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ABSTRACT

Generative Adversarial Networks (GANs) have swiftly evolved to imitate increas-
ingly complex image distributions. However, majority of the developments focus
on performance of GANs on balanced datasets. We find that the existing GANs
and their training regimes which work well on balanced datasets fail to be effec-
tive in case of imbalanced (i.e. long-tailed) datasets. In this work we introduce a
novel and theoretically motivated Class Balancing regularizer for training GANs.
Our regularizer makes use of the knowledge from a pre-trained classifier to ensure
balanced learning of all the classes in the dataset. This is achieved via modelling
the effective class frequency based on the exponential forgetting observed in neu-
ral networks and encouraging the GAN to focus on underrepresented classes. We
demonstrate the utility of our contribution in two diverse scenarios: (i) Learning
representations for long-tailed distributions, where we achieve better performance
than existing approaches, and (ii) Generation of Universal Adversarial Perturba-
tions (UAPs) in the data-free scenario for the large scale datasets, where we bridge
the gap between data-driven and data-free approaches for crafting UAPs.

1 INTRODUCTION

Image Generation witnessed unprecedented success in recent years following the invention of Gener-
ative Adversarial Networks (GANs) by Goodfellow et al. (2014). GANs have improved significantly
over time with the introduction of better architectures (Gulrajani et al., 2017; Radford et al., 2015),
formulation of superior objective functions (Jolicoeur-Martineau, 2018; Arjovsky et al., 2017), and
regularization techniques (Miyato et al., 2018). An important breakthrough for GANs has been the
ability to effectively use the information of class conditioning for synthesizing images (Mirza &
Osindero, 2014; Miyato & Koyama, 2018). Conditional GANs have been shown to scale to large
datasets such as ImageNet (Deng et al., 2009) with 1000 classes (Miyato & Koyama, 2018).

One of the major issues with unconditional GANs has been their inability to produce balanced dis-
tributions over all the classes present in the dataset. This is seen as problem of missing modes in
the generated distribution. A version of the missing modes problem, known as the ‘covariate shift’
problem was studied by Santurkar et al. (2018). One possible reason may be the absence of knowl-
edge about the class distribution P (Y |X)1 of the generated samples during training. Conditional
GANs on the other hand, do not suffer from this issue since the class label Y is supplied to the GAN
during training. However, it has been recently found by Ravuri & Vinyals (2019) that despite being
able to do well on metrics such as Inception Score (IS) (Salimans et al. (2016)) and Frèchet Incep-
tion Distance (FID) (Heusel et al., 2017), the samples generated from the state-of-the-art conditional
GANs lack diversity in comparison to the underlying training datasets. Further, we observed that
although conditional GANs work well in balanced case, they suffer performance degradation in the
imbalanced case.

In order to address these shortcomings, we propose an orthogonal method (with respect to label
conditioning) to induce the information about the class distribution P (Y |X) of generated samples in
the GAN framework using a pre-trained classifier. We achieve this by tracking the class distribution
of samples produced by the GAN using a pre-trained classifier. The regularizer utilizes the class
distribution to penalize excessive generation of samples from the majority classes, thus enforcing

1Here Y represents labels and X represents data.
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the GAN to generate samples from minority classes. Our regularizer involves a novel method of
modelling the forgetting of samples by GANs, based on the exponential forgetting observed in neural
networks (Kirkpatrick et al. (2017)). We infer the implications of our regularizer by a theoretical
bound and empirically verify the same.

We conduct empirical analysis of the proposed class balancing regularizer in two diverse and chal-
lenging scenarios:

(i) Training GANs for image generation on long-tailed datasets: Generally, even in the long-tailed
distribution tasks, the test set is balanced despite the imbalance in the training set. This is because it
is important to develop Machine Learning systems that generalize well across all the support regions
of the data distribution, avoiding undesired over-fitting to the majority (or head) classes. Hence, it
is pertinent to train GANs that can faithfully represent all classes.

(ii) Transferring the knowledge from a learnt classifier (P (Y |Xt)) to a GAN being trained on arbi-
trary prior distribution P (Xp): This is a specific situation where the samples from target distribution
Xt are unavailable. Instead, discriminative feature knowledge is indirectly available in the form of a
trained classifier (P (Y |Xt)). This is a perfect fit for crafting input-agnostic (Universal) adversarial
perturbations in the data-free scenario. We show that the proposed regularizer can enable the gen-
erated samples to not only extract information about the target data with a trained classifier in the
loop, but also represent its support to a greater extent.

In summary, our contributions can be listed as follows:

• We propose a ‘class-balancing’ regularizer that makes use of the statistics (P (Y |X)) of generated
samples to promote uniformity while sampling from an unconditional GAN. The effect of our
regularizer is depicted both theoretically (Section 3) and empirically (Section 4).

• We show that our regularizer enables GANs to learn uniformly across classes even when the
training distribution is long-tailed. We observe gains in FID and accuracy of a classifier trained
on generated samples.

• We also show that by combining a pre-trained classifier (i.e. P (Y |Xt)) trained on a target dataset
Xt, with an arbitrary distribution P (Xp), our framework is capable of synthesizing novel samples
related to the target dataset. We show that UAPs created on such novel samples generalize to
real target data and hence lead to an effective data-free attack. This application is novel to our
framework and cannot be realized by conditional GANs.

2 BACKGROUND

2.1 GENERATIVE ADVERSARIAL NETWORKS (GANS)

Generative Adversarial Networks (GANs) are formulated as a two player game in which the discrim-
inator D tries to classify images into two classes: real and fake. The generator G tries to generate
images (transforming a noise vector z ∼ Pz ) which fool the discriminator (D) into classifying them
as real. The game can be formulated by the following objective:

min
G

max
D

Ex∼Pr
[log(D(x))] + Ez∼Pz

[log(1−D(G(z))] (1)

The exact optimization for trainingD is computationally prohibitive in large networks and the GAN
is trained by alternative minimization using loss functions. Multiple loss functions have been pro-
posed for stabilizing the GAN training. In our work we use the relativistic loss function (Jolicoeur-
Martineau, 2018) which is formulated as:

LrelD = −E(x,z)∼(Pr,Pz)[log(σ(D(x)−D(G(z)))] (2)

LrelG = −E(x,z)∼(Pr,Pz)[log(σ(D(G(z))−D(x))] (3)

This unconditional GAN formulation does not have any class conditioning and produces different
number of samples from different classes (Santurkar et al., 2018). In other words, the distribution is
not balanced (uniform) across different classes for the generated data.
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2.2 CONDITIONAL GAN

The conditional GAN (Mirza & Osindero, 2014) generates images associated with input label y
using the following objective:

min
G

max
D

Ex∼Pr
[log(D(x|y))] + Ez∼Pz

[log(1−D(G(z|y))] (4)

The Auxillary Classifier GAN (ACGAN) (Odena et al., 2017) uses an auxiliary classifier for
classification along with normal discriminator to enforce high confidence samples from the
conditioned class y. Whereas cGAN with projection (Miyato & Koyama, 2018) uses Conditional
Batch Norm (De Vries et al., 2017) in the generator and uses a projection step in the discriminator to
provide class information to the GAN. We refer to this method as cGAN in the subsequent sections.

