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Video CompressionWith CNN-Based
Postprocessing
Fan Zhang , Di Ma , Chen Feng, and David R. Bull, University of Bristol, BS8 1TL, Bristol, U.K.

In recent years, video compression techniques have been significantly challenged by
the rapidly increased demands associated with high quality and immersive video
content. Among various compression tools, postprocessing can be applied on
reconstructed video content to mitigate visible compression artefacts and to
enhance the overall perceptual quality. Inspired by advances in deep learning, we
propose a new convolutional neural network based postprocessing approach,
which has been integrated with two state-of-the-art coding standards, versatile
video coding (VVC) and AOMedia Video (AV1). The results show consistent coding
gains on all tested sequences at various spatial resolutions, with average bit rate
savings of 4.0% and 5.8% against original VVC and AV1, respectively (based on the
assessment of peak signal-to-noise ratio). This network has also been trained with
perceptually inspired loss functions, which have further improved the
reconstruction quality based on perceptual quality assessment (VMAF), with
average coding gains of 13.9% over VVC and 10.5% against AV1.

The importance of video compression has come
to the fore over the past decade driven by the
tension between the huge quantities of video

content consumed every day and the bandwidth avail-
able to transmit it. This challenge has been addressed
through the creation of new video coding standards, the
latest activity being by the joint video exploration team
(JVET), who published the first version of H.266/versatile
video coding (VVC)1 in 2020. Compared to its predeces-
sor, H.265/high-efficiency video coding (HEVC), VVC has
achieved up to 50% performance improvement through
the adoption of numerous sophisticated coding tools, in
particular with improved support for formats with high
spatial resolutions, high dynamic range and spherical
content. Alongside VVC, the Alliance for Open Media
(AOMedia) also published its first video coding format,
AOMedia Video (AV1) in 2018, which has been reported
to offer comparable coding performance to VVC.2

Machine learning, especially based on deep convo-
lutional neural networks (CNNs), has been increasingly
applied in the context of video compression and has
achieved promising results both when used in

conjunction with conventional coding algorithms and
in the form of new end-to-end architectures. In addi-
tion to conventional normative coding tools, deep
learning can also be employed at the video decoder as
a postprocessing stage to further reduce noticeable
artefacts and enhance the visual quality of com-
pressed content. For the state-of-the-art coding
standards, such as VVC and AV1, most existing learn-
ing-based postprocessing approaches can only offer
evident improvement for less-efficient coding configu-
rations (e.g., intracoding), and the employed networks
are normally trained to minimize average absolute
pixel distortions rather than explicitly to improve the
perceptual quality.

Based on the Generative Adversarial Network
(GAN) paradigm, we propose a novel CNN-based
postprocessing approach with an extension that
achieves an improved perceptual reconstruction
quality. This approach has been evaluated on the
VVC Test Model (VTM) 4.0.1 and on AV1 libaom 1.0.0,
with results showing consistent improvement on
standard JVET test sequences for different QP values
based on different quality measurements. We have
further analyzed the computational complexities of
different CNN structure variants and correlated them
with overall coding gains.

This article is a comprehensive extension of our
previous work,3 which solely focused on the peak
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signal-to-noise ratio (PSNR) driven optimization of
VVC compressed content. The primary differences are
summarized below.

› The CNN model used for postprocessing has
been extensively upgraded with a new GAN-
based perceptual training strategy, which can
significantly improve the perceptual quality of
the final reconstructed content compared to the
paper by Zhang et al.3

› This CNN-based postprocessing approach has
been also trained and evaluated on AV1 com-
pressed results (alongside VVC in the paper by
Zhang et al.3) and achieved similar coding gains.

In the remainder of the article, we first survey the
prior work in the field of deep video compression and,
in particular, describe learning-based postprocessing
approaches. Second, we present our proposed CNN-
based postprocessing approach, describing the net-
work architecture and how it was trained and evalu-
ated. We then summarize and discuss the
experimental results, highlighting the performance
improvements over standard video codecs. Finally, we
conclude the article and outline possible future work.

PRIORWORK
Deep Video Compression
In the past few years, machine learning, in particular
deep neural networks, has been increasingly applied
to image and video compression, demonstrating sig-
nificant potential compared to conventional coding
methods. Learning-based video coding algorithms can
be classified into two primary groups: new end-to-end
network architectures and those that enhance individ-
ual conventional coding tools.

