
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ASTRA: ADVERSARIAL SELF-SUPERVISED TRAINING
WITH ADAPTIVE-ATTACKS

Anonymous authors
Paper under double-blind review

-

ABSTRACT

Existing self-supervised adversarial training (self-AT) methods rely on hand-
crafted adversarial attack strategies for PGD attacks, which fail to adapt to
the evolving learning dynamics of the model and do not account for instance-
specific characteristics of images. This results in sub-optimal adversarial robust-
ness and limits the alignment between clean and adversarial data distributions.
To address this, we propose ASTrA (Adversarial Self-supervised Training with
Adaptive-Attacks), a novel framework introducing a learnable, self-supervised
attack strategy network that autonomously discovers optimal attack parameters
through exploration-exploitation in a single training episode. ASTrA leverages a
reward mechanism based on contrastive loss, optimized with REINFORCE, en-
abling adaptive attack strategies without labeled data or additional hyperparame-
ters. We further introduce a mixed contrastive objective to align the distribution of
clean and adversarial examples in representation space. ASTrA achieves state-of-
the-art results on CIFAR10, CIFAR100, and STL10 while integrating seamlessly
as a plug-and-play module for other self-AT methods. ASTrA shows scalability
to larger datasets, demonstrates strong semi-supervised performance, and is re-
silient to robust overfitting, backed by explainability analysis on optimal attack
strategies. ASTrA’s code is available here.

1 INTRODUCTION

In an era where Convolutional Neural Networks (CNNs) are increasingly deployed in a wide range
of critical applications across domains like medical image analysis (Wang et al. (2019); Ma et al.
(2021); Kaviani et al. (2022)), object detection (Wang et al. (2021a); Hoory et al. (2020); Wei et al.
(2018)), facial recognition (Vakhshiteh et al. (2020); Akhtar et al. (2021); Biswas et al. (2021)),
autonomous driving (Cao et al. (2019); Sun et al. (2020); Tu et al. (2020)) among others, their
susceptibility to adversarial attacks has become a pressing concern (Szegedy (2013); Hendrycks
& Dietterich (2019)). These attacks, often imperceptible to human observers are referred to as
Adversarial Examples (AEs), can cause deep models to fail catastrophically, undermining trust in
AI systems.

Adversarial Training (AT) emerges as the most prominent defense against adversarial attacks in
supervised learning. This approach injects Adversarial Examples (AEs) as part of the training regime
of Deep Neural Networks (DNNs). By exposing DNNs to both standard and perturbed samples
during training, AT improves generalization to adversarial inputs within a specified ϵ-ball in the
input space, resulting in increased invariance to perturbations Madry (2017).

Although existing works in supervised Adversarial Training (sup-AT) have shown improvements in
adversarial robustness (Madry (2017); Zhang et al. (2019); Wang et al. (2021b)), their dependence on
true class labels for crafting adversarial examples (AEs) limits their broader applicability. Most sup-
AT methods utilize hand-crafted attack strategies, such as the Projected Gradient Descent (PGD)
attack (Mkadry et al. (2017)), with predefined parameters like a maximal perturbation of 8, 10
iterations, and a step size of 2.

The past few years have seen significant progress in self-supervised learning (SSL) (Misra & Maaten
(2020); Chen et al. (2020); Noroozi & Favaro (2016); Gidaris et al. (2018)), more specifically Con-
trastive Learning (CL) for learning representations without the need for ground truth (GT) labels.

1

https://anonymous.4open.science/r/ASTrA---Adversarial-Self-Supervised-Training-with-Adaptive-Attacks-B4C4

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Prominent SSL methods, such as SimCLR (Chen et al. (2020)), learn robust representations by
enforcing instance discrimination, treating each instance and its views as a separate class (Purush-
walkam & Gupta (2020)).

Inspired by this progress, multiple recent works (Kim et al. (2020); Jiang et al. (2020); Fan et al.
(2021); Luo et al. (2023)) have positively attempted to leverage unlabelled data for achieving ad-
versarial robustness (self-AT). Built as a min-max optimization strategy in Adversarial Contrastive
Learning, an ‘attacker’ crafts input perturbations that attempt to minimize representation similarity
for worst-case robustness, and the target network, i.e ‘defender’, targets maximizing the representa-
tion similarity for improved robustness against such perturbed adversarial attacks.

ACL (Jiang et al. (2020)) integrates continual learning with adversarial training to establish a self-AT
framework. Similarly, RoCL (Kim et al. (2020)) enhances adversarial CL by aligning the distribu-
tions of clean and perturbed images. AdvCL (Fan et al. (2021)) employs knowledge distillation
using pseudo labels from pretrained self-supervised models. DeACL (Zhang et al. (2022)) intro-
duces a two-stage approach that distills a standard pretrained encoder through adversarial training.
Recently, DynACL (Luo et al. (2023)) investigated the impact of augmentation strength on adver-
sarial pretraining.

While these existing self-AT methods made significant progress in improving robustness, they en-
hance representation learning without considering the impact of attack strategies on the learning
dynamics. They rely on heuristic, domain-specific techniques to craft adversarial examples, us-
ing attack strategies derived from supervised adversarial training (sup-AT) heuristics. This limits
their ability to dynamically adapt attack strategies, potentially compromising the robustness and
effectiveness of the learned representations. In contrastive learning, representations are uniformly
distributed in the feature space, adhering to the principle of maximum entropy (Jaynes (1957)) and
typically residing on an n-dimensional hyper-sphere (Ermolov et al. (2021); Gupta et al. (2023)).
Since most instances are positioned near class boundaries with dispersed class clusters, effective
attack strategies should leverage knowledge of the learned representations to perturb samples min-
imally toward boundaries, thereby avoiding class confusion. This approach is not taken care of by
existing methods.

Although some studies have explored the effects of varying and adaptive attack strategies in sup-AT
(Tramer et al. (2020); Yao et al. (2021); Jia et al. (2022)), it is crucial to investigate these impacts in
the context of self-AT. This is because, unlike sup-AT, self-AT does not utilize ground truth labels,
meaning that insights and methods from sup-AT cannot be directly applied. In sup-AT, attack strate-
gies often rely on label information to craft targeted adversarial examples, optimize perturbations
based on class-specific gradients, and evaluate attack success using label-based metrics. Without
access to such labels, self-AT must generate and assess adversarial examples based solely on the
data and learned representations. This leads to the following research questions:

1) What is the impact of employing different attack strategies at various training stages in self-AT?

2) How does sample-level variation in attack strategy selection affect robust representation learning
in self-AT?

To answer these questions, our preliminary investigation results, in Figure 1, demonstrate that vary-
ing attack strategies both across training stages (left) and at the sample level (right) can enhance
adversarial robustness. Specifically, implementing different attack schedules during various training
phases leads to modest improvements over the baseline ACL. Additionally, introducing sample-level
variation through random perturbations slightly outperforms the baseline ACL, highlighting the ben-
efits of adaptive attack strategies. This suggests that samples have varying degrees of vulnerability
to adversarial perturbations, and a one-size-fits-all attack strategy may not effectively challenge the
model across all instances. However, these experiments still rely heavily on handcrafted heuristics
and domain-specific knowledge, which limits their generalizability. As training progresses, the most
effective adversarial examples for enhancing robustness may change, necessitating adaptive strate-
gies that respond to the model’s evolving performance. Moreover, existing instance-level variations
do not account for sample characteristics, resulting in attack strategies that are not truly sample-
dependent.

To address these challenges, we propose Adversarial Self-supervised Training with Adaptable At-
tacks (ASTrA). ASTrA incorporates a novel learnable attack strategy module (refer Fig. 2b) that

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Ablation on PGD perturbations in ACL method. (left): Varying attack strategy by changing
perturbations at steps following different schedules. (right): Experiments with different perturbation
value in handcrafted strategy followed by Random strategy where sample-level perturbations are
chosen randomly from range 3 to 14.

(a)

(b)

Figure 2: (a) Conventional self-AT with heuristics PGD attack. Here, samples are perturbed us-
ing handcrafted attack strategies causing limited scope of adversarial robustness. (b) ASTrA with
learnable adaptive attack strategy and mixed contrastive objective. In this case, attack strategies are
selected by the adaptive Strategy Network depending upon sample-characteristics and training dy-
namics of the target model.

employs an exploration-exploitation approach (refer Fig. 3b) within a single episodic framework to
identify optimal attack strategies for each training instance. This is achieved via a novel optimization
formulation that leverages policy gradient methods that enable the strategy network to adjust attack
strategies by directly influencing the target network’s learning trajectory to maximize the robust-
ness of the network. In the exploration phase, the strategy network explores a wide range of attack
parameters to gather information about how different strategies affect the model’s learning. Over
time, it converges towards the most effective attack strategies based on feedback from the model’s
performance, refining the attack parameters to continually challenge the model appropriately, which
can be seen in Fig. 3b. Our approach uniquely applies adaptive attacks during the self-supervised
pretraining phase, in contrast to adaptive sup-AT methods (Jia et al. (2022)) that utilize adaptability
in a fully supervised context.

