Efficient Model Development through Recycling Fine-tuning

Anonymous ACL submission

Abstract

Modern LLMs struggle with efficient updates,
as each new pretrained version requires re-
peating expensive alignment processes. This
challenge also applies to domain- or language-
specific models, where fine-tuning on special-
ized data must be redone for every new base
model release. We propose a method to recy-
cle fine-tuning across model versions by trans-
ferring weight changes—or diff vectors—from
a previously fine-tuned model to a new base
model. We empirically validate this approach
across different open-weight model versions,
showing that transferred diff vectors can sig-
nificantly enhance the performance of the new
base model, often achieving results competi-
tive with direct fine-tuning. Through controlled
experiments, we establish that fine-tuning trans-
fer is most effective when the source and tar-
get models are linearly connected in the pa-
rameter space. Additionally, we apply our
approach to multilingual model development
and show that recycling fine-tuning can im-
prove performance on target-language tasks
without additional training. Furthermore, we
demonstrate that recycling fine-tuning provides
a stronger and more computationally efficient
starting point for fine-tuning. Finally, we in-
troduce an iterative recycling-then-finetuning
approach for continuous model development,
which further enhances efficiency and effective-
ness. Our findings suggest that recycling fine-
tuning is a viable strategy for reducing training
costs while maintaining model performance.

1 Introduction

Modern LLMs are developed in two main stages:
(1) pretraining on vast text corpora using self-
supervised objectives such as next-word prediction,
and (2) post-training, which involves additional
alignment steps, such as supervised fine-tuning
and reinforcement learning to align the model with
human preferences. While this approach yields

)
mg fine-tuning my
e.g., pretrained instruction-tuned
Llama 3.0 A\: m’_ m Llama 3.0
’
- >
[| optional
ﬂl‘ H fine-tuning
pretrained [® - m + A T s
Llama 3.1

Figure 1: To recycle fine-tuning (e.g., instruction tun-
ing) from a source model version s (e.g., Llama 3.0) to
a target version t (Llama 3.1), we compute the diff vec-
tor A; = m/, — mg, where m/, is the fine-tuned model
(instruction-tuned Llama 3.0) and m is the base model
(pretrained Llama 3.0) at version s. We then add A, to
the new base model (pretrained Llama 3.1) to approxi-
mate the fine-tuned model at version ¢ (instruction-tuned
Llama 3.1).

powerful and versatile LLMs, it also poses signif-
icant challenges for model updates. Specifically,
each new version of the pretrained model requires
repeating the alignment process, which is costly,
especially for frequent updates. This issue is com-
pounded when developing domain- or language-
specific models, as fine-tuning on specialized data
must be redone for every new base model release.

In this paper, we explore methods to improve
LLM training efficiency by effectively recycling
fine-tuning across model versions. More specif-
ically, we propose reusing and incorporating up-
dates (i.e., weight changes) from a previous model
version to enhance the training efficiency and per-
formance on the newer version. Such an approach
reduces the need to retrain from scratch, thereby
cutting down training time and computational re-
sources.

Our approach (see Figure 1) explores the diff
vector A; = m!, — mg, which represents the
difference between a fine-tuned model m/, (e.g.,
instruction-tuned) and its base model m; (pre-
trained). Intuitively, A encodes the specific

changes in model parameters during fine-tuning,
and can be used to transfer knowledge from a
source model version s (e.g., Llama 3) to a target
(newer) model version ¢ (Llama 3.1). We hypothe-
size that given the same fine-tuning data, these fine-
tuned models exhibit linear relationships between
versions: m/, — mg ~ mj — my. This allows us to
approximate a fine-tuned version of a newer model
without additional fine-tuning: mj; ~ m; + A,.
This is similar to the concept of task vectors (Il-
harco et al., 2023), but rather than transfer between
different tasks using the same model, we focus on
transfer between different versions of the model
trained on the same data.

We first evaluate the feasibility of our proposed
approach by transferring diff vectors across dif-
ferent versions of open-weight models, including
Llama (Dubey et al., 2024), OLMo (OLMo et al.,
2024), and Tiilu (Lambert et al., 2024b). Our re-
sults demonstrate that fine-tuning can be effectively
recycled across model versions. Specifically, merg-
ing the diff vector A from an older version s to
the base model m; of a newer version t results in
a model m; + A, that significantly improves m;’s
performance on various tasks, often achieving com-
petitive results with its fine-tuned counterpart (m})
without requiring additional fine-tuning.

To shed light on when fine-tuning transfer is
most effective, we conduct controlled experiments
using intermediate checkpoints of OLMo 2 as dif-
ferent model versions. By fine-tuning these models
on the same dataset and transferring A, across
checkpoints, we observe that our recycling is most
successful when the source and target models re-
side in a linearly connected region of the parameter
space, indicating linear mode connectivity.

Building on these insights, we further conduct a
case study on multilingual model development. We
fine-tuned the instruction-tuned Llama 3 for spe-
cific languages, then transferring the resulting diff
vectors to the instruction-tuned Llama 3.1. Recy-
cling fine-tuning produces models that outperform
the instruction-tuned Llama 3.1 in the target lan-
guage without requiring additional training, further
demonstrating its effectiveness.

Additionally, we investigate whether the merged
model m; + A, serves as a computationally effi-
cient and effective starting point for fine-tuning.
Our experiments show that initializing fine-tuning
from this merged model accelerates convergence
and improves accuracy compared to training 1m
from scratch. This suggests that recycling fine-

tuning can be a beneficial intermediate step in sce-
narios where retraining is feasible.

Finally, we explore a continuous model devel-
opment scenario where new versions are released
regularly. We introduce an iterative recycling-then-
finetuning approach that incrementally accumulates
fine-tuning updates from previous versions. Our
experiments show that this method consistently en-
hances both training efficiency and model perfor-
mance. In summary, our main contributions are:

* Introducing a method for recycling fine-tuning
across model versions via diff vector transfer.

* Demonstrating that this approach reduces
training costs while maintaining competitive
performance.

 Establishing conditions under which fine-
tuning transfer is most effective, particularly
in linearly connected model spaces.

* Validating the method on multilingual models,
showing improved language-specific perfor-
mance without retraining.

* Proposing recycling-then-finetuning strategies
for efficient model development, further en-
hancing efficiency and performance.