Possible issue with Conditional GAN in Long-tailed Setting: The objective in eq.(4) can be seen
as learning a different G(z|y) and D(x|y) for each of the K classes. In this case the tail classes
with fewer samples can suffer from poor generalization as they have very few samples. However, in
practice there is parameter sharing among different class generators but still class specific parameters
are also present in form of Conditional BatchNorm. We find that performance of conditional GANs
degrade more in comparison to unconditonal GANs in the long-tailed scenario (Section 4).
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Figure 1: (a) shows the overview of our method and (b) shows the distribution of generated sam-
ples of SNDCGAN on CIFAR-10 for varying values of N0. The percentage of class 0 (randomly
choosen) samples is determined by an annotator (i.e. high accuracy classifier). When N0 is large,
the network tries to decrease fraction of class 0 samples whereas whenN0 is small it tries to increase
fraction of class 0 samples among the generated samples.

3 METHOD

In our method we propose to introduce a pretrained classifier (C) to provide feedback to the gen-
erator about the label distribution P (Y ) over the generated images. The proposed regularizer is
added with the generator loss and trained using backpropogation. We first describe the method of
modelling in Section 3.1. The exact formulation of the regularizer and its theoretical properties are
described in Section 3.2. The overview of our method is presented in Figure (1a).

3.1 CLASS STATISTICS FOR GAN

GAN is a dynamic system in which the generator G has to continuously adapt itself in a way that
it is able to fool the discriminator D. During the training, discriminator D updates itself, causing
the objective for the generator G also to change. This change in objective can be seen as learning
of different tasks for the generator G. In this context, we draw motivation from the seminal work
on catastrophic forgetting in neural networks (Kirkpatrick et al., 2017) which shows that a neural
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Figure 2: Distribution of classes and corresponding FID scores on long-tailed CIFAR-10 computed
on samples generated by GANs with uniform distribution of labels in case of conditional GANs.

network trained using SGD suffers from exponential forgetting of earlier tasks when trained on a
new task. Based on this, we define effective class frequency N̂ t

k of class k at cycle t as:

N̂ t
k = (1− α) ˆN t−1

k + ct−1k (5)

Here ct−1k is the number of samples of class k produced by the GAN in cycle (t − 1). The class of
the sample is determined by the pretrained classifier C. Although D gets updated continuously, the
update is slow and requires some iterations to change the form of D. Hence we update the statistics
after certain number of iterations which compose a cycle. Here α is the exponential forgetting factor
which is set to 0.5 in all our experiments. We normalize the class frequency N̂ t

k to obtain discrete
effective class distribution:

N t
k =

N̂ t
k∑

k N̂
t
k

(6)

3.2 REGULARIZER FORMULATION

The regularizer objective is defined as the maximization of the term(Lreg) below:

max
p̂

∑
k

p̂k log(p̂k)

N t
k

(7)

where p̂ =
∑n
i=1

C(G(zi))
n . In other words, p̂ is the average softmax vector (obtained from the

classifier C) over the batch of n samples and p̂k is its kth component corresponding to class k. zi
corresponds to random noise vector sampled from Pz . If the classifier C recognizes the samples
confidently with probability ≈ 1, p̂k can be seen as the approximation to the ratio of the number of
samples that belong to class k to the total number of samples in the batch n. TheN t

k in the regularizer
term is obtained through the update rule in Section 3.1 and is a constant during backpropagation. We
want to emphasize that classifier C is not required to be trained on same data as the GAN, instead
it can be trained in ways such as semi-supervised learning, few-shot learning, etc. For instance, in
section 4.2 we show that a classifier trained in a semi-supervised scenario also enables the GAN to
produce a balanced distribution. Hence our approach doesn’t specifically need labelled data which
is in contrast to conditional GANs which require labels for each image while training.

Proposition: The maximization of the proposed objective in (7) leads to the following bound on p̂k:

p̂k ≤ e
−K(log(K)−1) Nt

k∑
k Nt

k

−1
(8)

where K is the number of distinct class labels produced by classifier C. Please refer to the appendix
Section A.1 for proof of the same.

Implications of the proposition: The bound on p̂k is inversely related to the exponent of the frac-
tion of effective class frequency N t

k/
∑
kN

t
k for a given class k. In case of generating a balanced

distribution, p̂k = 1/K which leads to the exponential average N t
k = 1/K. Hence given suffi-

cient iterations, the p̂k value will achieve the upper bound which signifies tightness of the same. To
demonstrate effect of the regularizer empirically, we construct two extreme case examples based on
the nature of the bound:

• IfN t
k � N t

i , ∀i 6= k, then the bound on p̂k would approach e−K(log(K)−1)−1. Hence the network
is expected to decrease the proportion of class k samples.

• If N t
k � N t

i , ∀i 6= k, then the bound on p̂k will be e−1. Hence the network is expected to
increase the proportion of class k samples.
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We verified the two extreme cases above by training a SNDCGAN (Miyato et al., 2018) (DCGAN
with spectral normalization) on CIFAR-10 and fixing N̂ t

k (unnormalized version of N t
k) across time

steps and term it as Nk. Then we initialize Nk to a very large value and a very small value. Results
presented in Figure (1b) show that the GAN increases the proportion of samples of class k in case
of low Nk and decreases the proportion of samples in case of large Nk. This shows the balancing
behaviour of proposed regularizer.

