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Figure 1. Garment3DGen, automatically transforms a base garment mesh to simulation-ready asset directly from images or text in a
frictionless manner unlocking applications such as cloth and hand-cloth interaction in a VR.

Abstract

We introduce Garment3DGen a new method to synthe-
size 3D garment assets from a base mesh given a single
input image as guidance. Our proposed approach allows
users to generate 3D textured clothes based on both real and
synthetic images, such as those generated by text prompts.
The generated assets can be directly draped and simu-
lated on human bodies. We leverage the recent progress
of image-to-3D diffusion methods to generate 3D garment
geometries. However, since these geometries cannot be
utilized directly for downstream tasks, we propose to use
them as pseudo ground-truth and set up a mesh defor-
mation optimization procedure that deforms a base tem-
plate mesh to match the generated 3D target. Carefully
designed losses allow the base mesh to freely deform to-
wards the desired target, yet preserve mesh quality and
topology such that they can be simulated. Finally, we gen-
erate high-fidelity texture maps that are globally and lo-
cally consistent and faithfully capture the input guidance,
allowing us to render the generated 3D assets. With Gar-
ment3DGen users can generate the simulation-ready 3D
garment of their choice without the need of artist interven-
tion. We present a plethora of quantitative and qualitative

comparisons on various assets and demonstrate that Gar-
ment3DGen unlocks key applications ranging from sketch-
to-simulated garments or interacting with the garments in
VR. Details and code are provided in our project page.

1. Introduction

3D asset creation is the process of designing and generat-
ing geometries and materials for 3D experiences. It has
direct applications across several industries such as gam-
ing, movies, fashion as well as VR applications. Tradition-
ally, simulation-ready garments are hard to obtain and are
created through a laborious time-consuming process requir-
ing specialized software [9, 15, 78] relying on experienced
artists. Currently, creating virtual clothing for simulation
is a challenging task. Garments need to be manually de-
signed and draped onto an underlying body. Additionally,
the topology of the garment needs to take simulation re-
quirements into consideration in order to enable stable and
visually pleasing results. Low-friction asset creation will be
the key enabler to unlock virtual applications at scale. Gen-
erative AI will be a cornerstone technology that will allow
anyone, from novice users to experts, to create customized
avatars and to contribute to building personalized virtual ex-
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periences. In addition, it will assist in the design process to
facilitate faster exploration and creation of new designs.

To tackle this task, we set out to develop a method that
creates 3D garments directly from images. Given a base ge-
ometry mesh and a single image, Garment3DGen performs
topology-preserving mesh-based deformations to match the
image guidance and synthesizes new 3D assets on the fly.
Our generated garments comprise of posed geometries that
stylistically match the input image, and high-resolution tex-
ture maps. The provided image guidance can be either from
the real world or synthetically generated [17, 68] which en-
ables us to create both real and fantastical 3D garments.
One way to tackle this problem would be to utilize recent
image-to-3D techniques [50]. Given a single image as in-
put, such methods synthesize a specific number of views
captured from pre-set viewpoints and then employ multi-
view reconstruction techniques to obtain the 3D asset. How-
ever, the output geometries tend to be coarse and lack fine-
level details due to the use of Marching Cubes to extract
the output 3D geometry. Another limitation is that the out-
put garments are watertight and have arbitrary scale, mak-
ing it difficult to drape them on human bodies and simulate
them directly. This is because manual intervention would
be required to post-process the geometry. For example, cre-
ating arm, neck, and waist holes for a t-shirt geometry, as
well as re-meshing to produce mesh topologies suitable for
downstream applications which are sensitive to poor mesh
qualities. Alternatively, one could follow a NeRF-based ap-
proach where a handful of views of the base mesh are uti-
lized to train a NeRF which can be stylized in an iterative
manner [32]. However, such an approach does not guar-
antee multi-view consistency of the newly stylized garment
because the NeRF training and stylization are happening in
an iterative manner. In addition, it is a time-consuming pro-
cess and the final result is not suitable for simulation. Re-
cent works have focused on 3D Gaussian Splatting [38] to
generate 3D assets from image inputs. While such methods
are fast and of produce high reconstruction quality, their
output splats are hard to be used for any downstream task
besides rendering. Another direction of research predicts
2D garment patterns [7, 18, 39] which can be optimized
using differentiable simulation [12, 46]. Such approaches
generate simulation-ready garments but cannot generalize
to fantastical AI-generated garments and are constrained to
specific garment styles. For example, when testing Sew-
Former [49] on upper-body garments, it only works well
on input with V-neck shirts, which is very limiting; while
for other garments (long-sleeve with round neck) it fails to
generate accurate patterns.

