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ABSTRACT

In this paper, we study Riemannian zeroth-order optimization in settings where the
underlying Riemannian metric g is geodesically incomplete, and the goal is to ap-
proximate stationary points with respect to this incomplete metric. To address this
challenge, we construct structure-preserving metrics that are geodesically complete
while ensuring that every stationary point under the new metric remains station-
ary under the original one. Building on this foundation, we revisit the classical
symmetric two-point zeroth-order estimator and analyze its mean-squared error
from a purely intrinsic perspective, depending only on the manifold’s geometry
rather than any ambient embedding. Leveraging this intrinsic analysis, we establish
convergence guarantees for stochastic gradient descent with this intrinsic estimator.
Under additional suitable conditions, an ϵ-stationary point under the constructed
metric g′ also corresponds to an ϵ-stationary point under the original metric g,
thereby matching the best-known complexity in the geodesically complete setting.
Empirical studies on synthetic problems confirm our theoretical findings, and ex-
periments on a practical mesh optimization task demonstrate that our framework
maintains stable convergence even in the absence of geodesic completeness.

1 INTRODUCTION

In this work, we consider the stochastic optimization problem on the smooth manifoldM equipped
with a Riemannian metric g:

min
p∈M

f(p) = Eξ∼Ξ[f(p; ξ)], (1)

where (M, g) forms a d-dimensional Riemannian manifold, the individual loss f(·; ξ) :M→ R is a
smooth function depending on a random data point ξ drawn from a distribution Ξ. The Riemannian
metric g allows us for defining the first-order gradient∇f(p; ξ) in the tangent space at each p ∈M,
leading to the standard first-order Riemannian stochastic gradient method (Ring & Wirth, 2012;
Bonnabel, 2013; Smith, 2014; Sato, 2021).

In many practical scenarios, especially when dealing with non-differentiable modules or black-box
objective functions, the explicit gradient of the objective function is either unavailable or prohibitively
expensive to compute. This practical challenge necessitates the use of zeroth-order optimization
technique to approximate the gradient direction solely using the function evaluation (Nesterov &
Spokoiny, 2017; Li et al., 2023b), given by

∇̂f(p; ξ) =
f(expp(µv); ξ)− f(expp(−µv); ξ)

2µ
v, (2)

where v is a random vector sampled from a distribution over the tangent space TpM, and µ > 0
is the perturbation stepsize. The exponential map expp : B ⊂ TpM→M sends a tangent vector
v ∈ TpM to the manifoldM along the geodesic starting at p, with B denoting an open ball centered
at the origin in TpM. In practice, the exponential map is often replaced by a first-order approximation
known as a retraction (Definition B.3).
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1.1 CHALLENGES IN RIEMANNIAN ZEROTH-ORDER OPTIMIZATION

While existing analyses of Riemannian zeroth-order optimization establish convergence guarantees
under various algorithms and assumptions (Chattopadhyay et al., 2015; Fong & Tiňo, 2019; Wang
et al., 2021a; Wang & Feng, 2022; Maass et al., 2022; Nguyen & Balasubramanian, 2023; Li et al.,
2023b;a; Wang, 2023; He et al., 2024; Wang et al., 2023; Goyens et al., 2024; Zhou et al., 2025;
Ochoa & Poveda, 2025), a fundamental yet often overlooked issue arises from the local nature of the
exponential map (or, more generally, retractions).

In practice, Riemannian zeroth-order methods often endow M with an Euclidean metric gE by
viewing it as a submanifold of an ambient Euclidean space Rn and inheriting the metric from the
embedding. This setting helps simplify numerical computations, but it has a fundamental limitation:
the inherited Euclidean metric gE may not be geodesically complete. Specifically, for a point p ∈M,
the exponential map expp is not necessary globally defined over the entire tangent space TpM.
Consequently, a randomly sampled tangent vector v ∈ TpM may fall outside the domain of expp,
making expp(v) undefined.

Theoretically, one could instead begin with a geodesically complete metric, under which the exponen-
tial map exp : TM→M is globally defined on the full tangent bundle TM. The Nomizu-Ozeki
theorem (Nomizu & Ozeki, 1961; Lee, 2018) guarantees the existence of such a complete metric
on any smooth manifold without boundary. Then by applying the Nash embedding theorem (Nash,
1956), one could, in principle, obtain an equivalent geodesically complete Euclidean metric, allowing
direct application of existing convergence analyses. However, the constructive proof of Nash’s
theorem is numerically nontrivial, making it infeasible for practical optimization algorithms.

This challenge motivates us to consider the following natural question:

Q: How can we perform Riemannian zeroth-order optimization when the canonical
Euclidean metric is geodesically incomplete?

To answer this question, we need to develop a Riemannian zeroth-order optimization algorithm for a
given metric g that may not be geodesically complete, yet remains capable of finding a stationary
point. Our contributions are outlined in the following subsection.

1.2 CONTRIBUTIONS

Contribution 1 (Structure-Preserving Metric Construction): To address the potential geodesic
incompleteness of the given metric g, we construct the structure-preserving metrics g′ (Definition 2.1)
in Theorem 2.2 that: (i) is geodesically complete, (ii) is conformally equivalent to the original metric
g, and (iii) ensures any ϵ-stationary point under g is also an ϵ-stationary point under g′. These
properties allow us to work with the new metric g′ while maintain the desired property as the original
metric g.

However, adopting the structure-preserving metric raises a fundamental challenge: the geometry
induced by g′ generally differs from that of g. In particular, g′ is typically no longer an Euclidean
metric inherited from the original ambient Euclidean space, which precludes the direct use of standard
Riemannian zeroth-order gradient estimators (Li et al., 2023a;b). Overcoming this mismatch between
estimator design and underlying geometry leads to our second contribution.

Contribution 2 (Intrinsic Zeroth-Order Gradient Estimation): Rather than finding a new ambient
Euclidean space for the structure-preserving metric g′, we develop an intrinsic framework for zeroth-
order optimization under non-Euclidean Riemannian metrics that relies solely on the manifold
structure itself, and not on any embedding or representation in a larger ambient space. Under this
intrinsic framework, we further analyze the mean-squared error (MSE) of the classical symmetric
two-point zeroth-order gradient estimator (Equation (2)) under an arbitrary geodesically complete
metric g in Theorem 2.3, revealing the fundamental connection between the approximation error of
gradient estimator and the curvature of the underlying manifold:

Ev∼Unif(Sd−1)

[∥∥∇̂f(p; v)− 1

d
∇f(p)

∥∥2
p

]
≤ 1 + µ2κ2

d

∥∥∇f(p)∥∥2
p
+O(µ2).

where v ∼ Unif(Sd−1) is uniformly drawn from the unit sphere Sd−1 ⊂ TpM induced by g′,
∇̂f(p; v) is the gradient estimator given by Equation (2), and κ is a uniform upper bound on the
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absolute sectional curvature of (M, g′). In the flat case κ = 0, the bound reduces to the classical
approximation error for zeroth-order gradient estimation in Euclidean spaces. Building on this result,
Theorem 2.5 establishes the convergence of SGD under a general Riemannian metric g.

Contribution 3 (Efficient Sampling under General Metrics): Moreover, sampling uniformly from
the unit sphere Sd−1 ⊂ TpM with respect to a general Riemannian metric g is nontrivial. We show
that the commonly used rescaling approach (i.e. drawing a Gaussian vector and normalizing it to
g-unit length) introduces an inherent bias under non-Euclidean metrics. To overcome this issue
and make our intrinsic framework computationally practical, we propose Algorithm 1, an unbiased
sampling procedure for generating g-unit-length tangent vectors. In Proposition 2.4, we prove that
the output distribution of our method is exactly uniform over Sd−1.

Contribution 4 (Empirical Validation): Lastly, to validate our theoretical results and demonstrate
the empirical effectiveness of the proposed framework, we conduct extensive experiments on both
synthetic and the practical experiments. Synthetic experiments examine: (i) the impact of sampling
bias arising from rescaling sampling, and (ii) the influence of geometric curvature on estimation
accuracy. In the mesh optimization task, our method further shows practical effectiveness in scenarios
where geodesic completeness is absent.

2 MAIN RESULTS

In this section, we present main results of this paper: (i) We propose the concept of structure-
preserving metric (Definition 2.1) and provide its construction based on an arbitrary given metric g
(Theorem 2.2). (ii) Then we derive the approximation error upper bound of the two-point zeroth-order
gradient estimator intrinsically; that is, it does not rely on how the manifold is embedded into the
ambient space (Theorem 2.3). (iii) To numerically obtain the gradient estimator under a general
Riemannian metric g, we adopt the rejection sampling algorithm (Algorithm 1) to sample from the
g-unit sphere. Later, Proposition 2.4 guarantees that the sampled vector satisfies the desired property.
(iv) In Theorem 2.5, we establishes the convergence of SGD under a general Riemannian metric g.

2.1 STRUCTURE-PRESERVING METRIC

We begin with the definition of a structure-preserving metric associated with a given metric g. Since
the exponential map of an arbitrary Riemannian metric g is not necessarily globally defined on
the entire tangent bundle TM (Proposition B.2), we seek an alternative metric g′ that is geodesi-
cally complete while preserving the essential geometric behavior of the original metric g′. This
consideration motivates the following definition:
Definition 2.1. Let (M, g) be a Riemannian manifold. A Riemannian metric g′ is called structure-
preserving with respect to g if it satisfies:

(a) (Geodesic completeness) There exists ρ > 0 such that for any p ∈M, the domain of the
exponential map expp : TpM→M contains the ball Bp(ρ) := {v ∈ TpM : ∥v∥g ≤ ρ}.

(b) (Conformal equivalence) There exists a positive smooth function h :M→ R such that
g′p(v, w) = h(p)gp(v, w) for all p ∈M and all v, w ∈ TpM.

(c) (ϵ-stationarity preservation) For any smooth function f : M → R and ϵ > 0, every
ϵ-stationary point of f under g is also an ϵ-stationary point of f under g′.

Here, we include a brief discussion on the motivation for introducing each condition.

• The first condition (geodesic completeness) ensures that if we set the perturbation stepsize µ < ρ
and fix the random vector v on the g-unit sphere Sd−1 ⊂ TpM, the perturbed point µv ∈ TpM
will always be within the domain of the exponential map.

• The conformal equivalence condition preserves the set of stationary points; that is, for any smooth
function f :M→ R, if p is a stationary point under g, then it is also a stationary point under g′,
and vice versa.

• The ϵ-stationarity preservation condition gives rise to the name “stationary-preserving metric”. It
states that any ϵ-stationary point under g remains an ϵ-stationary point under g′, ensuring that the
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transformation leaves the original set of ϵ-stationary points unchanged. We emphasize, however,
that the converse need not hold: an ϵ-stationary point under g′ is generally not an ϵ-stationary
point under g. Nevertheless, under suitable conditions, this asymmetry does not affect the overall
complexity guarantees as we will discuss it in Corollary 2.6.

In the following theorem, we demonstrate that given a metric g, it is always possible to construct a
metric g′ which is structure-preserving with respect to g.

Theorem 2.2. LetM be a smooth manifold (possibly non-compact), and let g be any Riemannian
metric onM. Then there exists a Riemannian metric g′ onM which is structure-preserving with
respect to g.

Proof. The proof follows the classical construction presented by Nomizu & Ozeki (1961) with
modifying the conformal coefficient h : M → (0,+∞) to ensure the ϵ-stationarity preservation
condition presented in Definition 2.1. The full proof is provided in Appendix C.3.

As illustrated in Figure 1b, the metrics constructed in this theorem ensure that geodesics remain
within the manifold for all directions and lengths, eliminating concerns that random perturbations in
zeroth-order gradient estimation could map outside the domain of the exponential map. Moreover,
the conformal equivalence condition given by Definition 2.1 preserves the set of stationary points;
therefore, in Riemannian zeroth-order optimization, it suffices to work with the new metric g′.

(a) Euclidean Metric (b) Structure Preserving Metrics

Figure 1: Geodesic contours centered at p = (0.2, 0.2, 0.6) under the Euclidean metric (Figure 1a)
and three structure-preserving metrics (Figure 1b). Radii range from 0.1 to 0.9 in steps of 0.15. Under
each structure-preserving metric, geodesics from p never exit the probability simplex, regardless of
direction or length.

Challenges Arising from the Structure-Preserving Metric Although Theorem 2.2 ensures that
the constructed metric g′ satisfies the desired properties, existing results in Riemannian zeroth-order
optimization cannot be applied directly to establish convergence guarantees under g′. This limitation
arises because much of the current literature assumes a Euclidean setting, whereM is embedded in a
Euclidean space and the gradient estimation is determined by that embedding. In contrast, the new
metric g′ is generally non-Euclidean with respect to the original ambient Euclidean space of g. To
address this obstacle, we are motivated to develop an intrinsic zeroth-order optimization framework
that operates solely on the manifold’s geometry, without requiringM to be viewed as a subset of any
Euclidean space.

2.2 INTRINSIC ZEROTH-ORDER GRADIENT ESTIMATION UNDER NON-EUCLIDEAN METRIC

In this section, we introduce the intrinsic approach to estimate the gradient of the function f :M→ R
without relying on the ambient space. We take g as a geodesically complete metric and consider the
classical symmetric estimator

∇̂f(p) =
f(expp(µv))− f(expp(−µv))

2µ
v, (3)

where expp : TpM→M is the exponential map. As noted by Bonnabel (2013), it is common to
replace the exponential map with the retraction (Definition B.3).
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(a) Rescaling Sampling (b) Rejection Sampling (Algorithm 1)

Figure 2: Illustration of sampling on the unit sphere induced by the non-Euclidean Riemannian metric
g. The naïve rescaling sampler (Left Panel) produces a visibly non-uniform distribution, leading to a
biased estimator. Our rejection sampler (Right Panel) presented in Algorithm 1 eliminates the bias
and yields an even, truly uniform distribution.

