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Abstract001

Retrieval-augmented generation (RAG) sys-002
tems aim to improve the reliability of answers003
by incorporating information from external004
sources. The value of RAG depends on how005
well the knowledge base meets users’ infor-006
mation needs. However, most existing evalua-007
tion methods for RAG pipelines focus on the008
quality of the generated answers or the preci-009
sion of the retriever, without assessing whether010
the knowledge base itself contains the needed011
information. RAG benchmarks are typically012
created by generating questions directly from013
the documents in the knowledge base, which014
may not reflect the diversity of real user ques-015
tions. We introduce GapView, a framework016
for evaluating whether the knowledge base in017
a RAG pipeline provides sufficient coverage018
to support expected user questions. GapView019
uses cosine similarity between embeddings and020
2D Multi-Dimensional Scaling (MDS) projec-021
tions to check whether a question is semanti-022
cally aligned with any document in the corpus.023
We evaluated it on six synthetic datasets from024
clinical and programming domains. Results025
show that GapView achieves high F1 scores026
(≥ 0.93) in predicting coverage and reveals027
domain-specific performance differences. Un-028
like traditional RAG metrics, GapView iden-029
tifies knowledge gaps and provides clear vi-030
sualizations that reveal where information is031
missing. Our findings highlight the impor-032
tance of validating knowledge base coverage in033
RAG pipelines and offer a scalable method for034
flagging unsupported questions before they go035
through the RAG pipeline.036

1 Introduction037

Large language models (LLMs) have advanced038

the field of Natural Language Processing (NLP),039

as they demonstrate strong capabilities in un-040

derstanding and generating human-like text and041

have achieved remarkable success in numerous042

domains (Mai et al., 2024). Examples include043

GPT-4 (OpenAI) (Roumeliotis and Tselikas, 2023), 044

Llama (Meta) (Grattafiori et al., 2024), Gemini 045

(Google) (Islam and Ahmed, 2024), Mistral (Mis- 046

tral AI) (Jiang et al., 2023), and Claude (An- 047

thropic) (The). Although LLMs like these have 048

enough knowledge to compete with human per- 049

formance, they still produce the wrong answer 050

(Perković et al., 2024). 051

LLMs will produce the wrong answer when they 052

are unable to answer questions about events that 053

have occurred after they were trained. They may 054

also generate incorrect responses when the prompt 055

includes vague phrasing, which can lead the model 056

to make unsupported assumptions. Furthermore, 057

if topics in their training data are rare or poorly 058

represented, they may struggle to reason about 059

them (Matarazzo and Torlone, 2025). The stan- 060

dard solution to this problem is RAG (Lewis et al., 061

2020). RAG is a technique that allows LLMs to 062

access and incorporate information from external 063

sources to improve the accuracy and relevance of 064

LLM responses. It is a way to give LLM “new 065

knowledge” on demand, rather than relying on the 066

LLM’s existing training data. Unfortunately, RAG 067

systems can still fail due to poor retrieval or noisy 068

context, which can lead to the generation of inac- 069

curate text (Zhang and Zhang, 2025). To deal with 070

the ongoing problems of wrong answers in RAG 071

systems, different evaluation methods have been 072

proposed to check and improve their reliability. 073

Recent approaches in the literature have either 074

assessed an entire RAG system using tools such as 075

RAGAS (Es et al., 2024) and ARES (Saad-Falcon 076

et al., 2024), which evaluate answer quality and 077

factuality, or separately evaluate the retriever’s ac- 078

curacy (Salemi and Zamani, 2024; Alinejad et al., 079

2024; Zhang et al., 2025; Ampazis, 2024; Li et al., 080

2024; Shi et al., 2024), and the generator’s ability 081

to use retrieved information in its output (Liu et al., 082

2023; Chen et al., 2024). While these efforts assess 083

how effectively a RAG system retrieves and incor- 084
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porates documents during answer generation, they085

