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Abstract

Retrieval-augmented generation (RAG) sys-
tems aim to improve the reliability of answers
by incorporating information from external
sources. The value of RAG depends on how
well the knowledge base meets users’ infor-
mation needs. However, most existing evalua-
tion methods for RAG pipelines focus on the
quality of the generated answers or the preci-
sion of the retriever, without assessing whether
the knowledge base itself contains the needed
information. RAG benchmarks are typically
created by generating questions directly from
the documents in the knowledge base, which
may not reflect the diversity of real user ques-
tions. We introduce GapView, a framework
for evaluating whether the knowledge base in
a RAG pipeline provides sufficient coverage
to support expected user questions. GapView
uses cosine similarity between embeddings and
2D Multi-Dimensional Scaling (MDS) projec-
tions to check whether a question is semanti-
cally aligned with any document in the corpus.
We evaluated it on six synthetic datasets from
clinical and programming domains. Results
show that GapView achieves high F1 scores
(> 0.93) in predicting coverage and reveals
domain-specific performance differences. Un-
like traditional RAG metrics, GapView iden-
tifies knowledge gaps and provides clear vi-
sualizations that reveal where information is
missing. Our findings highlight the impor-
tance of validating knowledge base coverage in
RAG pipelines and offer a scalable method for
flagging unsupported questions before they go
through the RAG pipeline.

1 Introduction

Large language models (LLMs) have advanced
the field of Natural Language Processing (NLP),
as they demonstrate strong capabilities in un-
derstanding and generating human-like text and
have achieved remarkable success in numerous
domains (Mai et al., 2024). Examples include

GPT-4 (OpenAl) (Roumeliotis and Tselikas, 2023),
Llama (Meta) (Grattafiori et al., 2024), Gemini
(Google) (Islam and Ahmed, 2024), Mistral (Mis-
tral Al) (Jiang et al., 2023), and Claude (An-
thropic) (The). Although LLMs like these have
enough knowledge to compete with human per-
formance, they still produce the wrong answer
(Perkovi¢ et al., 2024).

LLMs will produce the wrong answer when they
are unable to answer questions about events that
have occurred after they were trained. They may
also generate incorrect responses when the prompt
includes vague phrasing, which can lead the model
to make unsupported assumptions. Furthermore,
if topics in their training data are rare or poorly
represented, they may struggle to reason about
them (Matarazzo and Torlone, 2025). The stan-
dard solution to this problem is RAG (Lewis et al.,
2020). RAG is a technique that allows LLMs to
access and incorporate information from external
sources to improve the accuracy and relevance of
LLM responses. It is a way to give LLM “new
knowledge” on demand, rather than relying on the
LLM’s existing training data. Unfortunately, RAG
systems can still fail due to poor retrieval or noisy
context, which can lead to the generation of inac-
curate text (Zhang and Zhang, 2025). To deal with
the ongoing problems of wrong answers in RAG
systems, different evaluation methods have been
proposed to check and improve their reliability.

Recent approaches in the literature have either
assessed an entire RAG system using tools such as
RAGAS (Es et al., 2024) and ARES (Saad-Falcon
et al., 2024), which evaluate answer quality and
factuality, or separately evaluate the retriever’s ac-
curacy (Salemi and Zamani, 2024; Alinejad et al.,
2024; Zhang et al., 2025; Ampazis, 2024; Li et al.,
2024; Shi et al., 2024), and the generator’s ability
to use retrieved information in its output (Liu et al.,
2023; Chen et al., 2024). While these efforts assess
how effectively a RAG system retrieves and incor-



porates documents during answer generation, they
often assume that the underlying knowledge base
is complete.

To the best of our knowledge, current evaluation
methods do not examine whether the underlying
knowledge base actually contains sufficient infor-
mation to support the types of questions users may
ask. Yet evaluating whether the knowledge base
includes the necessary content is essential for en-
suring reliable answers to user questions. This is
particularly critical in high-stakes domains such
as healthcare, law, and scientific research, where
missing information can result in unsafe or mis-
leading outcomes. Therefore, there is a pressing
need for tools that can diagnose blind spots in the
knowledge base itself to ensure more reliable RAG
systems.