To this end, we carefully designed Garment3DGen to
tackle each of the aforementioned challenges: i)
reconstruction-based approaches output geometries that are
watertight, coarse and the garments cannot be draped on

human bodies ii) deformation-based approaches are under-
constrained when given a single image or text prompt and
their outputs do not faithfully match the provided guidance
and iii) simulation-based approaches fail to generalize to
new garment types. Garment3DGen produces high-quality
simulation-ready stylized garment assets along with the as-
sociated textures. We approach this task from deformation-
based perspective as we believe that it provides better prop-
erties and more fine-grained control for the output geome-
tries compared to alternative NeRF-based or reconstruction-
based approaches. Mesh-based deformations can preserve
the mesh topology which in turn can allow for UV texture
transfer, they can preserve the arm/body/head holes of the
garment geometry instead of outputting watertight meshes,
and can provide output meshes the triangles of which are
not distorted and can be draped on human bodies and sim-
ulated. Our method takes as inputs a single image and
a base template mesh and outputs a deformed mesh that
faithfully follows the image guidance while preserving the
structure and topology of the base mesh. Our first contri-
bution stems from supervising the mesh deformation pro-
cess directly in the 3D space which directly allows physics-
inspired losses that ensure simulation-readiness instead of
solely relying on image-based or embedding-based super-
visions [58, 60, 90]. In the absence of 3D ground-truth, we
build upon the progress of diffusion-based multi-view con-
sistent image generation to obtain a coarse 3D geometry that
can serve as pseudo ground-truth. However, strictly enforc-
ing 3D supervisions using a coarse mesh results in deformed
meshes that lack fine-level details and are not simulation-
ready. Thus, we utilize a pre-trained MetaCLIP model [90]
finetuned to garment data and introduce additional losses in
the image as well as the embedding spaces using differen-
tiable rendering. Finally, we propose a carefully designed
texture estimation module to predict the texture maps re-
quired to create the final 3D garment.

We conducted a plethora of experiments that demon-
strate that our method generates 3D garment assets i) di-
rectly from images allowing a frictionless experience where
users indicate a requested garment by providing a reference
image and quickly obtain a high-quality 3D asset without
manual intervention and ii) from text describing both real
and fantastical garments, and iii) even garment sketches
that one can quickly draw. Moreover, we have developed a
body-garment co-optimization framework that enables us to
scale and fit the garment to a parametric body model. This
allows us to animate the body model and perform physics-
based cloth simulation, resulting in a more accurate repre-
sentation of the garment’s behavior in various novel scenar-
ios. In summary, our contributions are as follows:

• We propose a new deformation-based approach for 3D
geometry and texture generation for garments given a
base mesh and a single image guidance as inputs.



• We introduce geometry supervisions directly on the 3D
space by generating coarse-guidance meshes from the im-
age inputs and use them as soft constraints during the
optimization. In addition, we provide valuable insights
on the impact of different losses that ensure that the out-
put geometries are suitable for downstream tasks such as
cloth-simulation or hand-garment interaction.

• We introduce a texture enhancement module that gener-
ates high-fidelity UV textures from a single image allow-
ing us to render the output geometries.