3.3 COMBINING THE REGULARIZER AND GAN OBJECTIVE

The regularizer is then combined with the generator loss in the following way:
Lg = −E(x,z)∼(Pr,Pz)[log(σ(D(G(z))−D(x)))]− λLreg (9)

It has been recently shown (Jolicoeur-Martineau, 2019) that the first term of the loss leads to mini-
mization ofDf (Pg, Pr) that is divergence between real and generated data distribution. The regular-
izer term ensures that the distribution of classes across generated samples is uniform. The combined
objective provides insight into the working of framework, as the first term ensures that the generated
images fall in the image distribution and the second term ensures that the distribution of classes is
uniform. As Pr comprises of diverse samples from majority class the first objective term ensures
that Pg is similarly diverse. The second term in the objective ensures that the discriminative prop-
erties of all classes are present uniformly in the generated distribution, which ensures that minority
classes get benefit of diversity within the majority classes. This is analogous to approaches that
transfer knowledge from majority to minority classes for long-tailed classifier learning (Liu et al.,
2019b; Wang et al., 2017).

4 EXPERIMENTS

For evaluating the effectiveness of our balancing regularizer, we conduct two sets of experiments:
(i) image generation from long-tailed distributions, and (ii) creating Universal Adversarial Pertur-
bations in the data-free scenario. The goal of the first task is to generate high quality images across
all classes and that of the second task is to craft UAPs when the attacker has no access (e.g. due to
privacy) to the target data.

4.1 IMAGE GENERATION FROM LONG-TAILED DISTRIBUTION

In this experiment we aim to learn a GAN over a long-tailed dataset, which are prevalent in the real
world setting. An important aspect of this problem is that it requires to transfer the knowledge from
majority classes to minority classes. Several works have focused on learning classifiers for long-
tailed distributions (Cao et al., 2019; Cui et al., 2019). Yet works focusing on Image Generation
using long-tailed dataset are limited. Generative Minority Oversampling (GAMO) (Mullick et al.,
2019) attempts to solve the problem by introducing a three player framework. We do not compare
our results with GAMO as it is not trivial to extend GAMO to use schemes like Spectral Normaliza-
tion, and ResGAN like architecture (Gulrajani et al., 2017) which impede fair comparison.

Datasets: We performed our experiments on two datasets, CIFAR-10 and a subset of LSUN. The
LSUN subset consists of 250k training images and 1.5k validation images. The LSUN subset is
composed of 5 balanced classes; Santurkar et al. (2018) identify this subset to be a challenging case
for GANs to generate uniform distribution of classes. The original CIFAR-10 dataset is composed
of 50k training images and 10k validation images. We construct the long-tailed version of the imbal-
anced dataset by following the same procedure as Cao et al. (2019). Here, images are removed from
training dataset to convert it to a long-tailed distribution while the validation set is kept unchanged.
The imbalance ratio (ρ) determines the ratio of number of samples in most populated class to the
least populated one: ρ = maxk{nk}/mink{nk}. More details can be found in Appendix A.2.

Pre-Trained Classifier: An important component of our framework is the pre-trained classifier, a
ResNet32 model trained using Deffered Reweighting (DRW) of loss (Cao et al., 2019) on long-
tailed versions of LSUN and CIFAR-10 datasets. Accuracy of the pre-trained classifiers and training
details are present in Appendix A.3.

GAN Architecture: We used the SNDCGAN architecture for experiments on CIFAR-10 with im-
ages of size of 32× 32 and SNResGAN (ResNet architecture with spectral normalization) structure
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Imbalance Ratio 100 10 1
FID (↓) KLDiv(↓) Acc.(↑) FID(↓) KLDiv(↓) Acc.(↑) FID (↓)

CIFAR-10
SNDCGAN 36.97± 0.20 0.31± 0.0 68.60 32.53± 0.06 0.14± 0.0 80.60 27.03± 0.12
ACGAN 44.10± 0.02 0.33± 0.0 43.08 38.33± 0.10 0.12± 0.0 60.01 24.21± 0.08
cGAN 48.13± 0.01 0.02± 0.0 47.92 26.09± 0.04 0.01± 0.0 68.34 18.99± 0.03
Ours 32.93± 0.11 0.06± 0.0 72.96 30.48± 0.07 0.01± 0.0 82.21 25.68± 0.07

LSUN
SNResGAN 37.70± 0.10 0.68± 0.0 75.27 33.28± 0.02 0.29± 0.0 79.20 28.99± 0.03
ACGAN 43.76± 0.06 0.39± 0.0 62.33 31.98± 0.02 0.05± 0.0 75.47 26.43± 0.04
cGAN 75.39± 0.12 0.01± 0.0 44.40 30.68± 0.04 0.00± 0.0 72.93 27.59± 0.03
Ours 35.04± 0.19 0.06± 0.0 77.93 28.78± 0.01 0.01± 0.0 82.13 28.15± 0.05

Table 1: Results on CIFAR-10 (top panel) and 5 class subset of LSUN (bottom panel) datasets with varying imbalance. In the last column FID
values in balanced scenarios are present for ease of reference. FID, KL Div. and Acc. are calculated on 50k sampled images from each GAN.

for experiments on LSUN dataset with images size of 64 × 64. For the conditional GAN base-
lines we conditioned the generator using Conditional BatchNorm. We compare our method to two
widely used conditional GANs: ACGAN and cGAN. The other baseline we use is the unconditional
GAN (SNDCGAN & SNResGAN) without our regularizer. All the GANs were trained with spectral
normalization in the discriminator for stabilization (Miyato et al., 2018).

Training Setup: We train GANs with learning rate of 0.002 for both generator and discriminator.
We used Adam optimizer with β1 = 0.5 and β2 = 0.999 for SNDCGAN and β1 = 0 and β2 = 0.999
for SNResGAN. We used a batch size of 256 and 1 discriminator update per generator update. As
a sanity check, we use the FID values and visual inspection of images on the balanced dataset and
verify the range of values from (Kurach et al., 2019). We update the statisticsN t

k by update equation
in Section 3.1 after every 2000 iterations. Further details are present in Appendix A.6.