Additionally, we propose Mixed Contrastive objective (refer Fig. 3a) integrated in our framework
to mitigate the misalignment between adversarial and standard data distributions. Refer sec. A.1 for
details on strategy and target network interactions and sec. A.2 for ASTrA’s algorithm.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 3: (a) ASTrA’s mixed contrastive loss objective facilitating distribution alignment between
clean and perturbed samples. Comparison with RoCL in sec. A.3 in appendix. (b) Exploration
and Exploitation trends of ASTrA. The strategy model initially explores across perturbation values
(exploration) and then assigns optimal values (ϵ = 7, 11, 13) to maximal proportion of images
(exploitation) as training progresses for better generalization.

Our framework outperforms existing self-AT methods in adversarial robustness across multiple
datasets, including CIFAR10, CIFAR100, and STL100, and scales effectively to larger datasets
such as ImageNet-100. Furthermore, ASTrA operates as a plug-and-play module, demonstrating
enhanced performance over several state-of-the-art self-AT approaches (see Table 5).

Our main contributions are:

(1) Self-supervised Learnable Attack Strategy: We introduce a novel, self-supervised, adaptable
adversarial attack strategy that eliminates the need for human supervision and heuristics. This learn-
able strategy optimizes attack strategies at the instance level to maximize adversarial robustness
whilst maintaining standard accuracy, surpassing the capabilities of conventional self-AT methods.

(2) Mixed Contrastive Objective: We propose a mixed contrastive objective to address the distri-
bution alignment challenge between clean and perturbed sample representations, thereby enhancing
generalization and robustness.

2 METHODOLOGY

2.1 PIPELINE OF THE PROPOSED FRAMEWORK

The proposed ASTrA framework integrates two main components: Self-supervised Target Network
and Self-supervised Strategy Network. This framework addresses the challenges outlined in the
introduction by adaptively optimizing attack strategies and improving representation robustness
against adversarial perturbations without relying on handcrafted heuristics or ground truth labels
(refer Fig. 2).

Self-supervised Target Network. Denoted as ŷ = fw(x), where w represents target network
parameters, this network learns robust feature representations by processing dual input streams:
clean augmented views and adversarially perturbed counterparts following ACL Jiang et al. (2020).
Standard augmentation techniques (e.g., cropping, rotation, jitter) are applied to clean images, while
the adversarial perturbations are generated based on strategies learned by the Strategy Network.

Self-supervised Strategy Network. ASTrA introduces a novel, learnable, self-supervised strategy
network designed to overcome the limitations of fixed attack strategies employed by existing self-
AT methods. Unlike handcrafted strategies, the strategy network curates sample-specific attacks that
consider both the sample characteristics and the training dynamics of the target model to generate
optimal attacks that best improve robust generalization (refer Fig. 2b). Self-supervision drives attack
strategy selection through contrastive rewards. Initially, the strategy network explores a wide range
of attack strategies (exploration), and as training progresses, it shifts towards exploiting the learned
dynamics and using the most suitable attack strategies (exploitation). This entire process occurs
within a single training episode, as shown in Figure 6a. Formally, the strategy network generates
an attack strategy a = {a1, a2, ..., aM} ∈ A, where each am is a discrete attack parameter (e.g.,
PGD step size α, number of iterations I , perturbation strength ϵ). These parameters are drawn
from a conditional distribution p(a|x; θ), parameterized by θ, and updated in real-time based on the
feedback loop created by the target network’s performance. ASTrA addresses the gradient-based

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

updating of the Strategy Network’s parameters by utilizing the REINFORCE algorithm Williams
(1992). This allows us to bypass the non-differentiability of the adversarial example generation
process and optimize the strategy network’s attack policies through policy gradients. Details of this
optimization are discussed in Section 2.4.

Adversarial Example Generator. The adversarial example generation process is central to the
interaction between the two networks. For a given input x, an adversarial example xadv is crafted as:

xadv = x+ δ where δ = g(x, a(θ), w), (1)

where δ represents the adversarial perturbation and g(·) encapsulates the perturbation method (typ-
ically PGD). Conventional self-supervised adversarial training methods (ACL Jiang et al. (2020)),
utilize fixed strategies, a = afixed, for generating adversarial examples. The adversarial examples
challenge the Target Network to improve its robustness. The attack strategies are sampled from a
probability distribution p(a|x; θ), where θ is updated during the training.

2.2 THE REWARD FOR THE STRATEGY NETWORK

The reward function for the Strategy Network is designed to balance adversarial robustness with
feature consistency across clean examples, leveraging contrastive loss terms that are inherently self-
supervised and label-free. This reward mechanism allows the Strategy Network to craft adaptive
attack strategies that optimize the perturbation without access to ground truth labels while ensuring
the model generalizes well on the clean data distribution.

Adversarial Contrastive Loss: The adversarial contrastive loss is structured to measure the dis-
similarity between features of adversarially perturbed views of the same image. By maximizing
this dissimilarity, the Strategy Network is encouraged to explore adversarial strategies that create
stronger perturbations, thereby enhancing the model’s robustness against adversarial attacks:

Ladv(w, θ) = − log
exp(sim(fw(x

adv
i), fw(x

adv
j))/τ)∑

k ̸=i exp(sim(fw(xadv
i), fw(xadv

k))/τ)
, (2)

where xadv
i and xadv

j depend upon θ as per 1 and xadv
k represents all adversarial samples in the batch

excluding xadv
i . The temperature parameter τ controls the sensitivity of the softmax distribution.

Clean Contrastive Loss: Conversely, the clean contrastive loss minimizes the distance between
features of benignly augmented views. This ensures that essential information from non-adversarial
data is preserved, allowing the model to maintain high performance on the clean data distribution:

Lclean(w) = − log
exp(sim(fw(x

clean
i), fw(x

clean
j))/τ)∑

k ̸=i exp(sim(fw(xclean
i), fw(xclean

k))/τ)
, (3)

where xclean
i and xclean

j are benignly augmented views of x, and xclean
k includes all clean samples in

the batch excluding xclean
i . By minimizing this loss, the Strategy Network ensures that perturbations

do not overly distort the learned representations, preserving the model’s ability to generalize to
standard clean inputs.

Reward Objective: The composite reward objective for the Strategy Network, aimed at striking a
balance between robust and standard performance can be written as:

Rstrategy(θ, w
fixed) = Ex∼D

[
Ea∼p(a|x;θ)

[
αLadv(θ, w

fixed)− γLclean(w
fixed)

]]
, (4)

where α and γ are hyperparameters that balance the trade-off ensuring feature consistency (through
clean loss minimization) and enhancing adversarial robustness (through adversarial loss maximiza-
tion).

The reward system can adapt to sample-level variations by continuously learning from the evolving
state of the Target Network during training. As the Target Network processes each sample, the
Strategy Network adjusts its attack strategy based on the reward feedback. This dynamic interaction
enables the Strategy Network to generate instance-specific perturbations tailored to both the input
data and the model’s training progress, leading to more effective adversarial challenges without
dependence on any predefined, heuristic-based attack schedules.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2.3 THE LOSS TERMS FOR THE TARGET NETWORK

The Target Network is trained using a composite loss function that integrates three distinct con-
trastive losses: clean, adversarial, and mixed. Each loss plays a critical role in ensuring generaliza-
tion on clean data while maintaining robustness against adversarial attacks.

Clean and Adversarial Contrastive Losses: The clean and adversarial contrastive losses are
aligned with those in the Strategy Network (refer to eq. 3 and 2). The clean loss preserves the
network’s performance on benignly augmented views, while the adversarial loss minimizes the dis-
tance between adversarially perturbed views, enhancing robustness. Minimizing these losses ensures
the network performs effectively on both clean and perturbed inputs.

Mixed Contrastive Loss: This novel proposed loss focuses on aligning the distribution of clean
and adversarial samples in the representation space. This alignment prevents robust overfitting by
ensuring generalization across a wide range of adversarial attacks:

Lmixed(w, θ) = − log
exp(sim(fw(x

clean
i), fw(x

adv
i))/τ)∑

k ̸=i exp(sim(fw(xclean
i), fw(xadv

k))/τ)
. (5)

Composite Objective: The overall objective can be written as:

Ltarget(θ
fixed, w) = Ex∼D[αLadv(w, θ

fixed) + βLmixed(w, θ
fixed) + γLclean(w)], (6)

where α, β, and γ balance the contributions of each term. The mixed loss facilitates continuous
alignment between clean and adversarial distributions, supporting the generation of adaptive adver-
sarial strategies while maintaining robust generalization.

2.4 NOVEL OPTIMIZATION FORMULATION OF ASTRA USING REINFORCE

The standard formulation of the adversarial training involves a min-max formulation of the objective
function with adversarial samples generated using hand-crafted adversarial attacks.

min
w

Ex∼D

[
L(x) + λ ·max

δ∈S
L(x+ δ)

]
.