2. Related Work

Garment Modeling: An important line of work is fo-
cused on designing [8, 20, 85], capturing [95], register-
ing [30], reconstructing [16, 36, 45, 61, 66, 92], and repre-
senting [53, 80] clothes and their texture [10] from images
or videos. BCNet [36] predicts garment vertex displace-
ments whereas Moon et al. [61] map 3D garments to a para-
metric body using dense keypoints. Both these approaches
cannot generalize to loose clothes moving freely. Guo et al.
[29] learns a shape diffusion-based prior from captured 4D
data in order to enable registration of texture-less cloth,
whereas Lin et al. [47] aligns the garment geometry to real
world captures using a coarse-to-fine method that leverages
intrinsic manifold properties with neural deformation fields.
Aiming to model clothes and discover compact ways to rep-
resent them, CaPhy [79] recovers a dynamic neural model
of clothing similar to SNUG [70] by leveraging 3D super-
vised training in combination with physics-based losses.
Xiang et al. [88] introduced a physically-inspired appear-
ance representation by learning view-dependent and dy-
namic shadowing effects. Finally, recent methods explored
modeling clothes using graph neural networks [27, 31, 62].
An alternative way to represent clothes is via sewing pat-
terns as it ensures an efficient representation of devel-
opable [69, 76] and manufacturable garments which can
be easily modified. A plethora of works [2, 6, 64] have
followed this path for garment reconstruction [49, 82, 83],
generation [33, 52, 72] and draping [44].
Garment Deformation and Stylization: The recent
progress in language and image-to-3D models has un-
locked new ways of representing and reconstructing dressed
avatars [37, 84] from text or images. Such methods typi-
cally generate multi-view consistent views [50, 51, 54, 65,
87] given a single image or text input or directly optimize
a 3D scene [63] using a 3D scene parameterization, simi-
lar to Neural Radiance Fields [59]. However, such meth-
ods generate coarse, watertight meshes that in the context
of garments do not have the required topology and struc-
ture to be draped on humans and simulated [77]. Edit-
ing and stylizing 3D surfaces has been explored for op-
timizing directly in 3D [4, 5, 26, 40, 48, 74] and more
recently using triplanes [22] and text-to-mesh formula-

tions [13, 60]. For example, Michel et al. [58] performs
mesh stylization by predicting color and local geometric
details that follow a text prompt. Deformation-based ap-
proaches [3, 23, 24, 28, 35, 56, 81, 86, 94, 97] can leverage
these foundation models to enforce supervision for text and
image-based stylization [19] and manipulation [25] of 3D
meshes. Recent work [11, 67, 93, 96] applied text-to-image
generation models to create textures based on the mesh and
given text/image. Extending such techniques to clothes is
a complex task as the supervision signals of a single image
or text-prompt are insufficient to ensure that the deformed
clothes will be simulation-ready.

3. Methodology
Our approach takes as input a single image I and a base
garment template mesh Min and performs a topology-
preserving deformation of the input geometry given the im-
age guidance to obtain the target deformed mesh Mdef =
D(I,Min) where D is a function that optimizes over the in-
put mesh. An overview of our method is depicted in Fig. 2.
3.1. Target Geometry Generation

