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Abstract

We engage in the relatively underexplored task named thermal infrared image
enhancement. Existing infrared image enhancement methods primarily focus on
tackling individual degradations, such as noise, contrast, and blurring, making
it difficult to handle coupled degradations. Meanwhile, all-in-one enhancement
methods, commonly applied to RGB sensors, often demonstrate limited effective-
ness due to the significant differences in imaging models. In sight of this, we
first revisit the imaging mechanism and introduce a Progressive Prompt Fusion
Network (PPFN). Specifically, the PPFN initially establishes prompt pairs based
on the thermal imaging process. For each type of degradation, we fuse the cor-
responding prompt pairs to modulate the model’s features, providing adaptive
guidance that enables the model to better address specific degradations under sin-
gle or multiple conditions. In addition, a Selective Progressive Training (SPT)
mechanism is introduced to gradually refine the model’s handling of composite
cases to align the enhancement process, which not only allows the model to re-
move camera noise and retain key structural details, but also enhancing the overall
contrast of the thermal image. Furthermore, we introduce the most high-quality,
multi-scenarios infrared benchmark covering a wide range of scenarios. Extensive
experiments substantiate that our approach not only delivers promising visual
results under specific degradation but also significantly improves performance on
complex degradation scenes, achieving a notable 8.76% improvement. Code is
available at https://github.com/Zihang-Chen/HM-TIR.

1 Introduction
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Figure 1: An illustration of the thermal infrared
degradation pipeline. Thermal infrared imaging
is prone to degradation from external factors such
as solar radiation, atmospheric scattering, and tur-
bulence, as well as internal factors like pixel size,
internal noise, and jitter.
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Thermal Infrared (TIR) imaging captures images by
detecting the thermal radiation emitted by objects,
typically within the wavelength range of 8 to 14 mi-
crometers. Unlike visible light imaging, TIR does
not depend on external light sources, allowing it to
function effectively in complete darkness or low-light
conditions. Its ability to penetrate smoke, haze, and
minor obstructions, coupled with accurate temper-
ature data, makes TIR essential for diverse appli-
cations [69, [67]], such as object detection [32, [35],
semantic segmentation [68]], and autonomous driv-
ing [31].

Despite its advantages, TIR imaging faces significant
challenges that limit its widespread use. The com-
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plexity of the imaging process and the reliance on expensive, specialized materials like Mercury
Cadmium Telluride (MCT) and Indium Antimonide (InSb) make obtaining high-quality TIR images
difficult. Additionally, TIR systems are highly susceptible to external factors such as temperature
fluctuations and varying atmospheric conditions, which can degrade image quality. These obstacles
underscore the critical need to advance thermal infrared image enhancement techniques.

A considerable number of image enhancement methods have been proposed for TIR or visible images.
Techniques such as histogram equalization [48]], adaptive filtering [49}38]], and deep learning-based
approaches [23 15/ (12} [36]] have been utilized to improve image contrast, reduce noise, and enhance
overall visual quality. However, these methods exhibit two major limitations. Firstly, enhancement
techniques developed for visible images often prove challenging to apply to TIR images due to
fundamental differences in imaging modalities, degradation and imaging processes. Secondly,
existing enhancement methods only address single degradation, such as denoising or encontrast.

Moreover, a major obstacle in TIR image enhancement is the limited availability of diverse datasets.
Although learning-based ways have demonstrated success in various image processing applications,
they require large and varied datasets to train effectively and generalize well. However, existing
datasets encompass only a narrow range of scenes and conditions, making it challenging to validation.

Incorporating these criteria, this paper presents the Progressive Prompt Fusion Network (PPFN) for
enhancing TIR images. PPFN comprises two key components: type and degradation-specific prompts
and a prompt fusion module. The degradation-specific prompts guide the model in identifying
degradation types, while type-specific prompts differentiate single from composite degradation
scenarios. The prompt fusion module integrates prompt pairs to iteratively modulate model features,
providing adaptive guidance tailored to specific degradation types in both single and multiple contexts.
Additionally, we introduce a Selective Progressive Training (SPT) mechanism for handling composite
and single degradations, which iteratively refines each degradation step by using the output from
one stage as input for the next in composite scenarios, while applying standard training for single
degradations. Consequently, the model effectively eliminates each impairment without interference,
resulting in significant performance improvements. Our contributions can be summarized into four
key aspects, as follows:

* We propose a PPFN to enhance TIR images, delivering exceptional visual quality in hybrid
degradations. To our knowledge, this is the first study addressing TIR enhancement under
such multifaceted degradation conditions.

* Addressing intricate degradations in real-world thermal infrared images, we introduce a
prompt fusion block that incorporates prior knowledge into the learning process, effectively
managing both single and hybrid degradations. Importantly, the prompt fusion block is a
plug-and-play module that seamlessly integrates into various existing network architectures,
enhancing performance.

* We propose a SPT scheme that optimizes both single and hybrid degradation scenarios,
enabling the model to effectively refine complex degradations while ensuring robustness
and stability under simpler conditions.

*  We establish a high-quality TIR benchmark covering multiple scenarios, named HM-TIR,
with all collected images meticulously focused for clarity. This dataset encompasses diverse
environments, including urban areas, forests, and oceans, to name a few.

2 Related Work

This section provides a concise overview of existing TIR and visible image enhancement techniques
relevant to our study, as well as the necessary benchmarks for learning and empirical evaluation.

