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Abstract

Large language models (LLMs) demonstrate001
significant potential to revolutionize software002
engineering (SE). However, the high reliabil-003
ity and risk control requirements in software004
engineering raise concerns about the need for005
interpretability of LLMs. To address this con-006
cern, we conducted a study to evaluate the capa-007
bilities of LLMs and their limitations for code008
analysis in SE. Code analysis is essential in soft-009
ware development. It identifies bugs, security,010
and compliance problems and evaluates code011
quality and performance. We break down the012
abilities needed for LLMs to address SE tasks013
related to code analysis into three categories:014
1) syntax understanding, 2) static behaviour015
understanding, and 3) dynamic behaviour un-016
derstanding. We used four foundational mod-017
els and assessed the performance of LLMs018
on multiple-language tasks. We found that,019
while LLMs are good at understanding code020
syntax, they struggle with comprehending code021
semantics, particularly dynamic semantics. Fur-022
thermore, our study highlights that LLMs are023
susceptible to hallucinations when interpreting024
code semantic structures. It is necessary to025
explore methods to verify the correctness of026
LLM’s output to ensure its dependability in SE.027
More importantly, our study provides an initial028
answer to why the codes generated by LLM are029
usually syntax-correct but are possibly vulnera-030
ble.031

1 Introduction032

The ability of the large language model (LLM) to033

comprehend context, align instructions, and pro-034

duce coherent content has attracted widespread at-035

tention from the software engineering (SE) com-036

munity. Researchers started exploring how to use037

LLM in SE tasks related to code analysis (Xia and038

Zhang, 2023; Tian et al., 2023). However, although039

LLM is widely used and discussed in software en-040

gineering, a deep and systematic analysis of LLM’s041

code analysis capabilities is vital and worthy of in- 042

depth study. Code analysis is significant in modern 043

software development to ensure the creation of se- 044

cure, high-quality, and performant software. The 045

basic ability to understand code syntax and seman- 046

tics for code analysis is important for LLM in SE. 047

Previous works have confirmed that some simple 048

modifications without changing code semantics can 049

mislead LLM to produce unexpected outputs (Yang 050

et al., 2022; Liu et al., 2023c). As a result, there are 051

two questions, 1) can LLM comprehend program 052

semantics? 2) To what extent does LLM under- 053

stand the code? Firstly, it is unclear whether these 054

LLMs can comprehend the syntax and semantics 055

of the code for code analysis. Secondly, if these 056

LLMs have a specific capability to comprehend 057

syntax and semantics, the extent to which they can 058

understand the semantics is also unknown. 059

To address the two issues, in this paper, we ex- 060

plore the ability of LLMs for code analysis in terms 061

of understanding program syntax, static behaviours, 062

and dynamic behaviours. Our work includes 4 063

state-of-the-art (SOTA) large language models, 064

GPT4 (OpenAI, 2023), GPT3.5, StarCoder (Li 065

et al., 2023) and CodeLlama-13b-instruct (Roziere 066

et al., 2023). We design a set of code-related 067

tasks (9 different tasks) on 2,560 code samples. 068

Specifically, we design two tasks for code syn- 069

tax understanding: Abstract Syntax Tree (AST) 070

generation and expression matching to determine 071

whether LLM can comprehend program syntax. 072

Besides, we design five tasks, including Control 073

Flow Graph (CFG) generation, Call Graph (CG) 074

generation, data dependency analysis, taint analy- 075

sis, and pointer analysis to explore whether LLM 076

can statically approximate program behaviour sim- 077

ilar to the traditional static analysis tools (Feist 078

et al., 2019a; Cuoq et al., 2012). We further design 079

and study two challenging tasks: code behaviour 080

change detection and code behaviour variability 081

reasoning to analyze the capability of LLM in dy- 082
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namically analyzing program behaviours. Overall,083