We propose to leverage the recent progress of single-image-
to-3D methods to obtain a coarse geometry of I denoted
by Mguide(I) and use it as much stronger supervision both
directly in the 3D space as well as in projected 2D space
through differentiable rendering. A cross-domain diffusion
model [54, 73] is employed which synthesizes RGB and
normal images from six views given the input image I cap-
tured from the same predefined viewpoint. A multi-view
3D reconstruction algorithm based on the LRM architec-
ture [91] is then utilized that, given the generated views, it
outputs a watertight, relatively coarse geometry Mguide(I)
of the garment in the input image. Such meshes cannot
serve as the final simulation-ready result due to its poor
mesh quality which is due to Marching Cubes [55] (or Flex-
iCubes [71]) or potential inaccuracies of the multi-view
generation. Additionally, the fact that it is watertight pre-
vents us from draping the garment on a body (e.g. missing
armholes). Nonetheless, it provides useful information to
serve as a pseudo ground-truth that serves as a reference to
deform Min towards. Hence, we update the optimization
function as follows Mdef = D(I,Min,Mguide(I)). The al-
ternative approach would be to rely on the input image I as
the sole supervision for mesh deformation which would re-
sult in a severely under-constrained optimization with low-
quality output meshes that are uncanny, over-deformed, and
they fail to capture the subtle details of the image guidance.
For example, starting from a template T-shirt geometry with
guidance of the image of an armor, one could extract CLIP
embeddings for both I and the renders of Mdef following a
similar approach to TextDeformer [25]. By enforcing su-
pervisions on the embeddings, the goal is obtain an output
mesh that would resemble the requested armor. In practice,



Figure 2. Overview: Given an input 3D base mesh and a target garment image we first generate 3D pseudo ground-truth using a diffusion-
based method and utilize the output geometry as a soft supervision signal during the deformation process. Our 3D generated geometry
preserves the topology and structure of the base mesh as depicted by the colors of the sleeves/collar while accurately reflecting the geometry
and details of the input image. Finally, we introduce a texture-estimation module which outputs the corresponding UV texture that along
with the geometry comprise our final generated 3D garment.

the supervision from the embedding of a single exemplar
image is not strong enough to produce a high-quality out-
put.

3.2. Topology-Preserving Deformations

In order to preserve the structure and topology of the in-
put base mesh while enabling image-base stylizations, we
propose an approach which deforms Min. In contrast, gen-
erating novel geometry using reconstruction-based methods
would be hard to use directly in downstream tasks. Hence,
inspired by Neural Jacobian Fields [1], we parameterize
Min using a set of per-triangle Jacobians which define a de-
formation. Following the same formulation, for simplicity
we represent per-triangle Jacobians as matrices Ji ∈ R3x3

and solve a Poisson optimization problem to obtain the de-
formation map Φ∗ as the mapping with Jacobian matrices
for each triangle that is closest to Ji. More formally, this is
represented as:

Φ∗ = min
Φ

∑
|ti|∥Φ∇T

i − Ji∥2, (1)

where ∇(Φ) denotes the Jacobian of Φ at triangle ti, with
|ti| being the area of the triangle. We optimize the defor-
mation mapping Φ indirectly by optimizing the matrices Ji
which define Φ∗. These Jacobians are initialized to iden-
tity matrices. With the Jacobian representation at hand, we
optimize over the triangles of Min by introducing a several
losses each addressing a specific issue.
3D Supervisions: We employ the one-directional Chamfer
Distance (CD) loss to evaluate the similarity between sets
of points pdef ∈ Sdef and pI ∈ SI sampled randomly in each

iteration from Mdef and Mguide(I). This is defined as:

LCD =
1

|Sdef|
∑

pdef∈Sdef

min
pI∈SI

∥pdef − pI∥22. (2)

Regularizations: We introduce several regularizations on
the deformed 3D mesh to ensure that it maintains key prop-
erties. First, we introduce Laplacian smoothing [21] de-
noted by LLap to redistribute vertex positions based on the
average positions of neighboring vertices. This smoothing
process helps reduce irregularities and improves the overall
mesh shape. To produce simulation-ready meshes we penal-
ize very small surface area triangles denoted by Ltriag as that
would result in meshes that are difficult to simulate. We do
this by regularizing the edge length and by minimizing the
inverse of the squared sum of the triangle areas. Note that
there is a trade-off between how much a mesh can freely
deform (e.g. a shirt becoming a spiky medieval armor) and
how much regularization it requires such that the garment
can be placed on a parametric body and simulated.