2.1 TIR/Visible Image Enhancement

With the growing demands of modern applications, numerous TIR image enhancement methods have
been developed, achieving promising results. For TIR denoising, studies [33} 15, 2] have simulated
realistic infrared noise by combining various noise types, resulting in significant improvements.
Additionally, researchers have addressed specific blur types, including motion blur [58, [17], out-
of-focus blur [71]], and Gaussian blur that simulates atmospheric effects [[62]]. These efforts have



substantially enhanced image clarity and detail restoration in infrared imaging. TIR are also vulnerable
to other degradations, such as compression artifacts and low resolution. Several studies [[1, 16,28, [29]]
have tackled these challenges, leading to notable advancements. However, existing methods are
typically constrained by specific degradation conditions, which significantly limits their generalization
and effectiveness in real-world infrared image processing.

Table 1: Illustration of our benchmark and existing infrared enhancement datasets. The “multiplica-
tion” denotes the diverse camera viewpoints, including horizontal, surveillance, driving, etc.

Scene: @: Road @: Square @: City @: Forest ®: Campus ®: Coastline @®: Residential Zone ®: Others

Corruption: I: Low Contrast IL: Blur III: Stripe Noise IV: Optical Noise V: Gaussian Noise

Dataset Year Format # of Images/Videos Resolution Camera angle Scene  Corruption Type
EN [23] 2019 Image 16 256x256 horizontal&surveillance @@ I
Tray [34] 2021 Image 2000 256x192 horizontal ®® I

SBTI [25] 2022 Video 4 640x480 horizontal&surveillance ~ @® I

UIRD [20] 2023 Video 17 640x512 horizontal&surveillance ~ @® I

TIVID [2] 2024  Video 518 320%256 horizontal De@® vy

HM-TIR (Ours) 2025 Image 1503 640x512 multiplication O~® I~V

All-in-One Image Restoration employs a single model to address a range of image degradation issues.
PromptIR [45]] and ProRes [39] use additional degradation context to introduce task information.
IDR [61] explores the model optimization by ingredient-oriented clustering. AutoDIR [18] lever-
ages latent diffusion with degradation-specific text embeddings to automate degradation handling.
InstructIR [9]] introduces natural language instructions to control restoration. However, most of these
methods are only focus visible image enhancement, posing a chanllenge to apply in TIR images.

2.2 Thermal Image Enhancement Benchmarks

In recent years, several image enhancement benchmarks addressing specific degradations have been
introduced, including the Iray Infrared Image Denoising dataset [34] and TIVID [2] for thermal image
denoising, EN [23]] for contrast enhancement, and SBTI [25] and UIRD [20]] for deblurring. The
Iray dataset comprises 2,000 pairs of real-world noisy infrared images captured indoors and outdoors
alongside their clean counterparts. TIVID includes 518 diverse videos collected with a cooled infrared
imaging system to simulate various thermal infrared noises. EN contains 16 internet-sourced images
designed to evaluate contrast enhancement. Additionally, SBTI consists of four videos captured on
roads and around vehicles, while UIRD includes 17 videos generated through frame interpolation to
produce more blurred images.

Table E] outlines the main attributes of these datasets, including scale, resolution, lighting conditions,
and scenario types. Limited resolution, quality, and scenario, degradation types, and overall dataset
size variety restrict their applicability for real-world infrared enhancement tasks.

3 Methodology

3.1 Problem Formulation

Infrared imaging systems, especially those using CMOS-based sensors, are prone to additional
Fixed-Pattern Noise (FPN) alongside random noise types common in RGB imaging, such as Gaussian
and salt-and-pepper noise. Additionally, unlike visible images, which contain detailed visual content
and high-quality representation, infrared images capture only thermal distributions, making them
particularly vulnerable to atmospheric conditions and temperature differences. As illustrated in
Figure |1} this degradation pipeline is affected by several factors, including low contrast due to
minimal temperature differences, blurring from environmental radiation effects, and sensor-induced
noise, which collectively reduce image clarity and quality. We categorize TIR degradation into
three primary types: low contrast, blurring, and noise. The degradation process unfolds in a specific
sequence: low contrast occurs first, followed by blurring, and ending with noise.
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Figure 2: Schematic diagram of the proposed TIR enhancement framework. In subfigure (a), we first illustrate
the TIR degradation process, including low contrast, blur, and noise across single and composite degradation
scenarios. Subfigures (b) and (c) present details of the PPFN integrated with the image restoration model. Lastly,
we depict our SPT in subfigure (d).

Therefore, given an observed clean image I., the degraded image I, can be formulated as:

I,=|n,on,0o K o C (I.) + n,, (1
FPN Blur  Low Contrast

where C, K, n,, n,, and n, represent the degradation with low contrast, blur kernel, optics, stripe,
and additive random noise, respectively. o denotes the composition operation.

As shown in Eq. (T)), TIR degradation encompasses multiple types that strongly impact TIR images.
To enable the base enhancement model to address various degradations in both complex composite
and single degradation scenarios, we propose a prompt fusion learning strategy, as described in
Sec.[3:2] Furthermore, to improve the model’s stability in addressing composite degradations, we
introduce the Selective Progressive Training strategy, as described in Sec.[3.3]

3.2 Prompt Fusion Learning

The primary challenge in infrared image enhancement is the diverse range of degradation types, which
single models cannot effectively address. Existing networks typically target specific degradations and
struggle with complex composite ones. Although all-in-one restoration frameworks aim to remove
multiple degradation types, they often falter with intricate composite degradations. To overcome this,
we introduce the Progressive Prompt Fusion Network (PPFN), which enhances image restoration
models for more effective infrared enhancement in complex scenarios. As shown in Figure 2{b) and
(c), our PPFN comprises a dual-prompt processing module and a prompt fusion module.

