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ABSTRACT

Logic synthesis is a crucial phase in the circuit design process, responsible
for transforming hardware description language (HDL) designs into optimized
netlists. However, traditional logic synthesis methods are computationally inten-
sive, restricting their iterative use in refining chip designs. Recent advancements
in large language models (LLMs), particularly those fine-tuned on programming
languages, present a promising alternative. This work proposes augmenting LLMs
with predictor networks trained to estimate circuit quality directly from HDL code.
To enhance performance, the model is regularized using embeddings from graph
neural networks (GNNs) trained on Look-Up Table (LUT) graphs, thereby incor-
porating lower-level circuit insights. The proposed method demonstrates superior
performance compared to existing graph-based RTL-level estimation techniques
on the established benchmark OpenABCD, while providing instant feedback on
HDL code quality.

1 INTRODUCTION

Rapid technological advancements in computing power has taken an increasingly important role
in the past decades in driving scientific research in biology (Schatz, 2012), chemistry (Akimov &
Prezhdo, 2015), physics (Dongarra & Keyes, 2024) and especially artificial intelligence, where it has
been estimated that at least half of all performance gains in the past ten years have stemmed from
hardware improvements alone (Hernandez & Brown, 2020; Dorner, 2021; Karpathy, 2022; Erdil &
Besiroglu, 2022; Ho et al., 2024). This ever-rising demand for compute power means that efficient
and effective electronic chip design has become increasingly critical.

Modern electronic chip design is a complex, multi-stage endeavor that begins with a chip architect
specifying the digital circuit’s functionality in a Hardware Description Language (HDL), such as
Verilog (Thomas & Moorby, 2008) or VHDL (Coelho, 2012). This HDL code is then subjected
to a series of transformations and optimizations, ultimately yielding a physical circuit design that
can be manufactured (LaMeres, 2023). In a previous era where circuits were small and limited
in functionality, this logic synthesis process was quick and the chip architect could quickly receive
feedback and iterate on its HDL code. However, with the increasing complexity of industrial designs,
which now can comprise hundreds of millions of logic gates (Amarú et al., 2017), even a single
synthesis run has become massively expensive. This has driven the need for alternate ways of
providing feedback on HDL code without running the actual logic synthesis process.

A natural way to tackle this problem is to train a machine learning model that can take the HDL code
as input, and output estimates of circuit quality such as wire length or delay that could have been
computed had the logic synthesis process been run. A few works have approached this topic, by
extracting graphical information about the code and using hand-designed statistics of those graphs
as features (Zhou et al., 2019; Sengupta et al., 2022; Fang et al., 2023). Although these works had
encouraging results, their performance has been limited by the relatively shallow understanding of
the semantics of the code that these statistics can provide.

Recently, Large Language Models fine-tuned on code, such as Code-T5 (Wang et al., 2021),
Codex (Chen et al., 2021), CodeGen Nijkamp et al. (2023), CodeLlama (Roziere et al., 2023) and
DeepSeek-Coder (Guo et al., 2024), have emerged that have proven remarkably successful on a
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wide range of tasks (Zheng et al., 2023), most notably as code assistants such as Github Copilot1.
Although most models are generalists trained on general-purpose programming languages such as
C++ and Python, a few models, such as CodeGen-Verilog (Thakur et al., 2023), VeriGen (Thakur
et al., 2024), RTLCoder (Liu et al., 2023c) and CodeV (Zhao et al., 2024), have been specifically
trained on Verilog, the most popular HDL language. The analysis of these models, however, has
been so far limited to investigating their ability to generate realistic code, and an investigation of the
predictive power of those internal representations has been lacking.

In this work, we demonstrate for the first time that the hidden states computed by these novel Verilog
large language models contain rich insights which can be used to predict quality-of-result metrics
with higher accuracy than previous machine learning models. Namely, we feed Verilog code to the
state-of-the-art CodeV model, and train an inexpensive decoder neural network that uses the LLM’s
hidden states as features to predict area and delay. In addition, and critically, we regularize this
decoder to encourage its embeddings to resemble those of a graph neural network model trained on
Look-Up Table (LUT) graph, an intermediate representation used during the logic synthesis process.
The resulting decoder is shown to strongly outperform state-of-the-art baselines, and incidentally
shows that those novel Verilog language models extract in their hidden states surprisingly complex
insights about the circuits represented by raw code.

Our work makes the following main contributions:

1. We develop the first truly end-to-end machine learning model in the literature, named
VeriDistill, which can take raw Verilog code, without any preprocessing, and produce ac-
curate estimates of circuit area/delay metrics.

2. Moreover, we apply during training a novel knowledge distillation method which allows
to transfer low-level insights about the circuit, in the form of LUT graphs, back into the
machine learning predictor model.