2D Supervisions: We utilize a rasterization-based differ-
entiable renderer [41] denoted by R and pass both the
deformed mesh Mdef in each iteration and target pseudo
ground-truth mesh Mguide(I) to obtain K image renders
Idefi = R(Mdef, Ci), i = 1 . . .K from randomly sampled
camera views Ci. With IIi computed in a similar fashion
for Mguide(I) we employ the L1 loss between the deformed
and target renders:

L2D =
1

K

K∑
i=1

∥Idefi − IIi|. (3)



This supervision in the 2D space captures well the silhouette
of the garment from multiple views as well as its fine-level
details thereby enforcing the deformed mesh to not deviate
far from the target along each step of the optimization.
Embedding Supervisions: We observe that passing gar-
ment images through a pretrained CLIP model results in de-
formed output garments that are overly distorted, uncanny,
and fail to capture the fine-level details provided in the in-
put images. This is due to the weak supervision signal
contained in these embeddings. Likewise, this holds true
for other mesh classes that are not well represented in the
data on which CLIP was trained on, such as human ge-
ometries for example. This is because CLIP fails to cap-
ture the subtle differences between garments, their proper-
ties, and materials. To overcome this limitation, we propose
to use garment-specific embeddings obtained from a CLIP
model fine-tuned on fashion data named FashionCLIP [14]
denoted by FCLIP. The latent space for this model is better
tuned for fashion concepts, and as a result, the embeddings
provide a stronger guidance for the deformations. We rep-
resent this loss as follows:

LE =
1

K

K∑
i=1

Cos
(
FCLIP

(
Idefi

)
,FCLIP

(
IIi

))
, (4)

where CosSim is the cosine similarity. This embedding loss
acts as a soft supervision signal between the embeddings of
the deformed mesh Mdef and those of the pseudo-ground-
truth Mguide(I). This behavior is desired since we aim to
benefit from the embedding representations of the CLIP
model and sufficiently deform the base mesh towards the
target without capturing all of its shortcomings. For exam-
ple we need to preserve the arm/head holes of the base ge-
ometry while the target mesh is watertight, or capture the
fine-level details depicted in the input image that Mguide(I)
might have failed to represent well. In summary, the total
loss LT is defined as follows where w∗ is the corresponding
weight for each loss:

LT = wCDLCD +wLapLLap +wtriagLtriag +w2DL2D +wELE, (5)

where the corresponding weights balance between utilizing
the 3D pseudo ground-truth with the CD loss while captur-
ing the finer details through the embedding and 2D losses.

3.3. Texture Estimation
Given the untextured deformed 3D geometry Mdef, we
generate high-fidelity textures that match the input image.
We leverage a 2D text-to-image generation model to cre-
ate high-quality, high-resolution textures with vivid details
given a text prompt. When starting from images where text
is absent, a text prompt is obtained using an image cap-
tion model [43]. Our pipeline builds on the work of Xiang
et al. [89] and consists of the following steps: generating
images of the given fashion asset from multiple views and
backprojecting these images onto the mesh surface to cre-
ate UV texture T ∈ RH×W×C . There are two challenges in

adapting a 2D generation model to 3D objects: establishing
geometry-texture correspondence and ensuring multi-view
consistency.

Shape-Aware Generation: To ensure that the texture faith-
fully reflects the underlying shapes, we propose using a
depth-aware text-to-image generation model. Given a set
of camera poses C = {Ci}ni=1, we render the depth Di of
each view from Mdef, and sample the appearance image Ii
of the view Ci conditioned on Di and the text prompt using
the text-to-image model.

Multi-view Consistency: Directly conducting view-by-
view image synthesis cannot guarantee that the generated
views are consistent with each other. To solve this problem,
we first synthesize the front and back views simultaneously
to implicitly enforce global consistency. Then, we lever-
age the fact that the geometry of fashion assets is mostly
flat, and conduct depth-aware inpainting for the remaining
views to ensure the newly generated textures are locally
consistent. To handle occluded areas, we design an auto-
matic view selection algorithm to inpaint the textures in a
coarse-to-fine manner: from the remaining unpainted area,
we select the view with the most unfilled pixels to generate
the textures iteratively from large regions to small pieces.

