Under review as a conference paper at ICLR 2026

PROREFINE: INFERENCE-TIME PROMPT REFINEMENT
WITH TEXTUAL FEEDBACK

Anonymous authors
Paper under double-blind review

ABSTRACT

Agentic workflows, where multiple LLM based agents collaborate to accomplish
complex tasks like reasoning or planning, play a substantial role in many cutting-
edge commercial applications, and continue to fascinate researchers across fields
for their potential to accomplish expensive, complex tasks that, until recently,
only humans have been trusted to do. These workflows critically depend on the
prompts used to provide the roles models play in such workflows. Poorly designed
prompts that fail even slightly to guide individual agents can lead to sub-optimal
performance that may snowball within a system of agents, limiting their reliabil-
ity and scalability. To address this important problem of inference-time prompt
optimization, we introduce ProRefine, an innovative inference-time optimization
method that uses an agentic loop of LLMs to generate and apply textual feedback.
ProRefine dynamically refines prompts for multi-step reasoning tasks without addi-
tional training or ground truth labels. Evaluated on five benchmark mathematical
reasoning datasets, ProRefine significantly surpasses zero-shot Chain-of-Thought
baselines by 3 to 37 percentage points. This approach not only boosts accuracy but
also allows smaller models to approach the performance of their larger counterparts.
This highlights its potential for building more cost-effective and powerful hybrid
Al systems, thereby democratizing access to high-performing Al.

1 INTRODUCTION

The rapid evolution of Large Language Models (LLMs) has transformed applications from search
engines to automated reasoning systems (Feng et al.,2024). Yet, their efficacy criticality depends
on alignment with human values and preferences, a process often bottlenecked by the scarcity and
subjectivity of human feedback (Gray & Suri, |2019; |Kahneman et al., 2021} [Prabhakar et al.|, [2024;
Weerasooriya et al., 2023). LLMs, trained on vast datasets, utilize alignment techniques to generate
more human-like and accurate responses (Kirk et al.l 2024; Rao et al.| [2023}; |Sorensen et al., 2024)).

{END)

2nd iteration,
2'k tokens:
35

Tstiteration, k /
tokens: thirty-

Answer s incomplete.
Prompt should clarify: use
digits only, no symbols.

What is 5
multiplied by 72

o ™
SR S

Answer concisely. Updated LLM If !
| — imizer +—— Feedback (f) |
| Prompt (p*) .. optimizer TR (,,,),,“

(START)

AZ Prompt update: Answer
using only digits, no
words or symbols.

Figure 1: Overview of ProRefine system, illustrating the iterative process of prompt optimization
using feedback from LLMs. In each iteration, LLM;,s; extends its output by an additional k
tokens, enabling step-by-step feedback to progressively refine the prompt with LLMptimizer. Each
refinement iteration updates the prompt for future tokens; previous tokens remain unchanged.

Under review as a conference paper at ICLR 2026

Recent advances have shifted toward leveraging LLMs themselves as judges and evaluatorsBavaresco
et al.[(2024)); Chiang & Lee|(2023); |Li et al.|(2024); [L1u et al.| (2023);|Wang et al.[(2023)); Zheng et al.
(2023)). Building on this, compound Al systems that use LLMSs to generate feedback / critiques|Pryzant
et al.| (2023)); |Saunders et al.| (2022). |Akyurek et al.|(2023) and Wadhwa et al.|(2024) explore agentic
frameworks to detect, critique, and refine tasks that require factual accuracy. Another approach
is to iteratively refine the output using self-generated feedback Madaan et al.| (2023). TextGrad
Yuksekgonul et al.| (2024) introduced automatic “differentiation” via text, using textual feedback to
optimize the performance of individual components within a compound Al system.

Our work focuses on optimizing the prompt, a key element in chain-of-thought (CoT) (Wei et al.|
2022) based LLM reasoning. CoT mimics human problem-solving by breaking down complex
tasks into smaller, manageable steps. The system we introduce here, ProRefine (Inference-time
Prompt Refinement with Textual Feedback), builds upon CoT by adaptively improving prompts using
feedback (LLM fecdpack) and an optimizer (L LM ptimizer) to refine prompts for the task-performing
LLM (LLMy,,s1,). This workflow (Figure|[I)), motivated by the teacher-student framework Torrey &
Taylor| (2013) where a teacher agent guides a student agent to perform a task by providing feedback
at intermediate steps, but implemented via LLM interactions without pre-training, represents a novel
approach to adaptive agentic reasoning. While these agents may be instantiated as separate LLMs
(potentially with different architectures or parameter sizes), they operate collaboratively in a closed-
loop to iteratively refine prompts and outputs. We explore policy optimization for aligning compound
Al systems, drawing inspiration from TextGrad and policy gradient algorithms like PPO. This work
investigates the following research questions.

RQ1 How effectively can textual feedback enhance LLM performance of LLMs during inference?
RQ2 7o what extent does model size impact the ability of LLMs to utilize textual feedback?

RQ3 What is the impact of incorporating a verifier on accuracy at inference time?

Although prior work has explored prompt optimization Deng et al.| (2022); |Dong et al.| (2024); |Shin
et al.| (2020); |Yang et al.| (2024), they all often focus on either offline fine-tuning, which requires
extensive training data, or universal application of largest, most capable models to every task. This
presents a practical dilemma in many real-world scenarios. Continuously fine-tuning is not always
feasible, and relying exclusively on state-of-the-art models is often computationally prohibitive.
A different approach is needed for scenarios that require dynamic, on-the-fly repair for specific
and difficult queries where a standard prompt fails. This is particularly true in resource-aware
deployments, where a smaller model may suffice for most tasks but requires enhancement for a small
subset of critical queries. The goal, therefore, shifts from finding a single, universally optimal
prompt to performing targeted, inference-time intervention.

This hybrid-model paradigm makes a method like ProRefine a practical solution. It is designed
for resource-constrained environments where deploying the largest models for every query isn’t
feasible, but temporary access to a capable feedback LLM (perhaps via a separate API call) is
possible for critical tasks. In such cases, the refinement process is triggered as an on-demand “expert
intervention." ProRefine is task-agnostic and requires no additional training or ground-truth labels. It
is an inference-time optimization method that relies on the availability of test-time compute and the
ability of LLMs to provide and act upon feedback for optimization.

The ability to break complex tasks into smaller steps and dynamically improve prompts offers a
crucial advantage in multi-step agentic workflows where errors can compound. As illustrated in
Figure [4] this method is also suitable for black-box LLMs where only API access is available.
ProRefine could prove to be crucial in situations demanding greater interpretability, where feedback
steps (outputs of LLM ¢ccqpact;) offer insights into the reasoning correction process and applications
requiring dynamic adaptation without retraining/fine-tuning cycles. To demonstrate its effectiveness,
we evaluate ProRefine across five benchmark mathematical reasoning datasets, showing it offers a
robust alternative to solely scaling up the base model for all queries.

Key Contributions:

* We propose a novel method - ProRefine - for prompt optimization inference-time using
textual feedback.

Under review as a conference paper at ICLR 2026

» We evaluated ProRefine on five datasets: object counting, word sorting, grade-school math
problem solving, math word problems, and algebraic word problems, and compared our
method against CoT and TextGrad.

* We evaluate the importance of using a verifier at inference time.

