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Abstract

Text-to-image generation has evolved beyond single monolithic models to complex
multi-component pipelines. These combine fine-tuned generators, adapters, upscal-
ing blocks and even editing steps, leading to significant improvements in image
quality. However, their effective design requires substantial expertise. Recent
approaches have shown promise in automating this process through large language
models (LLMs), but they suffer from two critical limitations: extensive computa-
tional requirements from generating images with hundreds of predefined pipelines,
and poor generalization beyond memorized training examples. We introduce a
novel reinforcement learning-based framework that addresses these inefficiencies.
Our approach first trains an ensemble of reward models capable of predicting
image quality scores directly from prompt-workflow combinations, eliminating the
need for costly image generation during training. We then implement a two-phase
training strategy: initial workflow vocabulary training followed by GRPO-based op-
timization that guides the model toward higher-performing regions of the workflow
space. Additionally, we incorporate a classifier-free guidance based enhancement
technique that extrapolates along the path between the initial and GRPO-tuned
models, further improving output quality. We validate our approach through a set
of comparisons, showing that it can successfully create new flows with greater
diversity and lead to superior image quality compared to existing baselines.

1 Introduction

Recent advancements in generative AI have significantly improved the quality and diversity of
text-to-image generation. Early models relied on monolithic architectures, where a single neural
network directly translated textual prompts into visual outputs. However, as the field matured,
it became clear that combining multiple specialized components—such as fine-tuned diffusion
models, super-resolution modules, or specialized embeddings, into more sophisticated workflows
leads to superior image quality and greater creative control [5, 40, 63]. This shift from monolithic
models to modular workflows has been supported by user-friendly platforms such as ComfyUI1, a
popular open-source tool that allows users to visually construct complex generative pipelines through
interconnected nodes represented in JSON format. ComfyUI has rapidly gained popularity due to
its intuitive node-based interface, enabling users to assemble diverse generative models (e.g., Stable
Diffusion, ControlNet, LoRAs) into flexible workflows tailored to specific image-generation tasks.
Despite its accessibility, designing effective workflows remains challenging due to the vast space of
possible component combinations and their prompt-dependent effectiveness. Consequently, crafting
high-quality workflows typically requires considerable expertise and manual experimentation.

To address this challenge, recent work introduced ComfyGen [16], which uses large language models
(LLMs) to automate the construction of prompt-adaptive workflows within ComfyUI. However, a key
limitation of ComfyGen was its inability to generate genuinely novel workflow structures. At its core,
their approach required synthesizing images using an extensive collection of pre-defined workflows
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and prompts, an expensive process limiting their training set’s size. Constrained by this small set,
their approach essentially learned a classifier over existing flows rather than synthesizing original
graph topologies or selecting novel model combinations. This limitation significantly constrains the
potential creativity and adaptability of automated workflow generation systems and, as we later show
— may also limit their downstream performance.

In parallel, reinforcement learning (RL) has emerged as a powerful paradigm for fine-tuning large
language models (LLMs), enabling them to optimize their outputs directly based on reward signals
derived from human preferences or other evaluative metrics. Techniques such as Reinforcement
Learning from Human Feedback (RLHF) have demonstrated remarkable success in aligning model
behaviors with human expectations by iteratively refining model parameters based on explicit reward
feedback. Furthermore, recent developments like Group Relative Policy Optimization (GRPO)
introduced memory-efficient RL algorithms capable of optimizing policies without separate value
functions, making them particularly suitable for complex sequential decision-making tasks. Building
on these advancements, we propose FlowRL, a novel extension that integrates reinforcement learning
into the workflow prediction framework to overcome its originality limitations. Specifically, we
formulate workflow generation as an RL problem where an LLM-based policy sequentially constructs
workflow graphs by selecting nodes and connections conditioned on textual prompts. To efficiently
guide this process without incurring prohibitive computational costs associated with direct image
generation for each candidate workflow during training, we introduce a surrogate reward model
trained to predict image quality scores directly from prompts and workflow structures.

