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Abstract

Reasoning under uncertainty is a fundamental chal-
lenge in Artificial Intelligence. As with most of
these challenges, there is a harsh dilemma between
the expressive power of the language used, and the
tractability of the computational problem posed by
reasoning. Inspired by human reasoning, we intro-
duce a method of first-order relational probabilis-
tic inference that satisfies both criteria, and can
handle hybrid (discrete and continuous) variables.
Specifically, we extend sum-of-squares logic of ex-
pectation to relational settings, demonstrating that
lifted reasoning in the bounded-degree fragment for
knowledge bases of bounded quantifier rank can
be performed in polynomial time, even with an a
priori unknown and/or countably infinite set of ob-
jects. Crucially, our notion of tractability is framed
in proof-theoretic terms, which extends beyond the
syntactic properties of the language or queries. We
are able to derive the tightest bounds provable by
proofs of a given degree and size and establish
completeness in our sum-of-squares refutations for
fixed degrees.

1 Introduction
Intelligent agents must cope with limits to their knowledge
of the world. One of the most widely studied and mature
approaches treats the state of the world as probabilistic, using
inference from observed evidence to draw conclusions about
what is likely—and what is not—regarding unobserved parts
of the world, future states, and so on.

At the same time, it is profitable to use relational represen-
tations for our knowledge of the world. In this way, a single,
short statement can assert a common collection of relation-
ships about a large collection of similar objects. In a vast
world, such relational knowledge enables an agent to draw
on some basic understanding of situations, locations, or ob-
jects that it has never before encountered. There is substantial
evidence from cognitive science showing that a core aspect
of human intelligence arises from relational thinking and rea-
soning [Hummel and Holyoak, 2003; Krawczyk, 2012]. And
one can argue that relational representations are highly desir-

able and perhaps even essential for many areas of AI such as
planning and natural language processing.

Unfortunately, power rarely comes for free. Naı̈ve ap-
proaches to both probabilistic inference and relational infer-
ence, that might explicitly consider the various possible states
of the world, are not computationally feasible to perform at
scale. Since our focus is on addressing a vast world, we need
approaches that do not explicitly consider the possible world
states, but instead operate at a more abstract “lifted” level,
reasoning generically about entire classes of objects. In gen-
eral, it is still challenging to carry out such a strategy effi-
ciently, and this is an area of active research [Van den Broeck
et al., 2021]. In this work, we consider a new logic with a
tractable fragment that can capture knowledge that is out of
reach of the existing tractable methods.

Our approach builds on and extends three distinct threads
in the literature. The first is work on tractable proba-
bility logics. Our work presents a relational generaliza-
tion of the sum-of-squares probability logic [Lasserre, 2001;
Juba, 2019], while retaining a powerful tractable fragment
given by bounded-degree expressions.

The second thread is relational optimization. Sum-of-
squares, in the primal formulation, is a family of semidefinite
optimization problems. Kersting et al. [2017] and Mladenov
et al. [2017] respectively proposed relational generalizations
of linear and convex quadratic programs, and developed tools
for efficiently solving such problems. Here, we show that the
techniques may be extended to countably infinite domains,
and present a logic that characterizes the power of the pro-
grams we obtain via these techniques.

Finally, the third thread concerns the existing technique
for inference in such infinite universes: Belle [2017] showed
how to perform weighted first-order model counting in such
open universes, which enables certain kinds of probabilistic
inference. We extend Belle’s approach, and overcome two
main limitations: first, that first-order model counting is only
known to be tractable for various two-variable fragments, and
is postulated to be intractable for many three-variable formu-
las and beyond [Beame et al., 2015]. Second, Belle’s tech-
nique to extend to infinite universes relies on compactness
for Boolean propositional logic, which clearly does not hold
even for linear arithmetic—consider the example of the for-
mulas e(x) ≥ n for all integer n (where e(x) represents the
expected value for x, which is included in our language), the
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infinite set of constraints {e(x) ≥ n : n is an integer} is
unsatisfiable, whereas any finite subset is satisfiable.

Our generalization, in contrast to others, enables us to rea-
son about the expected values of random variables that take
numeric values as well as bounded-degree moments.

2 Related Work
Probability logics Most directly, our work proposes a logic
of expectation, as discussed by Halpern and Pucella [2007],
extended to a first-order language with a powerful tractable
fragment. It directly generalizes the tractable fragment con-
sidered by Juba [2019]. Indeed, it can also serve as a logic
of probability, of the kind that Halpern [1990] calls a “type
2” first-order logic of probability – meaning, the probabilities
are taken over valuations of the formulas, as opposed to bind-
ings from the domain of quantification. (See Appendix C for
an example)

Alternatively, our knowledge is expressed as a combination
of logical constraints and bounds on the marginals of certain
expressions; as shown by Kuželka et al. [2018], if we con-
sider a maximum-entropy objective, marginal equality con-
straints alone capture Markov Logic Networks [Richardson
and Domingos, 2006], so we may obtain a (strict) generaliza-
tion of such models. But rather than assuming interest in a
maximum-entropy model, we will be primarily interested in
what values may possibly be taken by the expected value of
other expressions.
Markov Logic Indeed, Markov Logic is a prominent ex-
ample of the vast family of different models that have been
considered as targets for probabilistic modeling and infer-
ence with relational representations; Van den Broeck et
al. [2021] give a broad overview of this area. Typically, in-
ference in these models is reduced to Weighted (First-Order)
Model Counting (WFOMC) [Chavira and Darwiche, 2008;
Van den Broeck et al., 2011; Van den Broeck et al., 2014],
in which possible worlds are assigned a (pseudo-) likelihood
given by the product of the (explicitly defined) weights asso-
ciated with the specified formulas satisfied in each such possi-
ble world. Indeed, the likelihoods assigned to possible worlds
by Markov Logic (for example again) are usually defined in
such a way. Again, in contrast to these works, our focus is
not specifically on inference in models of such form.

Moreover, we consider expectation more generally than
probability per se – i.e., expressions that may take numeric
values. In the literature, such models are referred to as “hy-
brid” probabilistic models, and reduced to Weighted (First-
Order) Model Integration [Belle et al., 2015; Feldstein and
Belle, 2021]. This problem is generally more challenging
and is only tractable in limited cases [Zeng et al., 2020;
Feldstein and Belle, 2021]. Indeed, even WFOMC, which
only concerns probability, is only known to be tractable in
various two-variable fragments [Van den Broeck et al., 2011;
Van den Broeck et al., 2014; Beame et al., 2015; Kazemi
et al., 2016; Kazemi et al., 2017; Kuusisto and Lutz, 2018;
Kuzelka, 2021; Van Bremen and Kuželka, 2023; Tóth and
Kuželka, 2023], and is believed to be intractable for some
three-variable fragments [Beame et al., 2015].