the main contributions of our paper are summa-084

rized as follows: 1) We conduct a comprehensive085

study from different aspects to explore the capa-086

bility of LLM for code analysis. We are the first087

to explore LLM’s capability to understand code088

syntax, static, and dynamic behaviors. We study089

four state-of-the-art models: GPT4, GPT3.5, Star-090

Coder and CodeLlama. We have made our code091

and data public on our website1. 2) We analyze092

LLM to understand code syntax, code static se-093

mantic structures, and code dynamic behaviours094

through diverse tasks. Our study suggests that LLM095

can comprehend code syntax rules and has certain096

abilities to understand code static behaviours but097

fails to comprehend dynamic behaviours. GPT4 is098

the best one to understand code syntax and seman-099

tics.100

2 Motivation101

We use ChatGPT to show our motivation example,102

a buggy function “bucketsort” in Figure 1 from103

QuixBugs (Lin et al., 2017). The Bucketsort al-104

gorithm requires splitting the array (i.e., “arr” in105

this function) into several buckets (i.e., “counts”)106

and then sorting each bucket individually. The107

correct version is to replace the variable “arr” in108

the second loop with the variable “counts”. Chat-109

GPT can automatically fix this bug (Sobania et al.,110

2023). It seems that ChatGPT correctly compre-111

hends this function semantics. However, a simple112

mutation can cause ChatGPT to produce incorrect113

results as shown in Figure 1 if we replace “arr” with114

“ccounts”. If ChatGPT really understands the logic115

of the code, it should not be confused by the name116

change. Understanding the capabilities and limi-117

tations of LLM for code syntax and semantics is118

important, which can ensure that we can use LLM119

correctly and reasonably for code-related tasks. To120

address this challenge, in this paper, we provide a121

systematic and comprehensive study to investigate122

the capabilities of LLM for code analysis, i.e., what123

it can do and what its limitations are.124

3 Study Design125

3.1 Overview126

We begin by examining the elemental abilities that127

LLMs must possess to tackle SE tasks related to128

code analysis effectively. Code analysis needs129

1https://sites.google.com/view/chatgpt4se

Does this program have a bug? How to fix it?
def bucketsort(arr, k ): 

counts = [0] * k 
for x in ccounts : 
 counts[x] += 1  
sorted_arr = [] 
for i, count in enumerate( arr ):
  sorted_arr.extend([i] * count )  
return sorted_arr 

Yes, this program has a bug. The variable 
"ccounts" is used in the first line of the program, 
but it is not defined anywhere. To fix this bug, the 
variable "ccounts" should be defined and given a 
value.

ccounts

Figure 1: An semantic equivalent version of the buggy
function by replacing “arr” with “ccounts” (May 2023).

code syntax, static behaviour, and running-time be- 130

haviour. In the previous works about code learning, 131

instead of naively using code sequence, abstract 132

syntax tree (AST)(Feng et al., 2020; Zhang et al., 133

2019; Wang et al., 2022a; Niu et al., 2022; Jiang 134

et al., 2021; Wang et al., 2021), control and data 135

flow (Guo et al., 2020; Ma et al., 2022a; Ahmad 136

et al., 2021; Wang et al., 2022b; Zhou et al., 2019), 137

dynamic execution trace (Ye et al., 2022; Jin et al., 138

2022; Pei et al., 2020) are used to build good code 139

models. They have proven helpful for code mod- 140

els to learn code features for SE tasks. Since three 141

types of information are critical to solving SE tasks, 142

we try to answer the following three research ques- 143

tions (RQs): RQ1). Can LLM understand code 144

syntax well? RQ2). Can LLM understand code 145

static behaviors? RQ3). Can LLM understand code 146

dynamic behaviors? 147

3.2 Code Syntax Understanding (RQ1) 148

AST Generation AST is the core structure in 149

code analysis (Baxter et al., 1998b; Zhang et al., 150

2019). We prompt LLM to parse code into an AST, 151

and then compare these ASTs with those generated 152

by AST parsers to determine their meaningfulness. 153

The ability to comprehend ASTs is fundamental 154

for code models, as tokens in code serve distinct 155

syntax roles. Understanding code syntax is crucial 156

for addressing certain SE tasks, such as generating 157

syntactically correct code. 158

Expression Matching This task aims to find a 159

similar expression to the target mathematics ex- 160

pression. It is related to code-clone detection for 161

Type-2 and Type-3 that requires understanding the 162

syntax of the code (Baxter et al., 1998a; Koschke 163

et al., 2006). The matched expression should have 164

almost the same operators as the target expres- 165

sion. Figure 2 presents an example of this task, 166

in which we try to find a similar expression with 167
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base_borrow_rate + utilization_rate * slope1

1. base_borrow_rate - utilization_rate + slope1
2. a + b
…
n. rate + ur * s1
…

What is the most similar expression 
with above?

+

base_borrow_rate

utilization_rate

*

slope1

Exp Tree

Figure 2: An example of the task of Expression Match-
ing.

functionm1 (a, b){
if( a > b ){
m2(a);

} }

functionm2 (a){
if( a < 0 ){
m2(a+1);

} }

m1

m2
build

1

6

4

functionm1(a, b){
1. if( a > b ){
2. return a;
3. } else {
4. b = a + b;
5. }
6. return b;

}

build

2

start

end

True False

Figure 3: Examples of (1) Code Control Flow
Graph (Python) and (2) Code Call Graph (Python).

