importance of our knowledge distillation procedure in allowing downstream models to
effectively use this information stored in the LLM’s representations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

T Ajayi, D Blaauw, TB Chan, CK Cheng, VA Chhabria, DK Choo, M Coltella, S Dobre, R Dreslin-
ski, M Fogaça, et al. Openroad: Toward a self-driving, open-source digital layout implementation
tool chain. In GOMACTECH, 2019.

Alexey V Akimov and Oleg V Prezhdo. Large-scale computations in chemistry: a bird’s eye view
of a vibrant field. Chemical reviews, 2015.

Luca Amarú, Patrick Vuillod, Jiong Luo, and Janet Olson. Logic optimization and synthesis: Trends
and directions in industry. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017.

Tom B. Brown, Benjamin Mann, and etc. Language models are few-shot learners. In Advances in
Neural Information Processing Systems (NeurIPS), 2020.

He Cao, Zijing Liu, Xingyu Lu, Yuan Yao, and Yu Li. Instructmol: Multi-modal integration
for building a versatile and reliable molecular assistant in drug discovery. arXiv preprint
arXiv:2311.16208, 2023.

Ziwei Chai, Tianjie Zhang, Liang Wu, Kaiqiao Han, Xiaohai Hu, Xuanwen Huang, and Yang
Yang. Graphllm: Boosting graph reasoning ability of large language model. arXiv preprint
arXiv:2310.05845, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. Openabc-d: A
large-scale dataset for machine learning guided integrated circuit synthesis. arXiv preprint
arXiv:2110.11292, 2021.

David R Coelho. The VHDL handbook. Springer Science & Business Media, 2012.

Jack Dongarra and David Keyes. The co-evolution of computational physics and high-performance
computing. Nature Reviews Physics, 2024.

Florian E Dorner. Measuring progress in deep reinforcement learning sample efficiency. arXiv
preprint arXiv:2102.04881, 2021.

Ege Erdil and Tamay Besiroglu. Algorithmic progress in computer vision. arXiv preprint
arXiv:2212.05153, 2022.

Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and Zhiyao
Xie. Masterrtl: A pre-synthesis ppa estimation framework for any rtl design. In International
Conference on Computer Aided Design (ICCAD), 2023.

Wenji Fang, Shang Liu, Hongce Zhang, and Zhiyao Xie. Annotating slack directly on your ver-
ilog: Fine-grained rtl timing evaluation for early optimization. In Design Automation Conference
(DAC), 2024a.

Wenji Fang, Yao Lu, Shang Liu, Qijun Zhang, Ceyu Xu, Lisa Wu Wills, Hongce Zhang, and Zhiyao
Xie. Transferable pre-synthesis ppa estimation for rtl designs with data augmentation techniques.
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2024b.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for programming
and natural languages. In EMNLP, 2020.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, YK Li, et al. Deepseek-coder: When the large language model meets programming–the rise
of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

Danny Hernandez and Tom B Brown. Measuring the algorithmic efficiency of neural networks.
arXiv preprint arXiv:2005.04305, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Anson Ho, Tamay Besiroglu, Ege Erdil, David Owen, Robi Rahman, Zifan Carl Guo, David Atkin-
son, Neil Thompson, and Jaime Sevilla. Algorithmic progress in language models. arXiv preprint
arXiv:2403.05812, 2024.

Bowen Jin, Wentao Zhang, Yu Zhang, Yu Meng, Xinyang Zhang, Qi Zhu, and Jiawei Han. Pat-
ton: Language model pretraining on text-rich networks. In Proceedings of the Association for
Computational Linguistics (Volume 1: Long Papers), 2023.

Andrej Karpathy. Deep neural nets: 33 years ago and 33 years from now.
http://karpathy.github.io/2022/03/14/lecun1989, 2022. [Accessed 19/09/2024.].

Brock J LaMeres. Introduction to logic circuits & logic design with VHDL. Springer Nature, 2023.