The following theorem characterizes the mean-squared error (MSE) of this zeroth-order gradient
estimator, establishing a connection between its approximation error and the intrinsic geometric
properties of the underlying Riemannian manifold. The result is derived under the assumptions
of bounded third- and fourth-order derivatives (Assumption C.3) and globally bounded sectional
curvature (Assumption C.4). The full upper bound and the proof is deferred to Appendix C.4.
Theorem 2.3. Let (M, g) be a complete d-dimensional Riemannian manifold and p ∈ M. Let
f :M→ R be a smooth function and suppose that Assumptions C.3 and C.4 hold. Fix a perturbation
stepsize µ > 0 satisfying µ2 ≤ min{ 1

d−1 ,
1
2 + 6

d + 8
d}, and for any unit vector v ∈ TpM define the

symmetric zeroth-order estimator as in Equation (3). Then, for v ∼ Unif(Sd−1) uniformly sampled
from the gp-unit sphere in TpM,

Ev∼Unif(Sd−1)

[∥∥∇̂f(p; v)− 1

d
∇f(p)

∥∥2
p

]
≤ 1 + µ2κ2

d

∥∥∇f(p)∥∥2
p
+O(µ2).

The bound in Theorem 2.3 reveals how the estimation error connects the intrinsic geometry of the
manifold. In particular, the sectional curvature term κ quantifies the influence of local geometry on
the estimator’s variance. When κ = 0, the curvature contribution disappears, and the bound reduces
to the standard Euclidean variance expression.

2.3 SAMPLING FROM THE NON-EUCLIDEAN UNIT SPHERE

As the Riemannian metric g defines a bilinear form on the tangent space TpM, uniformly sampling
the g-unit sphere B := {v ∈ TpM : gp(v, v) = 1} is equivalent to uniformly sample from the
following compact set C := {v ∈ Rd : v⊤Av = 1} for some positive definite matrix A ∈ Rd×d. The
matrix A ≻ 0 is determined by the Riemannian metric g the choice of local coordinates; in practice,
we commonly use the local coordinate spanned by the basis { ∂

∂xi|p}. In this basis, the entries of A
are given by Aij := gp(

∂
∂xi ,

∂
∂xj ).

Challenges in Sampling from the g-Unit Sphere In Euclidean space, sampling from the unit
sphere is relatively straightforward: one can sample from the standard Gaussian distribution and
rescale the vector to have unit length. However, this method does not extend to the g-unit sphere. As
illustrated in Figure 2, rescaling-based sampling results in points being predominantly concentrated
along the minor axes. To achieve a truly uniform distribution over the g-unit sphere, we adopt
the rejection sampling method and design an algorithm that generates random vectors uniformly
distributed over the compact set C, as detailed in Algorithm 1.

The following proposition confirms that our sampling strategy yields the desired properties; that is,
the resulting output v exactly follows the uniform distribution over the unit sphere determined by the
Riemannian metric g. The detailed proof is deferred to Appendix C.5.
Proposition 2.4. Let the vector v be generated by Algorithm 1. Then it follows the uniform distribution
over the compact set C := {v ∈ Rd : v⊤Av = 1}.

5
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Algorithm 1: Uniform Sampling on Ellipsoid C = {x ∈ Rd | x⊤Ax = 1}
Input: A positive definite matrix A ∈ Rd×d

Output: v ∈ Rd

1 Q,Λ← eig(A) // Eigenvalue Decomposition: A = QΛQ⊤, Λ = diag(λ1, . . . , λd)

2 L← QΛ−1/2, λmax = max{diag(Λ)}
3 while True do
4 Draw z ∼ N (0, Id); set s← z/∥z∥; v ← Ls // proposal point on C
5 Draw u ∼ U(0, 1)
6 if u <

√
v⊤A2v/λmax then

7 return v

2.4 CONVERGENCE OF ZEROTH-ORDER SGD UNDER NON-EUCLIDEAN METRIC

In the previous section, we have shown that the accuracy of Riemannian zeroth-order gradient
estimator is improved as the underlying geometric structure selected to be flatter. However, there
is no free lunch in simply flattening the manifold. As we have commented in Definition 2.1, the
ϵ-stationary point under the new metric g′ may not be the ϵ-stationary point under the original metric
g; so one must balance estimator accuracy with optimization dynamics.

To solve the optimization problem in Equation (1), we employ the SGD algorithm. Starting from an
initial parameter p1, the updates are given by

pt+1 = Retpt

(
η ∇̂f(pt; ξt)

)
, (4)

for t = 1, 2, . . . , T − 1, where Ret : TM → M is the retraction (Definition B.3), η ∈ R is the
learning rate, {ξt}Tt=1 is the stochastic data sample accessed at the t-th update, and ∇̂f(pt; ξt) is the
Riemannian zeroth-order gradient estimation of f(·; ξt) at the point pt defined as

∇̂f(p) = f(Retp(µv))− f(Retp(−µv))
2µ

v, (5)

Now we build the convergence analysis of Riemannian SGD algorithm. We write a ≲ b if there exists
a constant C > 0 such that a ≤ C b. The constant C may depend only on fixed problem parameters.
Besides the boundedness assumption made in Theorem 2.3, we additionally require the L-smoothness
(Assumption C.1) and the regularization condition on the retraction (Assumption C.2).
Theorem 2.5. Let (M, g) be a geodesically complete d-dimensional Riemannian manifold. Let
f :M→ R be a smooth function and suppose that Assumptions C.1 to C.4 hold. Let {pt}Tt=1 be the

SGD dynamic solving Equation (1) generated by the update rule Equation (4) with requiring η ≲
√

d
T

and µ2 ≲
√

d
T (explicitly specified in Equation (21)), then there exists constants C1,C2,C3 > 0 such

that

min
1≤t≤T

∥∇f(pt)∥2pt
≤ C1

d

ηT
+ C2 η + C3 d

2µ2.

In particular, choosing µ ≲ 1
d2

√
d
T yields min1≤t≤T ∥∇f(pt)∥2pt

≲
√

d
T .

Proof. The proof directly follows the standard convergence analysis of SGD in Euclidean space
(Mishchenko et al., 2020). We may further relax theL-smoothness assumption to the expected smooth-
ness condition proposed by (Khaled & Richtárik, 2022). The zeroth-order gradient approximation
error term is bounded using Theorem 2.3. See Appendix C.6 for the full proof.

Importantly, the upper bound in Theorem 2.5 is not our final goal. We typically begin with a
canonical Euclidean metric gE , which may fail to be geodesically complete. To overcome this issue,
we construct a new metric g := hgE via Theorem 2.2 and then apply the convergence analysis under
this new metric g (using Theorem 2.3 and Theorem 2.5). However, an ϵ-stationary point delivered by
SGD under g often is not an ϵ-stationary point under gE , unless the additional condition stated in the
following corollary is imposed:

6
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Corollary 2.6. Let gE be the Euclidean metric, and let g be a structure-preserving metric with
respect to gE . Under the same assumptions as Theorem 2.5, suppose that either of the following
conditions holds:

(a) gE is geodesically complete; or

(b) the set of ϵ-stationary points under gE , K := { p ∈M : ∥∇gEf(p)∥p,gE ≤ ϵ }, is compact.

Then it requires at most T ≤ O
(

d
ϵ4

)
iterations to achieve min1≤t≤T E

[
∥∇f(pt)∥2pt,gE

]
≤ ϵ2.

Proof. Under either condition, the conformal coefficient h constructed in Theorem 2.2 admits a
uniform upper bound. Consequently, an ϵ-stationary point with respect to the new metric g := hgE is
also an ϵ-stationary point with respect to the original metric gE , up to a constant scaling factor. This
structure allows the complexity bound established in Theorem 2.5 to transfer directly to the metric
gE . See Appendix C.7 for the full proof.

Item (a) corresponds to the classical setting in which the original metric is geodesically complete.
Item (b), on the other hand, specifies conditions under which an ϵ-stationary point under the new
metric is also an ϵ-stationary point under the original metric. We emphasize that Theorem 2.5
establishes convergence even in more general scenarios, though with potentially worse complexity
bounds than in the geodesically complete case. This phenomenon highlights a key distinction between
the framework studied in our work and the traditional geodesically complete setting. Building on this
result, we extend the best-known complexity bound for Riemannian zeroth-order SGD on smooth
objectives from the special case of manifolds equipped with a Euclidean metric to a much broader
class of manifolds endowed with general Riemannian metrics.

3 EXPERIMENTS

In the experimental section, we aim to validate the theoretical findings presented in Section 2. The
two synthetic experiments are designed to investigate the following questions:

(i) How does sampling bias influence the convergence behavior of Riemannian zeroth-order SGD?
(ii) How does the curvature of the underlying manifold affect the accuracy of gradient estimation?

In addition, we conduct a real-world experiment on mesh optimization (Hoppe et al., 1993; Belbute-
Peres et al., 2020; Ma et al., 2025), a practical application in which the positions of nodes are naturally
represented as points on the probability simplex. All source codes are attached to the supplementary.

3.1 SYNTHETIC EXPERIMENT: IMPACT OF SAMPLING BIAS

In this experiment, we investigate the impact of sampling bias in zeroth-order Riemannian optimiza-
tion. Specifically, we consider two objective functions defined on the Euclidean space Rd, equipped
with a non-Euclidean Riemannian metric given by g(u, v) := u⊤Av:

fquadratic(x) =
1

2
Eξ x

⊤(B + ξ
)
x, flogistic(x) = E(ζ,y) log(1 + exp(−y ζ⊤x)) + λ

2
x⊤Bx,

where each entry of ξ is independently drawn from N (0, 1), and (ζ, y) is sampled from a fixed
categorical data distribution. The matrix B ∈ Rd×d is a pre-generated positive definite matrix. We
compare two sampling strategies for Riemannian gradient estimation in the zeroth-order setting: (i)
Rejection sampling (Algorithm 1), which produces uniform samples from the Riemannian unit sphere
and is unbiased as shown in Proposition 2.4. (ii) Rescaling sampling, which samples a Gaussian
vector then normalizes it to the unit sphere with respect to the Riemannian metric gA.

Experimental Implications For each configuration, we report the average objective value over
16 independent runs using the same hyperparameter settings for the SGD optimizer. As shown
in Figure 3, the rejection sampling method (Algorithm 1) consistently outperforms the traditional
rescaling approach; the rescaling method even leads to divergence for the logistic loss objective (right
panel of Figure 3). These results highlight the importance of using Algorithm 1 to ensure an unbiased

7
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uniform distribution over the Riemannian g-unit sphere, which is critical for stable and effective
training. The complete experimental details are included in Appendix D.1.

Figure 3: The impact of sampling bias on the
convergence of Riemannian zeroth-order SGD.

Figure 4: The impact of sectional curvatures on
the gradient estimation accuracy.

3.2 SYNTHETIC EXPERIMENT: IMPACT OF SECTIONAL CURVATURE

In this experiment, we investigate the impact of sectional curvature on the accuracy of zeroth-order
gradient estimation. Specifically, we evaluate gradient estimation errors at a fixed point p0 under four
conformally equivalent Riemannian metrics with different curvatures. We consider two objective
functions commonly used in the optimization problem on probability simplex:

fKL(p) = KL(p∥q) =
∑
i

pi log (dpi) , fEuclidean(p) =
1

2
∥p− q∥2 =

1

2

d∑
i=1

(pi −
1

d
)2

where q = 1
d1d denotes the centroid of the simplex. We measure the accuracy of gradient estimation

using the mean-squared error (MSE) under its own Riemannian metric, computed over 50,000
independent trials of zeroth-order gradient estimation (Equation (3)). The complete experimental
details are included in Appendix D.2.

Experimental Implications As depicted in Figure 4, the Riemannian MSE of zeroth-order gradient
estimation decreases as the sectional curvature K(p0) decreases. This empirical finding aligns our
theoretical upper bound presented in Theorem 2.3, illustrating a clear connection between gradient
estimation accuracy and the intrinsic geometric properties of the underlying manifold. In particular,
higher curvature consistently results in larger estimation errors for both objective functions.

3.3 GRADIENT-BASED MESH OPTIMIZATION

In modern physical simulation, solving PDEs often relies on finite-volume methods with spatial
discretizations and external solvers that lack automatic differentiation support (Belbute-Peres et al.,
2020; Ma et al., 2025), making the zeroth-order approach an ideal tool for optimizing mesh positions.

Task Description In this experiment, we consider the gradient-based mesh optimization problem
for solving the Helmholtz equation (Goodman, 2017; Engquist & Zhao, 2018),

∇2f = −k2f,
where ∇2 denotes the Laplace operator, k = 10 is the wave number, and f is the eigenfunction.
The ground-truth solution is computed on a fine mesh with resolution 200 × 200. Our goal is to
optimize the node positions of a regular coarse mesh with resolution 20× 20 so that its performance
approximates that of the ground-truth solution.

The mesh node (in our setting, boundary nodes are fixed and excluded from optimization) is rep-
resented using a simplex formulation: each trainable node p = (x, y) is expressed as a convex
combination of its six neighbors under the regular triangular initialization. This parameterization natu-
rally leads to a manifold optimization problem. However, the coordinate simplex, under its canonical
embedding, is geodesically incomplete. To ensure the exponential map remains well-defined and
to prevent perturbed nodes from crossing mesh edges, we adopt our proposed structure-preserving
approach and compare it against several natural baselines, as illustrated in Figure 5.
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Unconstrained (a) Soft Projection (b) Reversion (c) Structure-Preserving

Figure 5: The leftmost panel illustrates an invalid optimization step on a mesh node; it crosses the
edge, causing potential error in the external PDE solver. Figure (a) illustrates the Soft Projection
approach, which resolves the issue by repeatedly reducing the perturbation stepsize µ along the
perturbation direction v until the movement becomes valid. Figure (b) shows the Reversion approach,
which instead handles invalid steps by reverting to the original position. Figure (c) takes the advantage
of the structure-preserving metric, which twists the underlying Riemannian structure ensuring that
the perturbation won’t move the point out of the domain.