In our framework, we use two separate objective functions, one for the optimization of the strategy
network and one for the target network. The interaction between the two networks occurs through
adversarial sample generation from the attack strategies generated by the strategy network. Given
equation 4 and 6, we formulate the min-max optimization of ASTrA with for adversarial training as
follows:

min
w

max
θ

Ltarget(θ
fixed, w) +Rstrategy(θ, w

fixed). (7)

A key challenge in optimizing the Strategy Network comes from the non-differentiable nature of ad-
versarial example generation, making traditional gradient-based methods ineffective. The selection
of attack parameters like intensity and perturbation type involves non-differentiable operations that
backpropagation cannot handle.

To alleviate this issue, we employ the REINFORCE algorithm Williams (1992), a policy gradient
method that allows optimization without requiring differentiable operations. This method enables
the Strategy Network to update its parameters based on rewards derived from the Target Network’s
response, ensuring dynamic learning of attack strategies without labels.

The objective function J(θ) for the Strategy Network is to maximize the expected reward, which
evaluates the success of adversarial attacks:

J(θ) = Ex∼D

 ∑
a∼p(a|x;θ)

R(x, a; θ)p(a|x; θ)

 , (8)

where R(x, a; θ) measures the effectiveness of generated adversarial examples. The REINFORCE
algorithm estimates the gradient of J(θ) as:

∇θJ(θ) = Ex∼D

 ∑
a∼p(a|x;θ)

R(x, a; θ)p(a | x; θ)∇θ log p(a | x; θ)


= Ex∼D

[
Ea∼p(a|x;θ) [R(x, a; θ)∇θ log p(a | x; θ)]

] (9)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

This gradient approximation, based on sampled strategies, allows the Strategy Network to refine
its attacks by updating parameters θ according to the observed rewards from the Target Network’s
performance.

Gradient Ascent Update: The Strategy Network updates its parameters via gradient ascent:

θt+1 = θt + ηθ∇θJ(θt), (12)

where ηθ is the learning rate. These updates iteratively refine the attack strategies by adjusting θ to
increase adversarial success.

Synchronization: REINFORCE facilitates managing the non-differentiable updates between the
Target and Strategy Networks. While the Strategy Network optimizes its attack strategies, the Target
Network concurrently updates its parameters to minimize contrastive losses. Reward from the Target
Network informs the Strategy Network’s gradient updates, creating a synchronized, co-evolving
system that adapts continuously in a self-supervised manner.

3 EXPERIMENTS

We evaluate ASTrA on the benchmarks CIFAR10, CIFAR100 Krizhevsky et al. (2009), and STL10
Coates et al. (2011), comparing against existing self-AT methods: RoCL Kim et al. (2020), ACL
Jiang et al. (2020), AdvCL Fan et al. (2021), DeACL Zhang et al. (2022), DYNACL Luo et al.
(2023), and DYNACL-AIR Xu et al. (2024). Additionally, we assess the scalability of ASTrA on
the ImageNet-100 Tian et al. (2020).

Pretraining. We use ResNet-18 He et al. (2016) as the target network, incorporating a mixed
contrastive loss term with a weighting parameter γ = 0.5, following the protocol from Jiang et al.
(2020). ResNet-18 is also used as the adaptive strategy network, with a learning rate of 0.1, LARS
optimizer, step sizes ranging from 1 to 6, attack iterations between 3 and 14, and a perturbation range
of 3 to 15. Reward weights α and β are both set to 1.0 for adversarial and clean losses, respectively.
We use bottleneck projector head 2048x512 (performance comparison with ACL (Jiang et al. (2020))
used projector head is in sec. A.4.4 in appendix). We set β to 0.5 for mixed contrastive loss term.
ASTrA++ is longer pretraining variant of ASTrA with 2000 epochs.

Table 1: SLF results on CIFAR10, CIFAR100, and
STL10. All the methods are evaluated with ResNet18 un-
der the same condition following Jiang et al. (2020). For
all metrics (AA, RA, SA), Top two performances high-
lighted in bold. ASTrA++ denotes longer pre-training
for 2000 epochs.

SSL-AT CIFAR10 CIFAR100 STL10
AA RA SA AA RA SA AA RA SA

Supervised 46.23 47.50 84.35 23.27 25.86 58.98 29.21 31.34 49.38
RoCL 26.12 28.40 77.90 8.72 11.52 42.93 26.51 28.21 78.19
ACL 37.62 40.02 79.32 15.68 17.10 45.34 33.24 35.62 71.21
AdvCL 37.46 40.54 73.23 15.45 17.05 37.58 45.26 46.18 72.11
DeACL 45.31 53.95 80.17 20.34 30.74 52.79 45.54 46.72 72.82
DYNACL 45.04 46.72 77.41 19.25 21.40 45.73 46.59 47.38 69.67
DYNACL-AIR 45.17 - 78.08 20.45 - 46.84 47.66 - 72.30
ASTrA 46.40 54.02 80.54 21.34 24.28 53.20 47.62 48.82 78.00
ASTrA++ 46.92 53.10 80.46 21.95 25.10 53.58 48.21 49.26 78.72

Evaluation. The learned representa-
tions are evaluated using three protocols:
standard linear finetuning (SLF), adver-
sarial linear finetuning (ALF), and ad-
versarial full finetuning (AFF) for three
accuracy metrics - Auto Attack Accu-
racy (AA), accuracy under PGD-20 as
Robust Accuracy (RA), and Standard
Accuracy (SA). SLF and ALF freeze the
encoder and tune the classifier using nat-
ural (SLF) or adversarial (ALF) samples
with cross-entropy loss. For AFF, the
pretrained encoder is used as initializa-
tion, and the entire model is trained, fol-
lowing the approach in ACL Jiang et al.
(2020). ACL, RoCL, AdvCL, DeACL
results are reported from DeACL (Zhang et al. (2022)).

4 RESULTS AND ANALYSIS

We evaluate ASTrA across multiple benchmarks against existing self-AT and sup-AT methods. AS-
TrA outperforms prior approaches in robustness, scalability, and adaptability across various evalua-
tion protocols and datasets.

4.1 ROBUSTNESS ON MULTIPLE BENCHMARKS

In Table 1, we compare the robustness of supervised AT and various self-AT methods on CIFAR10,
CIFAR100, and STL10. ASTrA outperforms prior self-AT methods, improving AA accuracy over

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

ACL Jiang et al. (2020) by 8.78% on CIFAR10 (to 46.40%), 5.66% on CIFAR100 (to 21.34%),
and 2.36% on STL10 (to 47.62%). ASTrA++ further enhances robustness, adding 0.52% on CI-
FAR10, 0.61% on CIFAR100, and 0.59% on STL10. Both ASTrA and ASTrA++ surpass recent
self-AT methods like DYNACL Luo et al. (2023) and DYNACL-AIR Xu et al. (2024), demonstrat-
ing generalization and scalability. Notably, ASTrA++ exceeds supervised vanilla AT on CIFAR10
and STL10, marking a significant advancement in self-AT. Sec. A.4.3 in the appendix shows the
detailed sensitivity analysis of the strategy network’s learning rate in ASTrA.

4.2 ROBUSTNESS ON DIFFERENT EVALUATION PROTOCOLS

Table 2: AFF results on CIFAR10, CIFAR100, and
STL10. ++ denotes longer pre-training.

SSL-AT CIFAR10 CIFAR100 STL10
AA RA SA AA RA SA AA RA SA

Supervised 48.96 49.90 80.23 22.16 26.38 53.34 - - -
RoCL 47.88 51.35 81.01 22.28 27.49 55.10 28.88 30.20 80.10
ACL 49.27 52.82 82.19 23.63 29.38 56.61 34.85 35.42 75.11
AdvCL 49.77 52.77 83.62 24.72 28.73 56.77 46.70 47.80 76.20
DeACL 50.39 54.18 83.95 25.48 29.65 59.86 47.35 48.24 77.30
DYNACL 50.54 54.26 81.94 25.05 29.10 59.30 48.12 49.85 73.75
DYNACL-AIR 50.60 - 82.14 25.34 - 57.44 48.10 - 73.10
ASTrA 50.84 54.90 82.68 26.10 30.22 59.92 49.65 52.40 80.20
ASTrA++ 51.20 55.01 83.72 26.45 31.00 60.25 50.15 53.28 79.70

In Table 1, 2, and 3, we evaluate
ASTrA and ASTrA++ under different
protocols: SLF, AFF, and ALF. ASTrA
consistently demonstrates state-of-the-
art robustness compared to other self-
AT methods across all protocols. Under
ALF, ASTrA++ surpasses existing self-
AT methods, including DYNACL and
DYNACL-AIR, with a notable AA im-
provement of 1.18% on CIFAR10. In
the challenging AFF settings, ASTrA
improves upon the sup-AT baseline by
1.88% (from 48.96% to 50.84%) and
shows superior performance on CIFAR10 and STL10. Overall, ASTrA and ASTrA++ achieve state-
of-the-art results across diverse protocols, confirming their robustness and flexibility.