3. We demonstrate through experiments that the combination of those two elements outper-
forms previous state-of-the-art baselines in a large-scale Verilog dataset and enhances the
model’s ability to transfer to out-of-distribution data.

4. Finally, we also demonstrate that both using LLM representations and the knowledge distil-
lation are essential, in that removing any one of these components brings the performance
back below the previous baselines.

The remainder of this paper is structured as follows. Section 2 provides an overview of the rele-
vant literature and background information. In Section 3, we present a detailed description of our
proposed methodology, including its key components and underlying assumptions. The efficacy of
our approach is then demonstrated through a series of experiments, which are reported in Section 4.
Finally, Section 5 summarizes our main findings, discusses their implications, and outlines potential
avenues for future research.

2 RELATED WORK

2.1 QUALITY-OF-RESULT PREDICTION FROM HDL CODE

Closest to ours is the work of Sengupta et al. (2022). Their approach consists in computing the
Abstract Syntax Tree (AST) induced by Verilog code, and extracting from this free vector- and
graph-based features. They then train several machine learning models to predict from these features
the total negative slack and dynamic power of the circuit. Among all the models evaluated, the
XGBoost Regressor performs best and achieves 95% R2-score. The analysis was however limited
to different runs of a single circuit and it is not clear how the performance would generalize to
different circuits. Since the Abstract Syntax Tree is essentially the raw Verilog code with extra
syntactic information, which can be obtained at little cost at inference time by a grammar parser, we
include it (along with variants) as baselines in our experimental section.

Further related is the work of Fang et al. (2023) and Fang et al. (2024b). They propose to pro-
cess Verilog code into a new representation called Simple Operator Graph (SOG), and test several

1https://github.com/features/copilot
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machine learning models (Transformers, Random Forests, Graph Neural Networks and XGBoost
regressors) to predict path delay, module-level power and combinatorial area. Although achieving
promising results, computing the SOG requires expensive conversion of linguistic data into bit-level
operators using logic synthesis tool Yosys (Wolf et al., 2013), which is outside the scope of this
work.

Finally, some works take a step further and try to assist circuit design by annotating which parts
of HDL is most critical to achieved quality-of-result metrics. For example, Sengupta et al. (2023)
attempts to identify timing critical components based on path delay prediction. The AST of each
Verilog design is extracted and converted into a graph, with nodes representing IO ports, registers or
behavior logic. Behavioral paths are extracted from the graph and used for path-level feature gener-
ation. Delay labels of timing paths are generated using commercial synthesis tools, and are assigned
to corresponding behavior paths with the same start and end points. By training an XGBoost model
on the resulting features, the authors achieve an average classification accuracy of 91%. Also similar
is RTL-Timer (Fang et al., 2024a), which ensembles four bit-level circuit representations to predict
the post-logic synthesis endpoint arrival time. Such predictions can then be mapped to registers in
HDL code to identify critical code paths. Just as in the work of Fang et al. (2023), however, these
representations are bit-level rather than word-level and therefore require some degree of processing
by logic synthesis tools like Yosys.

2.2 LLMS FOR VERILOG

Large language models (LLMs) such as GPT (Ouyang et al., 2022) and Llama (Touvron et al., 2023)
have achieved exceptional success in various natural language tasks and have expanded their suc-
cess to programming languages as well. While decoder-only code LLMs such as Codex (Chen et al.,
2021) and CodeLlama (Roziere et al., 2023) have become the most popular due to their exceptional
performance in generation tasks like code generation and code translation, older encoder-only mod-
els such as CodeBERT (Feng et al., 2020) and encoder-decoder code LLMs such as CodeT5 (Wang
et al., 2021) have retained applications in code comprehension tasks such as clone detection and
code retrieval.

Although excellent on generalist programming languages like Python or C++, these models have
been trained on the relatively small amount of HDL code that is publicly available on the internet,
and therefore have performed poorly on Verilog benchmarks like VerilogEval (Liu et al., 2023b)
and RTLLM (Lu et al., 2024). This has motivated further work to build LLMs with a higher-degree
of knowledge of hardware description languages. Both CodeGen-Verilog (Thakur et al., 2023) and
VeriGen (Thakur et al., 2024) used a combination of customized Verilog datasets from code reposi-
tory website GitHub2 and various textbooks to fine-tune code LLMs. Finally, RTLCoder (Liu et al.,
2023c) used the GPT 3.5 language model (Brown et al., 2020) to generate further Verilog data, in
a form of data augmentation, while CodeV (Zhao et al., 2024) used the same model to generate
natural language description of real world Verilog code through multi-level summarization.