Evaluation We used the following evaluation metrics:

KL Divergence from Uniform Distribution of labels: Labels for the generated samples are
obtained by using the pre-trained classifier (trained on balanced data) as a proxy to annotator.
Classification Accuracy (CA): We use the {(X,Y )} pairs from the GAN generated samples to
train a ResNet32 classifier and validate it on real data. For the unconditional GANs the label Y
is obtained from the classifier trained on long-tailed data. Note that this is similar to Classifier
Accuracy Score (Ravuri & Vinyals, 2019).
Frèchet Inception Distance (FID): It measures the 2-Wasserstein Distance on distributions
obtained from Inception Network (Heusel et al., 2017). We use 10k samples from CIFAR-10 vali-
dation set and 10k (2k from each class) fixed random images from LSUN dataset for measuring FID.

Discussion of Results: We present our results in the following subsections:
1) Stability: In terms of stability we find that cGAN suffers from early collapse in case of high
imbalance (ρ = 100) and stop improving under 10k iterations. Though we don’t claim about insta-
bility of cGANs in general, we emphasize that the same GAN which is stable in balanced scenario
is unstable in case of long-tailed version of the same dataset.
2) Biased Distribution: Contrary to cGAN, we find that the distribution of classes generated by
ACGAN, SNDCGAN and SNResGAN becomes imbalanced. The images obtained by sampling
uniformly and labelling by annotator, suffers from a high KL divergence to the uniform distribution.
This leads to some classes being almost absent from the distribution of generated samples as shown
in Figure 2. In this case, in Table 1 we observe FID score just differs with small margin even if there
is presence of large imbalance in class distribution. Our GAN produces class samples uniformly as
is evident from the low KL Divergence.
3) Comparison with State-of-the-Art Methods: In this work we also find that classification accu-
racy is weakly correlated with FID score which is in agreement to (Ravuri & Vinyals, 2019). We
achieve better classifier accuracy in all cases, better than cGAN which achieves state-of-the-art Clas-
sifier Accuracy Score (CAS). Our method shows minimal degradation in FID for each long-tailed
case, in comparison to the corresponding balanced case. It is also able to achieve the best FID in
3 out of 4 long-tailed cases. Hence we expect that methods such as Consistency Regularization
(Zhang et al., 2019), Latent Optimization (Wu et al., 2019b) etc. can be applied in conjunction with
our method to further improve the quality of images. But in this work we specifically focused on
techniques used to provide class information Y of an image X to the GAN. Several state-of-the-art
GANs use an approach similar to cGAN (Wu et al., 2019b; Brock et al., 2018) for conditioning the
discriminator and the generator.
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FID (↓) KLDiv(↓) FID (↓) KLDiv(↓)
Imbalance Ratio 100 10

CIFAR-10

SNDCGAN 36.97± 0.20 0.31± 0.0 32.53± 0.06 0.14± 0.0
Ours
(Supervised) 32.93± 0.11 0.06± 0.0 30.48± 0.07 0.01± 0.0
Ours
(Semi Supervised) 33.32± 0.03 0.14± 0.0 30.37± 0.14 0.04± 0.0

LSUN

SNResGAN 37.70± 0.10 0.68± 0.0 33.28± 0.02 0.29± 0.0
Ours
(Supervised) 35.04± 0.19 0.06± 0.0 28.78± 0.01 0.01± 0.0
Ours
(Semi Supervised) 35.95± 0.05 0.15± 0.0 30.96± 0.07 0.06± 0.0

Table 2: Comparison of results in Semi Supervised Setting. The pretrained classifier
used in our framework is fine-tuned with 0.1% of labelled data. The same classifier
trained on balanced dataset is used as annotator for calculating KL Divergence for all
baselines.

FID (↓) KLDiv(↓)
SNResGAN 30.05± 0.05 0.18± 0.0

ACGAN 69.90± 0.13 0.40± 0.0
cGAN 30.87± 0.06 0.09± 0.0
Ours 28.17± 0.06 0.11± 0.0

Table 3: Results on long-tailed CIFAR-100
dataset with imbalance ratio = 10. FID is com-
puted through 50k generated images and KL Div
of class distribution of GAN and uniform distribu-
tion is present in last column.

We also find that our method trained using SNResGAN performs similarly to experiments in Table
1 on long-tailed CIFAR-100 dataset as well. Our method achieves the best FID of 28.17 among all
baselines and also achieves balanced class distribution like cGAN. The results are summarized in
Table 3 and detailed experimental details are present in Appendix A.6.1.

4.2 SEMI-SUPERVISED CLASS-BALANCING GAN

In this section we show that the presence of classifier in our framework is an advantage for it, as
it allows classifiers trained through various sources to be used for providing feedback to GAN.
This feedback allows the GAN to generate class balanced distributions in cases when the labels for
underlying long-tailed distributions are not known. This reduces the need of labelled data in our
framework and shows the effectiveness over conditional GAN. As it has been shown in that perfor-
mance of conditional GANs deteriote (Lucic et al., 2019) when used with limited labelled data. We
use a ResNet-50 pretrained model on ImageNet from BiT (Big Image Transfer) (Kolesnikov et al.,
2019) and fine tune it using 0.1 % of labelled data of balanced training set (i.e. 5 images per class
for CIFAR-10 and 50 images per class for LSUN dataset). In all long-tailed cases this amount of
data for each class is present in the training set.

We observe that with just using 0.1% labelled data we are able to obtain a significantly balanced
distribution as seen by low KL Divergence in comparison to unconditonal GAN (in Table 2) and
also achive better FID score than unsupervised GAN. This application is unique to our framework
as conditional GANs explicity require labels for whole dataset for training. The experimental details
are present in Appendix A.6.

4.3 DATA-FREE UNIVERSAL ADVERSARIAL PERTURBATION

Adversarial perturbation (Szegedy et al. (2013)) is a structured noise added to a benign data sample
with an aim of confusing the machine learning model processing it, leading to an inaccurate infer-
ence. Universal Adversarial Perturbations (UAP) (Moosavi-Dezfooli et al. (2017)) are such noises
that are input agnostic and can fool the model when added to any data sample. These perturbations
demonstrate transferability across different deep CNN models posing a challenge to their deploy-
ability. Crafting UAPs require original training data on which the target deep model is trained.
However, the dataset access can be limited due to privacy restrictions. Attackers overcome this
limitation via (i) formulating data-free objectives (e.g. Mopuri et al. (2017)), or (ii) using a proxy
dataset composed of either arbitrary natural samples (e.g. Zhang et al. (2020)) or generated syn-
thetic samples (e.g. Mopuri et al. (2018b)). GAN inspired generative modelling (Poursaeed et al.
(2018); Mopuri et al. (2018a;b)) of the UAPs for a given CNN classifier has been shown to capture
these input agnostic vulnerabilities. However, in the absence of the target training data, these models
suffer from lack of knowledge about the training distribution. Further, synthetic samples generated
using existing methods (e.g. Mopuri et al. (2018b)) lack diversity and use an activation maximiza-
tion approach which is computationally expensive since optimization has to be performed for each
batch of samples separately. To tackle this issue, we introduce an activation maximization term in
our GAN objective to combine discriminative class knowledge (P (Y |Xt)) learnt by the classifier
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Figure 3: Overview of our UAP crafting approach using arbitrary data and a classifier in the loop.
First, with the help of the proposed regularizer, the GAN can generate samples enriched with fea-
tures from the ImageNet pre-trained classifier. The UAP algorithm can subsequently craft better
perturbations due to the available discriminative information about the target (ImageNet) data.

