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Abstract

Many real-world decision problems, ranging from asset-maintenance scheduling to portfolio
rebalancing, can be naturally modelled as budget-constrained multi-component monotonic
Partially Observable Markov Decision Processes (POMDPs): each component’s latent state
degrades stochastically until an expensive restorative action is taken, while all assets share
a fixed intervention budget. For a large numbers of assets, deriving an optimal policy for
this joint POMDP is computationally intractable. To tackle this challenge, we prove that
the value function of the associated belief-MDP is budget-concave, which allows an efficient
two-step approach to finding a near-optimal policy. First, we approximate the optimal cross-
component budget split via a random-forest surrogate of each single-component value func-
tion. Second, we solve each resulting budget-constrained single-component POMDP with an
oracle-guided meta-trained Proximal Policy Optimization (PPO) policy: value-iteration on
the fully observable counterpart yields an oracle that shapes the PPO update and greatly
accelerates learning. We validate our method through experiments in two disparate do-
mains: (i) preventive maintenance for a large-scale building infrastructure containing 1,000
components, and (ii) portfolio risk management under debit-only loss-budget constraints,
where each asset’s latent budget depletes with market losses and can only be replenished
through costly recapitalization. Results show that our method consistently achieves longer
component survival times and enhanced portfolio viability than both baseline heuristics and
vanilla PPO. Furthermore, our approach maintains linear scalability in solution time with
respect to the number of components.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) offer a principled framework for sequential
decision making under uncertainty regarding the true state of the system (Cassandra, 1998; Bravo et al.,
2019). Solving POMDPs is computationally challenging, leading to the development of various solvers,
including Monte-Carlo tree search (Katt et al., 2017), reinforcement-learning variants (Singh et al., 2021),
and diverse approximation schemes (Kearns et al., 1999).

Many application domains share a monotonic structure, where the latent state of individual components
degrades stochastically over time unless a costly restorative action is taken. Canonical examples include
online advertising (Boutilier & Lu, 2016), inventory replenishment (Shin & Lee, 2015), and sequential repair
or maintenance scheduling for physical assets (Miehling & Teneketzis, 2020; Bhattacharya et al., 2021).
Figure 1 shows this stochastic decline and the probability distribution of a sample component’s condition at
successive time steps. While prior work, such as (Bhattacharya et al., 2020), has addressed optimal policies
for single-component systems, real-world systems—from building portfolios to exchange-traded-fund (ETF)
baskets—naturally involve many such components (Daulat et al., 2024).

In this paper, we address the challenge of computing approximately optimal policies for budget-constrained
multi-component monotonic POMDPs. We assume that each component POMDP operates independently
in terms of transition probabilities, but they are collectively constrained by the shared budget. Substantial
work has been done to solve budget-constrained POMDPs (Lee et al., 2018; Undurti & How, 2010; Khonji
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Figure 1: Condition of infrastructure component over time. (a) Line plot showing component condition over
time for 100 runs. The red x marks denote the time step when condition reaches 0. (b) Violin-plot showing
distribution of component condition for different time steps.

et al., 2019). However, the complexity of these algorithms is often exponential in the number of states of
a single POMDP. For a multi-component POMDP, where the overall state space is the Cartesian product
of individual component state spaces, this complexity consequently becomes exponential in the number of
components. Thus, these methods become computationally intractable for multi-component POMDPs with
a large number of components. A key challenge in solving budget-constrained multi-component POMDPs
is how to optimally allocate the shared budget across the multiple components. In Vora et al. (2023), the
authors propose a welfare-maximization method for solving budget-constrained multi-component POMDPs.
However, the method in that paper requires generating optimal policies for multiple budget values for every
component POMDP to get the optimal budget allocation. Hence, it cannot be scaled to a large number of
components.

Our insight. The primary computational bottleneck in solving budget-constrained multi-component
POMDPs is the coupling induced by the shared budget. If that budget could be split a-priori, the joint
POMDP would factor into n independent, single-component problems solvable in parallel. To enable this
decomposition, we prove that the optimal value function of a single monotonic POMDP is concave in its
allocated budget. This budget-concavity lets us decouple first, optimise second:

(1) Budget allocation. We maximize a concave surrogate of the value function, estimated with a random-
forest regressor, to distribute the global budget across components; and

(2) Component policies. With budgets fixed, we learn a near-optimal policy for each component–budget
pair using an oracle-guided, meta-trained Proximal Policy Optimization (PPO) agent, where the
oracle is obtained by value iteration on the fully observable counterpart.

The result is a scalable solution whose runtime grows linearly with the number of components while retaining
strong performance guarantees.

Contributions.

1. Theory. We prove budget-concavity of the optimal value function for monotonic POMDPs. While
prior works implicitly assume and use this budget-concavity, our work provides the first general
structural guarantee that formally links budget availability to expected return.
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2. Algorithms. We introduce (i) a random-forest budget-allocation module that exploits concavity
for fast global optimization, and (ii) an oracle-guided meta-PPO solver for each single-component
POMDP.

3. Empirical evidence. On two domains—preventive maintenance of a 1000-component building
and portfolio loss-budget management with recapitalization—we outperform baseline heuristics and
vanilla PPO, whilst solution time of the proposed approach scales linearly in the number of compo-
nents.

4. Complexity analysis. We provide a detailed runtime study confirming linear growth in wall-clock
time as components increase from n = 10 to n = 1000.