Besides Verilog code generation from natural language description, LLMs were also explored for
other EDA-related tasks. RTLFixer (Tsai et al., 2023) employed Retrieval-Augmented Generation
(RAG) and ReAct prompting techniques to interactively debug syntax errors in Verilog code, and
achieved remarkable improvement in success rates in the VerilogEval benchmark. ChipNemo (Liu
et al., 2023a) explored the application of LLMs in chip design process and adopted several domain
adaptation techniques to train an LLM for various applications including assistant chatbots, EDA
script generation, and bug summarization and analysis. Finally, ChatEDA (Wu et al., 2024) used
code LLMs as an agent to autonomously complete the entire chip design flow from HDL code to
the Graphic Data System Version II (GDSII) by managing task planning, script generation and task
execution. We refer the reader to the extensive survey of Zhong et al. (2023) for more details on the
application of LLMs in electronic design automation and future research directions in this field.

2www.github.com
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module test(input D, C, R, RV,
            output reg Q);
    always @(posedge C, posedge R)
    if (R)
        Q <= RV;
    else
        Q <= D;
endmodule
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Figure 1: The VeriDistill model. The code input is tokenized and fed to a Verilog-aware Large
Language Model (LLM), which produces a sequence of hidden state vectors, one per token. These
vectors are averaged, and fed to a small feedforward neural network (FNN) to produce the QoR
prediction. In practice, in our experiments we use CodeV-7B (Zhao et al., 2024) as Verilog LLM,
and use three layers with ReLU activations in the FNN.

2.3 ALIGNMENT OF LLM AND GNN EMBEDDINGS

The multimodal alignment regularizer we propose during training also relates to the broader litera-
ture on tuning large language models to align with a pre-trained graph neural network, to incorporate
its capabilities.

The work closest to ours is that of Mavromatis et al. (2023), who train a language model to perform
a node classification task while adding a regularizer that encourages the predictive distributions to
match a pre-trained graph neural network model. The language model makes predictions by passing
the graph as input, and extracting the representation corresponding to a final [CLS] classification
token. Also similar is Zou et al. (2023), which jointly trains a language model and a graph neural
network on a common “context graph prediction” task which encourage alignment of their repre-
sentations. They then discard the graph neural network and only keep the language model, so that
topological characteristics best captured by graph convolutions can be said to have been incorporated
in the language model.

More generally, there is a large literature on integrating pretrained graph neural networks with lan-
guage models by training an adaptive module (Liu et al., 2024; 2023d; Chai et al., 2023; Tang et al.,
2024; Cao et al., 2023), allowing the language model to receive inputs from the graph neural net-
work. Alternatively, multiple works have interlaced graph neural network layers and language model
layers (Yasunaga et al., 2021; Yang et al., 2021; Zhang et al., 2022; Yasunaga et al., 2022; Jin et al.,
2023). In either case, some kind of training is necessary to allow for interactions between the graph
neural network and the language model, although the result is not distillation of the graph neural
network’s perspective into the language model per se.

3 METHODOLOGY

We now present our VeriDistill approach in detail. As described in the introduction, turning a high-
level description of a circuit in a Hardware Description Language like Verilog into a physical de-
scription ready for manufacturing is a computationally expensive process involving several steps,
each with an associated intermediate representation describing progressively lower-level elements
of the circuit. Our goal is to predict low-level quality-of-result metrics, like area and delay, from the
highest-level representation, namely the HDL code.

3.1 MODEL

Our model takes as input Verilog code, which is fed to a Large Language Model (LLM). This LLM
has been specifically fine-tuned on Verilog code generation. The code is first split into a sequence
of tokens, which are then fed in parallel in the LLM. As an output, the LLM produces a sequence
of high-dimensional “hidden state” vectors, one for each token that is inputted to the LLM. We
average these hidden states, producing a single vector. This vector is then fed to a feedforward
neural network, composed of several linear layers with nonlinear activations, which finally outputs
the QoR estimate. A diagram is provided as Figure 1.
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module test(input D, C, R, RV,
            output reg Q);
    always @(posedge C, posedge R)
    if (R)
        Q <= RV;
    else
        Q <= D;
endmodule
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Figure 2: The training procedure. The Verilog training examples are passed to the VeriDistill model,
which produces predictions of the QoR metric. These predictions are scored against the true QoR
values by a mean-squared error supervised learning loss. In addition, the LUT graph representa-
tion resulting from logic optimization is fed to an auxiliary GNN model, pretrained to perform the
same QoR prediction task. The hidden representations at the last layer of both the VeriDistill and
GNN models is extracted, and a mean-square error knowledge distillation loss encourages these two
representations to be similar, despite having different inputs. Both the pretrained GNN and LLMs
modules are kept frozen during training.

