

RIEMANNIAN ZEROTH-ORDER GRADIENT ESTIMATION WITH STRUCTURE-PRESERVING METRICS FOR GEODESICALLY INCOMPLETE MANIFOLDS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 In this paper, we study Riemannian zeroth-order optimization in settings where the
 014 underlying Riemannian metric g is geodesically incomplete, and the goal is to ap-
 015 proximate stationary points with respect to this incomplete metric. To address this
 016 challenge, we construct structure-preserving metrics that are geodesically complete
 017 while ensuring that every stationary point under the new metric remains station-
 018 ary under the original one. Building on this foundation, we revisit the classical
 019 symmetric two-point zeroth-order estimator and analyze its mean-squared error
 020 from a purely intrinsic perspective, depending only on the manifold's geometry
 021 rather than any ambient embedding. Leveraging this intrinsic analysis, we establish
 022 convergence guarantees for stochastic gradient descent with this intrinsic estimator.
 023 Under additional suitable conditions, an ϵ -stationary point under the constructed
 024 metric g' also corresponds to an ϵ -stationary point under the original metric g ,
 025 thereby matching the best-known complexity in the geodesically complete setting.
 026 Empirical studies on synthetic problems confirm our theoretical findings, and ex-
 027 periments on a practical mesh optimization task demonstrate that our framework
 028 maintains stable convergence even in the absence of geodesic completeness.

1 INTRODUCTION

032 In this work, we consider the stochastic optimization problem on the smooth manifold \mathcal{M} equipped
 033 with a Riemannian metric g :

$$\min_{p \in \mathcal{M}} f(p) = \mathbb{E}_{\xi \sim \Xi}[f(p; \xi)], \quad (1)$$

036 where (\mathcal{M}, g) forms a d -dimensional Riemannian manifold, the individual loss $f(\cdot; \xi) : \mathcal{M} \rightarrow \mathbb{R}$ is a
 037 smooth function depending on a random data point ξ drawn from a distribution Ξ . The Riemannian
 038 metric g allows us for defining the first-order gradient $\nabla f(p; \xi)$ in the tangent space at each $p \in \mathcal{M}$,
 039 leading to the standard first-order Riemannian stochastic gradient method (Ring & Wirth, 2012;
 040 Bonnabel, 2013; Smith, 2014; Sato, 2021).

041 In many practical scenarios, especially when the system incorporates non-differentiable external
 042 solvers or black-box objective functions especially when dealing with non-differentiable modules
 043 or black-box objective functions, the explicit gradient of the objective function is either unavailable
 044 or prohibitively expensive to compute. This practical challenge necessitates the use of zeroth-order
 045 optimization technique to approximate the gradient direction solely using the function evaluation
 046 (Nesterov & Spokoiny, 2017; Li et al., 2023b), given by

$$\widehat{\nabla} f(p; \xi) = \frac{f(\exp_p(\mu v); \xi) - f(\exp_p(-\mu v); \xi)}{2\mu} v, \quad (2)$$

050 where v is a random vector sampled from a distribution over the tangent space $T_p \mathcal{M}$, and $\mu > 0$
 051 is the perturbation stepsize. The exponential map $\exp_p : \mathcal{B} \subset T_p \mathcal{M} \rightarrow \mathcal{M}$ sends a tangent vector
 052 $v \in T_p \mathcal{M}$ to the manifold \mathcal{M} along the geodesic starting at p , with \mathcal{B} denoting an open ball centered
 053 at the origin in $T_p \mathcal{M}$. In practice, the exponential map is often replaced by a first-order approximation
 known as a *retraction* (Definition B.3).

054
055

1.1 CHALLENGES IN RIEMANNIAN ZEROTH-ORDER OPTIMIZATION

056
057
058
059
060
061

While existing analyses of Riemannian zeroth-order optimization establish convergence guarantees under various algorithms and assumptions (Chattopadhyay et al., 2015; Fong & Tiño, 2019; Wang et al., 2021a; Wang & Feng, 2022; Maass et al., 2022; Nguyen & Balasubramanian, 2023; Li et al., 2023b;a; Wang, 2023; He et al., 2024; Wang et al., 2023; Goyens et al., 2024; Zhou et al., 2025; Ochoa & Poveda, 2025), a fundamental yet often overlooked issue arises from the **local** nature of the exponential map (or, more generally, retractions).

062
063
064
065
066
067
068

In practice, Riemannian zeroth-order methods often endow \mathcal{M} with an *Euclidean* metric g_E by viewing it as a submanifold of an ambient Euclidean space \mathbb{R}^n and inheriting the metric from the embedding. This setting helps simplify numerical computations, but it has a **fundamental limitation**: the inherited Euclidean metric g_E may not be *geodesically complete*. Specifically, for a point $p \in \mathcal{M}$, the exponential map \exp_p is not necessarily globally defined over the entire tangent space $T_p\mathcal{M}$. Consequently, a randomly sampled tangent vector $v \in T_p\mathcal{M}$ may fall outside the domain of \exp_p , making $\exp_p(v)$ **undefined**.

069
070
071
072
073
074
075

Theoretically, one could instead begin with a *geodesically complete* metric, under which the exponential map $\exp : T\mathcal{M} \rightarrow \mathcal{M}$ is globally defined on the full tangent bundle $T\mathcal{M}$. The Nomizu-Ozeki theorem (Nomizu & Ozeki, 1961; Lee, 2018) guarantees the existence of such a complete metric on any smooth manifold without boundary. Then by applying the Nash embedding theorem (Nash, 1956), one could, in principle, obtain an equivalent geodesically complete Euclidean metric, allowing direct application of existing convergence analyses. **However**, the constructive proof of Nash's theorem is numerically nontrivial, making it infeasible for practical optimization algorithms.

076
077
078
079

This challenge motivates us to consider the following natural question:

Q: How can we perform Riemannian zeroth-order optimization when the canonical Euclidean metric is geodesically incomplete?

080
081
082
083

To answer this question, we need to develop a Riemannian zeroth-order optimization algorithm for a given metric g that may not be geodesically complete, yet remains capable of finding a stationary point. Our contributions are outlined in the following subsection.

084
085
086
087
088
089
090
091

Contribution 1 (Structure-Preserving Metric Construction): To address the potential *geodesic incompleteness* of the given metric g , we construct the *structure-preserving metrics* g' (Definition 2.5) in Theorem 2.6 that: (i) is geodesically complete, (ii) is conformally equivalent to the original metric g , and (iii) ensures any ϵ -stationary point under g is also an ϵ -stationary point under g' . These properties allow us to work with the new metric g' while maintaining the desired property as the original metric g .

092
093
094
095
096

However, adopting the structure-preserving metric raises a fundamental challenge: the geometry induced by g' generally differs from that of g . In particular, g' is typically no longer an *Euclidean* metric inherited from the original ambient Euclidean space, which precludes the direct use of standard Riemannian zeroth-order gradient estimators (Li et al., 2023a;b). Overcoming this mismatch between estimator design and underlying geometry leads to our second contribution.

097
098
099
100
101
102
103
104

Contribution 2 (Intrinsic Zeroth-Order Gradient Estimation): Rather than finding a new ambient Euclidean space for the structure-preserving metric g' , we develop an *intrinsic* framework for zeroth-order optimization under non-Euclidean Riemannian metrics that relies solely on the manifold structure itself, and not on any embedding or representation in a larger ambient space. Under this intrinsic framework, we further analyze the mean-squared error (MSE) of the classical symmetric two-point zeroth-order gradient estimator (Equation (2)) under an arbitrary geodesically complete metric g in Theorem 2.7, revealing the fundamental connection between the approximation error of gradient estimator and the curvature of the underlying manifold:

105
106
107

$$\mathbb{E}_{v \sim \text{Unif}(\mathbb{S}^{d-1})} \left[\left\| \widehat{\nabla} f(p; v) - \frac{1}{d} \nabla f(p) \right\|_p^2 \right] \leq \frac{1 + \mu^2 \kappa^2}{d} \left\| \nabla f(p) \right\|_p^2 + \mathcal{O}(\mu^2).$$

where $v \sim \text{Unif}(\mathbb{S}^{d-1})$ is uniformly drawn from the unit sphere $\mathbb{S}^{d-1} \subset T_p\mathcal{M}$ induced by g' , $\widehat{\nabla} f(p; v)$ is the gradient estimator given by Equation (2), and κ is a uniform upper bound on the

108 absolute sectional curvature of (\mathcal{M}, g') . In the flat case $\kappa = 0$, the bound reduces to the classical
 109 approximation error for zeroth-order gradient estimation in Euclidean spaces. Building on this result,
 110 **Theorem 2.9** establishes the convergence of SGD under a general Riemannian metric g .

111 **Contribution 3 (Efficient Sampling under General Metrics):** Moreover, sampling uniformly from
 112 the unit sphere $\mathbb{S}^{d-1} \subset T_p\mathcal{M}$ with respect to a general Riemannian metric g is nontrivial. We show
 113 that the commonly used rescaling approach (*i.e.* drawing a Gaussian vector and normalizing it to
 114 g -unit length) introduces an inherent bias under non-Euclidean metrics. **To overcome this issue,**
 115 **we apply the rejection sampling method (Devroye, 2006) to Algorithm 1**, an unbiased sampling
 116 procedure for generating g -unit-length tangent vectors. In **Proposition 2.8**, we prove that the output
 117 distribution of our method is exactly uniform over \mathbb{S}^{d-1} .

118 **Contribution 4 (Empirical Validation):** Lastly, to validate our theoretical results and demonstrate
 119 the empirical effectiveness of the proposed framework, we conduct extensive experiments on both
 120 synthetic and the practical experiments. Synthetic experiments examine: *(i)* the impact of sampling
 121 bias arising from rescaling sampling, and *(ii)* the influence of geometric curvature on estimation
 122 accuracy. In the mesh optimization task, our method further shows practical effectiveness in scenarios
 123 where geodesic completeness is absent.

125 1.3 APPLICATIONS OF RIEMANNIAN ZEROOTH-ORDER OPTIMIZATION ON GEODESICALLY 126 INCOMPLETE MANIFOLDS

127 In this section, we highlight several applications of Riemannian zeroth-order optimization where the
 128 underlying manifold is geodesically incomplete.

129 **Mesh Optimization** In physical simulations, mesh optimization is essential for improving dis-
 130 cretized surface quality. Modern neural physical models, such as CFD-GCN (Belbute-Peres et al.,
 131 2020), adjust vertex positions by optimizing a quality metric, usually involving an external PDE
 132 solver. A major bottleneck is the requirement to implement auto-differentiation through this solver to
 133 obtain gradients, which is fundamentally difficult. Riemannian zeroth-order optimization offers a
 134 compelling alternative by avoiding this gradient calculation. In this setting, the manifold consists of
 135 the valid configuration space of vertex positions. This manifold, however, is geodesically incomplete
 136 under the Euclidean metric, because configurations on the boundary (*e.g.*, a vertex on an edge) are
 137 excluded to prevent numerical instability.

138 **Irrigation System Layout Design** This application seeks to optimize the physical coordinates
 139 of sprinklers to maximize water coverage. The coverage objective function is often a complex,
 140 non-differentiable simulation (*e.g.*, modeling spray overlap, pressure, and wind), making it difficult
 141 to compute gradients. Riemannian zeroth-order optimization provides a gradient-free solution. The
 142 underlying manifold is the configuration space of valid sprinkler positions, defined by the open
 143 set within the field’s boundaries. This manifold is geodesically incomplete, as typically we cannot
 144 directly put the sprinklers on the boundary of the field.

145 **Covariance Matrix Estimation** This is a fundamental problem in multivariate statistics and
 146 machine learning, essential for tasks like PCA and Gaussian modeling. The goal is to find a matrix
 147 that best represents the data’s covariance, often by minimizing a loss function (*e.g.*, maximizing
 148 likelihood). The underlying manifold is the set of all $d \times d$ *positive definite matrices*, denoted S_d^{++} .
 149 A matrix C is in this manifold if it is symmetric and $x^T C x > 0$ for all non-zero vectors $x \in \mathbb{R}^d$.
 150 This manifold is geodesically incomplete because it is an open convex cone.

151 In summary, the incompleteness in these examples poses a fundamental challenge, as existing
 152 literature typically requires geodesic completeness for gradient estimation. This limitation motivates
 153 our work to develop a framework that can perform Riemannian zeroth-order optimization without
 154 geodesic completeness.

158 2 MAIN RESULTS

159 In this section, we **present the main results of this paper:** *(i)* We propose the concept of structure-
 160 preserving metric (**Definition 2.5**) and provide its construction based on an arbitrary given metric g

([Theorem 2.6](#)). (ii) Then we derive the approximation error upper bound of the two-point zeroth-order gradient estimator *intrinsically*; that is, it does not rely on how the manifold is embedded into the ambient space ([Theorem 2.7](#)). (iii) To numerically obtain the gradient estimator under a general Riemannian metric g , we adopt the rejection sampling algorithm ([Algorithm 1](#)) to sample from the g -unit sphere. Later, [Proposition 2.8](#) guarantees that the sampled vector satisfies the desired property. (iv) In [Theorem 2.9](#), we establish the convergence of SGD under a general Riemannian metric g .

2.1 ASSUMPTIONS

In this subsection, we summarize the assumptions used in our theoretical analysis. A brief manifold preliminary is included in [Appendix B](#). Detailed discussions of each assumption are provided in [Appendix C.1](#).

Assumption 2.1. *In the optimization problem given by [Equation \(1\)](#), the individual loss function*

$$f(\cdot; \xi) : \mathcal{M} \rightarrow \mathbb{R}$$

satisfies the following two properties:

- (a) *L-Bounded Hessian; for all $p \in \mathcal{M}$,*
- (b) *Lower boundedness; the infimum $f_\xi^* := \inf_{\mathcal{M}} f(\cdot; \xi)$ exists almost surely with $\xi \sim \Xi$.*

The following assumption imposes a regularization condition on the retraction used in [Theorem 2.9](#). While it is always possible to construct a pathological retraction that deviates substantially from the exponential map, such choices may still scale with $\|v\|_p$ but would negatively affect the final convergence rate.

Assumption 2.2. *Let $f : \mathcal{M} \rightarrow \mathbb{R}$ be a smooth function. There exists a constant $C_{\text{Ret}} \geq 0$ such that*

$$|f(\text{Ret}_p(v)) - f(\exp_p(v))| \leq C_{\text{Ret}} \|v\|_p^2.$$

Assumption 2.3. *There exist constants $\rho > 0$ and $M_3, M_4 > 0$ such that*

$$\|\nabla^3 f(q)\|_{\text{HS}} \leq M_3, \quad \|\nabla^4 f(q)\|_{\text{HS}} \leq M_4,$$

for all $q \in \mathcal{B}_p(p, \rho)$, where $\mathcal{B}_p(p, \rho)$ denotes the geodesic ball of radius ρ and $\|\cdot\|_{\text{HS}}$ is the Hilbert-Schmidt norm.

Assumption 2.4. *There exists a constant $\kappa \geq 0$ such that the sectional curvature of the Riemannian manifold (\mathcal{M}, g) satisfies*

$$|K_p(\sigma)| \leq \kappa, \quad \text{for every point } p \in \mathcal{M} \text{ and every 2-plane } \sigma \subset T_p \mathcal{M}.$$

Equivalently, $-\kappa \leq K_p(\sigma) \leq \kappa$ for all p and σ .

2.2 STRUCTURE-PRESERVING METRIC

We begin with the definition of a *structure-preserving metric* associated with a given metric g . Since the exponential map of an arbitrary Riemannian metric g is not necessarily globally defined on the entire tangent bundle $T\mathcal{M}$ ([Proposition B.2](#)), we seek an alternative metric g' that is geodesically complete while preserving the essential geometric behavior of the original metric g' . This consideration motivates the following definition:

Definition 2.5. Let (\mathcal{M}, g) be a Riemannian manifold. A Riemannian metric g' is called *structure-preserving* with respect to g if it satisfies:

- (a) **(Geodesic completeness)** There exists $\rho > 0$ such that for any $p \in \mathcal{M}$, the domain of the exponential map $\exp_p : T_p \mathcal{M} \rightarrow \mathcal{M}$ contains the ball $\mathcal{B}_p(\rho) := \{v \in T_p \mathcal{M} : \|v\|_g \leq \rho\}$.
- (b) **(Conformal equivalence)** There exists a positive smooth function $h : \mathcal{M} \rightarrow \mathbb{R}$ such that $g'_p(v, w) = h(p)g_p(v, w)$ for all $p \in \mathcal{M}$ and all $v, w \in T_p \mathcal{M}$.
- (c) **(ϵ -stationarity preservation)** For any smooth function $f : \mathcal{M} \rightarrow \mathbb{R}$ and $\epsilon > 0$, every ϵ -stationary point of f under g' ¹ is also an ϵ -stationary point of f under g' .

¹A point $p \in \mathcal{M}$ is called an ϵ -stationary point of the smooth function f under the Riemannian metric g if the length of its gradient at p is less than ϵ ; that is, $\sqrt{g_p(\nabla f(p), \nabla f(p))} < \epsilon$.

216 Here, we include a brief discussion on the motivation for introducing each condition.
 217

- 218 • The first condition (*geodesic completeness*) ensures that if we set the perturbation stepsize $\mu < \rho$
 219 and fix the random vector v on the g -unit sphere $\mathbb{S}^{d-1} \subset T_p\mathcal{M}$, the perturbed point $\mu v \in T_p\mathcal{M}$
 220 will always be within the domain of the exponential map.
- 221 • The *conformal equivalence* condition preserves the set of stationary points; that is, for any smooth
 222 function $f : \mathcal{M} \rightarrow \mathbb{R}$, if p is a stationary point under g , then it is also a stationary point under g' ,
 223 and *vice versa*.
- 224 • The ϵ -stationarity preservation condition gives rise to the name “stationary-preserving metric”. It
 225 states that any ϵ -stationary point under g remains an ϵ -stationary point under g' , ensuring that the
 226 transformation leaves the original set of ϵ -stationary points unchanged. We emphasize, **however**,
 227 that the converse need not hold: an ϵ -stationary point under g' is generally not an ϵ -stationary
 228 point under g . Nevertheless, under suitable conditions, this asymmetry does not affect the overall
 229 complexity guarantees as we will discuss it in [Corollary 2.10](#).

230
 231 In the following theorem, we demonstrate that given a metric g , it is always possible to construct a
 232 metric g' which is *structure-preserving* with respect to g .

233 **Theorem 2.6.** *Let \mathcal{M} be a smooth manifold (possibly non-compact), and let g be any Riemannian
 234 metric on \mathcal{M} . Then there exists a Riemannian metric g' on \mathcal{M} which is structure-preserving with
 235 respect to g .*

236
 237 *Proof.* The proof follows the classical construction presented by [Nomizu & Ozeki \(1961\)](#) with
 238 modifying the conformal coefficient $h : \mathcal{M} \rightarrow (0, +\infty)$ to ensure the ϵ -stationarity preservation
 239 condition presented in [Definition 2.5](#). The full proof is provided in [Appendix C.3](#). \square
 240

241 As illustrated in [Figure 1b](#), the metrics constructed in this theorem ensure that geodesics remain
 242 within the manifold for all directions and lengths, eliminating concerns that random perturbations in
 243 zeroth-order gradient estimation could map outside the domain of the exponential map. Moreover,
 244 the conformal equivalence condition given by [Definition 2.5](#) preserves the set of stationary points;
 245 therefore, in Riemannian zeroth-order optimization, it suffices to work with the new metric g' .
 246

255 Figure 1: Geodesic contours centered at $p = (0.2, 0.2, 0.6)$ under the Euclidean metric ([Figure 1a](#))
 256 and three structure-preserving metrics ([Figure 1b](#)). Radii range from 0.1 to 0.9 in steps of 0.15. Under
 257 each structure-preserving metric, geodesics from p never exit the probability simplex, regardless of
 258 direction or length.
 259

260
 261 **Challenges Arising from the Structure-Preserving Metric** Although [Theorem 2.6](#) ensures that
 262 the constructed metric g' satisfies the desired properties, existing results in Riemannian zeroth-order
 263 optimization cannot be applied directly to establish convergence guarantees under g' . This limitation
 264 arises because much of the current literature assumes a *Euclidean* setting, where \mathcal{M} is embedded in a
 265 Euclidean space and the gradient estimation is determined by that embedding. In contrast, the new
 266 metric g' is generally *non-Euclidean* with respect to the original ambient Euclidean space of g . To
 267 address this obstacle, we are motivated to develop an *intrinsic* zeroth-order optimization framework
 268 that operates solely on the manifold’s geometry, without requiring \mathcal{M} to be viewed as a subset of any
 269 Euclidean space.

270
271
272
273
274
275
276
277
278
279

(a) Rescaling Sampling (b) Rejection Sampling (Algorithm 1)

280
281 Figure 2: Illustration of sampling on the unit sphere induced by the non-Euclidean Riemannian metric
282 g . The naïve rescaling sampler (Left Panel) produces a visibly non-uniform distribution, leading to a
283 biased estimator. Our rejection sampler (Right Panel) presented in [Algorithm 1](#) eliminates the bias
284 and yields an even, truly uniform distribution.
285

286 2.3 INTRINSIC ZEROOTH-ORDER GRADIENT ESTIMATION UNDER NON-EUCLIDEAN METRIC 287

288 In this section, we introduce the intrinsic approach to estimate the gradient of the function $f : \mathcal{M} \rightarrow \mathbb{R}$
289 without relying on the ambient space. We take g as a geodesically complete metric and consider the
290 classical symmetric estimator

291
$$\hat{\nabla} f(p) = \frac{f(\exp_p(\mu v)) - f(\exp_p(-\mu v))}{2\mu} v, \quad (3)$$

292
293

294 where $\exp_p : T_p \mathcal{M} \rightarrow \mathcal{M}$ is the exponential map. As noted by [Bonnabel \(2013\)](#), it is common to
295 replace the exponential map with the retraction ([Definition B.3](#)).

296 The following theorem characterizes the mean-squared error (MSE) of this zeroth-order gradient
297 estimator, establishing a connection between its approximation error and the intrinsic geometric
298 properties of the underlying Riemannian manifold. The result is derived under the assumptions
299 of bounded third- and fourth-order derivatives ([Assumption 2.3](#)) and globally bounded sectional
300 curvature ([Assumption 2.4](#)). The full upper bound and the proof is deferred to [Appendix C.4](#).

