An Empirical Study of LLM for Code Analysis: Understanding Syntax and
Semantics

Anonymous ACL submission

Abstract

Large language models (LLMs) demonstrate
significant potential to revolutionize software
engineering (SE). However, the high reliabil-
ity and risk control requirements in software
engineering raise concerns about the need for
interpretability of LLMs. To address this con-
cern, we conducted a study to evaluate the capa-
bilities of LLMs and their limitations for code
analysis in SE. Code analysis is essential in soft-
ware development. It identifies bugs, security,
and compliance problems and evaluates code
quality and performance. We break down the
abilities needed for LLMs to address SE tasks
related to code analysis into three categories:
1) syntax understanding, 2) static behaviour
understanding, and 3) dynamic behaviour un-
derstanding. We used four foundational mod-
els and assessed the performance of LLMs
on multiple-language tasks. We found that,
while LLMs are good at understanding code
syntax, they struggle with comprehending code
semantics, particularly dynamic semantics. Fur-
thermore, our study highlights that LLMs are
susceptible to hallucinations when interpreting
code semantic structures. It is necessary to
explore methods to verify the correctness of
LLM’s output to ensure its dependability in SE.
More importantly, our study provides an initial
answer to why the codes generated by LLM are
usually syntax-correct but are possibly vulnera-
ble.

1 Introduction

The ability of the large language model (LLM) to
comprehend context, align instructions, and pro-
duce coherent content has attracted widespread at-
tention from the software engineering (SE) com-
munity. Researchers started exploring how to use
LLM in SE tasks related to code analysis (Xia and
Zhang, 2023; Tian et al., 2023). Howeyver, although
LLM is widely used and discussed in software en-
gineering, a deep and systematic analysis of LLM’s

code analysis capabilities is vital and worthy of in-
depth study. Code analysis is significant in modern
software development to ensure the creation of se-
cure, high-quality, and performant software. The
basic ability to understand code syntax and seman-
tics for code analysis is important for LLM in SE.
Previous works have confirmed that some simple
modifications without changing code semantics can
mislead LLM to produce unexpected outputs (Yang
etal., 2022; Liu et al., 2023c). As a result, there are
two questions, /) can LLM comprehend program
semantics? 2) To what extent does LLM under-
stand the code? Firstly, it is unclear whether these
LLMs can comprehend the syntax and semantics
of the code for code analysis. Secondly, if these
LLMs have a specific capability to comprehend
syntax and semantics, the extent to which they can
understand the semantics is also unknown.

To address the two issues, in this paper, we ex-
plore the ability of LLMs for code analysis in terms
of understanding program syntax, static behaviours,
and dynamic behaviours. Our work includes 4
state-of-the-art (SOTA) large language models,
GPT4 (OpenAl, 2023), GPT3.5, StarCoder (Li
et al., 2023) and CodeLlama-13b-instruct (Roziere
et al., 2023). We design a set of code-related
tasks (9 different tasks) on 2,560 code samples.
Specifically, we design two tasks for code syn-
tax understanding: Abstract Syntax Tree (AST)
generation and expression matching to determine
whether LLM can comprehend program syntax.
Besides, we design five tasks, including Control
Flow Graph (CFG) generation, Call Graph (CG)
generation, data dependency analysis, taint analy-
sis, and pointer analysis to explore whether LLM
can statically approximate program behaviour sim-
ilar to the traditional static analysis tools (Feist
et al., 2019a; Cuoq et al., 2012). We further design
and study two challenging tasks: code behaviour
change detection and code behaviour variability
reasoning to analyze the capability of LLM in dy-

namically analyzing program behaviours. Overall,
the main contributions of our paper are summa-
rized as follows: 1) We conduct a comprehensive
study from different aspects to explore the capa-
bility of LLM for code analysis. We are the first
to explore LLLM’s capability to understand code
syntax, static, and dynamic behaviors. We study
four state-of-the-art models: GPT4, GPT3.5, Star-
Coder and CodeLlama. We have made our code
and data public on our website!. 2) We analyze
LLM to understand code syntax, code static se-
mantic structures, and code dynamic behaviours
through diverse tasks. Our study suggests that LLM
can comprehend code syntax rules and has certain
abilities to understand code static behaviours but
fails to comprehend dynamic behaviours. GPT4 is
the best one to understand code syntax and seman-
tics.

2 Motivation

We use ChatGPT to show our motivation example,
a buggy function “bucketsort” in Figure 1 from
QuixBugs (Lin et al., 2017). The Bucketsort al-
gorithm requires splitting the array (i.e., “arr” in
this function) into several buckets (i.e., “counts’)
and then sorting each bucket individually. The
correct version is to replace the variable “arr” in
the second loop with the variable “counts”. Chat-
GPT can automatically fix this bug (Sobania et al.,
2023). It seems that ChatGPT correctly compre-
hends this function semantics. However, a simple
mutation can cause ChatGPT to produce incorrect
results as shown in Figure 1 if we replace “arr” with
“ccounts”. If ChatGPT really understands the logic
of the code, it should not be confused by the name
change. Understanding the capabilities and limi-
tations of LLM for code syntax and semantics is
important, which can ensure that we can use LLM
correctly and reasonably for code-related tasks. To
address this challenge, in this paper, we provide a
systematic and comprehensive study to investigate
the capabilities of LLM for code analysis, i.e., what
it can do and what its limitations are.

3 Study Design

3.1 Overview

We begin by examining the elemental abilities that
LLMs must possess to tackle SE tasks related to
code analysis effectively. Code analysis needs

"https://sites.google.com/view/chatgptése

Does this program have a bug? How to fix it?
def bucketsort(arr, k):
counts = [0] ¥ K~~~
for x in ccounts : o
counts[x] += 1
sorted_arr =[]
for i, count in enumerate(arr)2
sorted_arr.extend([i] * count)
return sorted_arr

Yes, this program has a bug. The variable
"ccounts" is used in the first line of the program,
but it is not defined anywhere. To fix this bug, the
variable "ccounts" should be defined and given a
value.

Figure 1: An semantic equivalent version of the buggy
function by replacing “arr” with “ccounts” (May 2023).

code syntax, static behaviour, and running-time be-
haviour. In the previous works about code learning,
instead of naively using code sequence, abstract
syntax tree (AST)(Feng et al., 2020; Zhang et al.,
2019; Wang et al., 2022a; Niu et al., 2022; Jiang
et al., 2021; Wang et al., 2021), control and data
flow (Guo et al., 2020; Ma et al., 2022a; Ahmad
et al., 2021; Wang et al., 2022b; Zhou et al., 2019),
dynamic execution trace (Ye et al., 2022; Jin et al.,
2022; Pei et al., 2020) are used to build good code
models. They have proven helpful for code mod-
els to learn code features for SE tasks. Since three
types of information are critical to solving SE tasks,
we try to answer the following three research ques-
tions (RQs): RQ1). Can LLM understand code
syntax well? RQ2). Can LLM understand code
static behaviors? RQ3). Can LLM understand code
dynamic behaviors?