3.2 TRAINING

We train the model as follows. We assume we have access to a training set of circuits with Verilog
code for which the expensive logic synthesis process has been performed, so that we know their
QoR metric (such as area or delay). In addition, as an intermediate product of the logic synthesis
process, an LUT graph is produced immediately following the logic optimization phase, which we
save. This yields a collection of training triples D = {(XVerilog, XLUT, yQoR)}.

3.2.1 SUPERVISED LEARNING

Given such a dataset, we treat our problem by supervised machine learning. The LLM, which has
been pretrained on Verilog code, is kept frozen, so that only the FNN gets updated. In a training step,
the Verilog code XVerilog is fed to the VeriDistill model to produce a prediction ŷQoR. This prediction
is compared in mean-squared error loss with the true QoR metric yQoR as a supervised learning loss

LSL =
(
ŷQoR − yQoR

)2
. (1)

3.2.2 LOW-LEVEL KNOWLEDGE DISTILLATION

In practice, training only with the supervised learning loss leads to limited performance. One poten-
tial explanation is that there is too much of a gap between a high-level circuit description like Verilog
and the low-level metrics we purport to predict. Intuitively, to perform high-quality predictions, we
would want the model to possess some degree of understanding of lower-level circuit design while
still only taking Verilog code as input.

We propose the following approach to address this problem. Prior to training, we pretrain a Graph
Neural Network (GNN) to predict the same QoR metric as VeriDistill, but from the Look-Up-Table
(LUT) graph XLUT of the circuit obtained after optimization using Yosys (Wolf et al., 2013). This
graph, which can be seen as an alternative to the more popular And-Inverter Graph (AIG) format,
is particularly suitable for GNN training as it is compact with rich node information. Moreover, as
a circuit representation, it sits intermediate between a high-level description of the circuit encoded

5
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in the Verilog code, and a physical circuit description from which the QoR metrics such as area and
delay can be read. Prediction from LUT graphs is thus easier than prediction from Verilog code, but
not completely trivial either.

The GNN architecture we adopt is composed of a sequence of graph convolutions, followed by joint
mean and max pooling, and a sequence of linear layers. We pretrain it using the supervised learning
loss (1) until good predictive performance is achieved. Then, during the VeriDistill training, we keep
the GNN weights frozen and we propose to encourage the last-layer activations of the VeriDistill
model z(−1)

VeriDistill to resemble those of the GNN model z(−1)
GNN , despite these models operating on

different inputs. We perform this simply by adding a mean-square error loss

LKD =
∥∥z(−1)

VeriDistill − z
(−1)
GNN

∥∥2
2

(2)

in the total loss. As the weights of the GNN are pretrained and kept frozen while the VeriDistill
model is being trained, this is effectively a form of knowledge distillation from the GNN to the
VeriDistill model.

3.2.3 TOTAL LOSS

We balance the importance given to the knowledge distillation compared to the supervised learning
objective using a hyperparameter factor α, yielding the final loss

L = αLSL + (1− α)LKD.

A diagram describing the VeriDistill training process is provided as Figure 2.

4 EXPERIMENTS

This section is organized as follows: We begin by presenting the implementation details of our
experimental setup in Section 4.1, including hardware, model, and training hyperparameters. Next,
we describe the dataset used and the data preprocessing steps for training and evaluation in Section
4.2. We then introduce the baseline methods and their implementation details in Section 4.3. Finally,
we present the results on the main datasets and a study on unseen out-of-distribution circuits in
Sections 4.4 and 4.5.

4.1 EXPERIMENTAL SETUP

For our experiments, we use the following implementation of the model. We use CodeV-7B (Zhao
et al., 2024) as Verilog LLM, and use three layers with ReLU activations in the feedforward neural
network. The model takes as input strings, which are broken into a sequence of the 32,016 possible
tokens in CodeV-7B’s vocabulary. The language model processes these inputs into a sequence of
the same length, made up of 512-dimensional vectors. After mean pooling, the resulting vector is
passed to the feedforward neural network, which uses 512-dimensional activations, before making
the final prediction. In particular, this architecture means that the last-layer activations z(−1)

VeriDistill are
512-dimensional.

The auxiliary GNN teacher model takes a LUT graph with 16-dimensional node attributes, and
passes it through three 64-dimensional graph convolutional layers interleaved with batch normaliza-
tion layers. After concatenation of the mean and max pooling outputs, the 128-dimensional vector
is passed through three 512-dimensional linear layers with ReLU activations before the final predic-
tion. Thus, in particular, the last-layer activations z(−1)

GNN are 512-dimensional, matching with those
of the VeriDistill model.