In dual prompt processing, we introduce type-specific and degradation-specific prompts. The
degradation-specific prompt Pyey := {pj,,. Pl 42 Pie, ) guides the model to adapt degradation
types, while the type-specific prompt Py, := {pfype, p,’}ype} is utilized to enable the model to
distinguish the difference between single and composite degradation scenarios. Here, n, b, and
c represent noise, blurring, and contrast degradation, respectively, while s and i denote single
and composite degradation scenarios. The degraded images processed by each step in either sin-
gle or composite degradation scenarios with specific prompts pf, g € Paeg, 1 € {n,b,c} and

p{ype € Pyiype, j € {s,h}. To extract prompt features, we first obtain the degradation-specific

prompt feature F , and type-specific prompt feature nype using two lightweight prompt encoders,



Eg4eg and Egy ., which are expressed as:

Fseg = Edﬁg(pzleg)’ i€ {nv bv C}a
th?ype = Etype(pgype)a J € {87 h}
To represent the prompt more efficiently and guarantee subsequent injection being a conventional
modulation manner [22]), a prompt fusion module is introduced. Specifically, we concatenate the

two prompt features and then apply a linear layer Wy, s0n, followed by a non-linear activation ¢(-),
to obtain the final prompt feature F,, as expressed below:

FP = QS(Wf’USiO’ﬂ(Cat (Fgeg7 nype)))7 (3)

where the operator Cat(-, -) denotes concatenate operation. To integrate the prompt into the model’s
feature space and enable adaptability across degradation and scenario type, we calculate two channel-
wise modulation parameters with suitable dimension, < and 3, by applying a linear layer W,,,

¥, B8 = Wy(Fy). “

Given the I-th layer feature F; € R*%iX¢ in restoration model, with calculated modulation
parameters ; € R1*1%¢ and 3; € R1*1¥¢  this adaptation process can be expressed as follows:

@

Fi=F®0+)+06, ©)

where F is the updated model feature that will be passed to the next model block. By integrating
PPFN module, the model enables more effective handling of composite degradations.

Figure 3: Example images from our HM-TIR benchmark include: (a) skyscraper, (b) seaside, (c) mountain, (d)
cross-sea bridge, (e) pendulum, (f) tower, (g) camping area, (h) commercial street, (i) mansion, (j) square, (k) Fer-
ris wheel, (1) boats, and (m) tourist attraction. More examples are provided in the Supplementary Material @

3.3 Selective Progressive Training

To address the distinct challenges of composite and single degradations in TIR enhancement, we
introduce the Selective Progressive Training (SPT) mechanism, as described in Figure |de). SPT
refines the degradation process by progressively enhancing each iteration through feedback loops.
For composite degradations, where steps are applied sequentially, each iteration’s output feeds into
the next, enabling the model to learn and adapt to complex, interdependent degradation patterns.
In contrast, for single degradations, where one type of degradation is present, a standard training
framework is employed. Given a degradation process with N steps, we generate a sequence degraded
images Ip := {I}, 12, ,I)'} by using clean image I.. with corresponding to degradation-specific
prompts P g4 := {p}ie g pﬁe g pé\é g}. As shown in Figure [2(a), for single degradation scenario,
each degraded image is generated by using specific degradation to I.. While for composite scenario,

the k-th degraded image I% is generated by specific degradation to k — 1-th degraded image 15_1.

When training network, we set the initial input IV = Ié\’ because the N-th degraded image contains

all degradations in composite scenarios. Then network removes each degradation step in reverse
order, enhancing the degraded images accordingly. For the k-th iteration of degradation removal
training, given the input image I? , the restored output image I¥, _, is produced by the restoration

model Ny. GT for this iteration of the restoration model is defined as follows:

(©)

k I, for single scenario,
Igt = k—1 : .
I,7", for composite scenario.



This setup ensures that only the i-th specific degradation is removed for both single and composite
scenarios. Then we calculate the model loss gradient Vo £ (1%, ,, I’;t) but do not update the network
parameters. This approach prevents the model from focusing excessively on any single type of
degradation while potentially neglecting others, and ensures that the training sequence does not
interfere with single scenario training. For the next iteration’s input, if we use 15—1 directly in the
composite scenario, the model will be affected by the removal of residual degradation from the
previous iteration, leading to a significant drop in performance. To prevent this, we set the input If,: !
for the enhancement model in the next iteration (if it exists) as:

k—1 __
Iin -

)

{Ig_l, for single scenario,

k . .
sg(Iy..;), for composite scenario,

where sg(+) denotes stop gradient operation to reduce training cost. After all iterations are completed,
we update the model parameters using the sum of gradients computed across all iterations. In our
TIR Enhancement setting, we define a three-step degradation process: noise, blur, and contrast. In
the training phase, the degradations are added sequentially for composition scenarios: noise, blurring,
and contrast. In the inference phase, we reverse this order to progressively remove the degradation:
denoising, deblurring, and decontrast. The procedure is given in Alg.[I]

3.4 High-quality Multi-scenarios TIR Benchmark

Considering that limited diverse data has hin-

dergd the .development Of TIR dqmain, we es- Algorithm 1 Selective Progressive Training.