3.2 Code Syntax Understanding (RQ1)

AST Generation AST is the core structure in
code analysis (Baxter et al., 1998b; Zhang et al.,
2019). We prompt LLM to parse code into an AST,
and then compare these ASTs with those generated
by AST parsers to determine their meaningfulness.
The ability to comprehend ASTs is fundamental
for code models, as tokens in code serve distinct
syntax roles. Understanding code syntax is crucial
for addressing certain SE tasks, such as generating
syntactically correct code.

Expression Matching This task aims to find a
similar expression to the target mathematics ex-
pression. It is related to code-clone detection for
Type-2 and Type-3 that requires understanding the
syntax of the code (Baxter et al., 1998a; Koschke
et al., 2006). The matched expression should have
almost the same operators as the target expres-
sion. Figure 2 presents an example of this task,
in which we try to find a similar expression with

https://sites.google.com/view/chatgpt4se

| @ base_borrow_rate + utilization_rate * slopel ~ ——————
i Exp Tree

&, What is the most similar expression
with above?

§ 1. base_borrow_rate - utilization_rate + slopel
i 2.a+b

i n.rate+ur*sl

Figure 2: An example of the task of Expression Match-
ing.

function m1(a, b){ i@fuflft(:tionon;(z (a){
ifla>b){ buid ifa<
return a; Y 6 m2(a+1);

o, wWwNE @

} else { 1
b=a+b; function m1 (a, b){
} if(a>b){
return b; ‘ m2(a);
} : 13
Figure 3: Examples of (1) Code Control Flow

Graph (Python) and (2) Code Call Graph (Python).

“base_borrow_rate+utilization_rate*slopel”. With-
out understanding the syntax role of tokens, finding
similar expressions is not feasible. For instance,
“base_borrow_rate-utilization_rate+slopel” may be
incorrectly identified as a more similar expression
to it than to “rate+ur*s1”, if the operators “+” and
“* are not recognized.

3.3 Code Static Behavior (RQ2)

Control Flow Graph (CFG) Analysis Control
flow graph analysis (CFG) is typically the first step
in program analysis and understanding. We prompt
LLM to construct the CFG from the input code.
Figure 3 provides an example () of this process.
Understanding the CFG is critical for code models
to identify relationships among statements. CFG is
a core code structure in static analysis and is widely
employed in software engineering to address vari-
ous tasks (Cheng et al., 2019; Ferrante et al., 1987,
Allen, 1970).

Call Graph (CG) Analysis The Call Graph is a
data structure that depicts the invocation relation-
ship among functions in a program. It is extensively
employed in software engineering to understand
program behaviors (Murphy et al., 1998). Figure 3
presents an example (2) of a call graph with two
methods. We prompt LLM to construct the call
graph for the given code. Understanding the call
graph is significant as it provides insights into the
function relationships in the code.

Data Dependency Figure 4 provides an exam-
ple D in which “d” is data-dependent on “a”. We
prompt LLM to determine whether two given vari-
ables are data dependent in the code. Data depen-
dency analysis is a powerful technique for code
understanding (Guo et al., 2020) and optimizing

function f (a, b){
// Data Dependency

contract Reference{
// Taint Analysis

c=a; struct Ref{
d=0; @ uint val; @
if(b<0){ }
d=c; Ref a;
} Ref b;
return d; function set(uint source_taint)
} public
o {
int main(){ Ref storage r = a;
// Pointer Analysis if(true){
intc=m(); r=b;

intd =f(c); }
int* x = d>0?&c:&d;
} }

rval = source_taint;

Figure 4: (1) Data Dependency Example (Python),
(2) Taint Analysis Example (Solidity) and (3) Pointer
Analysis (C).

code (Ferrante et al., 1984), as it can reveal data re-
lationships among different variables in a program.
Data dependency illustrates how data are propa-
gated in the program, and it is extremely useful for
code models to solve SE tasks such as vulnerability
detection (Guo et al., 2020).

Taint Analysis This task is to find if a variable
can be tainted by an external source. Figure 4
illustrates an example (@) in which the variable “a”
can be overwritten by “source_taint” via the storage
variable “r”. This task necessitates the reasoning
ability of LLM based on data dependency analysis.
Taint analysis (Kim et al., 2014) is strongly related
to data dependency but also needs information from
the call graph and the control flow graph to track
how one data point is propagated in the program. It
requires a deep understanding and reasoning of the
semantics of the code in terms of execution order
and relationship.

Pointer Analysis Pointer analysis is to find the
data type of the pointers in code. Figure 4 il-
lustrates an example @) of pointer analysis. The
pointer “x” can potentially point to either “c” or
“d”. Pointer analysis is widely used to detect vul-
nerabilities such as memory leakage. Pointer analy-
sis (Smaragdakis et al., 2015; Hind and Pioli, 2000)
requires an understanding of the dependency of
data, the control flow, and the call graph. Point
analysis also requires the inference to figure out
what the current variable refers to. We prompt
LLM to infer the referents of pointers. This task
requires LLLM to comprehend the code syntax and
semantics in-depth.

3.4 Code Dynamic Behavior (RQ3)

Code Behavior Change Detection Any code
change is highly possible to change the dynamic

(™ function f (a, b){ function f (a, b){ ®

c=a+b; c=b+a; ! function test_h (){
d=0; tamuane 4505 | n =random() ;
ifla<0)f —— ifla<0) a=10;
d=¢; d=g; : assert h(a+n), “Test Failed”
} ! L)
return d; return d; 3

} }

Figure 5: (1) Equivalent Mutant Example (Python) and
(2) Flaky Test Reasoning Example (Python).

behaviors of the code. If LLM can really sense the
behavior difference due to the minor code change,
it can be as evidence that LLM can understand the
change of code dynamic behavior well. This is
called detecting equivalent mutants which is a criti-
cal problem in Mutation Testing (Papadakis et al.,
2019). We check if LLM can find if the code minor
change can change the code behavior. Figure 5
presents an example of an equivalent mutant (I) by
switching two variables.