Essentially, ProRefine is an elegant, training-free, inference-time solution that fixes the core prompt
to improve reasoning, making it suitable for practical hybrid-model deployment.

2 RELATED WORK

ProRefine draws inspiration from and contributes to several interconnected research areas. The
performance of LLMs is heavily dependent on the quality of the prompts they receive. Early efforts in
this domain centered on manual prompt crafting Wei et al.| (2022), a meticulous process of designing
effective prompts to elicit desired responses. Recognizing the limitations and scalability challenges of
manual methods, research has increasingly focused on automatic prompt optimization with a growing
emphasis on agentic workflows that enable dynamic and adaptive reasoning.

2.0.1 PROMPT GENERATION

Some pioneering automatic methods, such as AutoPrompt Shin et al.|(2020) and RLPrompt|Deng
et al.| (2022), employ gradient-based search and reinforcement learning techniques, respectively.
AutoPrompt|Shin et al.|(2020) uses gradient-based search to generate prompts for masked language
models. It reformulates tasks as fill-in-the-blank problems, achieving performance comparable to
supervised models in tasks like sentiment analysis. However, it requires training data and gradient
access, limiting its applicability to black-box models. Other approaches leverage LLMs themselves
for prompt generation Mehta et al.[(2024); |Pryzant et al.| (2023); |Yang et al.| (2024;2022);|Zhou et al.
(2022). Recent works like Promptomatix [Murthy et al.|(2025) and EvoAgentX [Wang et al.| (2025)
extend this direction by enabling automatic prompt refinement across multiple tasks, workflows, and
tools. ProRefine distinguishes itself by operating simply at inference-time, requiring no training
data, gradient access, or model retraining, while enabling prompt refinement in dynamically evolving
settings.

2.0.2 SELF-REFINEMENT

There is a substantial and growing body of work exploring the capacity of LLMs to act as judges or
evaluators Bavaresco et al.|(2024); (Chiang & Lee|(2023);|Li et al.| (2024)); Liu et al.|(2023)); [Verga
et al.| (2024)); Wang et al.| (2023); [Zheng et al.| (2023)); Zhuge et al.| (2024). This capability has
been leveraged to assess response quality or provide self-feedback. ProRefine adopts this principle,
using LLM-generated textual feedback to improve its own prompting process. Unlike prior uses of
LLM evaluation solely for ranking or filtering, ProRefine uses that feedback in a closed-loop for
optimization during inference.

The idea of LLM iterative refinement is highly relevant. Self-Refine Madaan et al.[(2023)) is a
prominent example, where an LLM generates both output and feedback, using the latter for refinement.
ARIES [Zeng et al.| (2025) further enhances refinement via Elo-style agent debate. Other works
explore self-critiquing Saunders et al.| (2022)) and reinforcement learning for critique generation
(RLAF) |Akyurek et al.|(2023), along with various feedback and refinement mechanisms|Dong et al.
(2024); Khattab et al.| (2024); |Qu et al.| (2024); Ranaldi & Freitas| (2024); [Schick et al.| (2023);
Wadhwa et al.| (2024), and Monte Carlo-based refinement in math reasoning (MC-NEST) Rabby et al.
(2025). While ProRefine shares the self-refinement spirit, it focuses on prompt refinement, suitable
for agentic workflows and black-box LLMs, while avoiding reinforcement learning and direct output
modification.

2.0.3 INFERENCE-TIME SCALING

ProRefine belongs to the broader category of inference-time methods Muennighoff et al.|(2025)); Snell
et al.[(2024a)), that improve LLMs without without weight modification Du et al.|(2024). Inference-
time methods aim to improve the performance of models by utilizing test-time compute resources.
TextGrad |Yuksekgonul et al.| (2024) performs gradient-free inference-time optimization using textual

Under review as a conference paper at ICLR 2026

feedback. ProRefine applies a similar idea to intermediate prompt refinement for dynamic reasoning
chains. TextGrad relies on supervised fine-tuning, whereas ProRefine operates without training data,
offering ease of integration. Other inference-time strategies include RL-of-Thoughts|Hao et al.| (2025)
and Reward-Is-Enough Song et al.|(2025), which apply RL-based signal propagation during inference.
AvVR (Alignment via Refinement) [Zhang et al.| (2025a) proposes recursive CoT refinement using
long-form reasoning. ProRefine, by contrast, performs step-level feedback on prompts rather than
final outputs, and requires no external tools or supervision.

2.0.4 AGENTIC WORKFLOWS

ProRefine also fits into a broader trend toward agentic workflows. AFlow [Zhang et al.| (2025b)
automates agentic workflows through prompt-based search over prior structures, while EvoAgentX
Wang et al.| (2025) evolves agent behaviors and topologies. Meanwhile, Mass [Zhou et al.| (2025))
and DebFlow |Su et al.[(2025) optimize multi-agent configurations via interleaved search and de-
bate. ProRefine focuses instead on optimizing individual agent prompts within fixed workflows,
complementing these methods. Unlike tool-integrated or debate-based systems, ProRefine remains
model-agnostic and easy to integrate into any prompt-based agent loop.

3 PROREFINE

ProRefine is an inference-time prompt optimization algorithm that optimizes prompts by using
textual feedback. Each refinement iteration updates the prompt for future tokens; previous tokens
remain unchanged. ProRefine involves interactions between three LLMs:

LLM,,sr: Executes the task based on the current prompt, generating the initial and subsequent
outputs.

LLM¢ceapack: A model that critiques the LLM;,,;’s output, providing detailed feedback on
improvements. This model should be capable of providing insightful and accurate critiques Bai et al.
(2022)); Saunders et al.| (2022).

LLMptimizer: Interprets the feedback and refines the prompt, aiming for coherent and task-
focused improvements. This LLM is crucial for ensuring the prompt evolves effectively.

ProRefine (Algorithm I)) works as follows:

Algorithm 1: ProRefine
Input: Query: g, Initial prompt: p, tokens_per_step: k, max_steps: n, LLMs: LLM;4s,
LLMfeedback" LLMoptimizer
Output: Optimized prompt: p*
pr=p
fori =1tondo
0; = LLM,4s1(p*,q) // Generate ixk tokens
fi = LLM fecaback(q,0:) // Get textual feedback
p* = LLM optimizer(p*, fi) // Optimize the prompt
if EOS_token in o; then
L break

return p* // Return final optimized prompt

Initialization: Start with an initial prompt p for the task, a query ¢, and parameters defining the
generation and optimization process (k tokens per step, n maximum steps).

Generation and Feedback Loop:

* Generation: Use LL M, to generate an output based on the current prompt p* and
query q. This step is limited to i %k tokens to control the granularity of the feedback. In
each iteration, LL My, produces k more tokens, attempting to refine prior output while
progressively continuing its response to the query.

Under review as a conference paper at ICLR 2026

* Feedback: LLM¢ccqpack evaluates the generated output o; against the query ¢ to provide
textual feedback f;. This feedback encapsulates how the output could be improved, focusing
on aspects such as accuracy, relevance, or coherence.

» Optimization: LLM ,tim;.cr uses the feedback f; to refine the prompt p*. This step
involves modifying the prompt to better align with the task requirements or to correct
identified deficiencies in previous generations.

Termination: The process iterates until either the maximum number of steps n is reached or an
end-of-sequence (EOS) token is detected in the output, indicating the completion of the task.