tablish a high-quality multi-scenario TIR bench- Reauire: Clean infrared i e

mark, HM-TIR. It includes 1,503 TIR images Require: Clean infrared images with {L-}, a restora-
. . . . tion Network Ng and other necessary hyper-

encompassing various object types across dif- parameters

ferent scenarios, as detailed in the last row of )

1: while not converged do
Table[I] 2 Generate Ip and P 4.4 by randomly piype;
Each TIR image has a standard resolution of 3 I =1
640x512 and a wavelength range of 8 to 14 4 fork=N,....1do
micrometers. To enhance thermal imaging per- > Lreat :_N o (Ii“k’ Pdeg: Pype);
formance by minimizing blur and increasing 6: Set GT image I, according to Eq. ()
contrast, we individually adjusted the focus for 7 Calculate gradient Vo £(Ifey, Lt);
each scene and secured the settings with me- gi Set next input I, according to Eq. (7);

chanical tools before capturing. As shown in end for .

Figure[3] the HM-TIR benchmark includes a di- 103 Update parameter 6 by gradient descent;

verse structured environments, such as skyscrap- B 23131 ::lhlgi

ers and Ferris wheels; unstructured settings like ’ ’

forests; and challenging scenarios like densely populated areas and small targets. We also incorpo-
rated various viewing angles, including aerial, eye-level, and low-angle. Additional data collection
process and sensor equipment are provided in Supplementary Material[A.3]

4 Experimental Results

4.1 Training Details

Training and testing data. In our experiments, we trained the TIR enhancement model on our
HM-TIR dataset, which contains 1,503 TIR images encompassing diverse object types across var-
ious scenarios. We divided the dataset into 80% for training and 20% for validation, ensuring a
balanced evaluation of our model’s performance. For multi-degradation TIR enhancement testing,
we created two validation subsets to enable a more detailed assessment: the Normal Set and the
Hard Set. The Normal Set comprises images with lower levels of degradation, whereas the Hard
Set includes images with more severe degradation. For single-degradation TIR enhancement test-
ing, we applied the same settings as the Hard Set to create three separate single-degradation test
subsets. The detailed degradation strategies and settings of degradation levels are provided in the
Supplementary Material[A.]]

Training settings. We use Restormer [60] as the baseline model for TIR enhancement to evaluate our
proposed module and strategy. All models are implemented in PyTorch on four 4090D GPUs with



default settings. For the baseline model, we follow the Gated Degradation pipeline [63]] to synthesize
degradation, with the probabilities of all gates set to 0.8. During training, we adopt the L1 loss [56]
and employ the Adam optimizer with parameters 5; = 0.9 and 83 = 0.999. Each model is trained
with a batch size of 4, using random cropping and flipping with a patch size of 256 x 256. The initial
learning rate is set to 8 x 107> and decays to 10~° following a cosine annealing schedule. Each
model is trained for a total of 300 epochs.

Evaluation metrics. In this work, the Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) [56] are employed to assess the quality of the enhancement results under
reference-based conditions. The PSNR and SSIM assess the quality of results primarily from the
spatial dimension, with larger values indicating better results. For reference-free conditions, three
no-reference Image Quality Assessment (IQA) metrics to evaluate image quality: NIMA [50]],
MUSIQ [19], and NIQE [41]]. For NIMA and MUSIQ, higher values indicate better quality, while for
NIQE, lower values are preferred.

4.2 Results on Multi-degradation TIR

To evaluate some TIR enhancement models, including WFAF [42], LRSID [4], and TSIRIE [44], as
well as visible all-in-one restoration models such as DA-CLIP [37] and DiffUIR [[70], we use the
Normal Set to compare their TIR enhancement performance with our approach. Quantitative and
qualitative comparisons are shown in Figure ]

PSNR/SSIM 172684/03546 17.3608/0.3825 16.0945/0.2000 17.5484/0.4809  15.0870/0.5858 25.3227/0.8180 o0/1.0000

Figure 4: Quantitative and qualitative comparisons of signal performance across competitive image enhancement
methods and our proposed approach. The average PSNR and SSIM values in our Normal Set are provided below
the comparison figures in blue.

TIR enhancement methods such as WFAF, LRSID, and TSIRIE exhibit lower PSNR and SSIM values
because they are tailored for single degradations and struggle with complex composite scenarios. In
contrast, DA-CLIP and DiffUIR, developed as all-in-one enhancement methods for visible images,
perform better; however, differences in imaging models between visible and infrared spectra lead
to suboptimal results for infrared images. Our proposed method outperforms these approaches,
achieving superior PSNR and SSIM scores and demonstrating enhanced signal restoration across
multiple degradation scenarios. Qualitatively, traditional methods like WFAF, LRSID, and TSIRIE
produce infrared images with substantial artifacts and background noise, while all-in-one approaches
such as DA-CLIP and DiffUIR offer better restoration but still exhibit noticeable blurring and
distortion. In contrast, our method excels at preserving critical structural information and fine details,
reducing artifacts, and enhancing contrast.

We further evaluate our method alongside competitive approaches on the real-world Iray dataset [34]
and adding an additional TIR enhancement method IE-CGAN [23]. Since it only provides the
denoised result as ground truth, we use no-reference IQA metrics. Both quantitative and qualitative
results are provided in Table 2] and Figure [5] Existing TIR enhancement methods struggle with
complex scenarios, typically addressing only one type of degradation. Furthermore, all-in-one
enhancement methods designed for visible images are ineffective in handling the specific degradations
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Figure 6: Qualitative comparison of single degradation between visible enhancement methods, baseline and our
method on three single-degradation test sets, where “Baseline” refer to Restormer [[60)].

present in infrared image processing. In contrast, our approach not only outperforms existing methods
in IQA scores but also shows superior restoration capabilities in real-world degradation conditions.