“base_borrow_rate+utilization_rate*slope1”. With-168

out understanding the syntax role of tokens, finding169

similar expressions is not feasible. For instance,170

“base_borrow_rate-utilization_rate+slope1” may be171

incorrectly identified as a more similar expression172

to it than to “rate+ur*s1”, if the operators “+” and173

“*” are not recognized.174

3.3 Code Static Behavior (RQ2)175

Control Flow Graph (CFG) Analysis Control176

flow graph analysis (CFG) is typically the first step177

in program analysis and understanding. We prompt178

LLM to construct the CFG from the input code.179

Figure 3 provides an example 1⃝ of this process.180

Understanding the CFG is critical for code models181

to identify relationships among statements. CFG is182

a core code structure in static analysis and is widely183

employed in software engineering to address vari-184

ous tasks (Cheng et al., 2019; Ferrante et al., 1987;185

Allen, 1970).186

Call Graph (CG) Analysis The Call Graph is a187

data structure that depicts the invocation relation-188

ship among functions in a program. It is extensively189

employed in software engineering to understand190

program behaviors (Murphy et al., 1998). Figure 3191

presents an example 2⃝ of a call graph with two192

methods. We prompt LLM to construct the call193

graph for the given code. Understanding the call194

graph is significant as it provides insights into the195

function relationships in the code.196

Data Dependency Figure 4 provides an exam-197

ple 1⃝ in which “d” is data-dependent on “a”. We198

prompt LLM to determine whether two given vari-199

ables are data dependent in the code. Data depen-200

dency analysis is a powerful technique for code201

understanding (Guo et al., 2020) and optimizing202

contract Reference{
// Taint Analysis
struct Ref{

uint val;
}
Ref a;
Ref b;
function set(uint source_taint) 
public
{

Ref storage r = a;
if(true){

r = b;
}
r.val = source_taint;

}
}

function f (a, b){
// Data Dependency

c = a ;
d = 0;

if( b < 0 ){
d = c;

}
return d;

}

int main(){
// Pointer Analysis

int c = m();
int d = f(c);
int* x = d>0?&c:&d;

}

Figure 4: (1) Data Dependency Example (Python),
(2) Taint Analysis Example (Solidity) and (3) Pointer
Analysis (C).

code (Ferrante et al., 1984), as it can reveal data re- 203

lationships among different variables in a program. 204

Data dependency illustrates how data are propa- 205

gated in the program, and it is extremely useful for 206

code models to solve SE tasks such as vulnerability 207

detection (Guo et al., 2020). 208

Taint Analysis This task is to find if a variable 209

can be tainted by an external source. Figure 4 210

illustrates an example 2⃝ in which the variable “a” 211

can be overwritten by “source_taint” via the storage 212

variable “r”. This task necessitates the reasoning 213

ability of LLM based on data dependency analysis. 214

Taint analysis (Kim et al., 2014) is strongly related 215

to data dependency but also needs information from 216

the call graph and the control flow graph to track 217

how one data point is propagated in the program. It 218

requires a deep understanding and reasoning of the 219

semantics of the code in terms of execution order 220

and relationship. 221

Pointer Analysis Pointer analysis is to find the 222

data type of the pointers in code. Figure 4 il- 223

lustrates an example 3⃝ of pointer analysis. The 224

pointer “x” can potentially point to either “c” or 225

“d”. Pointer analysis is widely used to detect vul- 226

nerabilities such as memory leakage. Pointer analy- 227

sis (Smaragdakis et al., 2015; Hind and Pioli, 2000) 228

requires an understanding of the dependency of 229

data, the control flow, and the call graph. Point 230

analysis also requires the inference to figure out 231

what the current variable refers to. We prompt 232

LLM to infer the referents of pointers. This task 233

requires LLM to comprehend the code syntax and 234

semantics in-depth. 235

3.4 Code Dynamic Behavior (RQ3) 236

Code Behavior Change Detection Any code 237

change is highly possible to change the dynamic 238
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function f (a, b){
 c = a + b ;
    d = 0;
 if( a < 0 ){ 
   d = c;
  } 
    return d;
}

function f (a, b){
 c = b + a;
    d = 0;
 if( a < 0 ){ 
   d = c;
  } 
    return d;
}

Eq. Mutant

function test_h (){
    n = random() ;
       a = 10;
       assert h(a+n), ”Test Failed”
}

Figure 5: (1) Equivalent Mutant Example (Python) and
(2) Flaky Test Reasoning Example (Python).

behaviors of the code. If LLM can really sense the239

behavior difference due to the minor code change,240

it can be as evidence that LLM can understand the241

change of code dynamic behavior well. This is242

called detecting equivalent mutants which is a criti-243

cal problem in Mutation Testing (Papadakis et al.,244

2019). We check if LLM can find if the code minor245

change can change the code behavior. Figure 5246

presents an example of an equivalent mutant 1⃝ by247

switching two variables.248

Code Behavior Variability Reasoning Some-249

times, the same code runs multiple times could250

behave differently. If LLM can understand the251

code dynamic behavior, it should know why the252

multiple-running outputs are inconsistent. In soft-253

ware testing, we call it Flaky Test. Flaky test is one254

challenging problem related to code dynamic be-255

havior. Flaky test means the output inconsistency256

of one test when running multiple times. Thirty257

flaky reasons are summarized (Akli et al., 2022).258

Flaky tests are usually caused by some undeter-259

mined functions, the environment state and the260

execution schedule. Figure 5 presents one flaky261

example 2⃝ due to randomness. We prompt LLM262

to tell the reason why one test is flaky.263

4 Evaluation Setup264

We created a new dataset that was generated by the265

program analysis tools. The tasks and datasets uti-266

lized in our study are summarized in Table 1. We267

study two closed OpenAI models, GPT4 (OpenAI,268

2023) and GPT3.5, and two open source models,269

StarCoder (Li et al., 2023) and CodeLlama-13b-270

Instruct (Roziere et al., 2023). For StarCoder, we271

use its conversational version, StarChat (Tunstall272

et al., 2023). For the evaluation, we employ two ex-273

perts for code analysis. They first check the model274

output and then discuss how good the output is.275

We have different evaluation criteria for tasks that276

require manual inspection. We carefully design our277

prompt and please see more details in Appendix A.278

For dynamic behavior in code, we conducted an279

additional trial and provided examples, primarily280

Table 1: Tasks and Datasets used in this study.