Finally, we adopt GRPO combined with per-token reward attribution mechanisms to provide granular
feedback during policy updates. This affords our RL agent greater precision in identifying decisions
within a generated workflow that contribute positively or negatively toward overall image quality.

In summary, our contributions are as follows

• We introduce ComfyGen-RL, the first RL-based approach for generating genuinely novel
ComfyUI workflows tailored to align with human preference feedback.

• We propose a surrogate human-preference reward model enabling efficient RL training
without computationally expensive image generations.

• We integrate GRPO with per-token reward attribution for stable and memory-efficient policy
optimization.

Through these innovations, FlowRL significantly advances automated workflow generation capabili-
ties, enabling richer creativity and greater adaptability in text-to-image synthesis pipelines.

2 Related Work

Workflow Generation
A recent line of research explores the use of compound systems, where multiple models or modules
are chained together, often yielding superior performance compared to isolated models. These multi-
component systems have been applied across fields ranging from programming challenges [1] and
olympiad-level mathematics [53] to medical diagnostics [38] and video generation [64]. However,
building compound systems presents significant challenges. Models must be chosen not only
for their individual strengths, but also for their ability to complement each other. Moreover, the
parameters of the different components should be selected with the entire system in mind. To address
these difficulties, recent work has explored meta-optimization frameworks, where the structure and
parameters of entire pipelines are automatically tuned for downstream performance [28]. Others have
adopted graph-based architectures allowing dynamic reconfiguration of component interactions [68].

In the realm of text-to-image generation, recent work explores the use of pipelines using agentic
systems [67, 61, 23], genetic algorithms [51] or by fine-tuning LLMs using large flow datasets tagged
with human preference scores [16]. Although the human preference-based framework has shown
promising results, it relies on creating and ranking images using large sets of flows. This, in turn,
leads to challenges in effectively scaling the dataset and to a lack of ability to synthesize unseen
flows at inference time. Our work aims to address this challenge by leveraging a policy-optimization
approach for more effective exploration of the flow parameter space, coupled with a surrogate reward
function which avoids the need to generate and rank a large set of images.
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Fine-Tuning LLMs with RL: Reinforcement learning (RL) has become increasingly central to the
development of large language models (LLMs), playing a key role in aligning model outputs with
user preferences and enhancing task-specific capabilities. A prominent example is Reinforcement
Learning from Human Feedback (RLHF) [39], which fine-tunes models using reward signals derived
from human preferences to better align with communicative goals and social norms [8, 24]. Beyond
alignment, RL has shown promise in improving LLMs’ performance on domains requiring precise
reasoning, such as mathematics [54, 56, 34] and code generation [30, 33]. Recently, [48] proposed
Group Relative Policy Optimization (GRPO) as a scalable alternative to Proximal Policy Optimization
(PPO). GRPO removes the need for a critic model by optimizing contrastive objective based on
intra-group ranking, yielding better sample efficiency, improved stability, and reduced computational
complexity [36, 46]. GRPO-trained LLMs demonstrated state-of-the-art performance in mathematical
problem solving and code generation, highlighting its effectiveness on tasks requiring structured
reasoning and adherence to correctness [48].

Improving Text-to-Image Generation Quality The rapid adoption of text-to-image models [45,
37, 44, 13, 41] has led to many research efforts focused on improving their image quality and better
matching human preferences. Some works focus on inference-time modifications, either optimizing
noise seeds towards better behaving regions of the diffusion space [14, 43] or applying self-guidance
and frequency-based modulations [21, 49, 35] to the generated features.

More commonly, models are tuned to provide better quality outputs. This is often done through
carefully selected high-quality datasets or better captioning methods [9, 3, 47]. Another approach
uses reward models [29, 59, 60, 31] to guide the generation process. These reward models can be
used with reinforcement learning [4, 11, 15, 66], or through direct optimization [6, 42, 55].