4.3 ASTRA’S SCALABILITY AND ABLATIONS ON CONTRIBUTED COMPONENTS

Table 3: ALF results on CIFAR10.
Pretraining Method AA RA SA

Sup-AT 47.00 48.12 83.22
RoCL 29.69 28.72 75.62
ACL 40.91 42.00 76.57
AdvCL 37.28 40.58 73.15
DYNACL 45.72 46.90 72.87
DYNACL-AIR 46.01 - 77.42
ASTrA 46.54 47.62 78.23
ASTrA++ 46.90 48.12 78.77

In Table 4, we evaluate ASTrA’s scalability on CIFAR10,
CIFAR100, STL10, and the larger ImageNet-100 dataset us-
ing the AFF protocol. ASTrA effectively scales to larger
datasets, achieving competitive performance on ImageNet-
100 demonstrating adaptability to more complex tasks. We
also conduct ablations on ASTrA’s core components across
all datasets. Including the mixed contrastive loss (MC) en-
hances performance, improving AA accuracy—for example,
by 0.77% on CIFAR10. The adaptive attack strategy (A-
Attack) yields further improvements, such as a 1.79% AA
gain on CIFAR100.

Table 4: Ablations on the effect of each component of ASTrA. AFF re-
sults and scalability analysis. MC:Mixed Contrastive, A-Attack: Adap-
tive Attack Strategy, A-Attack + MC: Complete ASTrA.

SSL-AT CIFAR10 CIFAR100 STL10 ImageNet-100
AA RA SA AA RA SA AA RA SA AA RA SA

ACL 49.27 52.82 82.19 23.63 29.38 56.61 34.85 35.42 75.11 09.24 11.51 19.22
MC 50.04 53.58 82.34 24.96 29.82 58.22 47.05 48.40 77.62 10.48 14.18 21.74
A-Attack 50.58 54.34 82.56 25.42 30.10 59.40 48.40 51.10 79.00 11.02 15.12 22.50
A-Attack + MC 50.84 54.90 82.68 26.10 30.22 59.92 49.65 52.40 80.20 11.21 15.38 23.01

Combining both compo-
nents achieves the high-
est gains, with AA im-
provements of 1.57% on
CIFAR10 and 2.59% on
CIFAR100. These re-
sults underscore the im-
portance of both Mixed
Contrastive and adaptive
adversarial policies in enhancing ASTrA’s robustness across datasets. The effect of batch frequency
updates is detailed in sec. A.4.5. Computational overhead analysis on strategy network is in sec.
A.4.1. Comparison of ASTrA++ with post processing variants of other methods is in sec. A.4.2.

4.4 ASTRA AS PLUG-N-PLAY FRAMEWORK

Table 5: ASTrA as plug-N-play framework with
RoCL and DYNACL. AFF on CIFAR10.

Metrics RoCL RoCL+ASTrA DYNACL DYNACL+ASTrA

AA 47.88 49.10 50.54 51.92
RA 51.35 53.24 54.26 55.04
SA 81.01 82.01 81.94 82.55

As shown in Table 5, integrating ASTrA’s adap-
tive attack policy into RoCL and DYNACL
enhances their robustness across all metrics.
Specifically, ASTrA improves AA by 1.22%
and RA by 1.89% when combined with RoCL,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

and boosts AA by 1.38% and RA by 0.78%
with DYNACL. These results demonstrate AS-
TrA’s effectiveness as a plug-and-play framework.

4.5 ASTRA UNDER SEMI-SUPERVISED SETTINGS

As shown in Figure 4, ASTrA outperforms ACL in semi-supervised settings on CIFAR10, demon-
strating clear improvements in Auto-Attack (AA), Robust Accuracy (RA), and Standard Accuracy
(SA) across all label ratios. At a 50% label ratio, ASTrA achieves a significant 2.58% improve-
ment in AA and a 1.78% gain in RA over ACL. Even with fewer labels, ASTrA maintains superior
performance, highlighting its robustness with limited labeled data.

0 10 20 30 40 50
Label Ratio (%)

35

40

45

50

AA
 (%

)

32.54

43.69
45.73 46.53 47.17 48.09

33.83

44.94
46.47

48.17
49.75 50.02

Auto-Attack Accuracy (AA)

0 10 20 30 40 50
Label Ratio (%)

40.0

42.5

45.0

47.5

50.0

52.5

55.0

RA
 (%

) 47.86
49.50

50.68 50.84
51.88

48.43
50.48 51.27 52.02

53.04
Robust Accuracy (RA)

0 10 20 30 40 50
Label Ratio (%)

67.5

70.0

72.5

75.0

77.5

80.0

82.5

SA
 (%

)

66.50

76.13 76.28

78.95 79.70
80.76

68.62

77.15
78.54

79.73 80.34
81.40

Standard Accuracy (SA)

ASTrA ACLASTrA ACL ASTrA ACL

Figure 4: ASTrA consistently outperforms ACL in semi-supervised settings. AFF on on CIFAR10.

4.6 ASTRA ON ROBUST OVERFITTING

250 500 750 1000 1250 1500 1750 2000
25

30

35

40

45

50

55

60

65

70

75

80

85

90

SA
(%

)

Regular Pretraining
76.29

83.72

Standard Accuracy

250 500 750 1000 1250 1500 1750 2000
40

45

50

55

60

RA
(%

)

Regular Pretraining 53.47
55.01

Robust Accuracy

250 500 750 1000 1250 1500 1750 2000
35

40

45

50

55

AA
(%

)

Regular Pretraining 49.61
51.20

Auto Attack Accuracy

Epoch

Effect of longer pretraining (CIFAR-10) ACL ASTrA

Epoch EpochEpoch

Figure 5: Longer AT - ACL vs ASTrA on CIFAR10. SA drops off for ACL.

ASTrA effectively mitigates robust overfitting during longer pretraining on CIFAR10, as shown
in Figure 5. Over extended epochs, ASTrA maintains both Robust Accuracy (RA) and Standard
Accuracy (SA), reaching RA of 55.01% and SA of 83.72% after 2000 epochs. In contrast, ACL
experiences a significant decline in SA after 1000 epochs, indicating overfitting. This demonstrates
ASTrA’s superior ability to balance robustness and generalization during long-term training.

4.7 ASTRA ON FINDING OPTIMAL ATTACK PARAMETERS

ASTrA autonomously discovers optimal attack parameters, including step size, perturbation, and
attack iterations, by employing a dynamic exploration-exploitation approach. Initially, the strategy
network explores a wide range of values, searching for effective attack configurations. ASTrA shifts
from exploration to exploitation as training progresses, converging on optimal values that balance
adversarial robustness and generalization. This adaptive process, as shown in Figure 6a, is powered
by the novel reward mechanism, which aligns model dynamics to fine-tune attack strategies. Our
analysis across datasets, including CIFAR10, STL10, and ImageNet-100 (refer Fig. 6b), further
shows how ASTrA tailors its attack policies based on dataset-specific characteristics. Starting with
broad exploration, ASTrA gradually narrows the range of perturbation values, finding optimal points
for each dataset. This process requires no manual hyperparameter tuning, as ASTrA efficiently bal-
ances exploration and exploitation throughout training, ensuring robust defenses without sacrificing
clean data performance. Ablations on discretization of the attack parameters is in sec. A.4.6.

4.8 COMPARING OF ASTRA’S ADAPTIVE WITH RANDOM AND HANDCRAFTED ATTACKS

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

200 400 600 800 1000
Epoch

0

20

40

60

80

100

Pr
op

or
ti

on
 o

f S
am

pl
es

 (
su

m
s

to
 1

00
%

) Exploration Exploitation
Step Size

1
2
3
4
5
6

200 400 600 800 1000
Epoch

0

20

40

60

80

100

Pr
op

or
ti

on
 o

f S
am

pl
es

 (
su

m
s

to
 1

00
%

) Exploration Exploitation
Perturbation()

3
4
5
6
7
8
9
10
11
12
13
14
15

200 400 600 800 1000
Epoch

0

20

40

60

80

100

Pr
op

or
ti

on
 o

f S
am

pl
es

 (
su

m
s

to
 1

00
%

) Exploration Exploitation
Attack Iterations

3
4
5
6
7
8
9
10
11
12
13
14

(a)

200 400 600 800 1000
Epoch

0

20

40

60

80

100

Pr
op

or
ti

on
 o

f S
am

pl
es

 (
su

m
s

to
 1

00
%

)

Exploration Exploitation

CIFAR-10

200 400 600 800 1000
Epoch

0

20

40

60

80

100

Exploration Exploitation

STL-10

20 40 60 80 100
Epoch

0

20

40

60

80

100

Exploration Exploitation

ImageNet-100

Epsilon Values
 = 3 = 4 = 5 = 6 = 7 = 8 = 9 = 10 = 11 = 12 = 13 = 14 = 15

(b)

Figure 6: Exploration-exploitation phenomena of ASTrA. (a) ASTrA on CIFAR10 finding optimal
attack policy (PGD iterations, perturbation, step size) by exploration-exploitation phenomena by
learnable self-supervised strategy module where entire training is a single episode (b)ASTrA find-
ing optimal value(s) of perturbation by exploration-exploitation across three datasets - CIFAR10,
STL10, and ImageNet100..

ACL Random ASTrA
Perturbation Method

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pe
rc

en
ta

ge

Perturbation ()
 = 15
 = 14
 = 13
 = 12
 = 11
 = 10
 = 9
 = 8
 = 7
 = 6
 = 5
 = 4
 = 3

Figure 7: Perturbation strategies.