Although our tractable fragment similarly requires some

kind of bound on the quantifier rank, each finite bound cor-
responds to a polynomial-time fragment, and there is no such
hard barrier against the many-variable fragment.

As mentioned previously, Belle’s work [2017] extends
these WFOMC-based approaches to infinite and open uni-
verse settings; but, being based on WFOMC, it also inherits
the above barriers to tractability.
Other approaches In addition, a number of other languages
have been proposed for reasoning about probability in open
universes, but without promises of tractability or generaliza-
tion to reasoning about expectation [Poole, 2003; Milch et al.,
2005; Carbonetto et al., 2005; Poole, 2008].

3 Background and Notation
By reasoning, we refer to the ability to resolve a query based
on a knowledge base, both of which are encoded using the
logic fragment we have defined. In this section, we first in-
troduce the first-order probabilistic relational logic that un-
derpins our inference method. We then discuss how sum-
of-squares relaxation techniques can be applied to facilitate
efficient reasoning at the propositional level, leaving the dis-
cussion of lifted reasoning for the following section.

3.1 (First-Order) Probability Relational Logic
Language: We start by defining a first-order
language L that includes relational symbols
{P (x), Q(x, y), R(x, y, z), ..., P ′(x), ...} of every arity,
variables V = {x, y, z, ...}, and a countably infinite set of
names N serving as the domain of quantification. These
names can be thought of as the integers in N, but we use
proper names {john, james, jane, ...} for readability.
We will also, in general, consider a finite set of constants
C ⊆ N . and refer to G = N \ C as generic names. A
renaming substitution is given by a permutation on G , that is
extended to N by the identity map on C . The logical terms
of the logic T are given by a relation symbol together with
a tuple of the corresponding arity from V ∪ C . A ground
term is given by a relation symbol together with a tuple of
the corresponding arity from N .

In general, we consider expressions of the form of poly-
nomial inequalities, where the indeterminates are given
by terms: a monomial µ is given by a finite subset of
T , τ1 . . . , τk with corresponding positive integer exponents
d1 . . . , dk: µ = τd1

1 · · · τdk

k . We refer to deg(µ) =
∑k

i=1 di
as the degree of the monomial. For each monomial µ, we
have a moment term e(µ).

A polynomial inequality is now given by a finite set of
monomials M , together with a real-valued coefficient cµ for
each monomial µ ∈ M , and a numeric relation symbol from
{≥,=}. We will write these expressions as

∑
µ∈M cµµ ≥

0 and
∑

µ∈M cµµ = 0, respectively. We now refer to
maxµ∈M deg(µ) as the degree of the polynomial inequality
expression. Now, our polynomial inequalities will in general
be bound by universal quantifiers, and analogous to the lan-
guages introduced by Lakemeyer and Levesque [2002], we
will allow the domain of quantification to be specified by the
following kind of equality expressions: these have atomic for-
mulas consisting of a pair from V ∪C (variables or constants),



which we write e.g. as x = y, jane = x, etc., that are given
by any Boolean expression on these atomic formulas (using
the usual De Morgan connectives, ∧,∨,¬).
Logical Constraints Now, for each pair of an equality ex-
pression Ξ and polynomial inequality Λ, we have a logical
constraint formula Φ = ∀Ξ ⊃ Λ. When Ξ is a trivial tautol-
ogy, we simply write ∀Λ. We refer to the number of distinct
variables occurring in Ξ and Λ together as the quantifier rank
of Φ. The semantics of Φ is that for all substitutions of names
for variables θ satisfying Ξ, the same substitution into the
polynomial inequality Λθ is also satisfied.

Example 1. Although in general the relation symbols are
interpreted as numeric indeterminates, we can assert that
relations P and Q take Boolean values by the formulas
∀P (x)2 − P (x) = 0 and ∀Q(x, y)2 − Q(x, y) = 0. We
can moreover define a negative literal for each relation sym-
bol by considering another relation P̄ and relating its value
to P like so: ∀P (x) + P̄ (x)− 1 = 0.

There are two ways of encoding clauses. The first approach
uses a monomial of Boolean terms to represent a conjunc-
tion, and uses an equality formula to assert that the conjunc-
tion is false; by De Morgan’s law, this is a clause. Con-
cretely, the clause ∀x, yP (x) ∨ ¬Q(x, y) is represented by
∀P̄ (x)Q(x, y) = 0. This method produces monomials with
degree equal to the width of the clause. The second approach
uses a linear inequality, asserting at least one term is true: we
represent ∀x, yP (x)∨¬Q(x, y) by ∀P (x)+Q̄(x, y)−1 ≥ 0.
These expressions have degree one. The two different encod-
ings can be used to simulate two different tractable logics.

Finally, the equality formulas allow us to write expressions
such as ∀x ̸= y ∧ x ̸= jane ⊃ P (x) + Q̄(x, y) − 1 ≥ 0,
which is the aforementioned clause with additional restric-
tions on the possible bindings. As with Belle [2017], we can
thereby represent proper+ knowledge bases [Lakemeyer and
Levesque, 2002], which consist of universal clauses with such
equality expressions defining the domain of quantification.

Expectation Constraints Next, we use these relational sym-
bols, and their associated variables, as the random variables
in our expectation logic in the sense of Halpern and Pu-
cella [2007]. The term e(P (james, jane)) represents the
expected value of the relation P on the names of james and
jane. We now consider expectation bound expressions that
are defined by a finite set of moment terms M , together with
real-valued coefficients ce(µ) for each moment e(µ) ∈ M ,
corresponding to the linear inequality

∑
e(µ)∈M ce(µ)e(µ) ≥

0. The degree of the expectation bound is similarly defined to
be maxe(µ)∈M deg(µ), where we also refer to the degree of
the monomial µ as the degree of the moment e(µ). Similarly
to the logical constraint formulas, for each pair of an equality
expression Ξ and expectation bound B, we have an expecta-
tion constraint formula Ψ = ∀Ξ ⊃ B. The quantifier rank of
an expectation constraint Ψ is likewise equal to the number of
distinct variables occurring in Ξ and B together. Again, the
semantics is that for any substitution of names for variables θ
satisfying Ξ, the substitution into the expectation bound Bθ
holds.
Knowledge Base and Query: In general, we define a knowl-
edge base ∆ as a finite non-empty set of logical and expecta-

tion constraint formulas about various relations. A query q is
another constraint formula pending verification.

