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Abstract

Modern LLMs struggle with efficient updates,001
as each new pretrained version requires re-002
peating expensive alignment processes. This003
challenge also applies to domain- or language-004
specific models, where fine-tuning on special-005
ized data must be redone for every new base006
model release. We propose a method to recy-007
cle fine-tuning across model versions by trans-008
ferring weight changes—or diff vectors—from009
a previously fine-tuned model to a new base010
model. We empirically validate this approach011
across different open-weight model versions,012
showing that transferred diff vectors can sig-013
nificantly enhance the performance of the new014
base model, often achieving results competi-015
tive with direct fine-tuning. Through controlled016
experiments, we establish that fine-tuning trans-017
fer is most effective when the source and tar-018
get models are linearly connected in the pa-019
rameter space. Additionally, we apply our020
approach to multilingual model development021
and show that recycling fine-tuning can im-022
prove performance on target-language tasks023
without additional training. Furthermore, we024
demonstrate that recycling fine-tuning provides025
a stronger and more computationally efficient026
starting point for fine-tuning. Finally, we in-027
troduce an iterative recycling-then-finetuning028
approach for continuous model development,029
which further enhances efficiency and effective-030
ness. Our findings suggest that recycling fine-031
tuning is a viable strategy for reducing training032
costs while maintaining model performance.033

1 Introduction034

Modern LLMs are developed in two main stages:035

(1) pretraining on vast text corpora using self-036

supervised objectives such as next-word prediction,037

and (2) post-training, which involves additional038

alignment steps, such as supervised fine-tuning039

and reinforcement learning to align the model with040

human preferences. While this approach yields041
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Figure 1: To recycle fine-tuning (e.g., instruction tun-
ing) from a source model version s (e.g., Llama 3.0) to
a target version t (Llama 3.1), we compute the diff vec-
tor ∆s = m′

s −ms, where m′
s is the fine-tuned model

(instruction-tuned Llama 3.0) and ms is the base model
(pretrained Llama 3.0) at version s. We then add ∆s to
the new base model (pretrained Llama 3.1) to approxi-
mate the fine-tuned model at version t (instruction-tuned
Llama 3.1).

powerful and versatile LLMs, it also poses signif- 042

icant challenges for model updates. Specifically, 043

each new version of the pretrained model requires 044

repeating the alignment process, which is costly, 045

especially for frequent updates. This issue is com- 046

pounded when developing domain- or language- 047

specific models, as fine-tuning on specialized data 048

must be redone for every new base model release. 049

In this paper, we explore methods to improve 050

LLM training efficiency by effectively recycling 051

fine-tuning across model versions. More specif- 052

ically, we propose reusing and incorporating up- 053

dates (i.e., weight changes) from a previous model 054

version to enhance the training efficiency and per- 055

formance on the newer version. Such an approach 056

reduces the need to retrain from scratch, thereby 057

cutting down training time and computational re- 058

sources. 059

Our approach (see Figure 1) explores the diff 060

vector ∆s = m′
s − ms, which represents the 061

difference between a fine-tuned model m′
s (e.g., 062

instruction-tuned) and its base model ms (pre- 063

trained). Intuitively, ∆s encodes the specific 064
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changes in model parameters during fine-tuning,065

