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Abstract

Evaluating foundation models for crystallo-
graphic reasoning requires benchmarks that
isolate generalization behavior while enforcing
physical constraints. This work introduces,
xCrysAlloys, a multiscale multicrystal dataset
with two physically grounded evaluation
protocols to stress-test multimodal generative
models. The Spatial-Exclusion benchmark
withholds all supercells of a given radius from
a diverse dataset, enabling controlled assess-
ments of spatial interpolation and extrapolation.
The Compositional-Exclusion benchmark
omits all samples of a specific chemical
composition, probing generalization across sto-
ichiometries. Nine vision–language foundation
models are prompted with crystallographic im-
ages and textual context to generate structural
annotations. Responses are evaluated via (i)
relative errors in lattice parameters and density,
(ii) a physics-consistency index penalizing
volumetric violations, and (iii) a hallucination
score capturing geometric outliers and invalid
space-group predictions. These benchmarks
establish a reproducible, physically informed
framework for assessing generalization,
consistency, and reliability in large-scale
multimodal models. Dataset and implemen-
tation are available at https://github.
com/KurbanIntelligenceLab/
StressTestingMMFMinCR.

1 Introduction

Crystalline solids underpin a wide range of modern
technologies. Their periodic atomic arrangements
determine the band gaps of semiconductors, the
ion-transport channels in battery electrodes, and the
phonon spectra that govern thermal conductivity
in microelectronics (Wyckoff, 1963a; Bhadeshia,
2001). Even a single misassigned lattice parameter
can cascade through simulation pipelines, distort-
ing derived physical models and impeding mate-
rials discovery (Levi and Kotrla, 1997; Lubarda,
2003). Structural resolution has traditionally re-

lied on labor-intensive diffraction techniques or
exhaustive structure enumeration followed by den-
sity functional theory (DFT) relaxation (Kohn and
Sham, 1965). Synthesis methods such as hydrother-
mal growth (Baruah and Dutta, 2009), chemi-
cal vapor deposition (Carlsson and Martin, 2010),
and high-pressure processing (Bertucco and Vetter,
2001) further introduce domain-specific variability
by accessing distinct thermodynamic regimes and
defect topologies.

Recent progress in generative modeling, partic-
ularly autoregressive language models capable of
emitting crystallographic information files (Hall
et al., 1991), enables rapid lattice generation with
chemically plausible compositions. However, ex-
isting materials databases—such as AFLOW (Cur-
tarolo et al., 2012), the Materials Project (Jain et al.,
2013), and OQMD (Saal et al., 2013)—remain
predominantly unimodal and typically lack expert-
written, human-interpretable descriptions of crystal
chemistry. This absence of multimodality impedes
systematic evaluation of large vision–language
models and language models in crystallographic
reasoning. Current scientific multimodal bench-
marks are limited in scale, visually simplistic, and
textually sparse, constraining analysis of factual
accuracy, hallucination patterns, and compliance
with physical laws.

To overcome these limitations, xCrysAlloys, a
new multimodal dataset of crystalline alloy mate-
rials is presented, accompanied by two physically
grounded benchmarking protocols. The spatial-
exclusion (SE) benchmark withholds supercells of
a specific radius from the set {Rk}10k=7, enabling
controlled evaluation of spatial interpolation (inte-
rior radii) and extrapolation (boundary radii). In
parallel, the compositional-exclusion (CE) bench-
mark withholds all samples corresponding to a
target chemical composition, assessing general-
ization across compositional space. State-of-the-
art foundation models are evaluated under both
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benchmarks by generating structural annotations
from crystallographic images and textual prompts.
Model outputs are parsed into a structured MA-
TERIAL PROPERTIES schema and assessed for ge-
ometric accuracy, consistency with physical con-
straints, and hallucination risk. These benchmarks
provide a reproducible, domain-informed frame-
work for measuring generalization and reliability
in large-scale generative models, and contribute to
emerging efforts to probe, refine, and safely deploy
scientific knowledge at scale.

The remainder of the manuscript is structured as
follows. Section 2 surveys the theoretical founda-
tions and related literature. Section 3 details the
methodological framework. Section 4 describes
the dataset construction, evaluation metrics, and
experimental procedures. Section 5 presents the
empirical findings. Section 6 discusses the study’s
limitations, and Section 7 concludes with final ob-
servations.

2 Background

2.1 Materials Modeling: From
First-Principles to Data-Driven
Representations

Accurate modeling of crystal structures has long
relied on first-principles approaches such as DFT,
which provides access to ground-state electronic
properties, total energies, and atomic forces in pe-
riodic solids (Jensen and Wasserman, 2018). DFT
remains the cornerstone of computational materials
science, particularly for predicting band structures,
charge distributions, and structural relaxations.
However, its cubic scaling with respect to system
size poses significant limitations for large supercell
or high-throughput investigations (Hourahine et al.,
2007).