Figure 6: The left panel shows the ground-truth prediction (background), the initial mesh (blue), and
the optimized mesh (red) using our proposed method. The nodes adaptively concentrate around the
critical region while preserving the overall mesh structure. The right panel presents the loss curves
for different approaches. Our method achieves both stable and efficient convergence.

Results Figure 6 presents the loss curves of the up-sampled prediction over 20,000 optimization
steps. The unconstrained method often violates mesh validity, leading to unstable fluctuations,
most notably around the 16,000th step. The reversion prevents invalid updates but quickly stalls
after 8,000 steps; similarly, the soft projection stabilizes training but progresses slowly, showing
little improvement beyond 14,000 steps. In contrast, our structure-preserving approach consistently
reduces the error throughout training, achieving the lowest final MSE without instability. These
findings highlight that structure-preserving approaches not only maintain feasibility but also enable
effective convergence.

4 CONCLUSION

In this work, we consider the zeroth-order optimization problem on Riemannian manifolds when the
underlying metric might be geodesically incomplete. We propose the structure-preserving metric
that is geodesically complete, while preserving the original set of stationary points (Theorem 2.2).
Building on this foundation, we intrinsically derive the accuracy upper bound of the classical two-point
gradient estimator and reveal the role of manifold curvature (Theorem 2.3). We further propose an
unbiased rejection sampling scheme for generating perturbation directions under general Riemannian
metrics (Proposition 2.4). Our theoretical analysis establishes convergence guarantees that extend
the best-known complexity results beyond the Euclidean setting to a broader class of Riemannian
manifolds (Theorem 2.5). Empirical studies, including synthetic experiments and a mesh optimization
task, demonstrate that structure-preserving approaches enable stable and effective convergence. These
findings extend the theoretical understanding of zeroth-order optimization methods in Riemannian
manifolds and provide practical tools for Riemannian black-box optimization.
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A RELATED LITERATURE

A.1 OPTIMIZATION ON RIEMANNIAN MANIFOLDS

First-Order Methods Riemannian first-order optimization adapts gradient-based methods to
Riemannian manifolds. For geodesically convex functions, Riemannian gradient descent enjoys
convergence guarantees akin to Euclidean GD, with complexity O(L/ϵ) for L-smooth objectives.
Zhang & Sra (2016) established global complexity bounds on Hadamard manifolds with curvature-
dependent rates. Stochastic Riemannian gradient descent converges almost surely under standard
assumptions (Bonnabel, 2013), while variance-reduced variants such as R-SVRG (Zhang et al., 2016)
and R-SRG/SPIDER improve convergence for finite-sum problems. Adapting acceleration (Nesterov,
2013a; 1983; 2013b) to manifolds proved challenging due to the absence of global linearity. Early
methods (Liu et al., 2017) were shown computationally impractical; Zhang & Sra (2018) and Ahn &
Sra (2020) addressed this issue by controlling metric distortion, achieving accelerated rates under
bounded curvature. Alimisis et al. (2021) proposed momentum-based RAGDsDR, while Kim &
Yang (2022) achieved optimal accelerated rates with RNAG, matching the O(

√
L/ϵ) Euclidean

complexity. There are still some fundamental limits remained: Hamilton & Moitra (2021) and
Criscitiello & Boumal (2022) showed that curvature may prevent acceleration entirely on negatively
curved manifolds. These negative impacts would be eliminated using the second-order methods.

Second-Order Methods Riemannian second-order methods utilize curvature via Hessians and
connections. Newton-type methods achieve quadratic local convergence using the Riemannian
Hessian (Absil et al., 2008), though global convergence requires safeguards like line search or trust-
region strategies. Trust-region methods (Absil et al., 2007) solve quadratic models in the tangent
space and retract back, ensuring convergence to second-order points. Recent improvements analyze
their behavior near strict saddles (Goyens & Royer, 2024). Alternatively, Riemannian ARC (Agarwal
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et al., 2021) uses cubic regularization to achieve optimal O(ϵ−3/2) complexity. Quasi-Newton
methods generalize BFGS to manifolds via vector transports. Ring & Wirth (2012) initiated this line,
and Huang et al. (2018) showed global convergence (and superlinear rates) under mild assumptions.
Limited-memory variants (R-LBFGS) scale better to large problems. Overall, second-order methods
offer faster local convergence but require careful geometric handling of Hessians and transports.

Zeroth-Order Methods When gradients are unavailable, zeroth-order methods estimate descent
directions via sampling. Li et al. (2023b;a) applied Gaussian smoothing in tangent spaces using
exponential maps to construct unbiased gradient estimators with variance bounds that depend on
curvature and dimension. A stochastic zeroth-order Riemannian gradient descent achieves O(n/ϵ2)
convergence for smooth nonconvex functions. Wang et al. (2023) proposed two-point bandit methods
(R-2-BAN) for online geodesically convex optimization, showing regret bounds matching Euclidean
rates up to curvature factors. Other derivative-free approaches include retraction-based direct search
methods, as in Kungurtsev et al. (2023), with convergence guarantees for smooth and nonsmooth
objectives. Yao et al. (2021) developed a Polak–Ribiére–Polyak conjugate gradient method using
only function values and nonmonotone line search, achieving global convergence and hybridizing
with Newton steps for improved performance.

Hybrid and Other Emerging Directions Several novel methods extend optimization frameworks
to the Riemannian setting. Adaptive methods such as Riemannian Adagrad and Adam (Bécigneul
& Ganea, 2019) address the challenge of accumulating gradients across varying tangent spaces
by working on product manifolds, yielding convergence results for geodesically convex problems.
Riemannian conjugate gradient (CG) methods, which define conjugacy across tangent spaces via
vector transport, have been shown to converge globally under standard line-search assumptions (Sato
& Iwai, 2013; Sato, 2022; Kim & Yang, 2022). Projection-free methods like Riemannian Frank-Wolfe
avoid expensive retractions by solving a linear oracle at each step. Weber & Sra (2023) showed
that Riemannian Frank-Wolfe method converges sublinearly in general and linearly under geodesic
strong convexity. For composite objectives with nonsmooth regularizers, Riemannian proximal
gradient methods offer convergence guarantees; Huang & Wei (2022) proved an O(1/k) rate under
retraction-based convexity. Finally, primal-dual interior-point methods have also been adapted: Lai &
Yoshise (2024) introduced a Riemannian interior-point algorithm with local superlinear convergence
and global guarantees, mirroring the classical barrier method behavior in curved spaces.

A.2 RIEMANNIAN ZEROTH-ORDER GRADIENT ESTIMATORS

In this section, we discuss several widely used gradient estimators in Riemannian optimization and
highlight their connections to our work. Importantly, all of these estimators are developed under the
assumption of a complete Riemannian manifold. In contrast, our setting differs from this convention
by considering optimization over possibly geodesically incomplete Riemannian manifolds.

Wang et al. (2021b) This paper extends the one-point bandit estimator to homogeneous Hadamard
manifolds. At the point x ∈M and given y uniformly sampled from the geodesic sphere centered at
x with the radius δ, by using the gradient estimator

∇̂f(x) := f(y)
exp−1

x (y)

∥ exp−1
x (y)∥

,

this work established the best-possible regret rate O(T 3/4) for g-convex losses in the online regret
optimization problem.

Wang et al. (2023) This journal version further develops a two-point bandit estimator on symmetric
Hadamard manifolds. Uniformly draw y from the geodesic sphere centered at x with the radius δ and
defined −y as the antipodal point of y. The gradient estimator is given by

∇̂f(x) := f(y)− f(−y)
2

exp−1
x (y)

∥ exp−1
x (y)∥

.

The regret improves to O(
√
T ) for g-convex and O(log T ) for strongly g-convex losses.
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Li et al. (2023b) & Maass et al. (2022) These papers introduce a non-symmetric two-point
Riemannian zeroth-order oracle for the online setting (Maass et al., 2022) and the expected loss
setting (Li et al., 2023b). With a tangent perturbation v ∈ TxM (obtained by projecting an ambient
Gaussian onto TxM), the gradient estimator is

∇̂f(x) := f ◦ expx(µv)− f(x)
µ

v.

Here we have adjusted the estimator from Maass et al. (2022) to the time-invariant expected objective
function setting to align with our problem setup. This estimator is the direct generalization of the
one-side Gaussian smoothing estimator widely used in Euclidean zeroth-order optimization.

He et al. (2024) This work extends coordinate-wise finite differences to manifolds. Using an
orthonormal basis {ei} of TxM„ the deterministic coordinate-wise zeroth-order estimator is

∇̂f(x) :=
d∑

i=1

f ◦ expx(µei)− f ◦ expx(−µei)
2µ

ei.

In summary, compared to approaches that rely on projecting from the ambient Euclidean space,
our analysis is purely intrinsic, that is, the gradient estimator depends only on the Riemannian
structure and is independent of any particular embedding. In contrast to prior intrinsic estimators,
which primarily focus on geodesically convex problems, our work addresses the non-convex setting.
As a result, our contributions extend the scope of existing research on Riemannian zeroth-order
optimization.

B PRELIMINARIES

In this section, we review some basic definitions and results from Riemannian geometry that are used
in our analysis. For a full review, we refer the reader to some classical textbook (Lee, 2003; 2018).

Smooth Manifolds A d-dimensional smooth manifoldM is a second-countable Hausdorff topo-
logical space such that at any point p ∈M, there exists Up ⊂M, a neighborhood of p, such that Up

is diffeomorphism to the Euclidean space Rd. Let C∞(U) be all smooth functions over U ⊂M. A
deviation at p ∈M is a linear mapping v : C∞(Up)→ R satisfying

v(fg) = v(f) · g(p) + v(g) · f(p)

for all f, g ∈ C∞(Up). Then the tangent space at p, denoted by TpM, is the real vector space of all
deviation at p. The tangent bundle is the disjoint union of all tangent spaces

TM := {(p, v) | p ∈M, v ∈ TpM}.

A smooth map f :M→ Rn is called an immersion if its differential df |p: TpM→ Tf(p)Rn, defined
by df |p (v) := v(f) for each v ∈ TpM, is an injective function at every p ∈ M; it is called an
embedding if it is an immersion and is also homeomorphic onto its image f(M) := {f(p) | p ∈M}.

Riemannian Manifolds A d-dimensional Riemannian manifold (M, g) is a d-dimensional smooth
manifold equipped with a Riemannian metric g, which assigns to each point p ∈M an inner product

gp : TpM× TpM→ R,

where TpM denotes the tangent space at p ∈ M. We also write ⟨·, ·⟩p to represent gp and ∥ · ∥p
for the norm it induces. Let ϕ :M → Rn be an embedding from the smooth manifoldM to the
Euclidean space Rn. ThenM inherits a Riemannian metric from the ambient Euclidean structure via
the pullback metric

gEp (v, u) := ⟨dϕ|p(v), dϕ|p(u)⟩ = ⟨ϕ(v), ϕ(u)⟩,
where ⟨·, ·⟩ denotes the Euclidean inner product on Rn. In this case, we say the metric gE is induced
by the embedding ϕ, and refer to Rn as the ambient Euclidean space. To distinguish between
Riemannian metrics that may be induced by embeddings into different ambient spaces, we introduce
the following definition:
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Definition B.1 (n-Euclidean metric). A Riemannian metric g is called n-Euclidean if there exists a
smooth embedding ϕ :M→ Rn such that g is induced by ϕ.

Notably, given an arbitrary d-dimensional Riemannian manifold (M, g), the Nash embedding
theorem (Nash, 1956; Lee, 2018) states that there always exists n ∈ N such that the Riemannian
metric g is n-Euclidean. However, if we consider a different Riemannian metric g′ on the same
manifoldM, there is no guarantee that g′ can also be realized as an n-Euclidean metric for the same
n. This observation motivates us to develop an intrinsic analysis framework that does not depend on
any specific embedding.

Geodesic A vector field onM is a smooth section X :M→ TM of the canonical tangent-bundle
projection π : TM→M; equivalently, it is a smooth map satisfying π ◦X = idM. Let X(M) be
the space of all vector fields on a Riemannian manifold (M, g). The Levi-Civita connection is the
unique affine connection

∇ : X(M)× X(M)→ X(M), (X,Y ) 7→ ∇XY,

satisfying torsion-free and metric-compatible1. Let I ⊂ R be an open interval containing 0. A smooth
curve γ : I → M is called a geodesic over I if its velocity vector γ′(t) := dγ |t ( ∂

∂t ) ∈ Tγ(t)M
satisfies the geodesic equation2:

∇γ′(t)γ
′(t) = 0

for all t ∈ I . Given a point p ∈ M and an initial velocity v ∈ TpM, there always exists a unique
geodesic γ such that γ(0) = p and γ′(0) = v (Theorem 4.10, Lee (2018)). The exponential map
at p, denoted expp : TpM → M, is defined by expp(v) := γ(1). Importantly, the existence of
geodesic does not guarantee that γ can be defined over an open interval containing [0, 1]; that is, the
exponential map can be undefined for some (p, v) ∈ TM. We summarize this observation in the
following proposition:

Proposition B.2 (Proposition 5.7, Lee (2018)). The exponential map expp : TpM→M is locally
defined on an open neighbor of 0 ∈ TpM.