and can be used to transfer knowledge from a066

source model version s (e.g., Llama 3) to a target067

(newer) model version t (Llama 3.1). We hypothe-068

size that given the same fine-tuning data, these fine-069

tuned models exhibit linear relationships between070

versions: m′
s −ms ≈ m′

t −mt. This allows us to071

approximate a fine-tuned version of a newer model072

without additional fine-tuning: m′
t ≈ mt + ∆s.073

This is similar to the concept of task vectors (Il-074

harco et al., 2023), but rather than transfer between075

different tasks using the same model, we focus on076

transfer between different versions of the model077

trained on the same data.078

We first evaluate the feasibility of our proposed079

approach by transferring diff vectors across dif-080

ferent versions of open-weight models, including081

Llama (Dubey et al., 2024), OLMo (OLMo et al.,082

2024), and Tülu (Lambert et al., 2024b). Our re-083

sults demonstrate that fine-tuning can be effectively084

recycled across model versions. Specifically, merg-085

ing the diff vector ∆s from an older version s to086

the base model mt of a newer version t results in087

a model mt +∆s that significantly improves mt’s088

performance on various tasks, often achieving com-089

petitive results with its fine-tuned counterpart (m′
t)090

without requiring additional fine-tuning.091

To shed light on when fine-tuning transfer is092

most effective, we conduct controlled experiments093

using intermediate checkpoints of OLMo 2 as dif-094

ferent model versions. By fine-tuning these models095

on the same dataset and transferring ∆s across096

checkpoints, we observe that our recycling is most097

successful when the source and target models re-098

side in a linearly connected region of the parameter099

space, indicating linear mode connectivity.100

Building on these insights, we further conduct a101

case study on multilingual model development. We102

fine-tuned the instruction-tuned Llama 3 for spe-103

cific languages, then transferring the resulting diff104

vectors to the instruction-tuned Llama 3.1. Recy-105

cling fine-tuning produces models that outperform106

the instruction-tuned Llama 3.1 in the target lan-107

guage without requiring additional training, further108

demonstrating its effectiveness.109

Additionally, we investigate whether the merged110

model mt + ∆s serves as a computationally effi-111

cient and effective starting point for fine-tuning.112

Our experiments show that initializing fine-tuning113

from this merged model accelerates convergence114

and improves accuracy compared to training mt115

from scratch. This suggests that recycling fine-116

tuning can be a beneficial intermediate step in sce- 117

narios where retraining is feasible. 118

Finally, we explore a continuous model devel- 119

opment scenario where new versions are released 120

regularly. We introduce an iterative recycling-then- 121

finetuning approach that incrementally accumulates 122

fine-tuning updates from previous versions. Our 123

experiments show that this method consistently en- 124

hances both training efficiency and model perfor- 125

mance. In summary, our main contributions are: 126

• Introducing a method for recycling fine-tuning 127

across model versions via diff vector transfer. 128

• Demonstrating that this approach reduces 129

training costs while maintaining competitive 130

performance. 131

• Establishing conditions under which fine- 132

tuning transfer is most effective, particularly 133

in linearly connected model spaces. 134

• Validating the method on multilingual models, 135

showing improved language-specific perfor- 136

mance without retraining. 137

• Proposing recycling-then-finetuning strategies 138

for efficient model development, further en- 139

hancing efficiency and performance. 140

2 Recycling fine-tuning across model 141

versions 142

In the development of today’s LLMs, when a new 143

and improved pretrained model is released, fine- 144

tuned models (such as those optimized for specific 145

tasks or languages) need to be retrained to take 146

advantage of the improvements. To address this 147

challenge, we explore transferring weight changes 148

from a source model version s to a target model ver- 149

sion t, denoted asRs→t, to minimize or eliminate 150

the need for retraining. We first evaluate the feasi- 151

bility of this approach by directly merging (adding) 152

the diff vector ∆s = m′
s − ms, which captures 153

parameter adaptations from the base model ms to 154

its fine-tuned counterpart m′
s in version s, onto the 155

new base model mt in version t, without additional 156

gradient-based training. Our results show that fine- 157

tuning can be effectively recycled across model 158

versions, as mt +∆s often performs comparably 159

to its fine-tuned counterpart m′
t. 160

2.1 Experiment setup 161

We experiment with different open-weight mod- 162

els, including Llama (Dubey et al., 2024), 163
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Model GSM8K MATH ARCC GPQA MMLU IFEval

Llama 3.0 8B Instruct 81.1 28.8 82.4 31.5 64.9 76.6
Llama 3.0 8B 55.6 17.3 79.7 22.3 66.7 34.5

+ ∆3.1 82.8 44.7 83.0 25.9 70.0 76.6

Llama 3.1 8B Instruct 86.5 50.3 83.8 31.3 72.9 80.5
Llama 3.1 8B 56.6 19.3 79.2 21.9 66.8 36.4

+ ∆3.0 79.8 29.9 82.9 32.6 65.1 83.3

Table 1: Recycling fine-tuning significantly improves the new base model’s performance across various tasks,
reaching levels comparable to retraining. ∆3.0 and ∆3.1 represent the diff vectors between Llama Instruct and
Llama for versions 3.0 and 3.1, respectively.