often assume that the underlying knowledge base086

is complete.087

To the best of our knowledge, current evaluation088

methods do not examine whether the underlying089

knowledge base actually contains sufficient infor-090

mation to support the types of questions users may091

ask. Yet evaluating whether the knowledge base092

includes the necessary content is essential for en-093

suring reliable answers to user questions. This is094

particularly critical in high-stakes domains such095

as healthcare, law, and scientific research, where096

missing information can result in unsafe or mis-097

leading outcomes. Therefore, there is a pressing098

need for tools that can diagnose blind spots in the099

knowledge base itself to ensure more reliable RAG100

systems.101

In order to address this limitation, we investigate102

whether it is possible to detect if the documents103

in the knowledge base of a RAG system contain104

the information needed to support user questions -105

even before passing them to the LLM. While prior106

work often assumes the knowledge base covers the107

type of user questions a RAG system might receive,108

we argue that validating this coverage is critical in109

RAG system development. Gaps in the knowledge110

base can cause wrong or incomplete answers, even111

if the system works well. For example, if a RAG112

system lacks information about a rare drug, the113

LLM might still generate a confident but incorrect114

or incomplete answer.115

This raises the fundamental question: Does the116

knowledge base contain the necessary content to117

support the questions being asked? In order to an-118

swer this question, we introduce GapView, a frame-119

work that explicitly evaluates the sufficiency of the120

knowledge base. Unlike prior work that focuses on121

retrieval precision or generation quality, GapView122

takes a different approach: it directly evaluates123

whether the knowledge base contains sufficient in-124

formation to answer user questions.125

GapView operates by projecting document and126

question embeddings into a shared space using127

the dimensionality technique of Multidimensional128

Scaling (MDS) (Saeed et al., 2018) to preserve pair-129

wise distances and help visualize the relationship130

between documents and questions. Cosine simi-131

larity is used to quantify how close each question132

aligns with the document clusters. Questions that133

appear far from any document cluster in the em-134

bedding space and have low similarity scores are135

labeled as “not covered”, signaling potential knowl-136

edge gaps. This approach provides both visual and 137

quantitative evidence of whether the RAG system’s 138

knowledge base contains enough information to 139

support user questions before any generation takes 140

place. 141

To test this method, we create six synthetic 142

datasets composed of fictional documents and ques- 143

tions where we control whether each question is an- 144

swerable. We use synthetic data instead of existing 145

benchmarks, which often overlap with LLM train- 146

ing data and do not clearly indicate if a question 147

can be answered from the documents alone (Deng 148

et al., 2024). This setup ensures we can identify 149

failures due to missing information, not memo- 150

rization or generation. It allows us to evaluate 151

whether GapView can detect when a question is 152

unsupported by the knowledge base. 153

To assess the effectiveness of GapView, we ask the 154

following three research questions: 155

• RQ1: Can GapView correctly predict whether 156

a document contains enough information to 157

answer a question? 158

• RQ2: Does GapView perform consistently 159

across domains, such as programming and 160

clinical notes? 161

• RQ3: Do the 2D MDS visualizations pre- 162

serve semantic relationships between docu- 163

ments and questions? 164

With these research questions, we show that 165

GapView has the potential to detect whether a 166

knowledge base can support user questions be- 167

fore generation. We demonstrate the effectiveness 168

through cross-domain experiments using synthetic 169

datasets and confirm the usefulness of the 2D visu- 170

alizations for interpreting coverage and detecting 171

potential knowledge gaps. 172

The remainder of this paper is structured as fol- 173

lows: Section 2 reviews the related work. Section 174

3 describes the GapView framework. Section 4 175

outlines the experimental design of using GapView. 176

Section 5 presents the experiment results. Section 6 177

discusses the results from the experiment. Section 178

7 concludes and Section 8 describes the study’s 179

limitations. 180

GapView makes the following two contributions: 181

• Coverage Prediction: It uses cosine similar- 182

ity to determine whether the knowledge base 183

contains sufficient information to answer a 184

question before the RAG pipeline is invoked. 185
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• Visual Diagnostics: It applies the same signal186