In the introduction, we questioned whether static or
random strategies could adapt to the dynamic na-
ture of adversarial training. While the random and
scheduled strategies show slight improvements (Fig-
ure 7), they still fall short in fully optimizing at-
tack parameters due to their lack of adaptability.

The random strategy lacks convergence, and the sched-
uled approach remains inflexible to the evolving model
dynamics. However, these initial results indicated that
an adaptive strategy could improve robustness by adjusting to these changing conditions.

Table 6: Comparison of attack strategies
on SLF evaluation on CIFAR10.

Strategy AA(%)
ACL 37.65
Random 38.21
Scheduled 38.40
ASTrA (Adaptive) 46.40

Building on this insight, ASTrA’s learnable adaptive
strategy dynamically balances exploration and exploita-
tion throughout training. As shown in Table 6, ASTrA
surpasses both random and scheduled approaches, au-
tonomously finding optimal attack parameters. The flat-
ter loss landscape (refer sec. A.5) further demonstrates
ASTrA’s effectiveness in maintaining both adversarial ro-
bustness and generalization, validating the need for an
adaptive strategy raised in the introduction.

5 CONCLUSION

This work addressed the limitations of static adversarial strategies in self-AT by introducing AS-
TrA, a self-supervised, adaptive attack framework. ASTrA autonomously optimizes attack param-
eters through a contrastive reward mechanism, using REINFORCE to enable dynamic, label-free
adaptation. The framework significantly enhances adversarial robustness and generalization across
benchmarks like CIFAR10, CIFAR100, and STL10, with scalability to larger datasets. Our analy-

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

sis shows that adaptive, instance-specific strategies not only mitigate robustness overfitting but also
provide deeper insights into finding optimal adversarial attack parameters, further strengthening the
framework’s ability to counter diverse adversarial threats.

6 REPRODUCIBILITY STATEMENT

Source code and reproducibility instructions are available in sec. A.7 in appendix.

REFERENCES

Naveed Akhtar, Ajmal Mian, Navid Kardan, and Mubarak Shah. Advances in adversarial attacks
and defenses in computer vision: A survey. IEEE Access, 9:155161–155196, 2021.

Rubel Biswas, Vı́ctor González-Castro, Eduardo Fidalgo, and Enrique Alegre. A new perceptual
hashing method for verification and identity classification of occluded faces. Image and Vision
Computing, 113:104245, 2021.

Qi-Zhi Cai, Min Du, Chang Liu, and Dawn Song. Curriculum adversarial training. arXiv preprint
arXiv:1805.04807, 2018.

Yulong Cao, Chaowei Xiao, Dawei Yang, Jing Fang, Ruigang Yang, Mingyan Liu, and Bo Li. Adver-
sarial objects against lidar-based autonomous driving systems. arXiv preprint arXiv:1907.05418,
2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelli-
gence and statistics, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.

Aleksandr Ermolov, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe. Whitening for self-
supervised representation learning. In International conference on machine learning, pp. 3015–
3024. PMLR, 2021.

Lijie Fan, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, and Chuang Gan. When does contrastive learning
preserve adversarial robustness from pretraining to finetuning? Advances in neural information
processing systems, 34:21480–21492, 2021.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by
predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

Rohit Gupta, Naveed Akhtar, Ajmal Mian, and Mubarak Shah. Contrastive self-supervised learning
leads to higher adversarial susceptibility. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 14838–14846, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019.

Shahar Hoory, Tzvika Shapira, Asaf Shabtai, and Yuval Elovici. Dynamic adversarial patch for
evading object detection models. arXiv preprint arXiv:2010.13070, 2020.

Edwin T Jaynes. Information theory and statistical mechanics. ii. Physical review, 108(2):171,
1957.

Xiaojun Jia, Yong Zhang, Baoyuan Wu, Ke Ma, Jue Wang, and Xiaochun Cao. Las-at: adversarial
training with learnable attack strategy. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 13398–13408, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. Robust pre-training by adversarial
contrastive learning. Advances in neural information processing systems, 33:16199–16210, 2020.

Sara Kaviani, Ki Jin Han, and Insoo Sohn. Adversarial attacks and defenses on ai in medical imaging
informatics: A survey. Expert Systems with Applications, 198:116815, 2022.

Minseon Kim, Jihoon Tack, and Sung Ju Hwang. Adversarial self-supervised contrastive learning.
Advances in neural information processing systems, 33:2983–2994, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images,
2009.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. In International Con-
ference on Learning Representations.

Rundong Luo, Yifei Wang, and Yisen Wang. Rethinking the effect of data augmentation in adver-
sarial contrastive learning. arXiv preprint arXiv:2303.01289, 2023.

Xingjun Ma, Yuhao Niu, Lin Gu, Yisen Wang, Yitian Zhao, James Bailey, and Feng Lu. Under-
standing adversarial attacks on deep learning based medical image analysis systems. Pattern
Recognition, 110:107332, 2021.

Aleksander Madry. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representa-
tions. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 6707–6717, 2020.

Aleksander Mkadry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. stat, 1050(9), 2017.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving jigsaw
puzzles. In European conference on computer vision, pp. 69–84. Springer, 2016.

Senthil Purushwalkam and Abhinav Gupta. Demystifying contrastive self-supervised learning: In-
variances, augmentations and dataset biases. Advances in Neural Information Processing Systems,
33:3407–3418, 2020.

Chawin Sitawarin, Supriyo Chakraborty, and David Wagner. Sat: Improving adversarial training
via curriculum-based loss smoothing. In Proceedings of the 14th ACM Workshop on Artificial
Intelligence and Security, pp. 25–36, 2021.

Jiachen Sun, Yulong Cao, Qi Alfred Chen, and Z Morley Mao. Towards robust {LiDAR-based} per-
ception in autonomous driving: General black-box adversarial sensor attack and countermeasures.
In 29th USENIX Security Symposium (USENIX Security 20), pp. 877–894, 2020.

C Szegedy. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part XI 16, pp. 776–794. Springer, 2020.

Florian Tramer, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks
to adversarial example defenses. Advances in neural information processing systems, 33:1633–
1645, 2020.

James Tu, Mengye Ren, Sivabalan Manivasagam, Ming Liang, Bin Yang, Richard Du, Frank Cheng,
and Raquel Urtasun. Physically realizable adversarial examples for lidar object detection. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 13716–
13725, 2020.

Fatemeh Vakhshiteh, Raghavendra Ramachandra, and Ahmad Nickabadi. Threat of adversarial
attacks on face recognition: A comprehensive survey. arXiv preprint arXiv:2007.11709, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yajie Wang, Haoran Lv, Xiaohui Kuang, Gang Zhao, Yu-an Tan, Quanxin Zhang, and Jingjing Hu.
Towards a physical-world adversarial patch for blinding object detection models. Information
Sciences, 556:459–471, 2021a.

Yisen Wang, Difan Zou, Jinfeng Yi, James Bailey, Xingjun Ma, and Quanquan Gu. Improving
adversarial robustness requires revisiting misclassified examples. In International conference on
learning representations, 2019.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. arXiv preprint arXiv:2112.08304, 2021b.

Xingxing Wei, Siyuan Liang, Ning Chen, and Xiaochun Cao. Transferable adversarial attacks for
image and video object detection. arXiv preprint arXiv:1811.12641, 2018.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Xilie Xu, Jingfeng Zhang, Feng Liu, Masashi Sugiyama, and Mohan S Kankanhalli. Enhancing
adversarial contrastive learning via adversarial invariant regularization. Advances in Neural In-
formation Processing Systems, 36, 2024.

Chengyuan Yao, Pavol Bielik, Petar Tsankov, and Martin Vechev. Automated discovery of adaptive
attacks on adversarial defenses. Advances in Neural Information Processing Systems, 34:26858–
26870, 2021.

Chaoning Zhang, Kang Zhang, Chenshuang Zhang, Axi Niu, Jiu Feng, Chang D Yoo, and In So
Kweon. Decoupled adversarial contrastive learning for self-supervised adversarial robustness. In
European Conference on Computer Vision, pp. 725–742. Springer, 2022.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael Jordan.
Theoretically principled trade-off between robustness and accuracy. In International conference
on machine learning, pp. 7472–7482. PMLR, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 INTERACTION BETWEEN STRATEGY AND TARGET NETWORKS IN ASTRA

Figure 8: Strategy and Target Network interaction during ASTrA pretraining phase.

Figure 8 illustrates the ASTrA framework involving an adaptive attack strategy network interacting
with a target network in an adversarial training setup. The framework focuses on dynamically craft-
ing adversarial examples and aligning the clean and adversarial representations for robust learning,
explained in the following steps.

1. The strategy network generates probability distributions for each perturbation parameter
from which iteration (i), epsilon (e), and step size (s) are sampled. The perturbation (at-
tack) parameters are sampled according to a conditional probability distribution, given by
p(a|x, θ).

2. These perturbed parameters (i, e, s) are used to craft adversarial examples from the input
images for target network. The target network feed-forward both clean and adversarially
perturbed images and computes three loss terms - (a) contrastive loss on clean image views
(LossNT CLEAN), (b) contrastive loss on perturbed views (LossNT ADV), and (c) contrastive
loss on clean to perturbed views (LossNT MIXED) and back-propagated to target network.