Mingjie Liu, Teodor-Dumitru Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian Liang,
Jonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, et al. Chipnemo:
Domain-adapted llms for chip design. arXiv preprint arXiv:2311.00176, 2023a.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating
large language models for verilog code generation. In International Conference on Computer
Aided Design (ICCAD), 2023b.

Pengfei Liu, Yiming Ren, Jun Tao, and Zhixiang Ren. Git-mol: A multi-modal large language
model for molecular science with graph, image, and text. Computers in biology and medicine,
2024.

Shang Liu, Wenji Fang, Yao Lu, Qijun Zhang, Hongce Zhang, and Zhiyao Xie. RTLCoder: Outper-
forming RTL-3.5 in design RTL generation with our open-source dataset and lightweight solution.
arXiv preprint arXiv:2312.08617, 2023c.

Zhiyuan Liu, Sihang Li, Yanchen Luo, Hao Fei, Yixin Cao, Kenji Kawaguchi, Xiang Wang, and
Tat-Seng Chua. MolCA: Molecular graph-language modeling with cross-modal projector and
uni-modal adapter. In EMNLP, 2023d.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations, ICLR, 2017.

Yao Lu, Shang Liu, Qijun Zhang, and Zhiyao Xie. Rtllm: An open-source benchmark for design rtl
generation with large language model. In Asia and South Pacific Design Automation Conference
(ASP-DAC), 2024.

Costas Mavromatis, Vassilis N Ioannidis, Shen Wang, Da Zheng, Soji Adeshina, Jun Ma, Han Zhao,
Christos Faloutsos, and George Karypis. Train your own gnn teacher: Graph-aware distillation
on textual graphs. In ECML PKDD, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In International Conference on Machine Learning (ICLR), 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems (NeurIPS),
2022.

Zehua Pei, Huiling Zhen, Mingxuan Yuan, Yu Huang, and Bei Yu. BetterV: Controlled verilog gen-
eration with discriminative guidance. In International Conference on Machine Learning (ICLR),
2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Michael C Schatz. Computational thinking in the era of big data biology. Genome Biology, 2012.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Prianka Sengupta, Aakash Tyagi, Yiran Chen, and Jiang Hu. How good is your verilog rtl code?
a quick answer from machine learning. In International Conference on Computer-Aided Design
(ICCAD), 2022.

Prianka Sengupta, Aakash Tyagi, Yiran Chen, and Jiang Hu. Early identification of timing critical
rtl components using ml based path delay prediction. In Workshop on Machine Learning for CAD
(MLCAD), 2023.

Wilson Snyder. Verilator and systemperl. In North American SystemC Users’ Group, Design Au-
tomation Conference, volume 79, 2004.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In SIGIR, 2024.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond A. Pearce, Benjamin Tan, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large language models for automated
verilog rtl code generation. Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2022.

Shailja Thakur, Baleegh Ahmad, Zhenxing Fan, Hammond Pearce, Benjamin Tan, Ramesh Karri,
Brendan Dolan-Gavitt, and Siddharth Garg. Benchmarking large language models for automated
verilog rtl code generation. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2023.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri, and Siddharth Garg. Verigen: A large language model for verilog code generation. Trans-
actions on Design Automation of Electronic Systems (TCAD), 2024.

Donald Thomas and Philip Moorby. The Verilog® hardware description language. Springer Science
& Business Media, 2008.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

YunDa Tsai, Mingjie Liu, and Haoxing Ren. Rtlfixer: Automatically fixing rtl syntax errors with
large language models. arXiv preprint arXiv:2311.16543, 2023.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In EMNLP, 2021.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free verilog synthesis suite. In Pro-
ceedings of the 21st Austrian Workshop on Microelectronics (Austrochip), 2013.

Haoyuan Wu, Zhuolun He, Xinyun Zhang, Xufeng Yao, Su Zheng, Haisheng Zheng, and Bei Yu.
Chateda: A large language model powered autonomous agent for eda. Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2024.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh,
Guangzhong Sun, and Xing Xie. Graphformers: Gnn-nested transformers for representation
learning on textual graph. Advances in Neural Information Processing Systems (NeurIPS), 2021.

Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut, Percy Liang, and Jure Leskovec. QA-GNN:
Reasoning with language models and knowledge graphs for question answering. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2021.

Michihiro Yasunaga, Antoine Bosselut, Hongyu Ren, Xikun Zhang, Christopher D Manning,
Percy S Liang, and Jure Leskovec. Deep bidirectional language-knowledge graph pretraining.
Advances in Neural Information Processing Systems (NeurIPS), 2022.

X Zhang, A Bosselut, M Yasunaga, H Ren, P Liang, C Manning, and J Leskovec. Greaselm: Graph
reasoning enhanced language models for question answering. In International Conference on
Representation Learning (ICLR), 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yang Zhao, Di Huang, Chongxiao Li, Pengwei Jin, Ziyuan Nan, Tianyun Ma, Lei Qi, Yansong
Pan, Zhenxing Zhang, Rui Zhang, et al. Codev: Empowering llms for verilog generation through
multi-level summarization. arXiv preprint arXiv:2407.10424, 2024.

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen Zhang, Dewu Zheng, Mingxi Ye, and Jiachi
Chen. A survey of large language models for code: Evolution, benchmarking, and future trends.
arXiv preprint arXiv:2311.10372, 2023.

Ruizhe Zhong, Xingbo Du, Shixiong Kai, Zhentao Tang, Siyuan Xu, Hui-Ling Zhen, Jianye Hao,
Qiang Xu, Mingxuan Yuan, and Junchi Yan. c. arXiv preprint arXiv:2401.12224, 2023.

Yuan Zhou, Haoxing Ren, Yanqing Zhang, Ben Keller, Brucek Khailany, and Zhiru Zhang. Primal:
Power inference using machine learning. In Design Automation Conference (DAC), 2019.

Tao Zou, Le Yu, Yifei Huang, Leilei Sun, and Bowen Du. Pretraining language models with text-
attributed heterogeneous graphs. In EMNLP, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

6 APPENDIX

APPENDIX A: DIFFERENT LARGE LANGUAGE MODELS

To demonstrate performance of VeriDistill with different LLMs, we employ CodeV-DeepSeek and
CodeV-CodeQwen, which utilize deepseek-coder-6.7b and CodeQwen1.5-7B-Chat as
the base models. These two models are two variants of the standard CodeV model based on
CodeLlama-7b-Instruct, and were trained with the same procedure.

Approach Area Delay

MAE ↓ R2 ↑ MAPE ↓ RSE ↓ MAE ↓ R2 ↑ MAPE ↓ RSE ↓
CodeQwen + Decoder 1.070 0.563 1.975 0.437 0.732 0.368 0.139 0.632
DeepSeek + Decoder 1.061 0.566 2.184 0.434 0.738 0.367 0.143 0.633
CodeV + Decoder 0.991 0.614 1.901 0.386 0.718 0.443 0.141 0.557
VeriDistill (CodeQwen) 0.468 0.878 0.574 0.122 0.424 0.733 0.078 0.267
VeriDistill (DeepSeek) 0.484 0.875 0.622 0.125 0.426 0.706 0.077 0.294
VeriDistill (CodeV) 0.495 0.862 0.629 0.138 0.415 0.728 0.076 0.272

Table 3: The performance of VeriDistill with different Large Language Models.

APPENDIX B: ADDITIONAL RESULTS ON THE OPENABCD BENCHMARK

IP Area (MAE ↓) Delay (MAE ↓)

spi 0.294 1.218
sasc 0.035 0.708
i2c 0.21 0.867
simple spi 0.613 0.637
wb conmax 2.343 1.104
vga lcd 0.104 6.037
aes secworks 2.671 1.129
sha256 0.887 1.399
ss pcm 0.581 1.229
fir 0.391 0.325
idft 1.018 7.471
des3 area 0.287 1.797
ethernet 0.097 4.567
dft 1.032 7.258
dynamic node 1.131 0.966
tv80 0.05 1.399
pci 0.11 2.978
fpu 0.155 0.303
usb phy 0.115 0.85
aes xcrypt 2.227 1.372
iir 0.353 0.456
aes 0.917 3.463
mem ctrl 0.922 1.327
Avg. 0.103 0.105

Table 4: The performance on LUT-GNN (teacher model) on the OpenABCD benchmark.