Remark. This proposition reveals a fundamental difference between Riemannian and Euclidean
zeroth-order optimization: in the Riemannian setting, one cannot simply apply a small perturbation
in the direction v at the point p ∈ M, since the exponential map expp(µv) may be undefined.
Developing a zeroth-order gradient estimator that operates within this local geometric structure is
one of the central goals of our work.

Computing expp(v) involves solving a differentiable equation, which is often costly or intractable;
hence, existing Riemannian optimization literature typically uses the first-order approximation called
the retraction to approximate the exponential map.

Definition B.3 (Retraction). A retraction on a manifoldM is a smooth map Ret : TM→M such
that for all p ∈M:

1. Retp(0) = p, where 0 ∈ TpM is the zero vector;

2. The differential dRetp|0 : TpM→ TpM satisfies dRetp|0 = idTpM.

Here, Retp : TpM → M denotes the restriction of R to the tangent space at p. Intuitively, a
retraction approximates expp(v) by preserving the first-order geometry of geodesics while being
easier to compute.

The following lemma further characterizes the relation between the exponential map and the retraction.
We present it here without providing the proof.

Lemma B.4 (Theorem 2, Bonnabel (2013)). Let (M, g) be a smooth Riemannian manifold.

1We call an affine connection torsion-free if ∇XY − ∇Y X = [X,Y ], where the Lie bracket [X,Y ] is
defined by [X,Y ](f) = X(Y (f))−Y (X(f)) for any f ∈ C∞(M)), and metric-compatible if X

(
g(Y,Z)

)
=

g(∇XY,Z) + g(Y,∇XZ) for all X,Y, Z.
2More explicitly, we choose an extension vector field X̃ ∈ X satisfying X̃(γ(t)) = γ′(t) for all t ∈ I . Then

we define ∇γ′(t)γ
′(t) := ∇X̃X̃ |γ(t). Here we directly use ∇γ′(t)γ

′(t) for our convenience, as this definition
does not rely on the choice of extension (see Lemma 4.9, Lee (2018)).
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(i) The exponential map exp : TM→M is a retraction.

(ii) For every p ∈M, the geodesic distance d(·, ·) :M×M→ [0,+∞) between expp(v) and
Retp(v) is upper bounded as

d
(
expp(v),Retp(v)

)
≤ C∥v∥2p

for any v and any retraction Ret.

Gradient Let the cotangent space T ∗
pM be the dual space of TpM; that is, the space of all linear

mappings ψ : TxM→ R. There is a natural isomorphism between TpM and T ∗
pM induced by the

Riemannian metric g:

♭p : TpM→ T ∗
pM, v 7→ gp(v, ·);

♯p : T ∗
pM→ TpM, ω 7→ ω♯ satisfying gp(ω

♯, v) = ω(v),

for all v ∈ TpM. Let f :M→ R be a smooth real-value function. The differential of f at p ∈M,
given by df |p(v) := vf , naturally defines a covector in the cotangent space; that is, df |p ∈ T ∗

pM.
The gradient of f , denoted by ∇f ∈ X(M), is a vector field given by

p 7→ ∇f(p) :=
(
df |p

)♯
.

In this paper, we investigate the approach of estimating∇f(p) given only the access to the function
evaluation. There have been a rich literature in this direction and we summarize them in Appendix A,
while our approach is purely intrinsic, which makes our result different from existing literature.

C MAIN RESULTS

C.1 ASSUMPTIONS

The following assumption is standard in stochastic optimization literature (Mishchenko et al., 2020;
Khaled & Richtárik, 2022). In the context of Riemannian optimization, it is often coupled with
Assumption C.2 to define the L-smoothness of the pullback function (Bonnabel, 2013; Li et al.,
2023b; He et al., 2024). In contrast, we decouple these two assumptions to make their respective
roles and dependencies more transparent.
Assumption C.1. In the optimization problem given by Equation (1), the individual loss function

f(·; ξ) :M→ R

satisfies the following two properties:

(a) L-Bounded Hessian; for all p ∈M,

(b) Lower boundedness; the infimum f∗ξ := exists almost surely with ξ ∼ Ξ.

The following assumption imposes a regularization condition on the retraction used in Theorem 2.5.
While it is always possible to construct a pathological retraction that deviates substantially from
the exponential map, such choices may still scale with ∥v∥p but would negatively affect the final
convergence rate.
Assumption C.2. Let f :M→ R be a smooth function. There exists a constant CRet ≥ 0 such that

|f(Retp(v))− f(expp(v))| ≤ CRet∥v∥2p.

Remark. This assumption can indeed be replaced with a stronger but more widely used boundedness
assumption (e.g. the bounded gradient assumption). Bonnabel (2013) has shown that the geodesic
distance between the (first-order) retraction Retp(v) and the exponential map expp(v) is of the
order o(∥v∥2p) (see Theorem 2, Bonnabel (2013)). In Lemma C.13, we show that given appropriate
smoothness and boundedness conditions, the gap between f(Retp(v)) and f(expp(v)) is also of the
order o(∥v∥2p), which implies Assumption C.2. Here we present this weaker assumption to avoid
introducing the bounded gradient assumption.
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Unlike the Euclidean setting, optimization on Riemannian manifolds often relies on additional bound-
edness assumptions. For example, He et al. (2024) and Li et al. (2023b) impose a Lipschitz continuity
condition on the Hessian of the pullback objective (Assumption 4.2 in He et al. (2024), Assumption
2.2 in Li et al. (2023b)), which can be viewed as a variant of Assumption C.3. The assumption of
bounded fourth-order derivatives in Assumption C.3 is less common in the literature. However, we
emphasize that it plays a crucial role in our analysis: it enables us to capture the dependence on
sectional curvature in the accuracy of zeroth-order gradient estimation (see Theorem 2.3). From our
perspective, introducing this assumption leads to a novel and more refined result that has not yet been
explored in existing work.
Assumption C.3. There exist constants ρ > 0 and M3,M4 > 0 such that∥∥∇3f(q)

∥∥
HS
≤M3,

∥∥∇4f(q)
∥∥
HS
≤M4,

for all q ∈ Bp(p, ρ), where Bp(p, ρ) denotes the geodesic ball of radius ρ and ∥ · ∥HS is the Hilbert-
Schmidt norm.

Many existing literature (Wang et al., 2021b; 2023) also made assumptions on the sectional curvature
(lower) boundedness. Here we present a slightly stronger assumption: we assume the sectional
curvature is uniformly bounded (i.e. both upper and lower boundedness). We note that this assumption
has also been used in existing literature (see Assumption 1, Alimisis et al. (2021)).
Assumption C.4. There exists a constant κ ≥ 0 such that the sectional curvature of the Riemannian
manifold (M, g) satisfies

|Kp(σ)| ≤ κ, for every point p ∈M and every 2-plane σ ⊂ TpM.

Equivalently, −κ ≤ Kp(σ) ≤ κ for all p and σ.

C.2 SUPPORTING LEMMAS

The following lemma generalizes the expected smoothness widely used in non-convex optimization
(Mishchenko et al., 2020; Khaled & Richtárik, 2022; Ma & Huang, 2025).
Lemma C.5. Let f∗ξ = infp∈M f(p; ξ) and f∗ := Eξ∼Ξ[f

∗
ξ ]. Suppose that Assumption C.1 is

satisfied and f∗ < +∞. Then there exists A,B ≥ 0 such that for any p ∈M,

E∥∇f(p; ξ)∥2p ≤ A[f(p)− f∗] +B.

Proof. By L-bounded Hessian and the Taylor formula to the function f ◦ γ : R→ R for the geodetic
γ : R→ R with γ(0) = p and γ′(0) = v, we obtain

∥∇f(p; ξ)∥2p ≤ 2L[f(p; ξ)− f∗ξ ],

where f∗ξ := infp∈M f(p; ξ). Recall that f∗ := Eξ∼Ξ[f
∗
ξ ]. Then we obtain

Eξ∼Ξ∥∇f(p; ξ)∥2p ≤ 2Lf(p)− 2LEξ∼Ξf
∗
ξ

= 2L[f(p)− f∗] + 2L[f∗ − Eξ∼Ξf
∗
ξ ].

The proof is completed by defining A = 2L and B = 2L[f∗ − Eξ∼Ξf
∗
ξ ].

Lemma C.6. LetM be a smooth manifold. Then there exists a smooth function ρ :M→ [0,+∞)
is proper; that is, for every compact set C ⊂ R, ρ−1(C) is compact inM.

Proof. This result directly comes from Proposition 2.28 (Lee, 2003) and it can be directly generalized
for arbitrary Hausdorff paracompact topological space, as for a Hausdorff space, the paracompactness
is equivalent to the existence of partitions of unity (Dugundji, 1966). Here we present a proof without
using the partitions of unity.

By Proposition A.60 (Lee, 2003), the smooth manifoldM admits an exhaustion by compact sets3;
that is, a sequence of compact sets {Kj}∞j=1 inM, such that

3We always require the manifold to be second-countable and Hausdorff; and all topological spaces locally
homomorphism to the Euclidean space are locally compact.
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• Kj ⊂ K◦
j+1 for all j;

•
⋃∞

j=1Kj =M.

For each j, we can always have a smooth function ψj :M → [0, 1] such that ψj ≡ 1 on Kj and
supp(ψj) ⊂ K◦

j+1. This existence is guaranteed by Proposition 2.25 (Lee, 2003). Define a smooth
function ρ :M→ [0,+∞) by

ρ(p) :=

∞∑
j=1

(1− ψj(p)) .

For any fixed p, there exists a j with p ∈ Kj ; as the result, there is at most finite entries in this series
non-zero. The finite-sum of smooth functions is also smooth. Moreover, ρ−1((−∞, c]) ⊂ K⌊c⌋+1,
which is compact. Since ρ is always non-negative, it implies that ρ is proper.

Remark. If the manifoldM is compact (e.g., a sphere), then every continuous function serves as an
exhaustion function. This offers an alternative perspective on the structure-preserving metric: for a
compact manifold, we do not need to worry about the exponential map sending points outside the
manifold, as all metrics constructed in Theorem C.18 are automatically geodesically complete.

Lemma C.7. Let (M, g) be a d-dimensional smooth Riemannian manifold, p ∈M, and f :M→ R
be a smooth function. Denote by

B =
{
v ∈ TpM : ∥v∥g ≤ 1

}
, ∂B =

{
v ∈ TpM : ∥v∥g = 1

}
the closed unit ball and the unit sphere in the tangent space, respectively. Write Unif(B) and
Unif(∂B) for the corresponding uniform probability measures.

(i) If v ∼ Unif(∂B) then
dE
[
⟨∇f(p), v⟩ v

]
= ∇f(p).

(ii) If v ∼ Unif(B) then
(d+ 2)E

[
⟨∇f(p), v⟩ v

]
= ∇f(p).

(iii) More generally, whenever v is any centred isotropic random vector in TpM—that is,
E[v] = 0 and E[v ⊗ v] = idTpM—one has

E
[
⟨∇f(p), v⟩ v

]
= ∇f(p).

Proof. Let {e1, . . . , ed} be any g-orthonormal basis of TpM and write the coordinates of a tangent
vector v in this basis as v =

∑d
i=1 v

iei. Because the distributions in parts (i)–(ii) are rotationally
invariant (and therefore isotropic), one has

E
[
vi
]
= 0 and E

[
vivj

]
= σ2 δij ,

where the constant σ2 depends only on the law of v:

σ2 =
1

d
E
[
∥v∥2g

]
=

{
1/d, v ∼ Unif(∂B),
1/(d+ 2), v ∼ Unif(B).

(1)

Let g♯ : T ∗
pM → TpM be the Riesz isomorphism induced by the metric. Writing ∇f(p) =∑

i(∂if)ei, we obtain

E
[
⟨∇f(p), v⟩ v

]
=
∑
i,j

(∂if)E
[
vivj

]
ej = σ2

∑
i

(∂if) ei = σ2∇f(p).

Multiplying both sides by d/σ2 (resp. (d + 2)/σ2) and using the value of σ2 from (1) gives the
identities in parts (i) and (ii). Statement (iii) follows immediately from the same calculation with
σ2 = 1.
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Lemma C.8 (Isserlis). Let (M, g) be a d-dimensional smooth Riemannian manifold, p ∈M, and
f :M→ R be a smooth function. Denote by

∂B =
{
v ∈ TpM : ∥v∥g = 1

}
the unit sphere in the tangent space. Write Unif(∂B) for the corresponding uniform probability
measures. If v = (v1, v2, . . . , vd) ∼ Unif(∂B) then

Evi1vi2 . . . vin =

{
0, 2 ∤ n,

1
d(d+2)(d+4)...(d+2k−2)

∑
pair∈P 2

2k

∏
(r,s)∈pair δir,is , 2 | n,

where P 2
2k represents the set of all pairings of {1, 2, . . . , 2k} (i.e. all distinct ways of partitioning

{1, 2, . . . , n} into pairs {r, s}), and δij =
{
0 i ̸= j,

1 i = j,
is the Kronecker delta.

Proof. This result is known as the generalization of Isserlis’s theorem (Isserlis, 1916; 1918). Our
presented version is taken from Wikipedia, which refers to Koopmans (1974); Mardia & Jupp
(1999).

Lemma C.9. Let (M, g) be a d-dimensional smooth Riemannian manifold, p ∈M, and f :M→ R
be a smooth function. Denote by

∂B =
{
v ∈ TpM : ∥v∥g = 1

}
the unit sphere in the tangent space. Write Unif(∂B) for the corresponding uniform probability
measures. If v = (v1, v2, . . . , vd) ∼ Unif(∂B) then

dE
[
⟨∇f(p), v⟩ v

]
= ∇f(p).