301 **Theorem 2.7.** *Let (\mathcal{M}, g) be a complete d -dimensional Riemannian manifold and $p \in \mathcal{M}$. Let
302 $f : \mathcal{M} \rightarrow \mathbb{R}$ be a smooth function and suppose that [Assumptions 2.3](#) and [2.4](#) hold. Fix a perturbation
303 stepsize $\mu > 0$ satisfying $\mu^2 \leq \min\{\frac{1}{d-1}, \frac{1}{2} + \frac{6}{d} + \frac{8}{d^2}\}$, and for any unit vector $v \in T_p \mathcal{M}$ **define the
304 symmetric zeroth-order estimator as in Equation (3)**. Then, for $v \sim \text{Unif}(\mathbb{S}^{d-1})$ uniformly sampled
305 from the g_p -unit sphere in $T_p \mathcal{M}$,*

306
$$\mathbb{E}_{v \sim \text{Unif}(\mathbb{S}^{d-1})} \left[\left\| \hat{\nabla} f(p; v) - \frac{1}{d} \nabla f(p) \right\|_p^2 \right] \leq \frac{1 + \mu^2 \kappa^2}{d} \left\| \nabla f(p) \right\|_p^2 + \mathcal{O}(\mu^2).$$

307
308

309 The bound in [Theorem 2.7](#) reveals how the estimation error connects the intrinsic geometry of the
310 manifold. In particular, the sectional curvature term κ quantifies the influence of local geometry on
311 the estimator's variance. When $\kappa = 0$, the curvature contribution disappears, and the bound reduces
312 to the standard Euclidean variance expression.
313

314 2.4 SAMPLING FROM THE NON-EUCLIDEAN UNIT SPHERE 315

316 As the Riemannian metric g defines a bilinear form on the tangent space $T_p \mathcal{M}$, uniformly sampling
317 the g -unit sphere $\mathcal{B} := \{v \in T_p \mathcal{M} : g_p(v, v) = 1\}$ is equivalent to uniformly sample from the
318 following compact set $\mathcal{C} := \{v \in \mathbb{R}^d : v^\top A v = 1\}$ for some positive definite matrix $A \in \mathbb{R}^{d \times d}$.
319 The matrix $A \succ 0$ is determined by [the Riemannian metric \$g\$ and the choice](#) of local coordinates; in
320 practice, we commonly use the local coordinate system spanned by the basis $\{\frac{\partial}{\partial x^i}|_p\}$. In this basis,
321 the entries of A are given by $A_{ij} := g_p(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j})$.
322

323 **Challenges in Sampling from the g -Unit Sphere** In Euclidean space, sampling from the unit
sphere is relatively straightforward: one can sample from the standard Gaussian distribution and

378 In particular, choosing $\mu \lesssim \frac{1}{d^2} \sqrt{\frac{d}{T}}$ yields $\min_{1 \leq t \leq T} \|\nabla f(p_t)\|_{p_t}^2 \lesssim \sqrt{\frac{d}{T}}$.
 379
 380

381 *Proof.* The proof directly follows the standard convergence analysis of SGD in Euclidean space
 382 ([Mishchenko et al., 2020](#)). We may further relax the L -smoothness assumption to the expected smooth-
 383 ness condition proposed by ([Khaled & Richtárik, 2022](#)). The zeroth-order gradient approximation
 384 error term is bounded using [Theorem 2.7](#). See [Appendix C.6](#) for the full proof. \square
 385

386 **Importantly**, the upper bound in [Theorem 2.9](#) is not our final goal. We typically begin with a
 387 canonical Euclidean metric g_E , which may fail to be geodesically complete. To overcome this issue,
 388 we construct a new metric $g := hg_E$ via [Theorem 2.6](#) and then apply the convergence analysis under
 389 this new metric g (using [Theorem 2.7](#) and [Theorem 2.9](#)). However, an ϵ -stationary point delivered by
 390 SGD under g often is not an ϵ -stationary point under g_E , unless the additional condition stated in the
 391 following corollary is imposed:

392 **Corollary 2.10.** *Let g_E be the Euclidean metric, and let g be a structure-preserving metric with
 393 respect to g_E . Under the same assumptions as [Theorem 2.9](#), suppose that either of the following
 394 conditions holds:*

395 (a) g_E is geodesically complete; or
 396 (b) the set of ϵ -stationary points under g_E , $K := \{p \in \mathcal{M} : \|\nabla_{g_E} f(p)\|_{p, g_E} \leq \epsilon\}$, is compact.

397 Then it requires at most $T \leq \mathcal{O}\left(\frac{d}{\epsilon^4}\right)$ iterations to achieve $\min_{1 \leq t \leq T} \mathbb{E}[\|\nabla f(p_t)\|_{p_t, g_E}^2] \leq \epsilon^2$.
 398

400 *Proof.* Under either condition, the conformal coefficient h constructed in [Theorem 2.6](#) admits a
 401 uniform upper bound. Consequently, an ϵ -stationary point with respect to the new metric $g := hg_E$ is
 402 also an ϵ -stationary point with respect to the original metric g_E , up to a constant scaling factor. This
 403 structure allows the complexity bound established in [Theorem 2.9](#) to transfer directly to the metric
 404 g_E . See [Appendix C.7](#) for the full proof. \square
 405

406 Item (a) corresponds to the classical setting in which the original metric is geodesically complete.
 407 Item (b), on the other hand, specifies conditions under which an ϵ -stationary point under the new
 408 metric is also an ϵ -stationary point under the original metric. We emphasize that [Theorem 2.9](#)
 409 establishes convergence even in more general scenarios, though with potentially worse complexity
 410 bounds than in the geodesically complete case. This phenomenon highlights a key distinction between
 411 the framework studied in our work and the traditional geodesically complete setting. Building on this
 412 result, we extend the best-known complexity bound for Riemannian zeroth-order SGD on smooth
 413 objectives from the special case of manifolds equipped with a Euclidean metric to a much broader
 414 class of manifolds endowed with general Riemannian metrics.

415 3 EXPERIMENTS

417 In the experimental section, we aim to validate the theoretical findings presented in [Section 2](#). The
 418 two synthetic experiments are designed to investigate the following questions:

419 (i) How does sampling bias influence the convergence behavior of Riemannian zeroth-order SGD?
 420 (ii) How does the curvature of the underlying manifold affect the accuracy of gradient estimation?

422 In addition, we conduct a real-world experiment on mesh optimization ([Hoppe et al., 1993](#); [Belbute-
 423 Peres et al., 2020](#); [Ma et al., 2025](#)), a practical application in which the positions of nodes are naturally
 424 represented as points on the probability simplex. All source codes are attached to the supplementary.
 425

426 3.1 SYNTHETIC EXPERIMENT: IMPACT OF SAMPLING BIAS

428 In this experiment, we investigate the impact of sampling bias in zeroth-order Riemannian optimiza-
 429 tion. Specifically, we consider two objective functions defined on the Euclidean space \mathbb{R}^d , equipped
 430 with a non-Euclidean Riemannian metric given by $g_A(u, v) := u^\top A v$:

431
$$f_{\text{quadratic}}(x) = \frac{1}{2} \mathbb{E}_\xi x^\top (B + \xi)x, \quad f_{\text{logistic}}(x) = \mathbb{E}_{(\zeta, y)} \log(1 + \exp(-y \zeta^\top x)) + \frac{\lambda}{2} x^\top B x,$$

432 where each entry of ξ is independently drawn from $\mathcal{N}(0, 1)$, and (ζ, y) is sampled from a fixed
 433 categorical data distribution. The matrix $B \in \mathbb{R}^{d \times d}$ is a pre-generated positive definite matrix. We
 434 compare two sampling strategies for Riemannian gradient estimation in the zeroth-order setting:
 435 (i) *Rejection sampling* (Algorithm 1), which produces uniform samples from the Riemannian unit
 436 sphere and is unbiased as shown in Proposition 2.8. (ii) *Rescaling sampling*, which samples a
 437 Gaussian vector then normalizes it to the unit sphere with respect to the Riemannian metric g_A .
 438

439 **Experimental Implications** For each configuration, we report the average objective value over
 440 16 independent runs using the same hyperparameter settings for the SGD optimizer. As shown
 441 in Figure 3, the rejection sampling method (Algorithm 1) consistently outperforms the traditional
 442 rescaling approach; the rescaling method even leads to divergence under the same hyper-parameter
 443 setting for the logistic loss objective (right panel of Figure 3). These results highlight the importance
 444 of using Algorithm 1 to ensure an unbiased uniform distribution over the Riemannian g -unit sphere,
 445 which is critical for stable and effective training. The complete experimental details are included in
 446 Appendix D.1.

447 Figure 3: The impact of sampling bias on the
 448 convergence of Riemannian zeroth-order SGD.
 449

450 Figure 4: The impact of sectional curvatures on
 451 the gradient estimation accuracy.
 452

453 3.2 SYNTHETIC EXPERIMENT: IMPACT OF SECTIONAL CURVATURE

454 In this experiment, we investigate the impact of sectional curvature on the accuracy of zeroth-order
 455 gradient estimation. Specifically, we evaluate gradient estimation errors at a fixed point p_0 under four
 456 conformally equivalent Riemannian metrics with different curvatures. We consider two objective
 457 functions commonly used in the optimization problem on probability simplex:
 458

$$459 f_{\text{KL}}(p) = \text{KL}(p\|q) = \sum_i p_i \log(p_i), \quad f_{\text{Euclidean}}(p) = \frac{1}{2} \|p - q\|^2 = \frac{1}{2} \sum_{i=1}^d (p_i - \frac{1}{d})^2$$

460 where $q = \frac{1}{d} \mathbf{1}_d$ denotes the centroid of the simplex. We measure the accuracy of gradient estimation
 461 using the mean-squared error (MSE) under its own Riemannian metric, computed over 50,000
 462 independent trials of zeroth-order gradient estimation (Equation (3)). The complete experimental
 463 details are included in Appendix D.2.
 464

465 **Experimental Implications** As depicted in Figure 4, the Riemannian MSE of zeroth-order gradient
 466 estimation decreases as the sectional curvature $K(p_0)$ decreases. This empirical finding aligns with
 467 our theoretical upper bound presented in Theorem 2.7, illustrating a clear connection between gradient
 468 estimation accuracy and the intrinsic geometric properties of the underlying manifold. In particular,
 469 higher curvature consistently results in larger estimation errors for both objective functions.
 470

471 3.3 GRADIENT-BASED MESH OPTIMIZATION

472 In modern physical simulation, solving PDEs often relies on finite-volume methods with spatial
 473 discretizations and external solvers that lack automatic differentiation support (Belbute-Peres et al.,
 474 2020; Ma et al., 2025), making the zeroth-order approach an ideal tool for optimizing mesh positions.
 475

476 **Task Description** In this experiment, we consider the gradient-based mesh optimization problem
 477 for solving the Helmholtz equation (Goodman, 2017; Engquist & Zhao, 2018),
 478

$$\nabla^2 f = -k^2 f,$$

Figure 5: The leftmost panel illustrates an invalid optimization step on a mesh node; it crosses the edge, causing potential error in the external PDE solver. Figure (a) illustrates the *Soft Projection* approach, which resolves the issue by repeatedly reducing the perturbation stepsize μ along the perturbation direction v until the movement becomes valid. Figure (b) shows the *Reversion* approach, which instead handles invalid steps by reverting to the original position. Figure (c) takes the advantage of the structure-preserving metric, which twists the underlying Riemannian structure ensuring that the perturbation won't move the point out of the domain.

Figure 6: The left panel shows the ground-truth prediction (background), the initial mesh (blue), and the optimized mesh (red) using our proposed method. The nodes adaptively concentrate around the critical region while preserving the overall mesh structure. The right panel presents the loss curves for different approaches. Our method achieves both stable and efficient convergence.

where ∇^2 denotes the Laplace operator, $k = 10$ is the wave number, and f is the eigenfunction. The ground-truth solution is computed on a fine mesh with resolution 200×200 . Our goal is to optimize the node positions of a regular coarse mesh with resolution 20×20 so that its performance approximates that of the ground-truth solution.

The mesh node (in our setting, boundary nodes are fixed and excluded from optimization) is represented using a simplex formulation: each trainable node $p = (x, y)$ is expressed as a convex combination of its six neighbors under the regular triangular initialization. This parameterization naturally leads to a manifold optimization problem. **However**, the coordinate simplex, under its canonical embedding, is geodesically incomplete. To ensure the exponential map remains well-defined and to prevent perturbed nodes from crossing mesh edges, we adopt our proposed structure-preserving approach and compare it against several natural baselines, as illustrated in Figure 5.

Results Figure 6 presents the loss curves of the up-sampled prediction over 20,000 optimization steps. The *unconstrained* method often violates mesh validity, leading to unstable fluctuations, most notably around the 16,000th step. The *reversion* prevents invalid updates but quickly stalls after 8,000 steps; similarly, the *soft projection* stabilizes training but progresses slowly, showing little improvement beyond 14,000 steps. In contrast, our *structure-preserving* approach consistently reduces the error throughout training, achieving the lowest final MSE without instability. These findings highlight that structure-preserving approaches not only maintain feasibility but also enable effective convergence.

540 REFERENCES

541

542 P.-A. Absil, C. G. Baker, and K. A. Gallivan. Trust-region methods on riemannian manifolds. *Foundations of Computational Mathematics*, 7(3):303–330, 2007. doi: 10.1007/s10208-005-0179-9.

543

544 P.-A. Absil, R. Mahony, and R. Sepulchre. *Optimization Algorithms on Matrix Manifolds*. Princeton University Press, Princeton, NJ, 2008.

545

546 Naman Agarwal, Nicolas Boumal, Brian Bullins, and Coralia Cartis. Adaptive regularization with cubics on manifolds. *Mathematical Programming*, 188:85–134, 2021.

547

548 Kwangjun Ahn and Suvrit Sra. From nesterov’s estimate sequence to riemannian acceleration. In Jacob Abernethy and Shivani Agarwal (eds.), *Proceedings of the 33rd Conference on Learning Theory*, volume 125 of *Proceedings of Machine Learning Research*, pp. 1–35. PMLR, 2020.

549

550

551 Foivos Alimisis, Antonio Orvieto, Gary Bécigneul, and Aurelien Lucchi. Momentum improves optimization on riemannian manifolds. In *Proceedings of the 24th International Conference on Artificial Intelligence and Statistics*, volume 130 of *Proceedings of Machine Learning Research*, pp. 1979–1987. PMLR, 2021.

552

553

554 Gary Bécigneul and Octavian-Eugen Ganea. Riemannian adaptive optimization methods. In *International Conference on Learning Representations (ICLR)*, 2019.

555

556 Filipe De Avila Belbute-Peres, Thomas Economou, and Zico Kolter. Combining differentiable pde solvers and graph neural networks for fluid flow prediction. In *international conference on machine learning*, pp. 2402–2411. PMLR, 2020.

557

558 Silvère Bonnabel. Stochastic gradient descent on riemannian manifolds. *IEEE Transactions on Automatic Control*, 58(9):2217–2229, 2013. doi: 10.1109/TAC.2013.2254619.

559

560

561 Amit Chattopadhyay, Suvisheshamuthu E. Selvan, and Umberto Amato. A derivative-free riemannian powell’s method, minimizing hartley-entropy-based ica contrast. *IEEE Trans. Neural Networks and Learning Systems*, 27(9):1983–1995, 2015.

562

563 Christopher Criscitiello and Nicolas Boumal. Negative curvature obstructs acceleration for strongly geodesically convex optimization, even with exact first-order oracles. In *Proceedings of the 35th Conference on Learning Theory*, volume 178 of *Proceedings of Machine Learning Research*, pp. 1–47, 2022.

564

565 Luc Devroye. Nonuniform random variate generation. *Handbooks in operations research and management science*, 13:83–121, 2006.

566

567 Manfredo Perdigão do Carmo. *Riemannian Geometry*. Mathematics: Theory & Applications. Birkhäuser Boston, Inc., Boston, MA, 1992. ISBN 0-8176-3490-8. Translated from the second Portuguese edition by Francis Flaherty.

568

569 James Dugundji. *Topology*. Allyn and Bacon, Boston, 1966. ISBN 978-0-697-06889-7.

570

571 Björn Engquist and Hongkai Zhao. Approximate separability of the green’s function of the helmholtz equation in the high frequency limit. *Communications on Pure and Applied Mathematics*, 71(11): 2220–2274, 2018.

572

573 Herbert Federer. *Geometric Measure Theory*. Classics in Mathematics. Springer Berlin, Heidelberg, 1996. ISBN 978-3-540-60656-7. doi: 10.1007/978-3-642-62010-2. URL <https://doi.org/10.1007/978-3-642-62010-2>. Originally published as volume 153 in the series: Grundlehren der mathematischen Wissenschaften.

574

575 Robert Simon Fong and Peter Tiňo. Stochastic derivative-free optimization on riemannian manifolds. *arXiv preprint arXiv:1908.06783*, 2019.

576

577 Joseph W. Goodman. *Introduction to Fourier Optics*. W. H. Freeman / Macmillan Higher Education, New York, 4 edition, 2017. ISBN 978-1319119164.

578

579 Florentin Goyens and Clément W. Royer. Riemannian trust-region methods for strict saddle functions with complexity guarantees. *Mathematical Programming*, pp. 1–43, 2024.

594 Florentin Goyens, Coralia Cartis, and Stéphane Chrétien. Registration of algebraic varieties using
 595 riemannian optimization. *arXiv preprint arXiv:2401.08562*, 2024.
 596

597 Linus Hamilton and Ankur Moitra. A no-go theorem for robust acceleration in the hyperbolic plane.
 598 In *Advances in Neural Information Processing Systems*, volume 34, pp. 3330–3342, 2021.

599 Chang He, Zhaoye Pan, Xiao Wang, and Bo Jiang. Riemannian accelerated zeroth-order algorithm:
 600 Improved robustness and lower query complexity. In *Proc. 41st Int. Conf. Machine Learning
 601 (ICML)*, 2024.

602 Heinz Hopf and Willi Rinow. Ueber den begriff der vollständigen differentialgeometrischen fläche.
 603 *Commentarii Mathematici Helvetici*, 3(1):209–225, 1931. doi: 10.1007/BF01601813.

604 Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. Mesh opti-
 605 mization. In *Proceedings of the 20th annual conference on Computer graphics and interactive
 606 techniques*, pp. 19–26, 1993.

607 Wen Huang and Ke Wei. Riemannian proximal gradient methods. *Mathematical Programming*, 194
 608 (1–2):371–413, 2022.

609 Wen Huang, P.-A. Absil, and Kyle A. Gallivan. A riemannian bfgs method without differentiated
 610 retraction for nonconvex optimization problems. *SIAM Journal on Optimization*, 28(1):470–495,
 611 2018. doi: 10.1137/17M1127582.

612 Leon Isserlis. On certain probable errors and correlation coefficients of multiple frequency dis-
 613 tributions with skew regression. *Biometrika*, 11(3):185–190, 1916. ISSN 0006-3444. doi:
 614 10.1093/biomet/11.3.185. URL <https://doi.org/10.1093/biomet/11.3.185>. JS-
 615 TOR 2331846.

616 Leon Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency
 617 distribution in any number of variables. *Biometrika*, 12(1–2):134–139, 1918. doi: 10.1093/biomet/
 618 12.1-2.134.

619 Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world. *Transactions on
 620 Machine Learning Research*, 2022.

621 Jungbin Kim and Insoon Yang. Accelerated gradient methods for geodesically convex optimiza-
 622 tion: Tractable algorithms and convergence analysis. In Kamalika Chaudhuri, Stefanie Jegelka,
 623 Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th In-
 624 ternational Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learn-
 625 ing Research*, pp. 11255–11282, Baltimore, Maryland, USA, 17–23 Jul 2022. PMLR. URL
 626 <https://proceedings.mlr.press/v162/kim22k.html>.

627 Lambert H. Koopmans. *The Spectral Analysis of Time Series*, volume 22 of *Probability and Mathe-
 628 matical Statistics*. Academic Press, New York, 1974. ISBN 0124192505.

629 Vyacheslav Kungurtsev, Francesco Rinaldi, and Damiano Zeffiro. Retraction-based direct search
 630 methods for derivative free riemannian optimization. *Journal of Optimization Theory and Applica-
 631 tions*, 2023. to appear.

632 Zhijian Lai and Akiko Yoshise. Riemannian interior point methods for constrained optimization on
 633 manifolds. *Journal of Optimization Theory and Applications*, 201:433–469, 2024.

634 John M. Lee. *Smooth Manifolds*, pp. 1–29. Springer New York, New York, NY, 2003. ISBN 978-
 635 0-387-21752-9. doi: 10.1007/978-0-387-21752-9_1. URL https://doi.org/10.1007/978-0-387-21752-9_1.

636 John M. Lee. *Introduction to Riemannian Manifolds*, volume 176 of *Graduate Texts in Mathematics*.
 637 Springer Cham, 2 edition, 2018. ISBN 978-3-319-91754-2. doi: 10.1007/978-3-319-91755-9.

638 Jiaxiang Li, Krishnakumar Balasubramanian, and Shiqian Ma. Zeroth-order riemannian averaging
 639 stochastic approximation algorithms. *arXiv preprint arXiv:2309.14906*, 2023a.

648 Jiaxiang Li, Krishnakumar Balasubramanian, and Shiqian Ma. Stochastic zeroth-order riemannian
 649 derivative estimation and optimization. *Mathematics of Operations Research*, 48(2):1183–1211,
 650 2023b.

651

652 Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, and Licheng Jiao. Accelerated first-order
 653 methods for geodesically convex optimization on riemannian manifolds. *Advances in Neural
 654 Information Processing Systems*, 30, 2017.

655 Shaocong Ma and Heng Huang. Revisiting zeroth-order optimization: Minimum-variance two-
 656 point estimators and directionally aligned perturbations. In *The Thirteenth International Confer-
 657 ence on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ywFOSIT9ik>.

658

659 Shaocong Ma, James Diffenderfer, Bhavya Kailkhura, and Yi Zhou. Deep learning of pde correction
 660 and mesh adaption without automatic differentiation. *Machine Learning*, 114(3):1–25, 2025.