3.1 UNIFYING VERIFIER AND FEEDBACK

At inference time, verifiers play a crucial role in judging model outputs/Cobbe et al.| (2021)); Lightman
et al.| (2024); Snell et al.|(2024b)). Often trained on extensive corpora, these verifiers can be outcome-
based, assessing the final result’s correctness, or process-based, evaluating the validity of intermediate
steps |[Lightman et al.[(2024); |Snell et al.| (2024b)); Uesato et al.[(2022). For simplicity in this study,
we do not train a bespoke verifier; rather, we employ the Llama3.1-70B-instruct model to function
as both the feedback mechanism (LLM ¢ccqpack) and the verifier. We manage these roles through
separate API calls, each with a role-defining prompt. A smaller model, specifically fine-tuned for
these tasks, could also be used. The verifier’s function is to evaluate the initial output generated by
LL M, for each query and to halt generation early on. If verifier assess this output is incorrect, the
refinement process is triggered; otherwise, the output is used as is. This also saves computation on
answers that are already correct.

To quantify the verifier’s impact, we analyze three distinct scenarios: ProRefine (verifier), our standard
approach which employs LLM tceqpqack to guide refinement; ProRefine (no verifier), wherein the
refinement process operates without verifier input; and ProRefine (optimal verifier), guided by a
perfect verifier (simulated using ground-truth labels). This optimal condition reveals the upper bound
of the refinement loop’s potential. Consequently, the performance difference between ProRefine
(verifier) and ProRefine (optimal verifier) underscores the significance of verifier accuracy. It
is important to note that ProRefine’s methodology does not inherently rely on labels or optimal
verification, despite their use in this specific evaluation.

3.2 IMPLEMENTATION DETAILS

The granularity and duration of the optimization process are governed by two parameters: k, the
number of tokens per step, and n, the maximum number of steps. These parameters can be adjusted
based on the complexity of the task and the desired output quality. For example, rather than generating
feedback every k tokens, we might instead choose to provide feedback after each sentence or para-
graph, particularly in tasks such as machine translation or text summarization, where larger semantic
units may be more meaningful. We run all of our experiments on compute nodes with a single
Nvidia A100 GPU (80GB), 24 core processor, and 220GB RAM. For model’s generate func-
tion we set the following parameters: num_return_sequences=1, do_sample=False,
top_p=None, temperature=None.

4 EXPERIMENTS AND EVALUATION

4.1 DATA

We evaluate ProRefine on five reasoning tasks, each of which involves multi-step reasoning, making
them suitable for evaluating prompt optimization in agentic workflows. We include the original dataset
split sizes in (train/validation/test) format: object counting and word sorting from the BIG-Bench
Hard benchmark [Srivastava et al.| (2023)) (50/100/100), grade-school math problem-solving from
GSMSBK |Cobbe et al.| (2021} (200/300/1319), math word problems from SVAMP Patel et al.[(2021)
(2516/622/1000), and algebraic word problems from AQUARAT |Ling et al.| (2017) (97467/254/254).
We use the same splits and evaluation as |Yuksekgonul et al.|(2024) for object counting, word sorting,
and GSMB8K.

Under review as a conference paper at ICLR 2026

4.2 EXPERIMENTAL SETUP

Dataset Method Llama-3.2 1B-it Llama-3.2 3B-it Llama-3.1 8B-it
CoT 0.48 [0.382, 0.578] 0.65 [0.556, 0.744] 0.73 [0.643, 0.817]
TextGrad 0.62 [0.524, 0.716] 0.73 [0.643, 0.817] 0.86 [0.792, 0.928]
Object Counting | ProRefine (no verifier) 0.51 [0.412, 0.608] 0.75 [0.665, 0.835] 0.77 [0.687, 0.853]
ProRefine (verifier) 0.6 [0.503, 0.696] 0.72[0.632, 0.808] 0.89* [0.839, 0.959]
"ProRefine (optimal verifier) 0.67 [0.577, 0.763] 0.85% [0.780, 0.920] 0.94* [0.893, 0.987]
CoT 0.11 [0.048, 0.172] 0.10 [0.041, 0.159] 0.50 [0.401, 0.598]
TextGrad 0.33*[0.237, 0.423] 0.61* [0.514, 0.706] 0.69* [0.599, 0.781]
Word Sorting ProRefine (no verifier) 0.22 [0.138, 0.302] 0.47*[0.372, 0.568] 0.68 [0.595, 0.779]
ProRefine (verifier) 0.19[0.113, 0.267] 0.32% [0.228, 0.412] 0.71* [0.621, 0.799]
"ProRefine (optimal verifier) 0.29*[0.192, 0.368] 0.53%*[0.432, 0.628] 0.86** [0.792, 0.928]
CoT 0.450 [0.423, 0.476] 0.809 [0.787, 0.829] 0.819 [0.797, 0.839]
TextGrad 0.463 [0.436, 0.489] 0.801 [0.779, 0.822] 0.864* [0.845, 0.882]
GSMSK ProRefine (no verifier) 0.636%* [0.610, 0.662] 0.797 [0.774, 0.818] 0.843 [0.823, 0.863
ProRefine (verifier) 0.654%* [0.627,0.678] | 0.866** [0.847, 0.883] 0.885* [0.868, 0.902]
"ProRefine (optimal verifier) | 0.725%*[0.701,0.749] | 0.904** [0.888,0.920] | 0.936** [0.922, 0.949]
CoT 0.689 [0.66, 0.718] 0.869 [0.848, 0.890] 0.854 [0.832, 0.876]
TextGrad 0.684 [0.655, 0.713] 0.861 [0.840, 0.882] 0.84 [0.817, 0.863]
SVAMP ProRefine (no verifier) 0.774%* [0.748, 0.800] 0.878 [0.858, 0.898] 0.877 [0.857, 0.897]
ProRefine (verifier) 0.808+* [0.784, 0.832] 0.896 [0.877, 0.915] 0.893* [0.874, 0.912]
"ProRefine (optimal verifier) 0.861** [0.840, 0.882] 0.925%* [0.909, 0.941] 0.938%** [0.923, 0.953]
CoT 0.259[0.202, 0.31] 0.563 [0.498, 0.620] 0.586 [0.522, 0.643]
TextGrad 0.311 [0.250, 0.364] 0.524[0.462 , 0.585] 0.559 [0.494, 0.616]
AQUARAT ProRefine (no verifier) 0.205 [0.151, 0.250] 0.343 [0.284, 0.401] 0.398 [0.337 , 0.458]

Table 1: Test Accuracy with 95% confidence intervals across five benchmark datasets and models. *
and ** denote statistically significant improvements over one or two baseline methods, respectively.
Results in bold indicate the highest accuracy for a dataset-method combination. T demonstrates the
upper bound potential of the optimization loop and the impact of verifier quality. Llama3.1-70B-

ProRefine (verifier)

0.268 [0.209, 0.318]

0.551 [0.486 , 0.608]

0.606 [0.542, 0.663]

"ProRefine (optimal verifier)

0.354 [0.292, 0.409]

0.598 [0.538, 0.659]

0.657 [0.595, 0.712]

instruct is employed for feedback generation, prompt optimization, and evaluation.

Object Counting

Accuracy with 95% Confidence Intervals Across Datasets and Models

Word Sorting

GSM8K

SVAMP

o Uama-32184t mem LUama-323Bit mEm Llama-31-8Bt

AQUARAT

Figure 2: Test Accuracy [with 95% confidence interval] across different models and datasets.