to create 2D MDS plots to show how well187

questions align with documents.188

2 Related Work189

Prior work has introduced a variety of different190

frameworks to evaluate RAG systems from differ-191

ent perspectives. RAGAS (Es et al., 2024) and192

ARES (Saad-Falcon et al., 2024) used data gener-193

ated from an LLM to evaluate the contextual rele-194

vance, answer relevance, and faithfulness. Salemi195

and Zamani (Salemi and Zamani, 2024) proposed196

eRAG, which can evaluate retrievers by running197

the LLM on each retrieved document, scoring its198

output against the ground truth, and aggregating the199

results with ranking metrics. Alinejad (Alinejad200

et al., 2024) introduced LLM-retEval, a framework201

designed to evaluate the retriever component in a202

RAG system. LLM-retEval evaluated a retriever by203

comparing answers generated from retrieved and204

gold documents using the same LLM, and scor-205

ing their similarity with another LLM that gives a206

binary judgement.207

Li et al. (Li et al., 2024) found that RAG models208

will give different answers depending on which re-209

triever they use, so they proposed using an Ensem-210

ble of Retrievers that picks and combines the best211

retrievers to give the most reliable answer. Building212

on this direction, Shi et al. (Shi et al., 2024) then213

proposed a four-module framework to improve the214

accuracy of RAG systems. Ru et al. then proposed215

RAGChecker (Ru et al., 2024) which breaks down216

both the answer and ground truth into claims, then217

checks if each claim is supported by the retrieved218

documents to determine if the error is due to the219

retriever, the generator, or both.220

To the best of our knowledge, most prior work221

related to evaluating RAG systems has focused222

on improving retrieval precision, output quality,223

or overall system performance. These methods224

typically assume that the knowledge base already225

contains relevant information and evaluate how ef-226

fective the system retrieves or incorporates it during227

generation. However, this assumption may not hold228

in real-world applications, where coverage gaps are229

common. In contrast, this study focuses on whether230

it is possible to identify, before generation in a RAG231

system pipeline, when the knowledge base lacks232

the information needed to support a user’s question.233

3 GapView Framework 234

3.1 Motivation and Purpose 235

RAG systems rely on the assumption that the under- 236

lying documents for their knowledge base contain 237

the information needed to answer user questions. 238

However, if the knowledge base lacks coverage for 239

a given question, even the best retriever cannot pro- 240

duce a useful answer. To address this, we introduce 241

GapView. GapView is a lightweight diagnostic tool 242

that checks whether the knowledge base can sup- 243

port question answering before generation. This 244

helps detect missing knowledge early in the RAG 245

pipeline improving reliability. 246

3.2 System Overview 247

The GapView framework operates on a set of pre- 248

embedded documents and questions. This frame- 249

work can work with any embedding model, such 250

as OpenAI, BERT, or any domain-specific alterna- 251

tives. It normalizes the embeddings, compares each 252

question to the documents using cosine similarity, 253

and predicts whether the knowledge base contains 254

enough information to answer the question before 255

generation. To visualize these predictions, embed- 256

dings are projected into 2D space using MDS, with 257

questions color being coded by coverage. 258

We define a question as “covered” if the re- 259

quired information is clearly present in the doc- 260

ument—either explicitly stated, paraphrased, or 261

framed within the document’s fictional or surreal 262

context. A question is labeled “not covered” if it 263

includes any details not found in the document. 264

3.3 Framework Processing Steps 265

Each step below describes a component of the pre- 266

processing pipeline that can be reused across dif- 267

ferent datasets. 268

3.3.1 Preprocessing and Embedding 269

We first load the document and question embed- 270

dings and normalize them so they can be fairly 271

compared using cosine similarity. 272

3.3.2 Support Prediction 273

For each question, we compute the maximum co- 274

sine similarity score to any document in the knowl- 275

edge base, representing how closely the question 276

embedding aligns with its most relevant document. 277

To decide whether a question is covered, we test 278

100 threshold values evenly spaced between the 279

lowest and highest of these maximum similarity 280
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scores across all questions. For example, if the281