Texture Enhancement: The above texture generation
pipeline can also be applied to texture refinement: given a
low-quality, low-resolution initial texture TLQ, we leverage
the 2D appearance priors to further enhance the details. We
adopt SDEdit [57], which perturbs the above sampling pro-
cedure with Gaussian noise and progressively denoises by
simulating the reverse stochastic differential equations. As
a result, the low-quality ILQ

i is projected onto the manifold
of realistic images, yielding IHQ

i . By backprojecting these
images, we acquire a high-quality texture THQ.

Our texture estimation module has the following improve-
ments compared with the previous works:

• Global consistency: by generating the front and back
views together, we enforce better global consistency.

• Geometry-aware texture inpainting: Past works tweaked
the depth-to-image generation model with masked gen-
eration methods (TEXTure [67] uses Blended Diffusion,
and Text2Tex [11] uses RePaint). We directly use multi-
ControlNet, enabling a better balance between the depth
and mask controls, which produces better local content
consistency.

• Backprojection: we implement a faster backprojection
method using PyTorch grid sample, which has the low-
est latency compared to all known methods.

• Speed: Our texture generation is significantly faster than:
TEXTure: 2.5 mins, Text2Tex:12mins, Ours: 4.56s

We refer the reader to the supplementary for an in-depth
discussion of trade-offs.



Figure 3. Qualitative Comparisons: We demonstrate several mesh generation methods given an image (top) or text (bottom) and show
front and back views of each reconstruction. The 3D Gaussian Splatting [101] method generates distorted frontal colors and dark or
blurry back colors while its geometry is not suitable for downstream tasks such as simulation. The second reconstruction approach [54,
100] generates watertight meshes with coarse geometric details and blurry colors. WordRobe[75] which is purely text-based, generates
simulation-ready garments but they deviate far from the text prompt (e.g., the puffer jacket and t-shirt are not faithful to the prompt). Our
proposed approach outputs 3D geometries that are geometrically correct with fine-level texture details that prior works fail to generate.

4. Experiments

Data: We use the publicly available DiffAvatar [46] dataset
which comprises of artist-created garment templates cov-
ering several cloth categories (e.g. T-shirt, shirt, tank-top,
dress, etc). To demonstrate garment generation using im-
age guidance, we collect a variety of real images with gar-
ments in different poses, different textures, including gar-
ment types that are not covered by our dataset. In addition
to real images, we include AI generated images using a text
prompt of both realistic and fantastical garments.
Metrics: Quantitatively evaluating our results is a challeng-
ing task in the absence of 2D or 3D ground-truth for what
are we trying to accomplish. However we can evaluate how
consistent the geometries are to the input image and hence
we render untextured outputs for all methods from 36 views
and compute their perceptual scores using the LPIPS met-
ric [99] as well as their image-based CLIP similarity score
using the cosine distance between their embeddings.
Baselines: We evaluate our approach against: i) TextDe-
former [25] which deforms input meshes based on text, ii)
ImageDeformer - a variation of TextDeformer we devel-
oped where the input text is replaced with an image, iii)
Wonder3D [54] and iv) Zero123++ [73] both of which gen-
erate 3D geometries given a single image using 2D diffusion
models, v) ZeroShape [34] which performs zero-shot re-
construction and vi) a triplane-based 3DGS approach [101].
The first two works also take as input a base mesh whereas

the latter four reconstruct the final result given a single
image as input. Finally, we perform qualitative compar-
isons with WordRobe [75] which is a recent top-performing
method among some concurrent text-based garment gener-
ation methods [33, 42, 52] and a pattern-based approach
termed SewFormer [49] (see supplementary).