The remainder of the paper is organized as follows. Section 2 surveys related work on budget-constrained
POMDPs and large-scale maintenance or portfolio problems. Section 3 formalises the budget-constrained
multi-component monotonic POMDP. Section 4 presents our solution pipeline: (i) Subsection 4.1 proves
budget–concavity of the single-component value function; (ii) Subsection 4.2 exploits this structure to al-
locate the global budget via a random-forest surrogate; and (iii) Subsection 4.3 derives an oracle-guided
meta-PPO policy for each component and composes them into the overall controller. Section 5 reports em-
pirical results on infrastructure maintenance and financial loss-budget management, and Section 6 concludes
with key findings and future directions.

2 Preliminaries and Related Work

2.1 Partially Observable Markov Decision Processes

A discrete-time finite-horizon Partially Observable Markov Decision Process (POMDP) (Cassandra et al.,
1994) M is defined by the 7-tuple (S, A, T, Ω, O, R, H), which denotes the state space, action space, state
transition function, observation space, observation function, reward function and planning horizon, respec-
tively. In a POMDP, the agent does not have direct access to the true state of the environment. Instead,
the agent may maintain a belief state, representing a probability distribution over S. This belief is updated
based on the received observation using Bayes’ rule (Araya et al., 2010).

2.2 POMDP Solution Methods

Computing optimal policies for a POMDP is generally PSPACE-complete (Mundhenk et al., 2000; Vlassis
et al., 2012). Thus, to address the computational intractability of solving POMDPs, various approxima-
tion methods have been widely used (Poupart & Boutilier, 2002; Pineau et al., 2003; Roy et al., 2005).
Several reinforcement learning approaches have also been developed for computing approximate POMDP
solutions (Azizzadenesheli et al., 2016; Igl et al., 2018). However, these methods become computationally
intractable when faced with the high dimensionality and shared resource constraints of budget-constrained
multi-component monotonic POMDPs such as those considered in this paper.

2.3 Consumption MDPs and Budgeted POMDPs

The integration of budget or resource constraints into Markov Decision Processes (MDPs) has been previously
studied under the frameworks of Consumption MDPs (Blahoudek et al., 2020) and Budgeted POMDPs (Vora
et al., 2023). However, the algorithm proposed in Blahoudek et al. (2020) assumes full observability of the
state and hence cannot be applied to budget-constrained POMDPs. A solution for budget-constrained multi-
component POMDPs is presented in Vora et al. (2023). However, the method in this paper requires repeated
computations of optimal policies for different budget values for all component POMDPs and hence is not
scalable to a budget-constrained multi-component POMDP with a large number of components.
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Figure 2: Architectural overview of the proposed approach.

3 Problem Formulation

In this paper, we consider a weakly-coupled multi-component monotonic POMDP with a total budget. A
weakly-coupled multi-component POMDP refers to a system where the individual component POMDPs have
independent transition probabilities but are interconnected through a shared budget B. This shared budget
introduces a weak coupling between the components, as the allocation of budget to one component affects
the available budget for the others. The state space for an n-component monotonic budget-constrained
POMDP is given by S =

∏n
i=1 Si, where Si represents the state space for component i, and i ∈ {1, . . . , n}.

The action space is given by A =
∏n

i=1 Ai, where the action space for component i is Ai = {di, qi, mi}.
Each action incurs a fixed cost. The state at time instant k is an n-tuple, sk = (s1

k, s2
k, · · · , sn

k ), where
si

k ∈ Si = {0, 1, . . . , s̄} denotes the state of component i, and s̄ ∈ N0 is the maximum possible value
of si

k. Here, N0 denotes the set of non-negative integers. Similarly, the action at time k is given by
ak = (a1

k, a2
k, · · · , an

k ) and the cost associated with this action is given by cak
=
∑n

i=1 cai
k
, where cai

k
represents

the cost associated with each action ai
k. The transition function for the multi-component POMDP is:

T (sk, ak, sk+1) =
n∏

i=1
Ti(si

k, ai
k, si

k+1).

The transition probability function for each component i is:

T i(si
k, ai

k, si
k+1) =



pi
1(si

k, ai
k, si

k+1), if ai
k = mi and

si
k ≤ si

k+1 ≤ s̄,

pi
2(si

k, ai
k, si

k+1), if ai
k ∈ {di, qi}

and si
k+1 ≤ si

k,

1, if ai
k ∈ Ai and

si
k+1 = 0 = si

k,

0, otherwise.

(1)

Here, action mi is a restorative action that increases the state value, with the increase being upper bounded
by s̄. In contrast, actions di and qi decrease the state value. Moreover, si

k = 0 is an absorbing state for
all k, i. Finally, the observation probability function for each component follows the model from Vora et al.
(2023), where action qi gives true state information and the other two actions provide no information about
the true state.

3.1 Problem Statement

The primary objective of this paper is to determine a policy π∗ for this multi-component monotonic POMDP
over a horizon H, that maximizes the sum of expectations of the individual times before reaching the
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absorbing state for each component, while adhering to the total budget B. We denote this maximal time k by
Tmax =

∑n
i=1 T i

max, where T i
max denotes the corresponding maximal time for component i. Mathematically,

the problem can be formulated as:

max
π

(
n∑

i=1
E[T i

max(π)]
)

s.t.
H∑

k=0
cak

(π) ≤ B.