661

662 Alejandro I. Maass, Chris Manzie, Dragan Nešić, Jonathan H. Manton, and Iman Shames. Tracking
 663 and regret bounds for online zeroth-order euclidean and riemannian optimization. *SIAM Journal
 664 on Optimization*, 32(2):445–469, 2022.

665

666 Kanti V. Mardia and Peter E. Jupp. *Directional Statistics*. Wiley Series in Probability and Statistics.
 667 John Wiley & Sons, Chichester, UK, 1999. ISBN 9780471953333. doi: 10.1002/9780470316979.
 668 URL <https://doi.org/10.1002/9780470316979>.

669

670 Konstantin Mishchenko, Ahmed Khaled, and Peter Richtárik. Random reshuffling: Simple analysis
 671 with vast improvements. *Advances in Neural Information Processing Systems*, 33:17309–17320,
 2020.

672

673 John Nash. The imbedding problem for riemannian manifolds. *Annals of Mathematics, Second
 674 Series*, 63(1):20–63, 1956. doi: 10.2307/1969989.

675

676 Yu Nesterov. Gradient methods for minimizing composite functions. *Mathematical programming*,
 140(1):125–161, 2013a.

677

678 Yu.È. Nesterov. A method of solving a convex programming problem with convergence rate $o(\frac{1}{k^2})$.
 679 *Dokl. Akad. Nauk SSSR*, 269(3):543–547, 1983.

680

681 Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer
 682 Science & Business Media, 2013b.

683

684 Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
 685 *Foundations of Computational Mathematics*, 17:527–566, 2017.

686

687 Anthony Nguyen and Krishnakumar Balasubramanian. Stochastic zeroth-order functional constrained
 688 optimization: Oracle complexity and applications. *INFORMS Journal on Optimization*, 5(3):256–
 689 272, 2023.

690

691 Katsumi Nomizu and Hideki Ozeki. The existence of complete riemannian metrics. *Proceedings of
 692 the American Mathematical Society*, 12(6):889–891, 1961.

693

694 Daniel E. Ochoa and Jorge I. Poveda. Robust global optimization on smooth compact manifolds via
 695 hybrid gradient-free dynamics. *Automatica*, 171:111916, 2025.

696

697 Wolfgang Ring and Benedikt Wirth. Optimization methods on riemannian manifolds and their
 698 application to shape space. *SIAM Journal on Optimization*, 22(2):596–627, 2012.

699

700 Hiroyuki Sato. *Riemannian Optimization and Its Applications*. SpringerBriefs in Electrical
 701 and Computer Engineering. Springer Cham, 2021. ISBN 978-3-030-62389-0. doi: 10.1007/
 702 978-3-030-62391-3. URL <https://doi.org/10.1007/978-3-030-62391-3>.

703

704 Hiroyuki Sato. Riemannian conjugate gradient methods: General framework and specific algorithms
 705 with convergence analyses. *SIAM Journal on Optimization*, 32(4):2690–2717, 2022. doi: 10.1137/
 706 21M1464178.

702 Hiroyuki Sato and Toshihiro Iwai. A new, globally convergent riemannian conjugate gradient method.
 703 *arXiv preprint*, 2013.
 704

705 Steven Thomas Smith. Optimization techniques on riemannian manifolds. *arXiv preprint*
 706 *arXiv:1407.5965*, 2014.
 707

708 Michael Spivak. *Calculus*. Publish or Perish, Houston, TX, 3 edition, 1994. ISBN 978-0-914098-89-
 709 8.
 710

711 Tianyu Wang. On sharp stochastic zeroth-order hessian estimators over riemannian manifolds.
Information and Inference: A Journal of the IMA, 12(2):787–813, 2023.
 712

713 Tianyu Wang and Yasong Feng. Convergence rates of stochastic zeroth-order gradient descent for $\|\cdot\|_{\text{ojasiewicz}}$ functions. *arXiv preprint arXiv:2210.16997*, 2022.
 714

715 Tianyu Wang, Yifeng Huang, and Didong Li. From the greene–wu convolution to gradient estimation
 716 over riemannian manifolds. *arXiv preprint arXiv:2108.07406*, 2021a.
 717

718 Xi Wang, Zhipeng Tu, Yiguang Hong, Yingyi Wu, and Guodong Shi. No-regret online learning over
 719 riemannian manifolds. *Advances in Neural Information Processing Systems*, 34:28323–28335,
 2021b.
 720

721 Xi Wang, Zhipeng Tu, Yiguang Hong, Yingyi Wu, and Guodong Shi. Online optimization over
 722 riemannian manifolds. *Journal of Machine Learning Research*, 24(130):1–67, 2023.
 723

724 Melanie Weber and Suvrit Sra. Riemannian optimization via frank-wolfe methods. *Mathematical
 Programming*, 199:525–556, 2023.
 725

726 Teng-Teng Yao, Zhi Zhao, Zheng-Jian Bai, and Xiao-Qing Jin. A riemannian derivative-free polak–
 727 ribière–polyak method for tangent vector field. *Numerical Algorithms*, 86(1):325–355, 2021.
 728

729 Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization. In
Proceedings of the 29th Annual Conference on Learning Theory, volume 49 of *Proceedings of
 730 Machine Learning Research*, pp. 1617–1638, 2016.
 731

732 Hongyi Zhang and Suvrit Sra. An estimate sequence for geodesically convex optimization. In
Proceedings of the 31st Conference on Learning Theory, volume 75 of *Proceedings of Machine
 733 Learning Research*, pp. 1703–1723, 2018.
 734

735 Hongyi Zhang, Sashank J. Reddi, and Suvrit Sra. Riemannian svrg: Fast stochastic optimization on
 736 riemannian manifolds. In *Advances in Neural Information Processing Systems*, volume 29, pp.
 737 4592–4600, 2016.
 738

739 Juan Zhou, Kangkang Deng, Hongxia Wang, and Zheng Peng. Inexact riemannian gradient descent
 740 method for nonconvex optimization with strong convergence. *Journal of Scientific Computing*,
 103(3):1–24, 2025.
 741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 757 758 759 Appendix 760 761

762 Table of Contents

763	A Related Literature	15
764	A.1 Optimization on Riemannian Manifolds	15
765	A.2 Riemannian Zeroth-Order Gradient Estimators	16
766		
767	B Preliminaries	17
768		
769	C Main Results	19
770	C.1 Assumptions	19
771	C.2 Supporting Lemmas	20
772	C.3 Proof of Theorem 2.6	28
773	C.4 Proof of Theorem 2.7	29
774	C.5 Proof of Proposition 2.8	33
775	C.6 Proof of Theorem 2.9	34
776	C.7 Proof of Corollary 2.10	35
777		
778	D Experimental Details	36
779	D.1 Synthetic Experiment: Impact of Sampling Bias	36
780	D.2 Synthetic Experiment: MSE vs. Curvature	37
781	D.3 Gradient-Based Mesh Optimization	38
782	D.4 Additional Discussions on Stability	39
783		
784	E Conclusion	39
785		
786	F Limitations and Future Work	39
787		
788	G The Use of Large Language Models (LLMs)	40

791 792 A RELATED LITERATURE

793 A.1 OPTIMIZATION ON RIEMANNIAN MANIFOLDS

794
795 **First-Order Methods** Riemannian first-order optimization adapts gradient-based methods to
796 Riemannian manifolds. For geodesically convex functions, Riemannian gradient descent enjoys
797 convergence guarantees akin to Euclidean GD, with complexity $O(L/\epsilon)$ for L -smooth objectives.
798 [Zhang & Sra \(2016\)](#) established global complexity bounds on Hadamard manifolds with curvature-
799 dependent rates. Stochastic Riemannian gradient descent converges almost surely under standard
800 assumptions ([Bonnabel, 2013](#)), while variance-reduced variants such as R-SVRG ([Zhang et al., 2016](#))
801 and R-SRG/SPIIDER improve convergence for finite-sum problems. Adapting acceleration ([Nesterov,
802 2013a; 1983; 2013b](#)) to manifolds proved challenging due to the absence of global linearity. Early
803 methods ([Liu et al., 2017](#)) were shown computationally impractical; [Zhang & Sra \(2018\)](#) and [Ahn &
804 Sra \(2020\)](#) addressed this issue by controlling metric distortion, achieving accelerated rates under
805 bounded curvature. [Alimisis et al. \(2021\)](#) proposed momentum-based RAGDsDR, while [Kim &
806 Yang \(2022\)](#) achieved optimal accelerated rates with RNAG, matching the $O(\sqrt{L/\epsilon})$ Euclidean
807 complexity. There are still some fundamental limits remained: [Hamilton & Moitra \(2021\)](#) and
808 [Criscitiello & Boumal \(2022\)](#) showed that curvature may prevent acceleration entirely on negatively
809 curved manifolds. These negative impacts would be eliminated using the second-order methods.

810 **Second-Order Methods** Riemannian second-order methods utilize curvature via Hessians and
 811 connections. Newton-type methods achieve quadratic local convergence using the Riemannian
 812 Hessian (Absil et al., 2008), though global convergence requires safeguards like line search or trust-
 813 region strategies. Trust-region methods (Absil et al., 2007) solve quadratic models in the tangent
 814 space and retract back, ensuring convergence to second-order points. Recent improvements analyze
 815 their behavior near strict saddles (Goyens & Royer, 2024). Alternatively, Riemannian ARC (Agarwal
 816 et al., 2021) uses cubic regularization to achieve optimal $O(\epsilon^{-3/2})$ complexity. Quasi-Newton
 817 methods generalize BFGS to manifolds via vector transports. Ring & Wirth (2012) initiated this line,
 818 and Huang et al. (2018) showed global convergence (and superlinear rates) under mild assumptions.
 819 Limited-memory variants (R-LBFGS) scale better to large problems. Overall, second-order methods
 820 offer faster local convergence but require careful geometric handling of Hessians and transports.

821 **Zeroth-Order Methods** When gradients are unavailable, zeroth-order methods estimate descent
 822 directions via sampling. Li et al. (2023b;a) applied Gaussian smoothing in tangent spaces using
 823 exponential maps to construct unbiased gradient estimators with variance bounds that depend on
 824 curvature and dimension. A stochastic zeroth-order Riemannian gradient descent achieves $O(n/\epsilon^2)$
 825 convergence for smooth nonconvex functions. Wang et al. (2023) proposed two-point bandit methods
 826 (R-2-BAN) for online geodesically convex optimization, showing regret bounds matching Euclidean
 827 rates up to curvature factors. Other derivative-free approaches include retraction-based direct search
 828 methods, as in Kungurtsev et al. (2023), with convergence guarantees for smooth and nonsmooth
 829 objectives. Yao et al. (2021) developed a Polak–Ribiére–Polyak conjugate gradient method using
 830 only function values and nonmonotone line search, achieving global convergence and hybridizing
 831 with Newton steps for improved performance.

832 **Hybrid and Other Emerging Directions** Several novel methods extend optimization frameworks
 833 to the Riemannian setting. Adaptive methods such as Riemannian Adagrad and Adam (Bécigneul
 834 & Ganea, 2019) address the challenge of accumulating gradients across varying tangent spaces
 835 by working on product manifolds, yielding convergence results for geodesically convex problems.
 836 Riemannian conjugate gradient (CG) methods, which define conjugacy across tangent spaces via
 837 vector transport, have been shown to converge globally under standard line-search assumptions (Sato
 838 & Iwai, 2013; Sato, 2022; Kim & Yang, 2022). Projection-free methods like Riemannian Frank-Wolfe
 839 avoid expensive retractions by solving a linear oracle at each step. Weber & Sra (2023) showed
 840 that Riemannian Frank-Wolfe method converges sublinearly in general and linearly under geodesic
 841 strong convexity. For composite objectives with nonsmooth regularizers, Riemannian proximal
 842 gradient methods offer convergence guarantees; Huang & Wei (2022) proved an $O(1/k)$ rate under
 843 retraction-based convexity. Finally, primal-dual interior-point methods have also been adapted: Lai &
 844 Yoshise (2024) introduced a Riemannian interior-point algorithm with local superlinear convergence
 845 and global guarantees, mirroring the classical barrier method behavior in curved spaces.

846 A.2 RIEMANNIAN ZEROTH-ORDER GRADIENT ESTIMATORS

847 In this section, we discuss several widely used gradient estimators in Riemannian optimization and
 848 highlight their connections to our work. Importantly, all of these estimators are developed under the
 849 assumption of a complete Riemannian manifold. In contrast, our setting differs from this convention
 850 by considering optimization over possibly *geodesically incomplete* Riemannian manifolds.

851 **Wang et al. (2021b)** This paper extends the *one-point* bandit estimator to homogeneous Hadamard
 852 manifolds. At the point $x \in \mathcal{M}$ and given y uniformly sampled from the geodesic sphere centered at
 853 x with the radius δ , by using the gradient estimator

$$854 \quad \hat{\nabla} f(x) := f(y) \frac{\exp_x^{-1}(y)}{\|\exp_x^{-1}(y)\|},$$

855 this work established the best-possible regret rate $\mathcal{O}(T^{3/4})$ for g -convex losses in the online regret
 856 optimization problem.

857 **Wang et al. (2023)** This journal version further develops a *two-point* bandit estimator on symmetric
 858 Hadamard manifolds. Uniformly draw y from the geodesic sphere centered at x with the radius δ and

864 defined $-y$ as the antipodal point of y . The gradient estimator is given by
 865

$$866 \quad \widehat{\nabla} f(x) := \frac{f(y) - f(-y)}{2} \frac{\exp_x^{-1}(y)}{\|\exp_x^{-1}(y)\|}.$$

868 The regret improves to $\mathcal{O}(\sqrt{T})$ for g -convex and $\mathcal{O}(\log T)$ for strongly g -convex losses.
 869

870 **Li et al. (2023b) & Maass et al. (2022)** These papers introduce a non-symmetric two-point
 871 Riemannian zeroth-order oracle for the online setting (Maass et al., 2022) and the expected loss
 872 setting (Li et al., 2023b). With a tangent perturbation $v \in T_x \mathcal{M}$ (obtained by projecting an ambient
 873 Gaussian onto $T_x \mathcal{M}$), the gradient estimator is
 874

$$875 \quad \widehat{\nabla} f(x) := \frac{f \circ \exp_x(\mu v) - f(x)}{\mu} v.$$

877 Here we have adjusted the estimator from Maass et al. (2022) to the time-invariant expected objective
 878 function setting to align with our problem setup. This estimator is the direct generalization of the
 879 one-side Gaussian smoothing estimator widely used in Euclidean zeroth-order optimization.
 880

881 **He et al. (2024)** This work extends coordinate-wise finite differences to manifolds. Using an
 882 orthonormal basis $\{e_i\}$ of $T_x \mathcal{M}$, the deterministic coordinate-wise zeroth-order estimator is
 883

$$884 \quad \widehat{\nabla} f(x) := \sum_{i=1}^d \frac{f \circ \exp_x(\mu e_i) - f \circ \exp_x(-\mu e_i)}{2\mu} e_i.$$

887 In summary, compared to approaches that rely on projecting from the ambient Euclidean space,
 888 our analysis is purely *intrinsic*, that is, the gradient estimator depends only on the Riemannian
 889 structure and is independent of any particular embedding. In contrast to prior intrinsic estimators,
 890 which primarily focus on geodesically convex problems, our work addresses the non-convex setting.
 891 As a result, our contributions extend the scope of existing research on Riemannian zeroth-order
 892 optimization.
 893

B PRELIMINARIES

895 In this section, we review some basic definitions and results from Riemannian geometry that are used
 896 in our analysis. For a full review, we refer the reader to some classical textbook (Lee, 2003; 2018).
 897 For convenience, we summarize our notations in Table 2.
 898

900 **Smooth Manifolds** A d -dimensional *smooth manifold* \mathcal{M} is a second-countable Hausdorff topo-
 901 logical space such that at any point $p \in \mathcal{M}$, there exists $U_p \subset \mathcal{M}$, a neighborhood of p , such that U_p
 902 is diffeomorphism to the Euclidean space \mathbb{R}^d . Let $C^\infty(U)$ be all smooth functions over $U \subset \mathcal{M}$. A
 903 *deviation* at $p \in \mathcal{M}$ is a linear mapping $v : C^\infty(U_p) \rightarrow \mathbb{R}$ satisfying
 904

$$904 \quad v(fg) = v(f) \cdot g(p) + v(g) \cdot f(p)$$

905 for all $f, g \in C^\infty(U_p)$. Then the *tangent space* at p , denoted by $T_p \mathcal{M}$, is the real vector space of all
 906 deviation at p . The *tangent bundle* is the disjoint union of all tangent spaces
 907

$$908 \quad T\mathcal{M} := \{(p, v) \mid p \in \mathcal{M}, v \in T_p \mathcal{M}\}.$$

909 A smooth map $f : \mathcal{M} \rightarrow \mathbb{R}^n$ is called an *immersion* if its differential $df|_p : T_p \mathcal{M} \rightarrow T_{f(p)} \mathbb{R}^n$, defined
 910 by $df|_p(v) := v(f)$ for each $v \in T_p \mathcal{M}$, is an injective function at every $p \in \mathcal{M}$; it is called an
 911 *embedding* if it is an immersion and is also homeomorphic onto its image $f(\mathcal{M}) := \{f(p) \mid p \in \mathcal{M}\}$.
 912

913 **Riemannian Manifolds** A d -dimensional *Riemannian manifold* (\mathcal{M}, g) is a d -dimensional smooth
 914 manifold equipped with a Riemannian metric g , which assigns to each point $p \in \mathcal{M}$ an inner product
 915

$$916 \quad g_p : T_p \mathcal{M} \times T_p \mathcal{M} \rightarrow \mathbb{R},$$

917 where $T_p \mathcal{M}$ denotes the tangent space at $p \in \mathcal{M}$. We also write $\langle \cdot, \cdot \rangle_p$ to represent g_p and $\|\cdot\|_p$
 918 for the norm it induces. Let $\phi : \mathcal{M} \rightarrow \mathbb{R}^n$ be an embedding from the smooth manifold \mathcal{M} to the
 919

918 Euclidean space \mathbb{R}^n . Then \mathcal{M} inherits a Riemannian metric from the ambient Euclidean structure via
 919 the pullback metric

$$920 \quad g_p^E(v, u) := \langle d\phi|_p(v), d\phi|_p(u) \rangle = \langle \phi(v), \phi(u) \rangle,$$

921 where $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product on \mathbb{R}^n . In this case, we say the metric g^E is induced
 922 by the embedding ϕ , and refer to \mathbb{R}^n as the ambient Euclidean space. To distinguish between
 923 Riemannian metrics that may be induced by embeddings into different ambient spaces, we introduce
 924 the following definition:

925 **Definition B.1** (*n*-Euclidean metric). A Riemannian metric g is called *n*-Euclidean if there exists a
 926 smooth embedding $\phi : \mathcal{M} \rightarrow \mathbb{R}^n$ such that g is induced by ϕ .

927 Notably, given an arbitrary d -dimensional Riemannian manifold (\mathcal{M}, g) , the Nash embedding
 928 theorem (Nash, 1956; Lee, 2018) states that there always exists $n \in \mathbb{N}$ such that the Riemannian
 929 metric g is *n*-Euclidean. However, if we consider a different Riemannian metric g' on the same
 930 manifold \mathcal{M} , there is no guarantee that g' can also be realized as an *n*-Euclidean metric for the same
 931 n . This observation motivates us to develop an intrinsic analysis framework that does not depend on
 932 any specific embedding.

933 **Geodesic** A *vector field* on \mathcal{M} is a smooth *section* $X : \mathcal{M} \rightarrow T\mathcal{M}$ of the canonical tangent-bundle
 934 projection $\pi : T\mathcal{M} \rightarrow \mathcal{M}$; equivalently, it is a smooth map satisfying $\pi \circ X = \text{id}_{\mathcal{M}}$. Let $\mathfrak{X}(\mathcal{M})$ be
 935 the space of all vector fields on a Riemannian manifold (\mathcal{M}, g) . The *Levi-Civita connection* is the
 936 unique affine connection

$$937 \quad \nabla : \mathfrak{X}(\mathcal{M}) \times \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M}), \quad (X, Y) \mapsto \nabla_X Y,$$

938 satisfying torsion-free and metric-compatible². Let $I \subset \mathbb{R}$ be an open interval containing 0. A smooth
 939 curve $\gamma : I \rightarrow \mathcal{M}$ is called a *geodesic* over I if its velocity vector $\gamma'(t) := d\gamma|_t(\frac{\partial}{\partial t}) \in T_{\gamma(t)}\mathcal{M}$
 940 satisfies the geodesic equation³:

$$941 \quad \nabla_{\gamma'(t)} \gamma'(t) = 0$$

942 for all $t \in I$. Given a point $p \in \mathcal{M}$ and an initial velocity $v \in T_p\mathcal{M}$, there always exists a unique
 943 geodesic γ such that $\gamma(0) = p$ and $\gamma'(0) = v$ (Theorem 4.10, Lee (2018)). The *exponential map*
 944 at p , denoted $\exp_p : T_p\mathcal{M} \rightarrow \mathcal{M}$, is defined by $\exp_p(v) := \gamma(1)$. Importantly, the existence of
 945 geodesic does not guarantee that γ can be defined over an open interval containing $[0, 1]$; that is, the
 946 exponential map can be undefined for some $(p, v) \in T_p\mathcal{M}$. We summarize this observation in the
 947 following proposition:

948 **Proposition B.2** (Proposition 5.7, Lee (2018)). *The exponential map $\exp_p : T_p\mathcal{M} \rightarrow \mathcal{M}$ is locally
 949 defined on an open neighborhood of 0 in $T_p\mathcal{M}$.*

950 *Remark.* This proposition reveals a fundamental difference between Riemannian and Euclidean
 951 zeroth-order optimization: in the Riemannian setting, one cannot simply apply a small perturbation
 952 in the direction v at the point $p \in \mathcal{M}$, since the exponential map $\exp_p(\mu v)$ may be undefined.
 953 Developing a zeroth-order gradient estimator that operates within this local geometric structure is
 954 one of the central goals of our work.

955 Computing $\exp_p(v)$ involves solving a differentiable equation, which is often costly or intractable;
 956 hence, existing Riemannian optimization literature typically uses the first-order approximation called
 957 the *retraction* to approximate the exponential map.