Code Behavior Variability Reasoning Some-
times, the same code runs multiple times could
behave differently. If LLM can understand the
code dynamic behavior, it should know why the
multiple-running outputs are inconsistent. In soft-
ware testing, we call it Flaky Test. Flaky test is one
challenging problem related to code dynamic be-
havior. Flaky test means the output inconsistency
of one test when running multiple times. Thirty
flaky reasons are summarized (Akli et al., 2022).
Flaky tests are usually caused by some undeter-
mined functions, the environment state and the
execution schedule. Figure 5 presents one flaky
example @) due to randomness. We prompt LLM
to tell the reason why one test is flaky.

4 Evaluation Setup

We created a new dataset that was generated by the
program analysis tools. The tasks and datasets uti-
lized in our study are summarized in Table 1. We
study two closed OpenAl models, GPT4 (OpenAl,
2023) and GPT3.5, and two open source models,
StarCoder (Li et al., 2023) and Codel.lama-13b-
Instruct (Roziere et al., 2023). For StarCoder, we
use its conversational version, StarChat (Tunstall
et al., 2023). For the evaluation, we employ two ex-
perts for code analysis. They first check the model
output and then discuss how good the output is.
We have different evaluation criteria for tasks that
require manual inspection. We carefully design our
prompt and please see more details in Appendix A.
For dynamic behavior in code, we conducted an
additional trial and provided examples, primarily

Table 1: Tasks and Datasets used in this study.

Task Level Programs | Dataset Size LoC
AST syntax 75 75 1,059
Expression Matching) 4 32 4,238
CFG 75 75 1,059
CG 24 24 1,609
Data Dependence static 13 992 62,606
Taint Analysis 13 830 62,052
Pointer Analysis 40 342 2,726
Code Behavior Variability dynamic 13 65 1,615
Code Behavior Change 35 200 15728
Total 217 2,560 151,633

focusing on zero-shot learning. While it is acknowl-
edged that some techniques such as RAG and SFG
can enhance the model performance, we opted not
to utilize them for two main reasons. Firstly, they
introduce the potential for bias. It remains unclear
whether improved outcomes are mainly attributable
to which part. Secondly, zero-shot learning lies in
the capacity of the models to comprehend and pro-
cess code across various programming languages
without the need for explicit, task-specific learn-
ing. This approach emphasizes the model’s innate
ability to generalize and adapt.

4.1 Evaluation Metrics

AST Generation We analyzed programs contain-
ing diverse syntax structures to effectively assess
LLMs ability to understand code syntax. We classi-
fied LLM output as reasonable or not by analyzing
the entire structure with a tolerance for the minor is-
sues (missing trivial leaf nodes); 1) lack leaf nodes
but keep the overall structure, we labeled it as * Yes’.
It means that LLLM correctly generates the syntax
type for the code token but does not give the token
itself. 2) If the output provided a wrong structure
with incorrect edges or lacked non-leaf nodes, we
labeled it as No’. In the end, we count how many
programs are reasonably handled, and also record
and categorize the issues we find.

Expression Matching We implemented 32 re-
ward equations strictly from the whitepapers of
Web3 projects and then prompted LLM to find
the corresponding implementation in the target
projects. For each query, we fed the target code
to LLLM as comprehensively as possible and then
checked if the corresponding implementation ex-
pression was in the top-5,10 and 20 outputs. For the
open source model, we also computed the cosine
similarity between our implemented expressions
from the whitepapers and the expressions in the
project.

Control Flow Graph (CFG) Generation We
used the dataset that covers diverse control flows.
We labeled the generated CFGs as reasonable or

not by comparing them with their corresponding
programs. A CFG was considered reasonable if
its overall structure was correct, with tolerating
missing 1) start or end nodes, 2) a lack of edges
to the end node, or 3) sequence statements being
stacked in one node. CFGs that incorrectly repre-
sented control structure, 1) wrong branch and loop
structures, and 2) fabricated non-existent nodes
and edges, were labeled as not reasonable. Finally,
we counted the number of reasonable CFGs and
recorded and categorized all issues we identified.
Call Graph (CG) Generation We selected 24
public source code programs with at least three
function calls. A generated call graph (CG) was
considered reasonable if all of its call relationships
were correct, even with some missing calling or
redundant nodes. However, if the output contains
non-existent call edges, we think it is not reason-
able. The number of correct CGs generated was
recorded.

Data Dependency and Taint Analysis We used
Slither (Feist et al., 2019b) to extract 992 pairs
of data-dependency variables and 830 externally
tainted variables from 13 DeFi projects from Ether-
scan. We downsampled data to ensure the datasets
were balanced. 1 indicated that it had a data-
dependency fact or could be externally tainted, oth-
erwise 0. We used F1 as a performance measure-
ment.

Pointer Analysis We used Frama-C (Cuoq et al.,
2012) to extract the possible set of variables for
each pointer, which served as the ground truth. For
each pointer, we collect a set of variables that it may
refer to by prompting LLMs. We used the Jaccard
index to measure the similarity between the ground
truth set and the predicted set. We compute the
Jaccard index for two scenarios: 1). Jaccard index
for each pointer. It can measure how LLM behaves
on this task; 2). Jaccard index for each program. It
can measure whether LLM has a data shift problem,
that is, behaves differently for different programs.
Code Behavior Change Detection We utilized
MutantBench (van Hijfte and Oprescu, 2021) for
this task. We use a script to extract the input-label
data pairs. We randomly selected 100 equivalent
mutants and 100 nonequivalent mutants. We use
the F1 score in this task. Two different prompts
were used for this task: one type of prompt did not
include any example (zero-shot), and the other type
included demonstration examples (few-shot).
Code Behavior Variability Reasoning This
dataset (AKkli et al., 2022), which was manually

collected, consists of 13 classes. To create our
sample set, we randomly selected 5 samples for
each class, resulting in a total of 65 samples. We
prompted LLM to assign a label to each input and
used accuracy as the performance metric. Similarly
to the previous task, we employed two different
prompts for this task. We also analyzed the predic-
tion details for each class.

5 Experimental Results

All figures and the generated results can be found
on our website(Anonymous, 2024).