In order to address this limitation, we investigate
whether it is possible to detect if the documents
in the knowledge base of a RAG system contain
the information needed to support user questions -
even before passing them to the LLM. While prior
work often assumes the knowledge base covers the
type of user questions a RAG system might receive,
we argue that validating this coverage is critical in
RAG system development. Gaps in the knowledge
base can cause wrong or incomplete answers, even
if the system works well. For example, if a RAG
system lacks information about a rare drug, the
LLM might still generate a confident but incorrect
or incomplete answer.

This raises the fundamental question: Does the
knowledge base contain the necessary content to
support the questions being asked? In order to an-
swer this question, we introduce GapView, a frame-
work that explicitly evaluates the sufficiency of the
knowledge base. Unlike prior work that focuses on
retrieval precision or generation quality, GapView
takes a different approach: it directly evaluates
whether the knowledge base contains sufficient in-
formation to answer user questions.

GapView operates by projecting document and
question embeddings into a shared space using
the dimensionality technique of Multidimensional
Scaling (MDS) (Saeed et al., 2018) to preserve pair-
wise distances and help visualize the relationship
between documents and questions. Cosine simi-
larity is used to quantify how close each question
aligns with the document clusters. Questions that
appear far from any document cluster in the em-
bedding space and have low similarity scores are
labeled as “not covered”, signaling potential knowl-

edge gaps. This approach provides both visual and
quantitative evidence of whether the RAG system’s
knowledge base contains enough information to
support user questions before any generation takes
place.

To test this method, we create six synthetic
datasets composed of fictional documents and ques-
tions where we control whether each question is an-
swerable. We use synthetic data instead of existing
benchmarks, which often overlap with LLM train-
ing data and do not clearly indicate if a question
can be answered from the documents alone (Deng
et al., 2024). This setup ensures we can identify
failures due to missing information, not memo-
rization or generation. It allows us to evaluate
whether GapView can detect when a question is
unsupported by the knowledge base.

To assess the effectiveness of GapView, we ask the
following three research questions:

* RQ1: Can GapView correctly predict whether
a document contains enough information to
answer a question?

* RQ2: Does GapView perform consistently
across domains, such as programming and
clinical notes?

* RQ3: Do the 2D MDS visualizations pre-
serve semantic relationships between docu-
ments and questions?

With these research questions, we show that
GapView has the potential to detect whether a
knowledge base can support user questions be-
fore generation. We demonstrate the effectiveness
through cross-domain experiments using synthetic
datasets and confirm the usefulness of the 2D visu-
alizations for interpreting coverage and detecting
potential knowledge gaps.

The remainder of this paper is structured as fol-
lows: Section 2 reviews the related work. Section
3 describes the GapView framework. Section 4
outlines the experimental design of using GapView.
Section 5 presents the experiment results. Section 6
discusses the results from the experiment. Section
7 concludes and Section 8 describes the study’s
limitations.

GapView makes the following two contributions:

* Coverage Prediction: It uses cosine similar-
ity to determine whether the knowledge base
contains sufficient information to answer a
question before the RAG pipeline is invoked.



* Visual Diagnostics: It applies the same signal
to create 2D MDS plots to show how well
questions align with documents.

2 Related Work

Prior work has introduced a variety of different
frameworks to evaluate RAG systems from differ-
ent perspectives. RAGAS (Es et al., 2024) and
ARES (Saad-Falcon et al., 2024) used data gener-
ated from an LLM to evaluate the contextual rele-
vance, answer relevance, and faithfulness. Salemi
and Zamani (Salemi and Zamani, 2024) proposed
eRAG, which can evaluate retrievers by running
the LLM on each retrieved document, scoring its
output against the ground truth, and aggregating the
results with ranking metrics. Alinejad (Alinejad
et al., 2024) introduced LLM-retEval, a framework
designed to evaluate the retriever component in a
RAG system. LLM-retEval evaluated a retriever by
comparing answers generated from retrieved and
gold documents using the same LLM, and scor-
ing their similarity with another LLM that gives a
binary judgement.

Li et al. (Li et al., 2024) found that RAG models
will give different answers depending on which re-
triever they use, so they proposed using an Ensem-
ble of Retrievers that picks and combines the best
retrievers to give the most reliable answer. Building
on this direction, Shi et al. (Shi et al., 2024) then
proposed a four-module framework to improve the
accuracy of RAG systems. Ru et al. then proposed
RAGChecker (Ru et al., 2024) which breaks down
both the answer and ground truth into claims, then
checks if each claim is supported by the retrieved
documents to determine if the error is due to the
retriever, the generator, or both.