958 **Definition B.3** (Retraction). A *retraction* on a manifold \mathcal{M} is a smooth map $\text{Ret} : T\mathcal{M} \rightarrow \mathcal{M}$ such
 959 that for all $p \in \mathcal{M}$:

- 960 1. $\text{Ret}_p(0) = p$, where $0 \in T_p\mathcal{M}$ is the zero vector;
- 961 2. The differential $d\text{Ret}_p|_0 : T_p\mathcal{M} \rightarrow T_p\mathcal{M}$ satisfies $d\text{Ret}_p|_0 = \text{id}_{T_p\mathcal{M}}$.

962 ²We call an affine connection torsion-free if $\nabla_X Y - \nabla_Y X = [X, Y]$, where the Lie bracket $[X, Y]$ is
 963 defined by $[X, Y](f) = X(Y(f)) - Y(X(f))$ for any $f \in C^\infty(\mathcal{M})$, and metric-compatible if $X(g(Y, Z)) =$
 964 $g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$ for all X, Y, Z .

965 ³More explicitly, we choose an extension vector field $\tilde{X} \in \mathfrak{X}$ satisfying $\tilde{X}(\gamma(t)) = \gamma'(t)$ for all $t \in I$. Then
 966 we define $\nabla_{\gamma'(t)} \gamma'(t) := \nabla_{\tilde{X}} \tilde{X}|_{\gamma(t)}$. Here we directly use $\nabla_{\gamma'(t)} \gamma'(t)$ for our convenience, as this definition
 967 does not rely on the choice of extension (see Lemma 4.9, Lee (2018)).

972 Here, $\text{Ret}_p : T_p \mathcal{M} \rightarrow \mathcal{M}$ denotes the restriction of R to the tangent space at p . Intuitively, a
 973 retraction approximates $\exp_p(v)$ by preserving the first-order geometry of geodesics while being
 974 easier to compute.

975 The following lemma further characterizes the relation between the exponential map and the retraction.
 976 We present it here without providing the proof.

978 **Lemma B.4** (Theorem 2, Bonnabel (2013)). *Let (\mathcal{M}, g) be a smooth Riemannian manifold.*

979 (i) *The exponential map $\exp : T\mathcal{M} \rightarrow \mathcal{M}$ is a retraction.*

981 (ii) *For every $p \in \mathcal{M}$, the geodesic distance $d(\cdot, \cdot) : \mathcal{M} \times \mathcal{M} \rightarrow [0, +\infty)$ between $\exp_p(v)$ and
 982 $\text{Ret}_p(v)$ is upper bounded as*

$$983 \quad 984 \quad d\left(\exp_p(v), \text{Ret}_p(v)\right) \leq C\|v\|_p^2$$

985 *for any v and any retraction Ret .*

987 **Gradient** Let the cotangent space $T_p^* \mathcal{M}$ be the dual space of $T_p \mathcal{M}$; that is, the space of all linear
 988 mappings $\psi : T_x \mathcal{M} \rightarrow \mathbb{R}$. There is a natural isomorphism between $T_p \mathcal{M}$ and $T_p^* \mathcal{M}$ induced by the
 989 Riemannian metric g :

$$991 \quad \flat_p : T_p \mathcal{M} \rightarrow T_p^* \mathcal{M}, \quad v \mapsto g_p(v, \cdot);$$

$$992 \quad \sharp_p : T_p^* \mathcal{M} \rightarrow T_p \mathcal{M}, \quad \omega \mapsto \omega^\sharp \quad \text{satisfying} \quad g_p(\omega^\sharp, v) = \omega(v),$$

994 for all $v \in T_p \mathcal{M}$. Let $f : \mathcal{M} \rightarrow \mathbb{R}$ be a smooth real-value function. The differential of f at $p \in \mathcal{M}$,
 995 given by $df|_p(v) := vf$, naturally defines a covector in the cotangent space; that is, $df|_p \in T_p^* \mathcal{M}$.
 996 The gradient of f , denoted by $\nabla f \in \mathfrak{X}(\mathcal{M})$, is a vector field given by

$$997 \quad 998 \quad p \mapsto \nabla f(p) := (df|_p)^\sharp.$$

999 In this paper, we investigate the approach of estimating $\nabla f(p)$ given only the access to the function
 1000 evaluation. There have been a rich body of literature in this direction, which we summarize in
 1001 Appendix A. In contrast, our approach is purely intrinsic, making our result distinct from existing
 1002 literature.

1003 C MAIN RESULTS

1004 C.1 ASSUMPTIONS

1007 The following assumption is standard in stochastic optimization literature (Mishchenko et al., 2020;
 1008 Khaled & Richtárik, 2022). In the context of Riemannian optimization, it is often coupled with
 1009 Assumption 2.2 to define the L -smoothness of the pullback function (Bonnabel, 2013; Li et al., 2023b;
 1010 He et al., 2024). In contrast, we decouple these two assumptions to make their respective roles and
 1011 dependencies more transparent.

1012 **Assumption C.1.** *In the optimization problem given by Equation (1), the individual loss function*

$$1014 \quad f(\cdot; \xi) : \mathcal{M} \rightarrow \mathbb{R}$$

1015 *satisfies the following two properties:*

1017 (a) *L-Bounded Hessian; for all $p \in \mathcal{M}$,*

1018 (b) *Lower boundedness; the infimum $f_\xi^* := \inf_{\xi \in \Xi} f(\cdot; \xi)$ exists almost surely with $\xi \sim \Xi$.*

1020 The following assumption imposes a regularization condition on the retraction used in Theorem 2.9.
 1021 While it is always possible to construct a pathological retraction that deviates substantially from
 1022 the exponential map, such choices may still scale with $\|v\|_p$ but would negatively affect the final
 1023 convergence rate.

1024 **Assumption C.2.** *Let $f : \mathcal{M} \rightarrow \mathbb{R}$ be a smooth function. There exists a constant $C_{\text{Ret}} \geq 0$ such that*

$$1025 \quad |f(\text{Ret}_p(v)) - f(\exp_p(v))| \leq C_{\text{Ret}} \|v\|_p^2.$$

1026 *Remark.* This assumption can indeed be replaced with a stronger but more widely used boundedness
 1027 assumption (e.g. the bounded gradient assumption). [Bonnabel \(2013\)](#) has shown that the geodesic
 1028 distance between the (first-order) retraction $\text{Ret}_p(v)$ and the exponential map $\exp_p(v)$ is of the
 1029 order $o(\|v\|_p^2)$ (see Theorem 2, [Bonnabel \(2013\)](#)). In [Lemma C.13](#), we show that given appropriate
 1030 smoothness and boundedness conditions, the gap between $f(\text{Ret}_p(v))$ and $f(\exp_p(v))$ is also of the
 1031 order $o(\|v\|_p^2)$, which implies [Assumption 2.2](#). Here we present this weaker assumption to avoid
 1032 introducing the bounded gradient assumption.

1033 **Assumption C.3.** *There exist constants $\rho > 0$ and $M_3, M_4 > 0$ such that*

$$1035 \quad \|\nabla^3 f(q)\|_{\text{HS}} \leq M_3, \quad \|\nabla^4 f(q)\|_{\text{HS}} \leq M_4,$$

1036 for all $q \in \mathcal{B}_p(p, \rho)$, where $\mathcal{B}_p(p, \rho)$ denotes the geodesic ball of radius ρ and $\|\cdot\|_{\text{HS}}$ is the Hilbert-
 1037 Schmidt norm.

1038 *Remark.* Unlike the Euclidean setting, optimization on Riemannian manifolds often relies on ad-
 1039 dditional boundedness assumptions. For example, [He et al. \(2024\)](#) and [Li et al. \(2023b\)](#) impose a
 1040 Lipschitz continuity condition on the Hessian of the pullback objective (Assumption 4.2 in [He et al.](#)
 1041 (2024), Assumption 2.2 in [Li et al. \(2023b\)](#)), which can be viewed as a variant of [Assumption 2.3](#). The
 1042 assumption of bounded fourth-order derivatives in [Assumption 2.3](#) is less common in the literature.
 1043 However, we emphasize that it plays a crucial role in our analysis: it enables us to capture the depen-
 1044 dence on sectional curvature in the accuracy of zeroth-order gradient estimation (see [Theorem 2.7](#)).
 1045 From our perspective, introducing this assumption leads to a novel and more refined result that has
 1046 not yet been explored in existing work.

1047

1048 **Assumption C.4.** *There exists a constant $\kappa \geq 0$ such that the sectional curvature of the Riemannian
 1049 manifold (\mathcal{M}, g) satisfies*

$$1050 \quad |K_p(\sigma)| \leq \kappa, \quad \text{for every point } p \in \mathcal{M} \text{ and every 2-plane } \sigma \subset T_p \mathcal{M}.$$

1051

1052 *Equivalently, $-\kappa \leq K_p(\sigma) \leq \kappa$ for all p and σ .*

1053

1054 *Remark.* Many existing literature ([Wang et al., 2021b; 2023](#)) also made assumptions on the sectional
 1055 curvature (lower) boundedness. Here we present a slightly stronger assumption: we assume the
 1056 sectional curvature is uniformly bounded (i.e. both upper and lower boundedness). We note that this
 1057 assumption has also been used in existing literature (see Assumption 1, [Alimisis et al. \(2021\)](#)).

1058

1059 C.2 SUPPORTING LEMMAS

1060

1061 The following lemma generalizes the expected smoothness widely used in non-convex optimization
 1062 ([Mishchenko et al., 2020; Khaled & Richtárik, 2022; Ma & Huang, 2025](#)).

1063

1064 **Lemma C.5.** *Let $f_\xi^* = \inf_{p \in \mathcal{M}} f(p; \xi)$ and $f^* := \inf_p \mathbb{E}_{\xi \sim \Xi} f(\cdot; \xi)$. Suppose that [Assumption 2.1](#) is
 satisfied and $f^* < +\infty$. Then there exists $A, B \geq 0$ such that for any $p \in \mathcal{M}$,*

1065

$$1066 \quad \mathbb{E} \|\nabla f(p; \xi)\|_p^2 \leq A[f(p) - f^*] + B.$$

1067

1068 *Proof.* Let $\gamma : \mathbb{R} \rightarrow \mathbb{R}$ be the geodesic with $\gamma(0) = p$ and $\gamma'(0) = v$ (with the unit length). Then the
 1069 composite of smooth mappings $f \circ \gamma(\cdot; \xi) : \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function. By applying the coercive
 1070 inequality, i.e. Proposition 2 ([Mishchenko et al. \(2020\)](#)), to $f \circ \gamma(\cdot; \xi)$ (it is equivalent to apply the
 1071 Taylor formula expanding $f(p; \xi)$ at the minima point $p_\xi^* := \arg \min_p f(p; \xi)$):

1072

$$1073 \quad \underbrace{f(\gamma(0); \xi)}_{=p} \geq f(p_\xi^*; \xi) + \frac{1}{2L} \|\nabla f(\gamma(0); \xi)\|_p^2,$$

1074

1075 where the inequality we apply the L -bounded Hessian assumption ([Assumption 2.1](#)). Let $f_\xi^* :=$
 1076 $f(p_\xi^*; \xi)$ (i.e. $f_\xi^* := \inf_{p \in \mathcal{M}} f(p; \xi)$) be the minima of the individual loss $f(\cdot; \xi)$; then we obtain

1077

$$1078 \quad \mathbb{E}_{\xi \sim \Xi} \|\nabla f(p; \xi)\|_p^2 \leq 2L f(p) - 2L \mathbb{E}_{\xi \sim \Xi} f_\xi^* \\ 1079 \quad = 2L[f(p) - f^*] + 2L[f^* - \mathbb{E}_{\xi \sim \Xi} f_\xi^*],$$

1080 where f^* is the minima of the objective loss function. Typically, we have
 1081

$$1082 \quad f^* := \inf_p \mathbb{E}_{\xi \sim \Xi} f(\cdot; \xi) \geq \mathbb{E}_{\xi \sim \Xi} f_\xi^* := \mathbb{E}_{\xi \sim \Xi} \left[\inf_p f(\cdot | \xi) \right]$$

1083 by Jensen's inequality using the convexity of the \inf operator. Therefore, $B \geq 0$. The proof is
 1084 completed by defining $A = 2L$ and $B = 2L[f^* - \mathbb{E}_{\xi \sim \Xi} f_\xi^*]$. \square
 1085

1086 **Lemma C.6.** *Let \mathcal{M} be a smooth manifold. Then there exists a smooth function $\rho : \mathcal{M} \rightarrow [0, +\infty)$
 1087 that is proper; that is, for every compact set $C \subset \mathbb{R}$, $\rho^{-1}(C)$ is compact in \mathcal{M} .*

1088 *Proof.* This result directly comes from Proposition 2.28 (Lee, 2003) and it can be directly generalized
 1089 for arbitrary Hausdorff paracompact topological space, as for a Hausdorff space, the paracompactness
 1090 is equivalent to the existence of partitions of unity (Dugundji, 1966). Here we present a proof without
 1091 using the partitions of unity.

1092 By Proposition A.60 (Lee, 2003), the smooth manifold \mathcal{M} admits an exhaustion by compact sets⁴;
 1093 that is, a sequence of compact sets $\{K_j\}_{j=1}^\infty$ in \mathcal{M} , such that

- 1094 • $K_j \subset K_{j+1}^\circ$ for all j ;
- 1095 • $\bigcup_{j=1}^\infty K_j = \mathcal{M}$.

1096 For each j , we can always have a smooth function $\psi_j : \mathcal{M} \rightarrow [0, 1]$ such that $\psi_j \equiv 1$ on K_j and
 1097 $\text{supp}(\psi_j) \subset K_{j+1}^\circ$. This existence is guaranteed by Proposition 2.25 (Lee, 2003). Define a smooth
 1098 function $\rho : \mathcal{M} \rightarrow [0, +\infty)$ by

$$1099 \quad \rho(p) := \sum_{j=1}^\infty (1 - \psi_j(p)).$$

1100 For any fixed p , there exists a j with $p \in K_j$; as the result, there is at most finite entries in this series
 1101 non-zero. The finite-sum of smooth functions is also smooth. Moreover, $\rho^{-1}((-\infty, c]) \subset K_{\lfloor c \rfloor + 1}$,
 1102 which is compact. Since ρ is always non-negative, it implies that ρ is proper. \square

1103 *Remark.* If the manifold \mathcal{M} is compact (e.g., a sphere), then every continuous function serves as an
 1104 exhaustion function. This offers an alternative perspective on the structure-preserving metric: for a
 1105 compact manifold, we do not need to worry about the exponential map sending points outside the
 1106 manifold, as all metrics constructed in Theorem C.18 are automatically geodesically complete.

1107 **Lemma C.7.** *Let (\mathcal{M}, g) be a d -dimensional smooth Riemannian manifold, $p \in \mathcal{M}$, and $f : \mathcal{M} \rightarrow \mathbb{R}$
 1108 be a smooth function. Denote by*

$$1109 \quad \mathcal{B} = \{v \in T_p \mathcal{M} : \|v\|_g \leq 1\}, \quad \partial\mathcal{B} = \{v \in T_p \mathcal{M} : \|v\|_g = 1\}$$

1110 the closed unit ball and the unit sphere in the tangent space, respectively. Write $\text{Unif}(\mathcal{B})$ and
 1111 $\text{Unif}(\partial\mathcal{B})$ for the corresponding uniform probability measures.

1112 (i) If $v \sim \text{Unif}(\partial\mathcal{B})$ then

$$1113 \quad d\mathbb{E}[\langle \nabla f(p), v \rangle v] = \nabla f(p).$$

1114 (ii) If $v \sim \text{Unif}(\mathcal{B})$ then

$$1115 \quad (d+2)\mathbb{E}[\langle \nabla f(p), v \rangle v] = \nabla f(p).$$

1116 (iii) More generally, whenever v is any centred isotropic random vector in $T_p \mathcal{M}$ —that is,
 1117 $\mathbb{E}[v] = 0$ and $\mathbb{E}[v \otimes v] = \text{id}_{T_p \mathcal{M}}$ —one has

$$1118 \quad \mathbb{E}[\langle \nabla f(p), v \rangle v] = \nabla f(p).$$

1119 ⁴We always require the manifold to be second-countable and Hausdorff; and all topological spaces locally
 1120 homomorphism to the Euclidean space are locally compact.

1134 *Proof.* Let $\{e_1, \dots, e_d\}$ be any g -orthonormal basis of $T_p\mathcal{M}$ and write the coordinates of a tangent
 1135 vector v in this basis as $v = \sum_{i=1}^d v^i e_i$. Because the distributions in parts (i)–(ii) are *rotationally*
 1136 *invariant* (and therefore *isotropic*), one has
 1137

$$\mathbb{E}[v^i] = 0 \quad \text{and} \quad \mathbb{E}[v^i v^j] = \sigma^2 \delta_{ij},$$

1139 where the constant σ^2 depends only on the law of v :
 1140

$$\sigma^2 = \frac{1}{d} \mathbb{E}[\|v\|_g^2] = \begin{cases} 1/d, & v \sim \text{Unif}(\partial\mathcal{B}), \\ 1/(d+2), & v \sim \text{Unif}(\mathcal{B}). \end{cases} \quad (1)$$

1144 Let $g^\sharp : T_p^*\mathcal{M} \rightarrow T_p\mathcal{M}$ be the Riesz isomorphism induced by the metric. Writing $\nabla f(p) =$
 1145 $\sum_i (\partial_i f) e_i$, we obtain
 1146

$$\mathbb{E}[\langle \nabla f(p), v \rangle v] = \sum_{i,j} (\partial_i f) \mathbb{E}[v^i v^j] e_j = \sigma^2 \sum_i (\partial_i f) e_i = \sigma^2 \nabla f(p).$$

1149 Multiplying both sides by d/σ^2 (resp. $(d+2)/\sigma^2$) and using the value of σ^2 from (1) gives the
 1150 identities in parts (i) and (ii). Statement (iii) follows immediately from the same calculation with
 1151 $\sigma^2 = 1$. \square
 1152

1153 **Lemma C.8** (Isserlis). *Let (\mathcal{M}, g) be a d -dimensional smooth Riemannian manifold, $p \in \mathcal{M}$, and*
 1154 *$f : \mathcal{M} \rightarrow \mathbb{R}$ be a smooth function. Denote by*

$$\partial\mathcal{B} = \{v \in T_p\mathcal{M} : \|v\|_g = 1\}$$

1157 *the unit sphere in the tangent space. Write $\text{Unif}(\partial\mathcal{B})$ for the corresponding uniform probability*
 1158 *measures. If $v = (v_1, v_2, \dots, v_d) \sim \text{Unif}(\partial\mathcal{B})$ then*

$$\mathbb{E} v_{i_1} v_{i_2} \dots v_{i_n} = \begin{cases} 0, & 2 \nmid n, \\ \frac{1}{d(d+2)(d+4)\dots(d+2k-2)} \sum_{\text{pair} \in P_{2k}^2} \prod_{(r,s) \in \text{pair}} \delta_{i_r, i_s}, & 2 \mid n, \end{cases}$$

1163 where P_{2k}^2 represents the set of all pairings of $\{1, 2, \dots, 2k\}$ (i.e. all distinct ways of partitioning
 1164 $\{1, 2, \dots, n\}$ into pairs $\{r, s\}$), and $\delta_{ij} = \begin{cases} 0 & i \neq j, \\ 1 & i = j, \end{cases}$ is the Kronecker delta.
 1165

1167 *Proof.* This result is known as the generalization of Isserlis's theorem (Isserlis, 1916; 1918). Our
 1168 presented version is taken from Wikipedia, which refers to Koopmans (1974); Mardia & Jupp
 1169 (1999). \square

1170 **Lemma C.9.** *Let (\mathcal{M}, g) be a d -dimensional smooth Riemannian manifold, $p \in \mathcal{M}$, and $f : \mathcal{M} \rightarrow \mathbb{R}$*
 1171 *be a smooth function. Denote by*

$$\partial\mathcal{B} = \{v \in T_p\mathcal{M} : \|v\|_g = 1\}$$

1174 *the unit sphere in the tangent space. Write $\text{Unif}(\partial\mathcal{B})$ for the corresponding uniform probability*
 1175 *measures. If $v = (v_1, v_2, \dots, v_d) \sim \text{Unif}(\partial\mathcal{B})$ then*

$$d \mathbb{E}[\langle \nabla f(p), v \rangle v] = \nabla f(p).$$

1179 *Proof.* This is a direct corollary of Lemma C.8 with taking $n = 2$. \square
 1180

1181 **Lemma C.10.** *Let (\mathcal{M}, g) be a d -dimensional Riemannian manifold. Assume there exists a constant*
 1182 *$\kappa \geq 0$ such that the sectional curvature satisfies*

$$|K_p(\sigma)| \leq \kappa \quad \text{for every point } p \in \mathcal{M} \text{ and every 2-plane } \sigma \subset T_p\mathcal{M}.$$

1184 *Then, for every $p \in \mathcal{M}$ the Ricci curvature obeys the operator-norm bound*

$$\|\text{Ric}_p\|_{\text{op}} = \sup_{\substack{v \in T_p\mathcal{M} \\ v \neq 0}} \frac{|\text{Ric}_p(v, v)|}{\|v\|_p^2} \leq (d-1) \kappa.$$

1188 *Proof.* Fix a point p and a non-zero vector $v \in T_p\mathcal{M}$. Extend v to an orthonormal basis
 1189 $\{v/\|v\|_p, e_2, \dots, e_d\}$ of $T_p\mathcal{M}$. By the classical formula relating Ricci and sectional curvature,
 1190

$$1191 \quad \text{Ric}_p(v, v) = \sum_{i=2}^d K_p(\text{span}\{v, e_i\}) \|v\|_p^2.$$

1193 Taking absolute values and using $|K| \leq \kappa$ gives
 1194

$$1195 \quad |\text{Ric}_p(v, v)| \leq (d-1) \kappa \|v\|_p^2.$$

1196 Dividing by $\|v\|_p^2$ and taking the supremum over all non-zero v yields $\|\text{Ric}_p\|_{\text{op}} \leq (d-1)\kappa$, as
 1197 claimed. \square