Task Level Programs Dataset Size LoC
AST syntax 75 75 1,059

Expression Matching 4 32 4,238
CFG

static

75 75 1,059
CG 24 24 1,609

Data Dependence 13 992 62,606
Taint Analysis 13 830 62,052

Pointer Analysis 40 342 2,726
Code Behavior Variability dynamic 13 65 1,615

Code Behavior Change 35 200 15728
Total 217 2,560 151,633

focusing on zero-shot learning. While it is acknowl- 281

edged that some techniques such as RAG and SFG 282

can enhance the model performance, we opted not 283

to utilize them for two main reasons. Firstly, they 284

introduce the potential for bias. It remains unclear 285

whether improved outcomes are mainly attributable 286

to which part. Secondly, zero-shot learning lies in 287

the capacity of the models to comprehend and pro- 288

cess code across various programming languages 289

without the need for explicit, task-specific learn- 290

ing. This approach emphasizes the model’s innate 291

ability to generalize and adapt. 292

4.1 Evaluation Metrics 293

AST Generation We analyzed programs contain- 294

ing diverse syntax structures to effectively assess 295

LLMs ability to understand code syntax. We classi- 296

fied LLM output as reasonable or not by analyzing 297

the entire structure with a tolerance for the minor is- 298

sues (missing trivial leaf nodes); 1) lack leaf nodes 299

but keep the overall structure, we labeled it as ’Yes’. 300

It means that LLM correctly generates the syntax 301

type for the code token but does not give the token 302

itself. 2) If the output provided a wrong structure 303

with incorrect edges or lacked non-leaf nodes, we 304

labeled it as ’No’. In the end, we count how many 305

programs are reasonably handled, and also record 306

and categorize the issues we find. 307

Expression Matching We implemented 32 re- 308

ward equations strictly from the whitepapers of 309

Web3 projects and then prompted LLM to find 310

the corresponding implementation in the target 311

projects. For each query, we fed the target code 312

to LLM as comprehensively as possible and then 313

checked if the corresponding implementation ex- 314

pression was in the top-5,10 and 20 outputs. For the 315

open source model, we also computed the cosine 316

similarity between our implemented expressions 317

from the whitepapers and the expressions in the 318

project. 319

Control Flow Graph (CFG) Generation We 320

used the dataset that covers diverse control flows. 321

We labeled the generated CFGs as reasonable or 322

4



not by comparing them with their corresponding323

programs. A CFG was considered reasonable if324

its overall structure was correct, with tolerating325

missing 1) start or end nodes, 2) a lack of edges326

to the end node, or 3) sequence statements being327

stacked in one node. CFGs that incorrectly repre-328

sented control structure, 1) wrong branch and loop329

structures, and 2) fabricated non-existent nodes330

and edges, were labeled as not reasonable. Finally,331

we counted the number of reasonable CFGs and332

recorded and categorized all issues we identified.333

Call Graph (CG) Generation We selected 24334

public source code programs with at least three335

function calls. A generated call graph (CG) was336

considered reasonable if all of its call relationships337

were correct, even with some missing calling or338

redundant nodes. However, if the output contains339

non-existent call edges, we think it is not reason-340

able. The number of correct CGs generated was341

recorded.342

Data Dependency and Taint Analysis We used343

Slither (Feist et al., 2019b) to extract 992 pairs344

of data-dependency variables and 830 externally345

tainted variables from 13 DeFi projects from Ether-346

scan. We downsampled data to ensure the datasets347

were balanced. 1 indicated that it had a data-348

dependency fact or could be externally tainted, oth-349

erwise 0. We used F1 as a performance measure-350

ment.351

Pointer Analysis We used Frama-C (Cuoq et al.,352

2012) to extract the possible set of variables for353

each pointer, which served as the ground truth. For354

each pointer, we collect a set of variables that it may355

refer to by prompting LLMs. We used the Jaccard356

index to measure the similarity between the ground357

truth set and the predicted set. We compute the358

Jaccard index for two scenarios: 1). Jaccard index359

for each pointer. It can measure how LLM behaves360

on this task; 2). Jaccard index for each program. It361

can measure whether LLM has a data shift problem,362

that is, behaves differently for different programs.363

Code Behavior Change Detection We utilized364

MutantBench (van Hijfte and Oprescu, 2021) for365

this task. We use a script to extract the input-label366

data pairs. We randomly selected 100 equivalent367

mutants and 100 nonequivalent mutants. We use368

the F1 score in this task. Two different prompts369

were used for this task: one type of prompt did not370

include any example (zero-shot), and the other type371