Table 2: Quantitative comparison in Iray dataset. The best is in red, and the second-best is in blue. “}” means
lower value is better.

Metrics Degraded WFAF LRSID TSIRE IE-CGAN DA-CLIP DiffUIR Baseline Ours

NIMA 35326  3.7321 3.5682 3.5359 3.4959 3.7004  3.5935 3.5812  3.8327
MUSIQ 25.2459 25.1264 24.2095 23.7508 29.0350  27.7855 26.8066 27.7829 30.9072
NIQE| 10.1277 10.3536 8.6838 11.5204 9.4786 9.1896 93352 8.7776  8.4693

Due to page limitations, additional experimental results, e.g., more comparisons in our test set and
real-world datasets, are provided in Supplementary Material

4.3 Results on Single-degradation TIR

To evaluate three TIR enhancement models with single degradation scenarios, we conduct experiments
in test subsets with denoising, deblurring, and contrast enhancement.



For denoising, we compare four state-of-the-art approaches: AP-BSN [26], CycleISP [59], IDR [66],
and SDAP [43]. For deblurring, we evaluate leading methods including DeBlurGANV?2 [24], MIMO-
UNet [8]], FFTformer [21]], and Stripformer [52]]. For contrast enhancement, treated as a combination
of haze and low-light enhancement, we include MSBDN and FFA-Net [46] for dehazing,
alongside LLFormer [53] and SCI [40Q] for low-light enhancement. Using three single-degradation
subsets, we compared the performance of these methods relative to ours, with qualitative comparisons
shown in Figure[§] While existing methods effectively reduce degradation, they still retain artifacts
due to modeling differences between TIR and visible images, resulting in lower enhancement
quality and fidelity. In contrast, our method delivers superior performance in single-degradation TIR
enhancement tasks, effectively reducing noise, recovering fine details, and enhancing contrast while
preserving the natural appearance of images.

Table 3: Quantitative results comparing our method with five models in our two test sets, both with and without
integration of our PPFN module and SPT strategy. *Average’ refers to the mean value across test sets. | denotes
methods using our approaches to train. Baseline and our approaches results are shown in = and = boxes,
respectively. The best result is in red, and the second-best in blue.

FocalNet FocalNet! UFormer UFormer’ NAFNet NAFNet! XRestormer XRestormer! Restormer Restormer!
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM  PSNR/SSIM  PSNR/SSIM PSNR/SSIM

Bridee  22-45/0.832 24.95/0.865 22.75/0.850 24.10/0.844 24.88/0.859 25.98/0.872 25.82/0.879 25.14/0.890 24.28/0.876 24.65/0.896
8% 20.80/0.770 22.71/0.803 20.93/0.780 20.95/0.778 19.87/0.758 22.44/0.786 21.52/0.775 23.52/0.812 21.12/0.783 22.27/0.802

Leaning 22.61/0.843 26.44/0.861 24.50/0.838 25.95/0.847 26.39/0.849 27.24/0.852 27.85/0.865 29.60/0.877 27.80/0.863 28.46/0.879
22.89/0.801 21.21/0.806 18.82/0.723 17.72/0.724 23.25/0.778 23.49/0.806 23.29/0.807 23.65/0.829 23.10/0.825 23.23/0.832

Tower 24.89/0.858 24.33/0.851 23.20/0.838 25.71/0.863 25.78/0.864 26.60/0.867 26.46/0.874 27.86/0.893 29.29/0.903 30.40/0.908
25.07/0.836 24.86/0.839 23.21/0.792 25.60/0.839 21.16/0.830 25.83/0.850 22.01/0.854 27.40/0.873 21.19/0.861 28.50/0.882

Two 20.44/0.719 23.91/0.744 21.51/0.717 21.90/0.721 21.14/0.725 22.05/0.735 24.79/0.740 24.13/0.744 25.40/0.750 25.60/0.755
Skyscrapers 23.10/0.687 24.38/0.700 21.96/0.665 22.81/0.675 23.16/0.671 22.57/0.693 24.57/0.696 26.05/0.709 24.71/0.701 26.08/0.716

Villa  22:28/0.779 26.00/0.855 25.17/0.809 23.66/0.817 24.10/0.815 27.70/0.851 27.86/0.854 29.06/0.865 22.46/0.785 29.73/0.871
25.37/0.798 24.98/0.805 24.49/0.782 23.23/0.773 23.58/0.767 25.37/0.797 26.13/0.798 25.71/0.808 25.36/0.806 27.26/0.816

Av 21.22/0.778 22.63/0.790 21.95/0.775 21.62/0.768 22.29/0.776 23.74/0.792 23.54/0.801 24.75/0.811 23.28/0.796 25.32/0.818
Crage  1.27/0.733 21.40/0.740 20.31/0.714 20.44/0.716 21.81/0.731 22.30/0.744 22.43/0.748 23.06/0.758 22.87/0.757 23.27/0.764

Model

Tower

4.4 Ablation studies

Validation of model architectures. In addition to Restormer, we evaluate our PPFN module with
four other SOTA image enhancement models: NAFNet [6]], UFormer [55], XRestormer [7]], and
FocalNet [10]. We compare the performance of these five models with and without our PPFN module.
Quantitative and qualitative results are presented in Table [3]and Figure[7] respectively.