Finally, recent methods explore the use of LLMs to improve text-to-image generation [62], commonly
by using them to construct workflows featuring multiple models or chained editing tools [67, 51, 16].
Our work similarly uses LLMs to construct workflows, but better aligns them to human preferences
through the use of reward models coupled with a reinforcement-learning feedback mechanism.
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Figure 1: Pipeline overview. Step 1: Finetune LLM for general flow generation (SFT, 500K prompt-
flow pairs). Step 2.1: Train reward model (100K prompt-flow-score triplets). Step 2.2: Optimize for
quality using GRPO. ! = learning, ✁ = frozen.
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3 Methodology

Our goal is to enable efficient training of a human-preference based, prompt-to-workflow prediction
system. Ideally, this system should be able to innovate and produce novel, unseen flows. Prior work
struggled with this aspect, primarily due to their reliance on scoring images generated with a large
set of fixed flows, whose parameters were sampled uniformly from a predefined set of options. To
overcome this hurdle, we propose a two-phase training strategy. In the first, we pre-train on a large
set of un-scored flows. This avoids the need to generate and score images, allowing us to use a much
larger set to teach the LLM the structure of flows and the available components. Then, we perform
a second tuning stage, where we leverage human-preference predictor models jointly with recent
reinforcement-learning ideas (GRPO [48]) to drive the model towards better-performing subsets of
the flow space. As training progresses, more samples are drawn from these regions, and hence, less
computation is wasted on inefficient exploration.

However, generating and scoring images during LLM training is itself a costly process, which
requires an order of a minute for every training step. Hence, we draw on ideas from the autonomous
driving literature, where costly simulations are often replaced by faster predictors trained to replicate
simulation outputs [2, 25, 26]. Here, we apply this idea by learning surrogate reward models that
predict the final image score directly from the prompt and workflow pair. Notably, prior work has
observed that such surrogates are susceptible to reward-hacking solutions [17, 50, 58]. Motivated by
findings that ensembles can mitigate reward hacking [7, 65], we train an ensemble of such models
and use their variance as a measure of uncertainty, allowing us to filter out samples that optimize for
any individual surrogate reward model. Below we present these core components in greater detail and
provide an overview of additional design choices or components that allow us to increase efficiency
further or refine our results. An overview of our training pipeline is shown in Figure 1.

3.1 Training Data

To train our model we use the flow and prompt dataset of ComfyGen [16]. This set contains 33
human-created flows that define an overall graph structure, further augmented by randomly sampling
novel parameter choices for existing blocks such as different base models, differnet LoRAs, diffusion
samplers or even the number of steps and guidance scale. Since we do not need to score images
for our first stage, we can apply more extensive augmentations and create 2, 000 variants from each
baseline flow structure (compared with ComfyGen’s 100). The set also contains 10000 prompts taken
from the generation sharing website CivitAI.com. We keep the 500 prompts used to test ComfyGen
as a holdout, and train using the rest.

3.2 Stage 1: Supervised Fine-Tuning on Flow Dataset

The first stage involves supervised fine-tuning (SFT) an LLM on a dataset of prompt-flow pairs
without explicit score labels. At this stage, our goal is to teach the LLM the appropriate vocabulary
and flow structure while maintaining output diversity. Our flow dataset DSFT consists of pairs
(pi, fi) where pi represents a randomly sampled prompt and fi represents a randomly sampled flow.
We tune the model to take the sampled prompt pi and return its matching flow fi. The full LLM
query is shown in the supplementary. After fine-tuning, we evaluate the model’s perplexity on DSFT ,
achieving a score of 1.9, which reflects strong alignment with the encoded workflows structural
patterns.

Efficient Flow Representation Scheme While prior work [16] directly predicts ComfyUI JSON
representations, we note that these JSONs typically contain thousands of tokens, leading to long
generation times and increasing memory requirements. An inspection of the tokenized JSONs shows
that many tokens are wasted on maintaining the JSON format (e.g., on brackets or quotation marks)
or on breaking down model or component names. Hence, to improve training efficiency and reduce
token usage, we propose to modify the encoding scheme, using a novel structured representation that
captures essential components while reducing token count. Additionally, we introduce specialized
tokens to represent key elements of the flow. (e.g. tokens for ComfyUI node names or for model
choices). An example of the difference between the two tokenization methods is outlined in Figure 2.