2 Recycling fine-tuning across model
versions

In the development of today’s LLMs, when a new
and improved pretrained model is released, fine-
tuned models (such as those optimized for specific
tasks or languages) need to be retrained to take
advantage of the improvements. To address this
challenge, we explore transferring weight changes
from a source model version s to a target model ver-
sion t, denoted as Rs_,;, to minimize or eliminate
the need for retraining. We first evaluate the feasi-
bility of this approach by directly merging (adding)
the diff vector Ay = m/, — mg, which captures
parameter adaptations from the base model m; to
its fine-tuned counterpart m/, in version s, onto the
new base model m; in version ¢, without additional
gradient-based training. Our results show that fine-
tuning can be effectively recycled across model
versions, as m; + A often performs comparably
to its fine-tuned counterpart m;.

2.1 Experiment setup

We experiment with different open-weight mod-
els, including Llama (Dubey et al.,, 2024),

Model

GSMSK MATH ARCc: GPQA MMLU IFEval

Llama 3.0 8B Instruct 81.1 28.8 82.4 31.5 64.9 76.6
Llama 3.0 8B 55.6 17.3 79.7 22.3 66.7 34.5
+ Az 82.8 44.7 83.0 25.9 70.0 76.6
Llama 3.1 8B Instruct 86.5 50.3 83.8 31.3 72.9 80.5
Llama 3.1 8B 56.6 19.3 79.2 21.9 66.8 36.4
+ Az 79.8 29.9 82.9 32.6 65.1 83.3

Table 1: Recycling fine-tuning significantly improves the new base model’s performance across various tasks,
reaching levels comparable to retraining. As o and Ag ; represent the diff vectors between Llama Instruct and

Llama for versions 3.0 and 3.1, respectively.

OLMo (OLMo et al., 2024), and Tiilu (Lambert
et al., 2024b). We emphasize that our goal is not to
achieve state-of-the-art results but instead to access
the feasibility of recycling fine-tuning (by transfer-
ring weight changes) between model versions. As
such, we explore both transfer directions: from an
older version to a newer version and vice versa.
We provide additional results for OLMo and Tiilu
in Appendix 7.

We evaluate the merged model m; + A,
on a diverse set of benchmarks, including gen-
eral knowledge with MMLU (Hendrycks et al.,
2021a), math with GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021c), reasoning
with ARCc and GPQA (Rein et al., 2024), and
instruction-following with IFEval (Zhou et al.,
2023). We compare its performance against fine-
tuning my directly (i.e., mj}).

2.2 Results and discussion

Recycling fine-tuning substantially boosts the
new base model’s performance: Table 1 shows
our results when recycling fine-tuning (i.e., instruc-
tion tuning) between Llama 3.0 and Llama 3.1.
Strikingly, adding the diff vector A from a differ-
ent model version can transform a non-instruction-
tuned model (i.e., pretrained Llama 3.0 and Llama
3.1) into one (Llama 3.0 + A3 and Llama 3.1
+ As g, respectively) that can follow instructions
well. For instance, this approach yields +42.1%
and +46.9% absolute accuracy improvements on
the instruction-following IFEval benchmark over
Llama 3.0 and Llama 3.1, respectively. Large gains
are also observed across the board on math and rea-
soning benchmarks, including +27.2% over Llama
3.0 and +23.2% over Llama 3.1 on GSM8K. Over-
all, Llama 3.0 benefits more from this recycling
fine-tuning approach than Llama 3.1. The absolute
accuracy improvements via Ag ; are consistently

higher than those of Llama 3.1 + A3 ¢, suggesting
that advanced knowledge and instruction-following
abilities can be efficiently transferred to another
version of the model without extensive retraining.

Recycling fine-tuning can achieve performance
comparable to retraining: Our results also
demonstrate that the merged model m; + Ag can
perform on par with its fine-tuned counterpart m/,
on different tasks. This is particularly true for
Llama 3.0 + As 1, which matches or surpasses
Llama 3.0 Instruct on five out of six tasks we con-
sider. Interestingly, Llama 3.1 + A3 ¢ outperforms
LLama 3.1 Instruct on the GPQA and IFEval bench-
marks. This is a testament to the notion that the
diff vector can effectively encode advanced reason-
ing and instruction-following capabilities. Overall,
our results suggest that recycling fine-tuning pro-
vides an effective and extremely low-cost method
to improve model performance when retraining
is prohibitively expensive. However, the condi-
tions under which this approach is effective remain
murky, which motivates us to conduct controlled
experiments where we fine-tune various model ver-
sions on the same data and evaluate the impact of
recycling fine-tuning across versions (see §3.2).

3 When is recycling fine-tuning effective?

Having demonstrated the effectiveness of recycling
fine-tuning across model versions, we now conduct
controlled experiments to better understand when
this approach is most effective. At a high level, we
treat different checkpoints of a pretrained model as
distinct model versions. We then fine-tune these
model versions on the same data and evaluate the
impact of reusing fine-tuning across them. Our re-
sults show that fine-tuning transfer is most effective
when the source and target models are close within
a linearly connected region of the parameter space,

M1 M2 Mg M4 MS
OLMo27B 132 194 244 645 655
+ Ay 26.6 320 275 19.6
+ Ay 19.0 398 259 173
+ Az 143 25.0 68.6 70.3
+ Ay 11.8 18.0 22.6 77.1
+ Ag 11.9 160 24.0 72.9
Direct FT 45.1 50.7 604 757 755

Table 2: GSMS8K accuracies indicating that stronger
models are better at utilizing recycled fine-tuning, which
is most effective when models are close in the parameter
space. M represents different intermediate pretrained
checkpoints of OLMo 2, while A; denotes the diff vec-
tor from the fine-tuning of version 7. See Appendix C
for MATHS00 results.

indicating linear mode connectivity.

3.1 Experiment setup

We experiment with OLMo 2 7B’s publicly avail-
able intermediate pretrained checkpoints.! Base
OLMo 2 were trained in two stages: (1) general
web-based pretraining stage (stage 1) and (2) mid-
training (stage 2) using high-quality web data and
domain-specific data to enhance STEM-related ca-
pabilities. We select five checkpoints: M (early-
stage 1, at 300K steps), My (mid-stage 1, 600K
steps), M3 (end-stage 1, 929K steps), M, (mid-
stage 2, 6K steps), and Mj (end-stage 2, 12K
steps). We treat M; as distinct model versions
and investigate recycling fine-tuning between them
in both directions: from earlier to later versions and
vice versa. The former can minimize or eliminate
the need for retraining, aligning with our recycling
goal, while the latter can be beneficial in specific
scenarios (e.g., when incorporating new fine-tuning
into an earlier base model yields better results for
a particular use case).