Thus, assuming the knowledge base is satisfiable, checking
whether the query is compatible with it is equivalent to check-
ing the consistency of the expanded knowledge base ∆ ∪ q.
From now on, we will refer to ∆∪ q simply as the knowledge
base for brevity.
Semantics: A model M for the knowledge base ∆ is given
by a probability measure space, together with an assignment
of a measurable function for each binding of a relational vari-
able to a tuple of names of the appropriate arity, such that the
logical constraints in ∆ are satisfied with probability 1, and
the expectation bounds are also satisfied for all bindings.

Now we are ready to resolve queries using knowledge
bases in the described form. For instance, as the expectation
of a Boolean variable coincides with the probability of the
variable taking the value one, we can directly reason about
various conditional probabilities, as illustrated in the follow-
ing example.

Example 2. In the following example, we would like to
speculate the likelihood of a war between Antony and
Octavian. We will consider a binary Boolean rela-
tion War and an ternary Boolean relation LoveTriangle,
with constants Antony and Cleopatra. We can encode
an assertion like “Pr[War(x, y)|LoveTriangle(x, y, z)] ≥
.75” by using the definition of conditional probability to
rewrite it as “Pr[War(x, y) ∧ LoveTriangle(x, y, z)] ≥
.75Pr[LoveTriangle(x, y, z)].” Thus we obtain a knowledge
base

∀LoveTriangle(x, y, z)2 − LoveTriangle(x, y, z) = 0

∀War(x, y)2 − War(x, y) = 0

∀e(War(x, y)LoveTriangle(x, y, z))
−.75e(LoveTriangle(x, y, z)) ≥ 0.

Given also:

∀x ̸= Antony ∧ x ̸= Cleopatra

⊃ e(LoveTriangle(x,Antony,Cleopatra) ≥ 1

this would imply that Antony has a greater than 75% chance
of being at war with everyone in the universe (apart from him-
self and Cleopatra), including Octavian.

3.2 Propositional Sum-of-squares Refutations
At the propositional level, a knowledge base consists solely of
a collection of ground logical constraints and ground expec-
tation bounds. A sum-of-squares refutation demonstrates that
it is impossible for a joint distribution on random variables to
be consistent with the knowledge base, reducing reasoning to
a moment problem.

A convenient form for our purposes is due to Puti-
nar [1993]: suppose our knowledge base consists of logical
inequalities {gi ≥ 0}i∈I , equalities {hj = 0}j∈J , and ex-
pectation bounds {bk ≥ 0}k∈K , where the various gi, hj ,
and bk are written as polynomials in the relations. A sum-
of-squares polynomial σ is, as the name suggests, equal to a
sum of squares of arbitrary polynomials

∑
ℓ∈L(pℓ)

2. Now,
for sum-of-squares polynomials σ0 and σi for i ∈ I , arbitrary



polynomials qj for j ∈ J , and nonnegative real numbers rk
for k ∈ K, suppose we have an expression

σ0 +
∑
i∈I

σigi +
∑
j∈J

qjhj +
∑
k∈K

rkbk = −1. (1)

This is called a sum-of-squares refutation. It is sound, since
for any joint distribution on the relational variables the sum-
of-squares polynomials must be nonnegative; assuming that
the logical constraints hold, and hence that each gi is non-
negative and each hj is identically 0 over the support of the
distribution, we see that by linearity of the expectation op-
erator, the sum-of-squares expression must be nonnegative.
Since, it is formally equal to −1, which certainly has nega-
tive expectation.

In order to establish a sum-of-squares refutation, we need
to find σ0 and σi for i ∈ I , arbitrary polynomials qj for j ∈
J , and nonnegative real numbers rk for k ∈ K satisfying
the above equality 1. A manually established sum-of-squares
refutation is provided below.
Example 3. We demonstrate a proof of Chebyshev’s inequal-
ity in sum-of-squares. This is a standard tool in probability
with a simple, low-degree proof. We suppose X is a mean-0
random variable with variance λ > 0. We define a tail event
T to be a Boolean (indicator) random variable correspond-
ing to |X| exceeding

√
kλ – or equivalently, X2 ≥ kλ. For

any given δ > 0, we’ll prove that the probability of T is at
most 1

k + δ. Formally, now, we have the system:

T (X2 − kλ) ≥ 0

(1− T )(kλ−X2) ≥ 0

T 2 − T = 0

e(X2)− λ = 0

e(X) = 0

e(T )− (
1

k
+ δ) ≥ 0

which we wish to refute. The sum-of-squares expression

((1− T )X)2 + T (X2 − kλ)−X2(T 2 − T )

− (X2 − λ) + kλ

(
T −

(
1

k
+ δ

))
is formally equal to −kλδ, so by rescaling by 1

kλδ , we obtain
a sum-of-squares refutation. Observe that the total degree of
the expression is 4.

3.3 Tractability of Constant-Degree
Sum-of-Squares (SOS)

Deriving a sum-of-squares refutation is a non-trivial task, as
demonstrated by Example 3. Luckily, as noted independently
by many authors [Shor, 1987; Nesterov, 2000; Parrilo, 2000;
Lasserre, 2001], for any fixed d ∈ N, the fragment of ground
sum-of-squares consisting of expressions of degree at most d
is tractable: suppose R⃗ is the vector of all ground monomi-
als of relational random variables up to degree d/2 (assume
d is even), ordered by increasing total degree, including the
degree-0 constant 1. We refer to the expectation of the outer-
product R⃗R⃗⊤ as a moment matrix [M ]. For a polynomial

p, we define the degree-d localizing matrix [pM ] to be, for
the largest index s∗ such that the degree of Rs∗ is at most
d/2 − deg(p), the expectation of p · R⃗1:s∗R⃗

⊤
1:s∗ . Observe

that this matrix is constructed so that all expressions appear-
ing in it have total degree at most d. Finally, the degree-d
sum-of-squares semidefinite program corresponding to logi-
cal inequalities {gi ≥ 0}i∈I , equalities {hj = 0}j∈J , and
expectation bounds {bk ≥ 0}k∈K is