(2)

In this formulation, π represents the policy, and both T i
max and cak

depend on π. For simplicity, we will not
explicitly denote this dependence in the remainder of this paper. There are many other possible formulations
of the objective of the problem statement like a maxmin formulation:

max
π

min
i

E[T i
max(π)]. (3)

In this paper we consider the formulation given by (2).

4 Solution Approach

In this section, we present our methodology for solving a budget-constrained multi-component monotonic
POMDP. Figure 2 presents an architectural overview of our proposed approach. The key idea is to decouple
first, optimize second. Allocating the shared budget as a first step of planning shrinks the original large joint
POMDP into n independent single-component POMDPs. Each of these single-component POMDPs now
operates with its own fixed budget cap, which is determined by the initial allocation. This transformation
converts a problem that is intractable for n ≫ 1 into n modest ones that can be solved in parallel. We
organize the section accordingly:

• Structural Result: Budget Concavity (Section 4.1): We prove that each component’s value function
is concave in its budget.

• Stage 1: Budget Allocation (Section 4.2): Leveraging concavity, we fit a random-forest surrogate of
the value function and solve a tractable concave maximization problem to distribute the shared global
budget across components.

• Stage 2: Oracle-Guided Meta-PPO (Section 4.3): With budgets fixed, we learn near-optimal policies
for each component–budget pair (with respect to that component’s allocated budget and local POMDP)
using an oracle-guided, meta-trained PPO agent, then compose these into the overall multi-component
policy.

Note that an alternate allocation strategy could involve redistributing the budget at every time step during
planning. However, such a method would be computationally more expensive than our proposed approach
due to the repeated computation of the allocation.

4.1 Budget–Concavity of the Value Function

We first show that the optimal value function of a single-component belief-MDP—derived from a monotonic
POMDP with random, nonnegative action costs—is concave in the budget variable B for any finite planning
horizon H ≥ 0.

Setting

We consider a POMDP defined by the tuple ⟨S, A, T, R, Ω, O, γ, C⟩, where:

• S is a finite state space and A is a finite action space, as defined in Section 3.
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• T (s′|s, a) is the transition kernel (1); R(s, a) is the reward function.

• Ω is the observation space; O(o|s′, a) is the observation model as defined in Section 3.

• γ ∈ [0, 1) is the discount factor.

• C(s, a) is the distribution of a random, nonnegative cost incurred by taking action a in state s. The
specific cost, c, is drawn from this distribution.

Following standard practice in POMDP literature (Cassandra, 1998), we reformulate this POMDP as a
belief-MDP with state (b, B), where b ∈ ∆(S) is the belief (posterior distribution over hidden states), and
B ≥ 0 is a remaining budget. The reward at belief b under action a is:

ρ(b, a) :=
∑
s∈S

b(s)R(s, a),

and the budget evolves as B 7→ B − c, where c is a realization from the random cost C(s, a) under the
current belief. To prove the budget-concavity of the value function for this belief-MDP, we first establish
two foundational properties concerning concavity. These lemmas demonstrate how concavity is preserved
under common mathematical operations relevant to dynamic programming.
Lemma 1 (Concavity under Affine Shift). If f(x) is concave on an interval I, then f(x − l) is concave on
the interval {y | y = x + l, x ∈ I} for any constant l.

Proof. This lemma is a standard result in convex analysis (Boyd & Vandenberghe, 2004).

Lemma 2 (Expectation Preserves Concavity). Let f(B, ξ) be concave in B for every realization ξ. If ξ is
a random variable following an arbitrary probability distribution, then Eξ[f(B, ξ)] is also concave in B.

Proof. Fix any B1, B2 ∈ R and any λ ∈ [0, 1]. Let g(B) = Eξ[f(B, ξ)]. Then

g(λB1 + (1 − λ)B2) = Eξ

[
f
(
λB1 + (1 − λ)B2, ξ

)]
.

Since f(B, ξ) is concave in B for each ξ, we have

f
(
λB1 + (1 − λ)B2, ξ

)
≥ λf(B1, ξ) + (1 − λ)f(B2, ξ)

for all ξ. Taking expectations on both sides yields

Eξ [f(λB1 + (1 − λ)B2, ξ)] ≥ λEξ [f(B1, ξ)] + (1 − λ)Eξ [f(B2, ξ)] ,

that is,
g(λB1 + (1 − λ)B2) ≥ λg(B1) + (1 − λ)g(B2).

Thus, g is concave in B.

Having established these fundamental properties regarding the preservation of concavity under affine shifts
and expectations, we will now prove that the optimal value function of a monotonic POMDP is concave with
respect to the available budget.
Theorem 3 (Budget Concavity). For any fixed belief b ∈ ∆(S) and horizon H ≥ 0, the value function
VH(b, B) is concave in B on [0, ∞).

Proof. We proceed by mathematical induction on H.

Base Case (H = 0). At horizon zero, there are no rewards:

V0(b, B) = 0 for all b ∈ ∆(S), B ≥ 0.
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Function V0 is thus trivially concave.

Inductive Hypothesis. Suppose that for some H ≥ 0, the function VH(b, B) is concave in B for every
belief b.

Inductive Step. We aim to prove that VH+1(b, B) is concave in B for all b. The Bellman equation in the
belief-MDP is:

VH+1(b, B) = max
a∈A

{
ρ(b, a) + γ Eo,c|b,a [VH(b′, B − c)]

}
,

where b′ is the updated belief after taking action a and observing o. The expectation Eo,c|b,a is taken over
the random observation o and cost c given the current belief b and chosen action a.