included demonstration examples (few-shot).372

Code Behavior Variability Reasoning This373

dataset (Akli et al., 2022), which was manually374

collected, consists of 13 classes. To create our 375

sample set, we randomly selected 5 samples for 376

each class, resulting in a total of 65 samples. We 377

prompted LLM to assign a label to each input and 378

used accuracy as the performance metric. Similarly 379

to the previous task, we employed two different 380

prompts for this task. We also analyzed the predic- 381

tion details for each class. 382

5 Experimental Results 383

All figures and the generated results can be found 384

on our website(Anonymous, 2024). 385

5.1 Code Syntax Understanding (RQ1) 386

AST Generation Figure 6a displays the num- 387

ber of reasonable and unreasonable ASTs gener- 388

ated by four LLMs. Blue represents the number 389

of correct ASTs, orange represents the number of 390

ASTs with minor issues and green represents un- 391

reasonable. We can see for GPT4 and GPT3.5, 392

the majority of the generated ASTs were reason- 393

able and few are minor. However, the open-source 394

models CodeLlama-13-instruct and StarCoder are 395

worse than OpenAI’s models and have more unrea- 396

sonable AST outputs. But CodeLlama is slightly 397

better than StarCoder. We further investigate the is- 398

sues of the generated ASTs and Figure 6b displays 399

the number of issues that we identified. A single 400

AST may exhibit multiple issues, and even reason- 401

able ASTs might present some minor issues, as ex- 402

plained below. We categorized the found issues into 403

three groups: missing statement tokens (blue bar), 404

missing syntax tokens (orange bar), and wrong 405

structure (green bar) as shown in Figure 6b. The 406

missing-statement-tokens category indicates that 407

some tokens in a statement were missing, such as 408

the token "Printer" in "Printer.out.print(a);". The 409

missing-syntax-tokens category indicates that some 410

syntax keyword tokens were missing, such as "pub- 411

lic" and "private" access modifiers. The wrong- 412

structure category indicates that AST structures 413

were incorrect, such as an incorrect if-else struc- 414

ture. The category Wrong Structure is serious and 415

it means that AST contains faulty syntax structures. 416

Reasonable ASTs with minor issues refer to these 417

ASTs that typically had missing tokens of the state- 418

ment or missing syntax trivial tokens, such as return 419

type and access modifier. In our evaluation, GPT4 420

suffers from the least issues. GPT3.5 and CodeL- 421

lama have similar performance; GPT3.5 has more 422

missing cases while CodeLlama has more wrong 423
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Figure 6: AST Generation Result
Table 2: Expression Matching Results of LLMs

Rank GPT4 GPT3.5 StarCoder CodeLlama

Top-5 27 28 4 4
Top-10 27 28 5 5
Top-20 27 28 5 5
Hit Rate 27/32 28/32 5/32 5/32

structures. StarCoder is the worst and suffers from424

lots of wrong structures.425

Expression Matching Table 2 presents the re-426

sults obtained using four LLMs. The first column427

shows the number of ranked equations that were428

considered in the results. GPT4 and GPT3.5 have429

a very close hit-rate performance, 27/32 and 28/32430

in the top-5, top-10 and top-20. In contrast, Star-431

Coder and CodeLlama have the same hit-rate per-432

formance, 5/32. Notice that, the number of Star-433

Coder and CodeLlama in Table 2 are based on the434

consine similarity. The prompt results of both are435

quite bad. For StarCoder, none of the outputs is436

correct. 26/32 outputs are fabricated and 6/32 cases437

are wrongly matched. For CodeLlama, its prompt438

outputs only match 1 case and fabricate 28/32 cases.439

In our investigation of the answers of GPT4 and440

GPT3.5, we discovered that both consider two ex-441

pressions to be similar if they use similar operators,442

have similar orders, and have a similar number of443

variables. An intriguing observation is that, while444

GPT4 and GPT3.5 can identify the line number445

where the matched expression is located or the446

starting line number of the function containing the447

matched expression, none of the line numbers were448

accurate for these 32 expression matching samples449

in either case.450

In general, LLM can understand the syntax struc-451

ture of the code and the syntax roles of the code452

tokens. This ability allows it to act as an Abstract453

Syntax Tree (AST) parser.454

5.2 Code Static Understanding (RQ2)455

CFG Generation Figure 7a shows the number456

of reasonable and unreasonable CFGs generated457

by ChatGPT according to the predefined criteria.458

It can be seen that GPT4 achieves the best perfor-459

mance and majority of GPT4 outputs are correct,460

and few suffer from minor problems or wrong re-461

sults. GPT3.5 is worse than GPT4 but is better462
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Figure 7: CFG Generation Results