[M ] ⪰ 0

[giM ] ⪰ 0 i ∈ I

[hjM ] = 0 j ∈ J

bk ≥ 0 k ∈ K

Assuming that the logical inequalities assert that each term
only obtains bounded values – specifically, for all ground
terms τ , τ2 ≤ U for some common U – this program is infea-
sible iff there is a degree-d sum-of-squares refutation. (Such
systems are said to be explicitly compact.) Indeed, degree-
d refutations are described by the dual semidefinite program.
Hence, we can test for the existence of refutations with coef-
ficients up to a given size using a polynomial-time algorithm
for deciding the feasibility of this semidefinite program:
Theorem 1. (Soundness [Shor, 1987; Nesterov, 2000; Par-
rilo, 2000; Lasserre, 2001]). Let {gi ≥ 0}i∈I , {hj =
0}j∈J , {bk ≥ 0}k∈K be a system of constraints that is ex-
plicitly compact. Then either there is a degree-d sum-of-
squares refutation or there is a solution to the degree-d sum-
of-squares semidefinite program.

Lasserre [2001] showed that ground sum-of-squares is
complete for explicitly compact knowledge bases: for every
inconsistent system, there is a sum-of-squares refutation that,
in particular, has some finite degree.
Theorem 2. (Completeness, a corollary of [Putinar, 1993]).
There exists a probability distribution with expected values
{e(xα⃗)}α⃗∈Nn supported on a set given by an explicitly com-
pact system {gi ≥ 0}i∈I , {hj = 0}j∈J , {bk ≥ 0}k∈K iff
every moment matrix is positive semidefinite, every localizing
matrix for each gi is positive semidefinite, every localizing
matrix for each hj is zero, and the bounds bk are nonnegative
(i.e., solutions exist for all degrees d).

Naturally, there is no reasonable bound on the degree, and
even for systems in which all of the relational variables are
Boolean, the degree may need to be linear in the number of
such variables; observe that in general, the number of mono-
mials of a given degree is exponential in the degree. Hence,
this corresponds to an exponential-size semidefinite program
formulation.

But, the constant-degree fragments are already quite ex-
pressive. Many theorems of probabilistic analysis are cap-
tured by these fragments [Barak et al., 2012; O’Donnell and
Zhou, 2013; De et al., 2013; Kauers et al., 2014]. More
generally, Berkholz [2018] showed that constant-degree frag-
ments of ground sum-of-squares simulate the constant degree
fragments of polynomial calculus [Clegg et al., 1996], and
Juba [2019] showed that they also simulate bounded-space
treelike resolution [Esteban and Torán, 2001], which natu-
rally generalizes unit propagation and other tractable frag-
ments of resolution [Ansótegui et al., 2008].



We remark briefly that extensions of Theorem 2 to
countably-infinite dimension have been obtained; see
[Ghasemi et al., 2016] and [Curto et al., 2023]. While con-
ceptually pleasing, as with the finite-dimensional (ground)
case, these cannot provide practically usable bounds on the
size of the refutation. For the sake of efficient algorithms, we
will have to focus on a limited fragment.

4 Efficient Reasoning in Open Universes
From this point onward, we enter the first-order world with an
open-universe (OU) setting, where we do not assume a com-
plete knowledge of all the objects in the universe. Thus, the
ability to reason in an open universe demonstrates robustness
and adaptability in the face of uncertainty. This assumption
determines how we need to ground our knowledge base.

4.1 Grounding in Probability Logic
A ground theory is obtained from ∆ by substituting variables
with names. Let the rank of ∆ be the maximum quantifier
rank of any formula in ∆. Given a knowledge base of this
form, we are going to define a grounding of ∆ as a substitu-
tion of all variables in ∆ with names.
Definition 1.

GND(∆) = {ϕθ|[∀Ξ ⊃ ϕ] ∈ ∆,⊨ Ξθ}
Typically, to limit the domain of variables used in a grounding
we will use:

GND(∆, k) = {ϕθ|[∀Ξ ⊃ ϕ] ∈ ∆,⊨ Ξθ, θ ∈ K}
where K consists of all constants present in ∆ plus k addi-
tional generic names, for k ≥ 0.

The generic names capture the values the formula may take
when its variables are bound to elements outside the set of
constants. As opposed to the domain closure assumption,
where we do not consider any objects outside of the knowl-
edge base (i.e., DC(∆) = GND(∆, 0)), we will be captur-
ing an open universe via OU(∆) = GND(∆, k), where k is
exactly the rank of ∆. Intuitively, we need at least k distinct
names since Ξ can require that all variables are bound to dis-
tinct elements, but moreover we will see (cf. Theorem 4) that
k generic names are also sufficient to capture the behavior of
all possible groundings.
Example 4. Continuing our previous example, we can get
a clearer picture of Antony’s ongoing wars. For the knowl-
edge base ∆ as defined in Example 2, we get GND(∆, 3)
with 3 generic names Octavian,Caesar, Cicero (ignoring
the Boolean axioms and equality constraints):

e(War(Oct., Ant.)L.T.(Oct., Ant., Cleo.))

−.75e(L.T.(Oct., Ant., Cleo.)) ≥ 0

e(War(Cae., Ant.)L.T.(Cae., Ant., Cleo.))

−.75e(L.T.(Cae., Ant., Cleo.)) ≥ 0

e(War(Cic., Ant.)L.T.(Cic., Ant., Cleo.))

−.75e(L.T.(Cic., Ant., Cleo.)) ≥ 0

e(L.T.(Oct., Ant., Cleo.))− 1 ≥ 0

e(L.T.(Cae., Ant., Cleo.))− 1 ≥ 0

e(L.T.(Cic., Ant., Cleo.))− 1 ≥ 0

Observe, the more generic names we add, the more wars
Antony likely ends up in. Imagine how bad his issues would
be in GND(∆) (The full grounding including the Boolean ax-
ioms is included in the Appendix A for completeness).

4.2 Satisfiability
In this section we cast the usual notion of logical satisfia-
bility into the algebraic language of sum-of-squares feasibil-
ity. Concretely, we say that a knowledge base ∆ is satisfi-
able if and only if its associated sum-of-squares semidefinite
program admits a feasible solution, which we call a pseudo-
model:

Definition 2. A degree-d pseudomodel for ∆ is given by an
assignment of a real number to each e(µ) for each monomial
µ up to degree d, such that the assignments satisfy the infinite
sum-of-squares program.