1198 **Lemma C.11.** *Let $L \in \mathbb{R}^{d \times d}$ be an invertible diffeomorphism defined as*

$$1199 \quad L : \mathbb{S}^{d-1} \rightarrow \mathcal{C} := \{v \in \mathbb{R}^d \mid v^\top A v = 1\}, \quad L(s) = L s,$$

1200 where $L^\top A L = I_d$. Denote by $\sigma_{\mathbb{S}^{d-1}}$ and $\sigma_{\mathcal{C}}$ the $(d-1)$ -dimensional Hausdorff measures on \mathbb{S}^{d-1}
 1201 and \mathcal{C} , respectively. Then $\sigma_{\mathbb{S}^{d-1}} \circ L^{-1}$ is absolutely continuous w.r.t. $\sigma_{\mathcal{C}}$ and

$$1203 \quad \frac{d(\sigma_{\mathbb{S}^{d-1}} \circ L^{-1})}{d\sigma_{\mathcal{C}}}(v) = \frac{1}{J(L^{-1}v)}, \quad J(s) := |\det L| \|(L^\top)^{-1}s\|_2.$$

1206 *Proof.* The result immediately follows Theorem 3.2.3 (Federer, 1996). Here the linear map J is the
 1207 $(d-1)$ -dimensional Jacobian of L defined as

$$1208 \quad J(s) := J_{d-1}L(s) := \left\| \bigwedge^{d-1} dL(s) \right\|_o,$$

1211 where $dL(s) : T_s \mathbb{S}^{d-1} \rightarrow T_s \mathcal{C}$ is the differential of L , \bigwedge is the wedge product, and $\|\cdot\|_m$ denotes
 1212 the standard operator norm $\|f\|_o := \sup_{\|x\| \leq 1} |f(x)|$. As L is a linear map, the wedge product gives
 1213 $\bigwedge^{d-1} dL(s) = (\det L)(L^\top)^{-1}$. Taking the norm yields

$$1214 \quad J(s) = |\det L| \|(L^\top)^{-1}s\|_2.$$

1215 Then it completes the proof. \square

1217 **Lemma C.12.** *Let γ be a geodesic defined over the open interval $I \ni 0$ satisfying (i) $\gamma(0) = p$ and
 1218 (ii) $\gamma'(0) = v$. Let $F : I \rightarrow \mathbb{R}$ be a scalar function over I defined as*

$$1219 \quad F(t) := \exp_p(\gamma(t)).$$

1220 Then the following relations hold:

$$1222 \quad (1) \quad F'(t) = \nabla f(\gamma(t))[\gamma'(t)]; \quad F'(0) = \langle \nabla f(p), v \rangle_p.$$

$$1224 \quad (2) \quad F''(t) = \nabla^2 f(\gamma(t))[\gamma'(t), \gamma'(t)]; \quad F''(0) = \nabla^2 f(p)[v, v].$$

$$1225 \quad (3) \quad F'''(t) = \nabla^3 f(\gamma(t))[\gamma'(t), \gamma'(t), \gamma'(t)]; \quad F'''(0) = \nabla^3 f(p)[v, v, v].$$

1227 *Proof.* (1) As $F = f \circ \gamma : I \rightarrow \mathcal{M} \rightarrow \mathbb{R}$, the chain rule gives

$$1228 \quad dF_t = df_{\gamma(t)} \circ d\gamma_t : T_t \mathbb{R} \rightarrow T_{\gamma(t)} \mathcal{M} \rightarrow T_{f \circ \gamma(t)} \mathbb{R}.$$

1229 We take $\frac{\partial}{\partial t} \in T_t \mathbb{R}$. Then

$$1231 \quad \begin{aligned} F'(t) &:= dF_t\left(\frac{\partial}{\partial t}\right) = df_{\gamma(t)} \circ \gamma'(t) \\ 1232 &\stackrel{(i)}{=} [\nabla f(\gamma(t))]^\flat(\gamma'(t)) \\ 1233 &= \langle \nabla f(\gamma(t)), \gamma'(t) \rangle_{\gamma(t)}, \end{aligned}$$

1236 where (i) applies the isomorphism between $T_p \mathcal{M}$ and $T_p^* \mathcal{M}$ given by \flat . When treating
 1237 $\nabla f(\gamma(t))$ as an element in $T_p^* \mathcal{M}$ through this isomorphism, we also write:

$$1238 \quad \nabla f(\gamma(t))[\gamma'(t)] := [\nabla f(\gamma(t))]^\flat(\gamma'(t)).$$

1240 Here, we use $\nabla f(p)[\cdot]$ to represent that the gradient $\nabla f(p)$ is understood as a 1-form
 1241 mapping from $T_p \mathcal{M}$ to \mathbb{R} . When $t = 0$, we immediately obtain $F'(0) = \langle \nabla f(p), v \rangle_p$ by
 1242 using $\gamma(0) = p$ and $\gamma'(0) = v$.

1242 (2) The chain rule gives
 1243

$$1244 d^2 F_t = d^2 f_{\gamma(t)}(d\gamma_t, d\gamma_t) + df_{\gamma(t)}(d^2 \gamma_t) : T_t \mathbb{R} \times T_t \mathbb{R} \rightarrow T_{f \circ \gamma(t)} \mathbb{R}.$$

1245 We take $\frac{\partial}{\partial t} \in T_t \mathbb{R}$. Then
 1246

$$1247 F''(t) = d^2 F_t\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right) = d^2 f_{\gamma(t)}(\gamma'(t), \gamma'(t)) + df_{\gamma(t)}(\nabla_{\gamma'(t)} \gamma'(t)).$$

1248 As $df_{\gamma(t)} : T_{\gamma(t)} \mathcal{M} \rightarrow T_{f \circ \gamma(t)} \mathbb{R} \cong \mathbb{R}$ is a linear function, it always maps 0 to 0. By the
 1249 property of geodesic, $\nabla_{\gamma'(t)} \gamma'(t) = 0$, leading to
 1250

$$1251 F''(t) = d^2 f_{\gamma(t)}(\gamma'(t), \gamma'(t)) = \nabla^2 f(\gamma(t))[\gamma'(t), \gamma'(t)]$$

1252 Here, we directly take $d^2 f_{\gamma(t)} = \nabla^2 f(\gamma'(t))$ as it has been a 2-form in $T_{\gamma(t)}^* \mathcal{M} \otimes T_{\gamma(t)}^* \mathcal{M}$.
 1253 To align the same notation used in ∇ , we still use $[\cdot, \cdot]$. When $t = 0$, we immediately obtain
 1254 $F''(0) = \nabla^2 f(p)[v, v]$ by using $\gamma(0) = p$ and $\gamma'(0) = v$.
 1255

1256 (3) The chain rule gives
 1257

$$1258 d^3 F_t = d^3 f_{\gamma(t)}(d\gamma_t, d\gamma_t, d\gamma_t) + 3d^2 f_{\gamma(t)}(d\gamma_t, d^2 \gamma_t) + df_{\gamma(t)} \circ d^3 \gamma_t.$$

1259 We take $\frac{\partial}{\partial t} \in T_t \mathbb{R}$. As $\gamma : I \rightarrow \mathcal{M}$ is a geodesic, the last two terms are zeros. Then
 1260

$$1261 F'''(t) = d^3 f_{\gamma(t)}(\gamma'(t), \gamma'(t), \gamma'(t)) := \nabla^3 f(\gamma(t))[\gamma'(t), \gamma'(t), \gamma'(t)].$$

1262 Now the proof is completed. □
 1263

1264 **Lemma C.13.** *Let $f : \mathcal{M} \rightarrow \mathbb{R}$ be a smooth function. Suppose that Assumption 2.1 holds. If
 1265 $\|\nabla f(p)\|_p$ is uniformly bounded by a constant $G > 0$ for all $p \in \mathcal{M}$, then there exists a constant
 1266 $C_{\text{Ret}} \geq 0$ such that*

$$1267 |f(\text{Ret}_p(v)) - f(\exp_p(v))| \leq C_{\text{Ret}} \|v\|_p^2.$$

1268 *Proof.* It suffices to apply the standard Taylor formula (Spivak, 1994) to both functions
 1269

$$1270 f \circ \text{Ret}_p : T_p \mathcal{M} \cong \mathbb{R}^d \rightarrow \mathbb{R} \quad \text{and} \quad f \circ \exp_p : \mathbb{R}^d \rightarrow \mathbb{R},$$

1271 then evaluate their difference. We set $\gamma(t) := \exp_p(tv)$ as the geodesic and $\gamma_{\text{Ret}}(t) := \text{Ret}_p(tv)$ as
 1272 the first-order approximation of the geodesic. The Taylor formula gives
 1273

$$1274 f \circ \exp_p(v) = f(p) + \langle \nabla f(p), v \rangle_p + \int_0^1 (1-t) \nabla^2 f(\exp_p(tv))[\gamma'(tv), \gamma'(tv)] dt,$$

$$1275 f \circ \text{Ret}_p(v) = f(p) + \langle \nabla f(p), v \rangle_p + \int_0^1 (1-t) \nabla^2 f(\text{Ret}_p(tv))[\gamma'_{\text{Ret}}(t), \gamma'_{\text{Ret}}(t)] dt + \iota,$$

1276 where ι is the correction term reflecting the curvature from the approximated geodesic γ_{Ret} , given by
 1277

$$1278 \iota := \int_0^1 (1-t) \langle \nabla f(\gamma_{\text{Ret}}(t)), \nabla_{\gamma'_{\text{Ret}}(t)} \gamma'_{\text{Ret}}(t) \rangle_{\gamma_{\text{Ret}}(t)} dt.$$

1279 When $\text{Ret} \equiv \exp$, the Levi-Civita connection $\nabla : \mathfrak{X}(\mathcal{M}) \times \mathfrak{X}(\mathcal{M}) \rightarrow \mathfrak{X}(\mathcal{M})$ automatically gives
 1280 $\nabla_{\gamma'_{\text{Ret}}(tv)} \gamma'_{\text{Ret}}(tv) = 0$, which recovers the zero approximation error.
 1281

1282 When considering a general first-order retraction, we can further upper bound it using the bounded
 1283 gradient assumption. Since the gradient $\nabla f(\gamma_{\text{Ret}}(t))$ is uniformly bounded, we can also upper bound
 1284 its directional derivative $\|\nabla_{\gamma'_{\text{Ret}}(t)} \gamma'_{\text{Ret}}(t)\|_{\gamma_{\text{Ret}}(t)}$; here we set this uniform upper bound as ℓ .
 1285

$$1286 |\iota| = \left| \int_0^1 (1-t) \langle \nabla f(\gamma_{\text{Ret}}(t)), \nabla_{\gamma'_{\text{Ret}}(t)} \gamma'_{\text{Ret}}(t) \rangle_{\gamma_{\text{Ret}}(t)} dt \right| \\ 1287 \stackrel{(i)}{\leq} \left| \int_0^1 (1-t) \|\nabla f(\gamma_{\text{Ret}}(t))\|_{\gamma_{\text{Ret}}(t)} \|\nabla_{\gamma'_{\text{Ret}}(t)} \gamma'_{\text{Ret}}(t)\|_{\gamma_{\text{Ret}}(t)} dt \right|$$

$$\begin{aligned} & \stackrel{(ii)}{\leq} \left| \int_0^1 (1-t)G\ell\|v\|_p^2 dt \right| \leq \frac{G\ell}{2}\|v\|_p^2, \end{aligned}$$

where (i) applies the Cauchy–Schwarz inequality, and (ii) applies the uniformly bounded gradient of $f : \mathcal{M} \rightarrow \mathbb{R}$ and the uniformly bounded Hessian of $f \circ \text{Ret} : \mathcal{M} \rightarrow \mathbb{R}$.

We take the difference of the above two equations. The bounded Hessian assumption implies

$$\begin{aligned} |f \circ \text{Ret}_p(v) - f \circ \exp_p(v)| & \leq \frac{1}{2}L\|v\|_p^2 + \frac{1}{2}L\|v\|_p^2 + \iota \\ & \leq (L + \frac{G\ell}{2})\|v\|_p^2. \end{aligned}$$

we obtain the final upper bound by setting $C_{\text{Ret}} = L + \frac{G\ell}{2}$. \square

Lemma C.14. *Let (\mathcal{M}, g) be a smooth, d -dimensional, geodesically complete Riemannian manifold and let $f : \mathcal{M} \rightarrow \mathbb{R}$ be a smooth function. Suppose that [Assumption 2.1](#) and [Assumption 2.2](#) hold. Given a unit-length vector $v \in T_p \mathcal{M}$ and the perturbation stepsize $\mu > 0$, define*

$$\tilde{h} := \frac{f \circ \exp_p(\mu v) - f \circ \exp_p(-\mu v)}{2\mu} v, \quad \hat{h} := \frac{f \circ \text{Ret}_p(\mu v) - f \circ \text{Ret}_p(-\mu v)}{2\mu} v.$$

Then

$$\|\hat{h} - \tilde{h}\|_p \leq C_{\text{Ret}}\mu.$$

Proof. We directly take the difference between two vectors:

$$\begin{aligned} \|\hat{h} - \tilde{h}\|_p &= \left\| \frac{f \circ \exp_p(\mu v) - f \circ \exp_p(-\mu v)}{2\mu} v - \frac{f \circ \text{Ret}_p(\mu v) - f \circ \text{Ret}_p(-\mu v)}{2\mu} v \right\|_p \\ &\stackrel{(i)}{=} |f \circ \exp_p(\mu v) - f \circ \exp_p(-\mu v) - f \circ \text{Ret}_p(\mu v) + f \circ \text{Ret}_p(-\mu v)| / (2\mu) \\ &\stackrel{(ii)}{\leq} |f \circ \exp_p(\mu v) - f \circ \text{Ret}_p(\mu v)| / (2\mu) + |f \circ \exp_p(-\mu v) - f \circ \text{Ret}_p(-\mu v)| / (2\mu) \\ &\stackrel{(iii)}{\leq} C_{\text{Ret}}\mu, \end{aligned}$$

where (i) applies that $v \in T_p \mathcal{M}$ is the unit-length, (ii) applies the triangle inequality, and (iii) applies [Assumption 2.2](#). \square

Lemma C.15. *Let (\mathcal{M}, g) be a smooth, d -dimensional, geodesically complete Riemannian manifold and let $f : \mathcal{M} \rightarrow \mathbb{R}$ be a smooth function. Suppose that [Assumptions 2.1](#) to [2.4](#) hold. Suppose that there exists a constant $C_{\text{Ret}} \geq 0$ such that*

$$|f(\text{Ret}_p(v)) - f(\exp_p(v))| \leq C_{\text{Ret}}\|v\|_p^2. \quad (6)$$

Let $\{p_t\}$ be the SGD dynamic solving [Equation \(1\)](#) generated by the update rule [Equation \(4\)](#). Then

$$\begin{aligned} \frac{\eta}{6d}\|\nabla f(p_t)\|_{p_t}^2 &\leq \left[1 + 6L(C_{\text{Ret}} + \frac{L}{2})(\frac{2 + \mu^2\kappa^2}{d})\eta^2 + \frac{L\mu^4d}{(d+2)^2}\kappa^2\eta \right] (\mathbb{E}f(p_t) - f^*) \\ &\quad - (\mathbb{E}f(p_{t+1}) - f^*) + (C_{\text{Ret}} + \frac{L}{2})\left(3B(\frac{2 + \mu^2\kappa^2}{d}) + 3\mathcal{E} + 3C_{\text{Ret}}^2\mu^2\right)\eta^2 \\ &\quad + \frac{\eta d}{2}\mathcal{F} + \frac{3}{4}d\eta\mu^2C_{\text{Ret}}^2, \end{aligned}$$

where \mathcal{E} and \mathcal{F} are given by [Equation \(7\)](#) and [Equation \(10\)](#), respectively.

Proof. Let $\hat{h}_t = \widehat{\nabla}f(p_t; \xi_t) := \frac{f(\text{Ret}_{p_t}(\mu v)) - f(\text{Ret}_{p_t}(-\mu v))}{2\mu} v \in T_{p_t} \mathcal{M}$ (also defined in [Equation \(3\)](#)), $\tilde{h}_t = \frac{f(\exp_{p_t}(\mu v)) - f(\exp_{p_t}(-\mu v))}{2\mu} v$, and $h_t = \frac{1}{d}\nabla f(p_t; \xi_t) \in T_{p_t} \mathcal{M}$. At the t -th update, the SGD update rule ([Equation \(4\)](#)) gives

$$p_{t+1} = \text{Ret}_{p_t}(-\eta\hat{h}_t).$$

1350 Let $\gamma : I \rightarrow \mathcal{M}$ be the geodesic over $I \supset [0, 1]$ that satisfies $\gamma(0) = p_t$ with the initial velocity
 1351 $\gamma'(0) = -\eta \hat{h}_t$. The Taylor formula of the scalar function $f \circ \gamma$ gives
 1352

$$\begin{aligned}
 1353 \quad f(p_{t+1}) &= f(\text{Ret}_{p_t}(-\eta \hat{h}_t)) - f(\exp_{p_t}(-\eta \hat{h}_t)) + f(\exp_{p_t}(-\eta \hat{h}_t)) \\
 1354 \quad &\stackrel{(i)}{\leq} C_{\text{Ret}} \eta^2 \|\hat{h}_t\|_{p_t}^2 + f(p_t) - \eta \langle \nabla f(p_t), \hat{h}_t - \tilde{h}_t + \tilde{h}_t \rangle_{p_t} \\
 1355 \quad &\quad + \int_0^1 (1-t) \nabla^2 f(\gamma(t)) [\gamma'(t), \gamma'(t)] dt \\
 1356 \quad &\stackrel{(ii)}{\leq} C_{\text{Ret}} \eta^2 \|\hat{h}_t\|_{p_t}^2 + f(p_t) - \eta \langle \nabla f(p_t), \hat{h}_t - \tilde{h}_t \rangle_{p_t} - \eta \langle \nabla f(p_t), \tilde{h}_t \rangle_{p_t} + \frac{L\eta^2}{2} \|\hat{h}_t\|_{p_t}^2 \\
 1357 \quad \mathbb{E}_{p_t} f(p_{t+1}) &\stackrel{(iii)}{\leq} (C_{\text{Ret}} + \frac{L}{2}) \eta^2 \mathbb{E}_{p_t} \|\hat{h}_t\|_{p_t}^2 + f(p_t) - \frac{\eta}{d} \|\nabla f(p_t)\|_{p_t}^2 \\
 1358 \quad &\quad - \eta \langle \nabla f(p_t), \mathbb{E}_{p_t} \tilde{h}_t - h_t \rangle_{p_t} + \eta \|\nabla f(p_t)\|_{p_t} \mathbb{E}_{p_t} \|\hat{h}_t - \tilde{h}_t\|_{p_t} \\
 1359 \quad &\leq (C_{\text{Ret}} + \frac{L}{2}) \eta^2 \|\hat{h}_t\|_{p_t}^2 + f(p_t) - \frac{\eta}{6d} \|\nabla f(p_t)\|_{p_t}^2 + \frac{\eta d}{2} \|\mathbb{E}_{p_t} \tilde{h}_t - h_t\|_{p_t}^2 \\
 1360 \quad &\quad + \frac{3}{4} d \eta \mu^2 C_{\text{Ret}}^2
 \end{aligned}$$

1361 where (i) applies [Equation \(6\)](#) and the Taylor formula, (ii) applies the bounded Hessian assumption
 1362 ([Assumption 2.1](#)), and (iii) takes the expectation conditional on p_t on both sides; here we use $\mathbb{E}_{p_t} [\cdot]$ to
 1363 represent $\mathbb{E} [\cdot | p_t]$ for convenience. The last step applies $2\langle \alpha u, \frac{1}{\alpha} v \rangle \leq \alpha^2 \|u\|^2 + \frac{1}{\alpha^2} \|v\|^2$ for $\alpha > 0$
 1364 and [Lemma C.14](#). Then it suffices to upper bound the variance term $\mathbb{E}_{p_t} \|\hat{h}_t\|_{p_t}^2$ and the bias term
 1365 $\|\mathbb{E}_{p_t} \hat{h}_t - h_t\|_{p_t}^2$.
 1366

1367 • **Bounding $\mathbb{E}_{p_t} \|\hat{h}_t\|_{p_t}^2$:** First, we split it following the standard routine,
 1368

$$\begin{aligned}
 1369 \quad \mathbb{E}_{p_t} \|\hat{h}_t\|_{p_t}^2 &= \mathbb{E}_{p_t} \|\hat{h}_t - \tilde{h}_t + \tilde{h}_t - h_t + h_t\|_{p_t}^2 \\
 1370 \quad &\leq 3\mathbb{E}_{p_t} \|\hat{h}_t - \tilde{h}_t\|_{p_t}^2 + 3\mathbb{E}_{p_t} \|\tilde{h}_t - h_t\|_{p_t}^2 + 3\mathbb{E}_{p_t} \|h_t\|_{p_t}^2.
 \end{aligned}$$

1371 ○ The first term $3\mathbb{E}_{p_t} \|\hat{h}_t - \tilde{h}_t\|_{p_t}^2$ is given by [Lemma C.14](#):

$$3\mathbb{E}_{p_t} \|\hat{h}_t - \tilde{h}_t\|_{p_t}^2 \leq 3C_{\text{Ret}}^2 \mu^2$$

1372 ○ The second term $3\mathbb{E}_{p_t} \|\tilde{h}_t - h_t\|_{p_t}^2$ is given by [Theorem C.18](#):

$$\begin{aligned}
 1373 \quad 3\mathbb{E}_{p_t} \|\tilde{h}_t - h_t\|_{p_t}^2 &\leq 3 \frac{1 + \mu^2 \kappa^2}{d} \mathbb{E}_{p_t} \|\nabla f(p_t; \xi_t)\|_{p_t}^2 + 3\mathcal{E} \\
 1374 \quad &\leq 3 \frac{1 + \mu^2 \kappa^2}{d} [2L(f(p_t) - f^*) + B] + 3\mathcal{E}
 \end{aligned}$$

1375 where the second inequality applies [Lemma C.5](#) and

$$\mathcal{E} := \mu^2 \left[\frac{4}{3} \frac{M_3^2}{d^3} + \frac{M_4^2 \mu^4}{288} \right]. \quad (7)$$

1376 ○ The last term is upper bounded by [Lemma C.5](#):

$$\begin{aligned}
 1377 \quad 3\mathbb{E}_{p_t} \|h_t\|_{p_t}^2 &= \frac{3}{d^2} \mathbb{E}_{p_t} \|\nabla f(p_t; \xi_t)\|_{p_t}^2 \\
 1378 \quad &\leq \frac{6L}{d^2} [f(p_t) - f^*] + \frac{3B}{d^2}
 \end{aligned}$$

1379 Putting all together, we obtain

$$\begin{aligned}
 1380 \quad \mathbb{E}_{p_t} \|\hat{h}_t\|_{p_t}^2 & \\
 1381 \quad &\leq 3 \frac{1 + \mu^2 \kappa^2}{d} [2L(f(p_t) - f^*) + B] + 3\mathcal{E} + 3C_{\text{Ret}}^2 \mu^2 + \frac{6L}{d^2} [f(p_t) - f^*] + \frac{3B}{d^2}
 \end{aligned}$$

$$= 6L\left(\frac{1+\mu^2\kappa^2}{d} + \frac{1}{d^2}\right)[f(p_t) - f^*] + 3B\left(\frac{1+\mu^2\kappa^2}{d} + \frac{1}{d^2}\right) + 3\mathcal{E} + 3C_{\text{Ret}}^2\mu^2.$$

As $d \geq 1$, we obtain

$$\mathbb{E}_{p_t} \|\hat{h}_t\|_{p_t}^2 \leq 6L\left(\frac{2+\mu^2\kappa^2}{d}\right)[f(p_t) - f^*] + 3B\left(\frac{2+\mu^2\kappa^2}{d}\right) + 3\mathcal{E} + 3C_{\text{Ret}}^2\mu^2, \quad (8)$$

where \mathcal{E} is given by [Equation \(7\)](#) and B is given by [Lemma C.5](#).