We implement VeriDistill and the baselines using the PyTorch and PyG libraries. Models which
do not use our knowledge distillation procedure are trained using the ReduceLROnPlateau scheduler
with initial learning rate 1e-3, patience set to 30 epochs and factor set to 0.5. In contrast, models
involving our knowledge distillation procedure are trained using the CosineAnnealingLR Loshchilov
& Hutter (2017) scheduler, with an initial learning rate of 1e-3 and number of iterations set to 50.
We start the training process with α = 0.5, and increase α to 0.75 and 1 at epochs 150 and 250. The
idea is put less emphasis on knowledge distillation at every warm re-start. We find that this approach

6
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Figure 3: Distribution of labels and the number of tokens in the Verilog dataset.

results in marginal gain compared to other optimization methods. All models are trained until full
convergence. Details about the training resources and times can be found in Appendix C.

OpenROAD provides two optimization recipes for the logic synthesis process: ”ABC AREA=1”
for area optimization and ”ABC SPEED=1” for timing optimization. The results reported under
Section 4.4 are produced under area optimization. We report the results under delay optimization in
Appendix D. we find that our approach works as well under different recipe optimization settings.

4.2 DATASETS

We train and evaluate on two separate datasets. The first dataset is used for training, validation,
and testing of all the methods, while OpenABCD contains out-of-distribution circuits aiming to
challenge VeriDistill and determine its ability to generalize.

Customized Dataset To train and evaluate our proposed method, we collect 18.4k Verilog ex-
amples provided by Pei et al. (2024) and 5.8k from Thakur et al. (2022). These Verilog examples
are obtained from open-source GitHub repositories and textbooks and have been verified for syntax
correctness. We use an open-sourced EDA platform OpenROAD Ajayi et al. (2019) with 7nm tech-
nology PDK provided to conduct logic synthesis and record post-synthesis labels of area and delay.
We convert the AIG graphs obtained after logic optimization into LUT graphs and save them for
training the auxiliary GNN model.

Note that a substantial fraction of the code snippets end up being functionally incorrect and failing
some stage of the logic synthesis pipeline. Since we require functionally correct examples for their
QoR metric to be well-defined, we removed such examples during the preprocessing. In addition,
although not strictly a problem for our method, one of the competing baselines requires extracting
the Abstract Syntax Tree (AST) of the Verilog, which is obtained by running a parser on the code.
The parser was unable to produce AST representations for a small fraction of the instances (FRAC-
TION%), which we removed from consideration. The resulting dataset, after filtering bad examples,
ended up having 16k examples, which we split into training, validation, and test sets with a ratio of
0.75/0.1/0.15, respectively.

We depict the distribution of labels and the number of tokens in Verilog instances in Figure 3.
As mentioned in prior work by Zhao et al. (2024) , Verilog data scarcity is a common challenge
in developing machine learning tools for RTL level tasks. We note that the majority of Verilog
instances contain less than 2000 tokens, with the corresponding circuits having a small area and
delay.

OpenABCD Additionally, we consider data provided by Chowdhury et al. (2021) to evaluate the
transferability of our method to unseen circuits. The OpenABCD dataset consists of functionally di-
verse designs such as bus communication protocols, computing processors, digital signal processing
cores, cryptographic accelerators and system controllers.

4.3 BASELINES

While numerous prior works have attempted to predict post-synthesis circuit quality at the RTL-
stage, none of them perform prediction directly from source Verilog files. Several works rely on

7
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Method Area Delay

MAE ↓ R2 ↑ MAPE ↓ RSE ↓ MAE ↓ R2 ↑ MAPE ↓ RSE ↓
LUT-GNN (Teacher) 0.280 0.933 0.437 0.067 0.251 0.918 0.050 0.082
AST-XGBoost 0.773 0.745 1.494 0.362 0.521 0.632 0.096 0.565
AST-GNN 0.867 0.660 1.365 0.34 0.622 0.520 0.116 0.480
AST-GNN w/ KD 0.898 0.670 1.327 0.33 0.654 0.561 0.122 0.439
CodeV + Decoder 0.991 0.614 1.901 0.386 0.718 0.443 0.141 0.557
VeriDistill 0.495 0.862 0.629 0.138 0.415 0.728 0.076 0.272

Table 1: The performance of different Verilog models on the test dataset, where the best result for
each metric is bolded. In addition, we report the performance of the teacher model trained on the
LUT graphs, which serves as an upper-bound.

lower-level circuit representation that requires extra processing using logic synthesis tools (Zhou
et al., 2019; Fang et al., 2023). Using low-level circuit representation as input is advantageous for
the circuit quality prediction task but it is unfair to compare them to our method which takes un-
processed Verilog as input, as reliance on external processing tools makes their computation fragile
and in some cases prohibitively expensive.