Proof. This is a direct corollary of Lemma C.8 with taking n = 2.

Lemma C.10. Let (M, g) be a d-dimensional Riemannian manifold. Assume there exists a constant
κ ≥ 0 such that the sectional curvature satisfies

|Kp(σ)| ≤ κ for every point p ∈M and every 2-plane σ ⊂ TpM.

Then, for every p ∈M the Ricci tensor obeys the operator–norm bound

∥Ricp∥op = sup
v∈TpM
v ̸=0

|Ricp(v, v)|
∥v∥2p

≤ (d− 1)κ.

Proof. Fix a point p and a non-zero vector v ∈ TpM. Extend v to an orthonormal basis
{v/∥v∥p, e2, . . . , ed} of TpM. By the classical formula relating Ricci and sectional curvature,

Ricp(v, v) =

d∑
i=2

Kp

(
span{v, ei}

)
∥v∥2p.

Taking absolute values and using |K| ≤ κ gives

|Ricp(v, v)| ≤ (d− 1)κ ∥v∥2p.

Dividing by ∥v∥2p and taking the supremum over all non-zero v yields ∥Ricp∥op ≤ (d − 1)κ, as
claimed.

Lemma C.11. Let L ∈ Rd×d be an invertible diffeomorphism defined as

L : Sd−1 → C := {v ∈ Rd | v⊤Av = 1}, L(s) = Ls,

where L⊤AL = Id. Denote by σSd−1 and σC the (d− 1)-dimensional Hausdorff measures on Sd−1

and C, respectively. Then σSd−1 ◦ L−1 is absolutely continuous w.r.t. σC and

d
(
σSd−1 ◦ L−1

)
dσC

(v) =
1

J
(
L−1v

) , J(s) := |detL| ∥(L⊤)−1s∥2.
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Proof. The result immediately follows Theorem 3.2.3 (Federer, 1996). Here the linear map J is the
(d− 1)-dimensional Jacobian of L defined as

J(s) := Jd−1L(s) := ∥
d−1∧

dL(s)∥o,

where dL(s) : TsSd−1 → TsC is the differential of L,
∧

is the wedge product, and ∥ · ∥m denotes
the standard operator norm ∥f∥o := sup∥x∥≤1 |f(x)|. As L is a linear map, the wedge product gives∧d−1

dL(s) = (detL)(L⊤)−1. Taking the norm yields

J(s) = |detL|∥(L⊤)−1s∥2.

Then it completes the proof.

Lemma C.12. Let γ be a geodesic defined over the open interval I ∋ 0 satisfying (i) γ(0) = p and
(ii) γ′(0) = v. Let F : I → R be a scalar function over I defined as

F (t) := expp
(
γ(t)

)
.

Then the following relations hold:

(1) F ′(t) = ∇f(γ(t))[γ′(t)]; F ′(0) = ⟨∇f(p), v⟩p.

(2) F ′′(t) = ∇2f(γ(t))[γ′(t), γ′(t)]; F ′′(0) = ∇2f(p)[v, v].

(3) F ′′′(t) = ∇3(γ(t))[γ′(t), γ′(t), γ′(t)]; F ′′′(0) = ∇3f(p)[v, v, v].

Proof. (1) As F = f ◦ γ : I →M→ R, the chain rule gives

dFt = dfγ(t) ◦ dγt : TtR→ Tγ(t)M→ Tf◦γ(t)R.

We take ∂
∂t ∈ TtR. Then

F ′(t) := dFt(
∂

∂t
) = dfγ(t) ◦ γ′(t)

(i)
= [∇f(γ(t))]♭

(
γ′(t)

)
= ⟨∇f(γ(t)), γ′(t)⟩γ(t),

where (i) applies the isomorphism between TpM and T ∗
pM given by ♭. When treating

∇f(γ(t)) as an element in T ∗
pM through this isomorphism, we also write:

∇f(γ(t))[γ′(t)] := [∇f(γ(t))]♭
(
γ′(t)

)
.

Here, we use ∇f(p)[·] to represent that the gradient ∇f(p) is understood as a 1-form
mapping from TpM to R. When t = 0, we immediately obtain F ′(0) = ⟨∇f(p), v⟩p by
using γ(0) = p and γ′(0) = v.

(2) The chain rule gives

d2Ft = d2fγ(t)(dγt, dγt) + dfγ(t)(d
2γt) : TtR× TtR→ Tf◦γ(t)R.

We take ∂
∂t ∈ TtR. Then

F ′′(t) = d2Ft(
∂

∂t
,
∂

∂t
) = d2fγ(t)(γ

′(t), γ′(t)) + dfγ(t)(∇γ′(t)γ
′(t)).

As dfγ(t) : Tγ(t)M → Tf◦γ(t)R ∼= R is a linear function, it always maps 0 to 0. By the
property of geodesic, ∇γ′(t)γ

′(t) = 0, leading to

F ′′(t) = d2fγ(t)(γ
′(t), γ′(t)) = ∇2f(γ(t))[γ′(t), γ′(t)]

Here, we directly take d2fγ(t) = ∇2f(γ′(t)) as it has been a 2-form in T ∗
γ(t)M⊗ T

∗
γ(t)M.

To align the same notation used in ∇, we still use [·, ·]. When t = 0, we immediately obtain
F ′′(0) = ∇2f(p)[v, v] by using γ(0) = p and γ′(0) = v.
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(3) The chain rule gives

d3Ft = d3fγ(t)(dγt, dγt, dγt) + 3d2fγ(t)(dγt, d
2γt) + dfγ(t) ◦ d3γt.

We take ∂
∂t ∈ TtR. As γ : I →M is a geodesic, the last two terms are zeros. Then

F ′′′(t) = d3fγ(t)(γ
′(t), γ′(t), γ′(t)) := ∇3f(γ(t))[γ′(t), γ′(t), γ′(t)].

Now the proof is completed.

Lemma C.13. Let f : M → R be a smooth function. Suppose that Assumption C.1 holds. If
∥∇f(p)∥p is uniformly bounded by a constant G > 0 for all p ∈ M, then there exists a constant
CRet ≥ 0 such that

|f(Retp(v))− f(expp(v))| ≤ CRet∥v∥2p.

Proof. It suffices to apply the standard Taylor formula (Spivak, 1994) to both functions

f ◦ Retp : TpM∼= Rd → R and f ◦ expp : Rd → R,

then evaluate their difference. We set γ(t) := expp(tv) as the geodesic and γRet(t) := Retp(tv) as
the first-order approximation of the geodesic. The Taylor formula gives

f ◦ expp(v) = f(p) + ⟨∇f(p), v⟩p +
∫ 1

0

(1− t)∇2f(expp(tv))[γ
′(tv), γ′(tv)]dt,

f ◦ Retp(v) = f(p) + ⟨∇f(p), v⟩p +
∫ 1

0

(1− t)∇2f(Retp(tv))[γ
′
Ret(t), γ

′
Ret(t)]dt+ ι,

where ι is the correction term reflecting the curvature from the approximated geodesic γRet, given by

ι :=

∫ 1

0

(1− t)⟨∇f(γRet(t)),∇γ′
Ret(t)

γ′Ret(t)⟩γRet(t)dt.

When Ret ≡ exp, the Levi-Civita connection ∇ : X(M) × X(M) → X(M) automatically gives
∇γ′

Ret(tv)
γ′Ret(tv) = 0, which recovers the zero approximation error.

When considering a general first-order retraction, we can further upper bound it using the bounded
gradient assumption. Since the gradient∇f(γRet(t)) is uniformly bounded, we can also upper bound
its directional derivative

∥∥∇γ′
Ret(t)

γ′Ret(t)
∥∥
γRet(t)

; here we set this uniform upper bound as ℓ.

|ι| =
∣∣∣∣∫ 1

0

(1− t)⟨∇f(γRet(t)),∇γ′
Ret(t)

γ′Ret(t)⟩γRet(t)dt

∣∣∣∣
(i)

≤

∣∣∣∣∣
∫ 1

0

(1− t) ∥∇f(γRet(t))∥γRet(t)

∥∥∇γ′
Ret(t)

γ′Ret(t)
∥∥
γRet(t)

dt

∣∣∣∣∣
(ii)

≤
∣∣∣ ∫ 1

0

(1− t)Gℓ∥v∥2p dt
∣∣∣ ≤ Gℓ

2
∥v∥2p,

where (i) applies the Cauchy–Schwarz inequality, and (ii) applies the uniformly bounded gradient of
f :M→ R and the uniformly bounded Hessian of f ◦ Ret :M→ R.

We take the difference of the above two equations. The bounded Hessian assumption implies∣∣f ◦ Retp(v)− f ◦ expp(v)∣∣ ≤ 1

2
L∥v∥2p +

1

2
L∥v∥2p + ι

≤ (L+
Gℓ

2
)∥v∥2p.

we obtain the final upper bound by setting CRet = L+ Gℓ
2 .
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Lemma C.14. Let (M, g) be a smooth, d-dimensional, geodesically complete Riemannian manifold
and let f :M→ R be a smooth function. Suppose that Assumption C.1 and Assumption C.2 hold.
Given a unit-length vector v ∈ TpM and the perturbation stepsize µ > 0, define

h̃ :=
f ◦ expp(µv)− f ◦ expp(−µv)

2µ
v, ĥ :=

f ◦ Retp(µv)− f ◦ Retp(−µv)
2µ

v.

Then
∥ĥ− h̃∥p ≤ CRetµ.

Proof. We directly take the difference bewtween two vectors:∥∥∥ĥ− h̃∥∥∥
p
=

∥∥∥∥f ◦ expp(µv)− f ◦ expp(−µv)2µ
v − f ◦ Retp(µv)− f ◦ Retp(−µv)

2µ
v

∥∥∥∥
p

(i)
=
∣∣f ◦ expp(µv)− f ◦ expp(−µv)− f ◦ Retp(µv) + f ◦ Retp(−µv)

∣∣ /(2µ)
(ii)

≤
∣∣f ◦ expp(µv)− f ◦ Retp(µv)∣∣ /(2µ) + ∣∣f ◦ expp(−µv)− f ◦ Retp(−µv)∣∣ /(2µ)

(iii)

≤ CRetµ,

where (i) applies that v ∈ TpM is the unit-length, (ii) applies the triangle inequality, and (iii) applies
Assumption C.2.

Lemma C.15. Let (M, g) be a smooth, d-dimensional, geodesically complete Riemannian manifold
and let f :M→ R be a smooth function. Suppose that Assumptions C.1 to C.4 hold. Suppose that
there exists a constant CRet ≥ 0 such that

|f(Retp(v))− f(expp(v))| ≤ CRet∥v∥2p. (6)

Let {pt} be the SGD dynamic solving Equation (1) generated by the update rule Equation (4). Then

η

6d
∥∇f(pt)∥2pt

≤
[
1 + 6L(CRet +

L

2
)(
2 + µ2κ2

d
)η2 +

Lµ4d

(d+ 2)2
κ2η
](

Ef(pt)− f∗
)

−
(
Ef(pt+1)− f∗

)
+ (CRet +

L

2
)
(
3B(

2 + µ2κ2

d
) + 3E + 3C2

Retµ
2
)
η2

+
ηd

2
F +

3

4
dηµ2C2

Ret,

where E and F are given by Equation (7) and Equation (10), respectively.

Proof. Let ĥt = ∇̂f(pt; ξt) :=
f
(
Retpt (µv)

)
−f
(
Retpt (−µv)

)
2µ v ∈ Tpt

M (also defined in Equa-

tion (3)), h̃t =
f
(
exppt

(µv)
)
−f
(
exppt

(−µv)
)

2µ v, and ht = 1
d∇f(pt; ξt) ∈ Tpt

M. At the t-th update,
the SGD update rule (Equation (4)) gives

pt+1 = Retpt
(−ηĥt).

Let γ : I → M be the geodesic over I ⊃ [0, 1] that satisfies γ(0) = pt with the initial velocity
γ′(0) = −ηĥt. The Taylor formula of the scalar function f ◦ γ gives

f(pt+1) = f
(
Retpt

(−ηĥt)
)
− f

(
exppt

(−ηĥt)
)
+ f

(
exppt

(−ηĥt)
)

(i)

≤ CRetη
2∥ĥt∥2pt

+ f(pt)− η⟨∇f(pt), ĥt − h̃t + h̃t⟩pt

+

∫ 1

0

(1− t)∇2f(γ(t))[γ′(t), γ′(t)]dt

(ii)

≤ CRetη
2∥ĥt∥2pt

+ f(pt)− η⟨∇f(pt), ĥt − h̃t⟩pt
− η⟨∇f(pt), h̃t⟩pt

+
Lη2

2
∥ĥt∥2pt

Ept
f(pt+1)

(iii)

≤ (CRet +
L

2
)η2Ept

∥ĥt∥2pt
+ f(pt)−

η

d
∥∇f(pt)∥2pt
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− η⟨∇f(pt),Ept
h̃t − ht⟩pt

+ η∥∇f(pt)∥pt
Ept
∥ĥt − h̃t∥pt

≤ (CRet +
L

2
)η2∥ĥt∥2pt

+ f(pt)−
η

6d
∥∇f(pt)∥2pt

+
ηd

2
∥Ept

h̃t − ht∥2pt

+
3

4
dηµ2C2

Ret

where (i) applies Equation (6) and the Taylor formula, (ii) applies the bounded Hessian assumption
(Assumption C.1), and (iii) takes the expectation conditional on pt on both sides; here we use Ept [·]
to represent E [· | pt] for convenience. The last step applies 2⟨αu, 1

αv⟩ ≤ α2∥u∥2 + 1
α2 ∥v∥2 for

α > 0 and Lemma C.14. Then it suffices to upper bound the variance term Ept∥ĥt∥2pt
and the bias

term ∥Ept
ĥt − ht∥2pt

.