Degraded Infrared Image Ours
[

(3
> ]
_’

Degraded Infrared Image

Figure 7: Visual comparison of five advanced methods with and without the integration of our approaches in
Normal Set and Hard Set. Our method demonstrates superior visual quality and minimal error.

Quantitative and qualitative results show that all five baseline models exhibit lower PSNR and SSIM
values and reduced enhancement quality on both Normal and Hard Sets, indicating their suboptimal
performance with complex degradation. In contrast, integrating PPFN with each model consistently
improves PSNR, SSIM, and TIR visual quality. Notably, our model achieves the best results, with an
improvement of 8.76% on the Normal Set in PSNR.

Study on prompt fusion learning. We train models with the same settings as in previous comparison
experiments. Testing is performed on the Hard Set, results are shown in Table[d] In dual prompt pro-



Table 4: Ablation studies on the PPFN and SPT strat-
egy. The best is in red, and the second-best is in blue.

# of Prompt Prompt Fusion Iter. PSNR SSIM

22.8678 0.7568
- - 22.6357 0.7524
DSP - 23.1605 0.7635

v
v
TP/DSP  w/o non-linear j 23.1487 0.7646
1
2
3

TP/DSP Multiply 23.1432 0.7627

TP/DSP PPFN 14.5455 0.6125 Figure 8: Analyzing the enhanced images and error
TP/DSP PPFN 14.6080 0.6261 maps from each iteration. Zoomed and pseudo-color

TP/DSP PPEN 23.2712 0.7643 maps for the best view.

cessing, applying degradation-specific and type/degradation-specific prompts achieves performance
gains of 0.29 dB and 0.40 dB over the baseline, respectively. Regarding the prompt fusion strategy,
removing non-linear activation or replacing the concatenation operation with multiplication results
in a rapid PSNR decline, with the "Multiply" approach offering only minimal SSIM improvements.
SPT reveals that directly applying iterative training to the baseline causes a PSNR drop of 0.23 dB.

Analyzing the enhancement iteration. We demonstrate the enhanced images from each iteration
along with corresponding PSNR and SSIM values, as shown in Figure 8] and Table[d] respectively.
Note that the iterations progress, specific degradations are incrementally removed, leading to a
gradual improvement in both PSNR and SSIM metrics.

TP: Single Degraded

Eirpm |
o

Noise-Blur—Contrast Noise—~Contrast=Blur Contrast-Noise—Blur

TP: Composite Degraded

PSNR/SSIM: 24.38/0.762 - PSNR/SSIM 25.32/0.818 ) PSNR/SSIM: 23.27/0.764 PSNR/SSIM: 22.66/0.754 PSNR/SSIM: 16.84/0.661

Figure 9: Quantitative and qualitative comparison of Figure 10: Quantitative and qualitative comparisons
TIR enhancement performance between different type- of our method with different order in each degradation
specific prompt setting in Normal Set. removal process in Hard Set.

Analyzing the prompt sensitivity. We evaluate the performance of our method with incorrect
prompts and order, as shown in Figure[9]and Figure[T0] For incorrect prompts, we observe that using
a single degradation scenario prompt with compositional degradation results in failure to remove
degradation, with artifacts persisting. This indicates that the model struggles to eliminate residual
degradation in each iteration under a single scenario. For incorrect order, we demonstrate that the
model exhibits lower performance and PSNR when the degradation removal order is incorrect. This
supports the hypothesis that optimal artifact removal occurs with a fixed processing order. Our
results highlight that the SPT strategy effectively handles fixed-order degradation removal, leading to
improved performance.

5 Conclusion

This paper introduced a new way for enhancing TIR images, managing complex degradation through
dual-prompt processing and fusion modules. Our training scheme ensures robust performance across
various scenarios. We also established a comprehensive TIR benchmark for accurate evaluation.
Experiments show that PPEN surpasses existing methods in clarity, detail preservation, and contrast
enhancement, advancing TIR image enhancement for broader applications.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the Supplementary Material A.2.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes, our method is easy to be reproduced, and we provide all information.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will open access to the code and dataset after paper is accepted.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, we give all the details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The results are not accompanied by error bars, confidence intervals, or statisti-
cal significance tests.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, to the
NeurIPS Code of Ethics as outlined at the provided https://neurips.cc/public/
EthicsGuidelines!.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18


https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines
https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper, properly credited
and are the license and terms of use explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper well documented and the documentation
provided alongside the assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Supplementary Material

In Supplementary Material, we present the degradation strategies and settings for degradation levels
in Sec.[A.1] Then we discuss the limitations of the current work in Sec.[A.2} Also, we show additional
details on our HM-TIR benchmark in Sec Additionally, we provide more experimental results in
Sec.[A.4] Finally, we provide a detailed discussions of our work in Sec.[A.5]

A.1 TIR Image Degradation Setting

In this subsection, we discuss the degradation simulation strategy and degradation level setting.

A.1.1 TIR Degradation Simulation Strategy

Low Contrast. The raw pixel output of the detector quantizes the radiation response. These values are
often unevenly distributed and confined to a narrow range due to small temperature differences [[11],
resulting in low-contrast images. Also, the suboptimal transformation methods may fail to map this
limited range to a broader, visually distinguishable one, further reducing image interpret ability and
utility. To simulate such degradation, we adopt a simple method that adjusts the unevenly and narrow
distribution of the input TIR images I, formulated as:

CO)=a-(I+ 8- -MAX[)), ®)

where a, 3, and MAX]I] denote the reduction factor, offset factor, and the possible max pixel value
of the image, respectively.