- **Bounding $\|\mathbb{E}_{p_t} \tilde{h}_t - h_t\|_{p_t}^2$:** Following the same proof as [Theorem C.18](#), we obtain the expansion of the zeroth-order gradient estimator given by [Equation \(14\)](#). We multiply v on both sides and take the expectation:

$$\mathbb{E}_{p_t} \tilde{h}_t - h_t = \frac{\mu^2}{6d(d+2)} \left[\nabla(\Delta f)(p_t; \xi_t) + 3\text{Ric}(\cdot, \cdot) \nabla f(p_t; \xi_t) \right] + \frac{\mu^3}{12} \mathbb{E}[(\mathcal{I}_+ - \mathcal{I}_-)v].$$

Then we take the squared norm to obtain the bias upper bound:

$$\begin{aligned} \|\mathbb{E}_{p_t} \tilde{h}_t - h_t\|_{p_t}^2 &\leq \frac{\mu^4}{9d^2(d+2)^2} \left[\|\nabla^3 f(p_t; \xi_t)\|_{\text{HS}}^2 + 9\|\text{Ric}(\cdot, \cdot) \nabla f(p_t; \xi_t)\|_{p_t}^2 \right] + \frac{\mu^6}{144} M_4^2 \\ &\stackrel{(i)}{\leq} \frac{\mu^4 M_3^2}{9d^2(d+2)^2} + \frac{\mu^6}{144} M_4^2 + \frac{\mu^4}{(d+2)^2} \kappa^2 \|\nabla f(p_t; \xi_t)\|_{p_t}^2 \\ &\leq \frac{\mu^4 M_3^2}{9d^2(d+2)^2} + \frac{\mu^6}{144} M_4^2 + \frac{\mu^4}{(d+2)^2} \kappa^2 [2L(f(p_t) - f^*) + B] \\ &\leq \frac{2L\mu^4}{(d+2)^2} \kappa^2 (f(p_t) - f^*) + \frac{\mu^4 M_3^2}{9d^2(d+2)^2} + \frac{\mu^6}{144} M_4^2 + \frac{\mu^4}{(d+2)^2} \kappa^2 B, \end{aligned} \quad (9)$$

where (i) applies [Lemma C.10](#) to upper bound the Ricci curvature by the sectional curvature. For convenience, we set

$$\mathcal{F} := \frac{\mu^4 M_3^2}{9d^2(d+2)^2} + \frac{\mu^6}{144} M_4^2 + \frac{\mu^4}{(d+2)^2} \kappa^2 B. \quad (10)$$

Combine [Equation \(8\)](#) and [Equation \(9\)](#), we obtain that

$$\begin{aligned} \frac{\eta}{6d} \|\nabla f(p_t)\|_{p_t}^2 &\leq \left[1 + 6L(C_{\text{Ret}} + \frac{L}{2}) \left(\frac{2+\mu^2\kappa^2}{d} \right) \eta^2 + \frac{L\mu^4 d}{(d+2)^2} \kappa^2 \eta \right] (\mathbb{E}f(p_t) - f^*) \\ &\quad - (\mathbb{E}f(p_{t+1}) - f^*) + (C_{\text{Ret}} + \frac{L}{2}) \left(3B\left(\frac{2+\mu^2\kappa^2}{d}\right) + 3\mathcal{E} + 3C_{\text{Ret}}^2\mu^2 \right) \eta^2 \\ &\quad + \frac{\eta d}{2} \mathcal{F} + \frac{3}{4} d \eta \mu^2 C_{\text{Ret}}^2, \end{aligned}$$

where \mathcal{E} and \mathcal{F} are given by [Equation \(7\)](#) and [Equation \(10\)](#), respectively. \square

Lemma C.16. Suppose that $S \geq 0$. Let three real-valued sequences $\{\theta_t\}_{t=1}^T$, $\{\delta_t\}_{t=1}^{T+1}$, and $\{G_t\}_{t=1}^T$ satisfy

$$\theta_t \leq (1+S)\delta_t - \delta_{t+1} + G_t,$$

for all $1 \leq t \leq T$. Then the iterate is bounded by

$$\min_{1 \leq t \leq T} \theta_t \leq \frac{S(1+S)^T}{(1+S)^T - 1} \delta_1 + \max_{1 \leq t \leq T} G_t \leq \frac{e^S}{T} \delta_1 + \max_{1 \leq t \leq T} G_t.$$

Proof. We telescope the iterative relation by using

$$\begin{aligned} \theta_T &\leq (1+S)\delta_T - \delta_{T+1} + G_T \\ (1+S) \times \theta_{T-1} &\leq (1+S)^2 \delta_{T-1} - (1+S)\delta_T + (1+S)G_{T-1} \\ &\vdots \end{aligned}$$

$$(1 + S)^{T-1} \times \theta_1 \leq (1 + S)^T \delta_1 - (1 + S)^{T-1} \delta_2 + (1 + S)^{T-1} G_1.$$

We sum them together and obtain

$$\left[\sum_{i=0}^{T-1} (1 + S)^i \right] \min_{1 \leq t \leq T} \theta_t \leq (1 + S)^T \delta_1 + \left[\sum_{i=0}^{T-1} (1 + S)^i \right] \max_{1 \leq t \leq T} G_t.$$

Then we re-arrange the above inequality and obtain

$$\begin{aligned} \min_{1 \leq t \leq T} \theta_t &\leq \frac{(1 + S)^T}{\sum_{i=0}^{T-1} (1 + S)^i} \delta_1 + \max_{1 \leq t \leq T} G_t \\ &= \frac{S(1 + S)^T}{(1 + S)^T - 1} \delta_1 + \max_{1 \leq t \leq T} G_t \\ &\stackrel{(i)}{\leq} \frac{e^{ST}}{T} \delta_1 + \max_{1 \leq t \leq T} G_t, \end{aligned}$$

where (i) applies two inequalities $(1 + x)^T \leq e^{Tx}$ and $(1 + x)^T - 1 \geq Tx$. \square

C.3 PROOF OF THEOREM 2.6

Theorem C.17. *Let \mathcal{M} be a smooth manifold (possibly non-compact), and let g be any Riemannian metric on \mathcal{M} . Then there exists a Riemannian metric g' on \mathcal{M} which is structure-preserving with respect to g .*

Proof. In this proof, we distinguish the norms induced by different Riemannian metrics by explicitly writing $\|\cdot\|_{p,g}$ or $\|\cdot\|_{p,g'}$. Elsewhere in the paper, we simply use $\|\cdot\|_p$, as no alternative metric is under consideration.

We mainly follow the construction given by Nomizu & Ozeki (1961) to obtain a conformally equivalent Riemannian metric which is geodesically complete. By Lemma C.6, there exists a smooth proper function $\rho : \mathcal{M} \rightarrow [0, +\infty)$. Define the conformal coefficient $h : \mathcal{M} \rightarrow (0, +\infty)$ as

$$h(p) := (\|\nabla \rho(p)\|_p^2 + 1)^\vartheta,$$

where $\nabla \rho(p) \in T_p \mathcal{M}$ is the gradient of ρ at $p \in \mathcal{M}$ and $\vartheta \geq 1$. Then we define the conformal metric g' as

$$g'_p(v, w) := h(p) g_p(v, w).$$

Now we turn to prove that (\mathcal{M}, g') is a complete metric space; that is, every Cauchy sequence is convergent. Let $\gamma : [a, b] \rightarrow \mathcal{M}$ be a piecewise smooth curve segment. Then the length of γ with respect to the metric g' is given by

$$\begin{aligned} L_{g'}(\gamma) &= \int_a^b \sqrt{g'_{\gamma(t)}(\gamma'(t), \gamma'(t))} dt \\ &= \int_a^b \sqrt{h(\gamma(t)) g_{\gamma(t)}(\gamma'(t), \gamma'(t))} dt \\ &= \int_a^b \sqrt{h(\gamma(t))} \|\gamma'(t)\|_{\gamma(t), g} dt \\ &\stackrel{(i)}{=} \int_a^b \sqrt{(\|\nabla \rho(\gamma(t))\|_{\gamma(t), g}^2 + 1)^\vartheta} \|\gamma'(t)\|_{\gamma(t), g} dt \\ &\geq \int_a^b \|\nabla \rho(\gamma(t))\|_{\gamma(t), g} \|\gamma'(t)\|_{\gamma(t), g} dt \\ &\stackrel{(ii)}{\geq} \int_a^b |g_{\gamma(t)} \langle \nabla \rho(\gamma(t)), \gamma'(t) \rangle| dt \\ &= \int_a^b |d\rho_{\gamma(t)}(\gamma'(t))| dt \end{aligned}$$

$$\begin{aligned} &\geq \left| \int_a^b d\rho_{\gamma(t),g}(\gamma'(t)) dt \right| \\ &= |\rho(\gamma(b)) - \rho(\gamma(a))|, \end{aligned}$$

where (i) applies the definition of h , and (ii) applies the Cauchy-Schwarz inequality. As a result, for arbitrary $p, q \in \mathcal{M}$, we have

$$|\rho(p) - \rho(q)| \leq d_{g'}(p, q). \quad (11)$$

Let $\{p_k\} \subset \mathcal{M}$ be a Cauchy sequence with respect to g' . Then Equation (11) implies that $\{\rho(p_k)\} \subset \mathbb{R}$ must be a Cauchy sequence. We can take a finite supremum

$$c := \sup_k \rho(p_k) < +\infty.$$

Then $\{p_k\} \subset \rho^{-1}([0, c])$; that is, every Cauchy sequence belongs to a compact set by our construction (Lemma C.6), which implies the completeness of (\mathcal{M}, g') .

The Hopf-Rinow theorem (Hopf & Rinow, 1931; do Carmo, 1992) states that for a connected Riemannian manifold, geodesic completeness is equivalent to the metric completeness. As we have shown that the *conformally equivalent* metric $g'_p := h(p)g_p$ induces a complete metric space, it automatically makes (\mathcal{M}, g') a geodesically complete manifold. If \mathcal{M} is not connected, this argument applies to each connected component, and a geodesic is contained within a single component. Thus, (\mathcal{M}, g') is geodesically complete.

Lastly, we show that if the ϵ -stationary point under g also gives an ϵ -stationary point under g' . Recall that we always have

$$g_p(\nabla_g f(p), v) = df_p(v) = g'_p(\nabla_{g'} f(p), v)$$

for all $v \in T_p \mathcal{M}$. Then

$$h(p)g_p(\nabla_{g'} f(p), v) = g_p(\nabla_g f(p), v).$$

As it holds for all v and g_p is a bilinear form over the linear space $T_p \mathcal{M}$, we obtain

$$h(p)\nabla_{g'} f(p) = \nabla_g f(p).$$

Suppose that $\|\nabla_g f(p)\|_{p,g} \leq \epsilon$, then

$$\begin{aligned} \|\nabla_{g'} f(p)\|_{p,g'} &= \sqrt{g'_p(\nabla_{g'} f(p), \nabla_{g'} f(p))} \\ &= \sqrt{1/h(p)} \sqrt{g_p(\nabla_g f(p), \nabla_g f(p))} \\ &= \sqrt{1/h(p)} \|\nabla_g f(p)\|_{p,g} \\ &= \sqrt{\frac{1}{(\|\nabla \rho(p)\|_p^2 + 1)^{\vartheta}}} \|\nabla_g f(p)\|_{p,g} \\ &\leq \|\nabla_g f(p)\|_{p,g} \leq \epsilon. \end{aligned}$$

Therefore, we complete the proof. \square

C.4 PROOF OF THEOREM 2.7

In this subsection, we provide the proof for Theorem 2.7.

Theorem C.18. *Let (\mathcal{M}, g) be a complete d -dimensional Riemannian manifold and $p \in \mathcal{M}$. Let $f : \mathcal{M} \rightarrow \mathbb{R}$ be a smooth function and suppose that Assumptions 2.3 and 2.4 hold. Fix a perturbation stepsize $\mu > 0$ satisfying*

$$\mu^2 \leq \min\left\{\frac{1}{d-1}, \frac{1}{2} + \frac{6}{d} + \frac{8}{d^2}\right\},$$

and for any unit vector $v \in T_p \mathcal{M}$ define the symmetric zeroth-order estimator

$$\hat{\nabla} f(p; v) := \frac{f(\exp_p(\mu v)) - f(\exp_p(-\mu v))}{2\mu} v.$$

Then, for $v \sim \text{Unif}(\mathbb{S}^{d-1})$ uniformly sampled from the g_p -unit sphere in $T_p \mathcal{M}$,

$$\mathbb{E}_{v \sim \text{Unif}(\mathbb{S}^{d-1})} \left[\left\| \hat{\nabla} f(p; v) - \frac{1}{d} \nabla f(p) \right\|_p^2 \right] \leq \frac{1 + \mu^2 \kappa^2}{d} \|\nabla f(p)\|_p^2 + \mu^2 \left[\frac{4}{3} \frac{M_3^2}{d^3} + \frac{M_4^2 \mu^4}{288} \right].$$

1566 *Proof.* Let $\gamma(t) := \exp_p(tv)$ be the geodesic; it satisfies (i) $\gamma(0) = p$ and (ii) $\gamma'(0) = v$. For the
 1567 scalar function $F(t) := f(\gamma(t))$, we apply the ordinary Taylor theorem (with the integral remainder)
 1568 at $t = 0$ up to order 4 (Spivak, 1994; Bonnabel, 2013):
 1569

$$1570 \quad F(\mu) = F(0) + \mu F'(0) + \mu^2 \frac{F''(0)}{2} + \mu^3 \frac{F'''(0)}{6} + \frac{1}{6} \int_0^\mu (\mu - t)^3 F''''(t) dt.$$

1572 By applying Lemma C.12, we obtain
 1573

$$1574 \quad f(\gamma(\mu)) = f(p) + \mu \langle \nabla f(p), v \rangle_p + \frac{\mu^2}{2} \nabla^2 f(p)(v, v) + \frac{\mu^3}{6} \nabla^3 f(p)(v, v, v) \\ 1575 \quad + \frac{\mu^4}{6} \underbrace{\int_0^1 (1-t)^3 \nabla^4 f(\gamma(\mu t))(\gamma'(\mu t), \gamma'(\mu t), \gamma'(\mu t), \gamma'(\mu t)) dt}_{\mathcal{I}_+},$$

$$1580 \quad f(\gamma(-\mu)) = f(p) - \mu \langle \nabla f(p), v \rangle_p + \frac{\mu^2}{2} \nabla^2 f(p)(v, v) - \frac{\mu^3}{6} \nabla^3 f(p)(v, v, v) \\ 1581 \quad + \frac{\mu^4}{6} \underbrace{\int_0^1 (1-t)^3 \nabla^4 f(\gamma(-\mu t))(\gamma'(-\mu t), \gamma'(-\mu t), \gamma'(-\mu t), \gamma'(-\mu t)) dt}_{\mathcal{I}_-},$$

1586 where the k -th covariant derivative at $p \in \mathcal{M}$ is a symmetric k -linear form in $\underbrace{T_p^* \mathcal{M} \otimes \cdots \otimes T_p^* \mathcal{M}}_{k \text{ copies}}$
 1587

$$1589 \quad \nabla^k f(p) : \underbrace{T_p \mathcal{M} \times \cdots \times T_p \mathcal{M}}_{k \text{ copies}} \rightarrow \mathbb{R},$$

1593 and we represent the remainder term given by the Taylor theorem as

$$1594 \quad \mathcal{I}_\pm := \int_0^1 (1-t)^3 \nabla^4 f(\gamma(\pm \mu t))(\gamma'(\mu t), \gamma'(\mu t), \gamma'(\mu t), \gamma'(\mu t)) dt.$$

1597 Subtracting Equation (13) from Equation (12) and dividing by 2μ we obtain
 1598

$$1599 \quad \frac{f(\exp_p(\mu v)) - f(\exp_p(-\mu v))}{2\mu} = \langle \nabla f(p), v \rangle_p + \frac{\mu^2}{6} \nabla^3 f(p)(v, v, v) + \frac{\mu^3}{12} (\mathcal{I}_+ - \mathcal{I}_-). \quad (14)$$

1601 Multiplying v on both sides, we obtain
 1602

$$1603 \quad \hat{\nabla} f(p; v) = \frac{1}{d} \nabla f(p) + \underbrace{(\langle \nabla f(p), v \rangle_p v - \frac{1}{d} \nabla f(p))}_{=: Z_0(v)} + \underbrace{\mu^2 \frac{1}{6} \nabla^3 f(p)(v, v, v) v}_{=: Z_2(v)} + \underbrace{\frac{\mu^3}{12} (\mathcal{I}_+ - \mathcal{I}_-) v}_{=: R(v)}.$$

1607 By defining these shorthand notations, we have the following compact form:

$$1609 \quad \hat{\nabla} f(p; v) - \frac{1}{d} \nabla f(p) = Z_0(v) + \mu^2 Z_2(v) + R(v).$$

1611 We take squared-norm on both sides and treating v as the uniform distribution over the g -unit sphere
 1612 \mathbb{S}^{d-1} in $T_p \mathcal{M}$. Then we obtain

$$1613 \quad \mathbb{E}_v \|\hat{\nabla} f(p; v) - \frac{1}{d} \nabla f(p)\|_p^2 \\ 1614 \quad = \mathbb{E}_v \|Z_0(v)\|_p^2 + \mathbb{E}_v \|\mu^2 Z_2(v) + R(v)\|_p^2 + 2\mathbb{E}_v \langle Z_0(v), \mu^2 Z_2(v) + R(v) \rangle_p \\ 1615 \quad = \mathbb{E}_v \|Z_0(v)\|_p^2 + \mathbb{E}_v \|\mu^2 Z_2(v) + R(v)\|_p^2 + 2\mu^2 \mathbb{E}_v \langle Z_0(v), Z_2(v) \rangle_p \\ 1616 \quad \leq \mathbb{E}_v \|Z_0(v)\|_p^2 + 2\mu^4 \mathbb{E}_v \|Z_2(v)\|_p^2 + 2\mathbb{E}_v \|R(v)\|_p^2 + 2\mu^2 \mathbb{E}_v \langle Z_0(v), Z_2(v) \rangle_p \\ 1617 \quad \leq (1 + \mu^2) \mathbb{E}_v \|Z_0(v)\|_p^2 + (2\mu^4 + \mu^2) \mathbb{E}_v \|Z_2(v)\|_p^2 + 2\mathbb{E}_v \|R(v)\|_p^2,$$

1620 The cross term $\langle Z_0(v), R(v) \rangle_p$ is canceled out by Lemma C.8. More explicitly, we have
 1621

$$\begin{aligned} 1622 \mathbb{E} \langle Z_0(v), R(v) \rangle_p &= \mathbb{E} \frac{\mu^3(\mathcal{I}_+ - \mathcal{I}_-)}{12} \left\langle \langle \nabla f(p), v \rangle_p v - \frac{1}{d} \nabla f(p), v \right\rangle_p \\ 1623 \\ 1624 &\stackrel{(i)}{=} \frac{\mu^3(\mathcal{I}_+ - \mathcal{I}_-)}{12} (0 - 0) = 0, \\ 1625 \end{aligned}$$

1626 where (i) applies Lemma C.8. Now it suffices to bound each squared term.
 1627

1628 1. **Bounding $\mathbb{E}_v \|R(v)\|_p^2$:** By Assumption 2.3 and $\|v\|_p = 1$, we have
 1629

$$1630 |\mathcal{I}_\pm(\mu, v)| \leq \int_0^1 (1-t)^3 M_4 dt = \frac{M_4}{4}. \\ 1631$$

1632 We have the similar upper bound for $|\mathcal{I}_-|$. Then $|\mathcal{I}_+ - \mathcal{I}_-| \leq |\mathcal{I}_+| + |\mathcal{I}_-| \leq \frac{M_4}{4} + \frac{M_4}{4} = \frac{M_4}{2}$.
 1633 As the result,

$$1634 \|\mathcal{R}(v)\|_p \leq \frac{\mu^3}{12} \cdot \frac{M_4}{2} = \frac{M_4 \mu^3}{24}. \\ 1635$$

1636 Therefore, we obtain

$$1637 \mathbb{E}_v [\|\mathcal{R}(v)\|_p^2] \leq \frac{M_4^2 \mu^6}{576}. \quad (15) \\ 1638$$