Llama3.1-70B-instruct is employed for feedback generation, prompt optimization, and evaluation.

We experiment with three models - Llama3.2-1B-instruct, Llama3.2-3B-instruct, and Llama3.1-8B-
instruct[Metal (2024)) for LLM;,j,. The prompts are optimized using Algorithm [T} with Llama3.1-
70B-instruct used for feedback generation, prompt optimization, and evaluation. We select the values

Average length of refinement loop

2 Model

= Llama-3.2-1B-it
W Llama-3.2-3B-it
20{ mmm Llama-3.1-8B-it

Avgerage #iterations

1]

Figure 3: Average number of prompt refinement iterations.

&
&

W
&
o

Under review as a conference paper at ICLR 2026

of hyperparameters £ = 10 and n = 25 to control the granularity of feedback and duration of
optimization. Hyperparameters k and n were fixed based on general preliminary exploration and not
tuned per task using benchmark training/validation data.

We compare the performance of our method against the zero-shot Chain-of-Thought (CoT) baseline
and TextGrad Yuksekgonul et al.| (2024), and report test accuracy with 95% confidence interval. We
choose TextGrad as a baseline because |Yuksekgonul et al.| (2024) reported performance at par or
better than DSPy [Khattab et al.| (2024)) for prompt optimization on object counting, word sorting, and
GSMSk datasets. It is essential to remember that TextGrad is a supervised fine-tuning method that
utilizes both the training and validation sets. For TextGrad, we use a comparative setup consisting
of a task model to be fine-tuned and Llama3.1-70B-instruct model for feedback generation and
backpropagation. The results are shown in Table|l|and Figure

4.3 RESULTS

Our results (Table|l) demonstrate that ProRefine significantly improves LL M, performance over
the zero-shot CoT baseline in all but one experiment, and it outperforms TextGrad in 11 out of 15
cases overall. For Liama3.2-1B-instruct model, ProRefine can significantly outperform CoT and
TextGrad on 2 out of 5 datasets. For Llama3.2-3B-instruct model, ProRefine can outperform CoT
and TextGrad on 3 out of 5 datasets with one significant result. For Llama3.1-8B-instruct model,
ProRefine can outperform CoT and TextGrad on all 5 datasets with 4 significant results. TextGrad is
a supervised baseline; ProRefine is training-free.

Object Counting ProRefine improves performance by 3 — 16 percentage points over CoT, with
significant gains observed for Llama3.1-8B-instruct. It outperforms TextGrad on 2 out of 3 models,
yielding a 2 — 3 percentage point advantage. However, a performance drop of 2 points is observed
for Llama3.2-1B-instruct.

Word Sorting Performance gains over CoT range from 8 — 37 percentage points, with significant
improvements for Llama3.2-3B-instruct and Llama3.1-8B-instruct. ProRefine surpasses TextGrad
on 1 of 3 models with a 2-point gain, but performance drops of 11 — 14 points are observed for
Llama3.2-1B-instruct and Llama3.2-3B-instruct.

GSMS8K ProRefine achieves 2.4 — 20.4 percentage points improvement over CoT, with significant
improvement observed for all the models; however, a slight performance drop (1.2) is observed for
Llama3.2-3B-instruct. It outperforms TextGrad on all models, achieving a 2.1 —19.1 percentage point
gain with significant results observed for Llama3.2-1B-instruct and Llama3.2-3B-instruct models.
Minor performance drop of 0.4 — 2.1 is observed for Llama3.2-3B-instruct and Llama3.1-8B-instruct.

SVAMP Performance improves by 0.9 — 11.9 percentage points over CoT, with significant gains
for Llama3.2-1B-instruct and Llama3.1-8B-instruct. ProRefine outperforms TextGrad across all
models, with 1.7 — 12.4 percentage point gains and significant results for Llama3.2-1B-instruct.

AQUARAT Gains over CoT range from 0.9 — 2 percentage points, but declines of 5.4 — 22 points
are also observed. ProRefine exceeds TextGrad on 2 of 3 models, with 2.7 — 4.7 percentage point
gains, though performance drops of 10.6 — 18.1 points are also recorded.

Our results demonstrate that using ProRefine with an optimal verifier significantly improves perfor-
mance for all tasks, achieving the best results in 13 out of 15 cases, highlighting the critical role of
verifier quality. Notably, number of significant improvements increases with larger model sizes.

We also observe that ProRefine enables smaller models, such as Llama3.2-3B-instruct and Llama3. 1-
8B-instruct, to approach the zero-shot performance of larger models like Liama3.1-8B-instruct and
Llama3.1-70B-instruct, respectively. In our experiments using Llama3.1-70B-instruct for LL M4y,
some experiments yielded an accuracy of 1, suggesting potential data contamination. We also experi-
mented using the full chat history at each step, but it failed to produce consistent improvements over
our stateless approach. Additionally, we experimented using ProRefine with a comparatively smaller
model (Llama3.1-8B-instruct) for LLM fccapack and LLMopiimizer- However, this configuration
also failed to consistently yield substantial improvements and, in some cases, even degraded perfor-

Under review as a conference paper at ICLR 2026

mance. This aligns with prior findings indicating that smaller models are less capable of providing
high-quality feedback Saunders et al.|(2022); Bai et al.[(2022).

5 DISCUSSION

Regarding RQ1, the results demonstrate that ProRefine is a broadly applicable method that utilizes
textual feedback to improve LLM performance at inference time. The “performance gap bridging”
effect is particularly noteworthy, suggesting that ProRefine may serve as an effective alternative
to simply scaling up model size, potentially avoiding costly fine-tuning an advantage in resource-
constrained settings.

The largest performance gains are observed on the word sorting task, indicating that tasks requiring
more complex reasoning or manipulation of intermediate outputs benefit the most from ProRefine’s
iterative refinement. The mixed results when using a smaller model for LLM ¢ccapack illustrate the
importance of “knowledge asymmetry,” i.e., that the feedback model should be “sufficiently capable”
of providing useful critiques.

Regarding RQ?2, the results indicate that ProRefine outperforms the baselines on 2 and 3 datasets when
using the Llama3.2-1B-instruct and Llama3.2-3B-instruct models, respectively, and on all 5 datasets
when using the Liama3.1-8B-instruct model. This suggests that performance improvements scale
with model size. These findings imply that larger models are preferable to smaller ones, particularly
in agentic workflows that may require test-time scaling and the effective use of textual feedback to
solve complex tasks.

Regarding RQ3, the results highlight that employing a high-quality verifier is crucial for significantly
improving task performance at inference time. We observe some cases where “no verifier" outper-
forms the “verifier" setting, which indicates the verifier incorrectly accepted a flawed initial answer,
thereby preventing the refinement process from correcting the error. This reveals a trade-off: the
verifier reduces computational cost on correct answers but risks prematurely halting on incorrect ones.
The superior results of the “optimal verifier" highlight the critical role of verifier accuracy. Beyond
enhancing performance, the verifier also reduces computational cost during inference by guiding the
refinement process. Moreover, it opens up promising avenues for future work, where an optimizer
could be designed to maximize rewards guided by the verifier’s assessments. ProRefine can offer
a degree of interpretability by exposing the outputs from LLM ¢ccqpack, allowing insights into the
model’s reasoning process. Figures] and [5|demonstrate cases where model feedback successfully
improves the output and where it fails, respectively. Although evaluated on reasoning and math tasks,
ProRefine is general and applicable to other tasks.