3. The clean loss (a) and adversarial loss (b) terms are used to compute reward for strategy net-
work. This computed reward is fed to REINFORCE (Williams (1992)) algorithm to com-
pute gradients required to update the strategy network. The sampling process a ∼ p(a|x; θ)
is not differentiable with respect to θ, making traditional gradient-based optimization meth-
ods inapplicable. The REINFORCE algorithm is specifically designed to handle such situ-
ations by using the log-derivative trick, enabling gradient-based optimization even when
sampling is involved. The objective of the strategy network is to maximize the expected
reward J(θ), which is defined as:

J(θ) = Ex∼D

[
Ea∼p(a|x;θ) [Rstrategy(x, a; θ)]

]
. (8)

To compute the gradient of J(θ) with respect to θ, we use the property of probability
distributions:

∇θp(a|x; θ) = p(a|x; θ)∇θ log p(a|x; θ). (9)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

The gradient of J(θ) is expanded as:

∇θJ(θ) = Ex∼D

[
∇θEa∼p(a|x;θ) [Rstrategy(x, a; θ)]

]
. (10)

Using the log-derivative trick, the inner gradient is expressed as:

∇θEa∼p(a|x;θ) [Rstrategy] = Ea∼p(a|x;θ) [Rstrategy∇θ log p(a|x; θ)] . (11)

Substituting back, the gradient of J(θ) becomes:

∇θJ(θ) = Ex∼D

[
Ea∼p(a|x;θ) [Rstrategy(x, a; θ)∇θ log p(a|x; θ)]

]
. (12)

The reward Rstrategy scales the gradient update, encouraging the strategy network to favor
attack parameters a that yield higher rewards. This ensures that the strategy network learns
attack strategies that balance adversarial robustness and generalization.

A.1.1 EFFECT OF STRATEGY NETWORK ON TRAINING STABILITY

The incorporation of the strategy network makes the training process adaptive and stable by dynami-
cally adjusting attack parameters at the instance level, leveraging the learning dynamics of the target
network at each step through observations of standard and adversarial loss terms. This stability is
evident based on the smoothness of the loss landscape visualization in Figure 11. Additionally, at-
tack parameter bin configurations identified empirically for CIFAR-10 are successfully reused for
STL-10 and ImageNet100, demonstrating that the model is not sensitive to initial bin configurations
and consistently adapts toward convergence.

A.1.2 ROLE OF LCLEAN AND LADV

The reward function Rstrategy incorporates both Ladv and Lclean:

Rstrategy(x, a; θ) = αLadv(x, a; θ)− γLclean(x,wfixed). (13)

Here:

• Ladv depends on θ, as adversarial examples xadv are crafted using attack parameters a,
which are influenced by θ.

• Lclean does not depend on θ, as it is computed using clean data and the fixed target network
wfixed.

Substituting Rstrategy into the gradient:

∇θJ(θ) = Ex∼D

[
Ea∼p(a|x;θ) [αLadv(x, a; θ)∇θ log p(a|x; θ)]

]
− Ex∼D

[
Ea∼p(a|x;θ) [γLclean(x,wfixed)∇θ log p(a|x; θ)]

]
.

(14)

A.1.3 EFFECT OF LCLEAN

While Lclean does not directly depend on θ, it indirectly affects the updates to θ by scaling the reward
Rstrategy:

• Large Lclean reduces Rstrategy, discouraging attack strategies that degrade clean performance.
• Small Lclean increases Rstrategy, reinforcing attack strategies that preserve generalization.

This ensures that the strategy network learns attack parameters a that balance robustness (via αLadv)
and generalization (via γLclean).

A.1.4 FINAL GRADIENT EXPRESSION

The final gradient is:

∇θJ(θ) = Ex∼D

[
Ea∼p(a|x;θ) [αLadv(x, a; θ)∇θ log p(a|x; θ)]

]
− Ex∼D

[
Ea∼p(a|x;θ) [γLclean(x,wfixed)∇θ log p(a|x; θ)]

]
.

(15)

This ensures the updates to θ produce controlled attack strategies that improve adversarial robustness
while maintaining clean accuracy.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.2 ASTRA ALGORITHM

Below are the details of the proposed ASTrA algorithm:

Algorithm 1 ASTrA Algorithm

Require: Training dataset D, target model fw, strategy model sθ
1: for each epoch do
2: for each batch B in D do
3: x← augmented views of images in B
4: if update interval reached then
5: Set fw to eval mode, sθ to train mode
6: a← sθ(x) ▷ Sample attack parameters
7: xadv ← PGD(fw, x, a) ▷ Generate adversarial examples
8: r ← ComputeReward(fw, x, xadv)
9: REINFORCEUPDATE(sθ, a, r, x)

10: end if
11: Set fw to train mode, sθ to eval mode
12: a← sθ(x) ▷ Select attack parameters
13: xadv ← PGD(fw, x, a) ▷ Generate adversarial examples
14: z ← fw(x, ‘normal’) ▷ Clean features
15: zadv ← fw(xadv, ‘pgd’) ▷ Adversarial features
16: Lclean ← NT-Xent(z) ▷ Contrastive loss on clean samples
17: Ladv ← NT-Xent(zadv) ▷ Contrastive loss on adversarial samples
18: Lsim ← NT-Xent([z, zadv]) ▷ Similarity loss
19: L ← (Lclean + Ladv)/2 + λLsim

20: Compute gradients of L with respect to fw
21: Update fw parameters using computed gradients
22: end for
23: end for

Algorithm 2 ComputeReward Function

1: function COMPUTEREWARD(fw, x, xadv)
2: z ← fw(x, ‘normal’) ▷ Clean features
3: zadv ← fw(xadv, ‘pgd’) ▷ Adversarial features
4: Lclean ← NT-Xent(z)
5: Ladv ← NT-Xent(zadv)
6: Lsim ← NT-Xent([z, zadv])
7: r ← w1Ladv − w2Lclean

8: return r
9: end function

Algorithm 3 REINFORCE Update

1: function REINFORCEUPDATE(sθ, a, r, x)
2: Compute log probability: log π ← log sθ(a|x)
3: Compute gradient: ∇θJ(θ)← r∇θ log π
4: Update parameters: θ ← θ + α∇θJ(θ)
5: end function

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 4 PGD Attack

1: Initialize δ ∼ Uniform(−ϵ, ϵ)
2: for k = 1 to K do
3: Compute gradient: g ← ∇δLadv(fw(x+ δ))
4: Update perturbation: δ ← δ + α · sign(g)
5: Project perturbation: δ ← clip(δ,−ϵ, ϵ)
6: Ensure valid pixel range: xadv ← clip(x+ δ, 0, 1)
7: end for

A.3 CLEAN AND ADVERSARIAL DISTRIBUTION SAMPLE ALIGNMENT - ROCL VS ASTRA

As shown in Fig. 9, RoCL and ASTrA differ in how they align clean and perturbed distributions
using contrastive loss. RoCL creates an augmented view from the original image, then perturbs it
to generate an adversarial view. The contrastive loss is applied between the original image, clean
augmented view, and adversarial view, resulting in a less structured alignment with only one ad-
versarial view involved. In contrast, ASTrA generates two augmented views, each paired with its

Figure 9: clean and adversarial distribution alignment approach is compared between RoCL Kim
et al. (2020) and ASTrA. For clarity, only clean to adversarial contrastive loss is shown.

corresponding adversarial view. The contrastive loss is computed between each clean view and its
adversarial counterpart, enforcing a more direct and balanced alignment. This ”mixed contrastive”
objective in ASTrA enhances the alignment between clean and perturbed samples, improving ro-
bustness without compromising generalization to clean data. ASTrA’s approach is more effective
due to this direct pairing, allowing the model to adapt better to diverse adversarial scenarios and
generalize more effectively than RoCL’s single perturbation method.

A.4 EXTENDED ANALYSIS AND ABLATIONS

A.4.1 COMPUTATION ANALYSIS OF ASTRA

The Table 7 highlights the computation analysis of onboarding different strategy networks within
the ASTrA framework. The results show that adding a strategy network introduces a slight increase
in computation time. For instance, the compute time increases from 20.5 hours for the ACL baseline
(which lacks a strategy network) to 23.4 hours for ResNet18, which is the largest architecture in this
analysis. This represents an additional compute overhead of less than 3 hours. For smaller networks
such as MobileNetV1 or CustomCNN, the increase in compute time is even smaller, around 1 to 1.5
hours. These results indicate that the computational overhead introduced by the strategy network
remains minimal and manageable in all cases.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Ablation (SLF evaluation) on Strategy network choices. Compute-robustness trade-off.
Training conducted on single H100 GPU. ASTrA tends network agnostic for strategy network and
even with smaller architectures it outperform ACL Jiang et al. (2020) and choices of networks like
ResNet10, EfficientNet-B0, and DenseNet-121 achieves SoTA.