OLMo (OLMo et al., 2024), and Tülu (Lambert164

et al., 2024b). We emphasize that our goal is not to165

achieve state-of-the-art results but instead to access166

the feasibility of recycling fine-tuning (by transfer-167

ring weight changes) between model versions. As168

such, we explore both transfer directions: from an169

older version to a newer version and vice versa.170

We provide additional results for OLMo and Tülu171

in Appendix 7.172

We evaluate the merged model mt + ∆s173

on a diverse set of benchmarks, including gen-174

eral knowledge with MMLU (Hendrycks et al.,175

2021a), math with GSM8K (Cobbe et al., 2021)176

and MATH (Hendrycks et al., 2021c), reasoning177

with ARCC and GPQA (Rein et al., 2024), and178

instruction-following with IFEval (Zhou et al.,179

2023). We compare its performance against fine-180

tuning mt directly (i.e., m′
t).181

2.2 Results and discussion182

Recycling fine-tuning substantially boosts the183

new base model’s performance: Table 1 shows184

our results when recycling fine-tuning (i.e., instruc-185

tion tuning) between Llama 3.0 and Llama 3.1.186

Strikingly, adding the diff vector ∆s from a differ-187

ent model version can transform a non-instruction-188

tuned model (i.e., pretrained Llama 3.0 and Llama189

3.1) into one (Llama 3.0 + ∆3.1 and Llama 3.1190

+ ∆3.0, respectively) that can follow instructions191

well. For instance, this approach yields +42.1%192

and +46.9% absolute accuracy improvements on193

the instruction-following IFEval benchmark over194

Llama 3.0 and Llama 3.1, respectively. Large gains195

are also observed across the board on math and rea-196

soning benchmarks, including +27.2% over Llama197

3.0 and +23.2% over Llama 3.1 on GSM8K. Over-198

all, Llama 3.0 benefits more from this recycling199

fine-tuning approach than Llama 3.1. The absolute200

accuracy improvements via ∆3.1 are consistently201

higher than those of Llama 3.1 + ∆3.0, suggesting 202

that advanced knowledge and instruction-following 203

abilities can be efficiently transferred to another 204

version of the model without extensive retraining. 205

Recycling fine-tuning can achieve performance 206

comparable to retraining: Our results also 207

demonstrate that the merged model mt +∆s can 208

perform on par with its fine-tuned counterpart m′
s 209

on different tasks. This is particularly true for 210

Llama 3.0 + ∆3.1, which matches or surpasses 211

Llama 3.0 Instruct on five out of six tasks we con- 212

sider. Interestingly, Llama 3.1 + ∆3.0 outperforms 213

LLama 3.1 Instruct on the GPQA and IFEval bench- 214

marks. This is a testament to the notion that the 215

diff vector can effectively encode advanced reason- 216

ing and instruction-following capabilities. Overall, 217

our results suggest that recycling fine-tuning pro- 218

vides an effective and extremely low-cost method 219

to improve model performance when retraining 220

is prohibitively expensive. However, the condi- 221

tions under which this approach is effective remain 222

murky, which motivates us to conduct controlled 223

experiments where we fine-tune various model ver- 224

sions on the same data and evaluate the impact of 225

recycling fine-tuning across versions (see §3.2). 226

3 When is recycling fine-tuning effective? 227

Having demonstrated the effectiveness of recycling 228

fine-tuning across model versions, we now conduct 229

controlled experiments to better understand when 230

this approach is most effective. At a high level, we 231

treat different checkpoints of a pretrained model as 232

distinct model versions. We then fine-tune these 233

model versions on the same data and evaluate the 234

impact of reusing fine-tuning across them. Our re- 235

sults show that fine-tuning transfer is most effective 236

when the source and target models are close within 237

a linearly connected region of the parameter space, 238
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M1 M2 M3 M4 M5

OLMo 2 7B 13.2 19.4 24.4 64.5 65.5
+ ∆1 26.6 32.0 27.5 19.6
+ ∆2 19.0 39.8 25.9 17.3
+ ∆3 14.3 25.0 68.6 70.3
+ ∆4 11.8 18.0 22.6 77.1
+ ∆5 11.9 16.0 24.0 72.9

Direct FT 45.1 50.7 60.4 75.7 75.5

Table 2: GSM8K accuracies indicating that stronger
models are better at utilizing recycled fine-tuning, which
is most effective when models are close in the parameter
space.Mi represents different intermediate pretrained
checkpoints of OLMo 2, while ∆i denotes the diff vec-
tor from the fine-tuning of version i. See Appendix C
for MATH500 results.

indicating linear mode connectivity.239

3.1 Experiment setup240

We experiment with OLMo 2 7B’s publicly avail-241

able intermediate pretrained checkpoints.1 Base242

OLMo 2 were trained in two stages: (1) general243

web-based pretraining stage (stage 1) and (2) mid-244

training (stage 2) using high-quality web data and245

domain-specific data to enhance STEM-related ca-246

pabilities. We select five checkpoints:M1 (early-247

stage 1, at 300K steps), M2 (mid-stage 1, 600K248

steps),M3 (end-stage 1, 929K steps),M4 (mid-249

stage 2, 6K steps), and M5 (end-stage 2, 12K250

steps). We treat Mi as distinct model versions251

and investigate recycling fine-tuning between them252

in both directions: from earlier to later versions and253

vice versa. The former can minimize or eliminate254

the need for retraining, aligning with our recycling255

goal, while the latter can be beneficial in specific256

scenarios (e.g., when incorporating new fine-tuning257

into an earlier base model yields better results for258

a particular use case).259

Due to our limited computational resources, su-260

pervised fine-tuning with a large instruction tuning261

dataset would be prohibitively expensive. As such,262

we fine-tune all model versions using Tülu 3’s math263

reasoning instruction tuning data subset, which in-264

cludes Tülu 3 Persona MATH, GSM, and Algebra265

(220K examples total). Unless stated otherwise, we266

fine-tune each model for 30K steps with a learning267

rate of 5e-8 and a batch size of 8 on 4 NVIDIA268

A100-80G GPUs.2269

1
https://huggingface.co/allenai/OLMo-2-1124-7B

2We use the AdamW optimizer with a linear scheduler and

We evaluate our models on GSM8K and the 270

MATH500 (Hendrycks et al., 2021c) subset of 271

MATH, which includes competition-level math 272

problems of varying difficulty. We choose these 273

datasets because fine-tuning on Tülu 3’s math rea- 274

soning data significantly improves performance on 275

them, allowing for a clearer analysis of the impact 276

of recycling fine-tuning across model versions. 277

3.2 Results and discussion 278

Stronger models are better at leveraging re- 279

cycled fine-tuning: While recycling fine-tuning 280

can improve performance forM1,M2, andM3, 281

the merged models still lag far behind their fine- 282

tuned counterparts. On GSM8K, the accuracy gaps 283

between the best merged models and fine-tuned 284

versions are 26.2%, 24.2%, 20.6% forM1,M2, 285

and M3, respectively. In contrast, for M4, this 286

gap narrows to 2.8%. Notably, recycling fine- 287

tuning fromM4 toM5 surpasses direct fine-tuning 288

(77.1% vs. 75.6%). Similar trends are observed 289

on MATH500. This pattern suggests an emergent 290

ability—effective use of recycled fine-tuning only 291

emerges when the target base model is sufficiently 292

strong. In other words, the benefits of recycling 293

only become significant beyond a certain capability 294

level. 295

Recycling works best when models are close in 296

the parameter space: Our results also suggest 297

that recycling is most effective when the source 298

and target models are closely connected in the pa- 299

rameter space. On both GSM8K and MATH 500, 300

modelsM1 andM2 benefit more from ∆3 than 301

from ∆4 or ∆5 (∆i denotes the diff vector from ver- 302

sionMi). Similarly,M4 andM5 gain more from 303

∆3 than from ∆1 or ∆2. Overall,M1,M2, and 304

M3 form a mutually beneficial group, as doM4 305

and M5. However, recycling fine-tuning across 306

these two groups can degrade performance. Specif- 307

ically,M1,M2, andM3 do not benefit from ∆4 308

and ∆5, whileM4 andM5 typically benefit only 309

from ∆3.3 310

a warmup ratio of 0.03. Following OLMo 2 and Tülu 3, we dis-
able dropout and exclude weight decay for embeddings. The
sequence length is 2048. We use AI2’s Open-Instruct (Lam-
bert et al., 2024b) and OLMES (Gu et al., 2024) repositories
for training and evaluation, respectively.