To mitigate this computational burden, semi-
empirical methods such as density functional tight
binding (DFTB) (Gaus et al., 2011) offer an effi-
cient approximation by expanding the Kohn–Sham
energy around a reference density. Modern en-
hancements, including Slater–Koster parameteriza-
tions and self-consistent charge corrections (Papa-
constantopoulos and Mehl, 2003), have extended
DFTB’s usability to heavier elements and time-
dependent simulations. Nevertheless, both DFT
and DFTB still require significant computational
resources, especially when scaling across diverse
compositions and large atomic configurations.

This work adopts an alternative route grounded

in experimental crystallographic data. Rather than
performing relaxation via electronic structure the-
ory, all unit cell parameters are sourced from peer-
reviewed literature. These serve as the foundation
for constructing supercells and nanocluster models
at varying spatial scales, enabling physically consis-
tent benchmarking without reliance on simulation-
based optimization.

2.2 Machine Learning and Multimodal
Foundation Models in Materials Science

In parallel to physics-based approaches, machine
learning has emerged as a powerful tool in ma-
terials discovery pipelines. Graph neural net-
works, such as SchNet (Schütt et al., 2017),
DimeNet (Gasteiger et al., 2020), and FAENet (Du-
val et al., 2023), operate directly on atomic graphs
to predict structural and functional properties with
increasing fidelity (Zheng et al., 2018; Rane, 2023;
Liao et al., 2023; Kurban et al., 2024). Despite their
promise, these models often suffer from limitations
related to data sparsity, distribution shift, and lack
of interpretability.

Recent efforts focus on unifying visual, textual,
and structural modalities via large multimodal mod-
els. Such systems—exemplified by ChemVLM (Li
et al., 2025), MatterChat (Tang et al., 2025), and
xChemAgents (Polat et al., 2025b)—are designed
to capture complex structure–property relation-
ships while supporting interactive reasoning tasks.
Supporting benchmarks such as ScienceQA (Lu
et al., 2022), MoleculeNet (Wu et al., 2018), and
ChemLit-QA (Wellawatte et al., 2024) provide
curated evaluation settings across physics, chem-
istry, and biology. In materials science specif-
ically, TDCM25 (Polat et al., 2025a) and LAB-
Bench (Laurent et al., 2024) advance this trend by
offering multimodal, multi-property datasets.

While these efforts signal progress, current mul-
timodal systems still exhibit limited capability in
physical reasoning, compositional generalization,
and geometric consistency (Miret and Krishnan,
2024). This motivates the development of targeted
benchmarks—such as the Spatial-Exclusion and
Compositional-Exclusion protocols introduced in
this study—to systematically probe the crystallo-
graphic reasoning capabilities of foundation mod-
els at multiple scales.



3 Methods

3.1 Crystal Structure Generation

This study utilizes experimental lattice parame-
ters from peer-reviewed literature to reconstruct
unit cell geometries for ten crystalline materials:
Ag, Au, CH3NH3PbI3, Fe2O3, MoS2, PbS, SnO2,
SrTiO3, TiO2, and ZnO. The reported crystallo-
graphic space groups and cell constants for each
compound are listed in Appendix A.1.

For each material, a large periodic supercell of di-
mensions 30×30×30 unit cells was constructed to
approximate a bulk crystalline environment. This
bulk structure served as the foundational source for
subsequent nanoscale structure generation. Spher-
ical nanoclusters were then carved from the cen-
ter of this supercell using a radial cutoff criterion:
atoms located within a prescribed distance from
the geometric center were retained, while atoms
beyond the cutoff were excluded.

To ensure systematic evaluation across mul-
tiple spatial scales, four target radii R ∈
{0.7, 0.8, 0.9, 1.0} nm—labeled R7–R10—were
selected. For each material, spherical nanoclus-
ters of increasing size were carved out based on
these radii. The resulting atom counts varied de-
pending on the underlying crystal structure and unit
cell complexity, typically yielding configurations
with tens to hundreds of atoms. This procedure pre-
serves the lattice symmetry and local coordination
environments while introducing surface-dominated
features relevant to nanoscale crystallographic rea-
soning.

3.2 Orientation Sampling and Rendering

To evaluate rotational invariance and visual robust-
ness, each supercell was rendered under ten unique
orientations. These include one canonical pose
and nine additional orientations sampled using the
Fibonacci-sphere algorithm (Stanley, 1975) to ap-
proximate uniform SO(3) coverage.

For each orientation, atomic configurations were
orthographically projected onto the xy-plane. Vi-
sualization was performed by mapping atoms to
Gaussian-blurred disks, scaled by covalent radius
and colored using a CPK-inspired palette. This
consistent rendering pipeline generated standard-
ized 2D crystallographic images (64× 64 px) that
serve as visual input to the foundation models.

