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ABSTRACT

Equivariant models, which enforce physical symmetries (such as rotations and
permutations), have proven very successful at materials science tasks. The usual
justification for this success is that symmetry transformations relate data samples,
which improves generalization and data efficiency. However, this explanation as-
sumes that transformed versions of a given molecule are highly likely under the
data distribution. In this work, we develop a method for testing this assumption
by measuring the amount of symmetry in a data distribution. Specifically, we pro-
pose a two-sample classifier test which distinguishes between the original dataset
and its randomly augmented symmetrization. Unlike existing tests of group in-
variance, our method does not require defining an appropriate parametric test or
kernel. We find that in commonly used materials science datasets such as QM9
and MD17, the orientations of molecules are highly non-uniform. Our findings
suggest the success of equivariant models on these datasets may depend on other
inductive biases, such as local equivariance. Moreover, non-equivariant models
may be strongly benefiting from canonicalization of the molecules’ orientations,
an oft-overlooked part of the data generation process. As machine learning be-
comes increasingly important for materials discovery, it is essential to have tools
to critically evaluate the assumptions underlying our data.

1 INTRODUCTION

Equivariant neural networks have had considerable success in materials science, from modeling
molecular dynamics (Batzner et al., 2022) to predicting quantum mechanically accurate properties
of molecules and crystals (Rackers et al., 2023; Fang et al., 2024; Liao et al., 2023). By integrating
physical symmetries into the model architecture as group invariances, equivariant neural networks
can often achieve superior generalization and data efficiency, and enjoy state-of-the-art performance
on materials benchmarking datasets such as OC20, QM9, and MD17 (Liao et al., 2023; Batzner
et al., 2022; Frey et al., 2023; Rackers et al., 2023; Owen et al., 2023), demonstrating their potential
for use in automated materials screening, design, and property modeling.

The success of equivariant methods has typically been explained in terms of improved sample ef-
ficiency and generalizability, resulting from their ability to relate data x and transformed data gx
(Cohen & Welling, 2016). For g ∈ G, a symmetry group, equivariant neural networks NN are con-
strained such that NN(gx) = gNN(x), thus tying the predictions for x and gx. It is thus an explicit
assumption for equivariant models that the ground truth function satisfies f(gx) = gf(x). How-
ever, there is also an implicit assumption that transformed samples gx occur relatively uniformly in
distribution, i.e. the input density p(x) ≈ p(gx). Theoretical results in equivariance almost always
assume that x and gx are equally likely under the data distribution (Elesedy & Zaidi, 2021).

In this paper, we study distributional symmetry breaking (Wang et al., 2024c)—when a datapoint x
and its transform gx are not equally likely under the data distribution1. Our ultimate goal, which we
hope to address in future work, is to understand how distributional symmetry breaking affects the

1This differs from functional symmetry breaking (Wang et al., 2024c), where the mapping between inputs
and outputs is not fully equivariant (e.g. during a phase transition in a material).
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Figure 1: (left) Visualizations of unrotated samples from each dataset, with their canonicalization
clearly visible. (right) A classifier test for symmetry: we generate a synthetic dataset to train a binary
classifier, labeling non-rotated samples 0 and rotated samples 1.

performance of equivariant vs. non-equivariant models. Intuitively, equivariance can help perfor-
mance by reducing the impact of sparsely sampled parts of the distribution, but it may also discard
meaningful asymmetries across orbits {gx}g∈G. This information may be inherent, such as the
natural orientations of “6” and “9” (which are useful for distinguishing classes in MNIST), or user-
defined, such as the conventions used to orient crystal structures along their highest symmetry axes.
Indeed, Cohen et al. (2018) demonstrated that rotational equivariance only improves performance
on MNIST when the dataset is artificially rotated. Complementing this finding, Shao et al. (2024)
prove that no equivariant algorithm applied to distributionally asymmetric data can achieve optimal
sample complexity.

We currently lack an effective numerical measure of the amount of symmetry breaking in a distri-
bution, especially without domain knowledge of the distribution (Wang et al., 2024a; 2023; 2024c).
Thus, we provide a measurement of the degree of symmetry breaking, which can place a function
on the spectrum between a symmetrized distribution on one side, and fully canonicalized—where
only a single sample x in each orbit {gx}g∈G is in distribution —on the other. We hope this metric
will prove useful for (1) diagnosing why (and when) equivariant methods provide an advantage on
existing tasks, and (2) aiding model selection on new datasets.