3The only exception is M4 benefiting from M1 and M2

on MATH500.
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4 Efficient multilingual model311

development312

Having explored recycling fine-tuning for develop-313

ing task-specific models, we now turn toward ap-314

plying this approach to multilingual model develop-315

ment. Specifically, we aim to recycle multilingual316

fine-tuning across different versions of the base317

model. Unlike previous experiments, we fine-tune318

instruction-tuned models instead of pretrained ones319

using language-specific data. This follows today’s320

common practice of starting with instruction-tuned321

models for multilingual tasks. A challenge in this322

setting is that state-of-the-art LLMs often include323

multilingual data in pretraining and instruction tun-324

ing, making it unclear if language-specific fine-325

tuning is still necessary. An interesting question is326

how effective our recycling fine-tuning approach is327

when applied on top of a multilingual instruction-328

tuned model. Our results demonstrate that recy-329

cling fine-tuning remains effective in this scenario,330

provided the base model is still outperformed by its331

previous monolingual counterpart. In such a sce-332

nario, our method creates models that outperform333

the instruction-tuned Llama 3.1 on target-language334

tasks without further fine-tuning.335

4.1 Experiment setup336

We separately fine-tune Llama 3.0 Instruct (ms) on337

instruction tuning data for three languages: Mala-338

gasy, Sinhala, and Turkish. For monolingual in-339

struction tuning, we use Cohere For AI’s Aya340

dataset (Singh et al., 2024b) for Malagasy (14.6K341

examples) and Sinhala (14.5K examples), and In-342

strucTurca (Altinok, 2024) for Turkish (16.7K ex-343

amples).4 The training follows the procedure in344

§3.2. After training, we compute the diff vector345

∆s = m′
s−ms and add it to Llama 3.1 Instruct mt.346

Here, we focus on a low-resource setting and re-347

frain from additional training on language-specific348

data. We evaluate the models using the Global349

MMLU benchmark (Singh et al., 2024a), compar-350

ing the merged model mt+∆s with the base model351

mt.352

4.2 Results and discussion353

Recycling fine-tuning is effective for multilin-354

gual model development: Our results in Table355

3 highlight the advantages of recycling fine-tuning356

4The original InstrucTurca dataset contains 2.58M exam-
ples, but we sampled 6.5% of the data (roughly 16.7K exam-
ples) to simulate a low-resource setting.

Model Malagasy Sinhala Turkish

Llama 3.0 8B Instruct 23.1 23.3 30.8
+ FT 30.8 29.0 43.2

Llama 3.1 8B Instruct 27.6 33.0 27.7
+ ∆3.0 32.3 32.3 43.2

Table 3: Recycling fine-tuning boosts multilingual per-
formance on Global MMLU without retraining. ∆3.0

represents the diff vector between Llama 3.0 Instruct
and its fine-tuned (FT) version.

M1 M2 M3 M4 M5

OLMo 2 7B 13.2 19.4 24.4 64.5 65.5
+ ∆1 → FT 56.9+30.3 62.8+30.8 77.8+50.3 78.6+59.0

+ ∆2 → FT 50.1+31.1 62.7+22.9 78.6+52.7 78.7+61.4

+ ∆3 → FT 48.5+34.2 57.6+32.6 77.6+9.0 78.8+8.5

+ ∆4 → FT 48.2+36.4 56.7+38.7 63.7+41.1 77.2+0.1

+ ∆5 → FT 48.1+36.2 55.6+39.6 63.5+39.5 76.2+3.3

Direct FT 45.1 50.7 60.4 75.7 75.5

Table 4: GSM8K accuracies showing that recycling
fine-tuning provides a stronger starting point for fine-
tuning (FT). Numbers in subscript indicate improvement
over the baseline without fine-tuning. Mi represents
different intermediate pretrained checkpoints of OLMo
2, while ∆i denotes the diff vector from the fine-tuning
of version i. See Appendix D for MATH500 results.

for multilingual model development. For Malagasy 357

and Turkish, applying the difference vector from 358

Llama 3.0 Instruct to Llama 3.1 yields substantial 359

accuracy gains (+4.7% and +15.5% respective ac- 360

curacy improvements). Additionally, it improves 361

the fine-tuned version of Llama 3.0 Instruct on 362

Malagasy (+1.5%) while maintaining comparable 363

performance on Turkish. This is particularly ap- 364

pealing to the multilingual community, as it enables 365

model improvement at an extremely low cost by 366

leveraging prior fine-tuning and an updated base 367

model. 368

On the other hand, for Sinhala, recycling fine- 369

tuning provides no advantage since Llama 3.1 In- 370

struct already performs better than the previously 371

fine-tuned Llama 3.0 Instruct. That said, even in 372

this case, recycling does not significantly affect 373

performance. 374

5 Recycling as a starting point for 375

fine-tuning 376

So far, we have considered a scenario where fine- 377

tuning is reused across model versions without ad- 378

ditional gradient-based training. Now, we switch 379

gears to investigate whether the merged model 380

mt + ∆s can serve as a stronger and more com- 381
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Figure 2: GSM8K performance showing that recycling fine-tuning provides a more computationally efficient starting
point for fine-tuning.Mi represents different intermediate pretrained checkpoints of OLMo 2, while ∆i denotes
the diff vector from the fine-tuning of version i. Appendix E contains results for other model versions.