3.3 Structured Text Annotation

Each atomic structure is paired with a textual anno-
tation formatted under a standardized MATERIAL

PROPERTIES schema. Annotations include scalar
properties—such as atom count, lattice parameters,
supercell volume, and bulk density—as well as
categorical attributes like space group and crystal
system.

To support robust evaluation, each annotation
also includes primitive-cell parameters, average
nearest-neighbor distance, and a descriptive para-
graph summarizing the crystal’s physical charac-
teristics. This structured multimodal representa-
tion enables the computation of multiple evaluation
metrics—including geometric error, physical-law
consistency, and hallucination rate—described in
Section 4.

4 Experiments

Dataset. xCrysAlloys, comprises ten crystalline
compounds of technological relevance: Ag, Au,
CH3NH3PbI3, Fe2O3, MoS2, PbS, SnO2, SrTiO3,
TiO2, and ZnO. For each material, spherical nan-
oclusters were extracted at four target radii R ∈
{0.7, 0.8, 0.9, 1.0} nm (R7–R10), yielding a multi-
scale corpus of 3D atomic structures.

Each nanocluster was rendered in ten orienta-
tions—one canonical and nine using Fibonacci-
sphere rotations—to ensure quasi-uniform cov-
erage over SO(3). This process generated over
400 crystallographic images per material—derived
from 4 radius levels and 10 orientations per struc-
ture (i.e., 4× 10 = 40 images per material–radius
combination)—paired with expert-curated annota-
tions conforming to the MATERIAL PROPERTIES

schema. Full details on structure generation are
provided in Section 3.1. An overview is shown in
Figure 1.

Evaluation Metrics. PERCENT ER-
ROR for each numerical property p ∈
{Natoms, Vcell, a, b, c, ρ, ap, bp, cp} is com-
puted as:

∆p [%] = 100 · |p
gen − pref |
|pref |

.

SPACE-GROUP MATCH is defined as:

ISG = 1
(
SGgen = SGref

)
.
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Figure 1: Gallery of atomic structures for each material in xCrysAlloys. The first column shows the primitive unit
cell for each material, while the subsequent columns display nanocluster structures with increasing radii (R7, R8,
R9, R10). Each structure is visualized in a canonical orientation, with the number of atoms indicated in each panel.
Materials are sorted by the atom count of their largest (R10) nanocluster.

Group statistics over n examples are:

µp =
1

n

n∑
i=1

%∆(i)
p ,

σp =

√√√√ 1

n− 1

n∑
i=1

(
%∆

(i)
p − µp

)2
,

CI95 = µp ± 1.96 · σp√
n
.

PREDICTION CONSISTENCY (ROTATIONS) is com-
puted by:

Cpred = 1−min

(
σr
µr

, 1

)
,

where µr and σr are the mean and standard devia-
tion of a rotation-specific error set.
PHYSICAL-LAW COMPLIANCE is evaluated for:

p ∈

{
ρ,

b

a
,
c

a
,

(
b

a

)
prim

,
( c

a

)
prim

}
,

using:

δp =
|pgen − pref |

pref
,

sp =


1.0 δp ≤ 0.10,

0.5 0.10 < δp ≤ 0.25,

0.0 δp > 0.25 or on error.

Aggregate score:

Sphys =

{
1
N

∑
p sp N > 0,

0.0 N = 0 or missing.

HALLUCINATION SCORE is defined for all the per-
cent error properties p. Let g = pgen and r = pref ,
then:

hp =


1.0 g ≤ 0 (non-physical),
1.0 |g−r|

|r| > 0.25,

0.5 0.10 < |g−r|
|r| ≤ 0.25,

0.0 |g−r|
|r| ≤ 0.10.

Let M be the number of valid checks:

Shall =


1
M

∑
p hp M > 0,

0.0 M = 0,

1.0 if input is None.

Additional metric definitions are provided in Ap-
pendix A.2.

Spatial-Exclusion Protocol. SE protocol mea-
sures extrapolation across length scales. For each
material mi with radius set Rmi , one radius R∗ ∈
Rmi is held out. The model context includes:∣∣Rmi \ {R∗}

∣∣× 5

examples (5 rotations for each of the remaining
radii). Each test instance uses only the Cartesian



coordinates of (mi, R∗, k), and the model must
generate predictions without seeing any data at R∗.
The overall SE error is:

ESE =
1

|M|
∑

i |Rmi | × 5

×
∑
i

∑
R∗∈Rmi

4∑
k=0

ℓ
(
ŷi,R∗,k, yi,R∗,k

)
,

where ℓ is the percent error loss.

Compositional-Exclusion Protocol. CE pro-
tocol assesses generalization across compositions.
For each material mi, all of its data are excluded
from the context. The context size becomes:( ∑

mj ̸=mi

|Rmj |
)
× 5

At test time, only the Cartesian coordinates of
(mi, R∗, k) are given. The transfer error is:

ECE =
1

|M|
∑

i |Rmi | × 5

×
∑
i

∑
R∗∈Rmi

4∑
k=0

ℓ
(
ỹi,R∗,k, yi,R∗,k

)
,

which captures model performance when required
to infer from disjoint compositions. Comparing
ECE and ESE helps isolate failure modes in spatial
vs. chemical generalization.