4.1. Image-to-3D Garments

Given an image prompt and a base mesh, Gar-
ment3DGen generates textured 3D garments matching the
input image guidance. We present a plethora of image-to-
3D results in Fig. 1, Fig. 3 and Fig. 5 and showcase that the
generated 3D assets can be of various topologies, respect
the pose, shape and texture of the input image. Garments
can be both real or fantastical. They contain high-quality
texture maps which exhibits fine-level details such as cloth
wrinkles and folds and preserves the topology and structure
of the input (e.g., head, bottom and armholes are respected
such that the garments can be draped on a body). Addi-
tionally, we quantitatively evaluate Garment3DGen against
several baseline methods and report our results in Table 1.
Our approach outperforms all methods in terms of both
embedding as well as perceptual similarity with the input
image guidance while it is the only approach that gener-
ates textured geometries that can be used for downstream
tasks. Deformation-based approaches (rows 1-2) preserve
the topology and the holes of the garment but lack strong
supervision signals to generate outputs that match the in-



Figure 4. Mesh Quality (Top) and Geometry Comparisons (Bottom): We showcase the wireframes of all approaches. Our method
stands out as the only one that produces geometries that adhere to the input image while maintaining good mesh quality and incorporating
necessary holes for physics-based simulation tasks. At the bottom we showcase the output geometry of various techniques to highlight that
our approach captures fine geometric details without geometric artifacts (Wonder3D). Note that several methods produce smooth meshes
where details are incorrectly captured in the texture map instead which results in lower quality visual results.

put image. Reconstruction-based approaches (rows 3-6) are
good at preserving and reconstructing what is visible in the
input image but generate unusable geometries (or splats)
and their color estimates for the non-visible regions are usu-
ally blurry or single colored (as shown in Fig. 3).

4.2. Text-to-3D Garments
We easily extend our work to enable textured garment
generation using textual prompt inputs. Unlike TextDe-
former [25] or WordRobe [75] which utilize text directly,
we opt for a text-to-image diffusion model as an initial step.
We do this because image-based supervisions provides a
stronger guidance for our mesh deformation process which
produces better results. This allows the user to easily iter-
ate with several text-prompts to generate the image of their
desired garment . This is in stark contrast to the slow itera-
tion time of providing a text-prompt and waiting for the 3D
asset creation process to finish to see if the result matches
their intent. In Fig. 3 (bottom) we present generated gar-
ments using only the provided textual prompt as guidance.

4.3. Ablation Studies
We conducted a variety of ablation studies to assess the im-
pact of the key components of our proposed approach the
figures of which are provided in the supplementary material.
We start with the off-the-shelf TextDeformer which takes a
text prompt and a base-mesh and deforms this to match the
target text. Text prompts are not ideal to capture the fine-
level details of a garment as there can be many “medieval
armors”. In addition, a pretrained CLIP model is not capa-

Table 1. Quantitative Comparisons: Our approach outperforms
deformation-based (rows 1,2) and reconstruction-based (rows 3-6)
methods across both metrics while generating textured geometries
that can be used for downstream tasks which is not the case for
any of the prior methods.

Method CLIP-Sim↑ LPIPS ↓ Faithful to Image Colored Output Head/Arm Holes

TextDeformer [25] 0.51 0.42
ImageDeformer [25] 0.54 0.41
Wonder3D [54] 0.56 0.41
Zero123++ [73] 0.52 0.42
ZeroShape [34] 0.48 0.46
T-3DGS [101] 0.57 0.41
Garment3DGen 0.59 0.39

ble of capturing the subtle differences between a “jacket”
and a “puffer jacket”. To overcome this limitation we adapt
TextDeformer to take image inputs as guidance (ImageDe-
former) and observe that the deformed geometries are im-
proved. Nonetheless, they still fail to capture the details of
the image. By swapping the original CLIP model and in-
troducing a model that is fine-tuned on fashion data we ob-
serve that details are better preserved across garments. Not-
ing that image-based reconstruction methods can accurately
capture geometry but produce coarse and watertight meshes
that are unsuitable for subsequent tasks, we utilize these
meshes as pseudo ground-truth for our proposed approach.
Our Garment3DGen results in garments that faithfully fol-
low the image guidance while containing the wrinkles and
fine details. However the quality of the output geometry
is not always ideal for physics-based downstream tasks be-