Due to our limited computational resources, su-
pervised fine-tuning with a large instruction tuning
dataset would be prohibitively expensive. As such,
we fine-tune all model versions using Tiilu 3’s math
reasoning instruction tuning data subset, which in-
cludes Tiilu 3 Persona MATH, GSM, and Algebra
(220K examples total). Unless stated otherwise, we
fine-tune each model for 30K steps with a learning
rate of 5e-8 and a batch size of 8§ on 4 NVIDIA
A100-80G GPUs.?

! https://huggingface.co/allenai/OLMo-2-1124-7B
2We use the AdamW optimizer with a linear scheduler and

We evaluate our models on GSM8K and the
MATHS500 (Hendrycks et al., 2021c) subset of
MATH, which includes competition-level math
problems of varying difficulty. We choose these
datasets because fine-tuning on Tiilu 3’s math rea-
soning data significantly improves performance on
them, allowing for a clearer analysis of the impact
of recycling fine-tuning across model versions.

3.2 Results and discussion

Stronger models are better at leveraging re-
cycled fine-tuning: While recycling fine-tuning
can improve performance for M7, Mo, and M3,
the merged models still lag far behind their fine-
tuned counterparts. On GSMSK, the accuracy gaps
between the best merged models and fine-tuned
versions are 26.2%, 24.2%, 20.6% for M, Mo,
and M3, respectively. In contrast, for My, this
gap narrows to 2.8%. Notably, recycling fine-
tuning from M to M5 surpasses direct fine-tuning
(77.1% vs. 75.6%). Similar trends are observed
on MATHS00. This pattern suggests an emergent
ability—effective use of recycled fine-tuning only
emerges when the target base model is sufficiently
strong. In other words, the benefits of recycling
only become significant beyond a certain capability
level.

Recycling works best when models are close in
the parameter space: Our results also suggest
that recycling is most effective when the source
and target models are closely connected in the pa-
rameter space. On both GSM8K and MATH 500,
models M7 and M benefit more from Aj than
from A4 or Ag (4A; denotes the diff vector from ver-
sion M;). Similarly, My and M5 gain more from
Ajs than from A7 or Ay. Overall, M7, Ms, and
M3 form a mutually beneficial group, as do My
and M5. However, recycling fine-tuning across
these two groups can degrade performance. Specif-
ically, My, Mo, and M3 do not benefit from Ay
and Ay, while M4 and M typically benefit only
from Ag.3

a warmup ratio of 0.03. Following OLMo 2 and Tiilu 3, we dis-
able dropout and exclude weight decay for embeddings. The
sequence length is 2048. We use AI2’s Open-Instruct (Lam-
bert et al., 2024b) and OLMES (Gu et al., 2024) repositories
for training and evaluation, respectively.

The only exception is M benefiting from M; and Mo
on MATHS500.

https://huggingface.co/allenai/OLMo-2-1124-7B

4 Efficient multilingual model
development

Having explored recycling fine-tuning for develop-
ing task-specific models, we now turn toward ap-
plying this approach to multilingual model develop-
ment. Specifically, we aim to recycle multilingual
fine-tuning across different versions of the base
model. Unlike previous experiments, we fine-tune
instruction-tuned models instead of pretrained ones
using language-specific data. This follows today’s
common practice of starting with instruction-tuned
models for multilingual tasks. A challenge in this
setting is that state-of-the-art LLMs often include
multilingual data in pretraining and instruction tun-
ing, making it unclear if language-specific fine-
tuning is still necessary. An interesting question is
how effective our recycling fine-tuning approach is
when applied on top of a multilingual instruction-
tuned model. Our results demonstrate that recy-
cling fine-tuning remains effective in this scenario,
provided the base model is still outperformed by its
previous monolingual counterpart. In such a sce-
nario, our method creates models that outperform
the instruction-tuned Llama 3.1 on target-language
tasks without further fine-tuning.

4.1 Experiment setup

We separately fine-tune Llama 3.0 Instruct (ms) on
instruction tuning data for three languages: Mala-
gasy, Sinhala, and Turkish. For monolingual in-
struction tuning, we use Cohere For AIl's Aya
dataset (Singh et al., 2024b) for Malagasy (14.6K
examples) and Sinhala (14.5K examples), and In-
strucTurca (Altinok, 2024) for Turkish (16.7K ex-
amples).* The training follows the procedure in
§3.2. After training, we compute the diff vector
Ay = ml,—mg and add it to Llama 3.1 Instruct m;.
Here, we focus on a low-resource setting and re-
frain from additional training on language-specific
data. We evaluate the models using the Global
MMLU benchmark (Singh et al., 2024a), compar-
ing the merged model m,; + A with the base model
my.

4.2 Results and discussion

Recycling fine-tuning is effective for multilin-
gual model development: Our results in Table
3 highlight the advantages of recycling fine-tuning

*The original InstrucTurca dataset contains 2.58M exam-
ples, but we sampled 6.5% of the data (roughly 16.7K exam-
ples) to simulate a low-resource setting.

Model Malagasy Sinhala Turkish
Llama 3.0 8B Instruct 23.1 23.3 30.8
+FT 30.8 29.0 432
Llama 3.1 8B Instruct 27.6 33.0 27.7
+ Az 323 323 43.2

Table 3: Recycling fine-tuning boosts multilingual per-
formance on Global MMLU without retraining. Ag g
represents the diff vector between Llama 3.0 Instruct
and its fine-tuned (FT) version.