scores range from 0.50 to 0.91 and 0.80 yields the282

best F1, then all questions with scores ≥ 0.80 are283

labeled as covered.284

3.3.3 2D Projection with MDS285

As part of our framework, we project all document286

and question embeddings into 2D space to visually287

inspect semantic alignment. Although we exper-288

imented with dimensionality reduction methods289

such as t-SNE and UMAP, we found that Mul-290

tidimensional Scaling (MDS) best preserved the291

relative distances between embeddings based on292

cosine similarity. Accordingly, MDS is used as the293

default projection method in GapView.294

In the resulting plots, documents represented295

as chunks from the knowledge base are shown as296

blue dots. Questions predicted as covered appear297

as green dots positioned near their closest doc-298

ument. Questions predicted as not covered are299

shown as red X’s. Figure 1 provides an exam-300

ple of this MDS-based visualization. This plot301

illustrates how GapView predicts semantic align-302

ment between questions and documents. The cov-303

ered questions cluster near the relevant documents,304

while not covered questions appear farther away.305

We revisit this visualization in Section 5 to analyze306

the trends across all six datasets.307

4 Experiment308

4.1 Datasets309

We generated six synthetic datasets, each consist-310

ing of a fictional document paired with approxi-311

mately 50 questions, totaling 300 questions. Three312

datasets are in the medical domain and three in313

programming. Each document was based on a re-314

alistic source document of either a clinical note or315

a programming assignment. We utilized the real-316

world template alongside the prompt: “Make the317

following document very weird, strange, and con-318

fusing. Make it magical, wine-themed, or anything319

unusual—just make it weird.”320

We created fictional synthetic documents to test321

GapView because existing benchmarks often over-322

lap with LLM training data (Lin et al., 2022) and323

fail to indicate whether questions are answerable324

from the provided documents (Jiang et al., 2021).325

This approach retained structural realism while326

introducing intentionally surreal content to avoid327

overlap with LLM training data, as this will help328

GapView spot missing information using docu-329

ments that were not memorized by LLMs. 330

A related benchmark RepliQA (Monteiro et al., 331

2024), was introduced to ensure models answer 332

questions using the given document, not their train- 333

ing knowledge. However since RepliQA is now 334

part GPT-4o’s training data, we adopted a similar 335

strategy through the process described above. All 336

questions and corresponding answers were gener- 337

ated using GPT-4o (OpenAI, 2024) with a tempera- 338

ture of 0. To ensure a mix of answerable and unan- 339

swerable questions, we used the following prompt 340

to generate questions for each synthetic document: 341

“Generate a diverse set of factual ques- 342

tions someone might ask about this doc- 343

ument and its general topics, including 344

both questions that can be answered us- 345

ing the document and those that cannot. 346

Make sure that the questions that cannot 347

be answered by the document use words 348

in it.” 349

Answerable questions could be answered solely 350

using the document, while unanswerable ones 351

were designed to use its language but may 352

require external knowledge. We computed 353

embeddings for each document and its associated 354

questions using OpenAI’s text-embedding-3-large 355

model (OpenAI, 2024). Each document chunk was 356

embedded and indexed separately using FAISS. 357

For each question, we retrieved the top k = 4 358

most similar chunks from the vector database 359

and provided them to GPT-4o using the prompt: 360

Answer briefly. Context: {context_blocks}, 361

where context_blocks are the retrieved chunks. 362

This minimal prompt allows us to observe whether 363

or not the model answers correctly without being 364

instructed on how to reason. The LLM’s response 365

were then manually annotated as either covered or 366

not covered, based on the directions we provided. 367

The annotation procedure is described in detail in 368

Section 4.2. 369

4.2 Human Annotation 370

In order to evaluate whether each generated an- 371

swer was grounded in the content of the fictional 372

documents, two independent annotators manually 373

labeled each response as either covered or not cov- 374

ered. Annotators were given the instructions to 375

follow a strict all-or-nothing rule: if any part of 376

the answer exceeded what was stated in the doc- 377

ument, it was marked as not covered. Use of ex- 378

ternal knowledge—defined as any information not 379
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explicitly present in the document, including real-380