To the best of our knowledge, most prior work
related to evaluating RAG systems has focused
on improving retrieval precision, output quality,
or overall system performance. These methods
typically assume that the knowledge base already
contains relevant information and evaluate how ef-
fective the system retrieves or incorporates it during
generation. However, this assumption may not hold
in real-world applications, where coverage gaps are
common. In contrast, this study focuses on whether
it is possible to identify, before generation in a RAG
system pipeline, when the knowledge base lacks
the information needed to support a user’s question.

3 GapView Framework

3.1 Motivation and Purpose

RAG systems rely on the assumption that the under-
lying documents for their knowledge base contain
the information needed to answer user questions.
However, if the knowledge base lacks coverage for
a given question, even the best retriever cannot pro-
duce a useful answer. To address this, we introduce
GapView. GapView is a lightweight diagnostic tool
that checks whether the knowledge base can sup-
port question answering before generation. This
helps detect missing knowledge early in the RAG
pipeline improving reliability.

3.2 System Overview

The GapView framework operates on a set of pre-
embedded documents and questions. This frame-
work can work with any embedding model, such
as OpenAl, BERT, or any domain-specific alterna-
tives. It normalizes the embeddings, compares each
question to the documents using cosine similarity,
and predicts whether the knowledge base contains
enough information to answer the question before
generation. To visualize these predictions, embed-
dings are projected into 2D space using MDS, with
questions color being coded by coverage.

We define a question as “covered” if the re-
quired information is clearly present in the doc-
ument—either explicitly stated, paraphrased, or
framed within the document’s fictional or surreal
context. A question is labeled “not covered” if it
includes any details not found in the document.

3.3 Framework Processing Steps

Each step below describes a component of the pre-
processing pipeline that can be reused across dif-
ferent datasets.

3.3.1 Preprocessing and Embedding

We first load the document and question embed-
dings and normalize them so they can be fairly
compared using cosine similarity.

3.3.2 Support Prediction

For each question, we compute the maximum co-
sine similarity score to any document in the knowl-
edge base, representing how closely the question
embedding aligns with its most relevant document.
To decide whether a question is covered, we test
100 threshold values evenly spaced between the
lowest and highest of these maximum similarity



scores across all questions. For example, if the
scores range from 0.50 to 0.91 and 0.80 yields the
best F1, then all questions with scores > 0.80 are
labeled as covered.

3.3.3 2D Projection with MDS

As part of our framework, we project all document
and question embeddings into 2D space to visually
inspect semantic alignment. Although we exper-
imented with dimensionality reduction methods
such as t-SNE and UMAP, we found that Mul-
tidimensional Scaling (MDS) best preserved the
relative distances between embeddings based on
cosine similarity. Accordingly, MDS is used as the
default projection method in GapView.

In the resulting plots, documents represented
as chunks from the knowledge base are shown as
blue dots. Questions predicted as covered appear
as green dots positioned near their closest doc-
ument. Questions predicted as not covered are
shown as red X’s. Figure 1 provides an exam-
ple of this MDS-based visualization. This plot
illustrates how GapView predicts semantic align-
ment between questions and documents. The cov-
ered questions cluster near the relevant documents,
while not covered questions appear farther away.
We revisit this visualization in Section 5 to analyze
the trends across all six datasets.

4 Experiment

4.1 Datasets

We generated six synthetic datasets, each consist-
ing of a fictional document paired with approxi-
mately 50 questions, totaling 300 questions. Three
datasets are in the medical domain and three in
programming. Each document was based on a re-
alistic source document of either a clinical note or
a programming assignment. We utilized the real-
world template alongside the prompt: ‘“Make the
following document very weird, strange, and con-
fusing. Make it magical, wine-themed, or anything
unusual—just make it weird.”

We created fictional synthetic documents to test
GapView because existing benchmarks often over-
lap with LLM training data (Lin et al., 2022) and
fail to indicate whether questions are answerable
from the provided documents (Jiang et al., 2021).
This approach retained structural realism while
introducing intentionally surreal content to avoid
overlap with LLM training data, as this will help
GapView spot missing information using docu-

ments that were not memorized by LLMs.