Ml MQ M3 M4 MS
OLMo 2 7B 13.2 194 24.4 64.5 65.5

+A; = FT 56.9,505 62.8,505 T7.8505 78.6.500
+ AZ — FT 50-1+31 1 62.7+22_9 78-6+52.7 78'7+61.4
+ A3 - FT 485, 57.6,5, T77.6,00 788,55
+ Ay = FT 4825, 56.7,5; 63.7,4, T7.2.01
+As - FT 481, 55.6,506 63.5,55 76.2,35

Direct FT 45.1 50.7 60.4 75.7 75.5

Table 4: GSMS8K accuracies showing that recycling
fine-tuning provides a stronger starting point for fine-
tuning (FT). Numbers in subscript indicate improvement
over the baseline without fine-tuning. M, represents
different intermediate pretrained checkpoints of OLMo
2, while A; denotes the diff vector from the fine-tuning
of version 7. See Appendix D for MATH500 results.

for multilingual model development. For Malagasy
and Turkish, applying the difference vector from
Llama 3.0 Instruct to Llama 3.1 yields substantial
accuracy gains (+4.7% and +15.5% respective ac-
curacy improvements). Additionally, it improves
the fine-tuned version of Llama 3.0 Instruct on
Malagasy (+1.5%) while maintaining comparable
performance on Turkish. This is particularly ap-
pealing to the multilingual community, as it enables
model improvement at an extremely low cost by
leveraging prior fine-tuning and an updated base
model.

On the other hand, for Sinhala, recycling fine-
tuning provides no advantage since Llama 3.1 In-
struct already performs better than the previously
fine-tuned Llama 3.0 Instruct. That said, even in
this case, recycling does not significantly affect
performance.

5 Recycling as a starting point for
fine-tuning

So far, we have considered a scenario where fine-
tuning is reused across model versions without ad-
ditional gradient-based training. Now, we switch
gears to investigate whether the merged model
m; + Ay can serve as a stronger and more com-

M3
70

60

50

40

Accuracy

30

20

0 5000 10000 15000 25000 30000

20000

Number of finetuning steps

Ms
80

75

70

Accuracy

65

60

0 5000

10000 15000 20000 25000 30000

Number of finetuning steps

Figure 2: GSM8K performance showing that recycling fine-tuning provides a more computationally efficient starting
point for fine-tuning. M represents different intermediate pretrained checkpoints of OLMo 2, while A; denotes
the diff vector from the fine-tuning of version ¢. Appendix E contains results for other model versions.

putationally efficient starting checkpoint for fine-
tuning. In our controlled experiments, we compare
fine-tuning the merged model m; + A with di-
rectly fine-tuning m;. Our results demonstrate that
initializing fine-tuning with m; + A often leads to
faster convergence and higher performance on both
seen and unseen tasks. This indicates that recycling
fine-tuning between model versions can be a useful
intermediate step in scenarios where retraining is
feasible.

5.1 Experiment setup

For training, we follow the procedure outlined
in §3.2. For evaluation, we use GSM8K and
MATHS500, as well as several additional datasets to
assess how well our recycling-then-finetuning ap-
proach generalizes to unseen tasks, including PhD-
level science questions with GPQAp;,mona (Rein
et al., 2024), tabular math word problems with
TabMWP (Lu et al., 2023), and elementary school
math word problems with ASDiv (Miao et al.,
2020).

5.2 Results and discussion

Recycling-then-finetuning can substantially
boost performance: Our results are summarized
in Tables 4, 5 and Figure 2. As can be
seen, recycling-then-finetuning offers significant
improvements over the vanilla recycling approach
(without additional training) on both GSM8K and
MATHS00. On GSMSK, the largest accuracy im-
provements are +36.4%, +39.6%, +41.1%, +52.7%,
and +61.4% for My, My, M3, My, and M5, re-
spectively. These gains are most notable for weaker
base models (M7, M2, and M3) regardless of the
diff vector used or for stronger base models paired

with a weak diff vector (e.g., M5 + Ay). Interest-
ingly, for each base model M;, fine-tuning helps
bridge the performance gap between the merged
models M; + A; (i # 7). For example, fine-tuning
significantly boosts the performance of Mz + Ay
and My + Ay from 10.6% and 17.3% to 78.6%
and 78.7%, respectively, closing the gap with the
fine-tuned versions of M5 + A3 (78.8%) and M5 +
Ay (77.2%). This reduces the need to pre-select the
best diff vector when multiple options are available.
Notably, recycling-then-finetuning generally out-
performs standard fine-tuning (without recycling)
regardless of the diff vector used.

Recycling-then-finetuning can offer faster con-
vergence: Using the merged model m; + Ay as
the initial checkpoint enhances training efficiency.
As illustrated in Figure 2, on the GSMS8K dataset,
ms + As not only converges significantly faster
than m; during fine-tuning but also achieves higher
peak accuracy. These results demonstrate the ad-
vantages of recycling-based fine-tuning over stan-
dard fine-tuning without recycling. Overall, our
findings suggest that recycling-then-fine-tuning of-
fers a cost-effective way to reduce the number of
fine-tuning steps, thereby improving training effi-
ciency.

Effect of recycling-then-finetuning on model
generalization Recycling-then-finetuning does
not negatively impact model generalization. As
shown in Table 5, this method attains strong
zero-shot generalization on the three unseen tasks,
similar to standard fine-tuning without recycling.
These results suggest that recycling-then-finetuning
does not lead to overfitting, which demonstrates its

GPQApiamonda TabMWP ASDiv Algorithm 1 Iterative recycling-then-finetuning
MSA(OLMO 27B) ig; ié-i ;ii 1: Notation: FT denotes fine-tuning.
Jf ! i i - 2: Input: Base models M, Mo, ..., M,
Direct FT 262 8.5 818 3: Output: Fine-tuned M7, M5, ..., M»
Table 5: Recycling-then-finetuning does not hinder 4 MT% FT(M)
model generalization. Here, we apply the diff vector Ay 5: fori =2tondo
from a previous OLMo 2 pretrained version (M) to a 6: Aztﬂ“ =M;_ | — M¢—1
newer pretrained version (M3). 7: M+ FT(M; + Alter)
8: end for
9: return M}, M5, ... My
broad applicability across diverse tasks.
6 Iterative recycling-then-finetuning for 5 ! >
improved performance and efficiency OLMo27B 244 645 655
+ Adir 62.7 77.6 772
We now leverage the insights from our previous + Atter 67.0 773 1775
experiments to explore a continuous model devel- Direct FT 604 75.7 75.6

opment setting where new versions of a pretrained
model are regularly released. The basic idea be-
hind our approach is an iterative recycling-then-
finetuning strategy that incrementally incorporates
fine-tuning updates, i.e., diff vectors, from past
model versions. Instead of applying only the latest
diff vector to the new base model, we recycle all
previous diff vectors. Specifically, inspired by the
success of our recycling-then-finetuning strategy,
the diff vector at the current model version is car-
ried forward to the next for subsequent fine-tuning.
Our experiments show that this iterative recycling
approach consistently improves both training effi-
ciency and model performance.