This new encoding scheme yields significant practical advantages resulting in substantial improve-
ments in both computational efficiency and memory utilization. Quantitatively, the 86.7% reduction
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Figure 2: An example of a single ComfyUI node tokenized. (a) displays the original JSON input
as tokenized by the standard Llama tokenizer. (b) shows our custom encoding, with introducing
additional tokens to explicitly represent relevant components within workflow. Colored segment
corresponds to a different token. (c) histogram of flows length (in token) of all training-set

in the average token length (1500 → 200 tokens per workflow) enabled a 16↑ batch size increase
(2 → 32 samples/batch) during the first-stage training. Ultimately reaching a 3↑ time improvement
over the original tokenization. These enhancements make it feasible to train complex models and
apply memory-intensive algorithms, such as GRPO.

3.3 Stage 2: Reward-based policy-optimization

In the second stage, our goal is to tune the workflow-prediction LLM to better align it with flows
that produce high quality outputs for a given prompt. To do so, we propose to leverage the recently
introduced Group Relative Policy Optimization (GRPO) approach, which estimates advantages by
comparing responses within groups of similar prompts, rather than relying on a separate value function.
Using GRPO has two main benefits: (1) it eliminates the need to learn a separate value function,
enabling better memory utilization during training and (2) its group-based reward normalization
encourages greater exploration and diversity in generated workflows. However, the use of this
approach requires us to score and rank the different candidate flows generated for each input prompt
at training time. Naively, we could simply generate images with each such flow and score them using
the human-preference predictors used by ComfyGen [16]. However, for complex flows, creating the
images might take an order of a minute, greatly limiting the speed of training. Hence, we propose
to avoid this lengthy generation step and instead train a surrogate reward model that will directly
estimate the final reward from a pair of prompt and flow inputs.

Surrogate Reward Model Training We implement the surrogate reward model Rω on top of a
ModernBert [57] backbone, with a novel output head trained to map the CLS token into a score. To
tune the model, we feed it with strings containing a prompt and flow pair, and task it to predict the
human-preference score for the image produced by this pair. For data, we use the ComfyGen dataset
DR, which contains triplets of prompt pi, flow fi and score si. The surrogate’s loss is then:

LR(ω) =
∑

(pi,fi,si)→DR

MSE(Rω(pi, fi), si). (1)

Although the construction of the original ComfyGen dataset still required generating images and
scoring them, we find that the surrogate reward is much more sample efficient, performing well with
just the 330 post-augmentation flows of ComfyGen (compared with our own 80k unscored flows).

3.3.1 Component-Aware Hybrid Reward Formulation

Since downstream flow performance can be heavily influenced by relatively few tokens (model
choices, existence of specific blocks), we propose to further refine our surrogate model with a prefix-
prediction score that is better able to assign credit to specific components. Specifically, we tune an
additional reward model Rprefix

ω
to predict the generated image score even when presented only with
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randomly sampled prefixes of the flow:

LRpre(ω) =
∑

(pi,fi[1:j],si)→DR

MSE(Rpre

ω
(pi, fi[1 : j]), si). (2)

Our final reward design combines these two complementary signals to assign a different reward to
each token t, depending on both the expected performance of the full flow, as well as a prefix ending
with its component:

R(t) = Rω(p, f) +
J∑

j=1

1t→Tj ·R
pre

ω
(p, f1:j), (3)

where T are the tokens comprising the same flow component as t, and we sum over the contribution
of the entire component.