For a finite set of names, used as the domain of quantifi-
cation for GND(∆), the corresponding program is a (finite)
ground sum-of-squares program Theorem 2 asserts that for
explicitly compact ∆ and sufficiently high degree, satisfiabil-
ity w.r.t. models and pseudomodels coincide. This equiva-
lence lets us reduce logical satisfiability questions to the fea-
sibility of polynomial-size semidefinite programs, paving the
way for tractable relational inference in open universes.

4.3 Equivalence Classes
Definition 3. Two ground monomials µ and µ′ are said to be
in the same renaming equivalence class if there is a renaming
substitution θ such that µθ = µ′.

Example 5. For ∆ containing:

∀e(Q(x, y))− 3 ≥ 0

∀e(Q(x, james)) ≥ 0

e(P (james))− 1 ≥ 0

and the subsequent grounding GND(∆,2):

e(Q(jack, jill))− 3 ≥ 0

e(Q(jill, jack))− 3 ≥ 0

e(Q(james, jack))− 3 ≥ 0

e(Q(james, jill))− 3 ≥ 0

e(Q(jack, james)) ≥ 0

e(Q(jill, james)) ≥ 0

e(P (james))− 1 ≥ 0

We get that Q(jack, jill) and Q(jill, jack) are in the
same equivalence class, but Q(james, jack) is not because
james is not a generic name, and thus can’t be freely renamed.

Each name will fall into a single equivalence class, and it
will be used when lifting our grounded logic.

4.4 Lifted Sum-of-Squares
We now present our lifted sum-of-squares system. Let ∆ be a
knowledge base consisting of logical constraint formulas and
expectation bounds, and let k be the quantifier rank of ∆. We
obtain our lifted sum-of-squares system by adding equality
constraints for the generic names to the knowledge base.



Definition 4 (Lifted Sum-of-Squares). For any given de-
gree bound d, degree-d lifted sum-of-squares for a first-order
knowledge base ∆ uses the language of propositional degree-
d sum-of-squares with the following propositional knowl-
edge base: GND(∆, k) union with the set of equality con-
straints e(µ) − e(µ′) = 0 for each pair of ground mono-
mials µ, µ′ in the names used by GND(∆, k) of degree up
to d such that for a renaming substitution θ, µ = µ′θ.
We denote this propositional sum-of-squares knowledge base
by GNDliftedSOS(∆, k). Thus, a degree-d lifted sum-of-
squares refutation of ∆ means a propositional degree-d sum-
of-squares refutation of GNDliftedSOS(∆, k).

Observe that since degree-d refutations of ∆ are simply
degree-d ground sum-of-squares refutations, it follows im-
mediately from Theorem 1 that refutations exist iff the sum-
of-squares semidefinite program is infeasible. This program
naı̈vely has dimension equal to the number of monomials that
can be constructed from relational variables bound to names
from C or our k generic names, which is polynomial in |C |
and the number of relation symbols as long as both k and the
arity of all relations is bounded by a constant. But, instead of
including the equality constraints e(µ) − e(µ′) = 0 for each
pair of equivalent ground monomials µ, µ′, we can use a sin-
gle variable to represent the value for the entire equivalence
class. Then the number of constraints is similarly bounded,
yielding a polynomial time guarantee for our lifted inference:

Theorem 3. Given a ∆ with c constants, n ∀-clauses, each
mentioning at most m predicates, and with rank k, the run-
ning time for a lifted degree-d sum-of-squares inference in a
open universe is polynomial in c, n, and m for fixed k and d.

Proof. For each ∀-clause we will have at most (c+ k)k sub-
stitutions for each predicate. Then the total number of atoms
in GND(∆, k) is O(nm(c+ k)k).

As there are algorithms solving a semidefinite program up
to arbitrary precision in polynomial time with respect to the
size of the program (e.g. the ellipsoid method [Bland et al.,
1981]), we thus can decide whether or not a degree-d refuta-
tion exists in polynomial time in c, n, and m for fixed k and
d.

For example, we can carry out the following probabilistic
inference in polynomial time.

Example 6. We’re going to assume a grounding that in-
cludes the 3 generic names Oct., Cic., and Cae., (As par-
tially shown in Example 4) and infer a bound on the
value of e(War(Ant.,Oct.)). Given our boolean constraints
on both relations War and L.T.. We can then infer that
the expression e(War(Ant., Oct.)) ≥ .75 via the sum-of-
squares expression (denoting e(War(Ant.,Oct.)) by W and
e(LoveTriangle(Ant.,Oct.,Cleo.)) by LT ),

W 2(1− LT )2 +W 2(LT − LT 2) + (1− LT )(W −W 2)

+(W · LT − .75LT ) + (.75LT − .75) = W − .75

(See Appendix B for details.)

4.5 Soundness and Completeness
We will now show that our lifted sum-of-squares logic is
both sound and complete for a GND(∆) that uses an open-
universe. To begin, recall the results on ground sum-of-
squares, Theorems 1 and 2. We will leverage these two theo-
rems to show that our lifted sum-of-squares logic is sound and
complete when finding a satisfying model of the equivalence
classes, assuming explicit compactness.

We first argue that pseudomodels can be taken to agree
within an equivalence class without loss of generality.
Lemma 1. If GND(∆, k) is satisfiable then there exists a
pseudomodel M in which all members of each equivalence
class take the same value.

Proof. Assume GND(∆, k) is satisfiable. Then for its asso-
ciated semidefinite program there is some feasible “generic”
assignment eG of moment-variables. Now, consider any
renaming substitution θ that takes the k generic names in
GND(∆, k) to the same set of k generic names. For any con-
straint ∀Ξ ⊃ ϕ in ∆, for any grounding θ′ such that ⊨ Ξθ′,
observe that ⊨ Ξθ′θ as well: indeed, for any atom of Ξ, if
θ′ grounds a variable to a constant, θ does not rename the
constant, so equality w.r.t. any constant is unchanged; and θ′

grounds both variables to the same name iff θ maps both to
the same name, so equality between generic names is also
preserved. Therefore, ϕθ′θ is also in GND(∆, k). Now con-
sider the assignment M that assigns each eM (µ) the value
1
k!