(C) trained on target data (Xt) with an arbitrary prior distribution P (Xp). We present an overview
of our approach in Figure 3.

In the absence of the target data on which the victim CNN classifier is trained, we first train a GAN
on an arbitrary dataset. Through our regularizer, we encourage the GAN to generate samples from
all the modes of the target data. This is achieved by incorporating the pre-trained CNN classifier in
the optimization as discussed in Section 3. Once the GAN is trained, we use the generated samples
as a proxy to the target data for crafting UAPs. Since these samples represent the support of the target
data modes, they bring in useful prior about the same, enabling the attacker to craft effective UAPs.
In the UAP experiments we use Comics Dataset (Comics-Dataset) as the arbitrary prior P (Xp) and
use the ResNet-18 (He et al., 2016) classifier trained on ImageNet Deng et al. (2009) to impart
class specific features through the activation maximization loss. However the use of Activation
maximization (AM) alone with GAN can not encourage GAN to learn features of multiple target
classes (i.e. modes). This issue is resolved by making use of our regularizer which encourages the
GAN to learn different modes. The final generator objective can then be written as:

Lg = LrelG − λLreg + LAM (10)
LAM = Ez∼Pz [H(C(G(z)))] (11)

where H(C(G(z))) is the entropy of the classifier output for the generated data. This application
is unique to our framework and cannot be realized by other conditional GANs. We use a DCGAN
architecture to generate 128 × 128 images using a prior distribution of comic images (Comics-
Dataset). It is found that (Odena et al. (2017)) generating a large number of classes is difficult for
a single DCGAN even with conditioning. However, with the proposed regularizer, we are able to
generate samples which are classified into a very diverse set of 968 ImageNet classes by ResNet-
18 classifier, whereas just using Activation Maximization with GAN resulted in limited set of 25
labels. We also find that diversity in classes helps a lot in improving the fooling rate for which
ablation results are present in Table 5. The regularizer in each cycle encourages GAN to shift it’s
focus to the underrepresented classes. Due to the limited capacity of DCGAN it’s bound to forget
some classes due to shift in focus caused by regularizer. For mitigating this we sample images
from multiple cycles the exact details of procedure are described in Appendix A.7. The above
procedure was adequate for our experiments, for resolving the forgetting issues in DCGAN large
capacity architectures from BigGAN (Brock et al., 2018) can be used. The exact hyperparameters
and architecture details are present in the Appendix A.7.

UAP Generation and Results: We use Generative Adversarial Perturbation (Poursaeed et al., 2018)
which is an off the shelf algorithm for training a generator G for crafting UAPs. We also allow the
gradients to flow to deeper ResNet layers using the method introduced by (Wu et al., 2019a). We
replace the ImageNet training data with the prior images generated by the GAN described above.
We find that a single GAN with ResNet-18 network is enough to generate effective priors for fooling
several ImageNet models. For evaluation we follow existing works and limit the strength of pertur-
bation to `∞ = 10. We report Fooling Rate (FR), which is the percentage of data samples for which
addition of our UAP flips the predicted label. We use − log(H(C(x), yx)) (i.e negative of log cross
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Method VGG-16 VGG-19 ResNet-50 ResNet-152 Mean FR
GDUAP + P
(Mopuri et al., 2019) 64.95 52.49 56.70 44.23 53.89

PD-UA + P
(Liu et al., 2019a) 70.69 64.98 63.50 46.39 60.69

AAA
(Mopuri et al., 2018b) 71.59 72.84 - 60.72 68.38

MI-ADV*
(Zhang et al., 2020) 92.20 91.60 - 79.90 87.9

Ours 96.16 94.73 83.72 94.00 94.96
MI-ADV**
(With ImageNet) 94.30 94.98 - 90.08 93.12

Table 4: Comparison of our UAP performance (Fooling Rate) to the state-of-the-art ap-
proaches. The Mean FR is the mean of VGG-16, VGG-19 and ResNet-152 as those are
provided by all other approaches. * These results use MSCOCO (Lin et al., 2014) as prior
distribution which overlaps with the target ImageNet categories. **These results are with
using the target ImageNet data itself (i.e. in the presence of the data on which the victim
classifier is trained).

Prior Fooling
Rate

Comics 49.66
GAN + AM 63.89
Ours 83.72
ImageNet
Data∗

89.11

Table 5: Ablation on Different Priors for
ResNet-50 model. *For ImageNet we find
that -H(C(x), yx) (i.e. negative cross
entropy) is more effective hence we report
the better fooling rate.

entropy) as the fooling loss as prescribed by (Poursaeed et al., 2018) for all networks. The detailed
results are presented in Table 4. Note that our data free results are better than not only the existing
data-free approaches by a large margin but also the recent data-driven method (Zhang et al., 2020)
which uses ImageNet training data by a considerable 2%. We provide a detailed comparison of the
data used by various approaches in Appendix A.7.

5 DISCUSSION

In this section we discuss some of the important aspects of our work:

• Our approach can be directly applied for semi supervised GAN learning as it decouples classifier
learning and data which can enable learning on unlabeled data.

• We would like to emphasize that the presence of a classifier in our framework is not a disadvan-
tage. There has been significant progress in classification setup in semi supervised learning and
learning from long-tailed distributions. We also show that classifiers obtained from such methods
can also be used in our framework in Section 4.2.