A crucial consideration for ProRefine is the trade-off between its accuracy gains and the increased com-
putational cost at inference time. Each refinement step requires additional calls to the LLM tccapack
and LL M ptimizer, making any single query more expensive to process than a standard single-pass
generation. However, this per-query cost should be evaluated within ProRefine’s intended hybrid-
model deployment. The strategy is not to run refinement on every query, but to use it as an on-demand
intervention precisely when a more efficient base model fails. Therefore, the overall system cost is
not a simple sum of expensive refinement processes. Instead, it is a blend of low-cost successes from
the base model and high-value, targeted corrections. Moreover, the cost is still considerably lower
than full model retraining or fine-tuning. Our results support this approach’s practicality: Figure[3|
shows that the average number of refinement iterations is typically low, ensuring the per-incident
cost of intervention is contained. This cost-accuracy balance can be further optimized by tuning
hyperparameters like feedback granularity (k) and maximum iterations (n).

6 LIMITATIONS AND FUTURE WORK

This work has the following limitations that we acknowledge have potential for future explorations:

* Computational Cost and Practicality: While ProRefine is designed for cost-effective
hybrid deployments, its iterative process inherently increases inference-time latency and
computational cost compared to a single-pass query. The cost-benefit of this trade-off must
be carefully evaluated for each specific application, as its viability depends on the base
model’s failure rate and the relative costs of the LLMs involved.

Under review as a conference paper at ICLR 2026

* Generalizability: Our evaluation is currently focused on mathematical and multi-step
reasoning tasks. Further research is needed to assess performance across a broader range
of reasoning tasks and domains. Our method is also sensitive to hyperparameters and
requires manual tuning. Developing more robust, automated, or adaptive methods for setting
parameters would enhance the method’s usability.

* Dependence on High-Quality Feedback: The system’s performance is dependent on the
quality of the LLM ¢ceqpqck- Future work could explore using a specialized “critic" model
or fine-tuning feedback models to improve diagnostic accuracy. Furthermore, using LLMs
for evaluation introduces potential biases and more comprehensive human evaluations and
robust methods are need for mitigating evaluator bias.

* Stability of the Refinement Loop: The iterative nature of ProRefine lacks a formal conver-
gence guarantee. In some cases, the refinement process can suffer from prompt degradation
after many iterations or plateau before reaching an optimal solution. Investigating methods
to ensure stable and monotonic improvement is a key area for future research.

7 CONCLUSION

We introduced ProRefine, a novel, practical, and inference-time prompt optimization method for
agentic workflows. ProRefine leverages LLM-generated textual feedback to dynamically refine
prompts, leading to significant performance improvements on multi-step reasoning tasks without
requiring additional training or ground-truth labels. Our results demonstrate its ability to bridge
the performance gap between smaller and larger LLMs, making it a key enabler for more efficient
and cost-effective hybrid-model deployments. The inference-time nature of ProRefine makes it
readily deployable for on-demand reasoning correction, contributing to more adaptable and accessible
Al systems. Future work will explore applying this framework to new domains, developing more
sophisticated feedback and optimizer agents, and exploring adaptive policies for hyperparameter
tuning to further optimize the cost-performance trade-off.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. The main paper provides a
detailed description of the ProRefine framework, including algorithmic steps (see Section 3), experi-
mental setup (Section 3.2), and evaluation protocols. Hyperparameter choices and implementation
details are further elaborated in Section 3. All datasets used in our experiments are publicly available,
and we include a comprehensive summary of data processing steps in the supplementary materials.
To facilitate replication, we have included anonymized source code and evaluation scripts as part of
the supplementary submission. We will release the source code along with the final submission once
accepted for publication.

REFERENCES

Afra Feyza Akyurek, Ekin Akyurek, Ashwin Kalyan, Peter Clark, Derry Tanti Wijaya, and Niket
Tandon. RL4F: Generating natural language feedback with reinforcement learning for repairing
model outputs. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp- 7716-7733, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.427. URL https://aclanthology.org/2023.acl-1long}
427/

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Anna Bavaresco, Raffaella Bernardi, Leonardo Bertolazzi, Desmond Elliott, Raquel Fernidndez,
Albert Gatt, Esam Ghaleb, Mario Giulianelli, Michael Hanna, Alexander Koller, André F. T.
Martins, Philipp Mondorf, Vera Neplenbroek, Sandro Pezzelle, Barbara Plank, David Schlangen,
Alessandro Suglia, Aditya K Surikuchi, Ece Takmaz, and Alberto Testoni. Llms instead of

https://aclanthology.org/2023.acl-long.427/
https://aclanthology.org/2023.acl-long.427/

Under review as a conference paper at ICLR 2026

human judges? a large scale empirical study across 20 nlp evaluation tasks, 2024. URL https:
//arxiv.org/abs/2406.18403.

Cheng-Han Chiang and Hung-yi Lee. Can large language models be an alternative to human
evaluations? In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 15607-15631, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.870. URL https://aclanthology.org/2023.acl-1long.
870/

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts with reinforcement
learning. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language Processing, pp. 3369-3391, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.emnlp-main.222. URL https://aclanthology.org/2022.emnlp-main.222/.

Yihong Dong, Kangcheng Luo, Xue Jiang, Zhi Jin, and Ge Li. PACE: Improving prompt with actor-
critic editing for large language model. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Findings of the Association for Computational Linguistics: ACL 2024, pp. 7304—7323, Bangkok,
Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
findings-acl.436. URL https://aclanthology.org/2024.findings-acl.436/l

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
z]7YuTE4t8.

Yicheng Feng, Yuxuan Wang, Jiazheng Liu, Sipeng Zheng, and Zongqing Lu. LLaMA-rider:
Spurring large language models to explore the open world. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Findings of the Association for Computational Linguistics: NAACL
2024, pp. 4705-4724, Mexico City, Mexico, June 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.findings-naacl.292. URL https://aclanthology.org/2024 |
findings—-naacl.292/.

Mary L. Gray and Siddharth Suri. Ghost work: how to stop Silicon Valley from building a new global
underclass. Houghton Mifflin Harcourt, Boston, 2019. ISBN 978-1-328-56628-7.

Qianyue Hao, Sibo Li, Jian Yuan, and Yong Li. RI of thoughts: Navigating llm reasoning
with inference-time reinforcement learning, 2025. URL https://arxiv.org/abs/2505,
14140.

Daniel Kahneman, Olivier Sibony, and Cass R. Sunstein. Noise: a flaw in human judgment. Little,
Brown Spark, New York, first edition edition, 2021. ISBN 978-0-316-45140-6 978-0-316-26665-9.
OCLC: on1249942231.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. DSPy: Compiling declarative language model calls into
state-of-the-art pipelines. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=sY5N0zY50d.

Hannah Rose Kirk, Alexander Whitefield, Paul Rottger, Andrew Bean, Katerina Margatina, Juan
Ciro, Rafael Mosquera, Max Bartolo, Adina Williams, He He, Bertie Vidgen, and Scott A. Hale.
The PRISM Alignment Dataset: What Participatory, Representative and Individualised Human
Feedback Reveals About the Subjective and Multicultural Alignment of Large Language Models,
December 2024. URL http://arxiv.org/abs/2404.16019. arXiv:2404.16019 [cs].