∑
renaming θ eG (µθ). This eM (µ) is then going to be our

proposed pseudomodel. Observe that for any renaming θ′′,

eM (µθ′′) =
1

k!

∑
θ

eG (µθ
′′θ) =

1

k!

∑
θ

eG (µθ) = eM (µ)

so indeed, the equivalence classes share a common value.
Likewise, since φθ′′ is in GND(∆, k), the assignments
eG θ′′(µ) = eG (µθ

′′) are also solutions. Moreover, since eM

is a convex combination of these eG θ′′ , and the feasible re-
gion of any semidefinite program is convex, eM must also be
feasible. Therefore, eM is indeed a pseudomodel.

Next, we observe that a set of generic names equal to the
quantifier rank suffices to obtain representatives of all of the
equivalence classes of monomials that appear in GND(∆);
we will use this property to extend to a pseudomodel for the
entire GND(∆) next.
Lemma 2. For a given ∆ a pseudomodel for GND(∆, k),
where k is the quantifier rank of ∆, assigns a value for
some grounding from every equivalence class occurring in
GND(∆).

Proof. Consider any grounding θ such that for ∀Ξ ⊃ ϕ in
∆, ϕθ is in GND(∆). Since ∀Ξ ⊃ ϕ has quantifier rank k,
at most k names from G are assigned by θ in ϕθ. So, con-
sider the renaming substitution θ′′ that takes these k names to
the k names used in GND(∆, k) (arbitrarily). Observe that
ϕθθ′′ is in GND(∆, k), so the pseudomodel for GND(∆, k)
assigns a value to each monomial in ϕθθ′′. For each mono-
mial occurring in ϕθ, there is an equivalent monomial in ϕθθ′′

that has therefore indeed been assigned a value in the pseu-
domodel.



Theorem 4. For all d, GND(∆) has a degree-d pseudomodel
iff GND(∆, k) has a degree-d pseudomodel, where k is equal
to the rank of ∆.

Proof. The direction of most interest is showing that given
GND(∆, k) has a pseudomodel then GND(∆) also has a
pseudomodel. Starting with a pseudomodel M that satis-
fies GND(∆, k) we can apply Lemma 1 to get M ′ which
will be our pseudomodel where all members of an equiva-
lence class take the same value. By Lemma 2 we have that
each monomial in GND(∆) belongs to an equivalence class
with a representative appearing in GND(∆,k). This guaran-
tees a pseudomodel exists for GND(∆), because for every ϕθ
in GND(∆), we assign the same values to its monomials as
in ϕθθ′′ where θ′′ is the renaming substitution that assigns
the k names in ϕθ to the names in GND(∆, k). Since the
constraints of the semidefinite program associated with ϕθθ′′

are satisfied by these values, so are the constraints associated
with ϕθ.

Theorem 5. Given an explicitly compact knowledge base ∆
and a grounding GND(∆, k), a lifted sum-of-squares pro-
gram using GND(∆, k) is sound and complete for degree-d
refutations of ∆.

Proof. For soundness, we first observe that if ∆ is satisfiable,
then the degree-d lifted sum-of-squares program for GND(∆,
k) is feasible by Lemma 1, and hence by Theorem 1 there is
no degree-d lifted sum-of-squares refutation of ∆.

For completeness with respect to degree-d, suppose that
there is no degree-d pseudomodel of GND(∆). Then by The-
orem 4, there is no degree-d pseudomodel of GND(∆, k), ei-
ther. By Theorem 1, there is a degree-d sum-of-squares refu-
tation of GND(∆, k); by renaming, this is a degree-d lifted
sum-of-squares refutation of ∆.

4.6 Discussion of Tractability
We stress that some probabilistic inference problems are in-
herently intractable and we do not claim to solve these prob-
lems in polynomial time. We know that even approximate in-
ference in Bayesian belief networks is NP-hard [Dagum and
Luby, 1993]; but this was due to the fact that any language
capable of expressing all 3-CNFs can encode NP-hard prob-
lems. Thus, restricting the language seems to be an unpromis-
ing approach to obtaining tractable inference.

Indeed, recall that the same issue arises in even in classi-
cal Boolean inference. There, the approach broadly pursued
in “SAT solvers” in practice does not attempt to restrict the
language, but rather the algorithm is only feasible to run on a
subset of the instances. Following [Beame et al., 2004], we
know that the subset of tractable instances is captured by a
fragment of resolution in which the proof size is small.

Here, we pursue an analogous approach to probabilistic in-
ference. We have opted for a language that can also repre-
sent all 3-CNFs and so in general (in the absence of a degree
bound) we encounter an intractable inference problem. As
with Boolean reasoning, we can guarantee that our algorithm
is tractable for clearly defined fragments (of sum-of-squares),
but we do not know in advance what moment degrees will

suffice to solve the problem. Unfortunately, even for Boolean
inference, SAT solvers face the analogous difficulty.

5 Comparison to Other Models
We will use three existing models for probabilistic inference
and show where lifted sum-of-squares logic improves in ei-
ther tractability, expressiveness, or both. A short summary of
these comparisons can be seen in Table 1.

Model Ternary Relations Full Arithmetic
Lifted SOS ✓ ✓

WFOMC-OU ✗ ✗
PSL ✓ ✗
TML ✓ ✓

Table 1: Comparisons of tractabilities among existing statistical re-
lational learning methods

5.1 Tractable Markov Logic (TML)
Tractable Markov Logic (TML), as defined in [Domingos and
Webb, 2012] has two very distinct characteristics. First of
all, they require the objects all be inside a single hierarchy,
which is highly restrictive. Secondly, they adopt weights to-
gether with those sub-class structures to maintain tractability.
The explicitly strong structural assumption is not obvious for
many cases including our example. Along with these draw-
backs there is a fundamental difference between TML and
Lifted Sum-of-Squares. Markov Logics in general focus only
on bounding the maximum entropy distribution, whereas we
focus on bounding all distributions. This can be particularly
useful when using these models to reject a null hypothesis.
By having certifiable bounds, our model can reject a hypothe-
sis by itself without further experimentation being necessary.
An example of this would be the biological benchmarks used
in [Ribeiro et al., 2022].