3.3.2 Uncertainty-Aware Reinforcement Learning

Finally, prior work [17, 50, 58] observed that the use of surrogate reward models can lead to reward
hacking. To avoid this pitfall, we train an ensemble of N surrogate models {Rω1 , Rω2 , ..., RωN },
each using a different split of our training data. The ensemble provides us with both a more robust
mean prediction, as well as with an uncertainty estimate:

µ(p, f) =
1

N

N∑

i=1

Rωi(p, f); ε(p, f) =

√√√√ 1

N

N∑

i=1

(Rωi(p, f)↓ µ(p, f))2. (4)

We can then define an uncertainty-aware reward function:

R(p, f) =

{
µ(p, f) ε(p, f) ↔ ϑ

0 ε(p, f) > 0

where ϑ is a threshold parameter. This pessimistic approach assigns zero reward to prompt-flow pairs
with high uncertainty, preventing the model from optimizing specific subsets of the reward ensemble,
or from drifting to regions where the surrogate’s predictions are unreliable.

3.4 Dual model guidance

As an additional step, we propose that results may be further improved through the use of a novel
inference mechanism inspired by classifier-free guidance (CFG, [20]). Specifically, we draw on
recent work on image generation [27] which demonstrate that diffusion models can be guided by
extrapolating the predicted scores along the direction from an under-trained version of the model,
and the fully trained one. We propose to apply a similar idea here, where we consider both our
policy-optimized model (MGRPO, stage 2) and its “undertrained" SFT version (MSFT , stage 1). At
inference time, generations are sampled by interpolating the logits of of both models:

log pCFG(fj |f<j , p) = log pSFT (fj |f<j , p) + ϖ
(
log pGRPO(fj |f<j , p)↓ log pSFT (fj |f<j , p)

)

(5)
where pCFG represent the sampling distribution, pSFT is the next-token distribution of stage 1 model
and pGRPO is the next-token distribution of stage 2 model. Finally, ϖ ↗ 0 controls the guidance
strength. Unless otherwise noted, we use ϖ = 1.5.

4 Experiments

4.1 Comparisons

We follow [16] and compare our approach to a set of baselines across two main metrics: (1)
The GenEval [18] benchmark which measures prompt-adherence by using object detection and
classification modules to evaluate correct object generation, placement, and attribute binding. (2)
Human preference, using the CivitAI prompt-set of ComfyGen [16]. For the latter, we evaluate our
approach using both an automated preference metric (HPS v2, [59]) as well as a user study.
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We compare our approach against the following types of baselines: (1) Fixed, monolithic mod-
els including: SDXL, popular fine-tuned versions thereof, and SDXL-DPO, which was directly
fine-tuned with human preference data. (2) Fixed, popular workflows, where we use the same
workflow to generate all images regardless of the prompt. (3) Prior pipeline construction ap-
proaches, including agentic workflows that select and use off-the-shelf editing tools to cor-
rect generated content (GenArtist, [67]) and reward-based fine-tuned LLMs (ComfyGen [16]).

Figure 3: Example of generations with
FlowRL

Prompt adherence: As summarized in Table 1,
FlowRL demonstrates strong performance on the GenEval
benchmark despite not being explicitly trained for prompt
adherence. It achieves an overall score of 0.61, matching
the best-performing baseline, ComfyGen. Notably, our
approach outperforms other methods in the “two objects”
(0.85 vs. 0.82) and “binding” (0.38 vs. 0.29) categories,
indicating improved capability in handling complex com-
positional prompts. A representative qualitative example
illustrating prompt adherence is provided in Figure 4.

Visual Quality: To automatically evaluate the visual
quality of FlowRL’s outputs, we follow [55, 43, 16] and
use a pair-wise comparison of HPS v2 [59] score between
FlowRL and each baseline and report the average win rate.
These comparisons use the full CivitAI test set of [16].
The win-rate of each baseline over FlowRL is reported in
Table 1. Additionally, we conducted a user study were we show users 35 randomly sampled prompts
and the images generated for each, using FlowRL and one of the baselines. Here, we focus on the best
performing baseline from each category, as well as ComfyGen [16]. We then ask them to select the
image that they prefer, taking both prompt adherence and visual quality into account. We report the
aggregated win percentage in figure 5, and add more details in the supplementary. This experiment
demonstrates FlowRL’s capability to create more performant ComfyUI workflows for the given input
prompts. Representative qualitative comparisons highlighting these improvements are provided in
Figure 4, where our outputs consistently exhibit better prompt alignment and structural coherence
compared to baseline generations.