5.1 Code Syntax Understanding (RQ1)

AST Generation Figure 6a displays the num-
ber of reasonable and unreasonable ASTs gener-
ated by four LLMs. Blue represents the number
of correct ASTs, orange represents the number of
ASTs with minor issues and green represents un-
reasonable. We can see for GPT4 and GPT3.5,
the majority of the generated ASTs were reason-
able and few are minor. However, the open-source
models CodeLlama-13-instruct and StarCoder are
worse than OpenAlI’s models and have more unrea-
sonable AST outputs. But CodeLlama is slightly
better than StarCoder. We further investigate the is-
sues of the generated ASTs and Figure 6b displays
the number of issues that we identified. A single
AST may exhibit multiple issues, and even reason-
able ASTs might present some minor issues, as ex-
plained below. We categorized the found issues into
three groups: missing statement tokens (blue bar),
missing syntax tokens (orange bar), and wrong
structure (green bar) as shown in Figure 6b. The
missing-statement-tokens category indicates that
some tokens in a statement were missing, such as
the token "Printer" in "Printer.out.print(a);". The
missing-syntax-tokens category indicates that some
syntax keyword tokens were missing, such as "pub-
lic" and "private" access modifiers. The wrong-
structure category indicates that AST structures
were incorrect, such as an incorrect if-else struc-
ture. The category Wrong Structure is serious and
it means that AST contains faulty syntax structures.
Reasonable ASTs with minor issues refer to these
ASTs that typically had missing tokens of the state-
ment or missing syntax trivial tokens, such as return
type and access modifier. In our evaluation, GPT4
suffers from the least issues. GPT3.5 and CodeL-
lama have similar performance; GPT3.5 has more
missing cases while CodeLlama has more wrong

GPT35 C

GPT4 odeLlama StarChat GPT3.5 Codellama StarChat
(a) Reasonable VS. Unreasonable

GP(Tf)) Issue Distribution
Figure 6: AST Generation Result
Table 2: Expression Matching Results of LLMs

Rank | GPT4 | GPT3.5 | StarCoder | CodeLlama
Top-5 27 28 4 4
Top-10 | 27 28 5 5
Top-20 27 28 5 5

Hit Rate | 27/32 | 28/32 5/32 5/32

structures. StarCoder is the worst and suffers from
lots of wrong structures.
Expression Matching Table 2 presents the re-
sults obtained using four LLMs. The first column
shows the number of ranked equations that were
considered in the results. GPT4 and GPT3.5 have
a very close hit-rate performance, 27/32 and 28/32
in the top-5, top-10 and top-20. In contrast, Star-
Coder and CodeL.lama have the same hit-rate per-
formance, 5/32. Notice that, the number of Star-
Coder and CodeLlama in Table 2 are based on the
consine similarity. The prompt results of both are
quite bad. For StarCoder, none of the outputs is
correct. 26/32 outputs are fabricated and 6/32 cases
are wrongly matched. For CodeLlama, its prompt
outputs only match 1 case and fabricate 28/32 cases.
In our investigation of the answers of GPT4 and
GPT3.5, we discovered that both consider two ex-
pressions to be similar if they use similar operators,
have similar orders, and have a similar number of
variables. An intriguing observation is that, while
GPT4 and GPT3.5 can identify the line number
where the matched expression is located or the
starting line number of the function containing the
matched expression, none of the line numbers were
accurate for these 32 expression matching samples
in either case.

In general, LLM can understand the syntax struc-
ture of the code and the syntax roles of the code
tokens. This ability allows it to act as an Abstract
Syntax Tree (AST) parser.

5.2 Code Static Understanding (RQ?2)

CFG Generation Figure 7a shows the number
of reasonable and unreasonable CFGs generated
by ChatGPT according to the predefined criteria.
It can be seen that GPT4 achieves the best perfor-
mance and majority of GPT4 outputs are correct,
and few suffer from minor problems or wrong re-
sults. GPT3.5 is worse than GPT4 but is better

& Redundancy
60 No Fabrication
Wrong Structure

GPT35 C

GPT4 “odelLlama StarChat GPT3.5 CodeLlama StarChat.
(a) Reasonable VS. Unreasonable

GPT4 R de 2
(b) Issue Distribution

Figure 7: CFG Generation Results

than CodeLlama and StarCoder. CodeLlama and
StarCoder have very close performances. Figure 7b
shows the issues we identified, which we catego-
rized into three groups: redundancy, fabrication,
and wrong structure. Reasonable CFGs only can
have the redundancy issue. The redundancy cate-
gory means that there are meaningless nodes and re-
moving them does not change anything such as null
nodes, while the fabrication category means there
are non-existent nodes (statements). The wrong-
structure category refers to CFGs with incorrect
structures (incorrectly represented loop statements
and if-else statements). Redundancy issues are
minor because they do not affect the control flow.
Fabrication and wrong-structure issues are serious
because they alter the control flow. We observe
that GPT4 is still the best one and then the next is
GPT3.5. Most results of CodeL.lama and StarCoder
suffer from the wrong structure. StarCoder suffers
from more hallucinations than others. Upon ex-
amining the identified issues in the AST and CFG
generation tasks, an interesting observation is that
some serious problems typically arise with loop or
if-else statements. LLM appears to have a weaker
understanding of the syntax and static behavior of
loop and if-else statements.

Call Graph Generation Figure 8a shows that
GPT3.5, Codellama, and StarCoder were unable
to generate reasonable CGs for most of the sam-
ples while GPT4 still performed well. StarCoder
did not generate any reasonable output. Figure 8b
illustrates the issues we found and categorized into
3 groups: redundancy, fabrication, and missing
call. Redundancy means there are multiple edges
between the functions that have the calling rela-
tionship. Fabrication means there are non-exist
function calling. A missing call means the call
edge is missed. It can be seen that GPT3.5 suffered
from hallucination and GPT4 is obviously better
than others. Missing calling is one common issue
for the four LLMs. It indicates that GPT4 has a
strong ability to understand code semantics.

Data Dependency and Taint Analysis Table 3
demonstrates the F1 score of the four LLMs on
the data dependency task in the second row. GPT4

GPT35 C

GPT4 odeLlama StarChat GPT3.5 CodeLlama StarChat
(a) Reasonable VS. Unreasonable

GPFb) Issue Distribution
Figure 8: CG Generation Result

Table 3: Prediction Performance (F1) on Data Depen-
dence and Taint Analysis on the entire datasets.

Task | GPT4 | GPT3.5 | CodeLLama | StarCoder
Data Dependency | 0.69 0.68 0.44 0.6
Taint Analysis 0.44 0.15 0.39 0.47

achieves the best F1 score. GPT3.5 is inferior to
GPT4. StarCoder is better than CodeLlama for
this task, and worse than OpenAl’s models. The
comparison of the taint analysis is presented in
the last row of Table 3. It can be seen that the
performance of LLMs on this task is inferior to
the data dependency analysis in terms of F1 (please
note that we downsampled the taint dataset to make
it balanced). All of them are worse than the random
guess classifier that should have a 0.5 F1 score.
Taint analysis is based on data dependency and
requires the reasoning ability about the data flow.
The results show that the studied models lack in-
depth reasoning capabilities about the data flow. To
assess whether LLM is suffering from the data-shift
problem, we conducted an investigation as shown
by Figure 9. We computed F1 for each project. Our
findings indicate that LLM is significantly affected
by the data-shift problem. As illustrated in the
upper part (marked in blue) of Figure 9 on the data
dependency, F1 scores differ for different projects,
with a wide variance ranging from approximately
0. to 1.0. The lower part (marked in orange) in
Figure 9 shows F1 scores on taint analysis, which
display a variation ranging from O to about 0.8.