We adopt the method proposed by Sengupta et al. (2022) as our baseline. It relies on AST represen-
tations that can be easily converted from Verilog source files. We implement the method based on
description in Sengupta et al. (2022). Verilator (Snyder, 2004) is used to convert each source Verilog
into its respective AST representation, which can be represented as a graph. The nodes in the graph
represent one of the following five semantic categories from the source Verilog (root, variable,
operation, constant, edge), while edges are created between nodes with connections.

We implement three variants of the AST-based method:

AST-XGBoost We compute the following features: (i) the total number of input bits, (ii) the total
number of output bits, (iii) the longest path in the AST, (iv) the frequency of each node type in the
graph and (v) the frequency of each logic type in the graph. The features are concatenated to form
a feature vector with 108 features 3. We perform a thorough hyper-parameter selection using grid
search and employ early stopping to prevent over-fitting.

AST-GNN w/o KD The AST-GNN model takes in the following features per node: (i) the total
number of input bits, (ii) the total number of output bits, (iii) the node semantic type and (iv)
the node operation type. Each feature is represented via a one-hot vector and is projected to a 4-
dimensional space via a linear layer. The final node features consist of a (4 × 4) = 16-dimensional
vector. We cap the number of input/output bits to 200, since 99.9 percent of the nodes in the dataset
have less than 200 input/outputs. The AST-GNN model utilizes the same hyperparameters and
architecture as the auxiliary GNN model used for the knowledge distillation objective in VeriDistill.

AST-GNN w/ KD We propose a third baseline, where the AST-GNN model is guided by the
LUT GNN model. The baseline utilizes the same student-teacher knowledge distillation as our
method. We introduce this baseline to demonstrate the effectiveness of utilizing an LLM in the
student network.

4.4 MAIN RESULTS

We first summarize the results of our main experiment, where we train and test the model on the
large Customized Dataset (see Section 4.2). Table 1 outlines the performance of different models
on the test set. As can be seen, our proposed method, utilizing both CodeV as an encoder and
knowledge distillation, outperforms other baselines across all the metrics, especially with area pre-
diction. Interestingly, simply using a decoder on the LLM representation performs worse than the

3108 = 1 + 1 + 1 + 5 + 100 features coming from feature categories (i)...., (v)
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Figure 4: Prediction vs. target on test data. The predicted values using different methods are plotted
against the targets. (Top) Area prediction. (Bottom) Delay prediction.
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Figure 5: t-SNE representation of the last hidden representation of models on the test data. Color
represents the target value (log-area).

previous state-of-the-art, while knowledge distillation on the AST-GNN model has almost no ef-
fect. Only when both are used together is there profound impact on performance, which suggests
our knowledge distillation procedure is crucial in fully exploiting the richness of the CodeV LLM
representations.

We can further insight on the benefits of our combined approach by analyzing scatter plots of the
predictions against the targets, shown in Figure 4. As can be seen, most models’ good performance
is mostly concentrated on circuits with small delay and area, at the expense of larger circuits, perhaps
because the latter are more rare in the training set. In contrast, our model performs mostly uniformly
well on circuits on every size. This contrast is particularly pronounced when comparing against the
same model without knowledge distillation (CodeV+Decoder), which indicates that our knowledge
distillation procedure is crucial in allowing our model to perform well across the whole range of
circuit sizes.

Finally, in Figure 5, we present the t-SNE projection of the last hidden space representations on the
test data from the teacher model (Zteacher) trained for predicting log-area, alongside those from the
LLM-based models. As can be seen, the resulting t-SNE representation of the VeriDistill model
appears very similar to the one of the LUT-GNN teacher model. Most importantly, the t-SNE of the
LUT-GNN model appears to have captured a clear left-to-right pattern in log-area, which shows that
the teacher model’s representations have captured a very precise prediction pattern for log-area. This
linear pattern has been transferred just as well to VeriDistill. On the contrary, the t-SNE projection
of the AST-GNN w/ KD does not exhibit the same vivid pattern as VeriDistill does, where the
homogeneity of clusters is abrupter by points of different colors. Finally, the plot of the CodeV +
Decoder appears much more like an undefined mass, where the log-area values are mixed together
indiscriminately.
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Area (MAE ↓) Delay (MAE ↓)
IP IO Nodes Edges w/o KD w/ KD w/o KD w/ KD