10

https://arxiv.org/abs/2406.18403
https://arxiv.org/abs/2406.18403
https://aclanthology.org/2023.acl-long.870/
https://aclanthology.org/2023.acl-long.870/
https://aclanthology.org/2022.emnlp-main.222/
https://aclanthology.org/2024.findings-acl.436/
https://openreview.net/forum?id=zj7YuTE4t8
https://openreview.net/forum?id=zj7YuTE4t8
https://aclanthology.org/2024.findings-naacl.292/
https://aclanthology.org/2024.findings-naacl.292/
https://arxiv.org/abs/2505.14140
https://arxiv.org/abs/2505.14140
https://openreview.net/forum?id=sY5N0zY5Od
http://arxiv.org/abs/2404.16019

Under review as a conference paper at ICLR 2026

Zhen Li, Xiaohan Xu, Tao Shen, Can Xu, Jia-Chen Gu, Yuxuan Lai, Chongyang Tao, and Shuai
Ma. Leveraging large language models for NLG evaluation: Advances and challenges. In Yaser
Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pp. 16028—16045, Miami, Florida, USA,
November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
896. URL https://aclanthology.org/2024.emnlp-main.896/.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s Verify Step by Step. In The
Twelfth International Conference on Learning Representations, October 2024. URL https |
//openreview.net/forum?id=v8LOpN6EOi.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by ratio-
nale generation: Learning to solve and explain algebraic word problems. In Regina Barzi-
lay and Min-Yen Kan (eds.), Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 158-167, Vancouver, Canada,
July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1015. URL
https://aclanthology.org/P17-1015/.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: NLG
evaluation using gpt-4 with better human alignment. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 2511-2522, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.153. URL https://aclanthology.org/2023|
emnlp-main.153/l

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 46534-46594. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf.

Maitrey Mehta, Valentina Pyatkin, and Vivek Srikumar. Promptly predicting structures: The return of
inference. In Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp.
112-130, 2024.

Meta. llama-models/models/llama3_2/MODEL_card.md at main - meta-llama/llama-models, 2024.
URL https://github.com/meta-llama/llama-models/blob/main/models/
llama3_2/MODEL_CARD.md.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Rithesh Murthy, Ming Zhu, Liangwei Yang, Jielin Qiu, Juntao Tan, Shelby Heinecke, Caiming Xiong,
Silvio Savarese, and Huan Wang. Promptomatix: An automatic prompt optimization framework
for large language models, 2025. URL https://arxiv.org/abs/2507.14241,

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve sim-
ple math word problems? In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, 1z Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 2080—2094, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.168. URL
https://aclanthology.org/2021.naacl-main.168/.

11

https://aclanthology.org/2024.emnlp-main.896/
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://aclanthology.org/P17-1015/
https://aclanthology.org/2023.emnlp-main.153/
https://aclanthology.org/2023.emnlp-main.153/
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91edff07232fb1b55a505a9e9f6c0ff3-Paper-Conference.pdf
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/MODEL_CARD.md
https://arxiv.org/abs/2507.14241
https://aclanthology.org/2021.naacl-main.168/

Under review as a conference paper at ICLR 2026

Akshara Prabhakar, Thomas L. Griffiths, and R. Thomas McCoy. Deciphering the factors influencing
the efficacy of chain-of-thought: Probability, memorization, and noisy reasoning. In Yaser Al-
Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2024, pp. 3710-3724, Miami, Florida, USA, November 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.212. URL https://
aclanthology.org/2024.findings-emnlp.212/.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang Zhu, and Michael Zeng. Automatic prompt
optimization with “gradient descent” and beam search. In Houda Bouamor, Juan Pino, and Kalika
Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 7957-7968, Singapore, December 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.emnlp-main.494. URL https://aclanthology.org/2023|
emnlp-main.494/.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024. URL https://openreview.net/forum?id=
DRCI9pZwBwWR.

Gollam Rabby, Farhana Keya, and Séren Auer. Mc-nest: Enhancing mathematical reasoning in large
language models leveraging a monte carlo self-refine tree, 2025. URL https://arxiv.org/
abs/2411.15645.

Leonardo Ranaldi and Andre Freitas. Self-refine instruction-tuning for aligning reasoning in language
models. arXiv preprint arXiv:2405.00402, 2024.

Abhinav Sukumar Rao, Aditi Khandelwal, Kumar Tanmay, Utkarsh Agarwal, and Monojit Choudhury.
Ethical reasoning over moral alignment: A case and framework for in-context ethical policies
in LLMs. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2023, pp. 13370-13388, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.892. URL
https://aclanthology.org/2023.findings-emnlp.892/l

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators, June 2022. URL http://arxiv,
org/abs/2206.05802. arXiv:2206.05802 [cs].

Timo Schick, Jane A. Yu, Zhengbao Jiang, Fabio Petroni, Patrick Lewis, Gautier Izacard, Qingfei
You, Christoforos Nalmpantis, Edouard Grave, and Sebastian Riedel. PEER: A collaborative
language model. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=KbYevcLjnc.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh. AutoPrompt:
Eliciting Knowledge from Language Models with Automatically Generated Prompts. In Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 4222-4235, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.346. URL
https://aclanthology.org/2020.emnlp—main.346/.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024a. URL https://arxiv.org/
abs/2408.03314.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM Test-Time Compute
Optimally can be More Effective than Scaling Model Parameters, August 2024b. URL http:
//arxiv.org/abs/2408.03314. arXiv:2408.03314 [cs].

Kefan Song, Amir Moeini, Peng Wang, Lei Gong, Rohan Chandra, Yanjun Qi, and Shangtong

Zhang. Reward is enough: Llms are in-context reinforcement learners, 2025. URL https:
//arxiv.org/abs/2506.06303.

12

https://aclanthology.org/2024.findings-emnlp.212/
https://aclanthology.org/2024.findings-emnlp.212/
https://aclanthology.org/2023.emnlp-main.494/
https://aclanthology.org/2023.emnlp-main.494/
https://openreview.net/forum?id=DRC9pZwBwR
https://openreview.net/forum?id=DRC9pZwBwR
https://arxiv.org/abs/2411.15645
https://arxiv.org/abs/2411.15645
https://aclanthology.org/2023.findings-emnlp.892/
http://arxiv.org/abs/2206.05802
http://arxiv.org/abs/2206.05802
https://openreview.net/forum?id=KbYevcLjnc
https://aclanthology.org/2020.emnlp-main.346/
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
http://arxiv.org/abs/2408.03314
http://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2506.06303
https://arxiv.org/abs/2506.06303

Under review as a conference paper at ICLR 2026

Axel Sorensen, Siyao Peng, Barbara Plank, and Rob Van Der Goot. EEVEE: An easy annotation
tool for natural language processing. In Sophie Henning and Manfred Stede (eds.), Proceedings of
the 18th Linguistic Annotation Workshop (LAW-XVIII), pp. 216-221, St. Julians, Malta, March
2024. Association for Computational Linguistics. URL https://aclanthology.org/
2024 .1law—-1.20/.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. Transactions
on Machine Learning Research, 2023.