Blur. TIR images often suffer from blurring degradation due to various factors inherent to cameras
and their surrounding environments. Two common types of blur in TIR images are low-pass blur and
motion blur. Considering the availability of only single-frame TIR images, we focus exclusively on
low-pass blur for simplicity.

Low-pass blur arises from atmospheric turbulence effects and the inherent limitations of camera
capabilities, leading to loss of image details and reduced quality. To simulate this degradation, we
follow prior works [[72]] and utilize an isotropic Gaussian blur and randomly select the kernel size and
standard deviation of the kernel £ and blur the input TIR image, expressed as:

K(I) = k*1, ©)
where “x” denotes the convolution operation.

Noise. In TIR image processing, there are two types of noise mainly encountered: Fixed-Pattern
Noise (FPN) and Random Noise.

FPN refers to the unique noise pattern characteristic of each digital camera. This phenomenon
commonly arises when the camera is uncalibrated or affected by internal temperature fluctuations,
and it is particularly pronounced in long-exposure shots. In TIR imaging systems, the most common
types of FPN are Stripe Noise and Optics Noise.

Stripe Noise is a prevalent issue in TIR image processing, primarily resulting from amplification
variations across the one-dimensional detector arrays in CMOS-based cameras [14]]. Even after
calibration, internal temperature fluctuations can exacerbate this phenomenon. This type of noise
typically manifests as uneven horizontal or vertical stripe patterns. We assume the gain and offset
of each detector unit to be approximately 1 and 0, respectively, and model them as two zero-mean
Gaussian distributions with standard variances o, and o, respectively. To simulate degradation in
TIR images, we randomly apply gain and offset along a single dimension, expressed as:

n,(I) = (1+g) - I+o, (10)

where g and o represent gain and offset, sampled from two zero-mean Gaussian distributions,
respectively.

Optics Noise arises from temperature response inconsistencies in TIR camera detector units. Pro-
longed use leads to non-uniform optics noise, influenced by internal temperature changes [3]. Two
scenarios typically occur: during heating, the image center darkens while the edges brighten; during
cooling, the center brightens while the edges darken. Following prior work [47]], we model optics
noise as a quartic cosine function of the distance between any pixel and the image center.

n,(T) = I+ s, - cos* (5r(p.pc)); an
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Figure 11: Additional example images from our HM-TIR benchmark, including: (a) structured environment,
(b) unstructured settings, (c) challenging scenarios.

where s,, p, and p, represent the strength factor, current pixel position, and the center pixel position,

respectively. r(p, p.) denotes the normalized distance, defined as:
dist(p, pc)

max(dist(p, pe))’

where dist(-,-) represents the distance function. We use the Euclidean distance to compute the
separation between two points.

r(p,pe) = (12)

Random Noise is the result of several factors in TIR sensor sampling, e.g., read noise and dark
current in camera circuit [13]]. It is generated by various factors and manifests as high-frequency
random noise, which is not constant and can be described by statistical distributions. We utilize
adding a white Gaussian noise n, sampled from a Gaussian distribution with zero mean and standard
variance o, [30].

For noise addition order, we first consider optics noise n,, as it arises during the thermal radiation
signal collection stage. Next, stripe noise n; is introduced, as it occurs during the sensor production
stage. Finally, additive Gaussian noise n, is added at the last stage to represent random noise.

A.1.2 TIR Degradation Level Settings

For degradation level settings, the simulator is controlled by eight parameters, enabling the generation
of various types of degradation, including low contrast, blurring, and noise. For low contrast, the
reduction factor « is set to range from 0.4 to 0.8, and the offset factor 5 is set from 0.1 to 0.2 for the
Normal Set. For the Hard Set, o ranges from 0.2 to 0.8, and § ranges from 0.2 to 0.4. For blurring,
the kernel size is varied from 7 to 17 and the standard deviation from 1 to 2 for the Normal Set,
whereas for the Hard Set, the kernel size is adjusted from 7 to 23 and the standard deviation from 1 to
3. For noise, the standard deviation of gain o, ranges from 0.03 to 0.07, the offset o, varies from O to
3, the strength factor s, ranges from 15 to 55, and the standard deviation of white noise o, ranges
from 5 to 15 for the Normal Set. For the Hard Set, o, varies from 0.03 to 0.10, o, ranges from 0 to 5,
S, spans from 15 to 75, and the standard deviation of white noise o,. ranges from 5 to 20.

A.2 Limitations

Due to the inherent challenges associated with capturing paired degraded and clean TIR images, the
degradation model employed in this study may not fully replicate the complexities of real-world
degradation processes. The TIR imaging processing is typical susceptible to complex composite
distortions, including motion artifacts, radiation attenuation, diffraction effects, and sensor-induced
noise [64]. However, as demonstrated in Figure 5] [T4] and Table[2} the proposed method achieves
commendable performance in real-world TIR enhancement evaluations. These results provide strong
validation for our degradation modeling strategy and support the effectiveness of the model under
realistic conditions.
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To overcome the limitation of the current approach, future work will aim to develop a more compre-
hensive degradation model that incorporates a broader range of noise and distortion types. This will
improve generalization of TIR enhancement model, enabling more accurate real-world applications.