than CodeLlama and StarCoder. CodeLlama and 463

StarCoder have very close performances. Figure 7b 464

shows the issues we identified, which we catego- 465

rized into three groups: redundancy, fabrication, 466

and wrong structure. Reasonable CFGs only can 467

have the redundancy issue. The redundancy cate- 468

gory means that there are meaningless nodes and re- 469

moving them does not change anything such as null 470

nodes, while the fabrication category means there 471

are non-existent nodes (statements). The wrong- 472

structure category refers to CFGs with incorrect 473

structures (incorrectly represented loop statements 474

and if-else statements). Redundancy issues are 475

minor because they do not affect the control flow. 476

Fabrication and wrong-structure issues are serious 477

because they alter the control flow. We observe 478

that GPT4 is still the best one and then the next is 479

GPT3.5. Most results of CodeLlama and StarCoder 480

suffer from the wrong structure. StarCoder suffers 481

from more hallucinations than others. Upon ex- 482

amining the identified issues in the AST and CFG 483

generation tasks, an interesting observation is that 484

some serious problems typically arise with loop or 485

if-else statements. LLM appears to have a weaker 486

understanding of the syntax and static behavior of 487

loop and if-else statements. 488

Call Graph Generation Figure 8a shows that 489

GPT3.5, CodeLlama, and StarCoder were unable 490

to generate reasonable CGs for most of the sam- 491

ples while GPT4 still performed well. StarCoder 492

did not generate any reasonable output. Figure 8b 493

illustrates the issues we found and categorized into 494

3 groups: redundancy, fabrication, and missing 495

call. Redundancy means there are multiple edges 496

between the functions that have the calling rela- 497

tionship. Fabrication means there are non-exist 498

function calling. A missing call means the call 499

edge is missed. It can be seen that GPT3.5 suffered 500

from hallucination and GPT4 is obviously better 501

than others. Missing calling is one common issue 502

for the four LLMs. It indicates that GPT4 has a 503

strong ability to understand code semantics. 504

Data Dependency and Taint Analysis Table 3 505

demonstrates the F1 score of the four LLMs on 506

the data dependency task in the second row. GPT4 507
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Figure 8: CG Generation Result

Table 3: Prediction Performance (F1) on Data Depen-
dence and Taint Analysis on the entire datasets.

Task GPT4 GPT3.5 CodeLLama StarCoder

Data Dependency 0.69 0.68 0.44 0.6
Taint Analysis 0.44 0.15 0.39 0.47

achieves the best F1 score. GPT3.5 is inferior to508

GPT4. StarCoder is better than CodeLlama for509

this task, and worse than OpenAI’s models. The510

comparison of the taint analysis is presented in511

the last row of Table 3. It can be seen that the512

performance of LLMs on this task is inferior to513

the data dependency analysis in terms of F1 (please514

note that we downsampled the taint dataset to make515

it balanced). All of them are worse than the random516

guess classifier that should have a 0.5 F1 score.517

Taint analysis is based on data dependency and518

requires the reasoning ability about the data flow.519

The results show that the studied models lack in-520

depth reasoning capabilities about the data flow. To521

assess whether LLM is suffering from the data-shift522

problem, we conducted an investigation as shown523

by Figure 9. We computed F1 for each project. Our524

findings indicate that LLM is significantly affected525

by the data-shift problem. As illustrated in the526

upper part (marked in blue) of Figure 9 on the data527

dependency, F1 scores differ for different projects,528

with a wide variance ranging from approximately529

0. to 1.0. The lower part (marked in orange) in530

Figure 9 shows F1 scores on taint analysis, which531

display a variation ranging from 0 to about 0.8.532

Pointer Analysis Initially, we determined the533

number of pointers for which LLMs fully predicted534

pointer analysis. Out of a total of 342 pointer sam-535

ples from the 40 programs, only 105 were correctly536
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Figure 9: F1 of each project on Data Dependency (blue)
and Taint Analysis (orange).
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Figure 10: Jaccard Index of Pointer Analysis.
predicted by GPT4, 43 were correctly predicted 537

by GPT3.5, 27 and 25 were correctly predicted by 538

CodeLlama and StarCoder respectively. We also 539

noticed that some pointers were missed by LLMs. 540

GPT4 predicts 211/342 pointers, GPT3.5 predicts 541

133/342 pointers, CodeLlama predicts 156/342 542

pointers and StarCoder predicts 153/342 pointers. 543

Since one pointer can point to multiple variables, 544

we computed the Jaccard Index between the pre- 545

dicted set and the ground truth set for each pointer, 546

as shown in Figure 10a. We discovered that GPT4 547

is half good and half bad. It has the largest number 548

for Jaccard Index 1 for each pointer but almost the 549

same number of pointers have Jaccard Index with 550

0 values. GPT3.5 is inferior to GPT4. CodeLLama 551

and StarCoder are not good in terms of the Jacrad 552

Index for each pointer. We also computed the av- 553

erage Jaccard index for each program to assess 554

whether LLM is affected by the data shift issue. 555

We created a box plot of the mean Jaccard index 556

of pointers from each project, which is illustrated 557

in Figure 10b. We can see that the Jaccard Index 558

variance is quite varied and suggests that LLMs are 559

indeed affected by the data-shift problem. 560

GPT4 and GPT3.5 have the primary ability to 561

perform code static analysis. CodeLlama and Star- 562

Coder are not as good as OpenAI models. However, 563

during the analysis process, we find that all of them 564

experience the issue of hallucination. Furthermore, 565

the performance of LLMs can vary for a given task 566

due to the data shift. 567

5.3 Code Dynamic Understanding (RQ3) 568

Code Behavior Change Detection Table 4 il- 569

lustrates the performance F1 score of four LLMs 570

in the detection of equivalent mutants, based on 571

two types of prompts: prompt learning with or 572

without example code (few-shot v.s. zero-shot) be- 573

cause examples are not always helpful to improve 574

model performance (Wang et al., 2023). GPT4 and 575

StarCoder perform well. CodeLlama failed to dis- 576

tinguish the equivalent mutant and non-equivalent 577

mutant that has one small difference. Even if we 578

tell CodeLlama that the two are equal, it still an- 579

swers no. Although CodeLlama has the ability to 580

7



Table 4: Performance (F1) about Equivalent Mutant
Detection.