Jinwei Su, Yinghui Xia, Ronghua Shi, Jianhui Wang, Jianuo Huang, Yijin Wang, Tianyu Shi, Yang
Jingsong, and Lewei He. Debflow: Automating agent creation via agent debate, 2025. URL
https://arxiv.org/abs/2503.23781l

Lisa Torrey and Matthew Taylor. Teaching on a budget: Agents advising agents in reinforcement
learning. In Proceedings of the 2013 international conference on Autonomous agents and multi-
agent systems, pp. 1053—-1060, 2013.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady Arkhang-
orodsky, Minjie Xu, Naomi White, and Patrick Lewis. Replacing judges with juries: Evaluating
Ilm generations with a panel of diverse models. arXiv preprint arXiv:2404.18796, 2024.

Manya Wadhwa, Xinyu Zhao, Junyi Jessy Li, and Greg Durrett. Learning to refine with fine-
grained natural language feedback. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
(eds.), Findings of the Association for Computational Linguistics: EMNLP 2024, pp. 12281-
12308, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.716. URL |https://aclanthology.org/2024,
findings—-emnlp.716/.

Jiaan Wang, Yunlong Liang, Fandong Meng, Zengkui Sun, Haoxiang Shi, Zhixu Li, Jinan Xu,
Jianfeng Qu, and Jie Zhou. Is ChatGPT a good NLG evaluator? a preliminary study. In Yue Dong,
Wen Xiao, Lu Wang, Fei Liu, and Giuseppe Carenini (eds.), Proceedings of the 4th New Frontiers
in Summarization Workshop, pp. 1-11, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.newsum-1.1. URL https://aclanthology.org/
2023 .newsum-1.1/.

Yingxu Wang, Siwei Liu, Jinyuan Fang, and Zaiqiao Meng. Evoagentx: An automated framework
for evolving agentic workflows, 2025. URL https://arxiv.org/abs/2507.03616.

Tharindu Cyril Weerasooriya, Sujan Dutta, Tharindu Ranasinghe, Marcos Zampieri, Christopher M.
Homan, and Ashiqur R. KhudaBukhsh. Vicarious Offense and Noise Audit of Offensive Speech
Classifiers: Unifying Human and Machine Disagreement on What is Offensive, November 2023.
URL http://arxiv.org/abs/2301.12534, arXiv:2301.12534 [cs].

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language mod-
els. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Ad-
vances in Neural Information Processing Systems, volume 35, pp. 24824-24837. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/9d5609613524ecfd4fl5af0f7b31labcad-Paper—-Conference.pdfl

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309,
034009.

Kevin Yang, Yuandong Tian, Nanyun Peng, and Dan Klein. Re3: Generating longer stories with
recursive reprompting and revision. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.),

13

https://aclanthology.org/2024.law-1.20/
https://aclanthology.org/2024.law-1.20/
https://arxiv.org/abs/2503.23781
https://aclanthology.org/2024.findings-emnlp.716/
https://aclanthology.org/2024.findings-emnlp.716/
https://aclanthology.org/2023.newsum-1.1/
https://aclanthology.org/2023.newsum-1.1/
https://arxiv.org/abs/2507.03616
http://arxiv.org/abs/2301.12534
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409

Under review as a conference paper at ICLR 2026

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.
4393-4479, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.emnlp-main.296. URL https://aclanthology.org/
2022.emnlp-main.296/.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. Textgrad: Automatic" differentiation" via text. arXiv preprint arXiv:2406.07496,
2024.

Yongcheng Zeng, Xinyu Cui, Xuanfa Jin, Guoqing Liu, Zexu Sun, Dong Li, Ning Yang, Jianye Hao,
Haifeng Zhang, and Jun Wang. Evolving llms’ self-refinement capability via iterative preference
optimization, 2025. URL |https://arxiv.org/abs/2502.05605.

Haoke Zhang, Xiaobo Liang, Cunxiang Wang, Juntao Li, and Min Zhang. Unlocking recursive
thinking of 1lms: Alignment via refinement, 2025a. URL https://arxiv.org/abs/2506,
06009,

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. Aflow: Automating agentic workflow generation, 2025b. URL https://arxiv.org/
abs/2410.10762.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion
Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 46595-46623. Curran Associates, Inc., 2023.
URL |https://proceedings.neurips.cc/paper_files/paper/2023/file/
91£f18a1287b398d378ef22505bf41832-Paper—-Datasets_and_Benchmarks.
pdf.

Han Zhou, Xingchen Wan, Ruoxi Sun, Hamid Palangi, Shariq Igbal, Ivan Vulic, Anna Korhonen, and
Sercan O. Arik. Multi-agent design: Optimizing agents with better prompts and topologies, 2025.
URLhttps://arxiv.org/abs/2502.02533.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang
Xiong, Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, Yangyang Shi,
Vikas Chandra, and Jiirgen Schmidhuber. Agent-as-a-judge: Evaluate agents with agents, 2024.
URLhttps://arxiv.org/abs/2410.10934.

A SUPPLEMENTARY MATERIAL

A.0.1 LLM USAGE

LLMs (ChatGPT 4 and Gemini 2.5) were used to aid in grammar and writing flow.

A.1 EXPERIMENTAL CODE

Experimental code available via https://anonymous.4open.science/r/
prorefine-5525/README . md

14

https://aclanthology.org/2022.emnlp-main.296/
https://aclanthology.org/2022.emnlp-main.296/
https://arxiv.org/abs/2502.05605
https://arxiv.org/abs/2506.06009
https://arxiv.org/abs/2506.06009
https://arxiv.org/abs/2410.10762
https://arxiv.org/abs/2410.10762
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2502.02533
https://arxiv.org/abs/2410.10934
https://anonymous.4open.science/r/prorefine-5525/README.md
https://anonymous.4open.science/r/prorefine-5525/README.md

Under review as a conference paper at ICLR 2026

A.2 ADDITIONAL EXAMPLE #1

i~
9]
3
@
C
23
cL
i
o3
@
3]
X
B

Initial Prompt: You will answer a reasoning question. Think step by
step. The last line of your response should be of the following format:
"Answer: $VALUE' where VALUE is a numerical value.

Query: | have a lettuce head, a stalk of celery, two yams, a
cauliflower, a carrot, two onions, two potatoes, and three cabbages.
How many vegetables do | have?

(Answer: 13)

LLM,, the number of we need to identify the vegetables in the
given Ilst \n\n Lettuce is a vegetable.\n- Celery is a vegetable.\n- Cauliflower is a
\n- Carrot is a \n- Onion is a vegetable.\n- Potato is a vegetable.\n-
Cabbage is a vegetable.\n\nNow, let's count the number of vegetables: \n1. Lettuce\n2.
Celery\n3. Cauliflower\n4. Carrot\n5. Onion\n6. Potato\n7. Cabbage\n\nThere are 7
vegetables in total.\n\nAnswer: 7

Baseline response
(no ProRefine)

(LLM,,: To ine the number of)

LLM, gpaci: The output is incomplete, it should directly answer the
question. Add the total count of the vegetables: "There are 12
vegetables."

LLM inizert YOU Will answer a reasoning question. Think step by step. Ensure the
answer J"ectly answers the question and provides a final numerical value. If necessary,
include the total count of the vegetables in the answer. The last line of your response
should be of the following format: \'Answer: $VALUE\' where VALUE is a numerical value.
Include the total count of the vegetables in the format "There are X vegetables."

LLM,,,: To find the total number of vegetables, we need to count
each type of vegetable

LLM, .o, InCorrect assumption. The task is to find the total number
of individual vegetables, not just count the types. Instead, focus on
ting the ities of each and ing them up.