Define the inner expectation as:

g(a, b, B) := Eo,c|b,a [VH(b′, B − c)] .

Apply Lemma 1 and inductive hypothesis to assert that B 7→ VH(b′, B − c) is concave for each (o, c). Then
Lemma 2 implies that g(B), being the expectation over such functions, is also concave.

Therefore, the Q-value
QH+1(b, B, a) := ρ(b, a) + γg(B)

is concave in B for each a.

Finally, the value function is
VH+1(b, B) = max

a∈A
QH+1(b, B, a),

which is the pointwise maximum of finitely many concave functions, and hence concave itself.

4.1.1 Relating E[Tmax] to the Value Function

We proved the budget-concavity of the value function VH(s, B) in Theorem 3. In our problem setting
(2), however, we aim to maximize the expected time to failure E[Tmax]. Specifically, in many practical
applications such as preventive maintenance or portfolio management, the objective can be naturally framed
as maximizing the expected time until a critical failure occurs or a budget is exhausted. We now show
how the concavity property extends to E[Tmax], which serves as the objective function for our initial budget
allocation stage.
Lemma 4 (Expected-time equivalence). Consider the reward function

R(s, a) =
{

1, s ̸= 0,

0, s = 0,
(4)

. Let V (s, B) be the corresponding optimal value function. Denote by E[Tmax(B)] the expected time to reach
the absorbing state s = 0 under the optimal budget-feasible policy. Then

V (s, B) = E[Tmax(B)].

Proof. Under reward scheme (4) each non-absorbing step contributes exactly 1 to the return; steps in state
0 contribute 0. Hence, for any budget-feasible policy π,

Total reward = E
[ H∑

t=0
1{st ̸= 0}

]
= E[Tmax(π)].

Taking the maximum over all budget-feasible policies yields V (s, B) = E[Tmax(B)].

Corollary 5. Because B 7→ V (s, B) is concave by Theorem 3, the expected absorption time E[Tmax(B)] is
also concave in the allocated budget B.
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4.2 Random Forest Approach for Optimal Budget Allocation

By Corollary 5, the expected maximal survival time E[Tmax(B)] is a concave function of the budget allo-
cated to a single component. This structural property lets us treat budget splitting across n components
as a concave maximization problem—one that is both tractable and amenable to surrogate modeling. Each
component evolves independently but competes for the shared budget, rendering the components weakly
coupled. While reinforcement learning algorithms have made significant advances, they often face challenges
when scaling to the extremely large state and action spaces characteristic of multi-component systems (Sut-
ton & Barto, 2018). To address this scalability issue, our remedy is an a-priori budget distribution that
decouples the system. Concretely, for component i we approximate the concave map B 7→ E[T i

max(B)] by
the exponential surrogate

T̃ i
max(B) = αi eβiB + γi, (5)

where (αi, βi, γi) are constants. While many other concave functions could be used to model T̃ i
max, we

empirically observe that the exponential function provides a good fit for the data (see Appendix A). We
use a random forest regressor (Breiman, 2001) to estimate the parameters of this exponential function. The
training dataset for this model is obtained via non-linear least squares regression on multiple (E[Tmax], b)
pairs for various budget-constrained single-component monotonic POMDPs. The input to this model includes
specific statistics related to the POMDP’s transition function, which are the expected time to reach state 0
without repairs, E[T ], and the variance of this expected time, σ2

E[T ], as well as the various actions costs.

Let bi denote the budget assigned to component i and T̃ i
max its surrogate survival time. The allocation

problem becomes

max
b1:n

n∑
i=1

T̃ i
max(bi)

s.t.
n∑

i=1
bi ≤ B, bi ≥ 0 ∀i,

(6)

a concave maximization with linear constraints. Because each surrogate in (5) is concave, the problem is
globally tractable and we solve it with off-the-shelf convex optimizers. Solving (6) yields the approximately
optimal budget allocation among the individual components. The next subsection shows how an oracle-
guided meta-PPO agent learns the individual component policies given this budget allocation.

4.3 Oracle-Guided RL for a Budget-Constrained Single Component

Given the per-component budgets bi obtained in Section 4.2, we now derive a near-optimal control policy for
each single-component budget-constrained monotonic POMDP. We adopt the budget-augmented POMDP
(bPOMDP) formalism of Vora et al. (2023), in which the state includes an additional, fully-observable
coordinate that tracks cumulative cost.

The oracle policy is denoted as πoracle and is obtained by solving the corresponding MDP using value iteration.
For a single-component monotonic POMDP with budget B, the corresponding MDP has an action space
AMDP = {d, m}, identical transition probabilities as the POMDP, and full observability of the state. We then
train a Proximal Policy optimization (PPO) agent (Schulman et al., 2017) that queries this oracle selectively:
at each time step it chooses either to inspect (q) or to defer (¬q), in which case the action recommended
by the oracle is executed. Since the full state is not observable in a POMDP, we utilize the belief bs for
planning. The agent’s belief of the true state is updated at each time step using a particle filter approach.
For our work, we empirically observe that using the expected belief b̄s and the variance of the belief σ2

bs

suffices for planning.
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Hence, for the proposed oracle policy-guided PPO agent, the state at time instant k is given by the vector
[b̄sk

, ck, σ2
bsk

]. Furthermore, the reward function is defined as follows:

R(sk, ck, ak) =


r1 < 0, if ck > B,

r2 < 0, if
⌊
b̄sk

⌋
= 0,

r3 = k
H − α|b̄sk

− sk|, if b̄sk
, ck > 0,

where |r1| > |r2| > |r3| for all k, 0 < α < 1 and ⌊.⌋ denotes the floor function. This reward function imposes
substantial negative rewards for exceeding the budget B and allowing the state sk to reach 0. Additionally,
at each time step, the agent receives a positive reward proportional to the time step for maintaining sk above
zero and incurs a penalty proportional to the absolute error between the expected belief and the true state.
As a result, the agent gets higher rewards for keeping sk > 0 for a longer time and is heavily penalized when
the expected belief deviates significantly from the true state. It is crucial to note that during training, the
agent relies solely on the observed reward signals, without access to the true state.

4.4 Optimal Policy for Multi-Component Monotonic POMDPs

We now integrate the approaches described in Section 4.2 and Section 4.3 to compute the optimal policy for
an n-component POMDP, where n is substantially large. Utilizing the random forest regressor, we efficiently
approximate E[Tmax] for each component i. Additionally, we meta-train the oracle-guided PPO agent by
continuously updating the policy network’s parameters over a randomly selected subset of components and
budget values. This approach allows the agent to generalize across components. This meta-trained agent is
then utilized to derive the optimal policy πi∗ for each component i, following the optimal budget allocation
obtained from (6). Consequently, the overall policy for the multi-component POMDP is:

π∗(sk, ak) = (π1∗
(s1

k, a1
k), π2∗

(s2
k, a2

k), · · · , πn∗
(sn

k , an
k )).

While this policy is not guaranteed to be globally optimal for the entire multi-component POMDP, we
empirically observe that it performs well in practice while respecting the budget constraints. We validate
this approach by evaluating its performance on real-world data in the subsequent section.

5 Implementation and Evaluation

In this section, we empirically validate our proposed framework on two disparate domains. The first do-
main, which we call the infrastructure scenario, involves preventive maintenance for a large-scale building
comprising 1000 independent components whose latent condition stochastically degrades over time; our goal
is to allocate a finite maintenance budget to maximize the expected survival time of all components. The
second domain, the financial loss-budget scenario, addresses portfolio risk management using daily price data
for S&P 500 constituents, where each asset is endowed with a debit-only loss budget that depletes under
negative returns and can be replenished only through costly recapitalization. In the infrastructure scenario,
we compare our oracle-guided meta-PPO approach against baseline heuristics, vanilla PPO, and an idealized
oracle policy, reporting results on survival time, cost efficiency, and computational scalability across a range
of budget levels. In the financial loss-budget scenario, we focus on analyzing the learned recapitalization
policy and assessing the generalizability and window robustness of proposed oracle-guided meta-PPO.

5.1 Implementation and Evaluation for Infrastructure Scenario

In this section, we evaluate the efficacy of the proposed methodology for determining the optimal policy for
a very large multi-component budget-constrained POMDP. Specifically, we compare our approach against
existing methods in the context of a multi-component building maintenance scenario managed by a team of
agents. We also perform a computational complexity analysis of the proposed approach, for varying number
of components.

We consider an administrative building comprising 1000 infrastructure components, including roofing ele-
ments, water fountains, lighting systems, and boilers. Each component’s health is quantified by the Condition
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Index (CI) (Grussing et al., 2006), which ranges from 0 to 100. For each infrastructure component, we utilize
historical CI data to generate the transition probabilities for the corresponding POMDP, modeled using the
Weibull distribution (Grussing et al., 2006). We use the weibull_min class from the scipy.stats module in
Python to simulate the CI transitions over time. While a seed can be set using the random_state parameter
in weibull_min for reproducibility, we did not set one to preserve the stochastic nature of the CI transi-
tions. The condition index deteriorates stochastically over time, influenced by various factors, and can only
be accurately assessed through explicit inspections, which incur a cost. A component is considered to have
failed when its CI falls below a failure threshold, which is assumed to be 0. Components can be repaired to
increase their CI. The building is allocated a maintenance budget of B = 500,000 units for a given horizon
of 100 decision steps. At the beginning of the horizon, the CI of all components is 100. The objective of the
agents is to maximize the time until failure of the components by efficiently allocating the budget among the
components and performing repairs and inspections as needed. The replacement costs (ranging from 50 to
500 units) and inspection costs (ranging from 1 to 5 units) of these components are derived from industry
averages. Consistent with the approach described in Section 4.3, we model this objective as a POMDP (with
α = 10−3 in the reward function). This POMDP has roughly 102000 states and 31000 actions.

Figure 3: Performance comparison of oracle policy, oracle-guided meta-PPO, realistic baseline and vanilla
meta-PPO. (a) Comparison of T̂max values for all 1000 components across different budget values allocated
to each component. (b) Comparison of average number of repairs performed by the agent under each of the
four policies. (c) Comparison of average total cost incurred by the agent over the planning horizon for each
of the four policies.