1640 2. **Bounding $\mathbb{E}_v \|Z_0(v)\|^2$:** Recall that $Z_0(v) = \langle \nabla f(p), v \rangle_p v - \frac{1}{d} \nabla f(p)$. Then
 1641

$$\begin{aligned} 1642 \|Z_0(v)\|_p^2 &= g \left(\langle \nabla f(p), v \rangle_p v - \frac{1}{d} \nabla f(p), \langle \nabla f(p), v \rangle_p v - \frac{1}{d} \nabla f(p) \right) \\ 1643 \\ 1644 &= \langle \nabla f(p), v \rangle_p^2 g(v, v) + \frac{1}{d^2} g(\nabla f(p), \nabla f(p)) - \frac{2}{d} \langle \nabla f(p), v \rangle_p g(\nabla f(p), v) \\ 1645 \\ 1646 &= \langle \nabla f(p), v \rangle_p^2 \|v\|_p^2 + \frac{1}{d^2} \|\nabla f(p)\|_p^2 - \frac{2}{d} \langle \nabla f(p), v \rangle_p g(\nabla f(p), v) \\ 1647 \\ 1648 &\stackrel{(i)}{=} (1 - \frac{2}{d}) \langle \nabla f(p), v \rangle_p^2 + \frac{1}{d^2} \|\nabla f(p)\|_p^2. \\ 1649 \end{aligned}$$

1650 where (i) applies $\|v\|_p^2 = 1$ and $g(\nabla f(p), v) = \langle \nabla f(p), v \rangle_p$. By the symmetry of the
 1651 $\|\cdot\|_p$ -norm ball, we have

$$1652 \mathbb{E}_v [v \otimes v] = \frac{1}{d} g_p, \\ 1653$$

1654 where $v \otimes v : T_p \mathcal{M} \times T_p \mathcal{M} \rightarrow \mathbb{R}$ is the tensor product of the vector v with itself and
 1655 $v \otimes v(\nabla f(p), \nabla f(p)) = g_p(v, \nabla f(p))^2$. As the result,

$$1656 \mathbb{E}_v \langle \nabla f(p), v \rangle_p^2 = \frac{1}{d} g_p(\nabla f(p), \nabla f(p)) = \frac{1}{d} \|\nabla f(p)\|_p^2. \\ 1657$$

1658 Therefore, we have

$$1659 \mathbb{E}_v \|Z_0(v)\|^2 = \left(\frac{1}{d} - \frac{1}{d^2} \right) \|\nabla f(p)\|_p^2 \quad (16) \\ 1660$$

1662 3. **Bounding $\mathbb{E}_v \|Z_2(v)\|^2$:** We choose an orthonormal frame $\{e_1, \dots, e_d\}$ for $T_p \mathcal{M}$ so that
 1663 every vector $v \in T_p \mathcal{M}$ with $\|v\|_p = 1$ is represented as

$$1664 v = \sum_{i=1}^d v^i e_i \\ 1665$$

1666 and we write its coordinate as $v = (v^1, v^2, \dots, v^d) \in \mathbb{R}^d$. As $\nabla^3 f(p) \in T_p^* \mathcal{M} \otimes T_p^* \mathcal{M} \otimes T_p^* \mathcal{M}$, we write the tensor representation as

$$1667 T_{ijk} := (\nabla^3 f)_{ijk}(p). \\ 1668$$

1669 Therefore, we obtain

$$1670 Z_2(v) = \frac{1}{6} \nabla^3 f(p)(v, v, v)v = \frac{1}{6} T_{ijk} v^i v^j v^k e_\ell, \\ 1671$$

1674 where we use Einstein notation to represent the sum. By the orthonormal frame, we obtain
1675

$$1676 \|Z_2(v)\|_p^2 = \frac{1}{36} T_{ijk} T_{i'j'k'} v^i v^j v^k v^{i'} v^{j'} v^{k'}.$$

1677
1678 Then it suffices to calculate $\mathbb{E}_v[v^i v^j v^k v^{i'} v^{j'} v^{k'}]$. By [Lemma C.8](#), we obtain
1679

$$1680 \mathbb{E}_v[v^i v^j v^k v^{i'} v^{j'} v^{k'}] = \begin{cases} \frac{6}{d(d+2)(d+4)} & \text{if } (i, j, k) = (i', j', k') \\ \frac{9}{d(d+2)(d+4)} & \text{if } i = j, i' = j', k = k' \\ 0 & \text{otherwise} \end{cases}.$$

1683 As the result, we obtain
1684

$$1685 \mathbb{E}_v[\|Z_2(v)\|^2] = \frac{1}{36d(d+2)(d+4)} [6T_{ijk}T_{ijk} + 9T_{iik}T_{jijk}].$$

1687
1688 Recall that $T_{ijk}T_{ijk} = \|\nabla^3 f(p)\|_{\text{HS}}^2$. We also have
1689

$$1690 T_{iik}T_{jijk} = \|\nabla(\Delta f) + \text{Ric}(\cdot, \cdot)\nabla f(p)\|_p^2 \\ 1691 \leq 2\|\nabla(\Delta f)\|_p^2 + 2\|\text{Ric}(\cdot, \cdot)\nabla f(p)\|_p^2 \\ 1692 \leq 2\|\nabla^3 f(p)\|_{\text{HS}}^2 + 2\|\text{Ric}(\cdot, \cdot)\nabla f(p)\|_p^2.$$

1693 As the result, we obtain
1694

$$1695 \mathbb{E}_v\|Z_2(v)\|_p^2 \leq \frac{1}{6d(d+2)(d+4)} [4\|\nabla^3 f(p)\|_{\text{HS}}^2 + 3\|\text{Ric}(\cdot, \cdot)\nabla f(p)\|_p^2]. \quad (17)$$

1696 Combining [Equations \(15\)](#) to [\(17\)](#), we obtain
1697

$$1698 \mathbb{E}_v \left[\|\widehat{\nabla} f(p; v) - \frac{1}{d} \nabla f(p)\|_p^2 \right] \\ 1699 \leq \left(\frac{1}{d} - \frac{1}{d^2} \right) (1 + \mu^2) \|\nabla f(p)\|_p^2 + \frac{2\mu^4 + \mu^2}{6d(d+2)(d+4)} (4\|\nabla^3 f(p)\|_{\text{HS}}^2 + 3\|\text{Ric}(\cdot, \cdot)\nabla f(p)\|_p^2) \\ 1700 + \frac{M_4^2 \mu^6}{288} \\ 1701 \stackrel{(i)}{\leq} \left(\frac{1}{d} - \frac{1}{d^2} \right) (1 + \mu^2) \|\nabla f(p)\|_p^2 + \frac{2\mu^4 + \mu^2}{6d(d+2)(d+4)} (4M_3^2 + 3\kappa^2 d^2 \|\nabla f(p)\|_p^2) + \frac{M_4^2 \mu^6}{288} \\ 1702 \stackrel{(ii)}{\leq} \left[\left(\frac{1}{d} - \frac{1}{d^2} \right) (1 + \mu^2) + 3\kappa^2 d^2 \frac{2\mu^4 + \mu^2}{6d(d+2)(d+4)} \right] \|\nabla f(p)\|_p^2 + \frac{2\mu^4 + \mu^2}{6d(d+2)(d+4)} 4M_3^2 + \frac{M_4^2 \mu^6}{288}$$

1703 where (i) applies [Lemma C.10](#) and assumptions [2.3](#) and [2.4](#). Furthermore, we set
1704

$$1705 3\kappa^2 d^2 \frac{2\mu^4 + \mu^2}{6d(d+2)(d+4)} \leq \frac{\kappa^2 \mu^2}{d}.$$

1706 It solves
1707

$$1708 \mu^2 \leq \frac{1}{2} + \frac{6}{d} + \frac{8}{d^2}. \quad (18)$$

1709 We also let
1710

$$1711 \mu^2 \leq \frac{1}{d-1} \quad (19)$$

1712 We obtain $\left(\frac{1}{d} - \frac{1}{d^2} \right) (1 + \mu^2) \leq \frac{1}{d}$. It concludes that
1713

$$1714 \mathbb{E}_v \left[\|\widehat{\nabla} f(p; v) - \frac{1}{d} \nabla f(p)\|_p^2 \right] \leq \frac{1 + \mu^2 \kappa^2}{d} \|\nabla f(p)\|_p^2 + \mu^2 \left[\frac{4}{3} \frac{M_3^2}{d^3} + \frac{M_4^2 \mu^4}{288} \right].$$

1715 Then the proof is completed. Combining [Equations \(18\)](#) and [\(19\)](#) leads to the range of μ . \square
1716

1728 C.5 PROOF OF PROPOSITION 2.8
17291730 **Proposition C.19.** *Let the vector v be generated by Algorithm 1. Then it follows the uniform
1731 distribution over the compact set $\mathcal{C} := \{v \in \mathbb{R}^d : v^\top A v = 1\}$.*1733 *Proof.* Fix a positive definite matrix $A \in \mathbb{R}^{d \times d}$ and consider its eigenvalue decomposition
1734

1735
$$A = Q \Lambda Q^\top, \quad \Lambda = \text{diag}(\lambda_1, \dots, \lambda_d), \quad 0 < \lambda_1 \leq \dots \leq \lambda_d = \lambda_{\max}.$$

1736 Recall that $L := Q \Lambda^{-1/2}$. Then
1737

1738
$$\det L = \det Q \det \Lambda^{-1/2} = \left(\prod_{i=1}^d \lambda_i \right)^{-1/2} > 0.$$

1739
1740

1741 We observe that for every $s \in \mathbb{S}^{d-1}$,
1742

1743
$$(Ls)^\top A Ls = s^\top L^\top A Ls = 1.$$

1744

1745 It indicates that $Ls \in \mathcal{C} := \{v : v^\top A v = 1\}$. As the result, L defines a smooth bijection linear map
1746 from the sphere \mathbb{S}^{d-1} to the compact set \mathcal{C} :
1747

1748
$$L : \mathbb{S}^{d-1} \rightarrow \mathcal{C}, \quad s \mapsto v = Ls.$$

1749 Under this notation, μ_{prop} , the distribution of the sampled vector v (without rejection) in Algorithm 1
1750 is given by the push-forward distribution of the uniform distribution via the linear map L . That is,
1751 any measurable $E \subseteq \mathcal{C}$,

1752
$$\mu_{\text{prop}}(E) := \mu_{\mathbb{S}^{d-1}}(L^{-1}(E)) = \mu_{\mathbb{S}^{d-1}} \circ L^{-1}(E), \quad (20)$$

1753

1754 where $\mu_{\mathbb{S}^{d-1}}$ is the uniform distribution over the sphere \mathbb{S}^{d-1} .
17551756 Denote by $\sigma_{\mathbb{S}^{d-1}}$ and $\sigma_{\mathcal{C}}$ the Hausdorff measures on \mathbb{S}^{d-1} and \mathcal{C} , respectively. Then we re-write the
1757 above distribution μ_{prop} and $\mu_{\mathbb{S}^{d-1}}$ in the density form; that is
1758

1759
$$\mu_{\text{prop}} = \rho_{\text{prop}} d\sigma_{\mathcal{C}},$$

1760
$$\mu_{\mathbb{S}^{d-1}} = \rho_{\mathbb{S}^{d-1}} d\sigma_{\mathbb{S}^{d-1}}.$$

1761 For arbitrary integral function $g : \mathcal{C} \rightarrow \mathbb{R}$, we have
1762

1763
$$\begin{aligned} \int_{\mathcal{C}} g(v) d\mu_{\text{prop}}(v) &= \int_{\mathbb{S}^{d-1}} g(Ls) d\mu_{\mathbb{S}^{d-1}}(Ls) \\ 1764 &\stackrel{(i)}{=} \int_{\mathbb{S}^{d-1}} g(Ls) d\mu_{\mathbb{S}^{d-1}} \circ L^{-1}(Ls) \\ 1766 &= \int_{\mathbb{S}^{d-1}} g(Ls) d\mu_{\mathbb{S}^{d-1}}(s). \end{aligned}$$

1767
1768

1769 where (i) applies the definition of the pull-back measure μ_{prop} (Equation (20)). Then we obtain
1770

1771
$$\begin{aligned} \int_{\mathcal{C}} g(v) \rho_{\text{prop}}(v) d\sigma_{\mathcal{C}}(v) &= \int_{\mathbb{S}^{d-1}} g(Ls) \rho_{\mathbb{S}^{d-1}}(s) d\sigma_{\mathbb{S}^{d-1}}(s) \\ 1773 &\stackrel{(i)}{=} \int_{\mathbb{S}^{d-1}} g(Ls) \frac{\rho_{\mathbb{S}^{d-1}}(s)}{J(s)} d\sigma_{\mathcal{C}}(Ls). \end{aligned}$$

1774

1775 where (i) applies Lemma C.11 with $J(s) = |\det L| \| (L^\top)^{-1} s \|_2$. As it holds for all measurable
1776 function g , it solves the density of μ_{prop} as
1777

1778
$$\begin{aligned} \rho_{\text{prop}}(v) &= \frac{\rho_{\mathbb{S}^{d-1}} \circ L^{-1}(v)}{J \circ L^{-1}(v)} \\ 1779 &\propto \frac{1}{\|Av\|_2}. \end{aligned}$$

1780
1781

Then we consider the rejection step and the final density. Let ρ_{out} be the density of the output vector of [Algorithm 1](#). Recall that [Algorithm 1](#) accepts the candidate $v = L s$ with probability

$$a(v) := \mathbb{P}(\text{accept } v | v) = \mathbb{P}(u < \sqrt{\frac{v^\top A^2 v}{\lambda_{\max}} | v}) = \sqrt{\frac{v^\top A^2 v}{\lambda_{\max}}}.$$

The density of the output vector is given as

$$\rho_{\text{out}}(v) \propto \rho_{\text{prop}}(v) a(v) = \frac{1}{\sqrt{\lambda_{\max}}}.$$

As it is a constant over the compact set \mathcal{C} , it is the uniform distribution over \mathcal{C} . We also note that the acceptance probability is strictly positive; hence, the loop halts almost surely. This completes the proof of [Proposition 2.8](#). \square

C.6 PROOF OF THEOREM 2.9

In this section, we present the proof of [Theorem 2.9](#). We write $a \lesssim b$ if there exists a constant $C > 0$ such that $a \leq C b$. The hidden constant C may depend only on fixed problem parameters.

Theorem C.20. *Let (\mathcal{M}, g) be a complete d -dimensional Riemannian manifold. Let $f : \mathcal{M} \rightarrow \mathbb{R}$ be a smooth function and suppose that [Assumptions 2.1](#) to [2.4](#) hold. Define the symmetric zeroth-order estimator as in [Equation \(5\)](#). Let $\{p_t\}_{t=1}^T$ be the SGD dynamic finding the stationary point of [Equation \(1\)](#) generated by the update rule [Equation \(4\)](#) with requiring $\eta \lesssim \sqrt{\frac{d}{T}}$ and $\mu^2 \lesssim \sqrt{\frac{d}{T}}$ (explicitly specified in [Equation \(21\)](#)), then there exists constants $C_1, C_2, C_3 > 0$ such that*

$$\min_{1 \leq t \leq T} \|\nabla f(p_t)\|_{p_t}^2 \leq C_1 \frac{d}{\eta T} + C_2 \eta + C_3 d^2 \mu^2.$$

In particular, choosing $\mu \lesssim \frac{1}{d^2} \sqrt{\frac{d}{T}}$ yields

$$\min_{1 \leq t \leq T} \|\nabla f(p_t)\|_{p_t}^2 \lesssim \sqrt{\frac{d}{T}}.$$

Proof. By [Lemma C.15](#), we obtain that

$$\begin{aligned} \frac{\eta}{6d} \|\nabla f(p_t)\|_{p_t}^2 &\leq \left[1 + 6L(C_{\text{Ret}} + \frac{L}{2}) \left(\frac{2 + \mu^2 \kappa^2}{d} \right) \eta^2 + \frac{L\mu^4 d}{(d+2)^2} \kappa^2 \eta \right] (\mathbb{E} f(p_t) - f^*) \\ &\quad - (\mathbb{E} f(p_{t+1}) - f^*) + (C_{\text{Ret}} + \frac{L}{2}) \left(3B \left(\frac{2 + \mu^2 \kappa^2}{d} \right) + 3\mathcal{E} + 3C_{\text{Ret}}^2 \mu^2 \right) \eta^2 \\ &\quad + \frac{\eta d}{2} \mathcal{F} + \frac{3}{4} d \eta \mu^2 C_{\text{Ret}}^2, \end{aligned}$$

It has the same structure presented in [Lemma C.16](#), where we set

$$\begin{aligned} \theta_t &= \frac{\eta}{6d} \|\nabla f(p_t)\|_{p_t}^2, & S &= 6L(C_{\text{Ret}} + \frac{L}{2}) \left(\frac{2 + \mu^2 \kappa^2}{d} \right) \eta^2 + \frac{L\mu^4 d}{(d+2)^2} \kappa^2 \eta, & \delta_t &= \mathbb{E} f(p_t) - f^*, \\ G_t &= (C_{\text{Ret}} + \frac{L}{2}) \left(3B \left(\frac{2 + \mu^2 \kappa^2}{d} \right) + 3\mathcal{E} + 3C_{\text{Ret}}^2 \mu^2 \right) \eta^2 + \frac{\eta d}{2} \mathcal{F} + \frac{3}{4} d \eta \mu^2 C_{\text{Ret}}^2. \end{aligned}$$

Then we obtain

$$\min_{1 \leq t \leq T} \theta_t \leq \frac{e^{ST}}{T} \delta_1 + \max_{1 \leq t \leq T} G_t.$$

It leads to

$$\begin{aligned} \min_{1 \leq t \leq T} \|\nabla f(p_t)\|_{p_t}^2 &\stackrel{(i)}{\leq} \frac{6e^2 [\mathbb{E} f(p_1) - f^*]}{\eta T / d} + \frac{6d}{\eta} \left[\frac{\eta d}{2} \mathcal{F} + \frac{3}{4} d \eta \mu^2 C_{\text{Ret}}^2 \right] \\ &\quad + \frac{6d}{\eta} \left[(C_{\text{Ret}} + \frac{L}{2}) \left(3B \left(\frac{2 + \mu^2 \kappa^2}{d} \right) + 3\mathcal{E} + 3C_{\text{Ret}}^2 \mu^2 \right) \eta^2 \right]. \end{aligned}$$

1836 where (i) selects
 1837

$$\begin{cases} \eta \leq \sqrt{\frac{d}{T}} \sqrt{\frac{1}{18L(C_{\text{Ret}} + \frac{L}{2})}} \\ \mu^2 \leq \min \left\{ \frac{1}{\kappa^2}, \sqrt{\frac{d}{T}} \frac{1}{18L^2(C_{\text{Ret}} + \frac{L}{2})} \right\} \end{cases} \quad (21)$$

1838 such that $e^{TS} \leq e^2$, where $\frac{1}{\kappa^2}$ is considered as $+\infty$ when $\kappa = 0$. Given Equation (21), we further
 1844 upper bound it as
 1845

$$\begin{aligned} & \min_{1 \leq t \leq T} \|\nabla f(p_t)\|_{p_t}^2 \\ & \leq \frac{d}{\eta T} [6e^2[\mathbb{E}f(p_1) - f^*]] + 3d^2\mathcal{F} + \frac{9}{2}d^2\mu^2C_{\text{Ret}}^2 \\ & \quad + 6d\eta(C_{\text{Ret}} + \frac{L}{2}) \left(3B(\frac{2 + \mu^2\kappa^2}{d}) + 3\mathcal{E} + 3C_{\text{Ret}}^2\mu^2 \right) \\ & \stackrel{(i)}{\leq} \frac{d}{\eta T} [6e^2[\mathbb{E}f(p_1) - f^*]] + 3d^2 \left[\frac{\mu^4 M_3^2}{9d^2(d+2)^2} + \frac{\mu^6}{144} M_4^2 + \frac{\mu^4}{(d+2)^2} \kappa^2 B \right] + \frac{9}{2}d^2\mu^2C_{\text{Ret}}^2 \\ & \quad + 6d\eta(C_{\text{Ret}} + \frac{L}{2}) \left(3B(\frac{2 + \mu^2\kappa^2}{d}) + 3\mu^2 \left[\frac{4}{3} \frac{M_3^2}{d^3} + \frac{M_4^2\mu^4}{288} \right] + 3C_{\text{Ret}}^2\mu^2 \right) \\ & \leq \frac{d}{\eta T} [54[\mathbb{E}f(p_1) - f^*]] + \frac{M_3^2}{3} \frac{\mu^4}{d^2} + \frac{M_4^2}{48} \mu^6 + 3\mu^4\kappa^2 B + 5d^2\mu^2C_{\text{Ret}}^2 \\ & \quad + 54(C_{\text{Ret}} + \frac{L}{2})B\eta + 18(C_{\text{Ret}} + \frac{L}{2}) \left[\frac{4}{3} \frac{M_3^2}{d^3} + \frac{M_4^2\mu^4}{288} \right] d\eta\mu^2 + 18(C_{\text{Ret}} + \frac{L}{2})C_{\text{Ret}}^2 d\eta\mu^2 \\ & \quad (23) \\ & = \mathcal{O}(\frac{d}{\eta T}) + \mathcal{O}(\eta) + \mathcal{O}(d^2\mu^2), \end{aligned}$$

1865 where (i) applies the formula of \mathcal{E} and \mathcal{F} given by Equation (7) and Equation (10), respectively. \square
 1866

1867 C.7 PROOF OF COROLLARY 2.10

1868 We re-state this corollary to have a consistent notation as previous sections.
 1869

1870 **Corollary C.21.** *Let g be the Euclidean metric, and let g' be a structure-preserving metric with
 1871 respect to g . Under the same assumptions as Theorem 2.9, suppose that either of the following
 1872 conditions holds:*

1873

- 1874 (a) g is geodesically complete; or
- 1875 (b) the set of ϵ -stationary points under g , $K := \{p \in \mathcal{M} : \|\nabla_g f(p)\|_{p,g} \leq \epsilon\}$, is compact.