5 Results

SE Evaluation. In SE evaluation, each language
model was assigned the task of predicting a held-
out radius value (R7–R10) for a given crystalline
material, and its outputs for atom count (NA), cell
volume (V ), lattice constants (a, b, c), and den-
sity (ρ) were compared against reference structures.
Percent errors (%∆) were averaged across all mod-
els and five random 3D orientations per configura-
tion. As shown in Table 1(a), the resulting error
rates remain consistently high, particularly for key
physical properties—exceeding thresholds that ren-
der predictions scientifically unreliable.

These discrepancies reveal a fundamental limita-
tion: the models fail to internalize core geometric
and physical constraints that govern crystal struc-
tures. The inability to extrapolate structural prop-
erties across radii highlights the need for architec-
tural enhancements, including explicit domain con-
straints, physical priors, and robust error-correction
strategies to prevent hallucinated outputs and en-
force consistency in atomic-scale reasoning.

CE Evaluation. In the CE evaluation, each lan-
guage model received structural data from nine
materials at a fixed radius R and was tasked with
predicting NA, primitive cell lengths (ap, bp, cp),
and angles (αp, βp, γp) for a held-out material. To
ensure robustness, predictions were averaged over
five random 3D orientations and multiple model
variants. As reported in Table 1(b), percent errors
in cell lengths frequently exceed 15%, and atom
count errors surpass 30% for complex compounds
at smaller radii—suggesting a failure to generalize
geometric patterns across novel chemistries.

Additionally, absolute deviations in primitive
angles often exceed 5° and reach beyond 20° in
certain cases, reflecting substantial geometric in-
consistencies and a tendency to hallucinate phys-
ical details. These results reinforce that purely
data-driven training is insufficient for capturing
atomic-scale regularities. Embedding explicit do-
main constraints, structured knowledge priors, and
uncertainty-aware mechanisms is essential for en-
forcing physical plausibility and mitigating halluci-
nation in generative crystallography.

Knowledge Transfer. CE evaluation reveals that
current multimodal LLMs rely heavily on mem-
orized numeric templates rather than internalized
crystallographic principles. In the control setting
(SE), all eight models achieve low mean percent
errors (0.04 ≤ SE ≤ 0.18). However, when eval-
uated on withheld compounds, performance col-
lapses: the average error increases by several orders
of magnitude, and the transfer ratio T = CE/SE
surges from 2.2×103 to 2.3×104, with one model
diverging entirely (T = ∞).

A consistent failure pattern emerges across sys-
tems: six models record their largest relative er-
ror on the primitive-cell b-axis (%∆bp), while the
remainder fail on %∆ap. PbS is the most chal-
lenging composition, ranked worst by all models
except one, which instead fails on Fe2O3. The rock-
salt symmetry of PbS demands reconciliation be-
tween cubic crystal geometry and its serialized rep-
resentation; instead, most models generate incon-
sistent or arbitrary lattice parameters. These find-
ings underscore that in-distribution performance
does not imply genuine crystallographic reasoning.
Even modest compositional perturbations desta-
bilize the geometric priors learned by large-scale
vision–language models, revealing a brittle founda-
tion for generalization.



(a) Spatial-Exclusion (SE)
Material R7 R8 R9 R10

%∆NA %∆V %∆a %∆b %∆c %∆ρ %∆NA %∆V %∆a %∆b %∆c %∆ρ %∆NA %∆V %∆a %∆b %∆c %∆ρ %∆NA %∆V %∆a %∆b %∆c %∆ρ