5.1.1 Analysis of Maintenance Policy

We begin by analyzing the performance of the maintenance policy derived using the proposed oracle-guided
meta-PPO strategy for a single-component POMDP representing a component i of the 1000 components.
This policy is compared with the performance of the oracle policy on the corresponding component MDP.
Since the oracle policy has full observability of the state, it is expected to always perform better than the
proposed approach. Additionally, we evaluate two baseline policies:

1. A heuristic policy often used in practice (Lam & Yeh, 1994; Straub, 2004) where the agent performs
inspections at regular intervals and repairs the component when its expected belief about the Con-
dition Index (CI) falls below a predefined threshold. We chose an inspection interval of 5 steps and
a repair threshold of 15 after extensive experiments with intervals ranging from 1 to 10 steps and
repair thresholds from 5 to 50.

2. A vanilla meta-PPO agent that is trained on the same subset of component-budget pairs as the
oracle-guided agent, but without an oracle policy.

Both the oracle-guided meta-PPO and vanilla meta-PPO are trained for 2M time steps each, with an Adam
stepsize of 10−4, a minibatch size 128, policy update horizon of T = 4096 and discount factor 0.95. All other
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hyperparameters follow those used in Schulman et al. (2017). We perform 100 simulations for this component
to obtain the corresponding T i

max values, which are then averaged over the runs for a given budget value
allocated to the component. This process is repeated for all 1000 components and the run-averaged T i

max
values are then averaged across components. We compare this average denoted by T̂max for 11 different
budget values ranging from 0 to 5000 units, along with the average number of repairs performed by the
agent and the average cost incurred over the planning horizon. Figure 3 illustrates a comparison of these
metrics for all four policies. We observe that the proposed approach significantly outperforms the baselines.
The oracle-guided meta-PPO agent nearly matches the performance of the oracle policy for all 3 metrics,
presumably due to the low inspection costs of the components. If inspection costs were significantly higher,
the agent’s performance would likely diverge from the oracle policy, which is an expected outcome given the
budget constraints. We also infer that the vanilla meta-PPO agent has only learnt to not violate the budget
constraint by not performing any repairs. These results demonstrate the value of incorporating an oracle
policy into the training of a reinforcement learning agent.

Figure 4: Performance of random forest model for predicting the value of parameter β for a test dataset of
200 components. The horizontal axis represents parameter values obtained via non-linear least squares and
vertical axis represents predicted values. The dotted line represents the y = x line, i.e., perfect predictions.

5.1.2 Analysis of Budget Allocation

Next, we demonstrate the effectiveness of our random forest-based budget allocation strategy. We compare
it with a baseline approach that allocates budgets proportional to the ratio of a component’s replacement
cost to its E[T ]. For a component i, we model its E[T i

max] using T̃ i
max as given in (5) (see Appendix A for

justification of this exponential form). The parameters αi and γi can be estimated directly by considering
the boundary conditions: γi is estimated by substituting bi = 0, representing the scenario where no budget
is available, and αi is determined by substituting bi = ∞, corresponding to the scenario of unlimited budget,
where the supremum of T i

max (supbi T i
max = H = 100) is reached. We then train a random forest regressor

to estimate parameter βi. The training dataset is created by performing non-linear least squares regression
on 11 distinct (T i

max, bi) pairs each for 800 components. These pairs correspond to the run-averaged T i
max

values and the respective budget values bi from Section 5.1.1. The input to the random forest model is a
vector consisting of the shape and scale factors of the Weibull distribution, which represent E[T ] and σ2

E[T ],
along with the replacement and inspection costs for a given component i. If a different distribution was
used to model the transition probability, we would similarly extract the parameters, E[T ] and σ2

E[T ], for
inclusion in the input vector. Figure 4 shows the prediction performance of the random forest model for a
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test dataset of 200 components which were not encountered during training. We see that most points on
the plot are very close to the perfect prediction line and bad predictions are few in number (29 out of 200
for error threshold of 10−4). The random forest model achieves a mean squared error (MSE) = 1.8 × 10−8

for this test dataset. Note that the non-linear least squares regressor constrains βi to be ≤ 0 and hence for
some components we observe that βi = 0. We use this trained random forest model to estimate T̃ i

max for
all 1000 components. Finally, using these approximated expressions, we solve the constrained maximization
problem described in (6) to obtain the appropriate budget allocation for the components. We quantify

Table 1: Maximum time Tmax (steps), averaged over 100 runs, under random forest and baseline budget
allocations.

Approach Tmax

Random Forest Budget Allocation 22,009.5
Baseline Budget Allocation 16,445.4

the performance of the random forest budget allocation and the baseline budget allocation algorithms by
calculating the Tmax =

∑
i T i

max and averaging it over 100 runs. For a fair comparison, these values are
obtained using the oracle-guided meta-PPO approach for both allocation schemes.

Table 1 shows the Tmax values achieved by both allocation approaches. The random forest budget allocation
vastly outperforms the baseline approach. Furthermore, Figure 5 presents violin plots showing the distribu-
tion of the T i

max values achieved under the proposed and baseline budget allocations for all 1000 components.
We observe that there are more components with higher T i

max values for the random forest budget allocation
approach. Preliminary experiments on alternative objective formulations, such as the maxmin approach
given by (3), also indicate that the proposed method consistently outperforms the baseline.

Figure 5: Performance comparison of random forest-based budget allocation and baseline budget allocation
for all 1000 components for an overall budget of 500,000 units.

5.1.3 Analysis of Time Complexity

Finally, we analyze the time complexity of our proposed approach for varying number of components N . As
mentioned earlier, our method comprises of four major steps:

1. Random Forest regression for estimating T̃ i
max for each component i.

2. Budget Allocation among components via constrained optimization.
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3. MDP Value Iteration for each component-budget pair to obtain the corresponding oracle policy.