Machine learning has been employed to refine
existing coding tools within a conventional coding
framework, including intraprediction and interpredic-
tion, transformation, quantization, and in-loop filter-
ing.4 New coding tools have also been developed with
the support of neural networks, such as CNN-based
spatial resolution and bit depth adaptation.5 More-
over, the classic hybrid video coding framework has
been challenged by new deep network architectures,
which enable end-to-end training and optimization.6,7

This latter approach often employs a general rate
distortion framework with nonlinear transforms,
which are based on convolutional filters and nonlinear
activation functions. Although these solutions show
great promise as an alternative to conventional
codecs, their performance cannot still compete with

the latest standardized video codecs, including VVC
and AV1.

CNN-Based Postprocessing
Compression processes often introduce various visi-
ble artefacts such as blocking mismatches, banding.
and blurring, especially when large quantization steps
are employed. These unpleasant distortions can be
mitigated by filtering the reconstructed frames. When
this enhancement process is performed outside of the
encoding loop (generally after decoding), it is referred
to as postprocessing.

In standardized codecs, filters have also been
designed for use within the encoding loop to reduce
compression artefacts. VVC employs three different
types in-loop filters including deblocking filters (DBF),
sample adaptive offset (SAO), and adaptive loop filters
(ALF).1 In AV1, in addition to DBFs, there are two other
filtering operations: constrained directional enhance-
ment filtering and loop restoration filtering.2

CNNs are now also playing an important role in
image restoration (including super-resolution), and
these approaches can also be employed for postpro-
cessing of compressed video content to improve the
overall reconstruction quality. Although various
researchers have implemented CNN-based postpro-
cessing approaches in the context of HEVC and
VVC,8–11 most of these can only achieve coding gains
for All Intraconfigurations, which offer lower coding
efficiency compared to Random Access configurations
based on hierarchical B frame structures. In addition,
all the employed CNN models in these approaches
were trained to optimize a simple loss function based
on pixel distortions (‘1 or ‘2 loss), which can lead to
oversmoothed reconstruction results.

PROPOSED ALGORITHM
Figure 1 shows a high-level coding workflow with a
CNN-based postprocessing module. This section
focuses on the structure of the employed CNN archi-
tecture, and the details of network training and
evaluation.

CNN Architecture
The CNN architecture used in this work is illustrated in
Figure 2.

The generator network is a modified version based
on the generator (SRResNet) of SRGAN,12 and this has
been previously employed by the authors in video
compression systems based on spatial resolution and
bit depth resampling.5 This network takes a 96�96
RGB (compressed) image block as input and produces
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an image block with the same format, targeting to its
corresponding original (uncompressed) counterpart.
[We have used the same input/output formats as in
SRResNet.]

Residual blocks (RB) form the basic unit in this net-
work, which contains two convolutional layers and a
parametric rectified linear unit (PReLU) activation
function in between them. A skip connection is used
between the input of each RB and the output of its
second convolutional layer. The number of RB is con-
figurable and was set to 16 in this work.

The input of the network is connected to these
successive RBs through a convolutional layer (also
with a ReLU). Between the network output and the
output of the last RB, there is also a convolution layer
(output layer) followed by a Tanh activation function.
An additional skip connection is used between the

output of the input layer and the output of the last RB.
A long skip connection is also employed between the
input the first RB and the output of the output layer to
produce the final output.

The discriminator used in this work is similar to that
in SRGAN,12 which takes the output of the generator
(fake) and compares to its corresponding original
(real). This network consists of one input layer (with a
Leaky ReLU), seven identical convolutional layers, and
two dense layers. Each of the convolutional layers is
followed by a batch normalization layer and a leaky
ReLU activation function. After the second dense layer,
a Sigmoid activation function is employed to output a
probability to predict how much the quality of the real
image block is perceptually better than the fake one.

The parameters used in each convolutional layer
including kernel sizes, feature map numbers, and
stride values are shown in Figure 2.

Training Database
The training material is essential for learning-based
algorithms. We need to ensure that the training con-
tent is diverse and covers various texture types in
order to achieve good model generalization and avoid
potential overfitting problems. To train the employed
network, we have selected 432 uncompressed video
sequences from a publicly available training database
BVI-DVC,13 which was designed specifically for deep
video compression. All these sequences have the
same frame rate of 60 frames per second, YCbCr 4:2:0

FIGURE 1. Typical coding workflow with a CNN-based post-

processing module.

FIGURE 2. Employed GAN architecture, comprising generator, and discriminator stages.
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format, and with four different spatial resolutions
including 3 840�2 160, 1 920�1 080, 960�540, and
480�270. We have encoded these 432 original sequen-
ces using VVC VTM 4.0.1 and AV1 libaom 1.0.0 with the
coding configurations summarized in Table 1.