6.1 Iterative recycling-then-finetuning

We treat the five intermediate checkpoints of OLMo
2 T B—M1, M1, Mo, M3, My, M5 (described
in §3.2) as different model versions of the pre-
trained OLMo 2 model. Our iterative recycling-
then-finetuning algorithm, outlined in Algorithm 1,
works as follows: At each iteration ¢, we first apply
the most recent diff vector, A", to the new base
model M; and then fine-tune it. Next, we compute
a new diff vector between the fine-tuned model
and the current base model M;. This diff vector is
then carried forward to the next model version for

fine-tuning in the subsequent iteration.

We denote our iterative recycling-then-
finetuning approach as Aj:, and compare it to
Ag;r, a direct recycling-then-finetuning approach
that applies the diff vector from the latest model
version directly to the current model. For training,
we follow the procedure outlined in §3.2.

Table 6: Comparison of direct (A% and iterative
(A™e7) recycling-then-finetuning. M and My’s re-
sults are omitted as these models remain identical across
approaches (see Algorithm 1). Both methods signif-
icantly boost GSM8K performance, surpassing stan-
dard fine-tuning without recycling (Direct FT). See Ap-
pendix F for results without fine-tuning.

6.2 Results and discussion

Iterative recycling-then-finetuning significantly
improves performance: Table 6 shows the per-
formance of our two recycling approaches: di-
rect recycling-then-finetuning (Ag;,-) and itera-
tive recycling-then-finetuning (Ajze). Both ap-
proaches lead to significant performance improve-
ments across model versions on GSM8K, with
larger gains observed in earlier versions. For in-
stance, Az achieves absolute accuracy improve-
ments of +42.6%, +12.8%, and +12% over M3,
My, and M3, respectively. Both approaches also
outperform the standard fine-tuning baseline (with-
out recycling) by a substantial margin. Specifi-
cally, Ay yields average accuracy improvements
of +6.6% on M3 and +1.9% on M35 compared
to standard fine-tuning. Overall, Az, either per-
forms similarly to or significantly better than A g,
across model versions. These results suggest that
in scenarios where the base model is continuously
updated, adopting an iterative recycling strategy is
beneficial.

Iterative recycling-then-finetuning leads to
faster convergence: Figure 3 shows that both
recycling approaches—iterative recycling-then-

70

60

50

40

Accuracy

-— M3
—— M3+ AT
M3 +Alfer

30

20

0 5000 10000 15000 20000 25000 30000

Number of finetuning steps

M
80 >

75

70

Accuracy

- Ms
65 + M5+Ad’r
Ms + Aiter

60

0 5000 10000 15000 20000 25000 30000

Number of finetuning steps

Figure 3: GSMSK performance showing that recycling-then-finetuning (A%") and iterative recycling-then-finetuning

(Atter) offer faster convergence.

finetuning (Ajzr) and direct recycling-then-
finetuning (A%")—offer more computationally effi-
cient starting points for fine-tuning. Overall, A,
consistently outperforms A% in terms of training
efficiency and significantly improves upon stan-
dard fine-tuning (without recycling). These find-
ings suggest that iterative recycling not only im-
proves model performance but also boosts training
efficiency, effectively leveraging the knowledge
encoded in diff vectors across different model ver-
sions.

7 Related work

Most prior work focuses on recycling fine-tuning
across tasks with the same base model (Vu et al.,
2022, 2020; Ilharco et al., 2023; Yadav et al., 2023;
Yu et al., 2024), while we explore recycling fine-
tuning across different model versions, architec-
tures, and sizes trained on the same data. Previous
studies (Lester et al., 2022; Su et al., 2022) also
examine recycling fine-tuning across architectures
and sizes, but they focus on soft prompts with non-
instruction-tuned models, whereas we utilize the
diff vectors between model versions. Addition-
ally, some work reuses small models for large ones
by duplicating (Chen et al., 2022), progressively
stacking (Gong et al., 2019), or merging parame-
ters (Wang et al., 2023). Another line of research
suggests that model updates can be transferred in
a continual context, where prior knowledge from
earlier iterations is used to enhance adaptation and
efficiency over time. Qin et al. (2023) explores
recyclable tuning in the continual pre-training pro-
cess, highlighting the benefits of reusing fine-tuned
weights when transitioning to an upgraded model.
Our work differs by providing a comprehensive

evaluation of model update recycling in a model
development setup, specifically focusing on reusing
fine-tuned updates across different model versions
to improve LLM training efficiency.

8 Conclusion

In this paper, we present a novel approach for recy-
cling fine-tuning across different versions of LLMs,
addressing the inefficiencies of retraining when
new base models are introduced. Our method lever-
ages diff vectors to transfer fine-tuning updates,
significantly reducing the need for repeated fine-
tuning while preserving competitive performance.
Empirical evaluations across various open-weight
model versions confirm the effectiveness of this
approach, particularly when the source and target
models are linearly connected. Additionally, we
demonstrate its applicability in multilingual model
development and show that recycled fine-tuning
serves as a strong initialization for further train-
ing, accelerating convergence and improves perfor-
mance. We further extend our approach to continu-
ous model development, where iterative recycling
progressively enhances performance while mini-
mizing computational costs. Our results establish
recycling fine-tuning as a practical and efficient
strategy for sustaining high-quality LLM updates
with reduced training overhead, paving the way
for more sustainable AI model development. We
hope that our approach can help the community
keeps pace with the rapid advancements in LLM
development.

9 Limitations

Our experiments focus on evaluating supervised
fine-tuning as a post-training method, using math

reasoning instruction data for fine-tuning. To im-
prove generalization, it is important to explore
a broader range of downstream tasks and post-
training techniques, such as reinforcement learn-
ing with human feedback (RLHF), across different
LLM capabilities. Expanding our approach to en-
compass more aspects of model development offers
a promising direction for further exploration.