A related benchmark RepliQA (Monteiro et al.,
2024), was introduced to ensure models answer
questions using the given document, not their train-
ing knowledge. However since RepliQA is now
part GPT-40’s training data, we adopted a similar
strategy through the process described above. All
questions and corresponding answers were gener-
ated using GPT-40 (OpenAl, 2024) with a tempera-
ture of 0. To ensure a mix of answerable and unan-
swerable questions, we used the following prompt
to generate questions for each synthetic document:

“Generate a diverse set of factual ques-
tions someone might ask about this doc-
ument and its general topics, including
both questions that can be answered us-
ing the document and those that cannot.
Make sure that the questions that cannot
be answered by the document use words
init”

Answerable questions could be answered solely
using the document, while unanswerable ones
were designed to use its language but may
require external knowledge. @ We computed
embeddings for each document and its associated
questions using OpenAl’s text-embedding-3-large
model (OpenAl, 2024). Each document chunk was
embedded and indexed separately using FAISS.
For each question, we retrieved the top k = 4
most similar chunks from the vector database
and provided them to GPT-40 using the prompt:
Answer briefly. Context: {context_blocks},
where context_blocks are the retrieved chunks.
This minimal prompt allows us to observe whether
or not the model answers correctly without being
instructed on how to reason. The LLM’s response
were then manually annotated as either covered or
not covered, based on the directions we provided.
The annotation procedure is described in detail in
Section 4.2.

4.2 Human Annotation

In order to evaluate whether each generated an-
swer was grounded in the content of the fictional
documents, two independent annotators manually
labeled each response as either covered or not cov-
ered. Annotators were given the instructions to
follow a strict all-or-nothing rule: if any part of
the answer exceeded what was stated in the doc-
ument, it was marked as not covered. Use of ex-
ternal knowledge—defined as any information not



explicitly present in the document, including real-
world facts, domain expertise, or common sense
reasoning—was not permitted, even if the answer
appeared factually correct. Answers were to be la-
beled as covered if the answer to the question was
clearly stated, paraphrased, or explicitly framed
within the surreal context of the document. The an-
swers were labeled as not covered if they included
any details not found in the document, such as as-
sumptions, inferences, or information drawn from
outside sources.

After completing their annotations indepen-
dently, the two annotators met to review and re-
solve any disagreements. Final decisions were then
recorded and used as the gold standard for evaluat-
ing GapView. We computed inter-annotator agree-
ment using Cohen’s « to assess the consistency and
reliability of the annotation process beyond chance
agreement, and the scores ranged from 0.67 to 0.81
across the six datasets between the two annotators.
Table 1 shows the agreement scores and the number
of initial disagreements for each dataset. These re-
sults indicate strong agreement between annotators
and support the reliability of the evaluation labels.

Table 1: Annotator Agreement Summary

medicine?

In order to determine whether GapView
performs consistently across domains, we
grouped the six datasets into two categories:
clinical and programming (three each). We
then computed the macro-averaged F1 score,
precision, and recall for each dataset. We then
used the computed metrics to compare perfor-
mance between the two domains. For exam-
ple, if the F1 scores for the clinical datasets
were 0.71, 0.61, and 0.54, and for the pro-
gramming datasets 0.43, 0.32, and 0.73, we
applied Welch’s t-test (Zimmerman, 2004) to
compare the mean F1 scores across the two
categories. This test was chosen as it is ap-
propriate for small sample sizes with unequal
variances and assesses whether the observed
performance differences between domains are
statistically significant.

* RQ3: Do the 2D MDS visualizations pre-
serve semantic relationships between docu-
ments and questions?

To determine whether the MDS visualizations
maintain semantic relationships—indicating
that questions are located close to semanti-
cally related documents in a 2D space—and

can assist in uncovering unsupported ques-

tions, we calculate Spearman’s rank-order cor-
relation between cosine similarity in the orig-

inal embedding space and the pairwise dis-

tances in the 2D MDS projection for all six

datasets. The correlation strength is inter-

Dataset Cohen’s x | Disagreements
Crawler 0.810 4
Search Engine 0.674 6
Programming Styles 0.803 4
Medical Note 1 0.696 3
Medical Note 2 0.672 4
Medical Note 3 0.703 5

preted using the following standard thresh-

4.3 Research Questions

We evaluate GapView by answering the following
research questions:

* RQ1: Can GapView correctly predict whether

a document contains enough information to
answer a question?
In order to answer whether GapView can pre-
dict coverage, we compare the cosine similar-
ity—based coverage predictions to the human
annotations across all six datasets. We report
the macro-averaged F1, precision, and recall
to assess how well GapView is able to pre-
dict if the knowledge base contains sufficient
information before generation.