Pointer Analysis Initially, we determined the
number of pointers for which LLMs fully predicted
pointer analysis. Out of a total of 342 pointer sam-
ples from the 40 programs, only 105 were correctly

nnnnnnn

FEFEELTT

Data Dep.

8

(c) StarCoder

(d) CodeLlama
Figure 9: F1 of each project on Data Dependency (blue)
and Taint Analysis (orange).

GPT4
GPT3.5

Model

StarChat

CodeLlama

0GPTa GPT3.5 Starchat Codellama 00 02

0.4 0.6 0.8 1.0

(a) GPT4, Jaccard Index of Each (b) GPT4, Jaccard Index of Each
Pointer Pointer

Figure 10: Jaccard Index of Pointer Analysis.
predicted by GPT4, 43 were correctly predicted
by GPT3.5, 27 and 25 were correctly predicted by
CodeLlama and StarCoder respectively. We also
noticed that some pointers were missed by LL.Ms.
GPT4 predicts 211/342 pointers, GPT3.5 predicts
133/342 pointers, CodeLlama predicts 156/342
pointers and StarCoder predicts 153/342 pointers.
Since one pointer can point to multiple variables,
we computed the Jaccard Index between the pre-
dicted set and the ground truth set for each pointer,
as shown in Figure 10a. We discovered that GPT4
is half good and half bad. It has the largest number
for Jaccard Index 1 for each pointer but almost the
same number of pointers have Jaccard Index with
0 values. GPT3.5 is inferior to GPT4. CodeLLama
and StarCoder are not good in terms of the Jacrad
Index for each pointer. We also computed the av-
erage Jaccard index for each program to assess
whether LLM is affected by the data shift issue.
We created a box plot of the mean Jaccard index
of pointers from each project, which is illustrated
in Figure 10b. We can see that the Jaccard Index
variance is quite varied and suggests that LLMs are
indeed affected by the data-shift problem.

GPT4 and GPT3.5 have the primary ability to
perform code static analysis. CodeL.lama and Star-
Coder are not as good as OpenAl models. However,
during the analysis process, we find that all of them
experience the issue of hallucination. Furthermore,
the performance of LLMs can vary for a given task
due to the data shift.

5.3 Code Dynamic Understanding (RQ3)

Code Behavior Change Detection Table 4 il-
lustrates the performance F1 score of four LLMs
in the detection of equivalent mutants, based on
two types of prompts: prompt learning with or
without example code (few-shot v.s. zero-shot) be-
cause examples are not always helpful to improve
model performance (Wang et al., 2023). GPT4 and
StarCoder perform well. CodelLlama failed to dis-
tinguish the equivalent mutant and non-equivalent
mutant that has one small difference. Even if we
tell CodeLlama that the two are equal, it still an-
swers no. Although CodeLlama has the ability to

Table 4: Performance (F1) about Equivalent Mutant
Detection.

Type | GPT4 | GPT3.5 | StarCoder | CodeLlama

few-shot | 056 | 055 | 057 | 0.
zero-shot | 0.67 | 054 | 0.62 | 0.

understand code syntax and the limited ability for
static analysis as shown in the previous sections,
it lacks the reasoning ability for code dynamic be-
haviors based on the code syntax and static struc-
ture understanding. StarCoder demonstrates a bet-
ter dynamic-understanding ability than CodeLlama
due to its pre-training data and tasks. To validate
our hypothesis, we investigated the pre-training
data and pre-training tasks of StarCoder (Li et al.,
2023) and CodeLlama (Roziere et al., 2023). Star-
Coder uses the code commit data from GitHub
while CodeL.lama learns publicly available code
only without any additional meta-level or temporal
information such as git-commit info. Code commit
info involves the code behavior change description
and its impact.
Code Behavior Variability Reasoning For this
task, we also employed two types of prompts, few-
shot and zero-shot. The task comprises 13 classes,
with each class containing five samples. To vi-
sualize the predicted label number for each class,
we used bar figures, which are presented in Fig-
ure 11 (bar with slash for few-shot learning and
bar without slash for zero-shot learning). Y-axis is
the number and X-axis is the reason id. In these
figures, the green bar represents the number of pre-
dictions that LLM is uncertain about, the orange
bar represents the number of incorrect predictions,
and the blue bar represents the number of correct
predictions. We find that GPT4 and GPT3.5 are
more conservative and prefer to answer unknown
for most cases, while StarCoder and Codellama
are quite confident about their outputs. We also
find that the demo examples in the prompt can help
StarCoder and CodeLlama improve their perfor-
mance. However, overall, the four models do not
perform well for this task.

LLM has limited ability to approximate code
dynamic behavior and also suffers from the data
shift problem.

6 Related Work

Probing Analysis: Probing analysis (Rogers et al.,
2021) is a technique employed to examine and in-
terpret the mechanisms of large language models
(LLMs). Recently, some works have started to

S

Number
ok N WwaG
Number
ok N Wwa G
SIS
NS
S

SRR RN

S
2

S

0
1
0
1

~~
<
1 Q
Sl
—~
w
W

S

Number
or N Wwa W
RN
SN
NNSSSSSN
SN
Number
or N WA G
7
NSNS
SN

[ASSSSISSS
2
3

SN

B7 7 BRPla@ 7 d @7 728 | ol BE@ 780007

0
1
2
3

(c) CodeLlama (d) StarCoder
Figure 11: Predictions of LLMs for Flaky Test

analyze code models, like CodeBERT, CodeTS5,
and UnixCoder. Wan et al. (2022) and Hernan-
dez Lopez et al. (2022) analyze how code models
learn syntax. Troshin and Chirkova (2022) and Ma
et al. (2022b) analyze how code models represent
semantics. But all of them study non-foundational
models based on tuning classifiers. Our work stud-
ies the generation ability of LLM on code analysis.