• We have noticed while training GAN for the UAP application, on multiple occasions, that texture
alone is transferred as a discriminative feature from the classifier. This may be due to the bias
of the classifiers towards texture (Geirhos et al., 2018) and image generation will improve as the
classifiers improve. However, it still serves as an effective prior about the modes (classes) in the
underlying data distribution on which the classifiers are trained.

• The class balancing problem differs from data coverage problem (Yu et al., 2020; Srivastava et al.,
2017) as the latter tends to make the generated distribution similar to data distribution. Training
on long-tailed data can induce the GAN distribution to be long-tailed as well.

6 CONCLUSION

In this paper, we propose a class-balancing regularizer to balance class distribution of generated
samples while training GANs. We present its implications in terms of a theoretical bound and com-
prehensive experimental analysis in case of long-tailed data distributions. We have demonstrated
the utility of our regularizer beyond the GAN framework in crafting input agnostic adversarial per-
turbations. The effectiveness of our contribution is exhibited through state-of-the-art performance
on training of GANs on long-tailed data distributions as well as in crafting Universal Adversarial
Perturbations in a data-free setting.
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A APPENDIX

A.1 PROOF OF THE PROPOSITION

Proposition: The proposed objective below:

max
p̂k

∑
k

p̂k log(p̂k)

N t
k

(12)

leads to thefollowing bound on p̂k:

p̂k ≤ e
−K(log(K)−1) Nt

k∑
k Nt

k

−1
(13)

where K is the number of distinct class labels produced by classifier C.

Proof:
max
p̂k

∑
k

p̂k log(p̂k)

N t
k

(14)

Introducing the probability constraint and the Lagrange multipltiplier λ:

L(p̂, λ) =
∑
k

p̂k log(p̂k)

N t
k

− λ(
∑

p̂k − 1) (15)

On solving the equations obtained by setting
∂L

∂p̂k
= 0 :

1

N t
k

+
log(p̂k)

N t
k

− λ = 0 =⇒ p̂k = eλN
t
k−1 (16)
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Using the constraint
∂L

∂λ
= 0 we get:∑

k

p̂k = 0 =⇒
∑
k

eλN
t
k−1 = 1 =⇒

∑
k

eλN
t
k = e (17)

Now we normalize both sides by 1/K where K is the distinct labels produced by classifier and apply
Jensen’s inequality for concave function ψ(

∑
aixi∑
ai

) ≥
∑
aiψ(xi)∑
ai

and use ψ as log function:

e

K
=

∑
k

eλN
t
k

K
=⇒ log(

e

K
) = log(

∑
k

eλN
t
k

K
) ≥

∑
k

λN t
k

K
(18)

On substituting the value of λ in inequality:

K(1− log(K)) ≥ λ
∑
k

N t
k =⇒ K(1− log(K)) ≥ (

∑
k

N t
k)

1 + log(p̂k)

N t
k

(19)

On simplifying and exponentiation we get the following result:

p̂k ≤ e
−K(log(K)−1) Nt

k∑
k Nt

k

−1
(20)

We observe that the penalizing factor K(log(K)− 1) is increasing in terms of number of classes K
in the dataset which is advantageous to us as we need a large penalizing factor as N t

k/
∑
kN

t
k will

be smaller when number of classes is large in the dataset.

A.2 DATASETS

We use CIFAR-10 (Krizhevsky et al., 2009) dataset for our experiments which has 50k training
images and 10k validation images. For the LSUN (Yu et al., 2015) dataset we use a fixed subset of
50k training images for each of bedroom, conference room, dining room, kitchen and living room
classes. In total we have 250k training images and 1.5k validation set of images for LSUN dataset.
The imbalanced versions of the datasets are created by removing images from the training set.

A.3 PRE TRAINED CLASSIFIER DETAILS

All the pre-trained classifiers used for Image generation experiments use a ResNet32(He et al.,
2016) classifier. The classifier is trained using Deferred Re-weighting (DRW) scheme Cao et al.
(2019); Cui et al. (2019) with effective number of samples. We use the open source code available
at https://github.com/kaidic/LDAM-DRW. We use the same learning rate schedule of initial learning
rate of 0.01 and multiplying by 0.01 at epoch 160 and 180. We train the models for 200 epochs and
start reweighting at epoch 160. We give a summary of the validation accuracy of the models in the
following table: The classifier obtained by training on the balanced scenario is used as an annotator

Imbalance Ratio 100 10 1
CIFAR-10 76.67 87.70 92.29

LSUN 82.40 88.07 90.53

Table 6: Validation Accuracy of the PreTrained Classifiers used with GAN’s. The balanced classifier
also serves as an annotator.

for obtaining class labels for GAN generated samples. We use the same ResNet32 (He et al., 2016)
classifier with the same learning rate schedule as above with cross entropy loss to obtain Classifier
Accuracy.

A.4 ARCHITECTURE DETAILS FOR GAN

We use the SNDCGAN architecture for experiments on CIFAR-10 and SNResGAN architecture for
experiments on LSUN dataset Gulrajani et al. (2017); Miyato et al. (2018). The notation for the ar-
chitecture tables are as follows: m is the batch size, FC(dim in, dim out) is a fully connected Layer,

13



Under review as a conference paper at ICLR 2021

CONV(channels in, channels out, kernel size, stride) is convolution layer, TCONV(chanels in,
channel out, kernel size, stride) is the transpose convolution layer, BN is BatchNorm (Ioffe &
Szegedy, 2015) Layer in case of unconditonal GANs and conditional BatchNorm in case of condi-
tional GANs. LRelu is the leaky relu activation function and GSP is the Global Sum Pooling Layer.
The DIS BLOCK(channels in, channels out, downsampling) and GEN BLOCK(channels in, chan-
nels out, upsampling) correspond to the Discriminator and Generator block used in the (Gulrajani
et al., 2017). The architectures are presented in detail in Tables 7, 8, 9 and 10.

Layer Input Output Operation
Input Layer (m, 128) (m, 8192) FC(128, 8192)

Reshape Layer (m, 8192) (m, 4, 4, 512) RESHAPE
Hidden Layer (m, 4, 4, 512) (m, 8, 8, 256) TCONV(512, 256, 4, 2),BN,LRELU
Hidden Layer (m, 8, 8, 256) (m, 16, 16, 128) TCONV(256, 128, 4, 2),BN,LRELU
Hidden Layer (m, 16, 16, 128) (m, 32, 32, 64) TCONV(128, 64, 4, 2),BN,LRELU
Hidden Layer (m, 32, 32, 64) (m, 32, 32, 3) CONV(64, 3, 3, 1)

Output Layer (m, 32, 32, 3) (m, 32, 32, 3) TANH

Table 7: Generator of SNDCGAN (Miyato et al., 2018; Radford et al., 2015) used for CIFAR10
image synthesis.