Ag 26.53 46.74 9.21 13.00 21.32 14.00 10.21 14.59 5.11 5.98 8.12 13.63 7.31 15.00 7.88 8.52 10.05 7.96 7.48 9.64 5.65 5.07 9.81 8.36
Au 28.21 49.44 10.18 13.44 22.48 15.47 11.26 14.20 5.43 6.55 6.42 11.38 9.19 12.26 6.26 7.51 9.37 8.58 15.40 583.53 40.45 40.73 44.04 17.61
CH3NH3PbI3 47.34 44.81 16.10 10.85 12.31 34.38 16.83 20.28 7.45 7.82 7.08 20.85 17.58 27.85 8.52 9.34 8.51 22.72 13.45 19.11 8.94 8.44 9.11 128.49
Fe2O3 26.21 31.41 8.92 10.46 12.99 13.37 13.42 20.18 6.80 4.00 7.31 11.34 12.23 15.81 5.84 6.60 5.18 10.46 11.92 12.86 4.45 5.23 4.97 6.93
MoS2 15.48 27.46 9.21 9.17 22.55 10.29 16.80 14.31 5.84 5.53 11.78 16.10 9.59 17.76 7.18 7.67 7.22 9.63 5.69 19.28 5.63 7.79 10.97 19.16
PbS 17.54 29.71 9.07 10.78 11.75 39.28 18.66 23.90 6.16 7.38 11.53 19.91 12.90 22.60 9.69 8.78 9.62 28.27 12.27 14.45 7.25 5.99 8.00 13.85
SnO2 29.48 19.31 8.25 7.02 10.03 26.84 9.78 18.99 4.31 4.04 9.33 7.56 8.24 12.57 5.32 5.25 6.90 7.21 6.80 10.86 4.42 4.15 8.57 8.34
SrTiO3 30.59 55.64 15.59 16.05 15.82 17.99 37.42 20.10 7.12 7.77 8.25 38.31 20.30 22.56 7.87 7.19 7.56 17.26 21.58 21.49 6.84 6.80 7.36 16.79
TiO2 23.54 22.99 6.71 6.27 12.77 6.42 8.08 9.54 4.48 4.09 4.35 5.09 6.39 9.32 4.88 5.92 4.75 6.35 5.76 6.95 4.84 4.12 3.44 5.48
ZnO 13.11 16.66 10.47 9.28 12.22 21.97 12.74 12.42 4.96 5.23 6.98 11.04 5.66 9.63 5.05 6.01 4.59 8.50 8.91 19.57 6.21 7.49 8.89 20.74

(b) Compositional-Exclusion (CE)
Material R7 R8 R9 R10

%∆NA %∆ap %∆bp %∆cp |∆αp| |∆βp| |∆γp| %∆NA %∆ap %∆bp %∆cp |∆αp| |∆βp| |∆γp| %∆NA %∆ap %∆bp %∆cp |∆αp| |∆βp| |∆γp| %∆NA %∆ap %∆bp %∆cp |∆αp| |∆βp| |∆γp|
Ag 6.39 10.49 10.49 10.49 7.50 7.50 7.50 3.39 10.48 10.48 10.48 7.50 7.50 7.50 4.28 10.47 10.47 10.47 7.50 7.50 7.50 14.09 13.76 13.76 13.76 6.75 6.75 6.75
Au 3.58 17.79 17.79 17.79 6.00 6.00 6.00 4.89 15.63 15.63 15.63 4.50 4.50 4.50 3.95 16.76 16.76 16.76 4.50 4.50 4.50 12.64 16.65 16.65 16.65 4.50 4.50 4.50
CH3NH3PbI3 32.14 10.48 10.46 23.36 1.50 1.86 3.75 37.87 5.04 9.27 9.52 4.68 5.04 4.68 46.59 11.51 16.15 21.65 3.07 3.43 3.07 47.69 12.27 12.39 10.45 1.55 1.91 6.80
Fe2O3 18.42 2.95 1.10 8.65 1.50 1.50 5.25 27.82 2.79 2.77 9.70 0.75 0.78 5.25 26.00 3.46 3.46 11.38 1.50 1.50 6.00 19.60 5.01 3.36 10.34 1.74 1.74 6.24
MoS2 13.57 0.04 0.04 0.02 0.00 0.00 0.00 23.42 7.45 7.42 3.72 0.00 0.03 2.25 18.61 0.01 0.01 0.02 0.00 0.00 0.00 26.55 0.04 0.04 0.03 0.00 0.00 0.00
PbS 30.95 40.57 40.55 40.57 22.31 22.33 22.31 56.05 40.13 40.13 39.16 24.00 24.00 24.00 58.68 41.16 41.16 41.16 24.75 24.75 24.75 44.59 40.11 40.11 40.11 24.75 24.75 24.75
SnO2 19.17 4.71 0.78 3.08 0.00 0.00 0.00 19.79 5.67 1.73 13.80 0.00 0.01 0.75 31.33 2.42 0.40 1.59 0.00 0.00 0.00 16.14 2.36 0.39 1.55 0.00 0.00 0.75
SrTiO3 27.72 8.54 4.44 5.79 0.43 0.43 0.43 22.48 11.82 11.74 13.02 0.00 0.06 0.00 27.52 9.53 3.81 7.68 0.00 0.00 0.60 19.49 1.53 1.52 1.54 0.00 0.01 0.00
TiO2 21.02 51.78 18.81 55.18 0.00 0.00 1.50 19.81 51.80 19.62 47.97 0.00 0.01 2.25 32.06 51.96 19.12 53.58 0.00 0.00 1.50 20.75 53.15 21.12 49.80 0.00 0.00 3.75
ZnO 24.53 1.16 2.66 1.03 0.00 0.00 1.50 23.26 5.86 7.34 2.07 0.00 0.02 2.25 31.50 0.01 0.01 0.01 0.00 0.00 0.00 24.59 0.01 3.02 0.01 0.00 0.00 0.75