putationally efficient starting checkpoint for fine-382

tuning. In our controlled experiments, we compare383

fine-tuning the merged model mt + ∆s with di-384

rectly fine-tuning mt. Our results demonstrate that385

initializing fine-tuning with mt+∆s often leads to386

faster convergence and higher performance on both387

seen and unseen tasks. This indicates that recycling388

fine-tuning between model versions can be a useful389

intermediate step in scenarios where retraining is390

feasible.391

5.1 Experiment setup392

For training, we follow the procedure outlined393

in §3.2. For evaluation, we use GSM8K and394

MATH500, as well as several additional datasets to395

assess how well our recycling-then-finetuning ap-396

proach generalizes to unseen tasks, including PhD-397

level science questions with GPQADiamond (Rein398

et al., 2024), tabular math word problems with399

TabMWP (Lu et al., 2023), and elementary school400

math word problems with ASDiv (Miao et al.,401

2020).402

5.2 Results and discussion403

Recycling-then-finetuning can substantially404

boost performance: Our results are summarized405

in Tables 4, 5 and Figure 2. As can be406

seen, recycling-then-finetuning offers significant407

improvements over the vanilla recycling approach408

(without additional training) on both GSM8K and409

MATH500. On GSM8K, the largest accuracy im-410

provements are +36.4%, +39.6%, +41.1%, +52.7%,411

and +61.4% forM1,M2,M3,M4, andM5, re-412

spectively. These gains are most notable for weaker413

base models (M1,M2, andM3) regardless of the414

diff vector used or for stronger base models paired415

with a weak diff vector (e.g.,M5 + ∆1). Interest- 416

ingly, for each base modelMi, fine-tuning helps 417

bridge the performance gap between the merged 418

modelsMi + ∆j (i ̸= j). For example, fine-tuning 419

significantly boosts the performance ofM5 + ∆1 420

and M5 + ∆2 from 10.6% and 17.3% to 78.6% 421

and 78.7%, respectively, closing the gap with the 422

fine-tuned versions ofM5 + ∆3 (78.8%) andM5 + 423

∆4 (77.2%). This reduces the need to pre-select the 424

best diff vector when multiple options are available. 425

Notably, recycling-then-finetuning generally out- 426

performs standard fine-tuning (without recycling) 427

regardless of the diff vector used. 428

Recycling-then-finetuning can offer faster con- 429

vergence: Using the merged model mt +∆s as 430

the initial checkpoint enhances training efficiency. 431

As illustrated in Figure 2, on the GSM8K dataset, 432

mt + ∆s not only converges significantly faster 433

than mt during fine-tuning but also achieves higher 434

peak accuracy. These results demonstrate the ad- 435

vantages of recycling-based fine-tuning over stan- 436

dard fine-tuning without recycling. Overall, our 437

findings suggest that recycling-then-fine-tuning of- 438

fers a cost-effective way to reduce the number of 439

fine-tuning steps, thereby improving training effi- 440

ciency. 441

Effect of recycling-then-finetuning on model 442

generalization Recycling-then-finetuning does 443

not negatively impact model generalization. As 444

shown in Table 5, this method attains strong 445

zero-shot generalization on the three unseen tasks, 446

similar to standard fine-tuning without recycling. 447

These results suggest that recycling-then-finetuning 448

does not lead to overfitting, which demonstrates its 449
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GPQADiamond TabMWP ASDiv

M5 (OLMo 2 7B) 25.2 22.4 28.1
+ ∆4 28.2 46.4 82.1

Direct FT 26.2 48.5 81.8

Table 5: Recycling-then-finetuning does not hinder
model generalization. Here, we apply the diff vector ∆4

from a previous OLMo 2 pretrained version (M4) to a
newer pretrained version (M5).

broad applicability across diverse tasks.450

6 Iterative recycling-then-finetuning for451

improved performance and efficiency452

We now leverage the insights from our previous453

experiments to explore a continuous model devel-454

opment setting where new versions of a pretrained455

model are regularly released. The basic idea be-456

hind our approach is an iterative recycling-then-457

finetuning strategy that incrementally incorporates458

fine-tuning updates, i.e., diff vectors, from past459

model versions. Instead of applying only the latest460

diff vector to the new base model, we recycle all461

previous diff vectors. Specifically, inspired by the462

success of our recycling-then-finetuning strategy,463

the diff vector at the current model version is car-464

ried forward to the next for subsequent fine-tuning.465

Our experiments show that this iterative recycling466

approach consistently improves both training effi-467

ciency and model performance.468

6.1 Iterative recycling-then-finetuning469

We treat the five intermediate checkpoints of OLMo470

2 7B—M1,M1,M2,M3,M4,M5 (described471

in §3.2) as different model versions of the pre-472

trained OLMo 2 model. Our iterative recycling-473

then-finetuning algorithm, outlined in Algorithm 1,474

works as follows: At each iteration i, we first apply475

the most recent diff vector, ∆iter
i−1, to the new base476

model Mi and then fine-tune it. Next, we compute477

a new diff vector between the fine-tuned model478

and the current base model Mi. This diff vector is479

then carried forward to the next model version for480

fine-tuning in the subsequent iteration.481

We denote our iterative recycling-then-482

finetuning approach as ∆iter and compare it to483

∆dir, a direct recycling-then-finetuning approach484

that applies the diff vector from the latest model485

version directly to the current model. For training,486

we follow the procedure outlined in §3.2.487

Algorithm 1 Iterative recycling-then-finetuning

1: Notation: FT denotes fine-tuning.
2: Input: Base modelsM1,M2, . . . ,Mn

3: Output: Fine-tunedM∗
1,M∗

2, . . . ,M∗
n

4: M∗
1 ← FT(M1)