world facts, domain expertise, or common sense381

reasoning—was not permitted, even if the answer382

appeared factually correct. Answers were to be la-383

beled as covered if the answer to the question was384

clearly stated, paraphrased, or explicitly framed385

within the surreal context of the document. The an-386

swers were labeled as not covered if they included387

any details not found in the document, such as as-388

sumptions, inferences, or information drawn from389

outside sources.390

After completing their annotations indepen-391

dently, the two annotators met to review and re-392

solve any disagreements. Final decisions were then393

recorded and used as the gold standard for evaluat-394

ing GapView. We computed inter-annotator agree-395

ment using Cohen’s κ to assess the consistency and396

reliability of the annotation process beyond chance397

agreement, and the scores ranged from 0.67 to 0.81398

across the six datasets between the two annotators.399

Table 1 shows the agreement scores and the number400

of initial disagreements for each dataset. These re-401

sults indicate strong agreement between annotators402

and support the reliability of the evaluation labels.403

Table 1: Annotator Agreement Summary

Dataset Cohen’s κ Disagreements
Crawler 0.810 4
Search Engine 0.674 6
Programming Styles 0.803 4
Medical Note 1 0.696 3
Medical Note 2 0.672 4
Medical Note 3 0.703 5

4.3 Research Questions404

We evaluate GapView by answering the following405

research questions:406

• RQ1: Can GapView correctly predict whether407

a document contains enough information to408

answer a question?409

In order to answer whether GapView can pre-410

dict coverage, we compare the cosine similar-411

ity–based coverage predictions to the human412

annotations across all six datasets. We report413

the macro-averaged F1, precision, and recall414

to assess how well GapView is able to pre-415

dict if the knowledge base contains sufficient416

information before generation.417

• RQ2: Does GapView perform consistently418

across the domains of programming and419

medicine? 420

In order to determine whether GapView 421

performs consistently across domains, we 422

grouped the six datasets into two categories: 423

clinical and programming (three each). We 424

then computed the macro-averaged F1 score, 425

precision, and recall for each dataset. We then 426

used the computed metrics to compare perfor- 427

mance between the two domains. For exam- 428

ple, if the F1 scores for the clinical datasets 429

were 0.71, 0.61, and 0.54, and for the pro- 430

gramming datasets 0.43, 0.32, and 0.73, we 431

applied Welch’s t-test (Zimmerman, 2004) to 432

compare the mean F1 scores across the two 433

categories. This test was chosen as it is ap- 434

propriate for small sample sizes with unequal 435

variances and assesses whether the observed 436

performance differences between domains are 437

statistically significant. 438

• RQ3: Do the 2D MDS visualizations pre- 439

serve semantic relationships between docu- 440

ments and questions? 441

To determine whether the MDS visualizations 442

maintain semantic relationships—indicating 443

that questions are located close to semanti- 444

cally related documents in a 2D space—and 445

can assist in uncovering unsupported ques- 446

tions, we calculate Spearman’s rank-order cor- 447

relation between cosine similarity in the orig- 448

inal embedding space and the pairwise dis- 449

tances in the 2D MDS projection for all six 450

datasets. The correlation strength is inter- 451

preted using the following standard thresh- 452

olds: weak (ρ < 0.30), moderate (0.30 ≤ 453

ρ < 0.70), strong (0.70 ≤ ρ < 0.90), and 454

very strong (ρ > 0.90) (Hinkle et al., 2003). 455

5 Results 456

We present the results for GapView across six syn- 457

thetic datasets, organized around three research 458

questions: Prediction Accuracy (RQ1), Domain- 459

Specific Performance (RQ2), and Visualization 460

Utility (RQ3). 461

5.1 RQ1: Prediction Accuracy 462

GapView achieved high precision and recall across 463

all six datasets (Table 2). The programming 464

datasets reached near-perfect performance, with 465

F1 scores above 0.986. In comparison, the med- 466

ical datasets showed lower recall. For example, 467

Medical Note 1 had a perfect recall of 1.000 but a 468
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lower F1 score of 0.936, while Medical Note 3 had469