LLM_imize, YOU Will answer a reasoning question. Think step by step. To find the total
count % of indi count the q ies of each ly and
sum them up. Then, provide the final numerical value. The answer should include the
total count of individual vegetables, not just the types. Include the total count in the
format "There are X individual vegetables." The last line of your response should be of
the following format: 'Answer: $VALUE\' where VALUE is a numerical value.

ProRefine

count the of each and sum them

LLM,,: To Fnd fhe total count of individual vegetables, we need to
up.\n\n- Let

LLM, .o, Incorrect calculation, the output should directly provide
the total count of vegetables instead of explaining the process. It
should correctly sum up the quantities of each vegetable, which is
1+1+2+1+14242+3=13.

LLMg imizer: YOU Will answer a reasoning question. To find the total count of individual
Veger bles, , you are given the quantities of each vegetable. Directly provide the total
count of indi by ing up the ities. Do not explain the
process. Ensure the answer includes the total count in the format "There are X
individual vegetables." The last line of your response should be of the following
format: 'Answer: $VALUE\' where VALUE is a numerical value representing the total
count of individual vegetables.

LLM,,,: There are 1 +1+2+1+1+2+ 2+ 3= 13 individual
vegetables.\n\nAnswer: 13

(LLM,__,,..: the output is correctj

Figure 4: ProRefine example. Given an input query (which in this case has a correct answer:
13) and an initial prompt, the task model (LLM;,¢) gives an incorrect answer. ProRefine uses
two additional models, LLM fceapack and LLMptimizer, to iteratively improve the prompt as the
LLM,,s1 generates its response. Refining the prompt during generation allows the feedback model
to target local regions of the response, providing finer-grained feedback than waiting for the response
to complete. We also provide an additional example illustrating our approach in FigureEl

15

Under review as a conference paper at ICLR 2026

A.3 ADDITIONAL EXAMPLE #2

Initial Prompt: You will answer a reasoning question. Think step by step. The last line
of your response should be of the following format: 'Answer: $VALUE' where VALUE is
a numerical value.

Query: Sort the following words alphabetically: List: oakland seaborg jacobi membrane
trapezoidal allis marmot toggle anthology
(Answer: allis anthology jacobi marmot membrane oakland seaborg toggle trapezoidal)

Input
(except for Answer)

LLM,,_,: To sort the given words alphabetically, we need to compare each word and arrange them in
order from A to Z.\n\nHere's the step-by-step process:\n\n1. Compare ‘allis' and ‘anthology'. ‘allis' comes
before 'anthology’.\n2. Compare 'anthology' and ‘jacobi'. ‘anthology' comes before ‘jacobi'.\n3. Compare
‘jacobi' and 'list". ‘jacobi' comes before 'list'.\n4. Compare 'list' and'marmot'. 'list' comes before'marmot'.\n5.
‘Compare'marmot’ and'membrane’.'marmot’ comes before'’ '.\n6. Ce ' and
'oakland'.'"membrane’ comes before 'oakland'.\n7. Compare 'oakland' and'seaborg'. 'oakland' comes
before'seaborg’\n8. Compare'seaborg’ and 'trapezoidal.'seaborg’ comes before ‘trapezoidal’ \n\nNow, let's
arrange the words in alphabetical order:\n\n1. allis\n2. y\n3. jacobilnd. listins.

7. i)

Baseline response
(no ProRefine)

(LLMh‘k: To sort the given words alphabet)

LLM,_v.ci Incomplete output. The output should provide the sorted list of words
instead of just stating the instruction. \n\nCorrect output should list the words in
alphabetical order, such as: allis, anthology, jacobi, marmot, membrane, oakland,
seaborg, trapezoidal, toggle

LLMW“"‘M You will answer a reasoning question that requires sorting a list of words. The input will be a list
of words, and you need to think step by step to provide the correct output. Your response should include the
sorted list of words in alphabetical order. Do not forget to list all the words in the correct order. Think
step-by-step and provide the correct output.\n\nThe last line of your response should be of the following
format: ‘Answer: $VALUE' where VALUE is the sorted list of words, with each word separated by a comma.
For example: ‘Answer: allis, anthology, jacobi, marmot, membrane, oakland, seaborg, trapezoidal, toggle’

(LLMM: To sort the list of words alphabetically, | will go through each word and)

: This is not the correct output. The task was to sort the list of words

alphabeﬂcally, but the given output starts with an explanation. A correct output should

be a direct response with the sorted list of words. \n\nHowever, the output did not
provide the sorted list. The correct sorted list should be: allis, anthology, jacobi,
rmarmot, membrane, oakland, seaborg, toggle, trapezoidal.

: You will answer a reasoning question that requires sorting a list of words. The input will
be a llsl of words, and you need to sort the list in alphabetical order and provide the correct output
directly. Do not include any explanations. \n\nYour response should be a direct st of the sorted
words in alphabetical order, separated by commas. Ensure that all words are included in the correct
order. \n\nThe last line of your response should be of the following format: ‘Answer: $VALUE' where
VALUE is the sorted list of words, with each word separated by a comma.

ProRefine

GLM““: Answer: allis, anthology, jacobi, list, marmot, membrane, oakland, seaborg,)
trape

. Missing word "toggle" in the sorted list. Also, the word "list" was not

supposed to he included as it was part of the original instruction, not the actual list to
be sorted. \n\nCorrected sorted list should be: allis, anthology, jacobi, marmot,
membrane, oakland, seaborg, toggle, trapezoidal.

opumizert YOU Will answer a reasoning question that requires sorting a list of words. The input will be
a list of words, and you need to sort the list in alphabetical order and provide the correct output directly.
Do not include any explanations. Ensure all words from the input list are included in the sorted
output.\n\nYour response should be a direct list of the sorted words in alphabetical order, separated by
commas. The last line of your response should be of the following format: ‘Answer: $VALUE' where
VALUE is the sorted list of words, with each word separated by a comma.

LLM,,,: Answer: allis, anthology, jacobi, list, marmot, membrane, oakland, seaborg,
Irapezoldal toggle

LLM,, .k "Correct alphabetization, but \list\" is not part of the original list, remove it to x
maintain consistency."

L Mop“mm, You will answer a reasoning question that requires sorting a list of words. The input will be a
list of words, and you need to sort the list in alphabetical order and provide the correct output directly. Do
not include any explanations. Ensure all words from the input list are included in the sorted output, and do
not add any extra words. \n\nYour response should be a direct list of the sorted words in alphabetical order,
separated by commas. The last line of your response should be of the following format: ‘Answer: $VALUE'
where VALUE is the sorted list of words, with each word separated by a comma.

Figure 5: This figure is an instance when LLMpiimizer is not aligned with the feedback from
LLM#eeqpack. and misses important guiding steps. The framework is similar to Figure H when
LLM ,ptimizer conveys feedback effectively. We’ve observed a few failed instances following this
pattern.

16

	Introduction
	Related Work
	Prompt Generation
	Self-Refinement
	Inference-Time Scaling
	Agentic Workflows

	ProRefine
	Unifying Verifier and Feedback
	Implementation Details

	Experiments and Evaluation
	Data
	Experimental Setup
	Results

	Discussion
	Limitations and Future Work
	Conclusion
	Supplementary Material
	LLM Usage
	Experimental Code
	Additional Example #1
	Additional Example #2