10 Ethical considerations and risks

Our approach aims to improve the efficiency of
LLM development by reducing the need for exten-
sive fine-tuning. However, this method carries cer-
tain risks. One concern is that reusing fine-tuning
updates may inadvertently transfer biases or unde-
sirable behaviors from one model to another, espe-
cially if the source model contains such issues.

Although this approach lowers computational
costs, it does not negate the need for careful model
design to ensure ethical behavior. Thus, respon-
sible implementation of this technique is crucial.
Future research should explore its ethical impli-
cations across different model architectures and
training approaches.

References

Duygu Altinok. 2024. Instructurca: A diverse instruc-
tional content dataset for turkish.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang,
Yujia Qin, Fengyu Wang, Zhi Wang, Xiao Chen,
Zhiyuan Liu, and Qun Liu. 2022. bert2BERT: To-
wards reusable pretrained language models. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 2134-2148.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei
Wang, and Tieyan Liu. 2019. Efficient training of
BERT by progressively stacking. In Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 2337-2346. PMLR.

Yuling Gu, Oyvind Tafjord, Bailey Kuehl, Dany Had-
dad, Jesse Dodge, and Hannaneh Hajishirzi. 2024.
Olmes: A standard for language model evaluations.
arXiv preprint arXiv:2406.08446.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. In International Conference on Learning
Representations.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021b. Measuring massive multitask language un-
derstanding. Preprint, arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021c. Measuring mathematical
problem solving with the MATH dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Gabiriel Ilharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. 2023. Editing models with task arithmetic.
In The Eleventh International Conference on Learn-
ing Representations.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le
Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini,
Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and
Hannaneh Hajishirzi. 2024a. Tiilu 3: Pushing fron-
tiers in open language model post-training.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V Miranda, Alisa Liu, Nouha Dziri,
Shane Lyu, et al. 2024b. Tiilu 3: Pushing frontiers in
open language model post-training. arXiv preprint
arXiv:2411.15124.

Brian Lester, Joshua Yurtsever, Siamak Shakeri, and
Noah Constant. 2022. Reducing retraining by re-
cycling parameter-efficient prompts. arXiv preprint
arXiv:2208.05577.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy
Gur-Ari, and Vedant Misra. 2022. Solving quan-
titative reasoning problems with language models.
Preprint, arXiv:2206.14858.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2023. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning. In The Eleventh International Conference
on Learning Representations.

https://huggingface.co/datasets/turkish-nlp-suite/InstrucTurca
https://huggingface.co/datasets/turkish-nlp-suite/InstrucTurca
https://huggingface.co/datasets/turkish-nlp-suite/InstrucTurca
https://aclanthology.org/2022.acl-long.151/
https://aclanthology.org/2022.acl-long.151/
https://aclanthology.org/2022.acl-long.151/
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2407.21783
https://proceedings.mlr.press/v97/gong19a.html
https://proceedings.mlr.press/v97/gong19a.html
https://proceedings.mlr.press/v97/gong19a.html
https://arxiv.org/abs/2406.08446
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=6t0Kwf8-jrj
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2208.05577
https://arxiv.org/abs/2208.05577
https://arxiv.org/abs/2208.05577
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://arxiv.org/abs/2206.14858
https://openreview.net/forum?id=DHyHRBwJUTN
https://openreview.net/forum?id=DHyHRBwJUTN
https://openreview.net/forum?id=DHyHRBwJUTN
https://openreview.net/forum?id=DHyHRBwJUTN
https://openreview.net/forum?id=DHyHRBwJUTN

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2020. A diverse corpus for evaluating and developing
English math word problem solvers. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 975-984, Online.
Association for Computational Linguistics.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groen-
eveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling
Gu, Shengyi Huang, Matt Jordan, et al. 2024. 2 olmo
2 furious. arXiv preprint arXiv:2501.00656.

Yujia Qin, Cheng Qian, Xu Han, Yankai Lin, Huadong
Wang, Ruobing Xie, Zhiyuan Liu, Maosong Sun,
and Jie Zhou. 2023. Recyclable tuning for contin-
ual pre-training. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 11403—
11426.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2024. GPQA:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Shivalika Singh, Angelika Romanou, Clémentine Four-
rier, David I Adelani, Jian Gang Ngui, Daniel Vila-
Suero, Peerat Limkonchotiwat, Kelly Marchisio,
Wei Qi Leong, Yosephine Susanto, et al. 2024a.
Global mmlu: Understanding and addressing cul-
tural and linguistic biases in multilingual evaluation.
arXiv preprint arXiv:2412.03304.

Shivalika Singh, Freddie Vargus, Daniel D’souza,
Borje Karlsson, Abinaya Mahendiran, Wei-Yin Ko,
Herumb Shandilya, Jay Patel, Deividas Mataciu-
nas, Laura O’Mahony, Mike Zhang, Ramith Het-
tiarachchi, Joseph Wilson, Marina Machado, Luisa
Moura, Dominik Krzeminski, Hakimeh Fadaei, Irem
Ergun, Ifeoma Okoh, Aisha Alaagib, Oshan Mu-
dannayake, Zaid Alyafeai, Vu Chien, Sebastian
Ruder, Surya Guthikonda, Emad Alghamdi, Sebas-
tian Gehrmann, Niklas Muennighoff, Max Bartolo,
Julia Kreutzer, Ahmet Ustiin, Marzieh Fadaee, and
Sara Hooker. 2024b. Aya dataset: An open-access
collection for multilingual instruction tuning. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 11521-11567.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Huadong Wang, Kaiyue Wen, Zhiyuan
Liu, Peng Li, Juanzi Li, Lei Hou, Maosong Sun, and
Jie Zhou. 2022. On transferability of prompt tuning
for natural language processing. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3949-3969.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou’,
and Daniel Cer. 2022. SPoT: Better frozen model
adaptation through soft prompt transfer. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 5039-5059.

10

Tu Vu, Tong Wang, Tsendsuren Munkhdalai, Alessan-
dro Sordoni, Adam Trischler, Andrew Mattarella-
Micke, Subhransu Maji, and Mohit Iyyer. 2020. Ex-
ploring and predicting transferability across NLP
tasks. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 7882-7926.