Table 1: Mean percent errors (%∆) for (a) the spatial-extension (SE) protocol—evaluating extrapolation to unseen
supercell radii—and (b) the compositional-exclusion (CE) protocol—evaluating cross-material transfer. Part (a)
reports errors on atom count NA, cell volume V , lattice parameters a, b, c, and density ρ; part (b) reports errors
on NA, primitive cell edges ap, bp, cp, and absolute angular deviations |∆αp|, |∆βp|, |∆γp|. Results are shown
for each material and radius value (R7–R10), averaged over five random rotations per configuration and across all
models. Lower values indicate better agreement with reference structures. These complementary metrics illustrate
the model’s capacity to capture atomic-scale patterns across variations in supercell size and material composition.
Contrasting SE and CE errors highlights whether performance limitations stem from radius extrapolation or cross-
material generalization. Colours indicate predictive difficulty: green marks the material with the lowest prediction
error (easiest to predict), while red marks the material with the highest prediction error (hardest to predict).

Model SE CE T × 103 Gmax × 10 tSE tCE

Claude Opus 4 (Anthropic) 0.06 0.91 2.17 3.04 12.86 13.91
Claude Sonnet 4 (Anthropic) 0.04 0.68 3.93 3.04 6.43 8.23
DeepSeek-Chat (DeepSeek) 0.09 1.79 14.16 6.47 24.97 13.71
GPT-4.1 Mini (OpenAI) 0.18 0.53 2.63 6.00 8.08 7.26
Gemini 2.5 Flash (Google) 0.05 1.32 21.38 3.04 3.06 5.00
Grok 2 (X.ai) 0.07 2.34 15.55 3.04 6.37 8.99
Grok 2 Vision (X.ai) 0.06 2.02 22.54 6.47 7.32 9.50
Llama-4 Maverick (Meta) 0.09 0.89 3.70 3.00 4.33 6.72
Mistral Medium 3 (Mistral AI) 0.05 0.92 11.24 3.00 14.78 15.45

Table 2: Transfer degradation analysis with mean per-
cent errors (%∆) for the SE and CE splits. T = CE/SE;
Gmax is the largest absolute error observed in any single
prediction. tSE and tCE represents the each models la-
tency in seconds for SE and CE task, respectively. Bold
indicates the top-performing model, while underlining
denotes the runner-up.

Correlation Shift. Table 3 reports the average er-
ror–error correlation coefficients for fourteen prop-
erty pairs under the SE and CE protocols, along
with their differences. Notably, the transition from
SE to CE increases the correlation between pro-
jected lattice constants ap and bp by 0.59, sug-
gesting that prediction errors for these geometric
features become more aligned when the model is
exposed to entirely novel compositions. In con-
trast, the correlation between volume V and aver-
age formation energy ε̄ drops by −0.64, indicating
a breakdown in the learned volume–energy cou-
pling under compositional generalization.

These shifts reverse when comparing CE to SE,
confirming that the observed effects stem from the

validation regime rather than intrinsic data asymme-
tries. This bidirectional sensitivity highlights a crit-
ical weakness: current foundation models preserve
certain geometric relationships under run-wise ex-
clusion but fail to maintain deeper physical depen-
dencies—such as energetic coherence—when fac-
ing unfamiliar chemistries. The instability of error
correlations under different evaluation settings un-
dermines the robustness of model generalization
and emphasizes the need for embedding invariant
physical priors into model architecture and train-
ing.

Compliance and Hallucination. The models
consistently struggle to enforce fundamental physi-
cal constraints and frequently fabricate ungrounded
details, as quantified in Table 4. Physical-law com-
pliance scores fall below acceptable thresholds for
most materials, with particularly poor performance
on TiO2, where nearly half the predictions vio-
late basic geometric or density-based relationships.
Concurrently, hallucination scores indicate that a
significant fraction of predicted properties—often
over 40%—deviate substantially from reference
values or represent nonphysical outputs. The co-
occurrence of constraint violations and fictitious
property generation highlights systemic limitations
in current architectures. These results reinforce the
need for models that integrate structural priors, con-
servation rules, and uncertainty-aware mechanisms



(a) SE ⇒ CE
Natoms↔ V V ↔ ε̄ V ↔ ρ γp↔ ε̄ a↔ ε̄ a↔ ρ a↔ b ap↔ bp ap↔ cp b↔ ε̄ b↔ ρ bp↔ cp c↔ ε̄ c↔ ρ

ϵSE +0.28 +0.81 +0.34 -0.00 +0.52 +0.13 +0.32 +0.09 +0.09 +0.50 +0.17 +0.09 +0.57 +0.21
ϵCE +0.02 +0.17 -0.06 +0.22 +0.09 -0.10 -0.00 +0.69 +0.44 +0.07 -0.05 +0.44 +0.10 -0.14
∆ -0.27 -0.64 -0.40 +0.22 -0.44 -0.22 -0.32 +0.59 +0.35 -0.43 -0.22 +0.35 -0.47 -0.35