We propose the use of a two-sample classifier test (Lopez-Paz & Oquab, 2017), in which a binary
classifier is trained to distinguish between samples from pX and p̄X . The accuracy of this classifier
on a held-out test set is a natural, interpretable measure of distance between pX and p̄X , which (1)
could allow for future interpretability methods (applied to the classifier itself) and (2) sidesteps the
arbitrary kernel selection, offloading it to the less impactful choice of architecture.

We apply both (1) the classifier method and (2) adaptations of kernel MMD for point cloud kernels
to benchmark datasets: QM9 (Wu et al., 2017), revised MD17 (Christensen & von Lilienfeld, 2020),
and OC20 (Chanussot* et al., 2021). We find that all three datasets are highly non-uniform under
3D rotations. Since these benchmarks are a cornerstone of fundamental AI methods development
for materials, understanding their biases is crucial for advancing automated materials discovery. As
many ML practitioners may not be familiar with the data generation processes underlying materials
science datasets, this serves as an interpretable tool to measure distributional symmetry-breaking.

2 PROPOSED METRIC

Consider datapoints x ∈ X drawn from a distribution pX , acted on by a compact group G.
We assume that there is a ground truth labeling function f : X → Y that is equivariant, i.e.
f(gx) = gf(x). We do not assume that pX(x) = pX(gx); instead, we wish to quantify the de-
gree to which pX breaks distributional symmetry by failing to satisfy this equality. To this end,
define the symmetrized density p̄X(x) =

∫
g∈G

pX(gx)dg. The density p̄X is the “closest” invariant
distribution to pX , i.e. for any G-invariant measure on X it minimizes

∫
x
(i(x)−pX(x))2dx over all

invariant densities i. We now wish to approximate some distance between pX and p̄X based on finite
training samples (where sampling from p̄X can be emulated by applying random G-augmentations).

2



Published at AI4MAT 2025

Chiu & Bloem-Reddy (2023) set d to be the maximum mean discrepancy (MMD) with respect
to some choice of kernel, corresponding to a non-parametric two sample statistical test. While it
is already interesting to apply this metric directly to materials datasets, their experiments do not
include kernels suitable for point clouds. Rectifying this requires choosing a kernel suitable for X ,
which may be non-trivial (particularly for geometric data that includes chemical information), and as
noted in Lopez-Paz & Oquab (2017), may not return values in units that are directly interpretable2.

As an alternative, we propose applying a two sample classifier test, which is a common tool for
detecting and quantifying distribution shift in machine learning (Lopez-Paz & Oquab, 2017). Define
a distance3 d between distributions as the test accuracy of a neural net NN trained to distinguish
between the two distributions as a binary classification problem:

d(p0, p1) = Ec∼Bern( 1
2 )

Ex∼pc

[
1
(
NN(x) = c

)]
If pX is already group-invariant, then pX = p̄X and no network can reliably distinguish between
samples from the two4. Concretely, we construct a binary classification dataset from an original
dataset X as shown in Figure 1, with half of X transformed by random group elements (label 1),
and the rest of the dataset left as is (label 0). We focus our attention on the rotation group SO(3),
as it is one of the most fundamental groups in materials science, but our methodology extends to
other groups. The trained classifier’s test accuracy is easily interpretable, reflecting how often the
classifier can distinguish between the original and symmetrized distributions.

Following Chiu & Bloem-Reddy (2023), we can moreover formulate our setup as a two-sample test,
with null hypothesis H0 that pX(x) = p̄X(x) and test statistic given by the test accuracy of the
classifier. Given a sample {x1, . . . , xn} drawn from X , we estimate a p-value for a two-sample test
of level α by Monte Carlo sampling, retraining the classifier for each “sample” (see Appendix B.1).

3 EXPERIMENTS

Our experiments serve dual goals. First, we quantify the distributional symmetry-breaking in
commonly-used benchmark materials datasets for property, energy, and force predictions (Figure 4).
Second, we validate the classifier metric by synthetically modifying pX (Figure 3). In particular,
we randomly rotate a specified fraction f of pX , thereby making it more similar to p̄X (and more
distributionally symmetric); when f = 1.0, we recover p̄X . We therefore expect the test accuracies
to linearly interpolate between 50% (at 1.0) and their value at 0.0 (the original pX ), which they do.