Method Strategy Network/Parameters AA RA SA Compute Time (hrs.)
ACL - 37.62 40.02 79.32 20.50
ASTrA CustomCNN (5-layers)/2.5M 45.22 53.12 80.02 21.10
ASTrA MobileNetV1/4.2M 45.38 53.35 80.21 21.60
ASTrA ResNet10/5.1M 45.80 53.63 80.32 21.75
ASTrA EfficientNet-B0/5.3M 45.94 53.86 80.40 21.75
ASTrA DenseNet-121/7.98M 46.05 53.88 80.48 22.60
ASTrA ResNet18/11.7M 46.40 54.02 80.54 23.40

Referring Table 7, ASTrA proves to be network-agnostic, achieving consistent performance im-
provements across both parametric and non-parametric strategy network choices. Regardless of the
architecture, ASTrA outperforms the ACL baseline (Jiang et al. (2020)), showcasing its versatil-
ity and robustness. Smaller, lightweight architectures such as MobileNetV1 and CustomCNN still
achieve competitive performance, while larger architectures such as ResNet10, EfficientNet-B0, and
DenseNet-121 improve state-of-the-art results.

The results also reveal a positive trend where increasing the complexity of the strategy network
leads to incremental gains in adversarial and robust accuracy metrics. This demonstrates ASTrA’s
ability to leverage the capacity of various strategy networks effectively, reinforcing its robustness
and generalization capabilities while keeping computational overhead minimal.

A.4.2 COMPARISON OF ASTRA++ WITH METHODS HAVING POST-PROCESSING VERSIONS

The DYNACL++ (Luo et al. (2023)) and DYNACL-AIR++ (Xu et al. (2024)) methods extend two-
stage self-supervised adversarial training by introducing a third post-processing stage to enhance
representation robustness. This additional stage involves generating pseudo-labels using clustering
on pretraining embeddings, followed by Linear Probing and Adversarial Full Finetuning (LP-AFF
Kumar et al.). ASTrA++ which is longer pretraining (2000 epochs) version of ASTrA focuses
solely on extended pretraining to improve performance without relying on pseudo-labels or addi-
tional training phases. We compare ASTrA++ with DYNACL++ and DYNACL-AIR++ in Table 8.
Performance of DYNACL-AIR method is compared with ASTrA and other methods and incorpo-
rated in respective tables in updated manuscript.

Table 8 compares ASTrA++ with DYNACL++ and DYNACL-AIR++ on CIFAR-10, CIFAR-100,
and STL-10 under SLF and AFF evaluation protocols. Despite being limited to a two-stage training
framework, ASTrA++ demonstrates improved performance in AFF metrics across all datasets, high-
lighting the efficacy of extended pretraining in achieving robust and generalized representations. For
SLF evaluation, ASTrA++ achieves performance comparable to the state-of-the-art (SoTA), demon-
strating its ability to match or exceed the robustness of methods that incorporate additional post-
processing stages.

ASTrA++ does exhibit some limitations, particularly in SLF results, where the improvements are
less effective compared to its gains in AFF metrics. This suggests that while extended pretraining is
effective for adversarial robustness, it may not fully address the requirements for improving standard
linear evaluation scenarios. Future investigations could explore integrating post-processing stages,
such as pseudo-label-based adversarial finetuning, to further enhance ASTrA++’s performance in
SLF settings while retaining its strengths in adversarial robustness.

ASTrA can be extended with post-processing used by DYNACL++ (Luo et al. (2023)) and
DYNACL-AIR++ (Xu et al. (2024)) however it may considered improved version of ASTrA which
violets the submission policy.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 8: SLF and AFF evaluation on CIFAR10, CIFAR100, and STL10. ++ in DYNACL++ and
DYNACL-AIR++ indicates additional post-processing phase which uses clustering following by
Pseudo Adversarial Training. ASTrA++ denotes longer pre-training for 2000 epochs.

Dataset Pre-training SLF AFF
AA (%) SA (%) AA (%) SA (%)

CIFAR-10
DynACL++ 46.46 79.81 50.31 81.94
DynACL-AIR++ 46.99 81.80 50.65 82.36
ASTrA++ 46.92 80.46 50.84 83.72

CIFAR-100
DynACL++ 20.07 52.26 25.21 57.30
DynACL-AIR++ 20.61 53.93 25.48 57.57
ASTrA++ 21.95 53.58 26.45 60.25

STL-10
DynACL++ 47.21 70.93 41.84 72.36
DynACL-AIR++ 47.90 71.44 44.09 72.42
ASTrA++ 48.21 78.72 50.15 79.70

A.4.3 LEARNING RATE OF STRATEGY NETWORK

Table 9 shows the critical role of the learning rate in optimizing ASTrA’s strategy network during the
pretraining stage, directly influencing the effectiveness of the adaptive attack strategy. The perfor-
mance across CIFAR10 and STL10 reveals that low learning rates (0.001, 0.01) hinder the strategy
network’s ability to explore and exploit optimal adversarial attacks, leading to under-performance in
both AA and RA.

Table 9: Effect of learning rates for the Strategy network of ASTrA. Adversarial full finetuning is
performed.

Learning Rate CIFAR10 STL10
AA RA SA AA RA SA

0.001 47.65 49.86 79.50 46.30 49.80 77.62
0.01 49.36 52.54 81.20 48.15 51.28 79.30
0.1 50.84 54.90 82.68 49.65 52.40 80.20
0.5 50.20 54.10 82.10 49.10 51.95 79.85

The sharp performance gains at a learning rate of 0.1 indicate that this value strikes the ideal bal-
ance between exploration and exploitation within the adversarial space, allowing ASTrA’s strategy
network to generate more adaptive and potent perturbations. At 0.5, the marginal decline in per-
formance suggests that too high a learning rate disrupts the stability of adaptive attacks, potentially
leading to overly aggressive perturbations that compromise alignment with the clean distribution.
This analysis highlights the role of learning rate in achieving optimal adaptive attack strategies for
ASTrA’s towards a balanced optimization of adversarial robustness and generalization.

A.4.4 PROJECTOR HEAD OF TARGET NETWORK

The projector head ablation results (refer Fig. 10) provide valuable insights into the impact of
architectural choices for the target network during ASTrA’s pretraining. The comparison between
a smaller projection head (512, 512) and a Bottleneck configuration (2048, 512) across CIFAR10,
CIFAR100, and STL10 demonstrates that the Bottleneck consistently outperforms the smaller head
across AA, RA, and SA metrics.

The performance improvement of the Bottleneck can be attributed to its larger latent dimensionality,
which enables richer representation learning during adversarial self-supervised pretraining, lead-
ing to enhanced adversarial robustness and generalization on clean data. These results emphasize
the importance of projection head capacity in optimizing adversarial and standard accuracy during
pretraining.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 10: Bottleneck projector head (2014, 512) shows improvement over ACL’s project head (512,
512).

A.4.5 BATCH UPDATES FREQUENCY OF STRATEGY NETWORK

Table 10 illustrates the impact of the frequency of strategy network updates relative to target network
updates on performance metrics. The frequency parameter controls how often the strategy network
is updated relative to the target network. Specifically, the strategy network is updated every time
the target network has been updated a certain number of times, as dictated by the frequency value.
From the table, it is clear that a frequency of 10 leads to the best performance across all metrics

Table 10: Effect of batch update frequency for the Strategy network of ASTrA. Adversarial full
finetuning is performed.

Frequency CIFAR10 STL10
AA RA SA AA RA SA

1 47.70 50.10 79.90 46.80 48.25 78.44
5 50.34 54.58 82.12 49.25 52.02 79.86
10 50.84 54.90 82.68 49.65 52.40 80.20
20 50.50 54.65 82.40 49.50 52.05 80.00
50 50.45 54.62 82.35 49.45 52.22 80.05

(AA, RA, SA), indicating that this update interval strikes the right balance between exploration
and exploitation in the strategy network. This frequency allows the strategy model to maintain a
balance between exploring new adversarial strategies and stabilizing around effective attacks without
reacting too quickly to small changes in the target network. Overly frequent updates may cause the
strategy network to overfit to short-term changes in the target network, leading to less effective
adversarial attacks overall. The adversarial examples generated by the network are not challenging
enough for the target network to generalise better. The frequent changing of the attack strategies,
due to frequent strategy network updates, provides less chance for the target network to adapt to the
attacks, leading to a drop in performance. Conversely, updating the strategy network too frequently
(e.g., at a frequency of 20 or 50) leads to a slight drop in performance, particularly in AA and
RA. Although these settings still perform close to the optimal, the slight decrease suggests that less
frequent updates may hinder the strategy network’s ability to adapt rapidly enough to evolving target
network behavior.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.4.6 DISCRETIZATION OF THE ATTACK PARAMETERS

To find the suitable granularity of attack parameter bins on downstream performance, we earlier
conducted experiments by varying the discretization levels of perturbation ϵ, PGD iterations, and
step size. The ablations are in Tables 11, 12, and 13 with following analysis.

Table 11: Ablation (SLF evaluation) on discretization of the attack parameter - perturbation.