For each codec, the reconstructed video frames
for each QP value and their corresponding originals
were randomly selected and segmented into 96�96
color image blocks (after converting to the RGB space
from YCbCr 4:2:0). We have also rotated selected
image blocks to further improve data diversity. As a
result, for each video codec and QP group[Based on
our preliminary results, we note that, through QP sub-
grouping, additional coding gains (approximately
0.05dB based on PSNR) can be achieved compared to
using a single CNN model.], there are over 1 00 000
image blocks pairs (compressed and original).

Training Strategy
We trained this network using two different methodol-
ogies: (i) only train the generator using ‘1 loss (mean
absolute difference); (ii) jointly train both the genera-
tor and the discriminator based on perceptually
inspired loss functions. The CNN models obtained by
these two training methods are used to postprocess
VVC and AV1 compressed content in the evaluation
experiments, and their results are compared in the fol-
lowing section.

‘1 loss is first employed to train the network (gen-
erator only) using the material generated for each QP
group and codec. This results in a total number of nine
CNN models for different evaluation scenarios:

CNNVVC;QP22; if QPeval � 24:5
CNNVVC;QP27; if 24:5 < QPeval � 29:5
CNNVVC;QP32; if 29:5 < QPeval � 34:5
CNNVVC;QP37; if 34:5 < QPeval � 39:5
CNNVVC;QP42; if QPeval > 39:5

8>>>><
>>>>:

(1)

CNNAV1;QP32; if QPeval � 37:5
CNNAV1;QP43; if 37:5 < QPeval � 49
CNNAV1;QP55; if 49 < QPeval � 59
CNNAV1;QP63; if QPeval > 59

:

8>><
>>:

(2)

Here, QPeval represents the base QP value
employed in the evaluation phase for the two different
codecs, and CNNc;q is the CNN model trained for dif-
ferent codecs (VVC or AV1) and QP values.

Perceptual loss functions have been employed to
train the whole GAN architecture following a two-
stage training strategy. This was initially designed to

train the relativistic GAN for image generation,15 and
has also been used to train the CNNmodels for spatial
resolution and bit depth up-sampling.16,17 In the first
stage, the generator is trained separately using the
multiscale structural similarity index (MS-SSIM)18 as
the loss function. The trained generator model is
employed as the starting point when the generator
and discriminator are trained together in the second
phase.

The generator is trained using a combined loss
function, Lgen in the second stage:

Lgen ¼ LSSIM þ a � L‘1 þ b � La
G (3)

in which LSSIM stands for the SSIM19 loss (1-SSIM)
between the generator output and the target, while
L‘1 is the ‘1 loss between them. La

G is defined as the
adversarial loss for the generator:

La
G ¼� EIr ½lnð1� ðSigðOdðIrÞ � EIf ½OdðIf Þ�ÞÞÞ�

� EIf ½lnðSigðOdðIf Þ � EIr ½OdðIrÞ�ÞÞ�:
(4)

Here, Ir and If are denoted as the real and fake
image blocks, respectively. EIr ½�� represents the mean
operation for all the real (fake if Ir is replaced by If )
image blocks, and Odð�Þ is the output of the discrimi-
nator. “Sig” represents the Sigmoid function.

For the discriminator, the loss function LD is given
by the following:

LD ¼� EIr ½lnðSigðOdðIrÞ � EIf ½OdðIf Þ�ÞÞ�
� EIf ½lnð1� ðSigðOdðIf Þ � EIr ½OdðIrÞ�ÞÞÞ�:

(5)

The training configuration is summarized as follows.
We implemented all networks based on the Tensor-
Flow 1.8.0 framework, and set the learning rate and
weight decay to 0.0001 and 0.1 (for every 100 epochs),
respectively, for both training stages. The total num-
ber of training epochs are 200. We have used Adam
optimization algorithm during the training with the
hyperparameters of b1 ¼ 0:9 and b2 ¼ 0:999. The two
weights a and b in (3) are set up to 0.025 and 5e-3,
respectively.

Evaluation Operation
In the evaluation stage, when we use the trained CNN
models to enhance compressed video frames, each
frame is segmented into 96�96 overlapping image
blocks with an overlap of 4 pixels. These blocks are
converted to RGB color space as the input of CNN
models, and the output image blocks are then aggre-
gated in the same way through simple blending to
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form the final video frame. Here, only the generator
network is used in the evaluation (the discriminator is
for training only).