Peihao Wang, Rameswar Panda, Lucas Torroba Hen-
nigen, Philip Greengard, Leonid Karlinsky, Roge-
rio Feris, David Daniel Cox, Zhangyang Wang, and
Yoon Kim. 2023. Learning to grow pretrained mod-
els for efficient transformer training. In The Eleventh
International Conference on Learning Representa-
tions.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2023. Ties-merging: Re-
solving interference when merging models. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 7093-7115.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings
of Machine Learning Research, pages 57755-57775.
PMLR.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo
Liang, Shuai Lu, Yanlin Wang, Amin Saied, Weizhu
Chen, and Nan Duan. 2023. Agieval: A human-
centric benchmark for evaluating foundation models.
Preprint, arXiv:2304.06364.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Sid-
dhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. 2023. Instruction-following evalu-
ation for large language models. arXiv preprint
arXiv:2311.07911.

A Additional results for recycling
fine-tuning

We provide the evaluation from Tulu 3 and
OLMo2, inclduing results on mathematical
(GSMS8K, MATH), reasoning skills (ARC Chal-
lenge and GPQA) and general knowledge
(MMLU), instruction-following abilities (IFEval),
shown in Table 7. In the following, we specifically
discuss the evaluation details.

https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://doi.org/10.18653/v1/2020.acl-main.92
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://aclanthology.org/2023.findings-acl.723/
https://aclanthology.org/2023.findings-acl.723/
https://aclanthology.org/2023.findings-acl.723/
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://openreview.net/forum?id=Ti67584b98
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://arxiv.org/abs/2412.03304
https://aclanthology.org/2024.acl-long.620/
https://aclanthology.org/2024.acl-long.620/
https://aclanthology.org/2024.acl-long.620/
https://aclanthology.org/2022.naacl-main.290/
https://aclanthology.org/2022.naacl-main.290/
https://aclanthology.org/2022.naacl-main.290/
https://aclanthology.org/2022.acl-long.346/
https://aclanthology.org/2022.acl-long.346/
https://aclanthology.org/2022.acl-long.346/
https://aclanthology.org/2020.emnlp-main.635/
https://aclanthology.org/2020.emnlp-main.635/
https://aclanthology.org/2020.emnlp-main.635/
https://aclanthology.org/2020.emnlp-main.635/
https://aclanthology.org/2020.emnlp-main.635/
https://openreview.net/forum?id=cDYRS5iZ16f
https://openreview.net/forum?id=cDYRS5iZ16f
https://openreview.net/forum?id=cDYRS5iZ16f
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://proceedings.neurips.cc/paper_files/paper/2023/file/1644c9af28ab7916874f6fd6228a9bcf-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1644c9af28ab7916874f6fd6228a9bcf-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1644c9af28ab7916874f6fd6228a9bcf-Paper-Conference.pdf
https://proceedings.mlr.press/v235/yu24p.html
https://proceedings.mlr.press/v235/yu24p.html
https://proceedings.mlr.press/v235/yu24p.html
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2304.06364
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

Models GSMS8K MATH ARC¢c GPQA MMLU IFEval
Tiilu 3 8B SFT 76.2 31.6 79.1 31.0 65.1 72.0
Tiilu 3 8B DPO 84.1 424 79.6 333 68.4 81.7
Tiilu 3 8B Instruct 87.9 434 79.4 344 67.9 81.5
Llama 3.0 8B 55.6 17.3 79.7 22.3 66.7 76.6
+ Agpr 71.8 26.3 77.9 32.1 63.5 69.1
+ Appo 81.1 38.1 78.6 31.9 67.5 82.9
+ Arr 85.1 37.6 79.1 324 66.2 824
OLMo 2 7B 67.2 19.2 79.9 20.5 63.6 23.0
OLMo 2 7B SFT 71.7 25.2 79.7 27.9 61.2 67.7
OLMo 2 7B DPO 82.5 31.3 80.5 30.6 62.1 73.2
OLMo 2 7B Instruct 85.3 29.7 80.6 29.7 63.3 75.6
OLMo 2 Initial 2.5 1.6 25.7 18.1 25.0 12.2
+Agpr 2.2 0.8 23.8 1.3 14 13.7
+ Appo 2.1 0.8 24.1 1.1 1.3 13.7
+ Apr 2.0 0.8 241 0.6 14 13.3
OLMo 2 Stage 1 24.4 5.7 72.7 15.4 59.8 15.7
+Agpr 31.7 8.4 74.3 24.8 55.4 514
+ Appo 40.4 9.3 75.0 29.9 56.6 68.0
+ A7 40.2 10.3 75.1 29.9 56.7 68.3
OLMo 2 Final 63.7 17.5 78.6 22.5 62.6 16.1
+Agpr 71.1 23.7 79.0 28.3 59.7 64.3
+ Appo 79.9 27.8 79.3 29.0 63.1 72.6
+ Arr 82.8 27.7 79.3 27.2 62.2 72.1

Table 7: Evaluation results on mathematical (GSM8K, MATH), reasoning (ARC Challenge, GPQA), general
knowledge (MMLU), and instruction-following (IFEval) abilities. OLMo 2 Initial, OLMo 2 Stage 1, and OLMo 2
Final represent different versions at various stages of the mid-training phase..

B Evaluation details

Our evaluation follows standard practices from
prior works and established evaluation tool. We di-
vide the evaluation process into two categories: (1)
LLaMA-based evaluations, which follow configu-
rations used in prior LLaMA model assessments,
and (2) Olmo2 and Tiilu3-based evaluations, which
adhere to the evaluation setup from Tiilu3 model
development. We ensure consistency in shot con-
figuration (zero-shot, few-shot), chain-of-thought
(CoT) prompting, and answer extraction method-
ologies. Below, we provide details for each bench-
mark.

GSMS8K We use an 8-shot CoT setup as in Wei
et al. (2023), with greedy sampling. The final nu-
merical value in the response is extracted as the
predicted answer. The maximum generation length
is 1024 tokens. The same 8-shot CoT evaluation

11

is applied, following the Tiilu 3 (Lambert et al.,
2024a) methodology with identical answer extrac-
tion procedures.

MATH Pre-trained models follow a 4-shot setup
based on Lewkowycz et al. (2022), with a maxi-
mum generation length of 512 tokens. Post-trained
models are evaluated using a 0-shot CoT prompt,
enhanced with symbolic computation (sympy) for
answer validation. Complex expressions are re-
solved using an equality template with a judge,
and the maximum generation length is 5120 to-
kens. Evaluation remains consistent with the Tiilu
3 setup, using a 4-shot CoT approach and a flexi-
ble answer extraction strategy to handle formatting
inconsistencies.