Layer Input Output Operation
Input Layer (m, 32, 32, 3) (m, 32, 32, 64) CONV(3, 64, 3, 1), LRELU

Hidden Layer (m, 32, 32, 64) (m, 16, 16, 64) CONV(64, 64, 4, 2), LRELU
Hidden Layer (m, 16, 16, 64) (m, 16, 16, 128) CONV(64, 128, 3, 1), LRELU
Hidden Layer (m, 16, 16, 128) (m, 8, 8, 128) CONV(128, 128, 4, 2), LRELU
Hidden Layer (m, 8, 8, 128) (m, 8, 8, 256) CONV(128, 256, 3, 1), LRELU
Hidden Layer (m, 8, 8, 256) (m, 4, 4, 256) CONV(256, 256, 4, 2), LRELU
Hidden Layer (m, 4, 4, 256) (m, 4, 4, 512) CONV(256, 512, 3, 1), LRELU
Hidden Layer (m, 4, 4, 512) (m, 512) GSP

Output Layer (m, 512) (m, 1) FC(512, 1)

Table 8: Discriminator of SNDCGAN (Miyato et al., 2018) used for CIFAR10 image synthesis.

Layer Input Output Operation
Input Layer (m, 128) (m, 16384) FC(128, 16384)

Reshape Layer (m, 16384) (m, 4, 4, 1024) RESHAPE
Hidden Layer (m, 4, 4, 1024) (m, 8, 8, 512) GEN BLOCK(1024, 512, True)
Hidden Layer (m, 8, 8, 512) (m, 16, 16, 256) GEN BLOCK(512, 256, True)
Hidden Layer (m, 16, 16, 256) (m, 32, 32, 128) GEN BLOCK(256, 128, True)
Hidden Layer (m, 32, 32, 128) (m, 64, 64, 64) GEN BLOCK(128, 64, True)
Hidden Layer (m, 64, 64, 64) (m, 64, 64, 3) BN, RELU, CONV(64, 3, 3, 1)

Output Layer (m, 64, 64, 3) (m, 64, 64, 3) TANH

Table 9: Generator of SNResGAN used for LSUN image synthesis.

14



Under review as a conference paper at ICLR 2021

Layer Input Output Operation
Input Layer (m, 64, 64, 3) (m, 32, 32, 64) DIS BLOCK(3, 64, True)

Hidden Layer (m, 32, 32, 64) (m, 16, 16, 128) DIS BLOCK(64, 128, True)
Hidden Layer (m, 16, 16, 128) (m, 8, 8, 256) DIS BLOCK(128, 256, True)
Hidden Layer (m, 8, 8, 256) (m, 4, 4, 512) DIS BLOCK(256, 512, True)
Hidden Layer (m, 4, 4, 512) (m, 4, 4, 1024) DIS BLOCK(512, 1024, False), RELU
Hidden Layer (m, 4, 4, 1024) (m, 1024) GSP

Output Layer (m, 1024) (m, 1) FC(1024, 1)

Table 10: Discriminator of SNResGAN (Miyato et al., 2018; Gulrajani et al., 2017) used LSUN for
image synthesis.
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Figure 4: Effect on FID with change in num steps for statistics update(For CIFAR-10 imbalance
ratio ρ = 10)

A.5 HYPERPARAMETER CONFIGURATION (IMAGE GENERATION EXPERIMENTS)

A.5.1 LAMBDA THE REGULARIZER COEFFECIENT

The λ hyperparameter is the only hyperparameter that we change across different imbalance scenar-
ios. As the overall objective is composed of the two terms:

Lg = −E(x,z)∼(Pr,Pz)[log(σ(D(G(z))−D(x))]− λLreg (21)

As the number of terms in the regularizer objective can increase with number of classes K. For
making the regularizer term invariant of K and also keeping the scale of regularizer term similar to
GAN loss, we normalize it by K. Then the loss is multiplied by λ. Hence the effective factor that
gets multiplied with regularizer term is λ

K .

Imbalance Ratio (ρ) 100 10 1
CIFAR-10 10 7.5 5

LSUN 20 7.5 5

Table 11: Values of λ for different imbalance cases. For LSUN the λ gets divide by 5 and for λ it
gets divided by 10 before multiplication to regularizer term.

The presence of pre-trained classifier which provides labels for generated images makes it easy
to determine the value of λ. Although the pre-trained classifier is trained on long-tailed data its
label distribution is sufficient to provide a signal for balance in generated distribution. We use the
KL Divergence of labels with respect to uniform distribution for 10k samples in validation stage
to check for balance in distribution and choose λ accordingly. We use the FID implementation
available here 2.

A.5.2 OTHER HYPERPARMETERS

We update the effective class distribution periodically after 2k updates (i.e. each cycle defined
in section 3 consists of 2k iteration). We find the algorithm performance to be stable for a large
range of update frequency depicted in Figure 4. We also apply Exponential Moving Average on
generator weights after 20k steps for better generalization. The hyperparameters are present in
detail in Table 12. Validation Step: We obtain the FID on 10k generated samples after each 2k
iterations and choose the checkpoint with best FID for final sampling and FID calulation present in
Table 1. Convergence of Network: We find that our GAN + Regularizer setup also achives similar
convergence in FID value to the GAN without the regularizer. We show the FID curves for the
CIFAR-10 (Imbalance Ratio = 10) experiments in Figure 5.

A.6 HYPERPARAMETERS FOR THE SEMI SUPERVISED GAN ARCHITECTURE

We use a ImageNet and ImageNet-21k pre-trained model with ResNet 50 architecutre as the base
model. The fine tuning of the model on CIFAR-10 and LSUN has been done by using the code of

2https://github.com/mseitzer/pytorch-fid
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Parameter Values(CIFAR-10) Values(LSUN)
Iterations 100k 100k

Generator lr 0.002 0.002
Discriminator lr 0.002 0.002

Adam (β1) 0.5 0.0
Adam (β2) 0.999 0.999
Batch Size 256 256

EMA(Start After) 20k 20k
EMA(Decay Rate) 0.9999 0.9999

Table 12: Hyperparameter Setting for Image Generation Experiments.