5: for i = 2 to n do
6: ∆iter

i−1 =M∗
i−1 −Mi−1

7: M∗
i ← FT(Mi +∆iter

i−1)
8: end for
9: returnM∗

1,M∗
2, . . . ,M∗

n

M3 M4 M5

OLMo 2 7B 24.4 64.5 65.5
+ ∆dir 62.7 77.6 77.2
+ ∆iter 67.0 77.3 77.5

Direct FT 60.4 75.7 75.6

Table 6: Comparison of direct (∆dir) and iterative
(∆iter) recycling-then-finetuning. M1 and M2’s re-
sults are omitted as these models remain identical across
approaches (see Algorithm 1). Both methods signif-
icantly boost GSM8K performance, surpassing stan-
dard fine-tuning without recycling (Direct FT). See Ap-
pendix F for results without fine-tuning.

6.2 Results and discussion 488

Iterative recycling-then-finetuning significantly 489

improves performance: Table 6 shows the per- 490

formance of our two recycling approaches: di- 491

rect recycling-then-finetuning (∆dir) and itera- 492

tive recycling-then-finetuning (∆iter). Both ap- 493

proaches lead to significant performance improve- 494

ments across model versions on GSM8K, with 495

larger gains observed in earlier versions. For in- 496

stance, ∆iter achieves absolute accuracy improve- 497

ments of +42.6%, +12.8%, and +12% over M3, 498

M4, andM5, respectively. Both approaches also 499

outperform the standard fine-tuning baseline (with- 500

out recycling) by a substantial margin. Specifi- 501

cally, ∆iter yields average accuracy improvements 502

of +6.6% on M3 and +1.9% on M5 compared 503

to standard fine-tuning. Overall, ∆iter either per- 504

forms similarly to or significantly better than ∆dir 505

across model versions. These results suggest that 506

in scenarios where the base model is continuously 507

updated, adopting an iterative recycling strategy is 508

beneficial. 509

Iterative recycling-then-finetuning leads to 510

faster convergence: Figure 3 shows that both 511

recycling approaches—iterative recycling-then- 512

7



Figure 3: GSM8K performance showing that recycling-then-finetuning (∆dir) and iterative recycling-then-finetuning
(∆iter) offer faster convergence.