Model Single Two Counting Colors Position Attribute Overall HPSv2 winrate
object object binding vs. FlowRL

SDXL 0.98 0.74 0.39 0.85 0.15 0.23 0.55 2% ± 0.6%
JuggernautXL 1.00 0.73 0.48 0.89 0.11 0.19 0.57 5%± 1%
DreamShaperXL 0.99 0.78 0.45 0.81 0.17 0.24 0.57 3%± 0.6%
DPO-SDXL 1.00 0.81 0.44 0.90 0.15 0.23 0.59 5%± 1%

Most Popular Flow 0.95 0.38 0.26 0.77 0.06 0.12 0.42 13%± 1%
2nd Most Popular Flow 1.00 0.65 0.56 0.86 0.13 0.34 0.59 14%± 1%

GenArtist 0.94 0.41 0.40 0.72 0.24 0.07 0.47 5% ± 1%
RPG-DiffusionMaster 1.00 0.64 0.21 0.89 0.20 0.35 0.55 3%± 0.8%
ComfyGen 0.99 0.82 0.50 0.90 0.13 0.29 0.61 40% ± 2%

FlowRL (Ours) 1.00 0.85 0.44 0.86 0.11 0.38 0.61 -

Table 1: GenEval and HPS v2 comparisons. FlowRL is on-par with ComfyGen on GenEval and
outperforms all other baseline approaches in overall score. On human preference metrics, FlowRL
significantly outperforms prior methods. CIs are calculated as one standard deviation from the mean.

Novelty of generated flows: A key advantage of our approach lies in its capacity to generate
workflows that are not merely copies of those seen during training. To quantify this novelty, we
generate 500 flows using the CivitAI test set, and calculate the normalized Levenshtein distance
(NLD) [52, 32] between each generated workflow and its nearest training sample. We further
normalize these values by the NLD between training samples, giving us a measure of what fraction
of the variance in training data we manage to preserve. Additionally, we report how many generated
flows exist “as-is" in the training data, and how many unique flows were created in the 500 output set.

The results are reported in Table 2. Our experiments confirm the findings of [16] which report that
their approach learned to copy flows from the training data. FlowRL meanwhile achieves significantly
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Figure 4: Qualitative results on CivitAI and GenEval prompts.

Figure 5: Human study win rate of FlowRL vs other relevant baselines

higher novelty, demonstrating the ability to generalize to new parameter combinations. These results
highlight the effectiveness of our reinforcement learning framework in encouraging the LLM to
explore and produce a broader range of complex workflows.

Effects of Dual model guidance: Next, we investigate the impact of our dual-model guidance
approach. Specifically, prior work [12] highlighted the ability of guidance-based methods to trade
diversity for performance (or recall for precision). We show that similar behavior can be observed
here. As shown in Table 2, while increasing guidance strength (ϖ) improves HPS v2 scores win-rate
vs ComfyGen, it significantly impacts the structural diversity of the generated workflows. At ϖ = 1.5,
our method maintains the uniqueness of generated flows. However, as ϖ increases, we observe a
dramatic reduction in the uniqueness ratio to just 8%.

Notably, all our FlowRL variants maintain near-zero overlap with training data (0-1% "exists in data"
vs ComfyGen’s 94%), and the NLD ratio actually improves with guidance (from 0.6 without CFG to
0.75 at ϖ = 2). This pattern suggests that stronger guidance pushes the model to consistently generate
a smaller subset of high-performing workflows, effectively concentrating probability mass on patterns
that maximize reward but reducing exploration of the solution space. Conceptually, this mirrors
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observations in image generation with CFG, where higher guidance strengths produce higher-quality
but less diverse output.