Table 5: Complexity comparison on parameters, FLOPs, and time.
Methods TSIRIE DA-CLIP DiffUIR NAFNet XRestformer Baseline Ours

Params(M)  2.52 233.14 12.41 17.06 25.98 26.09  26.60
Flops(G) 7791  660.18 164.68  79.47 820.52 704.10 704.33
Time(s) 0.01 17.07 0.325 0.024 0.348 0.292  0.876

A.3 Additional Details of Benchmark

We have presented some examples of our HM-TIR benchmark in the main paper. In this section, we
show additional examples of our benchmark in Figure[IT} These HM-TIR benchmark example images
include diverse conditions, such as structured environments, unstructured settings, and challenging
scenarios. This highlights the high quality of our benchmark, which offers multi-scenario coverage
and incorporates a diverse range of real-world challenges.

For the designed TIR prototype, we developed a TIR calibration board/algorithms to eliminate
systematic errors/noise, and then reinforced the assembly to reduce environmental vibrations and
added protective shields against electromagnetic interference. Besides, focus was adjusted for each
scene, and post-processing included strict quality checks. In the post-processing stage, each image
underwent strict quality checks to ensure reliability and high-quality. For non-cooled passive TIR
sensor, we customized is a wavelength range of 8 — 14.m, an aperture of f /1.2, HV-FOV of 48° x 38°,
Res.640 x 512, and manual focus adjustment capabilities.

A4 More Experiments

We provided some experiment results of our
method on our test set and the Iray dataset in
the main paper. In this section, we show the
additional experiments. Firstly, we demonstrate
more visual comparisons on the Normal Set and
real-world Iray dataset, as shown in Figure @]
and Figure[T4] These results further show that
our approach has superior enhancement capabil-
ities in our simulation scenarios and real-world
degradation scenarios.
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Figure 12: Comparison of PSNR and SSIM value
curves during training across five models, with and with-
out our approaches.

Then, we demonstrate that the PSNR and SSIM curves during training, shown in Figure[I2] indicate
that all five models achieve higher performance upon training completion with our PPFN module.
This result demonstrates that our module and strategy adapt effectively, consistently enhancing the
visual performance of each model.

In addition, we show the visual comparison of three baselines and their results with our strategies in
TNO [51] and Roadscene [57]], two real-world degraded TIR datasets, as shown in Figure E] and
Figure respectively. It can be seen that the three baselines demonstrate limited enhancement
performance, primarily reducing noise. In contrast, with our PPFN, models can generate more
detailed outputs, reduce noise, and effectively enhance contrast.

Finally, we conduct complexity comparisons, as shown in Table[5] For fair evaluation, All the the
models are equipped in hardware environment with a NVIDIA RTX 4090 D GPU with 24GB memory
and the input TIR image resolution is 640x512. Our method, while introducing additional parameters
and inference time due to prompt processing and stepwise degradation removal, outperforms baseline
approaches in handling such complexities.
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A.5 Discussions

A.5.1 TIR Degradation Simulation Pipeline

The proposed TIR degradation simulation follows a fixed order. In contrast, some high-order
degradation models have been extensively explored in the RGB domain, such as [54] and [63]],
realistic blur, noise, and compression artifacts are typically simulated by randomly or repeatedly
applying multiple degradation operations, mimicking the effects of camera imaging, image editing,
and Internet transmission. However, these simulation pipelines are inherently tailored to natural RGB
images and fail to capture modality-specific degradations in TIR imaging, which are predominantly
associated with the camera sensing process. Unlike RGB imaging, which relies on reflected light and
is sensitive to illumination and weather, TIR imaging captures emitted thermal radiation and remains
stable under varying conditions. However, due to its longer wavelength and sensor characteristics, TIR
images suffer from unique degradations such as stripe noise, optical noise, and radiation-caused low
contrast, especially in uncooled CMOS-based systems. These structured and composited degradations
are uncommon in RGB images and cannot be effectively handled by RGB-oriented models.

A.5.2 Difference Between Cascade Multiple Specific Networks

Traditional methods, such as Cascade Multiple Specific Networks, address composited degradation by
employing multiple independent sub-networks. In contrast, although our method performs iterative
processing, it does not cascade multiple independent networks. Instead, it employs a unified network
across iterations, modulated by degradation and scenario prompts, enabling progressive removal
of each degradation type in different scenarios. This design avoids structural redundancy, and all
iterations reuse the same network parameters, with only lightweight prompt modules introduced.
While iterative inference may require more steps than single-pass baselines, the added cost is slight
and results in significantly improved performance.

A.5.3 Prompt Design Detail

In our framework, two types of prompts are used as conditional inputs to guide the network. Follow-
ing [22]], these prompts are randomly initialized and fixed for each prompt type. During training, they
gradually encode task-relevant conditions through model optimization under specific prompts. We
manually define the prompt corresponding specific degradation conditions. Specifically, the prompts
are designed to represent the degradation type and processing scenario. As part of future work, we
plan to explore more flexible and scalable prompt designs. In particular, we will investigate the use of
image-based self-prompting mechanisms, where the model dynamically generates degradation-aware
prompts from the input itself. Additionally, we are interested in integrating language-based prompts
to express complex degradation descriptions in a more interpretable and user-controllable manner.
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Figure 13: Additional visual comparisons of our method with other competitive approaches on our Normal Set.
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Figure 15: Visual comparisons of three baselines and with our PPFEN approach in TNO dataset.
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Figure 16: Visual comparisons of three baselines and with our PPFN approach in Roadscene dataset.
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