finetuning (∆iter) and direct recycling-then-513

finetuning (∆dir)—offer more computationally effi-514

cient starting points for fine-tuning. Overall, ∆iter515

consistently outperforms ∆dir in terms of training516

efficiency and significantly improves upon stan-517

dard fine-tuning (without recycling). These find-518

ings suggest that iterative recycling not only im-519

proves model performance but also boosts training520

efficiency, effectively leveraging the knowledge521

encoded in diff vectors across different model ver-522

sions.523

7 Related work524

Most prior work focuses on recycling fine-tuning525

across tasks with the same base model (Vu et al.,526

2022, 2020; Ilharco et al., 2023; Yadav et al., 2023;527

Yu et al., 2024), while we explore recycling fine-528

tuning across different model versions, architec-529

tures, and sizes trained on the same data. Previous530

studies (Lester et al., 2022; Su et al., 2022) also531

examine recycling fine-tuning across architectures532

and sizes, but they focus on soft prompts with non-533

instruction-tuned models, whereas we utilize the534

diff vectors between model versions. Addition-535

ally, some work reuses small models for large ones536

by duplicating (Chen et al., 2022), progressively537

stacking (Gong et al., 2019), or merging parame-538

ters (Wang et al., 2023). Another line of research539

suggests that model updates can be transferred in540

a continual context, where prior knowledge from541

earlier iterations is used to enhance adaptation and542

efficiency over time. Qin et al. (2023) explores543

recyclable tuning in the continual pre-training pro-544

cess, highlighting the benefits of reusing fine-tuned545

weights when transitioning to an upgraded model.546

Our work differs by providing a comprehensive547

evaluation of model update recycling in a model 548

development setup, specifically focusing on reusing 549

fine-tuned updates across different model versions 550

to improve LLM training efficiency. 551

8 Conclusion 552

In this paper, we present a novel approach for recy- 553

cling fine-tuning across different versions of LLMs, 554

addressing the inefficiencies of retraining when 555

new base models are introduced. Our method lever- 556

ages diff vectors to transfer fine-tuning updates, 557

significantly reducing the need for repeated fine- 558

tuning while preserving competitive performance. 559

Empirical evaluations across various open-weight 560

model versions confirm the effectiveness of this 561

approach, particularly when the source and target 562

models are linearly connected. Additionally, we 563

demonstrate its applicability in multilingual model 564

development and show that recycled fine-tuning 565

serves as a strong initialization for further train- 566

ing, accelerating convergence and improves perfor- 567

mance. We further extend our approach to continu- 568

ous model development, where iterative recycling 569

progressively enhances performance while mini- 570

mizing computational costs. Our results establish 571

recycling fine-tuning as a practical and efficient 572

strategy for sustaining high-quality LLM updates 573

with reduced training overhead, paving the way 574

for more sustainable AI model development. We 575

hope that our approach can help the community 576

keeps pace with the rapid advancements in LLM 577

development. 578

9 Limitations 579

Our experiments focus on evaluating supervised 580

fine-tuning as a post-training method, using math 581

8



reasoning instruction data for fine-tuning. To im-582

prove generalization, it is important to explore583

a broader range of downstream tasks and post-584

training techniques, such as reinforcement learn-585

ing with human feedback (RLHF), across different586

LLM capabilities. Expanding our approach to en-587

compass more aspects of model development offers588

a promising direction for further exploration.589

10 Ethical considerations and risks590

Our approach aims to improve the efficiency of591

LLM development by reducing the need for exten-592

sive fine-tuning. However, this method carries cer-593

tain risks. One concern is that reusing fine-tuning594

updates may inadvertently transfer biases or unde-595

sirable behaviors from one model to another, espe-596

cially if the source model contains such issues.597

Although this approach lowers computational598

costs, it does not negate the need for careful model599

design to ensure ethical behavior. Thus, respon-600

sible implementation of this technique is crucial.601

Future research should explore its ethical impli-602

cations across different model architectures and603

training approaches.604
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Models GSM8K MATH ARCC GPQA MMLU IFEval

Tülu 3 8B SFT 76.2 31.6 79.1 31.0 65.1 72.0
Tülu 3 8B DPO 84.1 42.4 79.6 33.3 68.4 81.7
Tülu 3 8B Instruct 87.9 43.4 79.4 34.4 67.9 81.5

Llama 3.0 8B 55.6 17.3 79.7 22.3 66.7 76.6
+ ∆SFT 71.8 26.3 77.9 32.1 63.5 69.1
+ ∆DPO 81.1 38.1 78.6 31.9 67.5 82.9
+ ∆IT 85.1 37.6 79.1 32.4 66.2 82.4

OLMo 2 7B 67.2 19.2 79.9 20.5 63.6 23.0
OLMo 2 7B SFT 71.7 25.2 79.7 27.9 61.2 67.7
OLMo 2 7B DPO 82.5 31.3 80.5 30.6 62.1 73.2
OLMo 2 7B Instruct 85.3 29.7 80.6 29.7 63.3 75.6

OLMo 2 Initial 2.5 1.6 25.7 18.1 25.0 12.2
+ ∆SFT 2.2 0.8 23.8 1.3 1.4 13.7
+ ∆DPO 2.1 0.8 24.1 1.1 1.3 13.7
+ ∆IT 2.0 0.8 24.1 0.6 1.4 13.3

OLMo 2 Stage 1 24.4 5.7 72.7 15.4 59.8 15.7
+ ∆SFT 31.7 8.4 74.3 24.8 55.4 51.4
+ ∆DPO 40.4 9.3 75.0 29.9 56.6 68.0
+ ∆IT 40.2 10.3 75.1 29.9 56.7 68.3

OLMo 2 Final 63.7 17.5 78.6 22.5 62.6 16.1
+ ∆SFT 71.1 23.7 79.0 28.3 59.7 64.3
+ ∆DPO 79.9 27.8 79.3 29.0 63.1 72.6
+ ∆IT 82.8 27.7 79.3 27.2 62.2 72.1

Table 7: Evaluation results on mathematical (GSM8K, MATH), reasoning (ARC Challenge, GPQA), general
knowledge (MMLU), and instruction-following (IFEval) abilities. OLMo 2 Initial, OLMo 2 Stage 1, and OLMo 2
Final represent different versions at various stages of the mid-training phase..

B Evaluation details795

Our evaluation follows standard practices from796

prior works and established evaluation tool. We di-797

vide the evaluation process into two categories: (1)798

LLaMA-based evaluations, which follow configu-799

rations used in prior LLaMA model assessments,800

and (2) Olmo2 and Tülu3-based evaluations, which801

adhere to the evaluation setup from Tülu3 model802

development. We ensure consistency in shot con-803

figuration (zero-shot, few-shot), chain-of-thought804

(CoT) prompting, and answer extraction method-805

ologies. Below, we provide details for each bench-806

mark.807

GSM8K We use an 8-shot CoT setup as in Wei808

et al. (2023), with greedy sampling. The final nu-809

merical value in the response is extracted as the810

predicted answer. The maximum generation length811

is 1024 tokens. The same 8-shot CoT evaluation812

is applied, following the Tülu 3 (Lambert et al., 813

2024a) methodology with identical answer extrac- 814

tion procedures. 815

MATH Pre-trained models follow a 4-shot setup 816

based on Lewkowycz et al. (2022), with a maxi- 817

mum generation length of 512 tokens. Post-trained 818

models are evaluated using a 0-shot CoT prompt, 819

enhanced with symbolic computation (sympy) for 820

answer validation. Complex expressions are re- 821

solved using an equality template with a judge, 822

and the maximum generation length is 5120 to- 823

kens. Evaluation remains consistent with the Tülu 824

3 setup, using a 4-shot CoT approach and a flexi- 825

ble answer extraction strategy to handle formatting 826

inconsistencies. 827

ARC-Challenge We follow the official evalua- 828

tion setups: 25-shot for LLaMA pretrained models, 829

0-shot for instruction-tuned models, and 5-shot for 830

11



M1 M2 M3 M4 M5

OLMo 2 7B 14.6 11.6 11.4 11.6 16.6
+ ∆1 8.8 17.8 19.2 15.6
+ ∆2 7.6 12.6 14.6 14.4
+ ∆3 8.0 9.4 23.4 27.8
+ ∆4 7.8 8.0 9.8 34.2
+ ∆5 8.0 7.4 11.2 30.6

Direct FT 45.1 50.7 60.4 75.7 75.5

Table 8: MATH500 accuracies also demonstrate that
strong models, e.g.M4 andM5 are better at utilizing
recycled fine-tuning.