RESULTS AND DISCUSSION
The proposed postprocessing approach has been uti-
lized to enhance both VVC and AV1 compressed

TABLE 1. Coding configuration employed for VVC VTM and AV1 libaom.

Codec Version Configuration parameters

VVC VTM 4.0.1 RandomAccess configuration14. IntraPeriod=64, GOPSize=16, QP=22, 27, 32, 37, 42.

AV1 libaom 1.0.0-5ec3e8c
(02/05/2020)

–i420 –psnr –usage=0 –verbose –cpu-used=0 –threads=0 –profile=0 –width=$w
–height=$h –input-bit-depth=10 –bit-depth=10 –fps=$fps/1001 –passes=1 –kf-
max-dist=64 –kf-min-dist=64 –drop-frame=0 –static-thresh=0 –arnr-
maxframes=7 –arnr-strength=5 –lag-in-frames=19 –aq-mode=0 –bias-pct=100
–minsection-pct=1 –maxsection-pct=10000 –auto-alt-ref=1 –min-q=0 –max-q=63
–max-gf-interval=16 –min-gf-interval=4 –frame-parallel=0 –color-primaries=bt709
–end-usage=q –sharpness=0 –undershoot-pct=100 –overshoot-pct=100 –tile-
columns=0 –cq-level={32, 43, 55, 63} w/o –enable-fwd-kf=1

TABLE 2. Compression performance of the proposed method benchmarked on the original VVC VTM 4.0.1. Negative BD-rate

values indicate coding gains.
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content. We have used all 19 test sequences from the
JVET CTC standard dynamic range (SDR) testset.
None of these sequences were included in the CNN
training database.

VVC compressed content was generated using
VTM 4.0.1 with the random access configuration. AV1
libaom 1.0.0 was used to produce AV1 content, with
similar coding parameters to those for VVC. The
employed configurations for both codecs are summa-
rized in Table 1. The tested QP values are 22, 27, 32, 37,
and 42 for VVC, and 32, 43, 55, and 63 for AV1.

The final video quality was evaluated using two
assessment methods, PSNR and Video Multimethod
Assessment Fusion (VMAF).20 PSNR is the most com-
monly used quality metric in the video compression
community, while VMAF is a machine learning based
metric, which combines multiple existing quality met-
rics and a video feature using a support vector
machine regression approach. Compared to PSNR,

VMAF has been reported to provide more accurate
prediction of the perceptual quality. The performance
of the proposed approach has been compared with
two original codecs using the Bjùntegaard delta rate
measurements (BD-rate).21 For VVC, the compression
performance is evaluated for both low (22–37) and
high QP (27–42) ranges.

In order to further benchmark the performance of the
proposed algorithm, another two state-of-the-art CNN-
based postprocessing approaches, denoted as JVET-
N025410 and JVET-O0079,11 are also compared here in the
context of VVC (for low QP range only). Results of both
are based on the RA configuration andwere submitted to
MPEG JVETmeetings as VVCproposals.

Compression Performance
Tables 2 and 3 summarize the compression perfor-
mance of the proposed method when it is applied to

TABLE 3. Compression performance of the proposed method benchmarked on the original AV1 1.0.0. Negative BD-rate values

indicate coding gains.
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VVC and AV1 compressed content. For ‘1 trained
CNNs, we note that the average bit-rate savings
according to PSNR are 3.9% and 5.8% against the origi-
nal VVC and AV1, respectively. If the perceptual quality
metric VMAF is used to assess the video quality, the
coding gains are 4.2% over VVC and 2.7% over AV1.
When we use perceptual loss function trained models

for postprocessing, the coding gains appear much
more significant based on the assessment of VMAF—
13.9% and 10.5% over VVC and AV1, respectively. This
is particularly evident for test sequences, such as
ParkRunning3, BQTerrace, and BQSquare, which pres-
ent a large number of sharp edges. We have also com-
pared the proposed method with two JVET proposals,
JVET-N025410 and JVET-O0079,11 in Table 4, where the
‘1 trained CNNs provides superior enhancement per-
formance to these two works for all resolution classes
according to PSNR.

Subjective Comparison
Figures 3 and 4 provide subjective comparisons
between the reconstructed frames generated by the
original VVC/AV1, ‘1 trained CNNs and perceptual loss
function trained models. We can observe that the
reconstructed blocks of the proposed method (for
both ‘1 and perceptually trained models) exhibit fewer
noticeable blocking artefacts compared to the anchor
codecs. In addition, the CNNmodels trained using per-
ceptual loss functions produce results with slightly

TABLE 4. Comparison between the proposed method and

two existing CNN-based PP approaches for VVC (low QP

range).