a lower recall but a higher F1 score of 0.986. This470

indicates that Medical Note 1 had lower precision471

than Medical Note 3.472

To support these results, we show the 2D MDS473

projections of both the predicted and ground truth474

coverage (Figures 1 and 2). In domains like pro-475

gramming, covered questions (green dots) appear476

close to documents (blue dots), and predictions477

match ground truth well. In clinical datasets, espe-478

cially Medical Note 3, questions are more spread479

out. Some covered questions appear far from any480

document and are incorrectly marked as not cov-481

ered. These visualizations help explain where and482

why prediction errors occur, and highlight areas483

where alignment is more difficult. Even with these484

challenges, the MDS plots show that GapView485

distinguishes covered from not covered questions486

based on semantic similarity, aligning with the487

ground truth.

Table 2: GapView Prediction Metrics

Dataset Prec. Recall F1
Crawler - Fiction 0.973 1.000 0.986
Search Engine - Fiction 0.973 1.000 0.986
Programming Styles 0.974 1.000 0.987
Medical Note 1 0.880 1.000 0.936
Medical Note 2 0.889 0.976 0.930
Medical Note 3 1.000 0.973 0.986

488

5.2 RQ2:Domain-Specific Performance489

Table 3 shows Welch’s t-test results comparing490

GapView’s performance across the programming491

and medical domains. Recall and F1 score differ-492

ences were statistically significant (p < 0.05), in-493

dicating that GapView performs differently across494

domains for these metrics. Precision also differed495

numerically—0.973 for programming vs. 0.923 for496

medical (Table 4)—but the difference was not sta-497

tistically significant (p = 0.0941).498

To better interpret these results, Table 4 reports499

the average precision, recall, and F1 scores by do-500

main. Programming datasets achieved perfect re-501

call (1.000), higher precision (0.973), and stronger502

F1 scores (0.986). In contrast, medical datasets503

showed slightly lower recall (0.983), precision504

(0.923), and F1 scores (0.951).505

Table 3: Welch’s t-test Results by Metric

Metric t-statistic p-value
Precision -2.062 0.0941
Recall -3.146 0.0255
F1 -3.176 0.0246

Table 4: Domain-Level Averages for GapView Perfor-
mance

Domain Precision Recall F1
Medical 0.923 0.983 0.951
Programming 0.973 1.000 0.986

5.3 RQ3:Visualization Utility 506

Table 5 reports Spearman correlations between co- 507

sine similarity in the original embedding space and 508

pairwise distances in the 2D MDS projections. All 509

six datasets show positive and statistically signif- 510

icant correlations (p < 0.05), meaning the MDS 511

layout preserves the semantic distances between 512

questions and documents from the original embed- 513

ding space. 514

Based on the correlation strength criteria (Hin- 515

kle et al., 2003), Medical Note 3 shows a strong 516

correlation (ρ = 0.722), while the remaining five 517

datasets—Crawler, Search Engine, Programming 518

Styles, and Medical Notes 1–2—fall within the 519

moderate range (0.30 ≤ ρ < 0.70). No dataset 520

shows a weak correlation (ρ < 0.30), suggesting 521

that semantic distances between questions and doc- 522

uments are consistently preserved across the two 523

domains. 524

These results support the use of 2D MDS visu- 525

alizations for identifying alignment and coverage 526

gaps in the knowledge base. As shown in Fig- 527

ures 1 and 2, covered and not-covered questions 528

are clearly separated based on their proximity to 529

the most relevant documents, confirming that MDS 530

preserves the semantic distances between questions 531

and documents. 532

Table 5: Embedding Space Alignment

Dataset Spearman p-value
Crawler 0.6559 0
Search Engine 0.3275 0.0202
Programming Styles 0.3224 0.0224
Medical Note 1 0.5757 0
Medical Note 2 0.4288 0.0019
Medical Note 3 0.722 0
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Figure 1: GapView Predicted Alignment

Figure 2: GapView Ground Truth Alignment
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6 Discussion533