4. Oracle-Guided Meta-PPO to approximately solve each component POMDP.

Table 2: Time taken (in seconds) for running each process with varying numbers of components, averaged
over 10 runs.

Number of Components Random Forest Budget Split Value Iteration Meta-PPO
1 0.9724 0.9046 113.7227 2.8885
2 0.8870 0.8314 116.3281 3.0858
5 0.8719 0.8207 135.3953 4.7940
10 0.8762 0.8132 280.4909 9.5495
20 0.9534 0.8997 451.2948 16.2575
50 0.9449 0.8916 1208.1000 33.7387
100 0.9324 0.9171 2389.5641 64.6809
500 0.9575 1.2226 10269.1037 313.9742
1000 0.9599 1.6232 20612.1734 627.7477

Figure 6: Log-log plot of computational complexity of the proposed approach for varying numbers of com-
ponents.

Table 2 presents the times taken for running each of the four processes, with different number of components.
The time complexity experiments were performed in Python on a laptop running MacOS with an M2 chip
@3.49GHz CPU and 8GB RAM. The times taken for random forest and budget allocation steps are negligible
compared to those for performing value iteration and generating optimal policies through meta-PPO. The
value iteration is applied to each component independently and hence scales linearly with the number of
components. Similarly, Step 4 involves applying the pre-trained policy to each component separately and
thus is also linear in the number of components. Consequently, we expect that the time complexity of our
algorithm is linear in the number of components, i.e., O(n). This expectation is confirmed by the log-log plot
of computational complexity shown in Figure 6. Our algorithm’s performance is thus significantly faster as
compared to existing POMDP solvers which would be exponential in the number of states and thus doubly
exponential in the number of components (Silver & Veness, 2010), (Pineau et al., 2003). If the problem
is approached directly as a single POMDP, it will have a prohibitively vast state space of approximately
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102000 states. Previous work by Vora et al. (2023) demonstrated that standard methods indeed become
computationally intractable after a few components due to this combinatorial explosion.

5.2 Implementation and Evaluation for Financial Loss-Budget Management Scenario

Our second experimental scenario addresses a portfolio risk management task. We use daily price data
for the S&P 500 constituent stocks over a two-year window, reserving the final T = 120 trading days for
evaluation and using earlier data for training. The core component of the POMDP is an unobserved latent
state defined per component as a debit-only loss budget (health), st ∈ [0, 100]. Each component receives
a small loss budget: on a day with a negative return, st is debited proportionally and decreases; on a
non-negative day, st is unchanged; the state does not self-recover. Health increases only when the agent
executes recapitalize. All actions draw from one shared, limited budget, and actions are taken when drift
relative to the per-component no-loss floor becomes meaningful. This design is practice-inspired for two
reasons. First, because we manage a large number of components, governance and our own policy favor a
conservative stance: we avoid repeatedly allocating budget to components with recent serial losses, so the
health is debit-only and does not auto-replenish. Second, it follows the risk-budgeting workflow described
in Benham & Bebee (2024)—set a budget ex ante, allocate and monitor against a benchmark, and treat
material drift as a trigger for action. To make the benchmark operational, we instantiate a per-component
no-loss floor: losses are deviations that consume the per-component budget; gains are consistent with the
floor and do not raise limits by themselves; replenishment occurs only through recapitalize. For training
and evaluation, components are assumed independent.

Actions and Costs: The agent’s action space A = {defer, inspect, recapitalize} manages the per-
component loss budget (health). All actions draw from a shared, limited budget B and follow a strict
cost hierarchy crecapitalize > cinspect > cdefer:

• Defer: Continue with the current position. Incurs a low, continuous cost cdefer each step. Health
remains subject to depletion by negative returns.

• Inspect: Pay cinspect to obtain a precise observation of the hidden health st for the selected com-
ponent.

• Recapitalize: Pay the high cost crecapitalize to rebuild health by resetting st to 100. This is the
only action that increases health.

Objective and Failure Condition. The agent’s objective is to learn a policy π that maximizes its
survival time. An absorbing failure state is triggered immediately if any component’s health is exhausted,
i.e., st ≤ 0. For each day the agent survives, it receives a reward of +1. This setup forces the agent to
learn a sophisticated policy that balances the continuous drain from defer costs and market losses against
the high, discrete costs of inspection and recapitalization, in order to prolong its survival.

5.2.1 Analysis of Recapitalization Policy

We evaluate our approach on a stock-level loss-budget management task constructed from the S&P 500
universe. Starting from 500 constituents, we retain the subset with at least 80% daily-price coverage over
the preceding three years, yielding 471 components. As in the infrastructure experiment, we reserve the final
T = 120 trading days for evaluation and use earlier data for model training.

State, actions, and costs. Each component j is modeled as a single-component monotonic POMDP
with an unobserved, debit-only loss-budget (health) sj

t ∈ [0, 100]. Negative returns debit sj
t pro-

portionally; non-negative returns leave sj
t unchanged; the state does not self-recover. The action set is

A = {defer, inspect, recapitalize} with a strict cost hierarchy crecapitalize > cinspect > cdefer. A global budget
Btot is shared across all components. Table 3 presents the values of the various parameters used for the
experiments.

Policies compared. We compare four policies:
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Table 3: Cost and budget settings for the stock-level scenario.