FIGURE 3. Example blocks of the reconstructed frames for the anchor VTM 4.0.1 and the proposed approach. These are from the

91st and 320th frames of Cactus and BQMall sequences, respectively. We can note that the results produced by the perceptual

loss function trained models exhibit more textural detail and higher contrast than those generated by ‘1 trained networks (the

difference is more evident within the regions with the stamps in Cactus, and the areas with the bags and the white skirt in

BQMall). (a) Original. (b) VTM 4.0.1, QP = 42 (VMAF = 62.5). (c) VTM-PP: ‘1, QP = 42 (VMAF = 64.0). (d) VTM-PP: GAN, QP = 42

(VMAF = 66.2). (e) Original. (f) VTM 4.0.1, QP = 42 (VMAF = 70.4). (g) VTM-PP: ‘1, QP = 42 (VMAF = 72.2). (h) VTM-PP: GAN, QP = 42

(VMAF = 74.3).
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more textural detail and higher contrast than those
generated by ‘1 trained networks.

Complexity Analysis
The relative computational complexity of the pro-
posed method, benchmarked on the original VVC and
AV1 codecs, is presented in Table 5. We have used a
shared cluster computer at the University of Bristol, to
execute all the computations. This computer contains
multiple nodes with 2.4 GHz Inter CPUs, 138 GB RAM,
and NVIDIA P100 GPU devices. We note that the aver-
age decoding complexity is 56.3 and 70.0 times com-
pared to the original VVC VTM 4.0.1 and AV1,

respectively, due to the employment of CNN-based
postprocessing at the decoder. This is for a configura-
tion with 16 RB in the generator. This figure is slightly
higher than those of two JVET proposals O007911 and
N0254,10 in which the decoder complexities (inc. the
CNN-based PP module) are 45.6 and 35.2 times that of
the original VVC decoder (based on the whole JVET
dataset).

Moreover, we have further investigated the rela-
tionship between the number of RB and compression
performance. Figure 5 shows the coding gains (in
terms of PSNR) and algorithm relative complexity
using CNN models with different numbers of RB (N =

FIGURE 4. Example blocks of the reconstructed frames for the anchor AV1 and the proposed approach. These are from the 91st

and 320th frames of Cactus and BQMall sequences, respectively. The results produced by the perceptual loss function trained

models exhibit more textural detail and higher contrast than those generated by ‘1 trained networks (the difference is more evi-

dent within the regions with the stamps in Cactus, and the areas with the bags and the white skirt in BQMall). (a) Original. (b)

AV1, QP = 63 (VMAF = 75.2). (c) AV1-PP: ‘1, QP = 63 (VMAF = 76.4). (d) AV1-PP: GAN, QP = 63 (VMAF = 78.1). (e) Original. (f) AV1,

QP = 63 (VMAF = 83.7). (g) AV1-PP: ‘1, QP = 63 (VMAF = 84.9). (h) AV1-PP: GAN, QP = 63 (VMAF = 86.2).

TABLE 5. Relative complexity of the proposed method

benchmarked on original VVC and AV1 decoders.

Hose Codec VVC AV1

Class A (2160p) 18.6� 23.2�
Class B (1080p) 36.8� 38.3�
Class C (480p) 76.5� 83.3�
Class D (240p) 116.9� 166.7�
Average 56.3� 70.0�

FIGURE 5. (Left) Relative complexity for different number of

RB. (Right) PSNR gains for different number of RB.
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4, 8, 12, 16, 20, 24, 28, and 32) to process VVC VTM QP
42 compressed content. Again the relative complexity
here is benchmarked on the original VVC decoder. We
observe that, when the number of RB (N) increases
from 4 to 16, the PSNR gain relative to the original
VVC content increases in a linear fashion. However,
when the number of RB exceeds 20, the overall coding
gain starts to decrease. This provides evidence that
the residual block number in the proposed work is an
optimal selection.

CONCLUSION
In this article, we presented a CNN-based postpro-
cessing approach, which achieves evident and consis-
tent coding gains over standardized video codecs,
VVC and AV1. The employed CNN model was trained
using both ‘1 and perceptually inspired methodolo-
gies. We would like to recommend future work focus-
ing on computational complexity reduction and
further improvement on the training methodology.
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