5.2 Weighted First-Order Model Counting with an
Open Universe (WFOMC-OU)

As mentioned above, Belle’s approach of performing
weighted first-order model counting in an open universe
[Belle, 2017] is believed to be intractable for many ternary
relations and beyond. This means that Example 6 is likely
to be intractable using this approach. However, our runtime
guarantees are polynomial in the rank of our knowledge base
meaning this example is well within our tractable fragment.
Along with this, many model counting algorithms rely on ap-
proximation to increase their tractability. While this may be
useful for some domains it runs into a similar issue as TML.
If an exact answer is necessary these models may be unable
to provide an answer.

5.3 Probabilisitc Soft Logic (PSL)
This model, introduced under the name Probabilistic Soft
Logic, is another commonly applied method to solving proba-
bilistic reasoning in relational domains [Kimmig et al., 2012].
Much similar to Markov Logic Networks, Probabilisitc Soft
Logic combines graphical models and first-order logic, but
allows the truth values to be soft as in any time between



zero and one. These methods have had success in prac-
tice but currently lack the theoretical guarantees provided in
our work. In addition to this, PSL is limited to arithmetic
rules of linear combinations of relations. This is in contrast
to our Example 2, where we are able to leverage the term
War(x, y)L.T.(x, y, z) to create a rule that models condi-
tional probability. PSL models are also an example of a model
that utilizes weighted counting to handle the probabilitistic
nature. This leads to many of the same drawbacks that were
mentioned for WFOMC-OU.

6 Future Work and Conclusion
In summary our work is able to extend previous work on
probabilistic inference using sum-of-squares to a first order
logic. This allows for a substantially larger tractable frag-
ment than previous work. While approach manages to em-
ploy first-order reasoning, but there may still be more simpli-
fication available for the matrices resulting from our semi-
definite program. By utilizing an approach similar to that
of [Kersting et al., 2017] for relational linear programming,
one may be able to simplify the semi-definite program even
more. Further, if sparsity exists in the formulation, we may
also exploit it using methods mentioned in [Lasserre, 2006].
One downside of our approach is that it inherits the limitation
that sum-of-squares cannot represent or reason about inde-
pendence of random variables. Although the most straight-
forward approach to representing independence leads imme-
diately to an intractable polynomial optimization problem, it
is natural to ask if this is truly inherent.
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A Full Grounded Knowledge Base

War(Ant., Oct.)−War(Ant., Oct.)2 = 0

War(Ant., Cleo.)−War(Ant., Cleo.)2 = 0

War(Ant., Cic.)−War(Ant., Cic.)2 = 0

War(Ant., Cae.)−War(Ant., Cae.)2 = 0

War(Cleo., Oct.)−War(Cleo., Oct.)2 = 0

War(Oct., Cic.)−War(Oct., Cic.)2 = 0

War(Oct., Cae.)−War(Oct., Cae.)2 = 0

War(Cleo., Cic.)−War(Cleo., Cic.)2 = 0

War(Cleo., Cae.)−War(Cleo., Cae.)2 = 0

War(Cic., Cae.)−War(Cic., Cae.)2 = 0

L.T (Ant., Oct., Cleo)− L.T (Ant., Oct., Cleo)2 = 0

L.T (Ant., Oct., Cic.)− L.T (Ant., Oct., Cic.)2 = 0

L.T (Ant., Oct., Cae.)− L.T (Ant., Oct., Cae.)2 = 0

L.T (Ant., Cleo, Cic.)− L.T (Ant., Cleo., Cic.)2 = 0

L.T (Ant., Cleo, Cae.)− L.T (Ant., Cleo., Cae.)2 = 0

L.T (Ant., Cic, Cae.)− L.T (Ant., Cic., Cae.)2 = 0

L.T (Oct., Cleo., Cic.)− L.T (Oct., Cleo., Cic.)2 = 0

L.T (Oct., Cleo., Cae.)− L.T (Oct., Cleo., Cae.)2 = 0

L.T (Cleo., Cae., Cic.)− L.T (Cleo., Cae., Cic.)2 = 0

L.T (Oct., Cae., Cic.)− L.T (Oct., Cae., Cic.)2 = 0

e(L.T.(Oct., Ant., Cleo.))− 1 ≥ 0

e(L.T.(Cae., Ant., Cleo.))− 1 ≥ 0

e(L.T.(Cic., Ant., Cleo.))− 1 ≥ 0

e(War(Oct., Ant.)L.T.(Oct., Ant., Cleo.))

−.75e(L.T.(Oct., Ant., Cleo.)) ≥ 0

e(War(Oct., Ant.)L.T.(Oct., Ant., Cic.))

−.75e(L.T.(Oct., Ant., Cic.)) ≥ 0

e(War(Oct., Ant.)L.T.(Oct., Ant., Cae.))

−.75e(L.T.(Oct., Ant., Cae.)) ≥ 0

e(War(Cae., Ant.)L.T.(Cae., Ant., Cleo.))

−.75e(L.T.(Cae., Ant., Cleo.)) ≥ 0

e(War(Cae., Ant.)L.T.(Cae., Ant., Cic.))

−.75e(L.T.(Cae., Ant., Cic.)) ≥ 0

e(War(Cae., Ant.)L.T.(Cae., Ant., Oct.))

−.75e(L.T.(Cae., Ant., Oct.)) ≥ 0

e(War(Cic., Ant.)L.T.(Cic., Ant., Cleo.))

−.75e(L.T.(Cic., Ant., Cleo.)) ≥ 0

e(War(Cic., Ant.)L.T.(Cic., Ant., Oct.))

−.75e(L.T.(Cic., Ant., Oct.)) ≥ 0

e(War(Cic., Ant.)L.T.(Cic., Ant., Cae.))

−.75e(L.T.(Cic., Ant., Cae.)) ≥ 0

e(War(Cleo., Ant.)L.T.(Cleo., Ant., Oct.))

−.75e(L.T.(Cleo., Ant., Oct.)) ≥ 0

e(War(Cleo., Ant.)L.T.(Cleo., Ant., Cic.))

−.75e(L.T.(Cleo., Ant., Cic.)) ≥ 0

e(War(Cleo., Ant.)L.T.(Cleo., Ant., Cae.))

−.75e(L.T.(Cleo., Ant., Cae.)) ≥ 0

e(War(Cleo., Oct.)L.T.(Cleo., Oct., Ant.))

−.75e(L.T.(Cleo., Oct., Ant.)) ≥ 0

e(War(Cleo., Oct.)L.T.(Cleo., Oct., Cic.))