LLM for SE: Tian et al. (2023); Xia and Zhang
(2023); Sobania et al. (2023) investigated LLM’s
capabilities in code generation, program repair,
and code summarization. Hou et al. (2023) sys-
tematically reviews the various applications of lan-
guage models in software engineering. Fan et al.
(2023) and Nguyen-Duc et al. (2023) discuss how
LLM can change software engineering. None of
them study the interpretability and reliability of
LLM on code analysis, and our work is to estimate
how LLM understands code that provides the inter-
pretability of LLM for SE tasks. We are the first
to study LLM on code analysis, especially for un-
derstanding code syntax and semantics, providing
some confidence when employing LLMs to solve
code tasks.

7 Conclusion

In this paper, we conduct a comprehensive empir-
ical study to investigate the capabilities of LLM
for code analysis. We used the new datasets cre-
ated by the code tools, including four programming
languages: Python, Java, C, and Solidity. Overall,
our study indicates that LLM is capable of compre-
hending code syntax rules and has certain abilities
to understand static behaviors of the code, but it
cannot understand dynamic behaviors well. GPT4
achieves the best performance among all four mod-
els we included. We believe that our findings offer
insights into LLM performance on SE tasks related
to code analysis and guide follow-up researchers
to effectively utilize LLM in the future to solve SE
tasks.

8 Limitations

There are several limitations in this study. First,
this study does not employ very large datasets for
the analysis of each SE task. The reason is that we
consider multiple tasks in this study and the dataset
preparation is already very expensive. But these
tasks are diverse and the analyzed data are created
by ourselves via tools, which can help us conduct a
comprehensive evaluation of LLMs in various sce-
narios related to software engineering on code anal-
ysis. Second, this study adopts manually designed
prompts, however, there are several techniques for
automatically designing prompts (Shin et al., 2020).
It is possible that superior prompts can have better
results in this study. We also do not explore how
the examples in the prompt affect LLM. In our ex-
periments, we observe that the choice of examples
matters and how to find a good example for the
prompt is the future independent work. Third, as
a transformer architecture, LLM imposes a maxi-
mum token limitation, restricting the input context
in our study. Lastly, we use nine basic and chal-
lenging tasks that are related to code analysis in
Software Engineering. Some other code analysis
tasks are also important but are not included in this
study, such as dead code elimination. However,
these tasks usually will use dependency and data
flow analysis. It may limit our insights to LLMs on
code analysis.

References

Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi
Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. arXiv
preprint arXiv:2103.06333.

Amal Akli, Guillaume Haben, Sarra Habchi, Mike
Papadakis, and Yves Le Traon. 2022. Predicting
flaky tests categories using few-shot learning. arXiv
preprint arXiv:2208.14799.

Frances E. Allen. 1970. Control flow analysis. In Pro-
ceedings of a Symposium on Compiler Optimization,
page 1-19, New York, NY, USA. Association for
Computing Machinery.

Anonymous. 2024. Capabilities of chatgpt for code
analysis: An empirical study.

1.D. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and
L. Bier. 1998a. Clone detection using abstract syntax
trees. In Proceedings. International Conference on
Software Maintenance (Cat. No. 98CB36272), pages
368-377.

Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo
Sant’Anna, and Lorraine Bier. 1998b. Clone de-
tection using abstract syntax trees. In Proceedings.
International Conference on Software Maintenance

(Cat. No. 98CB36272), pages 368-377. IEEE.

Xiao Cheng, Haoyu Wang, Jiayi Hua, Miao Zhang,
Guoai Xu, Li Yi, and Yulei Sui. 2019. Static de-
tection of control-flow-related vulnerabilities using
graph embedding. In 2019 24th International Confer-
ence on Engineering of Complex Computer Systems
(ICECCS), pages 41-50. IEEE.

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Vir-
gile Prevosto, Julien Signoles, and Boris Yakobowski.
2012. Frama-c. In Software Engineering and For-
mal Methods, pages 233-247, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya
Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M
Zhang. 2023. Large language models for software en-
gineering: Survey and open problems. arXiv preprint
arXiv:2310.03533.

Josselin Feist, Gustavo Greico, and Alex Groce. 2019a.
Slither: A static analysis framework for smart con-
tracts. In Proceedings of the 2nd International Work-
shop on Emerging Trends in Software Engineering
for Blockchain, WETSEB ’19, page 8-15. IEEE
Press.

Josselin Feist, Gustavo Grieco, and Alex Groce. 2019b.
Slither: a static analysis framework for smart con-
tracts. In 2019 IEEE/ACM 2nd International Work-
shop on Emerging Trends in Software Engineering
for Blockchain (WETSEB), pages 8—15. IEEE.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren.
1984. The program dependence graph and its use in
optimization. In International Symposium on Pro-
gramming, pages 125-132. Springer.

Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren.
1987. The program dependence graph and its use
in optimization. ACM Trans. Program. Lang. Syst.,
9(3):319-349.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcode-
bert: Pre-training code representations with data flow.
arXiv preprint arXiv:2009.08366.

José Antonio Herndndez Lépez, Martin Weyssow,
Jests Sanchez Cuadrado, and Houari Sahraoui. 2022.
Ast-probe: Recovering abstract syntax trees from
hidden representations of pre-trained language mod-
els. In Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, pages 1-11.

https://doi.org/10.1145/800028.808479
https://sites.google.com/view/chatgpt4se
https://sites.google.com/view/chatgpt4se
https://sites.google.com/view/chatgpt4se
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1109/ICSM.1998.738528
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041
https://doi.org/10.1145/24039.24041

Michael Hind and Anthony Pioli. 2000. Which pointer
analysis should i use? SIGSOFT Softw. Eng. Notes,
25(5):113-123.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong
Wang, Li Li, Xiapu Luo, David Lo, John Grundy,
and Haoyu Wang. 2023. Large language models for
software engineering: A systematic literature review.
arXiv preprint arXiv:2308.10620.

Xue Jiang, Zhuoran Zheng, Chen Lyu, Liang Li, and
Lei Lyu. 2021. Treebert: A tree-based pre-trained
model for programming language. In Uncertainty in
Artificial Intelligence, pages 54-63. PMLR.

Xin Jin, Kexin Pei, Jun Yeon Won, and Zhiqiang Lin.
2022. Symlm: Predicting function names in stripped
binaries via context-sensitive execution-aware code
embeddings. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’22, page 1631-1645, New York,
NY, USA. Association for Computing Machinery.

Junhyoung Kim, TaeGuen Kim, and Eul Gyu Im. 2014.
Survey of dynamic taint analysis. In 2014 4th IEEE
International Conference on Network Infrastructure
and Digital Content, pages 269-272. IEEE.

Rainer Koschke, Raimar Falke, and Pierre Frenzel. 2006.
Clone detection using abstract syntax suffix trees. In
2006 13th Working Conference on Reverse Engineer-
ing, pages 253-262. IEEE.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023. Starcoder: may the source be with you! arXiv
preprint arXiv:2305.06161.