Approach Bins (Perturbation) AA RA SA
small-bins [3, 7, 11, 15] 38.10 41.00 79.30
small-bins [3, 5, 7, 9, 11, 13, 15] 40.18 42.12 79.62
original [3, 4, 5, 6, 7, 8...., 13, 14, 15] 46.40 54.02 80.54
large-bins [3, 3.5, 4, 4.5..., 14, 14.5, 15] 44.88 52.05 79.38
large-bins + 2k epochs [3, 3.5, 4, 4.5..., 14, 14.5, 15] 46.34 54.00 80.36

Table 12: Ablation (SLF evaluation) on discretization of the attack parameter - step size.

Approach Bins (Step-size) AA RA SA
small-bins [1, 3, 5] 37.90 40.22 79.55
original [1, 2, 3, 4, 5, 6] 46.40 54.02 80.54
large-bins [1, 1.5, 2, 2.5, .., 5.5, 6] 45.02 53.06 79.12
large-bins + 2k epochs [1, 1.5, 2, 2.5, .., 5.5, 6] 46.37 53.92 80.20

Effect of Coarser Discretization (Smaller Bins) Using coarser bins for attack parameters simpli-
fies the action space for the strategy network but limits its ability to find the most effective attack
strengths. As shown in the tables, when we use smaller bins (e.g., [3, 7, 11, 15] for perturbation ϵ, re-
fer Table 11), there is a noticeable decrease in adversarial accuracy (AA) and robust accuracy (RA).
Specifically, AA drops from 46.40% (original bins) to 38.10% with coarser bins for ϵ, though better
than baseline ACL Jiang et al. (2020). This confirms that a limited set of attack parameter choices
hampers the strategy network’s capacity to adaptively challenge the model, leading to sub-optimal
robustness.

Table 13: Ablation (SLF evaluation) on discretization of the attack parameter - PGD iterations.

Approach Bins (PGD iterations) AA RA SA
small-bins [3, 7, 11, 14] 38.20 40.80 79.22
small-bins [3, 5, 7, 9, 11, 13] 39.80 41.10 79.80
original [3, 4, 5, 6, 7, 8...., 13, 14] 46.40 54.02 80.54

Effect of Finer Discretization (Larger Bins) Introducing finer bins increases the granularity of
attack parameter choices, potentially allowing the strategy network to find more optimal strategies.
However, as observed, the performance gains with larger bins are marginal compared to the original
settings. For instance, with finer bins for step size (Table 12), AA improves slightly to 45.02%, but
does not surpass the original setting. Moreover, the computational complexity increases due to the
expanded action space, which may require longer training to converge. Notably, when we extend
the pretraining to 2000 epochs with larger bins, the model attains results comparable to the original
settings (e.g., AA of 46.34% vs. 46.40% for perturbation in Table 11), indicating that longer training
can compensate for the increased complexity.

Empirical Findings and Transferability Through these experiments, we found that the original bin
settings offer a good balance between performance and efficiency. The optimal bin settings for all
three attack parameters were determined empirically on CIFAR10 and successfully applied to other
datasets without significant performance degradation. This suggests that the optimal parameters are
transferable and not highly sensitive to dataset-specific characteristics, enhancing the practicality of
our method across different domains.

Limitations on Bin Approach While the empirically found parameters demonstrate transferability,
ASTrA currently lacks a proven foundation for selecting optimal bin ranges. Dynamically adapting
the bins for attack parameters during training based on learning dynamics of target models is one

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

of the possibility. Incorporating adaptive binning strategies for parameter selection could further
improve performance and efficiency. As a plug-and-play framework, ASTrA can be extended in
future work to include these capabilities, potentially enhancing its adaptability and robustness.

A.4.7 EXPLANATION ON EXPLORATION-EXPLOITATION VISUALIZATION

The transition from exploration to exploitation in ASTrA is caused by the Strategy Network’s adap-
tive learning process as it updates its policy to maximize expected rewards using the REINFORCE
algorithm. There is no explicit endpoint for exploration; instead, as the network learns which at-
tack strategies are most effective, it gradually increases the probability of selecting those strategies,
naturally shifting toward exploitation.

As the Strategy Network continuously adapts to gradients from the Target Network, there is no
definitive boundary where exploration ends, and exploitation begins. The delineation is purely il-
lustrative, serving to emphasize the conceptual transition. Post this point, the model’s selection
behavior becomes increasingly exploitative, predominantly favoring specific parameter values opti-
mized for Target Model training. This concept is further visualized in Figure 11, where the parameter
values are visualized discretely across training epochs. The figure clearly demonstrates a significant
increase in the proportion of samples selecting optimal parameter values as the model progresses,
highlighting the transition to the exploitation phase.

Figure 11: Exploration-Exploitation alternate visualization for Fig 6.

A.5 LOSS LANDSCAPE ANALYSIS

To further support the effectiveness of ASTrA’s adaptive strategy, the loss landscape comparison,
presented in Appendix (Figure 12), demonstrates that ASTrA achieves a flatter loss landscape com-
pared to ACL. This flatter landscape indicates better generalization and robustness, showing how
ASTrA not only improves adversarial accuracy but also maintains high performance on clean data.
This adaptability and dynamic optimization make ASTrA a more effective solution than static or ran-
domly exploring strategies, demonstrating its ability to find optimal attack policies without relying
on brute-force methods.

A.6 ASTRA AND ADVERSARIAL CURRICULUM LEARNING

ASTrA shares a fundamental similarity with adversarial curriculum learning (A-CL) approaches
such as SAT (Sitawarin et al. (2021)) and CAT (Cai et al. (2018)), in that it seeks to improve adver-
sarial training by dynamically adjusting the strength of adversarial examples during training. Both
ASTrA and A-CL approaches aim to enhance model robustness while maintaining generalization
by optimizing the process of adversarial example generation over time. The motivation behind AS-
TrA partially overlaps with A-CL. While A-CL methods focus on incrementally increasing attack
difficulty (weaker attacks to stronger attacks) to prevent catastrophic forgetting and achieve smooth
transitions, ASTrA is motivated by creating an autonomous and adaptive attack framework to estab-
lish instance level attack parameters based on learning dynamics of network itself.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 12: ASTrA vs ACL Loss landscape comparison.

How ASTrA differs from adversarial curriculum approaches? - ASTrA’s reliance on adaptive,
autonomous parameter optimization and its self-supervised foundation mark a significant departure
from curriculum-based methods. Following are some important observations.

• Attack mechanism: A-CL approaches rely on a predefined or gradually increasing curricu-
lum for adversarial attack strength, which is often heuristic-based whereas ASTrA employs
a strategy network guided by reinforcement learning to autonomously adjust attack param-
eters (e.g., iteration, epsilon, step size). This eliminates the need for predefined rules or
heuristics, making ASTrA more adaptable to diverse datasets and training dynamics.

• Optimization: ASTrA introduces a reward baed optimization that evaluates the balance
between adversarial loss and clean loss, enabling the strategy network to align clean and
adversarial distributions effectively. A-CL methods do not typically incorporate such ex-
plicit reward-based optimization for attack strategies.

• Learning approach: ASTrA designed for a self-supervised setting, more specifically self-
supervised adversarial training (self-AT), making it suitable for learning robust represen-
tations against adversarial attacks utilizing unlabeled data through its contrastive learning
framework. Other side, A-CL methods are designed for supervised settings, where label
information often guides the curriculum.

A.7 CODE REPRODUCIBILITY

The source code of ASTrA is made available at https://anonymous.4open.science/r/
ASTrA---Adversarial-Self-Supervised-Training-with-Adaptive-Attacks-B4C4
and results can be reproduced with PyTorch 2.0 on CUDA 12.x version.

23

https://anonymous.4open.science/r/ASTrA---Adversarial-Self-Supervised-Training-with-Adaptive-Attacks-B4C4
https://anonymous.4open.science/r/ASTrA---Adversarial-Self-Supervised-Training-with-Adaptive-Attacks-B4C4

	Introduction
	Methodology
	Pipeline of the Proposed Framework
	The Reward for the Strategy Network
	The Loss Terms for the Target Network
	Novel Optimization Formulation of ASTrA using REINFORCE

	Experiments
	Results and Analysis
	Robustness on multiple benchmarks
	Robustness on different evaluation protocols
	ASTrA's scalability and ablations on contributed components
	ASTrA as Plug-N-Play framework
	ASTrA under semi-supervised settings
	ASTrA on Robust Overfitting
	ASTrA on finding optimal attack parameters
	Comparing of ASTrA's Adaptive with Random and Handcrafted Attacks

	Conclusion
	Reproducibility Statement
	Appendix
	Interaction between Strategy and Target Networks in ASTrA
	Effect of strategy network on training stability
	Role of Lclean and Ladv
	Effect of Lclean
	Final Gradient Expression

	ASTrA Algorithm
	clean and adversarial distribution Sample alignment - RoCL vs ASTrA
	Extended Analysis and Ablations
	Computation analysis of ASTrA
	Comparison of ASTrA++ with methods having post-processing versions
	Learning rate of Strategy Network
	Projector head of Target Network
	Batch updates frequency of Strategy Network
	Discretization of the attack parameters
	Explanation on exploration-exploitation visualization

	Loss Landscape Analysis
	ASTrA and Adversarial Curriculum Learning
	Code Reproducibility