−.75e(L.T.(Cleo., Oct., Cic.)) ≥ 0

e(War(Cleo., Oct.)L.T.(Cleo., Oct., Cae.))

−.75e(L.T.(Cleo., Oct., Cae.)) ≥ 0

e(War(Cleo., Cic.)L.T.(Cleo., Cic., Ant.))

−.75e(L.T.(Cleo., Cic., Ant.)) ≥ 0

e(War(Cleo., Cic.)L.T.(Cleo., Cic., Oct.))

−.75e(L.T.(Cleo., Cic., Oct.)) ≥ 0

e(War(Cleo., Cic.)L.T.(Cleo., Cic., Cae.))

−.75e(L.T.(Cleo., Cic., Cae.)) ≥ 0

e(War(Cleo., Cae.)L.T.(Cleo., Cae., Ant.))

−.75e(L.T.(Cleo., Cae., Ant.)) ≥ 0

e(War(Cleo., Cae.)L.T.(Cleo., Cae., Oct.))

−.75e(L.T.(Cleo., Cae., Oct.)) ≥ 0

e(War(Cleo., Cae.)L.T.(Cleo., Cae., Cic.))

−.75e(L.T.(Cleo., Cae., Cic.)) ≥ 0

e(War(Cic., Cae.)L.T.(Cic., Cae., Ant.))

−.75e(L.T.(Cic., Cae., Ant.)) ≥ 0

e(War(Cic., Cae.)L.T.(Cic., Cae., Oct.))

−.75e(L.T.(Cic., Cae., Oct.)) ≥ 0

e(War(Cic., Cae.)L.T.(Cic., Cae., Cleo.))

−.75e(L.T.(Cic., Cae., Cleo.)) ≥ 0

e(War(Oct., Cae.)L.T.(Oct., Cae., Ant.))

−.75e(L.T.(Oct., Cae., Ant.)) ≥ 0

e(War(Oct., Cae.)L.T.(Oct., Cae., Cic.))

−.75e(L.T.(Oct., Cae., Cic.)) ≥ 0

e(War(Oct., Cae.)L.T.(Oct., Cae., Cleo.))

−.75e(L.T.(Oct., Cae., Cleo.)) ≥ 0

e(War(Oct., Cic.)L.T.(Oct., Cic., Ant.))

−.75e(L.T.(Oct., Cic., Ant.)) ≥ 0

e(War(Oct., Cic.)L.T.(Oct., Cic., Cae.))

−.75e(L.T.(Oct., Cic., Cae.)) ≥ 0

e(War(Oct., Cic.)L.T.(Oct., Cic., Cleo.))

−.75e(L.T.(Oct., Cic., Cleo.)) ≥ 0

Permutations are omitted.

B Omitted Steps of Example 6
Starting with an expression that takes the form
of the law of total probability ∀x ̸= Ant., x ̸=



Oct.e(War(Ant., Oct.)L.T.(Ant., Oct., x))... We can
then make substitutions using the laws of expectation and
probability. These substitutions can be continued until giving
a final sum-of-squares expression, which can be simplified to
e(War(Ant., Oct.))− .75, of:

W 2(1−LT )2+(1−LT )2(W −W 2)+W (LT −LT 2)+
WLT − .75LT + .75(LT − 1)

Where W = e(War(Ant., Oct.)), and e(LT =
L.T (Ant., Oct., Cleo.)).

This is an expression of degree 4, meaning that by
invoking Theorem 1 we have a degree-4 sum-of-squares
program that will detect infeasibility with the constraint
e(War(Ant., Oct.) ≤ .75− δ for any δ > 0.

First of all, we verify that indeed our expression is equiva-
lent to the query War(Antony,Octavian):
W 2(1−LT )2+(1−LT )2(W−W 2)+W 2(LT−LT 2)+

W · LT − .75LT + .75(LT − 1)
= W 2((1− LT )2 − (1− LT )2) +W ((1− LT )2 + (LT −
LT 2) + LT )− .75
= W − .75,

where W = War(Antony,Octavian), and LT =
LoveTriangle(Antony,Octavian,Cleopatra).
Since every term is indeed nonnegative by either the knowl-
edge base or because it is a square, we can use this as our
sum-of-squares equation to bound the likelihood of a war be-
tween Antony and Octavian (War(Antony,Octavian)).

Next, we will show how this equation was constructed.
Keeping the same values for W and LT we start with the
square polynomial: W 2(1 − LT )2 = W 2(1 − LT )2 which,
recall, represents W 2 ≥ W 2LT 2. Then using the Boolean
axioms we can reduce the degree of W and LT . First LT :

W 2(1− LT )2 +W 2(LT − LT 2) = W 2(1− LT )

and next, we will make a substitution of W in for W 2:
W 2(1−L)2 +W 2(LT −LT 2)+ (1−LT )(W −W 2) =

W (1− LT )
Now that we have W ≥ W ·LT , we can add the expression

W · LT − .75LT to obtain W ≥ .75LT :
W 2(1− L)2 +W 2(LT − LT 2) + (1− LT )(W −W 2) +
(W · LT − .75LT ) = W − .75LT

For the final step we will use our given bound for LT ≥ 1
which can be re-scaled to .75LT ≥ .75, giving us the expres-
sion .75LT − .75 for us to add:
W 2(1−L)2 +W 2(LT −LT 2) + (1−LT )(W −W 2) +

(W · LT − .75LT ) + (.75LT − .75) = W − .75.

C Expectation Logics Example
Given a population where 20% experience an elevated heart
rate (100BPM or above) and every person has a heart rate of
at least 60, what can we say about the average heart rate of
that population:

e(HR) = e(HR ∗HighHR) + e(HR ∗ (1−HighHR))

Now, using the distributivity axiom, and the fact that every
person with a high HR has a HR over 100, we can infer:

e(HR ∗HighHR) ≥ e(100 ∗HighHR)

We can then do the same with the standard population, us-
ing the fact that a heart rate must be above 60, and infer:

e(HR ∗ (1−HighHR)) ≥ e(60 ∗ (1−HighHR))

Substituting into the original equation we get:

e(HR) ≥ e(100 ∗HighHR) + e(60 ∗ (1−HighHR))

e(HR) ≥ 100e(HighHR) + 60e(1−HighHR)

e(HR) ≥ 100 ∗ .2 + 60 ∗ .8
e(HR) ≥ 68

This means that in the overall population the average heart
rate is at least 68.
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