• Bounding Ept
∥ĥt∥2pt

: First, we split it following the standard routine,

Ept
∥ĥt∥2pt

= Ept
∥ĥt − h̃t + h̃t − ht + ht∥2pt

≤ 3Ept
∥ĥt − h̃t∥2pt

+ 3Ept
∥h̃t − ht∥2pt

+ 3Ept
∥ht∥2pt

.

◦ The first term 3Ept
∥ĥt − h̃t∥2pt

is given by Lemma C.14:

3Ept
∥ĥt − h̃t∥2pt

≤ 3C2
Retµ

2

◦ The second term 3Ept
∥h̃t − ht∥2pt

is given by Theorem C.18:

3Ept
∥h̃t − ht∥2pt

≤ 3
1 + µ2κ2

d
Ept

∥∥∇f(pt; ξt)∥∥2pt
+ 3E

≤ 3
1 + µ2κ2

d
[2L (f(pt)− f∗) +B] + 3E

where the second inequality applies Lemma C.5 and

E := µ2

[
4

3

M2
3

d3
+
M2

4µ
4

288

]
. (7)

◦ The last term is upper bounded by Lemma C.5:

3Ept
∥ht∥2pt

=
3

d2
Ept
∥∇f(pt; ξt)∥2pt

≤ 6L

d2
[f(pt)− f∗] +

3B

d2

Putting all together, we obtain

Ept
∥ĥt∥2pt

≤ 3
1 + µ2κ2

d
[2L (f(pt)− f∗) +B] + 3E + 3C2

Retµ
2 +

6L

d2
[f(pt)− f∗] +

3B

d2

= 6L(
1 + µ2κ2

d
+

1

d2
)[f(pt)− f∗] + 3B(

1 + µ2κ2

d
+

1

d2
) + 3E + 3C2

Retµ
2.

As d ≥ 1, we obtain

Ept
∥ĥt∥2pt

≤ 6L(
2 + µ2κ2

d
)[f(pt)− f∗] + 3B(

2 + µ2κ2

d
) + 3E + 3C2

Retµ
2, (8)

where E is given by Equation (7) and B is given by Lemma C.5.

• Bounding ∥Ept h̃t − ht∥2pt
: Following the same proof as Theorem C.18, we obtain the

expansion of the zeroth-order gradient estimator given by Equation (14). We multiply v on
both sides and take the expectation:

Ept h̃t − ht =
µ2

6d(d+ 2)

[
∇(∆f)(pt; ξt) + 3Ric(·, ·)∇f(pt; ξt)

]
+
µ3

12
E
[
(I+ − I−)v

]
.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Then we take the squared norm to obtain the bias upper bound:

∥Ept h̃t − ht∥2pt
≤ µ4

9d2(d+ 2)2

[∥∥∇3f(pt; ξt)
∥∥2
HS

+ 9∥Ric(·, ·)∇f(pt; ξt)∥2pt

]
+

µ6

144
M2

4

≤ µ4M2
3

9d2(d+ 2)2
+

µ6

144
M2

4 +
µ4

(d+ 2)2
κ2∥∇f(pt; ξt)∥2pt

≤ µ4M2
3

9d2(d+ 2)2
+

µ6

144
M2

4 +
µ4

(d+ 2)2
κ2 [2L (f(pt)− f∗) +B]

≤ 2Lµ4

(d+ 2)2
κ2 (f(pt)− f∗) +

µ4M2
3

9d2(d+ 2)2
+

µ6

144
M2

4 +
µ4

(d+ 2)2
κ2B.

(9)

For convenience, we set

F :=
µ4M2

3

9d2(d+ 2)2
+

µ6

144
M2

4 +
µ4

(d+ 2)2
κ2B. (10)

Combine Equation (8) and Equation (9), we obtain that

η

6d
∥∇f(pt)∥2pt

≤
[
1 + 6L(CRet +

L

2
)(
2 + µ2κ2

d
)η2 +

Lµ4d

(d+ 2)2
κ2η
](

Ef(pt)− f∗
)

−
(
Ef(pt+1)− f∗

)
+ (CRet +

L

2
)
(
3B(

2 + µ2κ2

d
) + 3E + 3C2

Retµ
2
)
η2

+
ηd

2
F +

3

4
dηµ2C2

Ret,

where E and F are given by Equation (7) and Equation (10), respectively.

Lemma C.16. Suppose that S ≥ 0. Let three real-valued sequences {θt}Tt=1, {δt}T+1
t=1 , and {Gt}Tt=1

satisfy
θt ≤ (1 + S) δt − δt+1 +Gt,

for all 1 ≤ t ≤ T . Then the iterate is bounded by

min
1≤t≤T

θt ≤
S(1 + S)T

(1 + S)T − 1
δ1 + max

1≤t≤T
Gt ≤

eS

T
δ1 + max

1≤t≤T
Gt.

Proof. We telescope the iterative relation by using

θT ≤ (1 + S)δT − δT+1 +GT

(1 + S)× θT−1 ≤ (1 + S)2δT−1 − (1 + S)δT + (1 + S)GT−1

...

(1 + S)T−1 × θ1 ≤ (1 + S)T δ1 − (1 + S)T−1δ2 + (1 + S)T−1G1.

We sum them together and obtain[T−1∑
i=0

(1 + S)i
]

min
1≤t≤T

θt ≤ (1 + S)T δ1 +
[T−1∑
i=0

(1 + S)i
]
max
1≤t≤T

Gt.

Then we re-arrange the above inequality and obtain

min
1≤t≤T

θt ≤
(1 + S)T∑T−1
i=0 (1 + S)i

δ1 + max
1≤t≤T

Gt

=
S(1 + S)T

(1 + S)T − 1
δ1 + max

1≤t≤T
Gt

(i)

≤ eST

T
δ1 + max

1≤t≤T
Gt,

where (i) applies two inequalities (1 + x)T ≤ eTx and (1 + x)T − 1 ≥ Tx.
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C.3 PROOF OF THEOREM 2.2

Theorem C.17. LetM be a smooth manifold (possibly non-compact), and let g be any Riemannian
metric onM. Then there exists a Riemannian metric g′ onM which is structure-preserving with
respect to g.

Proof. In this proof, we distinguish the norms induced by different Riemannian metrics by explicitly
writing ∥ · ∥p,g or ∥ · ∥p,g′ . Elsewhere in the paper, we simply use ∥ · ∥p, as no alternative metric is
under consideration.

We mainly follow the construction given by Nomizu & Ozeki (1961) to obtain a conformally
equivalent Riemannian metric which is geodesically complete. By Lemma C.6, there exists a smooth
proper function ρ :M→ [0,+∞). Define the conformal coefficient h :M→ (0,+∞) as

h(p) :=
(
∥∇ρ(p)∥2p + 1

)ϑ
,

where∇ρ(p) ∈ TpM is the gradient of ρ at p ∈M and ϑ ≥ 1. Then we define the conformal metric
g′ as

g′p(v, w) := h(p)gp(v, w).

Now we turn to prove that (M, g′) is a complete metric space; that is, every Cauchy sequence is
convergent. Let γ : [a, b] →M be a piecewise smooth curve segment. Then the length of γ with
respect to the metric g′ is given by

Lg′(γ) =

∫ b

a

√
g′γ(t)(γ

′(t), γ′(t)) dt

=

∫ b

a

√
h(γ(t))gγ(t)(γ′(t), γ′(t)) dt

=

∫ b

a

√
h(γ(t))∥γ′(t)∥γ(t),g dt

(i)
=

∫ b

a

√
(∥∇ρ(γ(t))∥2γ(t),g + 1)ϑ∥γ′(t)∥γ(t),g dt

≥
∫ b

a

∥∇ρ(γ(t))∥γ(t),g∥γ′(t)∥γ(t),g dt

(ii)

≥
∫ b

a

∣∣gγ(t)⟨∇ρ(γ(t)), γ′(t)⟩∣∣ dt
=

∫ b

a

∣∣dργ(t)(γ′(t))∣∣ dt
≥
∣∣∣∫ b

a

dργ(t),g(γ
′(t)) dt

∣∣∣
=
∣∣ρ(γ(b))− ρ(γ(a))∣∣,

where (i) applies the definition of h, and (ii) applies the Cauchy-Schwarz inequality. As a result, for
arbitrary p, q ∈M, we have

|ρ(p)− ρ(q)| ≤ dg′(p, q). (11)

Let {pk} ⊂ M be a Cauchy sequence with respect to g′. Then Equation (11) implies that {ρ(pk)} ⊂
R must be a Cauchy sequence. We can take a finite supremum

c := sup
k
ρ(pk) < +∞.

Then {pk} ⊂ ρ−1([0, c]); that is, every Cauchy sequence belongs to a compact set by our construction
(Lemma C.6), which implies the completeness of (M, g′).

The Hopf-Rinow theorem (Hopf & Rinow, 1931; do Carmo, 1992) states that for a connected
Riemannian manifold, geodesic completeness is equivalent to the metric completeness. As we have
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shown that the conformally equivalent metric g′p := h(p)gp induces a complete metric space, it
automatically makes (M, g′) a geodesically complete manifold. IfM is not connected, this argument
applies to each connected component, and a geodesic is contained within a single component. Thus,
(M, g′) is geodesically complete.

Lastly, we show that if the ϵ-stationary point under g also gives an ϵ-stationary point under g′. Recall
that we always have

gp(∇gf(p), v) = dfp(v) = g′p(∇g′f(p), v)

for all v ∈ TpM. Then
h(p)gp(∇g′f(p), v) = gp(∇gf(p), v).

As it holds for all v and gp is a bilinear form over the linear space TpM, we obtain

h(p)∇g′f(p) = ∇gf(p).

Suppose that ∥∇gf(p)∥p,g ≤ ϵ, then

∥∇g′f(p)∥p,g′ =
√
g′p(∇g′f(p),∇g′f(p))

=
√

1/h(p)
√
gp(∇gf(p),∇gf(p))

=
√
1/h(p)∥∇gf(p)∥p,g

=

√
1(

∥∇ρ(p)∥2p + 1
)ϑ ∥∇gf(p)∥p,g

≤ ∥∇gf(p)∥p,g ≤ ϵ.
Therefore, we complete the proof.

C.4 PROOF OF THEOREM 2.3

In this subsection, we provide the proof for Theorem 2.3.
Theorem C.18. Let (M, g) be a complete d-dimensional Riemannian manifold and p ∈ M. Let
f :M→ R be a smooth function and suppose that Assumptions C.3 and C.4 hold. Fix a perturbation
stepsize µ > 0 satisfying

µ2 ≤ min{ 1

d− 1
,
1

2
+

6

d
+

8

d
},

and for any unit vector v ∈ TpM define the symmetric zeroth-order estimator

∇̂f(p; v) :=
f
(
expp(µv)

)
− f

(
expp(−µv)

)
2µ

v.

Then, for v ∼ Unif(Sd−1) uniformly sampled from the gp-unit sphere in TpM,

Ev∼Unif(Sd−1)

[∥∥∇̂f(p; v)− 1

d
∇f(p)

∥∥2
p

]
≤ 1 + µ2κ2

d

∥∥∇f(p)∥∥2
p
+ µ2

[
4

3

M2
3

d3
+
M2

4µ
4

288

]
.

Proof. Let γ(t) := expp(tv) be the geodesic; it satisfies (i) γ(0) = p and (ii) γ′(0) = v. For the
scalar function F (t) := f

(
γ(t)

)
, we apply the ordinary Taylor theorem (with the integral remainder)

at t = 0 up to order 4 (Spivak, 1994; Bonnabel, 2013):

F (µ) = F (0) + µF ′(0) + µ2F
′′(0)

2
+ µ3F

′′′(0)

6
+

1

6

∫ µ

0

(µ− t)3F ′′′′(t) dt.

By applying Lemma C.12, we obtain

f
(
γ(µ)

)
= f(p) + µ⟨∇f(p), v⟩p +

µ2

2
∇2f(p)(v, v) +

µ3

6
∇3f(p)(v, v, v) (12)

+
µ4

6

∫ 1

0

(1− t)3∇4f
(
γ(µt)

)(
γ′(µt), γ′(µt), γ′(µt), γ′(µt)

)
dt︸ ︷︷ ︸

I+

,
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f
(
γ(−µ)

)
= f(p)− µ⟨∇f(p), v⟩p +

µ2

2
∇2f(p)(v, v)− µ3

6
∇3f(p)(v, v, v) (13)

+
µ4

6

∫ 1

0

(1− t)3∇4f
(
γ(−µt)

)(
γ′(−µt), γ′(−µt), γ′(−µt), γ′(−µt)

)
dt︸ ︷︷ ︸

I−

,

where the k-th covariant derivative at p ∈M is a symmetric k-linear form in T ∗
pM⊗ · · · ⊗ T ∗

pM︸ ︷︷ ︸
k copies

∇kf(p) : TpM× · · · × TpM︸ ︷︷ ︸
k copies

→ R,

and we represent the remainder term given by the Taylor theorem as

I± :=

∫ 1

0

(1− t)3∇4f
(
γ(±µt)

)(
γ′(µt), γ′(µt), γ′(µt), γ′(µt)

)
dt.

Subtracting Equation (13) from Equation (12) and dividing by 2µ we obtain

f(expp(µv))− f(expp(−µv))
2µ

= ⟨∇f(p), v⟩p +
µ2

6
∇3f(p)(v, v, v) +

µ3

12

(
I+ − I−

)
. (14)

Multiplying v on both sides, we obtain

∇̂f(p; v) = 1

d
∇f(p) +

(
⟨∇f(p), v⟩pv −

1

d
∇f(p)

)
︸ ︷︷ ︸

=:Z0(v)

+µ2 1

6
∇3f(p)(v, v, v)v︸ ︷︷ ︸

=:Z2(v)

+
µ3

12

(
I+ − I−

)
v︸ ︷︷ ︸

=:R(v)

.