ARC-Challenge We follow the official evalua-
tion setups: 25-shot for LLaMA pretrained models,
0-shot for instruction-tuned models, and 5-shot for

My Mz Mz My Ms
OLMo27B 14.6 11.6 114 11.6 16.6
+ A 88 17.8 192 156
+ Ao 7.6 12.6 146 144
+ Ag 8.0 9.4 234 27.8
+ Ay 7.8 8.0 9.8 34.2
+ Ag 8.0 74 112 30.6
Direct FT 45.1 50.7 604 757 755

Table 8: MATHS500 accuracies also demonstrate that
strong models, e.g. M, and M5 are better at utilizing
recycled fine-tuning.

Tiilu3 and OLMo?2.

GPQA A zero-shot setup is adopted, following
the Zhong et al. (2023), where the model selects
the correct answer from multiple choices. The
same zero-shot evaluation and answer extraction
procedure as in Tiilu 3 (Lambert et al., 2024a) is
used.

MMLU Pre-trained models are evaluated in a 5-
shot setting, using the standard MMLU (Hendrycks
et al., 2021b) prompt to compute negative log-
likelihood (NLL) over answer choices. Post-trained
models are tested in both 5-shot and O-shot settings,
with the latter incorporating a CoT prompt where
the model generates a reasoning step before an-
swering. The maximum generation length is 10
tokens for 5-shot and 1024 tokens for 0-shot eval-
uations. Macro average scores are reported unless
otherwise specified. Evaluation follows the Tiilu 3
zero-shot CoT approach, ensuring consistency in
methodology.

IFEval We use Prompt-level scores and
instruction-level strict and loose accuracy are
computed, with final results reported as the average
across these metrics. The same setup is applied,
following the programmatic constraint verification
method used in Tiilu 3 (Lambert et al., 2024a).

DROP A 3-shot setup is used for pre-trained
models, with few-shot examples randomly drawn
from the training split. F1 scores are reported, and
the maximum generation length is set to 32 tokens.
This 3-shot evaluation setup is maintained, with
greedy sampling following the Tiilu 3 (Lambert
et al., 2024a) methodology.

C Results on recycling fine-tuning

Table 9 show additional results for MATHS500, fur-
ther illustrating the impact of fine-tuning transfer

12

M1 ./\/12 /\/l3 M4 MS
OLMo 2 7B 14.6 11.6 11.4 11.6 16.6
+ A1 — FT 21-0+1z.2 23~0+5.2 32-0+|2.x 34'2+18,6
+ AZ — FT 16'2+8.6 26'2+]3.6 31-6+170 31'0+]66
+ A3 - FT 184, 21.2,,; 31.0,76 34.04,
+Ay —-FT 174, 19.0,,,0 23.8,140 36.2,,,
+ A5 - FT 17.2,, 214,.,, 25.0,55 30.4,,
Direct FT 13.4 17.6 21.6 31.4 33

Table 9: MATHS00 accuracies provide another evidence
to support recycling fine-tuning provides a stronger start-
ing point for fine-tuning (FT).

Ml Mz M3 M4 MS
OLMo 2 7B 23.7 242 23.2 26.2 25.2
+A; = FT 252.0 25.1., 333, 25.7.;
+As = FT 27.7,,, 252,50 30846 272,
+ A3 - FT 277, 27.7;; 23.7,5s 23.2,,
+ Ay > FT 247., 247.s 262., 28.2..,
+As - FT 26.7,5, 267,5s 232, 2574
Direct FT 25.7 26.7 26.7 19.1 26.2

Table 10: GPQAp;,mong results from the direct recycling-
then-finetuning approach.

across different model versions.

D Results on recycling-then-finetuning

We presented the direct recycling-then-finetuning
approach for MATHS500 in Table 9, while Table 10
reports our GPQAp;,mong results.

E Training dynamics of
recycling-then-finetuning

Figure 4 show the training dynamics of M1, My
and My.

F Result on iterative
recycling-then-finetuning

Table 11 presents the comparison comparison be-
tween iterative recycling-then-finetuning (A%¢")
and direct recycling-then-finetuning (A%") on
GSMBSK.

60 60

50

40

30

Accuracy
Accuracy
Accuracy
o
3

20

10 10 60
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000

Number of finetuning steps Number of finetuning steps Number of finetuning steps

Figure 4: Across different model versions, M, My, My, recycling fine-tuning provides a more computationally
efficient starting point for fine-tuning on GSM8K.

Ms My M;
OLMo27B 244 645 65.5
+ Adir 399 68.6 77.1

+ Alter 36.8 70.1 77.2

Table 11: Evaluation of merged models using iterative
recycling-then-finetuning A“¢" , compared to the direct
recycling-then-finetuning approach A%" on GSMSK.

13

FT on Tulu3 Math M; My Msj My M

tokens 12T 25T 39T 39T+26B 3.9T+50B
OLMo 2 7B 132 194 244 64.5 65.5
5K 309 41.0 449 67.3 70.1
10K 36.2 453 50.7 69.6 71.4
15K 40.5 46.6 529 71.5 73.8
20K 424 503 56.0 72.8 73.6
25K 434 49.7 59.0 73.9 74.9
30K 45.1 50.7 604 75.7 75.5

Table 12: GSMS8K performance from fine-tuning with 30K steps. Different OLMo 2 checkpoints are trained on
Tiilu 3 Persona MATH, GSM, and Algebra265 (220K examples in total).

14

	Introduction
	Recycling fine-tuning across model versions
	Experiment setup
	Results and discussion

	When is recycling fine-tuning effective?
	Experiment setup
	Results and discussion

	Efficient multilingual model development
	Experiment setup
	Results and discussion

	Recycling as a starting point for fine-tuning
	Experiment setup
	Results and discussion

	Iterative recycling-then-finetuning for improved performance and efficiency
	Iterative recycling-then-finetuning
	Results and discussion

	Related work
	Conclusion
	Limitations
	Ethical considerations and risks
	Additional results for recycling fine-tuning
	Evaluation details
	Results on recycling fine-tuning
	Results on recycling-then-finetuning
	Training dynamics of recycling-then-finetuning
	Result on iterative recycling-then-finetuning