spi 492 4219 8676 2.083 0.893 0.049 0.053
sasc 260 613 1351 0.738 1.375 0.284 0.319
i2c 305 1169 2466 1.986 1.662 0.329 0.571
simple spi 296 930 1992 0.816 1.142 0.553 0.071
wb conmax 4197 47840 97755 4.807 3.541 0.372 1.312
vga lcd 34385 105334 227731 6.109 5.063 0.238 0.021
aes secworks 5691 40778 84160 4.043 3.434 0.604 0.33
sha256 2985 15816 32647 2.374 1.749 0.4 1.46
ss pcm 194 462 896 0.844 0.367 0.413 0.462
fir 761 4558 9467 2.455 1.132 0.718 0.25
idft 75022 241552 520523 5.975 4.494 0.379 0.258
des3 area 367 4971 10006 2.828 1.298 0.441 0.467
ethernet 21153 67164 144750 6.32 5.743 0.52 0.62
dft 75014 245046 527509 5.999 4.576 0.347 0.152
dynamic node 5283 18094 38763 5.793 5.616 1.307 1.244
tv80 997 11328 23017 5.049 2.544 1.544 0.864
pci 6586 19547 42251 4.392 2.303 0.163 0.668
fpu 1041 29623 59655 4.326 2.519 2.301 1.275
usb phy 222 487 1064 1.682 1.266 0.283 0.007
aes xcrypt 3780 45840 93485 5.493 3.786 1.506 0.795
iir 935 6978 14397 2.585 2.026 0.493 0.301
aes 1212 28925 58379 3.912 1.43 0.321 0.181
mem ctrl 2149 16307 37146 3.504 2.397 0.609 0.28
Avg. 3.657 2.624 0.616 0.520

Table 2: OpenABCD results. VeriDistill with or without KD have been trained on customized
datasets and used to predict post-synthesis area and delay of OpenABCD circuits without any fine-
tuning. Mean Absolute Error (MAE) between estimated and actual logarithmic values are reported
for area and delay. IO, Node and Edges represent the number of primary inputs/outputs, AIG nodes
and AIG edges of the circuits.

4.5 ADDITIONAL OUT-OF-DISTRIBUTION RESULTS

Finally, we evaluate how our knowledge-distillation procedure can impact the ability of the trained
model to generalize to new out-of-distribution circuits. For this, we take our model, trained with and
without knowledge distillation on our Customized Dataset, and apply it to instances in the Open-
ABCD benchmark (see Section 4.2). As can be seen in Table 2, our knowledge distillation procedure
systematically improves the LLM-based model’s ability to transfer prediction performance on out-
of-distribution instances, which differ significantly from those seen during training.

5 CONCLUSION

In summary, in this work we propose a novel procedure to predict quality-of-result electronic circuit
metrics from Verilog code, by training a small neural network model on Verilog LLM representations
with a knowledge distillation regularizer which align its internal activations with those of a low-
level GNN model. We show that this new model, which we call VeriDistill, outperforms previous
approaches in prediction accuracy.

Besides the clear practical value of our method, our results highlight the surprising phenomenon
that Verilog LLMs appeared to have learned more abstract characteristics regarding the circuit rep-
resented by the code, which can be exploited to predict ultimate circuit quality with higher accuracy
than any previous method. In essence, Verilog LLMs might have learned to do a mini “logic syn-
thesis”, despite having only been trained to perform language modeling. However, our results also
highlight the importance of our knowledge distillation procedure in allowing downstream models to
effectively use this information stored in the LLM’s representations.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

T Ajayi, D Blaauw, TB Chan, CK Cheng, VA Chhabria, DK Choo, M Coltella, S Dobre, R Dreslin-
ski, M Fogaça, et al. Openroad: Toward a self-driving, open-source digital layout implementation
tool chain. In GOMACTECH, 2019.

Alexey V Akimov and Oleg V Prezhdo. Large-scale computations in chemistry: a bird’s eye view
of a vibrant field. Chemical reviews, 2015.
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6 APPENDIX

APPENDIX A: DIFFERENT LARGE LANGUAGE MODELS

To demonstrate performance of VeriDistill with different LLMs, we employ CodeV-DeepSeek and
CodeV-CodeQwen, which utilize deepseek-coder-6.7b and CodeQwen1.5-7B-Chat as
the base models. These two models are two variants of the standard CodeV model based on
CodeLlama-7b-Instruct, and were trained with the same procedure.

Approach Area Delay

MAE ↓ R2 ↑ MAPE ↓ RSE ↓ MAE ↓ R2 ↑ MAPE ↓ RSE ↓
CodeQwen + Decoder 1.070 0.563 1.975 0.437 0.732 0.368 0.139 0.632
DeepSeek + Decoder 1.061 0.566 2.184 0.434 0.738 0.367 0.143 0.633
CodeV + Decoder 0.991 0.614 1.901 0.386 0.718 0.443 0.141 0.557
VeriDistill (CodeQwen) 0.468 0.878 0.574 0.122 0.424 0.733 0.078 0.267
VeriDistill (DeepSeek) 0.484 0.875 0.622 0.125 0.426 0.706 0.077 0.294
VeriDistill (CodeV) 0.495 0.862 0.629 0.138 0.415 0.728 0.076 0.272

Table 3: The performance of VeriDistill with different Large Language Models.