* RQ2: Does GapView perform consistently
across the domains of programming and

olds: weak (p < 0.30), moderate (0.30 <
p < 0.70), strong (0.70 < p < 0.90), and
very strong (p > 0.90) (Hinkle et al., 2003).

5 Results

We present the results for GapView across six syn-
thetic datasets, organized around three research
questions: Prediction Accuracy (RQ1), Domain-
Specific Performance (RQ2), and Visualization
Utility (RQ3).

5.1 RQI1: Prediction Accuracy

GapView achieved high precision and recall across
all six datasets (Table 2). The programming
datasets reached near-perfect performance, with
F1 scores above 0.986. In comparison, the med-
ical datasets showed lower recall. For example,
Medical Note 1 had a perfect recall of 1.000 but a



lower F1 score of 0.936, while Medical Note 3 had
a lower recall but a higher F1 score of 0.986. This
indicates that Medical Note 1 had lower precision
than Medical Note 3.

To support these results, we show the 2D MDS
projections of both the predicted and ground truth
coverage (Figures 1 and 2). In domains like pro-
gramming, covered questions (green dots) appear
close to documents (blue dots), and predictions
match ground truth well. In clinical datasets, espe-
cially Medical Note 3, questions are more spread
out. Some covered questions appear far from any
document and are incorrectly marked as not cov-
ered. These visualizations help explain where and
why prediction errors occur, and highlight areas
where alignment is more difficult. Even with these
challenges, the MDS plots show that GapView
distinguishes covered from not covered questions
based on semantic similarity, aligning with the
ground truth.

Table 2: GapView Prediction Metrics

Dataset Prec. | Recall | F1

Crawler - Fiction 0.973 | 1.000 | 0.986
Search Engine - Fiction | 0.973 | 1.000 | 0.986
Programming Styles 0.974 | 1.000 | 0.987
Medical Note 1 0.880 | 1.000 | 0.936
Medical Note 2 0.889 | 0.976 | 0.930
Medical Note 3 1.000 | 0.973 | 0.986

5.2 RQ2:Domain-Specific Performance

Table 3 shows Welch’s t-test results comparing
GapView’s performance across the programming
and medical domains. Recall and F1 score differ-
ences were statistically significant (p < 0.05), in-
dicating that GapView performs differently across
domains for these metrics. Precision also differed
numerically—0.973 for programming vs. 0.923 for
medical (Table 4)—but the difference was not sta-
tistically significant (p = 0.0941).

To better interpret these results, Table 4 reports
the average precision, recall, and F1 scores by do-
main. Programming datasets achieved perfect re-
call (1.000), higher precision (0.973), and stronger
F1 scores (0.986). In contrast, medical datasets
showed slightly lower recall (0.983), precision
(0.923), and F1 scores (0.951).

Table 3: Welch’s t-test Results by Metric

Metric t-statistic | p-value
Precision -2.062 0.0941
Recall -3.146 0.0255
F1 -3.176 0.0246

Table 4: Domain-Level Averages for GapView Perfor-
mance

Domain Precision | Recall F1
Medical 0.923 0.983 | 0.951
Programming 0.973 1.000 | 0.986

5.3 RQ3:Visualization Utility

Table 5 reports Spearman correlations between co-
sine similarity in the original embedding space and
pairwise distances in the 2D MDS projections. All
six datasets show positive and statistically signif-
icant correlations (p < 0.05), meaning the MDS
layout preserves the semantic distances between
questions and documents from the original embed-
ding space.

Based on the correlation strength criteria (Hin-
kle et al., 2003), Medical Note 3 shows a strong
correlation (p = 0.722), while the remaining five
datasets—Crawler, Search Engine, Programming
Styles, and Medical Notes 1-2—fall within the
moderate range (0.30 < p < 0.70). No dataset
shows a weak correlation (p < 0.30), suggesting
that semantic distances between questions and doc-
uments are consistently preserved across the two
domains.