Derrick Lin, James Koppel, Angela Chen, and Armando
Solar-Lezama. 2017. Quixbugs: a multi-lingual
program repair benchmark set based on the quixey
challenge. In Proceedings Companion of the 2017
ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Soft-
ware for Humanity, SPLASH Companion 2017, page
55-56, New York, NY, USA. Association for Com-
puting Machinery.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023b. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9).

Shangqing Liu, Bozhi Wu, Xiaofei Xie, Guozhu Meng,
and Yang Liu. 2023c. Contrabert: Enhancing code
pre-trained models via contrastive learning. arXiv
preprint arXiv:2301.09072.

10

Wei Ma, Mengjie Zhao, Ezekiel Soremekun, Qiang
Hu, Jie M Zhang, Mike Papadakis, Maxime Cordy,
Xiaofei Xie, and Yves Le Traon. 2022a. Graph-
code2vec: generic code embedding via lexical and
program dependence analyses. In Proceedings of the
19th International Conference on Mining Software
Repositories, pages 524-536.

Wei Ma, Mengjie Zhao, Xiaofei Xie, Qiang Hu,
Shangqing Liu, Jiexin Zhang, Wenhan Wang, and
Yang Liu. 2022b. Are code pre-trained models pow-
erful to learn code syntax and semantics?

Gail C. Murphy, David Notkin, William G. Griswold,
and Erica S. Lan. 1998. An empirical study of
static call graph extractors. ACM Trans. Softw. Eng.
Methodol., 7(2):158-191.

Anh Nguyen-Duc, Beatriz Cabrero-Daniel, Adam Przy-
bylek, Chetan Arora, Dron Khanna, Tomas Herda,
Usman Rafiq, Jorge Melegati, Eduardo Guerra, Kai-
Kristian Kemell, et al. 2023. Generative artifi-
cial intelligence for software engineering—a research
agenda. arXiv preprint arXiv:2310.18648.

Changan Niu, Chuanyi Li, Vincent Ng, Jidong
Ge, Liguo Huang, and Bin Luo. 2022. Spt-
code: Sequence-to-sequence pre-training for learning
source code representations. In Proceedings of the
44th International Conference on Software Engineer-
ing, ICSE 22, page 2006-2018, New York, NY, USA.
Association for Computing Machinery.

OpenAl. 2023. ArXiv,

abs/2303.08774.

Gpt-4 technical report.

Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia,
Yves Le Traon, and Mark Harman. 2019. Mutation
testing advances: an analysis and survey. In Ad-
vances in Computers, volume 112, pages 275-378.
Elsevier.

Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana,
and Baishakhi Ray. 2020. Trex: Learning execution
semantics from micro-traces for binary similarity.
arXiv preprint arXiv:2012.08680.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2021. A primer in bertology: What we know about
how bert works. Transactions of the Association for
Computational Linguistics, 8:842-866.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Yannis Smaragdakis, George Balatsouras, et al. 2015.
Pointer analysis. Foundations and Trends® in Pro-
gramming Languages, 2(1):1-69.

https://doi.org/10.1145/347636.348916
https://doi.org/10.1145/347636.348916
https://doi.org/10.1145/347636.348916
https://doi.org/10.1145/3548606.3560612
https://doi.org/10.1145/3548606.3560612
https://doi.org/10.1145/3548606.3560612
https://doi.org/10.1145/3548606.3560612
https://doi.org/10.1145/3548606.3560612
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3135932.3135941
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://api.semanticscholar.org/CorpusID:258556996
https://api.semanticscholar.org/CorpusID:258556996
https://api.semanticscholar.org/CorpusID:258556996
https://doi.org/10.1145/279310.279314
https://doi.org/10.1145/279310.279314
https://doi.org/10.1145/279310.279314
https://doi.org/10.1145/3510003.3510096
https://doi.org/10.1145/3510003.3510096
https://doi.org/10.1145/3510003.3510096
https://doi.org/10.1145/3510003.3510096
https://doi.org/10.1145/3510003.3510096
https://api.semanticscholar.org/CorpusID:257532815

Dominik Sobania, Martin Briesch, Carol Hanna, and
Justyna Petke. 2023. An analysis of the automatic
bug fixing performance of chatgpt. arXiv preprint
arXiv:2301.08653.

Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-
Chi Cheung, Jacques Klein, and Tegawendé F Bis-
syandé. 2023. Is chatgpt the ultimate program-
ming assistant-how far is it? arXiv preprint
arXiv:2304.11938.

Sergey Troshin and Nadezhda Chirkova. 2022. Probing
pretrained models of source codes. In Proceedings of
the Fifth BlackboxNLP Workshop on Analyzing and
Interpreting Neural Networks for NLP, pages 371—
383, Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.

Lewis Tunstall, Nathan Lambert, Nazneen Ra-
jani, Edward Beeching, Teven Le Scao, Lean-
dro von Werra, Sheon Han, Philipp Schmid,
and Alexander Rush. 2023. Creating a coding
assistant with starcoder. Hugging Face Blog.
Https://huggingface.co/blog/starchat.

Lars van Hijfte and Ana Oprescu. 2021. Mutantbench:
an equivalent mutant problem comparison frame-
work. In 2021 IEEE International Conference on
Software Testing, Verification and Validation Work-
shops (ICSTW), pages 7-12.

Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guan-
dong Xu, and Hai Jin. 2022. What do they capture?
a structural analysis of pre-trained language models
for source code. In Proceedings of the 44th Interna-
tional Conference on Software Engineering, pages

2377-2388.

Weishi Wang, Yue Wang, Steven Hoi, and Shafiq Joty.
2023. Towards low-resource automatic program re-
pair with meta-learning and pretrained language mod-
els. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing,
pages 6954-6968, Singapore. Association for Com-
putational Linguistics.

Wenhan Wang, Kechi Zhang, Ge Li, Shangqing Liu, Zhi
Jin, and Yang Liu. 2022a. A tree-structured trans-
former for program representation learning. arXiv
preprint arXiv:2208.08643.

Xin Wang, Yasheng Wang, Fei Mi, Pingyi Zhou, Yao
Wan, Xiao Liu, Li Li, Hao Wu, Jin Liu, and Xin Jiang.
2021. Syncobert: Syntax-guided multi-modal con-
trastive pre-training for code representation. arXiv
preprint arXiv:2108.04556.

Xin Wang, Yasheng Wang, Yao Wan, Jiawei Wang,
Pingyi Zhou, Li Li, Hao Wu, and Jin Liu. 2022b.
Code-mvp: learning to represent source code from
multiple views with contrastive pre-training. arXiv
preprint arXiv:2205.02029.