(b) CE ⇒ SE
Natoms↔ V V ↔ ε̄ V ↔ ρ γp↔ ε̄ a↔ ε̄ a↔ ρ a↔ b ap↔ bp ap↔ cp b↔ ε̄ b↔ ρ bp↔ cp c↔ ε̄ c↔ ρ

ϵCE +0.02 +0.17 -0.06 +0.22 +0.09 -0.10 -0.00 +0.69 +0.44 +0.07 -0.05 +0.44 +0.10 -0.14
ϵSE +0.28 +0.81 +0.34 -0.00 +0.52 +0.13 +0.32 +0.09 +0.09 +0.50 +0.17 +0.09 +0.57 +0.21
∆ +0.27 +0.64 +0.40 -0.22 +0.44 +0.22 +0.32 -0.59 -0.35 +0.43 +0.22 -0.35 +0.47 +0.35

Table 3: Largest shifts in error–error correlation coefficients when transferring between SE and CE annotation
protocols. Each sub-table displays the top 14 property pairs (ordered alphabetically) exhibiting the largest absolute
changes in pairwise correlation, averaged over all models, materials, and R7–R10. Panel (a) shows the shift from
SE to CE (∆ = ρCE − ρSE), while panel (b) shows the reverse (CE to SE, ∆ = ρSE − ρCE). For each property pair,
the table reports the correlation coefficients under each protocol and their difference ∆. Cells are color-coded: green
for positive ∆ (stronger coupling under the target protocol) and red for negative ∆ (weaker coupling), highlighting
which structural or physical property relationships are most sensitive to the choice of annotation protocol.

Material Physical Law Compliance Hallucination Score

Ag 0.82 ± 0.03 0.21 ± 0.04
Au 0.84 ± 0.03 0.24 ± 0.02
CH3NH3PbI3 0.72 ± 0.03 0.42 ± 0.05
Fe2O3 0.74 ± 0.03 0.23 ± 0.02
MoS2 0.78 ± 0.03 0.18 ± 0.01
PbS 0.77 ± 0.03 0.53 ± 0.02
SnO2 0.74 ± 0.03 0.24 ± 0.04
SrTiO3 0.77 ± 0.02 0.28 ± 0.03
TiO2 0.46 ± 0.02 0.43 ± 0.03
ZnO 0.77 ± 0.02 0.21 ± 0.02

Table 4: Mean ± std physical-law compliance and hal-
lucination scores for each material, averaged over all
models and five runs per material–radius under both SE
and CE protocols. Physical-law compliance measures
adherence to fundamental structural constraints (e.g.,
density and lattice-parameter ratios), while the halluci-
nation score quantifies the frequency of non-physical or
highly erroneous predictions across a set of key prop-
erties. Bold denotes the material with the highest pre-
diction accuracy, while underlining denotes the material
with the second highest accuracy.

to produce physically plausible and trustworthy
predictions at the atomic scale.

Model Latency. Table 2 presents the average in-
ference latencies per sample across the SE and
CE protocols. Gemini 2.5 Flash exhibits the low-
est latency, requiring only 3.06 s under SE and
5.00 s under CE, making it well-suited for time-
sensitive applications such as high-throughput ma-
terials screening. Llama-4 Maverick and GPT-4.1
Mini follow in the next performance tier with mod-
erate latency (4 s to 8 s), while most other models
cluster between 6 s to 15 s. DeepSeek-Chat is the
slowest model in the SE evaluation (25 s), and Mis-

tral Medium 3 exhibits the highest latency in CE
(15.5 s). These trends broadly correlate with model
size and architecture, where larger context win-
dows and multimodal inputs tend to incur higher
computational overhead. Although latency is not
the primary evaluation criterion in this study, the
results offer practical insights for downstream de-
ployment scenarios, especially when balancing pre-
dictive accuracy against throughput constraints.

6 Limitations

This study isolates two complementary gen-
eralization regimes—geometric interpola-
tion/extrapolation and chemical extrapola-
tion—using a curated dataset of ten crystalline
materials across four radii. While representative,
this selection captures only a limited region of
compositional and structural diversity present in
real-world materials. All models are evaluated
in a zero-shot setting with default decoding
configurations, without fine-tuning, retrieval
augmentation, or domain adaptation, which may
underrepresent their full capabilities.

Evaluation emphasizes first-order structural
properties such as lattice constants, density, and sto-
ichiometry, along with a single volumetric consis-
tency index. Higher-order descriptors—including
phonon spectra, band topology, or symmetry-
preserving deformations—are not considered. The
analysis focuses on static prediction quality and
does not measure model responsiveness to feed-
back, learning curves under domain supervision, or
variance across decoding seeds.



7 Conclusion

This work introduces xCrysAlloys and its two com-
plementary benchmarks—SE and CE—that isolate
geometric interpolation and chemical extrapolation
in crystallographic prediction. The evaluations re-
veal that current vision–language foundation mod-
els struggle to internalize core physical principles,
as evidenced by high relative errors, substantial
degradation in transfer settings, and disrupted inter-
property correlations. The prevalence of halluci-
nated outputs and violations of basic physical laws
further underscores the limitations of purely data-
driven training in scientific domains.