Parameter Value
Total budget Btot 15,000
Recapitalization cost crecap 10.0
Inspection cost cinsp 0.5
Defer cost cdef 0.2
Number of components 471
Evaluation horizon T 120 days

1. Oracle: full observability of the health st; recapitalize whenever st < 20 (no inspection cost).

2. Oracle-guided meta-PPO: the agent chooses inspect vs. defer; upon defer, it executes the ora-
cle’s suggested restorative/default control; upon inspect, it pays cinspect to reduce belief uncertainty.
The agent learns when to buy observations and when to accept uncertainty.

3. Baseline (Heuristic): fixed inspect every 5 trading days; if the observed st < 20, take recapi-
talize; otherwise defer.

4. Vanilla meta-PPO: trained on the same component–budget pairs as the oracle-guided agent but
without oracle shaping.

Budget allocation. We allocate Btot across the 471 components using the same random-forest surrogate
procedure as in the maintenance experiment: for each component i we fit a concave surrogate for the map
B 7→ E[T i

max(B)] and solve a tractable concave maximization to obtain per-component budgets.

Training details. Both oracle-guided meta-PPO and vanilla meta-PPO are trained for 2 × 106

timesteps with Adam step size 10−4, minibatch size 128, PPO horizon TPPO = 2048, and discount factor
0.95. For each component and policy we run 100 simulations and report the component-level average T i

max;
we then average across all 471 components to obtain T̂max.

Figure 7: S&P 500 stock-level scenario: average survival time T̂max under a shared budget Btot = 15,000
across 471 components. Observed ordering: Oracle > Oracle-guided meta-PPO > Baseline > Vanilla
meta-PPO.
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Figure 8: Oracle-guided meta-PPO: train vs. test across component set size N . The y-axis is average survival
time (days); the x-axis is the number of components.

Findings. Under the shared budget Btot = 15,000 across 471 components and a 120-day evaluation horizon,
we observe a consistent ordering (see Figure 7): Oracle > Oracle-guided meta-PPO > Baseline >
Vanilla meta-PPO. The Vanilla meta-PPO tends to conserve budget and rarely recapitalizes, yielding
the lowest survival time. The Baseline performs periodic inspections (every 5 trading days) and recapitalizes
below the threshold but spends budget indiscriminately and misses urgent cases. By contrast, the Oracle-
guided meta-PPO learns when to inspect versus defer and when to act, allocating budget to higher-value
opportunities; it reliably outperforms the Baseline and closes a substantial portion of the gap to the Oracle
upper bound.

5.2.2 Generalizability and Window Robustness of the Oracle-guided Meta-PPO

Design. We vary the number of components N ∈ {5, 10, 20, 100, 471}. For each N , the policy is trained
on rolling 120-day train windows and evaluated both in-sample (train) and on a held-out test window. We
report average survival time (days) over r=5 seeds; error bars denote ±1 standard deviation across seeds.

Findings. (1) Both train and test curves decrease as N grows, reflecting budget dilution and increased
problem complexity. (2) Train performance is consistently above test with a modest generalization gap that
tends to widen at larger N . (3) Variability is non-negligible and generally larger at higher N .

Takeaway. As can be seen from Figure 8, the oracle-guided meta-PPO exhibits window robustness: trends
are consistent across train windows, and the train-to-test drop remains moderate. At small N , the effective
exploration/interaction budget is limited, which can hinder learning; as N increases, richer allocation op-
portunities make better use of the oracle guidance even though absolute survival time declines under a fixed
total budget.

6 Conclusions

We proposed a scalable framework for solving budget-constrained multi-component monotonic POMDPs.
Our chief theoretical contribution is a proof that the single-component value function is concave in bud-
get, which underpins an efficient two-step solution strategy. First, a random-forest surrogate exploits that
concavity to distribute the shared budget across components, thereby decomposing the large n-component
POMDP into n independent single-component POMDPs. Second, an oracle-guided, meta-trained PPO
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agent—shaped by value iteration on the fully observable counterpart—learns a near-optimal policy for each
component–budget pair. Comprehensive experiments on two disparate domains confirm the framework’s
generality. For a 1000-component building-maintenance task, our method significantly prolongs component
survival relative to baseline heuristics and approaches the performance of the oracle policy. On an ETF
portfolio-rebalancing problem with draw-down–risk budgets, the same algorithm consistently preserves port-
folio viability and outperforms vanilla PPO and the equal-weight baseline. Across both settings, empirical
runtimes grow linearly with the number of components, validating the scalability predicted by our com-
plexity analysis. Future work will focus on extending the framework’s capabilities to more dynamic budget
allocation schemes and more complicated hierarchical budget constraints.
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A Function Approximation of E[Tmax]

We model E[T i
max] as an exponential function of the budget allocated to component i. The choice of an

exponential function is motivated by its ability to capture the saturation in E[T i
max] values at higher budget

levels, a result of the finite planning horizon H. Additionally, the exponential model accounts for non-zero
E[T i

max] even when the budget is zero.

Figure 9: Exponential T̃ i
max curves obtained using non-linear least-squares regression.

To validate the accuracy of this exponential model for E[T i
max], we conducted non-linear least squares re-

gression on 100 infrastructure components. Figure 9 illustrates the curves obtained through this regression,
where E[T i

max] is modeled as an exponential function. The results indicate that the exponential function
provides a strong approximation for E[T i

max], with an average coefficient of determination R2
mean = 0.899.
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