GapView shifts the focus of RAG evaluation to-534

ward the knowledge base by determining whether535

it contains enough information to support a given536

question. It does so by computing cosine similar-537

ity between question and document embeddings,538

using this signal for both coverage prediction and539

visualization through 2D MDS. For each question,540

it finds the document with the highest similarity541

score and labels the question as covered if that542

score exceeds a tuned threshold. Across all six syn-543

thetic datasets, GapView achieved F1 scores above544

0.93, with high precision and recall. These results545

confirm that cosine similarity is a strong signal for546

determining whether a knowledge base can support547

a user question.548

Programming datasets showed higher recall and549

F1 scores than clinical datasets, with statistically550

significant differences (Table 3). Precision was also551

higher in programming, but the difference was not552

statistically significant. These differences reflect553

the structured, explicit nature of programming text554

versus the more variable language used in clinical555

notes. This suggests that domain-specific tuning or556

embeddings may improve performance.557

Spearman correlations between cosine similarity558

and 2D distances were moderate to strong across559

all datasets, indicating that the MDS plots preserve560

the semantic distance relationships between ques-561

tions and documents. The visual separation be-562

tween covered and not-covered questions supports563

GapView’s second contribution: enabling intuitive,564

interpretable diagnostics through 2D visualization.565

In the MDS plots for each dataset (Figures 1566

and 2), most covered questions in the programming567

datasets appeared to be closer to the document em-568

beddings, and GapView’s predictions matched the569

ground truth well. In contrast, clinical datasets like570

Medical Note 3 had some covered questions that571

appeared farther away and were incorrectly marked572

as not covered. These errors occurred even when573

the questions could be answered by the document.574

For example, the question “What pharmacogravi-575

tational agent was used to stabilize the omniliver?”576

was answerable from Medical Note 3 but still mis-577

classified because it appeared far from the relevant578

chunks. These cases show that MDS plots can re-579

veal not only missing information, but also predic-580

tion errors such as when answerable questions fail581

to align with the relevant document embeddings.582

These insights are useful in real-world settings583

by flagging unsupported questions before system 584

deployment. For instance, in a clinical QA assis- 585

tant, GapView could detect that a question about 586

side effects is not covered by any retrieved drug 587

information, prompting corpus expansion before 588

generating an answer with a RAG system. This 589

makes GapView a practical tool for improving doc- 590

ument coverage in RAG pipelines for high-stakes 591

domains. 592

7 Conclusion 593

This paper introduces GapView, a framework de- 594

signed to assess whether the knowledge base within 595

a RAG system contains sufficient information to re- 596

spond to user questions. GapView integrates cosine 597

similarity with MDS visualizations to provide both 598

accurate coverage predictions and interpretable in- 599

sights. Evaluations conducted on the six synthetic 600

datasets utilizing OpenAI embeddings demonstrate 601

that GapView consistently identifies unsupported 602

questions, achieving F1 scores exceeding 0.93 and 603

uncovering performance variations specific to dif- 604

ferent domains. In contrast to conventional RAG 605

metrics that emphasize retrieval or generation qual- 606

ity, GapView directly evaluates the adequacy of the 607

knowledge base which can help improve reliability 608

in important areas like healthcare. Its visual and 609

numeric results have the potential to help evalu- 610

ate RAG systems by showing where information is 611

missing. As RAG systems become more common, 612

tools like GapView will be essential for ensuring 613

answers are grounded in sufficient knowledge. The 614

data and code used in this study will be made pub- 615

licly available upon publication to support repro- 616

ducibility. 617

8 Limitations 618

This study has two limitations. The first limitation 619

is that only two human annotators were used for 620

labeling the synthetic datasets, which may limit 621

the generalizability of the annotations. Although 622

disagreements were resolved through discussion, a 623

larger annotation pool would strengthen the relia- 624

bility of the ground truth labels. The second limita- 625

tion is that GapView depends on the quality of the 626

embeddings. We used OpenAI’s text-embedding- 627

3-large, but domain-specific models like BioBERT 628

or CodeBERT may work better for medical or pro- 629

gramming texts, so future work could test whether 630

any of these type of models help GapView improve 631

alignment by better handling domain context. 632
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