APPENDIX C: TRAINING RESOURCES

Since the LLM is kept frozen during training, it was possible to save training time by extracting the
forward pass through the LLM only once and saving it. We performed this phase on a machine with
8 Nvidia V100 GPUs with 32GB of memory and 32 Intel(R) Xeon(R) Gold 6140 CPUs. Once the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Method Training Time
(Till Convergence)

Number of Epochs
to Converge

LUT-GNN 21 hours 300
AST-XGBoost 5 minutes N/A

AST-GNN 33 minutes 340
AST-GNN w/ KD 40 minutes 300
CodeV + Decoder 12 hours 360

VeriDistill 18 hours 260

Table 5: Training times for the various models.

hidden state a then trained each model following the procedure detailed in the paper on the same
machine using a single V100 GPU with 1024 minibatch sizes. The training times for each model
are summarized in the following table.

APPENDIX D: RESULTS UNDER DIFFERENT SYNTHESIS SETTING

To test the robustness of VeriDistill under a different synthesis setting, we re-run synthesis for speed
optimization (ABC SPEED=1 for OpenROAD hyperparameter setting). We train and evaluate all
the methods under the new setup.

method Area Delay

MAE ↓ R2 ↑ MAPE ↓ RSE ↓ MAE ↓ R2 ↑ MAPE ↓ RSE ↓
LUT-GNN (Teacher) 0.251 0.955 0.309 0.045 0.109 0.948 0.023 0.052
AST-XGBoost 0.749 0.745 1.366 0.349 0.484 0.652 0.093 0.542
AST-GNN 0.893 0.661 1.435 0.339 0.317 0.604 0.071 0.396
AST-GNN w/ KD 0.872 0.674 1.418 0.331 0.324 0.621 0.082 0.392
CodeV + Decoder 0.991 0.629 1.69 0.371 0.367 0.533 0.086 0.467
VeriDistill 0.482 0.872 0.784 0.128 0.236 0.781 0.054 0.219

Table 6: The performance of different Verilog models on the test dataset under the speed
optimization setting.

APPENDIX E: DISTRIBUTION OF ABSOLUTE PERCENTAGE ERRORS

To compliment the results in Figure 4, Tables 7 and 8 outline the distribution of the absolute per-
centage errors of each method. Each cell specifies the number of points with the absolute percentage
error falling in the range specified by the column.

Method 0 - 0.1 0.1 - 0.3 0.3 - 0.5 0.5 - 1.0
AST-XGBoost 425 654 334 452
AST-GNN 516 496 305 548
AST-GNN w/ KD 355 583 369 558
CodeV + Decoder 281 558 427 599
VeriDistill 781 585 217 282

Table 7: Distribution of absolute percentage errors (|prediction−label|
label) for the (log) area prediction

task.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Method 0 - 0.1 0.1 - 0.3 0.3 - 0.5 0.5 - 1.0
AST-XGBoost 1572 695 81 26
AST-GNN 1402 799 141 33
AST-GNN w/ KD 1298 891 153 30
CodeV + Decoder 1127 1002 192 47
VeriDistill 1803 504 52 17

Table 8: Distribution of absolute percentage errors (|prediction−label|
label) for the (log) delay prediction

task.

17

	Introduction
	Related Work
	Quality-of-Result Prediction from HDL Code
	LLMs for Verilog
	Alignment of LLM and GNN Embeddings

	Methodology
	Model
	Training
	Supervised learning
	Low-level knowledge distillation
	Total loss

	Experiments
	Experimental Setup
	Datasets
	Baselines
	Main results
	Additional Out-of-Distribution Results

	Conclusion
	Appendix