Type GPT4 GPT3.5 StarCoder CodeLlama

few-shot 0.56 0.55 0.57 0.
zero-shot 0.67 0.54 0.62 0.

understand code syntax and the limited ability for581

static analysis as shown in the previous sections,582

it lacks the reasoning ability for code dynamic be-583

haviors based on the code syntax and static struc-584

ture understanding. StarCoder demonstrates a bet-585

ter dynamic-understanding ability than CodeLlama586

due to its pre-training data and tasks. To validate587

our hypothesis, we investigated the pre-training588

data and pre-training tasks of StarCoder (Li et al.,589

2023) and CodeLlama (Roziere et al., 2023). Star-590

Coder uses the code commit data from GitHub591

while CodeLlama learns publicly available code592

only without any additional meta-level or temporal593

information such as git-commit info. Code commit594

info involves the code behavior change description595

and its impact.596

Code Behavior Variability Reasoning For this597

task, we also employed two types of prompts, few-598

shot and zero-shot. The task comprises 13 classes,599

with each class containing five samples. To vi-600

sualize the predicted label number for each class,601

we used bar figures, which are presented in Fig-602

ure 11 (bar with slash for few-shot learning and603

bar without slash for zero-shot learning). Y-axis is604

the number and X-axis is the reason id. In these605

figures, the green bar represents the number of pre-606

dictions that LLM is uncertain about, the orange607

bar represents the number of incorrect predictions,608

and the blue bar represents the number of correct609

predictions. We find that GPT4 and GPT3.5 are610

more conservative and prefer to answer unknown611

for most cases, while StarCoder and CodeLlama612

are quite confident about their outputs. We also613

find that the demo examples in the prompt can help614

StarCoder and CodeLlama improve their perfor-615

mance. However, overall, the four models do not616

perform well for this task.617

LLM has limited ability to approximate code618

dynamic behavior and also suffers from the data619

shift problem.620

6 Related Work621

Probing Analysis: Probing analysis (Rogers et al.,622

2021) is a technique employed to examine and in-623

terpret the mechanisms of large language models624

(LLMs). Recently, some works have started to625
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Figure 11: Predictions of LLMs for Flaky Test

analyze code models, like CodeBERT, CodeT5, 626

and UnixCoder. Wan et al. (2022) and Hernán- 627

dez López et al. (2022) analyze how code models 628

learn syntax. Troshin and Chirkova (2022) and Ma 629

et al. (2022b) analyze how code models represent 630

semantics. But all of them study non-foundational 631

models based on tuning classifiers. Our work stud- 632

ies the generation ability of LLM on code analysis. 633

LLM for SE: Tian et al. (2023); Xia and Zhang 634

(2023); Sobania et al. (2023) investigated LLM’s 635

capabilities in code generation, program repair, 636

and code summarization. Hou et al. (2023) sys- 637

tematically reviews the various applications of lan- 638

guage models in software engineering. Fan et al. 639

(2023) and Nguyen-Duc et al. (2023) discuss how 640

LLM can change software engineering. None of 641

them study the interpretability and reliability of 642

LLM on code analysis, and our work is to estimate 643

how LLM understands code that provides the inter- 644

pretability of LLM for SE tasks. We are the first 645

to study LLM on code analysis, especially for un- 646

derstanding code syntax and semantics, providing 647

some confidence when employing LLMs to solve 648

code tasks. 649

7 Conclusion 650

In this paper, we conduct a comprehensive empir- 651

ical study to investigate the capabilities of LLM 652

for code analysis. We used the new datasets cre- 653

ated by the code tools, including four programming 654

languages: Python, Java, C, and Solidity. Overall, 655

our study indicates that LLM is capable of compre- 656

hending code syntax rules and has certain abilities 657

to understand static behaviors of the code, but it 658

cannot understand dynamic behaviors well. GPT4 659

achieves the best performance among all four mod- 660

els we included. We believe that our findings offer 661

insights into LLM performance on SE tasks related 662

to code analysis and guide follow-up researchers 663

to effectively utilize LLM in the future to solve SE 664

tasks. 665
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8 Limitations666

There are several limitations in this study. First,667

this study does not employ very large datasets for668

the analysis of each SE task. The reason is that we669

consider multiple tasks in this study and the dataset670

preparation is already very expensive. But these671

tasks are diverse and the analyzed data are created672

by ourselves via tools, which can help us conduct a673

comprehensive evaluation of LLMs in various sce-674

narios related to software engineering on code anal-675

ysis. Second, this study adopts manually designed676

prompts, however, there are several techniques for677

automatically designing prompts (Shin et al., 2020).678

It is possible that superior prompts can have better679

results in this study. We also do not explore how680

the examples in the prompt affect LLM. In our ex-681

periments, we observe that the choice of examples682

matters and how to find a good example for the683

prompt is the future independent work. Third, as684

a transformer architecture, LLM imposes a maxi-685

mum token limitation, restricting the input context686

in our study. Lastly, we use nine basic and chal-687

lenging tasks that are related to code analysis in688

Software Engineering. Some other code analysis689

tasks are also important but are not included in this690

study, such as dead code elimination. However,691

these tasks usually will use dependency and data692

flow analysis. It may limit our insights to LLMs on693

code analysis.694
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A Prompt Design 961