Tülu3 and OLMo2.831

GPQA A zero-shot setup is adopted, following832

the Zhong et al. (2023), where the model selects833

the correct answer from multiple choices. The834

same zero-shot evaluation and answer extraction835

procedure as in Tülu 3 (Lambert et al., 2024a) is836

used.837

MMLU Pre-trained models are evaluated in a 5-838

shot setting, using the standard MMLU (Hendrycks839

et al., 2021b) prompt to compute negative log-840

likelihood (NLL) over answer choices. Post-trained841

models are tested in both 5-shot and 0-shot settings,842

with the latter incorporating a CoT prompt where843

the model generates a reasoning step before an-844

swering. The maximum generation length is 10845

tokens for 5-shot and 1024 tokens for 0-shot eval-846

uations. Macro average scores are reported unless847

otherwise specified. Evaluation follows the Tülu 3848

zero-shot CoT approach, ensuring consistency in849

methodology.850

IFEval We use Prompt-level scores and851

instruction-level strict and loose accuracy are852

computed, with final results reported as the average853

across these metrics. The same setup is applied,854

following the programmatic constraint verification855

method used in Tülu 3 (Lambert et al., 2024a).856

DROP A 3-shot setup is used for pre-trained857

models, with few-shot examples randomly drawn858

from the training split. F1 scores are reported, and859

the maximum generation length is set to 32 tokens.860

This 3-shot evaluation setup is maintained, with861

greedy sampling following the Tülu 3 (Lambert862

et al., 2024a) methodology.863

C Results on recycling fine-tuning864

Table 9 show additional results for MATH500, fur-865

ther illustrating the impact of fine-tuning transfer866

M1 M2 M3 M4 M5

OLMo 2 7B 14.6 11.6 11.4 11.6 16.6
+ ∆1 → FT 21.0+12.2 23.0+5.2 32.0+12.8 34.2+18.6

+ ∆2 → FT 16.2+8.6 26.2+13.6 31.6+17.0 31.0+16.6

+ ∆3 → FT 18.4+10.4 21.2+11.8 31.0+7.6 34.0+6.2

+ ∆4 → FT 17.4+9.6 19.0+11.0 23.8+14.0 36.2+2.0

+ ∆5 → FT 17.2+9.2 21.4+14.0 25.0+13.8 30.4-0.2

Direct FT 13.4 17.6 21.6 31.4 33

Table 9: MATH500 accuracies provide another evidence
to support recycling fine-tuning provides a stronger start-
ing point for fine-tuning (FT).

M1 M2 M3 M4 M5

OLMo 2 7B 23.7 24.2 23.2 26.2 25.2
+ ∆1 → FT 25.2+1.0 25.1+1.9 33.3+7.1 25.7+0.5

+ ∆2 → FT 27.7+4.0 25.2+2.0 30.8+4.6 27.2+2.0

+ ∆3 → FT 27.7+4.0 27.7+3.5 23.7-2.5 23.2-2.0

+ ∆4 → FT 24.7+1.0 24.7+0.5 26.2+3.0 28.2+3.0

+ ∆5 → FT 26.7+3.0 26.7+2.5 23.2+0.0 25.7-0.5

Direct FT 25.7 26.7 26.7 19.1 26.2

Table 10: GPQADiamond results from the direct recycling-
then-finetuning approach.

across different model versions. 867

D Results on recycling-then-finetuning 868

We presented the direct recycling-then-finetuning 869

approach for MATH500 in Table 9, while Table 10 870

reports our GPQADiamond results. 871

E Training dynamics of 872

recycling-then-finetuning 873

Figure 4 show the training dynamics ofM1,M2 874

andM4. 875

F Result on iterative 876

recycling-then-finetuning 877

Table 11 presents the comparison comparison be- 878

tween iterative recycling-then-finetuning (∆iter) 879

and direct recycling-then-finetuning (∆dir) on 880

GSM8K. 881
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Figure 4: Across different model versions,M1,M2,M4, recycling fine-tuning provides a more computationally
efficient starting point for fine-tuning on GSM8K.

M3 M4 M5

OLMo 2 7B 24.4 64.5 65.5
+ ∆dir 39.9 68.6 77.1
+ ∆iter 36.8 70.1 77.2

Table 11: Evaluation of merged models using iterative
recycling-then-finetuning ∆iter , compared to the direct
recycling-then-finetuning approach ∆dir on GSM8K.
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FT on Tulu3 Math M1 M2 M3 M4 M5

# tokens 1.2T 2.5T 3.9T 3.9T+26B 3.9T+50B

OLMo 2 7B 13.2 19.4 24.4 64.5 65.5

5K 30.9 41.0 44.9 67.3 70.1
10K 36.2 45.3 50.7 69.6 71.4
15K 40.5 46.6 52.9 71.5 73.8
20K 42.4 50.3 56.0 72.8 73.6
25K 43.4 49.7 59.0 73.9 74.9
30K 45.1 50.7 60.4 75.7 75.5

Table 12: GSM8K performance from fine-tuning with 30K steps. Different OLMo 2 checkpoints are trained on
Tülu 3 Persona MATH, GSM, and Algebra265 (220K examples in total).
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