By defining these shorthand notations, we have the following compact form:

∇̂f(p; v)− 1

d
∇f(p) = Z0(v) + µ2Z2(v) +R(v).

We take squared-norm on both sides and treating v as the uniform distribution over the g-unit sphere
Sd−1 in TpM. Then we obtain

Ev∥∇̂f(p; v)−
1

d
∇f(p)∥2p

= Ev∥Z0(v)∥2p + Ev∥µ2Z2(v) +R(v)∥2p + 2Ev⟨Z0(v), µ
2Z2(v) +R(v)⟩p

= Ev∥Z0(v)∥2p + Ev∥µ2Z2(v) +R(v)∥2p + 2µ2Ev⟨Z0(v), Z2(v)⟩p
≤ Ev∥Z0(v)∥2p + 2µ4Ev∥Z2(v)∥2p + 2Ev∥R(v)∥2p + 2µ2Ev⟨Z0(v), Z2(v)⟩p
≤ (1 + µ2)Ev∥Z0(v)∥2p + (2µ4 + µ2)Ev∥Z2(v)∥2p + 2Ev∥R(v)∥2p.

The cross term ⟨Z0(v), R(v)⟩p is canceled out due to the symmetry of the sphere (under the norm
induced by g) and the odd order of v. Now it suffices to bound each squared term.

1. Bounding Ev∥R(v)∥2p: By Assumption C.3 and ∥v∥p = 1, we have

∣∣I±(µ, v)∣∣ ≤ ∫ 1

0

(1− t)3M4dt =
M4

4
.

We have the similar upper bound for |I−|. Then |I+−I−| ≤ |I+|+|I−| ≤ M4

4 +M4

4 = M4

2 .
As the result, ∥∥R(v)∥∥

p
≤ µ3

12
· M4

2
=
M4µ

3

24
.

Therefore, we obtain

Ev

[
∥R(v)∥2p

]
≤ M2

4µ
6

576
. (15)
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2. Bounding Ev∥Z0(v)∥2: Recall that Z0(v) = ⟨∇f(p), v⟩pv − 1
d∇f(p). Then

∥Z0(v)∥2p = g
(
⟨∇f(p), v⟩pv −

1

d
∇f(p), ⟨∇f(p), v⟩pv −

1

d
∇f(p)

)
= ⟨∇f(p), v⟩2pg(v, v) +

1

d2
g(∇f(p),∇f(p))− 2

d
⟨∇f(p), v⟩pg(∇f(p), v)

= ⟨∇f(p), v⟩2p∥v∥2p +
1

d2
∥∇f(p)∥2p −

2

d
⟨∇f(p), v⟩pg(∇f(p), v)

(i)
= (1− 2

d
)⟨∇f(p), v⟩2p +

1

d2
∥∇f(p)∥2p.

where (i) applies ∥v∥2p = 1 and g(∇f(p), v) = ⟨∇f(p), v⟩p. By the symmetry of the
∥ · ∥p-norm ball, we have

Ev[v ⊗ v] =
1

d
gp,

where v ⊗ v : TpM× TpM → R is the tensor product of the vector v with itself and
v ⊗ v(∇f(p),∇f(p)) = gp(v,∇f(p))2. As the result,

Ev⟨∇f(p), v⟩2p =
1

d
gp(∇f(p),∇f(p)) =

1

d
∥∇f(p)∥2p.

Therefore, we have

Ev∥Z0(v)∥2 = (
1

d
− 1

d2
)∥∇f(p)∥2p (16)

3. Bounding Ev∥Z2(v)∥2: We choose an orthonormal frame {e1, . . . , ed} for TpM so that
every vector v ∈ TpM with ∥v∥p = 1 is represented as

v =

d∑
i=1

viei

and we write its coordinate as v = (v1, v2, . . . , vd) ∈ Rd. As ∇3f(p) ∈ T ∗
pM⊗ T ∗

pM⊗
T ∗
pM, we write the tensor representation as

Tijk := (∇3f)ijk(p).

Therefore, we obtain

Z2(v) =
1

6
∇3f(p)(v, v, v)v =

1

6
Tijkv

ivjvkvℓeℓ,

where we use Einstein notation to represent the sum. By the orthonormal frame, we obtain

∥Z2(v)∥2p =
1

36
TijkTi′j′k′vivjvkvi

′
vj

′
vk

′
.

Then it suffices to calculate Ev[v
ivjvkvi

′
vj

′
vk

′
]. By Lemma C.8, we obtain

Ev[v
ivjvkvi

′
vj

′
vk

′
] =


6

d(d+2)(d+4) if (i, j, k) = (i′, j′, k′)
9

d(d+2)(d+4) if i = j, i′ = j′, k = k′

0 otherwise
.

As the result, we obtain

Ev

[
∥Z2(v)∥2

]
=

1

36d(d+ 2)(d+ 4)
[6TijkTijk + 9TiikTjjk] .

Recall that TijkTijk = ∥∇3f(p)
∥∥2
HS

. We also have

TiikTjjk =
∥∥∇(∆f) + Ric(·, ·)∇f(p)

∥∥2
p

≤ 2∥∇(∆f)∥2p + 2∥Ric(·, ·)∇f(p)∥2p
≤ 2
∥∥∇3f(p)

∥∥2
HS

+ 2∥Ric(·, ·)∇f(p)∥2p.
As the result, we obtain

Ev∥Z2(v)∥2p ≤
1

6d(d+ 2)(d+ 4)

[
4
∥∥∇3f(p)

∥∥2
HS

+ 3∥Ric(·, ·)∇f(p)∥2p
]
. (17)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Combining Equations (15) to (17), we obtain

Ev

[∥∥∇̂f(p; v)− 1

d
∇f(p)

∥∥2
p

]
≤
(1
d
− 1

d2

)(
1 + µ2

)∥∥∇f(p)∥∥2
p
+

2µ4 + µ2

6d(d+ 2)(d+ 4)

(
4
∥∥∇3f(p)

∥∥2
HS

+ 3
∥∥Ric(·, ·)∇f(p)∥∥2

p

)
+
M2

4µ
6

288
(i)

≤
(1
d
− 1

d2

)(
1 + µ2

)∥∥∇f(p)∥∥2
p
+

2µ4 + µ2

6d(d+ 2)(d+ 4)

(
4M2

3 + 3κ2d2
∥∥∇f(p)∥∥2

p

)
+
M2

4µ
6

288

(ii)

≤
[(1
d
− 1

d2

)(
1 + µ2

)
+ 3κ2d2

2µ4 + µ2

6d(d+ 2)(d+ 4)

] ∥∥∇f(p)∥∥2
p
+

2µ4 + µ2

6d(d+ 2)(d+ 4)
4M2

3 +
M2

4µ
6

288

where (i) applies Assumptions C.3 and C.4. Furthermore, we set

3κ2d2
2µ4 + µ2

6d(d+ 2)(d+ 4)
≤ κ2µ2

d
.

It solves

µ2 ≤ 1

2
+

6

d
+

8

d2
. (18)

We also let

µ2 ≤ 1

d− 1
(19)

We obtain
(

1
d −

1
d2

)(
1 + µ2

)
≤ 1

d . It concludes that

Ev

[∥∥∇̂f(p; v)− 1

d
∇f(p)

∥∥2
p

]
≤ 1 + µ2κ2

d

∥∥∇f(p)∥∥2
p
+ µ2

[
4

3

M2
3

d3
+
M2

4µ
4

288

]
.

Then the proof is completed. Combining Equations (18) and (19) leads to the range of µ.

C.5 PROOF OF PROPOSITION 2.4

Proposition C.19. Let the vector v be generated by Algorithm 1. Then it follows the uniform
distribution over the compact set C := {v ∈ Rd : v⊤Av = 1}.

Proof. Fix a positive definite matrix A ∈ Rd×d and consider its eigenvlue decomposition

A = QΛQ⊤, Λ = diag(λ1, . . . , λd), 0 < λ1 ≤ · · · ≤ λd = λmax.

Recall that L := QΛ−1/2. Then

detL = detQdetΛ−1/2 =

(
d∏

i=1

λi

)−1/2

> 0.

We observe that for every s ∈ Sd−1,

(Ls)⊤ALs = s⊤L⊤ALs = 1.

It indicates that Ls ∈ C := {v : v⊤Av = 1}. As the result, L defines a smooth bijection linear map
from the sphere Sd−1 to the compact set C:

L : Sd−1 → C, s 7→ v = Ls.

Under this notation, µprop, the distribution of the sampled vector v (without rejection) in Algorithm 1
is given by the push-forward distribution of the uniform distribution via the linear map L. That is,
any measurable E ⊆ C,

µprop(E) := µSd−1(L−1(E)) = µSd−1 ◦ L−1(E), (20)
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where µSd−1 is the uniform distribution over the sphere Sd−1.

Denote by σSd−1 and σC the Hausdorff measures on Sd−1 and C, respectively. Then we re-write the
above distribution µprop and µSd−1 in the density form; that is

µprop = ρpropdσC ,

µSd−1 = ρSd−1dσSd−1 .

For arbitrary integral function g : C → R, we have∫
C
g(v)dµprop(v) =

∫
Sd−1

g(Ls)dµprop(Ls)

(i)
=

∫
Sd−1

g(Ls)dµSd−1 ◦ L−1(Ls)

=

∫
Sd−1

g(Ls)dµSd−1(s).

where (i) applies the definition of the pull-back measure µprop (Equation (20)). Then we obtain∫
C
g(v)ρprop(v)dσC(v) =

∫
Sd−1

g(Ls)ρSd−1(s)dσSd−1(s)

(i)
=

∫
Sd−1

g(Ls)
ρSd−1(s)

J(s)
dσC(Ls).

where (i) applies Lemma C.11 with J(s) = |detL| ∥(L⊤)−1s∥2. As it holds for all measurable
function g, it solves the density of µprop as

ρprop(v) =
ρSd−1 ◦ L−1(v)

J ◦ L−1(v)

∝ 1

∥Av∥2
.

Then we consider the rejection step and the final density. Let ρout be the density of the output vector
of Algorithm 1. Recall that Algorithm 1 accepts the candidate v = Ls with probability

a(v) := P(accept v|v) = P(u <

√
v⊤A2v

λmax
|v) =

√
v⊤A2v

λmax
.

The density of the output vector is given as

ρout(v) ∝ ρprop(v)a(v) =
1√
λmax

.

As it is a constant over the compact set C, it is the uniform distribution over C. We also note that the
acceptance probability is strictly positive; hence, the loop halts almost surely. This completes the
proof of Proposition 2.4.

C.6 PROOF OF THEOREM 2.5

In this section, we present the proof of Theorem 2.5. We write a ≲ b if there exists a constant C > 0
such that a ≤ C b. The hidden constant C may depend only on fixed problem parameters.
Theorem C.20. Let (M, g) be a complete d-dimensional Riemannian manifold. Let f :M→ R
be a smooth function and suppose that Assumptions C.1 to C.4 hold. Let {pt}Tt=1 be the SGD

dynamic solving Equation (1) generated by the update rule Equation (4) with requiring η ≲
√

d
T and

µ2 ≲
√

d
T (explicitly specified in Equation (21)), then there exists constants C1,C2,C3 > 0 such that

min
1≤t≤T

∥∇f(pt)∥2pt
≤ C1

d

ηT
+ C2 η + C3 d

2µ2.

In particular, choosing µ ≲ 1
d2

√
d
T yields

min
1≤t≤T

∥∇f(pt)∥2pt
≲

√
d

T
.
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Proof. By Lemma C.15, we obtain that

η

6d
∥∇f(pt)∥2pt

≤
[
1 + 6L(CRet +

L

2
)(
2 + µ2κ2

d
)η2 +

Lµ4d

(d+ 2)2
κ2η
](

Ef(pt)− f∗
)

−
(
Ef(pt+1)− f∗

)
+ (CRet +

L

2
)
(
3B(

2 + µ2κ2

d
) + 3E + 3C2

Retµ
2
)
η2

+
ηd

2
F +

3

4
dηµ2C2

Ret,

It has the same structure presented in Lemma C.16, where we set

θt =
η

6d
∥∇f(pt)∥2pt

, S = 6L(CRet +
L

2
)(
2 + µ2κ2

d
)η2 +

Lµ4d

(d+ 2)2
κ2η, δt = Ef(pt)− f∗,

Gt = (CRet +
L

2
)
(
3B(

2 + µ2κ2

d
) + 3E + 3C2

Retµ
2
)
η2 +

ηd

2
F +

3

4
dηµ2C2

Ret.

Then we obtain

min
1≤t≤T

θt ≤
eST

T
δ1 + max

1≤t≤T
Gt.