(a) GAN (b) GAN + Proposed Regularizer

Figure 5: Plots of FID (y axis) vs Number of iteration steps. We observe a similar curve in both the
cases.

notebook present here 3. The accuracy of the classifiers fine-tuned on validation data, trained with
0.1% of labelled data is 84.96 % for CIFAR-10 and 82.40 % for LSUN respectively. The lambda
(regularizer coeffecient) values are present in the table below:

Imbalance Ratio (ρ) 100 10
CIFAR-10 10 7.5

LSUN 10 7.5

Table 13: Values of λ for different imbalance cases. For LSUN the λ gets divide by 5 and for λ it
gets divided by 10 before multiplication to regularizer term.

The training hyper parameters are same as the ones present in the Table 12. Only in case of LSUN
semi supervised experiments we use a batch size of 128 to fit into GPU memory for semi supervised
experiments.

A.6.1 RESULTS ON CIFAR-100

In this section we show results on CIFAR-100 dataset which has 100 classes having 500 images
for each class. We use SNResGAN architecture from Miyato & Koyama (2018), which is similar to
SNResGAN architecure used for LSUN experiments. The architecutre is used for generating 32×32
images. We use the same hyperparameters used for LSUN experiments listed in Table 12. We use
a λ value of 0.5 for CIFAR-100 experimets. The results in Table 3 show that our method on long-
tailed CIFAR100 of using GAN + Regularizer achieves the best FID and also have class balance
similar to cGAN (conditional GAN). The labels for the samples generated by GAN are obtained
by a classfier trained on balanced CIFAR-100 dataset. The KL Divergence between the GAN label
distribution and uniform distribution is present in Table 3. The classifier for obtaining class labels
for KL Divergence evaluation is trained on balanced CIFAR-100 with setup described in A.3 which
serves as annotator for all methods.

3https://github.com/google-research/big transfer/blob/master/colabs/big transfer pytorch.ipynb
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A.7 UAP EXPERIMENTAL DETAILS

(a) Samples from COCO dataset (b) Samples from Comics Dataset

Figure 6: Comparison of samples used by our approach vs approach by Zhang et al. (2020)

Dataset: We use the Comics dataset (Comics-Dataset) whereas approach (Zhang et al., 2020) use
COCO dataset. COCO dataset has overlap with ImageNet categories. The difference in images
used shows that our procedure does not require natural images for generating effective attack. This
increases applicability of our method. We use a DCGAN architecture to generate 128× 128 images
from the GAN described in Table 15 and 16. In this experiment, we update the mode statistics after
every epoch. Hyperparameters are present in the table 14. The images generated by our method is
present in figure 10.

Parameter Value
Iterations 200 epochs (33.6k)

Generator lr 0.002
Discriminator lr 0.002

Adam (β1) 0.5
Adam (β2) 0.999

λ (Regularizer) 2
Batch Size 512

Table 14: Hyperparameters for DCGAN.

Sampling: We find that sampling in different cycles produces samples from diverse classes as due to
our regularizer as it enforces learning of different underrepresented classes in different cycles. Hence
we sample 1024 images each from the GAN checkpoints in the last 40 cycles to obtain the dataset
for UAP generation. This also shows that the regularizer is effective in shifting the distribution of
GAN to produce different modes which is not possible with just Activation Maximization (AM).
The increase in number of diverse classes is shown in Figure 7.

Generative Adversarial Perturbations: We use the author’s Pytorch implementation of the algo-
rithm to generate attacks. For ResNets we allow the gradients to pass through skip connections by
using the method of Wu et al. (2019a) with α = 0.5. We train the algorithm for 20 epochs in each
case except in case of VGG16. For VGG16 we use an additional factor of 10 with the loss to make
fooling rate converge in 20 epochs.

Figure 7: Number of distinct Modes observed while sampling from different cycles
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Layer Input Output Operation
Input Layer (m, 100) (m, 4, 4, 1024) TCONV(100, 1024, 4, 1)

Hidden Layer (m, 4, 4, 1024) (m, 8, 8, 512) TCONV(1024, 512, 4, 2),BN,LRELU
Hidden Layer (m, 8, 8, 512) (m, 16, 16, 256) TCONV(256, 128, 4, 2),BN,LRELU
Hidden Layer (m, 16, 16, 256) (m, 32, 32, 128) TCONV(256, 128, 4, 2),BN,LRELU
Hidden Layer (m, 32, 32, 128) (m, 64, 64, 64) TCONV(128, 64, 4, 2),BN,LRELU
Hidden Layer (m, 64, 64, 64) (m, 128, 128, 3) TCONV(64, 3, 4, 2),BN,LRELU

Output Layer (m, 128, 128, 3) (m, 128, 128, 3) TANH

Table 15: Generator of DCGAN (Radford et al., 2015) used for UAP Experiments.

Layer Input Output Operation
Input Layer (m, 128, 128, 3) (m, 64, 64, 64) CONV(3, 64, 4, 2), LRELU

Hidden Layer (m, 64, 64, 64) (m, 32, 32, 128) CONV(64, 128, 4, 2),BN, LRELU
Hidden Layer (m, 32, 32, 128) (m, 16, 16, 256) CONV(128, 256, 4, 2),BN, LRELU
Hidden Layer (m, 16, 16, 256) (m, 8, 8, 512) CONV(256, 512, 4, 2),BN, LRELU
Hidden Layer (m, 8, 8, 512) (m, 4, 4, 1024) CONV(512, 1024, 4, 2),BN, LRELU

Output Layer (m, 4, 4, 1024) (m, 1) CONV(1024, 1, 4, 1), LRELU

Table 16: Discriminator of DCGAN (Radford et al., 2015) used for UAP Experiments.

(a) ACGAN (Conditional) (b) cGAN (Conditional)

(c) SNResGAN (Unconditional) (d) Ours (Unconditional)

Figure 8: Images from different GANs with imbalance ratio (ρ = 10)
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(a) ACGAN (Conditional) (b) cGAN (Conditional)

(c) SNDCGAN (Unconditional) (d) Ours (Unconditional)

Figure 9: Images generated by different GANs for CIFAR-10 with imbalance ratio (ρ = 10).
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Figure 10: Images generated for CIFAR-100 dataset with our method (GAN + Regularizer).
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