These results support the use of 2D MDS visu-
alizations for identifying alignment and coverage
gaps in the knowledge base. As shown in Fig-
ures 1 and 2, covered and not-covered questions
are clearly separated based on their proximity to
the most relevant documents, confirming that MDS
preserves the semantic distances between questions
and documents.

Table 5: Embedding Space Alignment

Dataset Spearman | p-value
Crawler 0.6559 0
Search Engine 0.3275 0.0202
Programming Styles 0.3224 0.0224
Medical Note 1 0.5757 0
Medical Note 2 0.4288 0.0019
Medical Note 3 0.722 0
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6 Discussion

GapView shifts the focus of RAG evaluation to-
ward the knowledge base by determining whether
it contains enough information to support a given
question. It does so by computing cosine similar-
ity between question and document embeddings,
using this signal for both coverage prediction and
visualization through 2D MDS. For each question,
it finds the document with the highest similarity
score and labels the question as covered if that
score exceeds a tuned threshold. Across all six syn-
thetic datasets, GapView achieved F1 scores above
0.93, with high precision and recall. These results
confirm that cosine similarity is a strong signal for
determining whether a knowledge base can support
a user question.

Programming datasets showed higher recall and
F1 scores than clinical datasets, with statistically
significant differences (Table 3). Precision was also
higher in programming, but the difference was not
statistically significant. These differences reflect
the structured, explicit nature of programming text
versus the more variable language used in clinical
notes. This suggests that domain-specific tuning or
embeddings may improve performance.

Spearman correlations between cosine similarity
and 2D distances were moderate to strong across
all datasets, indicating that the MDS plots preserve
the semantic distance relationships between ques-
tions and documents. The visual separation be-
tween covered and not-covered questions supports
GapView’s second contribution: enabling intuitive,
interpretable diagnostics through 2D visualization.

In the MDS plots for each dataset (Figures 1
and 2), most covered questions in the programming
datasets appeared to be closer to the document em-
beddings, and GapView’s predictions matched the
ground truth well. In contrast, clinical datasets like
Medical Note 3 had some covered questions that
appeared farther away and were incorrectly marked
as not covered. These errors occurred even when
the questions could be answered by the document.
For example, the question “What pharmacogravi-
tational agent was used to stabilize the omniliver?”
was answerable from Medical Note 3 but still mis-
classified because it appeared far from the relevant
chunks. These cases show that MDS plots can re-
veal not only missing information, but also predic-
tion errors such as when answerable questions fail
to align with the relevant document embeddings.

These insights are useful in real-world settings

by flagging unsupported questions before system
deployment. For instance, in a clinical QA assis-
tant, GapView could detect that a question about
side effects is not covered by any retrieved drug
information, prompting corpus expansion before
generating an answer with a RAG system. This
makes GapView a practical tool for improving doc-
ument coverage in RAG pipelines for high-stakes
domains.

7 Conclusion

This paper introduces GapView, a framework de-
signed to assess whether the knowledge base within
a RAG system contains sufficient information to re-
spond to user questions. GapView integrates cosine
similarity with MDS visualizations to provide both
accurate coverage predictions and interpretable in-
sights. Evaluations conducted on the six synthetic
datasets utilizing OpenAl embeddings demonstrate
that GapView consistently identifies unsupported
questions, achieving F1 scores exceeding 0.93 and
uncovering performance variations specific to dif-
ferent domains. In contrast to conventional RAG
metrics that emphasize retrieval or generation qual-
ity, GapView directly evaluates the adequacy of the
knowledge base which can help improve reliability
in important areas like healthcare. Its visual and
numeric results have the potential to help evalu-
ate RAG systems by showing where information is
missing. As RAG systems become more common,
tools like GapView will be essential for ensuring
answers are grounded in sufficient knowledge. The
data and code used in this study will be made pub-
licly available upon publication to support repro-
ducibility.

8 Limitations

This study has two limitations. The first limitation
is that only two human annotators were used for
labeling the synthetic datasets, which may limit
the generalizability of the annotations. Although
disagreements were resolved through discussion, a
larger annotation pool would strengthen the relia-
bility of the ground truth labels. The second limita-
tion is that GapView depends on the quality of the
embeddings. We used OpenAl’s text-embedding-
3-large, but domain-specific models like BioBERT
or CodeBERT may work better for medical or pro-
gramming texts, so future work could test whether
any of these type of models help GapView improve
alignment by better handling domain context.
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