Method
unique exists NLD HPSv2
ratio in data ratio win-rate
(%) (%) Vs ComfyGen

ComfyGEN 7% 94% 0 -
FlowRL (w/o CFG) 41% 1% 0.6 59%
FlowRL + CFG(ε = 1.5) 41% 0% 0.74 60%
FlowRL + CFG (ε = 2) 8% 0% 0.75 63%

Table 2: Comparison of originality of flow generation models

4.2 Ablation study

To quantify the impact of individual components in FlowRL, we conducted an ablation study com-
paring variants with and without our key improvements. We evaluated the following modifications:
(1) removing the component-aware reward model, (2) removing the uncertainty ensemble cutoff,
(3) varying number of BERT models in our reward ensemble, (4) dropping the SFT step (stage 1),
and (5) dropping the GRPO-tuning step. For (5), we instead use the stage-1 model to sample five
flows per prompt, and use our reward ensemble to score them in relation to the prompt. Then, we
generate an image with the highest scoring flow. Finally, to ensure that our benefits are not grounded
in the novel encoding scheme, we also evaluate a baseline ComfyGen [16] model trained on this
new representation. We compare all scenarios against both the original ComfyGEN and against our
full model, using HPSv2 scores on the CivitAI prompt set. The errors reported are the 1↓ ε Wald
interval.

w/o w/o Ensemble of w/o
win ratio prefix reward 1 3 5 ComfyGen SFT SFT

reward cutoff Berts (+ encoded) only stage

vs ComfyGen(%) 55 57 55 56 56 37 29 0
±2.22 ±2.22 ±2.22 ±2.21 ±2.22 ±2.16 ±2.02 -

vs ours (%) 42 45 33 34 36 26 19 0
±2.21 ±2.21 ±2.1 ±2.12 ±2.15 ±1.96 ±1.75 -

Table 3: The win ratio on the HPSv2 score for each component of our method compared to (1) the
ComfyGen baseline and (2) the full ComfyGenRL model, using head-to-head comparisons.

The results are presented in table 3. These demonstrate the vital contribution of each component
to overall performance. The full model consistently outperforms all ablations, with particularly
significant drops observed when removing the SFT stage entirely (0% win rate against ComfyGen
and our full model). This emphasizes the critical nature of proper initialization before applying
reinforcement learning methods. Looking at specific components, "prefix reward" proves the most
beneficial, showing the importance of assigning more granular rewards. The "ComfyGen (+encoded)"
variant, which uses our encoding scheme but lacks reinforcement learning, achieves only a 37% win
rate against the original ComfyGen, highlighting that our encoding improvements work synergistically
with the GRPO training approach.

5 Discussion

This paper presents a novel approach for fine-tuning LLMs using a combination of supervised learning
on flow data, surrogate reward modeling, and uncertainty-aware reinforcement learning. Our method
addresses several key challenges in LLM fine-tuning, including reward hacking, distribution shifts,
and training efficiency. The results demonstrate that our approach outperforms existing baselines
across multiple metrics. Importantly, compared to prior workflow generation work, our approach
demonstrates greater output diversity and successfully generalizes to novel flows that did not exist in
the training data.

Although it improves on the current state-of-the-art in multiple aspects, our approach still maintains
many of their limitations. First, it remains focused on text-to-image workflows, with no support for
editing tasks or video modules. Second, introducing new workflow components to the LLM would
require retraining our entire stack. In the future, we hope to explore more efficient ways of adapting
to novel models or blocks.
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By enabling reliable and diverse automated workflow generation, our work advances generative AI
systems that adapt to human preferences. We hope it will help foster more collaborative innovation
by streamlining the integration of independently trained, specialized modules.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Each claim made in the introduction is elaborated in the main text.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See section 5
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper has no theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide an explanation about the reproducibility of our experiments in the
supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The paper relies on data from a prior paper. The prior data is not public but
can be requested from the authors.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide an explanation about the reproducibility of our experiments in the
supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We detail how confidence intervals were computed for the reported results in
the main text.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification We provide an explanation about the reproducibility of our experiments in the
supplementary.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impact in the supplementary.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All relevant work is cited in the references.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We provide an example of user-study questions in the supplementary.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There are no risks involved in our user study.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLM is a core part of our method, and we provied details explanation on how
it is combined within it in the main text.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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