Chungiu Steven Xia and Lingming Zhang. 2023. Keep
the conversation going: Fixing 162 out of 337
bugs for $0.42 each using chatgpt. arXiv preprint
arXiv:2304.00385.

11

Zhou Yang, Jieke Shi, Junda He, and David Lo. 2022.
Natural attack for pre-trained models of code. In
Proceedings of the 44th International Conference on
Software Engineering, pages 1482—-1493.

He Ye, Matias Martinez, and Martin Monperrus. 2022.
Neural program repair with execution-based back-
propagation. In Proceedings of the 44th International
Conference on Software Engineering, ICSE °22, page
1506-1518, New York, NY, USA. Association for
Computing Machinery.

Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun,
Kaixuan Wang, and Xudong Liu. 2019. A novel
neural source code representation based on abstract
syntax tree. In 2019 IEEE/ACM 41st International
Conference on Software Engineering (ICSE), pages
783-794.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du,
and Yang Liu. 2019. Devign: Effective vulnerability
identification by learning comprehensive program
semantics via graph neural networks. Advances in
neural information processing systems, 32.

A Prompt Design

GPT-based models utilize the prompt-based learn-
ing paradigm (Liu et al., 2023a). The design of the
prompt can significantly impact the performance
of the model. To design better prompts, itera-
tively, we employ ChatGPT to optimize our initial
prompts and then evaluate these optimized prompts
by some trial queries. Specifically, we prompt Chat-
GPT with the message, “Act as a prompt optimizer
and optimize the following prompt for [TASK DE-
SCRIPTION]. The prompt is [PROMPT]", to help
us generate the prompts. [TASK DESCRIPTION]
is the task description placeholder and [PROMPT]
is the draft prompt placeholder. For each task, we
have multiple draft prompts, and then we manually
evaluate them using some task data to observe their
differences. Finally, according to the experience
obtained from the trials, we summarize our prompt
templates as role prompt and instruction prompt.
Through our continuous optimizations, our prompt
may not be the best, but it is excellent.

Role prompt assigns a specific role to LLM, pro-
viding a task context for the model to effectively
generate the desired output. Its template is shown
below,

You are [ROLE] for [LANG].
DESCRIPTION]. [OUTPUT
The input is [INPUT].

[TASK
FORMAT].

where the placeholder [ROLE] denotes the specific
role assigned to LLM. We define six roles: AST

https://aclanthology.org/2022.blackboxnlp-1.31
https://aclanthology.org/2022.blackboxnlp-1.31
https://aclanthology.org/2022.blackboxnlp-1.31
https://doi.org/10.1109/ICSTW52544.2021.00015
https://doi.org/10.1109/ICSTW52544.2021.00015
https://doi.org/10.1109/ICSTW52544.2021.00015
https://doi.org/10.1109/ICSTW52544.2021.00015
https://doi.org/10.1109/ICSTW52544.2021.00015
https://aclanthology.org/2023.emnlp-main.430
https://aclanthology.org/2023.emnlp-main.430
https://aclanthology.org/2023.emnlp-main.430
https://aclanthology.org/2023.emnlp-main.430
https://aclanthology.org/2023.emnlp-main.430
https://doi.org/10.1145/3510003.3510222
https://doi.org/10.1145/3510003.3510222
https://doi.org/10.1145/3510003.3510222
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086
https://doi.org/10.1109/ICSE.2019.00086

parser, expression tree matcher, control flow graph
analyzer, call graph analyzer, code static analyzer,
and pointer analyzer. [LANG] refers to the pro-
gramming language used for the code analyzed.
[TASK DESCRIPTION] outlines the expected task
for LLM to perform. [OUTPUT FORMAT] pro-
vides the output specification. [INPUT] serves as a
placeholder for the code under analysis.

Instruction prompt does not assign a specific role
to LLM, instead, they provide a command. These
prompts are typically useful for tasks involving
multiple roles or those without any applicable roles.
The template for the instruction prompt is defined
as follows:

Please analyze [LANG]. [DOMAIN
KNOWLEDGE]. Here are some
examples [EXAMPLE CODE]. Please

identify if [TASK DESCRIPTION].
[OUTPUT FORMAT]. The input is
[INPUT].

where [LANG] specifies the used programming
language for the analyzed code. [DOMAIN
KNOWLEDGE] explains the domain knowledge
relevant to the task. [EXAMPLE CODE] provides
sample code related to domain knowledge for
task demonstration. [TASK DESCRIPTION]
describes the task instruction. [OUTPUT FOR-
MAT] outlines the output specification. [INPUT]
serves as a placeholder for the code under
analysis. Notice that different LLMs may need
different prompt formats. For StarCoder (Li
et al.,, 2023) and Codellama (Roziere et al.,
2023), we also refer to their original papers
and adapt the prompt design for both through
adding special tokens. For StarCoder, its format is
“<Isysteml>\n<lend/>\n<luser/>\n{query } <lend|>\n-
<lassistantl>." The placeholder {query}
will be replaced by our prompts. For
CodeLlama-13b-instruct, we insert the spe-
cial tokens into our prompt with this format
“<s>[INST]{query }[/INST]”. For the manual
evaluation tasks, we created GPTs tools based on
GPT4 to maximize optimization prompt for GPT4.

In our study, we employ the role-based prompt
for RQ1 and RQ2 where the prompt does not in-
clude examples. Owing to the complexity of these
tasks, which entail numerous patterns, prompting
the model to generate outputs using illustrated
examples might potentially downgrade the per-
formance. For example, by presenting the data-
dependence example (Figure 4 (1)), the model may

12

hyperfocus on this specific instance, consequently
overlooking other situations of data-dependence
due to in-context learning (Liu et al., 2023b). Wang
et al. (2023) report that few examples in the prompt
may not help improve the performance. In con-
trast, for tasks under RQ3, we resort to instruction
prompts given that this type of prompt works a lit-
tle better during our prompt-designed trials due to
their unfitness for resolution by a single role. We
present all used prompts on our website (Anony-
mous, 2024).

	Introduction
	Motivation
	Study Design
	Overview
	Code Syntax Understanding (RQ1)
	Code Static Behavior (RQ2)
	Code Dynamic Behavior (RQ3)

	Evaluation Setup
	Evaluation Metrics

	Experimental Results
	Code Syntax Understanding (RQ1)
	Code Static Understanding (RQ2)
	Code Dynamic Understanding (RQ3)

	Related Work
	Conclusion
	Limitations
	Prompt Design