To advance reliability and generalization, fu-
ture models must incorporate explicit physical con-
straints, symmetry priors, and uncertainty-aware
reasoning. The proposed benchmarks provide a
reproducible and physically grounded testbed for
evaluating model robustness in structured scien-
tific settings. By bridging multimodal language
understanding with domain-specific inductive bi-
ases, this work aims to foster the development of
more trustworthy foundation models for materials
science and beyond.
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A Appendix

A.1 Crystal Parameters

Silver (Ag). Silver adopts an FCC lattice with
lattice constant a = 4.0857 Å. The cubic crystal
belongs to space group Fm3m (No. 225), Pearson
symbol cF4, and Schoenflies notation O5

h. A sin-
gle Ag atom occupies the origin of the primitive
cell (King, 2002a).

Gold (Au). Gold similarly adopts an FCC ar-
rangement with lattice constant a = 4.0782 Å.
It crystallizes in space group Fm3m (No. 225),
reflecting equivalent high symmetry. One Au
atom resides at the (0,0,0) position within the unit
cell (King, 2002b).

Methylammonium Lead Iodide (CH3NH3PbI3).
The hybrid perovskite CH3NH3PbI3 forms a
pseudo-cubic lattice with parameters a = 6.290 Å,
b = 6.274 Å, c = 6.297 Å and angles close to 90◦.
It crystallizes in space group P1 (No. 1), accom-
modating slight distortions and dynamic disorder
typical of organic–inorganic frameworks (Walsh
et al., 2019).

Hematite (Fe2O3). Hematite (Fe2O3) exhibits a
rhombohedral structure with lattice constants a =
b = 5.0346 Å, c = 13.7473 Å, and angles α =
β = 90◦, γ = 120◦. It belongs to space group R3c
(No. 167), underpinning its antiferromagnetic and
catalytic properties (Finger and Hazen, 1980).

Molybdenum Disulfide (MoS2). Molybdenum
disulfide (MoS2) adopts a layered hexagonal lattice
with parameters a = 3.1604 Å, c = 12.295 Å, and
angles α = β = 90◦, γ = 120◦. It crystallizes
in space group P63/mmc (No. 194), reflecting
its van der Waals–bonded layers (Wyckoff, 1963b;
Grau-Crespo and Lopez-Cordero, 2002).

Galena (PbS). Galena (PbS) forms a rock-
salt–type FCC structure with lattice constant a =
5.9362 Å. The cubic crystal belongs to space group
Fm3m (No. 225), with Pb and S atoms occupying
alternating FCC sites (Wyckoff, 1963c).

Cassiterite (SnO2). Cassiterite (SnO2) displays
a tetragonal rutile–type lattice with constants a =
4.738 Å, c = 3.1865 Å. It crystallizes in space
group P42/mnm (No. 136) and features an oxy-
gen sublattice coordinating the Sn atoms (Baur
et al., 1971).

Strontium Titanate (SrTiO3). Strontium ti-
tanate (SrTiO3) crystallizes in a cubic perovskite
structure with lattice constant a = 3.9053 Å and
space group Pm3m (No. 221). Its ideal symmetry
underlies its prototypical ferroelectric and quan-
tum paraelectric behavior (Mitchell and Carpenter,
2000).

Titanium Dioxide (TiO2—Anatase). Anatase
TiO2 exhibits a body-centered tetragonal structure
with a = 3.7842 Å, c = 9.5146 Å. It belongs
to space group I41/amd (No. 141), characteristic
of the anatase polymorph’s photocatalytic activ-
ity (Horn et al., 1972).

Zinc Oxide (ZnO—Zincite). Zinc oxide (ZnO)
in the zincite phase adopts a hexagonal wurtzite lat-
tice with parameters a = 3.2495 Å, c = 5.2069 Å
and space group P63mc (No. 186). This polar
structure underpins its piezoelectric and optoelec-
tronic applications (Wyckoff, 1963a).

A.2 Additional Metric Definitions
Absolute-error (angles). For each primitive-cell
angle θp ∈ {αp, βp, γp},

|∆θp| =
∣∣θgenp − θrefp

∣∣.
Per-example mean error. If an example contains
the set of properties P , then

%∆ =
1

|P |
∑
p∈P

%∆p.

Format faithfulness. Let Fref and Fgen be the
non-null field sets, and F∩ = Fref ∩ Fgen. The
following definitions are considered:

Spresence =

∣∣F∩
∣∣∣∣Fref

∣∣
Stype =

1∣∣F∩
∣∣ ∑
f∈F∩

1
(
typegen(f) = typeref(f)

)
,

and

Sformat = 0.7Spresence + 0.3Stype.
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