APPENDIX B: ADDITIONAL RESULTS ON THE OPENABCD BENCHMARK

IP Area (MAE ↓) Delay (MAE ↓)

spi 0.294 1.218
sasc 0.035 0.708
i2c 0.21 0.867
simple spi 0.613 0.637
wb conmax 2.343 1.104
vga lcd 0.104 6.037
aes secworks 2.671 1.129
sha256 0.887 1.399
ss pcm 0.581 1.229
fir 0.391 0.325
idft 1.018 7.471
des3 area 0.287 1.797
ethernet 0.097 4.567
dft 1.032 7.258
dynamic node 1.131 0.966
tv80 0.05 1.399
pci 0.11 2.978
fpu 0.155 0.303
usb phy 0.115 0.85
aes xcrypt 2.227 1.372
iir 0.353 0.456
aes 0.917 3.463
mem ctrl 0.922 1.327
Avg. 0.103 0.105

Table 4: The performance on LUT-GNN (teacher model) on the OpenABCD benchmark.

APPENDIX C: TRAINING RESOURCES

Since the LLM is kept frozen during training, it was possible to save training time by extracting the
forward pass through the LLM only once and saving it. We performed this phase on a machine with
8 Nvidia V100 GPUs with 32GB of memory and 32 Intel(R) Xeon(R) Gold 6140 CPUs. Once the
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Method Training Time
(Till Convergence)

Number of Epochs
to Converge

LUT-GNN 21 hours 300
AST-XGBoost 5 minutes N/A

AST-GNN 33 minutes 340
AST-GNN w/ KD 40 minutes 300
CodeV + Decoder 12 hours 360

VeriDistill 18 hours 260

Table 5: Training times for the various models.

hidden state a then trained each model following the procedure detailed in the paper on the same
machine using a single V100 GPU with 1024 minibatch sizes. The training times for each model
are summarized in the following table.

APPENDIX D: RESULTS UNDER DIFFERENT SYNTHESIS SETTING

To test the robustness of VeriDistill under a different synthesis setting, we re-run synthesis for speed
optimization (ABC SPEED=1 for OpenROAD hyperparameter setting). We train and evaluate all
the methods under the new setup.

method Area Delay

MAE ↓ R2 ↑ MAPE ↓ RSE ↓ MAE ↓ R2 ↑ MAPE ↓ RSE ↓
LUT-GNN (Teacher) 0.251 0.955 0.309 0.045 0.109 0.948 0.023 0.052
AST-XGBoost 0.749 0.745 1.366 0.349 0.484 0.652 0.093 0.542
AST-GNN 0.893 0.661 1.435 0.339 0.317 0.604 0.071 0.396
AST-GNN w/ KD 0.872 0.674 1.418 0.331 0.324 0.621 0.082 0.392
CodeV + Decoder 0.991 0.629 1.69 0.371 0.367 0.533 0.086 0.467
VeriDistill 0.482 0.872 0.784 0.128 0.236 0.781 0.054 0.219

Table 6: The performance of different Verilog models on the test dataset under the speed
optimization setting.

APPENDIX E: DISTRIBUTION OF ABSOLUTE PERCENTAGE ERRORS

To compliment the results in Figure 4, Tables 7 and 8 outline the distribution of the absolute per-
centage errors of each method. Each cell specifies the number of points with the absolute percentage
error falling in the range specified by the column.

Method 0 - 0.1 0.1 - 0.3 0.3 - 0.5 0.5 - 1.0
AST-XGBoost 425 654 334 452
AST-GNN 516 496 305 548
AST-GNN w/ KD 355 583 369 558
CodeV + Decoder 281 558 427 599
VeriDistill 781 585 217 282

Table 7: Distribution of absolute percentage errors ( |prediction−label|
label ) for the (log) area prediction

task.
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Method 0 - 0.1 0.1 - 0.3 0.3 - 0.5 0.5 - 1.0
AST-XGBoost 1572 695 81 26
AST-GNN 1402 799 141 33
AST-GNN w/ KD 1298 891 153 30
CodeV + Decoder 1127 1002 192 47
VeriDistill 1803 504 52 17

Table 8: Distribution of absolute percentage errors ( |prediction−label|
label ) for the (log) delay prediction

task.
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