GPT-based models utilize the prompt-based learn- 962

ing paradigm (Liu et al., 2023a). The design of the 963

prompt can significantly impact the performance 964

of the model. To design better prompts, itera- 965

tively, we employ ChatGPT to optimize our initial 966

prompts and then evaluate these optimized prompts 967

by some trial queries. Specifically, we prompt Chat- 968

GPT with the message, “Act as a prompt optimizer 969

and optimize the following prompt for [TASK DE- 970

SCRIPTION]. The prompt is [PROMPT]", to help 971

us generate the prompts. [TASK DESCRIPTION] 972

is the task description placeholder and [PROMPT] 973

is the draft prompt placeholder. For each task, we 974

have multiple draft prompts, and then we manually 975

evaluate them using some task data to observe their 976

differences. Finally, according to the experience 977

obtained from the trials, we summarize our prompt 978

templates as role prompt and instruction prompt. 979

Through our continuous optimizations, our prompt 980

may not be the best, but it is excellent. 981

Role prompt assigns a specific role to LLM, pro- 982

viding a task context for the model to effectively 983

generate the desired output. Its template is shown 984

below, 985

You are [ROLE] for [LANG]. [TASK 986

DESCRIPTION]. [OUTPUT FORMAT]. 987

The input is [INPUT]. 988

where the placeholder [ROLE] denotes the specific 989

role assigned to LLM. We define six roles: AST 990
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parser, expression tree matcher, control flow graph991

analyzer, call graph analyzer, code static analyzer,992

and pointer analyzer. [LANG] refers to the pro-993

gramming language used for the code analyzed.994

[TASK DESCRIPTION] outlines the expected task995

for LLM to perform. [OUTPUT FORMAT] pro-996

vides the output specification. [INPUT] serves as a997

placeholder for the code under analysis.998

Instruction prompt does not assign a specific role999

to LLM, instead, they provide a command. These1000

prompts are typically useful for tasks involving1001

multiple roles or those without any applicable roles.1002

The template for the instruction prompt is defined1003

as follows:1004

Please analyze [LANG]. [DOMAIN1005

KNOWLEDGE]. Here are some1006

examples [EXAMPLE CODE]. Please1007

identify if [TASK DESCRIPTION].1008

[OUTPUT FORMAT]. The input is1009

[INPUT].1010

where [LANG] specifies the used programming1011

language for the analyzed code. [DOMAIN1012

KNOWLEDGE] explains the domain knowledge1013

relevant to the task. [EXAMPLE CODE] provides1014

sample code related to domain knowledge for1015

task demonstration. [TASK DESCRIPTION]1016

describes the task instruction. [OUTPUT FOR-1017

MAT] outlines the output specification. [INPUT]1018

serves as a placeholder for the code under1019

analysis. Notice that different LLMs may need1020

different prompt formats. For StarCoder (Li1021

et al., 2023) and CodeLlama (Roziere et al.,1022

2023), we also refer to their original papers1023

and adapt the prompt design for both through1024

adding special tokens. For StarCoder, its format is1025

“<|system|>\n<|end|>\n<|user|>\n{query}<|end|>\n-1026

<|assistant|>." The placeholder {query}1027

will be replaced by our prompts. For1028

CodeLlama-13b-instruct, we insert the spe-1029

cial tokens into our prompt with this format1030

“<s>[INST]{query}[/INST]”. For the manual1031

evaluation tasks, we created GPTs tools based on1032

GPT4 to maximize optimization prompt for GPT4.1033

In our study, we employ the role-based prompt1034

for RQ1 and RQ2 where the prompt does not in-1035

clude examples. Owing to the complexity of these1036

tasks, which entail numerous patterns, prompting1037

the model to generate outputs using illustrated1038

examples might potentially downgrade the per-1039

formance. For example, by presenting the data-1040

dependence example (Figure 4 1⃝), the model may1041

hyperfocus on this specific instance, consequently 1042

overlooking other situations of data-dependence 1043

due to in-context learning (Liu et al., 2023b). Wang 1044

et al. (2023) report that few examples in the prompt 1045

may not help improve the performance. In con- 1046

trast, for tasks under RQ3, we resort to instruction 1047

prompts given that this type of prompt works a lit- 1048

tle better during our prompt-designed trials due to 1049

their unfitness for resolution by a single role. We 1050

present all used prompts on our website (Anony- 1051

mous, 2024). 1052
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