Figure 5. Applications: Garment3DGen generates textured 3D garments from images, text prompts, simple sketches, that can be fitted to
human bodies and drive them with physics-based cloth simulation or even enable interaction between hands and garments in VR.

cause they produce poorly conditioned triangles which will
result in instabilities when simulated in addition to poorly
tessellated geometry which will result in unnatural fabric
behavior. Because of this, we introduced additional 3D su-
pervisions that preserve a better mesh quality, see Fig. 4. All
prior works either do not follow the input image guidance
or generate low-quality geometries that cannot be directly
used for downstream tasks. Finally we conducted ablation
studies to assess the impact of the pre-trained CLIP model
on garment data, the impact of regularizations as well as the
texture enhancement module and refer the interested reader
in the supplementary material for additional information.

4.4. Applications

Physics-based Cloth Simulation We consider the gener-
ated 3D shape as rest shape for our simulations and incor-
porate a zero rest-angle dihedral energy to model the out-
of-plane banding of the fabric. Fantastical garments such
as armors are not well modeled using a zero rest-angle as
they would lose their distinct shape during simulation and
wrinkle unnaturally. To obtain visually pleasing results, we
take the rest angle to be the 3D generated mesh one which
allows it to maintain its shape throughout the simulation.
Generated garments can further be manipulated to achieve
distinct looks through garment resizing.
Hand-Cloth Interaction in VR Our garments are suitable
for real-time simulations with hand-interaction using mod-
ern VR headsets. The rightmost part of Fig. 1 and Fig. 5
show a user interacting with the garments through real-time
simulation with integrated hand-tracked interactions.
Sketch to Garment: Given a rough dress sketch, we gen-
erate a realistic image using ControlNet [98] which then
serves as the input to our method to generate the corre-
sponding 3D asset. In Fig. 5 we show simulation results
of this automatically generated dress.

4.5. Discussion

Simulation-ready Garments: Our method stands out as
the favorable choice for producing garments that are faithful
to the prompt with high-quality meshes that can be seam-
lessly integrated into simulation frameworks as demon-
strated by a qualitative and quantitative analysis. Although
it might be possible to produce simulation-ready garments
using alternative methods, this would require remeshing and
potentially several additional manual post-processing steps,
such as creating arm holes. Moreover, our use of template
meshes ensures a superior UV layout, which is challenging
to attain automatically.
Runtime: Garment3DGen takes ∼5 minutes on a single
H100 which is 3x faster than [25, 42, 58] yet slower than
3DGS-based methods that take a few seconds. While the
latter render well, how to accurately re-mesh them and fit
them onto bodies is an open research problem.

5. Conclusion
We proposed a new approach to generating high-quality
garment assets that can be directly used for downstream
applications which require good mesh quality. We intro-
duced a deformation-based approach that takes a base mesh
as input along with an image guidance and outputs textured
geometry that faithfully matches the input image while pre-
serving the structure and topology of the input mesh. Our
key contributions stem from utilizing novel diffusion-based
generative models to synthesize 3D pseudo ground-truth
that can be used as a soft supervision signal along with ad-
ditional regularizations, a texture enhancement module that
generates high-fidelity texture maps and a body-cloth opti-
mization framework that fits the generated 3D garments to
parametric bodies. Our approach clearly outperforms prior
work. Finally, we showcased physics-based cloth simula-
tion, hand-garment interaction in a VR environment.
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