1876 Then it requires at most $T \leq \mathcal{O}(\frac{d}{\epsilon^4})$ iterations to achieve $\min_{1 \leq t \leq T} \mathbb{E}[\|\nabla f(p_t)\|_{p_t,g}^2] \leq \epsilon^2$.
 1877

1878 *Proof.* For the item (a), we omit its proof as it is directly implied by setting $h \equiv 1$. Recall that we write
 1879 $a \lesssim b$ if there exists a constant $C > 0$ such that $a \leq Cb$. Now we denote $g'_p(v, w) := h(p)g_p(v, w)$.
 1880 Theorem C.20 implies that

$$\min_{1 \leq t \leq T} \|\nabla f(p_t)\|_{p_t,g'}^2 \lesssim \sqrt{\frac{d}{T}}.$$

1886 It suffices to prove that if $p \in K$ is an ϵ -stationary point under g' then it must be an ϵ -stationary point
 1887 under g (up to a constant scale). Note that

$$\|\nabla_{g'} f(p)\|_{p,g'} = \frac{1}{\sqrt{h(p)}} \|\nabla_g f(p)\|_{p,g}.$$

1890 As the result, we obtain
 1891

$$\frac{1}{\max_{p \in \mathcal{M}} h(p)} \min_{1 \leq t \leq T} g_p(\nabla f(p), \nabla f(p)) \lesssim \sqrt{\frac{d}{T}}$$

$$\min_{1 \leq t \leq T} g_p(\nabla f(p), \nabla f(p)) \lesssim \max_{p \in \mathcal{M}} h(p) \sqrt{\frac{d}{T}}$$

1897 We restrict two sides on the compact set (given by the condition (b))
 1898

$$K := \{p : \|\nabla_g f(p)\|_{p,g} \leq \epsilon\}.$$

1900 Because $h : \mathcal{M} \rightarrow \mathbb{R}$ is a continuous function, then it must be bounded over this compact set. Let
 1901 this upper bound be C . Then we obtain (with absorbing C into \lesssim)
 1902

$$\min_{1 \leq t \leq T} \|\nabla f(p)\|_{p,g}^2 \lesssim \sqrt{\frac{d}{T}}$$

1903 By setting $\sqrt{\frac{d}{T}} \leq \epsilon^2$, we obtain the complexity $T \gtrsim \frac{d}{\epsilon^4}$. □
 1904

1908 D EXPERIMENTAL DETAILS

1910 In this section, we aim to include the omitted experimental details in Section 3.
 1911

1912 **Hardware and System Environment** We conducted our experiments on the personal laptop,
 1913 equipped with AMD Ryzen 9 7940HS Mobile Processor (8-core/16-thread) and NVIDIA GeForce
 1914 RTX 4070 Laptop GPU; however, GPUs are not required in our experiments. Our codes were
 1915 tested using Python version 3.12.3. Additional dependencies are specified in the supplementary
 1916 ‘requirements.txt’ file. All source codes attached.
 1917

1918 D.1 SYNTHETIC EXPERIMENT: IMPACT OF SAMPLING BIAS

1919 **Construction of Quadratic Objective Functions** We construct quadratic objective functions of the
 1920 form $f_{\text{quadratic}}(x) = \frac{1}{2}x^\top(B + \xi)x$, where B is a symmetric positive definite matrix that determines
 1921 the landscape’s curvature properties and ξ is the data point independently sampled from $\mathcal{N}(0, 1)$ for
 1922 each entry. The matrix B is generated by first creating a random matrix $M \in \mathbb{R}^{d \times d}$ with entries
 1923 drawn from a standard normal distribution $\mathcal{N}(0, 1)$, then forming $B = M^\top M + dI_d$ to ensure
 1924 positive definiteness with a regularization term dI_d that controls the minimum eigenvalue.
 1925

1926 **Construction of Logistic Objective Functions** For logistic objective functions, we construct
 1927 the empirical risk minimization problem $f_{\text{logistic}}(x) = \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-y_i \zeta_i^\top x)) + \frac{\lambda}{2} x^\top B x$,
 1928 where B is generated as the same way as the quadratic function and $\{(\zeta_i, y_i)\}_{i=1}^n$ represents the
 1929 training dataset with feature vectors $a_i \in \mathbb{R}^d$ and binary labels $y_i \in \{-1, +1\}$. The feature matrix
 1930 $X = [x_1, \dots, x_n]^\top \in \mathbb{R}^{n \times d}$ is generated from a standard normal distribution $\mathcal{N}(0, 1)$. A ground
 1931 truth weight vector $w^* \in \mathbb{R}^d$ is generated from $\mathcal{N}(0, 1)$ and then normalized to unit length. The
 1932 binary labels $y_i \in \{-1, +1\}$ are generated by first computing logits $x_i^\top w^*$, then converting to
 1933 probabilities $p_i = 1/(1 + \exp(-x_i^\top w^*))$, and finally sampling y_i according to $\text{Bernoulli}(p_i)$ before
 1934 converting to the $\{-1, +1\}$ encoding. The regularization parameter λ is chosen as $\lambda = 0.1$.
 1935

1936 **Construction of Riemannian Metric g_A** We design a Riemannian metric on the ambient Euclidean
 1937 space by defining a symmetric positive definite matrix A with extreme conditioning properties.
 1938 Specifically, the metric tensor is constructed by generating a random orthonormal matrix Q via QR
 1939 decomposition, prescribing eigenvalues that span geometrically from $\lambda_{\min} = 1$ to $\lambda_{\max} = 10^4 \lambda_{\min}$,
 1940 and forming $A = Q \Lambda Q^\top$, where Λ is the diagonal matrix of these eigenvalues. This construction
 1941 yields a highly anisotropic Riemannian manifold with a condition number of A equal to 10^4 ,
 1942 creating challenging geometric landscapes for optimization algorithms. The resulting metric induces
 1943 Riemannian gradients of the form $A^{-1} \nabla f(x)$, fundamentally altering the optimization dynamics
 compared to standard Euclidean methods.

1944 **Hyper-Parameters** Each method uses 16 random directions per iteration with a perturbation
 1945 stepsize $\mu = 10^{-4}$ for gradient estimation. The algorithms were run for 500,000 iterations with
 1946 learning rates of 10^{-3} (quadratic) and 10^{-5} (logistic), and results were averaged over 16 independent
 1947 runs to ensure statistical reliability. All curves are smoothed using a moving average with a window
 1948 size of 5,000 iterations, and confidence bands represent 10th–90th percentiles across runs to visualize
 1949 convergence variability.

1950 D.2 SYNTHETIC EXPERIMENT: MSE vs. CURVATURE

1951 **Riemannian Metric Construction** We work on the d -dimensional probability simplex

$$1954 \quad \Delta^d := \{p \in \mathbb{R}^{d+1} \mid \sum_{i=1}^{d+1} p_i = 1, 0 < p_i < 1\},$$

1957 and endow its interior (identified with the first d coordinates) with a structure-preserving Riemannian
 1958 metric ([Definition 2.5](#)) conformally equivalent to the canonical Euclidean metric g^E :

$$1959 \quad \tilde{g}^{(\beta)} = e^{2\phi_\beta(p)} g^E,$$

1961 where the conformal factor is

$$1962 \quad \phi_\beta(p) = \frac{1}{2} \beta \log h(p), \quad h(p) = 1 + \sum_{i=1}^{d+1} \frac{1}{p_i^2} - \frac{1}{d+1} \left(\sum_{i=1}^{d+1} \frac{1}{p_i} \right)^2.$$

1965 Varying the scalar $\beta > 0$ sharpens or flattens the metric. We examine four choices $\beta \in$
 1966 $\{0.5, 1.0, 1.5, 2.0\}$. At the fixed reference point $p_0 \in \Delta^d$ (drawn once from the Dirichlet dis-
 1967 tribution and held constant throughout the experiment) we measure the mean-squared error of a
 1968 symmetric zeroth-order gradient estimator ([Equation \(3\)](#)) with using the first-order approximation of
 1969 the exponential map as the retraction, where the perturbation stepsize μ is set to 0.1. We note that
 1970 under this approximation, the retraction degenerates to the naive Euclidean perturbation; we note
 1971 that we are using a fixed point p_0 , it doesn't trigger the out-of-domain issue of the incomplete Rie-
 1972 mannian manifolds when μ is appropriately selected. The MSE is evaluated using the corresponding
 1973 structure-preserving metric instead of the original Euclidean metric; the conformal scaling $h(p)^\beta$ is
 1974 applied consistently both when sampling directions ($\|v\|_{\tilde{g}} = 1$) and when converting the Euclidean
 1975 gradients of the test functions (quadratic and Kullback–Leibler distance to the uniform distribution)
 1976 into true Riemannian gradients.

1977 **Sectional Curvature Evaluation** Instead of using β as the x-axis, we compute the sectional
 1978 curvature $K_{\tilde{g}^{(\beta)}}(p_0)$ of each metric at p_0 to reflect the true relation between the intrinsic curvature and
 1979 the estimation error. Let $\phi = \phi_\beta$; then $\tilde{g}^{(\beta)} = e^{2\phi} g^E$ is a warped Euclidean metric whose curvature
 1980 depends solely on ϕ . We draw an orthonormal pair (v, w) in the Euclidean tangent space $T_{p_0} \Delta^d$ via
 1981 Gram–Schmidt method, rescale them so that $\|v\|_{\tilde{g}} = \|w\|_{\tilde{g}} = 1$, and evaluate

$$1982 \quad K(p_0; v, w) = e^{-2\phi(p_0)} \left(\|\nabla \phi(p_0)\|_2^2 - \langle \text{Hess } \phi(p_0) v, v \rangle - \langle \text{Hess } \phi(p_0) w, w \rangle \right. \\ 1983 \quad \left. - \langle \nabla \phi(p_0), v \rangle^2 - \langle \nabla \phi(p_0), w \rangle^2 \right),$$

1986 where gradients and Hessians are taken with respect to the ambient Euclidean coordinates. Because
 1987 $\tilde{g}^{(\beta)}$ is *isotropic* up to the conformal factor, a single random 2-plane suffices; the resulting scalar is
 1988 recorded as $K(p_0)$ for that β . These four curvature values, monotonically decreasing as β grows,
 1989 serve as the horizontal tick labels in [Figure 1b](#).

1991 **Hyper-Parameters** For each metric, we run 50,000 independent zeroth-order gradient trials, each
 1992 trial drawing one random Riemannian unit direction and applying [Equation \(3\)](#) to estimate the gradient
 1993 with using the perturbation stepsize $\mu = 0.1$ and using the exponential map as the retraction. The
 1994 reference point $p_0 \in \Delta^d$ is sampled once and held fixed, so that changes in estimator accuracy stem
 1995 solely from the chosen metric. Closed-form gradients are available for both test functions, Euclidean
 1996 and KL distance to the uniform distribution. We record the mean-squared error $h(p_0) \|\hat{\nabla} f - \nabla f\|^2$
 1997 for each trial. The resulting 50,000 errors per setting are summarized with log-scale box plots whose
 1998 boxes span the inter-quartile range and whiskers cover the 10th–90th percentiles (outliers omitted).

1998 Table 1: Hyper-parameter settings for gradient-based mesh optimization experiments.
1999

2000	Fixed Hyperparameter	Symbol	Value
2001	Fine-mesh size	M_{fine}	200×200
2002	Number of nodes in the fine mesh	N_{fine}	40,000
2003	Coarse-mesh size	M_{coarse}	20×20
2004	Number of nodes in the coarse mesh	N_{coarse}	400
2005	Sampled nodes in each iteration	-	120
2006	All nodes positions	P	-
2007	Total iterations	T	20,000
2008	Tunable Hyperparameter		
2009	Random directions	-	4
2010	Perturbation stepsize	μ	10^{-1}
2011	Learning rate	η	{300, 400, 500}
2012			

2013
2014
2015 D.3 GRADIENT-BASED MESH OPTIMIZATION2016
2017 In our work, we consider the black-box mesh optimization problem. In the well-known CFD-GCN
2018 model (Belbute-Peres et al., 2020), additional efforts are taken to allow the position of nodes to
2019 support the auto-differentiation in the SU2 PDE solver; however, in most of existing finite-volume
2020 numerical solvers, the positions of mesh nodes are typically not differentiable. Therefore, we need to
2021 apply the zeroth-order optimization approach.2022
2023 **Construction of Mesh Objective Function** Let $P = \{p_i\}_{i=1}^N \subset \mathbb{R}^2$ be interior node positions of
2024 the given mesh with boundary nodes fixed. Given P , the coarse mesh induced by P defines a PDE
2025 state \hat{u}_P (solved on P). Then we interpolate it into the fine mesh M_{fine} to obtain the PDE state u_P .
2026 The objective is the mean-squared error (MSE) to a fixed fine-grid reference u_{ref} :

2027
2028
$$f_{\text{mesh}}(P) = \frac{1}{N_{\text{fine}}} \|u_P - u_{\text{ref}}\|_2^2,$$

2029
2030 where N_{fine} denotes the number of nodes in the fine mesh. The randomness in this objective comes
2031 from the random sampling over the nodes; instead of taking all nodes to be updated, each step we
2032 will only sample a part of nodes to be updated. In our experiments, we set the size of coarse mesh
2033 to be 20×20 and the size of fine mesh to be 200×200 . Each time, we will randomly sample
30% $\times 20 \times 20 = 120$ nodes to update.2034
2035 **Construction of Mesh Parameterization** Each interior node is updated in **barycentric coordinates**
2036 $b \in \Delta^{m-1}$ with respect to its incident cell (with vertices $\{v_j\}_{j=1}^m$), i.e., $p(b) = \sum_{j=1}^m b_j v_j$. This
2037 coordinate guarantees feasibility ($b_j > 0, \sum_j b_j = 1$), which naturally results in a probability simplex
2038 structure. Under the canonical inclusion embedding, this manifold is geodesically incomplete and
2039 hence feasible for our proposed approach.2040
2041 **Construction of Structure-Preserving Metric** We endow Δ^{m-1} with the structure-preserving
2042 conformal metric $\tilde{g}^{(\beta)}$ as defined in Appendix D.2, and use the first-order approximation of the
2043 exponential map of $\tilde{g}^{(\beta)}$ as the retraction (Definition B.3). We note that this approximation requires to
2044 set the length of perturbation vectors to be sufficiently small to ensure the accuracy of the retraction;
2045 this requirement can be satisfied by adopting the same technique as the soft projection trick used in
2046 Figure 5a. We always assume this requirement is satisfied throughout the training.2047
2048 **Hyper-Parameters** Each iteration uses 4 random directions with perturbation stepsize $\mu = 10^{-1}$.
2049 Optimization runs for $T = 20,000$ iterations with learning rate $\eta \in \{300, 400, 500\}$ (we report the
2050 best curve among these hyper-parameters). All curves are smoothed with a moving-average window
2051 of 2,000 iterations. For all other estimator-dependent hyper-parameters, we have included all of
them in the configuration files along with source codes.

2052
2053

D.4 ADDITIONAL DISCUSSIONS ON STABILITY

2054
2055
2056
2057
2058

To further evaluate the robustness of the proposed method, we conducted repeated experiments using 5 independent random seeds. The results are illustrated in Figure 7. We note that both our method and the *Reversion* method exhibit low variance and consistently show the narrowest error bands (smallest shaded areas), indicating that they are sufficiently stable. In contrast, the naive *Unconstrained* method suffers from the highest variance.

2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077

2078

Figure 7: Training loss trajectories averaged over 5 independent random seeds. The solid lines represent the mean loss, while the shaded areas indicate the min-max deviation. Our structure-preserving method demonstrates superior stability and consistently lower loss.

2081
2082

E CONCLUSION

2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096

In this work, we consider the zeroth-order optimization problem on Riemannian manifolds when the underlying metric might be **geodesically incomplete**. We propose the structure-preserving metric that is geodesically complete, while preserving the original set of stationary points (Theorem 2.6). Building on this foundation, we intrinsically derive the accuracy upper bound of the classical two-point gradient estimator and reveal the role of manifold curvature (Theorem 2.7). We further propose an unbiased rejection sampling scheme for generating perturbation directions under general Riemannian metrics (Proposition 2.8). Our theoretical analysis establishes convergence guarantees that extend the best-known complexity results beyond the Euclidean setting to a broader class of Riemannian manifolds (Theorem 2.9). Empirical studies, including synthetic experiments and a mesh optimization task, demonstrate that structure-preserving approaches enable stable and effective convergence. These findings extend the theoretical understanding of zeroth-order optimization methods in Riemannian manifolds and provide practical tools for Riemannian black-box optimization.

2097
2098

F LIMITATIONS AND FUTURE WORK

2099
2100
2101
2102
2103
2104
2105

Our work also presents several limitations which potentially point to future research directions. A potential limitation is the rejection sampling’s reliance on the eigen-decomposition of the metric matrix, which presents a significant computational bottleneck when applied to high-dimensional problems. Developing more scalable algorithms (e.g. Randomized SVD or iterative solvers) to efficiently handle high-dimensional manifolds is therefore an important future direction. Additionally, while our theory guarantees the existence of a structure-preserving metric (Theorem 2.6), its practical construction currently relies on a case-by-case design and lacks a general construction. Moreover, our construction is based on the conformal transformation; a valuable direction for future work is to

2106 explore whether a broader class of structure-preserving transformations exists beyond the current
 2107 scaling and to develop more general constructive methods that are better compatible for zeroth-order
 2108 optimization.
 2109

2110 G THE USE OF LARGE LANGUAGE MODELS (LLMs)

2112 In preparing this manuscript, we employed Large Language Models (LLMs) as general-purpose
 2113 assistive tools in the following ways:
 2114

- 2115 • *Literature review support.* We used the Deep Research functionality provided by existing AI
 2116 platforms to help gather references and draft preliminary summaries of related work.
- 2117 • *Language refinement.* We used AI chatbots hosted on multiple platforms to generate the
 2118 abstract and to improve the clarity, style, and readability of the manuscript.
- 2119 • *Proof verification.* We used AI chatbots to check the logical consistency, correctness, and
 2120 completeness of our formal proofs.
- 2121 • *Codes Generation.* We also applied the AI agent to generate a part of experimental codes.
 2122

2123 All LLM-assisted outputs were critically reviewed, verified, and, where necessary, revised by the
 2124 authors. We take full responsibility for the content of this manuscript. LLMs were not involved in
 2125 generating research ideas, drawing scientific conclusions, or contributing original insights.
 2126

2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159

Table 2: A summary of notations in Riemannian manifolds.

Notations	Definition
Smooth Manifold (\mathcal{M})	A d -dimensional second-countable Hausdorff topological space where each point p has a neighborhood U_p diffeomorphic to \mathbb{R}^d .
Deviation (v)	A linear mapping $v : C^\infty(U_p) \rightarrow \mathbb{R}$ satisfying the product rule: $v(fg) = v(f) \cdot g(p) + v(g) \cdot f(p)$.
Tangent Space ($T_p\mathcal{M}$)	The real vector space of all deviations at a point $p \in \mathcal{M}$.
Cotangent Space ($T_p^*\mathcal{M}$)	The dual space of the tangent space $T_p\mathcal{M}$; the space of all linear maps $\psi : T_p\mathcal{M} \rightarrow \mathbb{R}$.
Tangent Bundle ($T\mathcal{M}$)	The disjoint union of all tangent spaces: $T\mathcal{M} := \{(p, v) \mid p \in \mathcal{M}, v \in T_p\mathcal{M}\}$.
Immersion	A smooth map $f : \mathcal{M} \rightarrow \mathbb{R}^n$ whose differential $df _p$ is injective at every $p \in \mathcal{M}$.
Embedding	An immersion that is also a homeomorphism onto its image $f(\mathcal{M})$.
Vector Field (X)	A smooth map (section) $X : \mathcal{M} \rightarrow T\mathcal{M}$ such that $X(p) \in T_p\mathcal{M}$ for all $p \in \mathcal{M}$.
$\mathfrak{X}(\mathcal{M})$	The space of all vector fields on the manifold \mathcal{M} .
Riemannian Metric (g)	A smooth assignment of an inner product $g_p : T_p\mathcal{M} \times T_p\mathcal{M} \rightarrow \mathbb{R}$ to each tangent space $T_p\mathcal{M}$. Also denoted $\langle \cdot, \cdot \rangle_p$.
Riemannian Manifold $((\mathcal{M}, g))$	A smooth manifold \mathcal{M} equipped with a Riemannian metric g .
n -Euclidean Metric	A metric g induced by a smooth embedding $\phi : \mathcal{M} \rightarrow \mathbb{R}^n$ via the pullback $g_p^E(v, u) = \langle d\phi _p(v), d\phi _p(u) \rangle$.
Levi-Civita Connection	The unique affine connection on $\mathfrak{X}(\mathcal{M})$ that is torsion-free and metric-compatible.
Geodesic (γ)	A smooth curve $\gamma : I \rightarrow \mathcal{M}$ whose velocity vector $\gamma'(t)$ satisfies the geodesic equation $\nabla_{\gamma'(t)}\gamma'(t) = 0$.
Exponential Map (\exp_p)	A map $\exp_p : T_p\mathcal{M} \rightarrow \mathcal{M}$ defined by $\exp_p(v) := \gamma(1)$, where γ is the unique geodesic with $\gamma(0) = p$ and $\gamma'(0) = v$.
Retraction (Ret)	A smooth map $\text{Ret} : T\mathcal{M} \rightarrow \mathcal{M}$ satisfying $\text{Ret}_p(0) = p$ and $d\text{Ret}_p _0 = \text{id}_{T_p\mathcal{M}}$. It approximates the exponential map.
Gradient (∇f)	The vector field $\nabla f(p) := (df _p)^\sharp$, where \sharp is the musical isomorphism $T_p^*\mathcal{M} \rightarrow T_p\mathcal{M}$ induced by the metric g .
Riemannian Stochastic Optimization Problem	$\min_{p \in \mathcal{M}} f(p) = \mathbb{E}_{\xi \sim \Xi}[f(p; \xi)]$, where $f(\cdot; \xi) : \mathcal{M} \rightarrow \mathbb{R}$ is a smooth function relying on ξ drawn from the data distribution Ξ .
Symmetric zeroth-order estimator	$\widehat{\nabla} f(p) = \frac{f(\text{Ret}_p(\mu v)) - f(\text{Ret}_p(-\mu v))}{2\mu} v$, where μ is the perturbation stepsize and v is uniformly sampled from the unit ball in $T_p\mathcal{M}$.
SGD update rule	$p_{t+1} = \text{Ret}_{p_t}(\eta \widehat{\nabla} f(p_t; \xi_t))$, where η is the learning rate.