It leads to

min
1≤t≤T

∥∇f(pt)∥2pt

(i)

≤ 6e2[Ef(p1)− f∗]
ηT/d

+
6d

η

[
ηd

2
F +

3

4
dηµ2C2

Ret

]
+

6d

η

[
(CRet +

L

2
)
(
3B(

2 + µ2κ2

d
) + 3E + 3C2

Retµ
2
)
η2
]
.

where (i) selects 
η ≤

√
d

T

√
1

18L(CRet +
L
2 )

µ2 ≤ min

{
1

κ2
,

√
d

T

1

18L2(CRet +
L
2 )

} (21)

such that eTS ≤ e2, where 1
κ2 is considered as +∞ when κ = 0. Given Equation (21), we further

upper bound it as

min
1≤t≤T

∥∇f(pt)∥2pt

≤ d

ηT

[
6e2[Ef(p1)− f∗]

]
+ 3d2F +

9

2
d2µ2C2

Ret (22)

+ 6dη(CRet +
L

2
)
(
3B(

2 + µ2κ2

d
) + 3E + 3C2

Retµ
2
)

(i)

≤ d

ηT

[
6e2[Ef(p1)− f∗]

]
+ 3d2

[
µ4M2

3

9d2(d+ 2)2
+

µ6

144
M2

4 +
µ4

(d+ 2)2
κ2B

]
+

9

2
d2µ2C2

Ret

+ 6dη(CRet +
L

2
)
(
3B(

2 + µ2κ2

d
) + 3µ2

[
4

3

M2
3

d3
+
M2

4µ
4

288

]
+ 3C2

Retµ
2
)

≤ d

ηT
[54[Ef(p1)− f∗]] +

M2
3

3

µ4

d2
+
M2

4

48
µ6 + 3µ4κ2B + 5d2µ2C2

Ret

+ 54(CRet +
L

2
)Bη + 18(CRet +

L

2
)

[
4

3

M2
3

d3
+
M2

4µ
4

288

]
dηµ2 + 18(CRet +

L

2
)C2

Retdηµ
2

(23)

= O( d
ηT

) +O(η) +O(d2µ2),

where (i) applies the formula of E and F given by Equation (7) and Equation (10), respectively.
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C.7 PROOF OF COROLLARY 2.6

We re-state this corollary to have a consistent notation as previous sections.
Corollary C.21. Let g be the Euclidean metric, and let g′ be a structure-preserving metric with
respect to g. Under the same assumptions as Theorem 2.5, suppose that either of the following
conditions holds:

(a) g is geodesically complete; or

(b) the set of ϵ-stationary points under g, K := { p ∈M : ∥∇gf(p)∥p,g ≤ ϵ }, is compact.

Then it requires at most T ≤ O
(

d
ϵ4

)
iterations to achieve min1≤t≤T E

[
∥∇f(pt)∥2pt,g

]
≤ ϵ2.

Proof. For the item (a), we omit its proof as it is directly implied by setting h ≡ 1. Recall that we write
a ≲ b if there exists a constant C > 0 such that a ≤ C b. Now we denote g′p(v, w) := h(p)gp(v, w).
Theorem C.20 implies that

min
1≤t≤T

∥∇f(pt)∥2pt,g′ ≲

√
d

T
.

It suffices to prove that if p ∈ K is an ϵ-stationary point under g′ then it must be an ϵ-stationary point
under g (up to a constant scale). Note that

∥∇g′f(p)∥p,g′ =
1√
h(p)
∥∇gf(p)∥p,g.

As the result, we obtain

1

maxp∈M h(p)
min

1≤t≤T
gp(∇f(p),∇f(p)) ≲

√
d

T

min
1≤t≤T

gp(∇f(p),∇f(p)) ≲ max
p∈M

h(p)

√
d

T

We restrict two sides on the compact set (given by the condition (b))
K := {p : ∥∇gf(p)∥p,g ≤ ϵ}.

Because h :M→ R is a continuous function, then it must be bounded over this compact set. Let
this upper bound be C. Then we obtain (with absorbing C into ≲)

min
1≤t≤T

∥∇f(p)∥2p,g ≲

√
d

T

By setting
√

d
T ≤ ϵ

2, we obtain the complexity T ≳ d
ϵ4 .

D EXPERIMENTAL DETAILS

In this section, we aim to include the omitted experimental details in Section 3.

Hardware and System Environment We conducted our experiments on the personal laptop,
equipped with AMD Ryzen 9 7940HS Mobile Processor (8-core/16-thread) and NVIDIA GeForce
RTX 4070 Laptop GPU; however, GPUs are not required in our experiments. Our codes were
tested using Python version 3.12.3. Additional dependencies are specified in the supplementary
‘requirements.txt’ file. All source codes attached.

D.1 SYNTHETIC EXPERIMENT: IMPACT OF SAMPLING BIAS

Construction of Quadratic Objective Functions We construct quadratic objective functions of the
form fquadratic(x) =

1
2x

⊤(B + ξ)x, where B is a symmetric positive definite matrix that determines
the landscape’s curvature properties and ξ is the data point independently sampled from N (0, 1) for
each entry. The matrix B is generated by first creating a random matrix M ∈ Rd×d with entries
drawn from a standard normal distribution N (0, 1), then forming B = M⊤M + dId to ensure
positive definiteness with a regularization term dId that controls the minimum eigenvalue.
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Construction of Logistic Objective Functions For logistic objective functions, we construct
the empirical risk minimization problem flogistic(x) =

1
n

∑n
i=1 log(1 + exp(−yiζ⊤i x)) + λ

2x
⊤Bx,

where B is generated as the same way as the quadratic function and {(ζi, yi)}ni=1 represents the
training dataset with feature vectors ai ∈ Rd and binary labels yi ∈ {−1,+1}. The feature matrix
X = [x1, . . . , xn]

⊤ ∈ Rn×d is generated from a standard normal distribution N (0, 1). A ground
truth weight vector w∗ ∈ Rd is generated from N (0, 1) and then normalized to unit length. The
binary labels yi ∈ {−1,+1} are generated by first computing logits x⊤i w

∗, then converting to
probabilities pi = 1/(1 + exp(−x⊤i w∗)), and finally sampling yi according to Bernoulli(pi) before
converting to the {−1,+1} encoding. The regularization parameter λ is chosen as λ = 0.1.

Construction of Riemannian Metric gA We design a Riemannian metric on the ambient Euclidean
space by defining a symmetric positive definite matrix A with extreme conditioning properties.
Specifically, the metric tensor is constructed by generating a random orthonormal matrix Q via QR
decomposition, prescribing eigenvalues that span geometrically from λmin = 1 to λmax = 104λmin,
and forming A = QΛQ⊤, where Λ is the diagonal matrix of these eigenvalues. This construction
yields a highly anisotropic Riemannian manifold with a condition number of A equal to 104,
creating challenging geometric landscapes for optimization algorithms. The resulting metric induces
Riemannian gradients of the form A−1∇f(x), fundamentally altering the optimization dynamics
compared to standard Euclidean methods.

Hyper-Parameters Each method uses 16 random directions per iteration with a perturbation
stepsize µ = 10−4 for gradient estimation. The algorithms were run for 500,000 iterations with
learning rates of 10−3 (quadratic) and 10−5 (logistic), and results were averaged over 16 independent
runs to ensure statistical reliability. All curves are smoothed using a moving average with a window
size of 5,000 iterations, and confidence bands represent 10th–90th percentiles across runs to visualize
convergence variability.

D.2 SYNTHETIC EXPERIMENT: MSE VS. CURVATURE

Riemannian Metric Construction We work on the d-dimensional probability simplex

∆d := {p ∈ Rd+1 |
d+1∑
i=1

pi = 1, 0 < pi < 1},

and endow its interior (identified with the first d coordinates) with a structure-preserving Riemannian
metric (Definition 2.1) conformally equivalent to the canonical Euclidean metric gE :

g̃(β) = e2ϕβ(p)gE ,

where the conformal factor is

ϕβ(p) = 1
2 β log h(p), h(p) = 1 +

d+1∑
i=1

1

p 2
i

− 1

d+ 1

(d+1∑
i=1

1

pi

)2
.

Varying the scalar β > 0 sharpens or flattens the metric. We examine four choices β ∈
{0.5, 1.0, 1.5, 2.0}. At the fixed reference point p0 ∈ ∆d (drawn once from the Dirichlet dis-
tribution and held constant throughout the experiment) we measure the mean-squared error of a
symmetric zeroth-order gradient estimator (Equation (3)) with using the first-order approximation of
the exponential map as the retraction, where the perturbation stepsize µ is set to 0.1. We note that
under this approximation, the retraction degenerates to the naive Euclidean perturbation; we note
that we are using a fixed point p0, it doesn’t trigger the out-of-domain issue of the incomplete Rie-
mannian manifolds when µ is appropriately selected. The MSE is evaluated using the corresponding
structure-preserving metric instead of the original Euclidean metric; the conformal scaling h(p)β is
applied consistently both when sampling directions (∥v∥g̃ = 1) and when converting the Euclidean
gradients of the test functions (quadratic and Kullback–Leibler distance to the uniform distribution)
into true Riemannian gradients.

Sectional Curvature Evaluation Instead of using β as the x-axis, we compute the sectional
curvatureKg̃(β)(p0) of each metric at p0 to reflect the true relation between the intrinsic curvature and
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the estimation error. Let ϕ = ϕβ ; then g̃(β) = e2ϕgE is a warped Euclidean metric whose curvature
depends solely on ϕ. We draw an orthonormal pair (v, w) in the Euclidean tangent space Tp0

∆d via
Gram-Schmidt method, rescale them so that ∥v∥g̃ = ∥w∥g̃ = 1, and evaluate

K(p0; v, w) =e
−2ϕ(p0)

(
∥∇ϕ(p0)∥22 − ⟨Hessϕ(p0) v, v⟩ − ⟨Hessϕ(p0)w,w⟩

− ⟨∇ϕ(p0), v⟩2 − ⟨∇ϕ(p0), w⟩2
)
,

where gradients and Hessians are taken with respect to the ambient Euclidean coordinates. Because
g̃(β) is isotropic up to the conformal factor, a single random 2-plane suffices; the resulting scalar is
recorded as K(p0) for that β. These four curvature values, monotonically decreasing as β grows,
serve as the horizontal tick labels in Figure 1b.

Hyper-Parameters For each metric, we run 50,000 independent zeroth-order gradient trials, each
trial drawing one random Riemannian unit direction and applying Equation (3) to estimate the gradient
with using the perturbation stepsize µ = 0.1 and using the exponential map as the retraction. The
reference point p0 ∈ ∆4 is sampled once and held fixed, so that changes in estimator accuracy stem
solely from the chosen metric. Closed-form gradients are available for both test functions, Euclidean
and KL distance to the uniform distribution. We record the mean-squared error h(p0)∥∇̂f −∇f∥2
for each trial. The resulting 50,000 errors per setting are summarized with log-scale box plots whose
boxes span the inter-quartile range and whiskers cover the 10th–90th percentiles (outliers omitted).

D.3 GRADIENT-BASED MESH OPTIMIZATION

In our work, we consider the black-box mesh optimization problem. In the well-known CFD-GCN
model (Belbute-Peres et al., 2020), additional efforts are taken to allow the position of nodes to
support the auto-differentiation in the SU2 PDE solver; however, in most of existing finite-volume
numerical solvers, the positions of mesh nodes are typically not differentiable. Therefore, we need to
apply the zeroth-order optimization approach.

Construction of Mesh Objective Function Let P = {pi}Ni=1 ⊂ R2 be interior node positions of
the given mesh with boundary nodes fixed. Given P , the coarse mesh induced by P defines a PDE
state ûP (solved on P ). Then we interpolate it into the fine mesh Mfine to obtain the PDE state uP .
The objective is the mean-squared error (MSE) to a fixed fine-grid reference uref :

fmesh(P ) =
1

Nfine

∥∥uP − uref∥∥22,
where Nfine denotes the number of nodes in the fine mesh. The randomness in this objective comes
from the random sampling over the nodes; instead of taking all nodes to be updated, each step we
will only sample a part of nodes to be updated. In our experiments, we set the size of coarse mesh
to be 20 × 20 and the size of fine mesh to to be 200 × 200. Each time, we will randomly sample
30%× 20× 20 = 120 nodes to update.

Construction of Mesh Parameterization Each interior node is updated in barycentric coordinates
b ∈ ∆m−1 with respect to its incident cell (with vertices {vj}mj=1), i.e., p(b) =

∑m
j=1 bjvj . This

coordinate guarantees feasibility (bj > 0,
∑

j bj = 1), which naturally results in a probability simplex
structure. Under the canonical inclusion embedding, this manifold is geodesically incomplete and
hence feasible for our proposed approach.

Construction of Structure-Preserving Metric We endow ∆m−1 with the structure-preserving
conformal metric g̃(β) as defined in Appendix D.2, and use the first-order approximation of the
exponential map of g̃(β) as the retraction (Definition B.3). We note that this approximation requires to
set the length of perturbation vectors to be sufficiently small to ensure the accuracy of the retraction;
this requirement can be satisfied by adopting the same technique as the soft projection trick used in
Figure 5a. We always assume this requirement is satisfied throughout the training.
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Hyper-Parameters Each iteration uses 4 random directions with perturbation stepsize µ = 10−1.
Optimization runs for T = 20,000 iterations with learning rate η ∈ {300, 400, 500} (we report the
best curve among these hyper-parameters). All curves are smoothed with a moving-average window
of 2,000 iterations. For all other other estimator-dependent hyper-parameters, we have included all of
them in the configuration files along with source codes.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In preparing this manuscript, we employed Large Language Models (LLMs) as general-purpose
assistive tools in the following ways:

• Literature review support. We used the Deep Research functionality provided by existing AI
platforms to help gather references and draft preliminary summaries of related work.

• Language refinement. We used AI chatbots hosted on multiple platforms to generate the
abstract and to improve the clarity, style, and readability of the manuscript.

• Proof verification. We used AI chatbots to check the logical consistency, correctness, and
completeness of our formal proofs.

• Codes Generation. We also applied the AI agent to generate a part of experimental codes.

All LLM-assisted outputs were critically reviewed, verified, and, where necessary, revised by the
authors. We take full responsibility for the content of this manuscript. LLMs were not involved in
generating research ideas, drawing scientific conclusions, or contributing original insights.
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