Experimental setup: For our classifier, we use a simple transformer architecture with embed-
dings for atom types and 3D molecular positions. To compare to Chiu & Bloem-Reddy (2023),
we also adapt MMD-based methods through implementing kernels based on point cloud distances
(Chamfer, Hausdorff, and a simple distance based on the point cloud means and covariances, see
Appendix C).5 We report both the raw classifier test accuracy, and the p-values for comparisons to
baselines. The baselines and classifier metrics generally agree on these datasets, which provides
strong evidence for our conclusion that the datasets are canonicalized. Our conclusions for each
dataset are supported by statistically significant p-values for a significance level α = 0.05. Figure 2
highlights the importance of selecting an appropriate kernel, as the naive kernel does not perform as
expected. For full experimental details and plots, see Appendix B.

QM9 The QM9 dataset consists of 130k stable organic molecules with ≤9 heavy atoms, together
with 19 quantum mechanical properties. As shown in Figure 4 and Figure 12, QM9 is highly canon-
icalized by 3D positions. The original paper (Wu et al., 2017) states that molecular conformers were
generated using the commercial software CORINA, which likely performs some canonicalization
of the SMILES strings by default (see Figure 14). Additional plots, including classifier predictions
under rotation, are shown in Appendix B.3.

MD17 The revised MD17 dataset contains 100k structures from molecular dynamics (MD) sim-
ulations for 10 small organic molecules, with energies and forces. We train a separate model for
each molecule, thus illuminating the relative alignment of each conformer throughout its trajectory.

2unless used in a Monte Carlo p-value estimate
3If we considered all classifiers, this distance would be linearly related to the total variation distance.
4Note that the network is asked to distinguish between two distributions that differ only by group operations

(e.g. rotations), and therefore should not be group-invariant.
5Note these distances do not account for atom types.
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Figure 2: p-value vs Aug-
mented Fraction OC20 (sur-
face+adsorbate).
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Figure 3: Test accuracy vs rotated fraction for
aspirin and ethanol from rMD17, OC20 sur-
face+adsorbate, OC20 adsorbate, and QM9. See
Appendix B.2 for other rMD17 molecules.

Molecule Test
Acc.

rMD17 Aspirin 97.869
rMD17 Ethanol 79.834

OC20 S+A 99.280
OC20 A 96.529

QM9 94.204

Figure 4: Test accuracy on the original dataset (the
leftmost values of Figure 3).

While we find that all trajectories have distri-
butional symmetry breaking, interestingly, the
degree varies widely between molecules (see
Figure 3, or Figure 5 for all molecules). We
hypothesize that this is both due to the initial
conditions for the simulation, and the differing
physical structures of each molecule.

Open Catalyst 2020 (OC20) The OC20
dataset consists of small molecules (adsorbates)
placed on periodic crystalline catalysts (sur-
faces), represented by slabs in the xy plane
(Chanussot* et al., 2021). We apply our met-

ric to the surface+adsorbate system, and also solely to the adsorbate. We hypothesize that both
systems will be highly canonicalized, due to the slab’s alignment with the xy plane. We find (Fig-
ure 3) that the adsorbate is a bit less canonicalized than the slab, but the slab orientation likely still
has a large impact on the adsorbate’s preferred orientation.

4 CONCLUSION

In this work, we presented an interpretable metric for quantifying the degree of distributional
symmetry-breaking present in a dataset, without any prior domain knowledge of the dataset. Apply-
ing our method to commonly used materials benchmarks (QM9, MD17, and OC20), we observed an
extremely high level of canonicalization. Since these datasets are routinely used in the development
of foundational AI methods for materials discovery, understanding aspects of their generation and
biases is crucial. We view such quantifications as an important first step, with domain expertise
eventually required to judge whether the detected asymmetry is inherent and useful (such as MNIST
6s and 9s), or incidental and user-defined (such as arbitrary canonicalization).

Future Work Statistical tests and metrics for invariance only indicate if a dataset was canoni-
calized, and not how it was canonicalized. Our trained classifier offers intriguing possibilities for
obtaining a finer-grained picture via interpretability methods. Moreover, the implications of our
findings on equivariant vs non-equivariant model selection remain unclear, since we found that com-
monly used datasets are very canonicalized, yet equivariant models are still SOTA. Future directions
include applying our test to local neighborhoods of molecules, thereby investigating the hypothesis
that locality is an important bias for successful equivariant methods, as well as modifying our test to
incorporate task-dependence (i.e. asking if the dataset is distributionally asymmetric in a way that
is helpful for a given task). Finally, distributional symmetry-breaking with respect to permutations
is highly relevant for autoregressive foundation models. For example, Gruver et al. (2024) trained
a LLM to generate stable materials as text, thereby breaking permutation symmetries Surprisingly,
permutation augmentations hurt performance. We could apply our metric to probe for preferred or-
derings in their training dataset as one possible explanation for this phenomenon, providing valuable
insight for future LLM approaches to materials generation.
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nor W Coley, and Vijay Gadepally. Neural scaling of deep chemical models. Nature Machine
Intelligence, 5(11):1297–1305, October 2023.

Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C. Lawrence Zitnick,
and Zachary Ward Ulissi. Fine-tuned language models generate stable inorganic materials as
text. In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=vN9fpfqoP1.

Elyssa Hofgard, Rui Wang, Robin Walters, and Tess E. Smidt. Relaxed equivariant graph neural
networks. arXiv preprint arXiv:2407.20471, 2024.

Yi-Lun Liao, Brandon Wood, Abhishek Das, and Tess Smidt. Equiformerv2: Improved equivariant
transformer for scaling to higher-degree representations. arXiv preprint arXiv:2306.12059, 2023.

David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. In International Con-
ference on Learning Representations, 2017. URL https://openreview.net/forum?
id=SJkXfE5xx.

Daniel McNeela. Almost equivariance via lie algebra convolutions. arXiv preprint
arXiv:2310.13164, 2023.

Cameron J Owen, Steven B Torrisi, Yu Xie, Simon Batzner, Jennifer Coulter, Albert Musaelian,
Lixin Sun, and Boris Kozinsky. Complexity of Many-Body interactions in transition metals via
Machine-Learned force fields from the TM23 data set. February 2023.

Joshua A Rackers, Lucas Tecot, Mario Geiger, and Tess E Smidt. A recipe for cracking the quantum
scaling limit with machine learned electron densities. Mach. Learn.: Sci. Technol., 4(1):015027,
February 2023.

Han Shao, Omar Montasser, and Avrim Blum. A theory of pac learnability under transformation in-
variances. In Proceedings of the 36th International Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN 9781713871088.

Tess E Smidt, Mario Geiger, and Benjamin Kurt Miller. Finding symmetry breaking order parame-
ters with euclidean neural networks. Physical Review Research, 3(1):L012002, 2021.

Alonso Urbano and David W. Romero. Self-supervised detection of perfect and partial input-
dependent symmetries. arXiv preprint arXiv:2312.12223, 2024.

Dian Wang, Jung Yeon Park, Neel Sortur, Lawson LS Wong, Robin Walters, and Robert Platt. The
surprising effectiveness of equivariant models in domains with latent symmetry. In The Eleventh
International Conference on Learning Representations, 2023.

Dian Wang, Xupeng Zhu, Jung Yeon Park, Mingxi Jia, Guanang Su, Robert Platt, and Robin Walters.
A general theory of correct, incorrect, and extrinsic equivariance. Advances in Neural Information
Processing Systems, 36, 2024a.

Dian Wang, Xupeng Zhu, Jung Yeon Park, Mingxi Jia, Guanang Su, Robert Platt, and Robin Walters.
A general theory of correct, incorrect, and extrinsic equivariance. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY,
USA, 2024b. Curran Associates Inc.

Rui Wang, Elyssa Hofgard, Robin Walters, and Tess Smidt. Discovering symmetry breaking in
physical systems with relaxed group convolution. arXiv preprint arXiv:2310.02299, 2024c.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S.
Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: a benchmark for molecular machine
learning. Chemical Science, 9(2):513, October 2017. doi: 10.1039/c7sc02664a. URL https:
//pmc.ncbi.nlm.nih.gov/articles/PMC5868307/.

Jianke Yang, Robin Walters, Nima Dehmamy, and Rose Yu. Generative adversarial symmetry dis-
covery. arXiv preprint arXiv:2302.00236, 2023.

6

https://openreview.net/forum?id=k505ekjMzww
https://openreview.net/forum?id=k505ekjMzww
https://openreview.net/forum?id=vN9fpfqoP1
https://openreview.net/forum?id=vN9fpfqoP1
https://openreview.net/forum?id=SJkXfE5xx
https://openreview.net/forum?id=SJkXfE5xx
https://pmc.ncbi.nlm.nih.gov/articles/PMC5868307/
https://pmc.ncbi.nlm.nih.gov/articles/PMC5868307/


Published at AI4MAT 2025

APPENDICES

A Related Work 7

B Experiments 7

B.1 Computation of p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

B.2 rMD17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

B.3 QM9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B.3.1 Evaluation of classifier predictions on rotated inputs . . . . . . . . . . . . 10

B.4 Open Catalyst Project 2020 (OC20) . . . . . . . . . . . . . . . . . . . . . . . . . 10

C Maximum Mean Discrepancy (MMD) for Point Clouds 12

C.1 Maximum Mean Discrepancy (MMD) . . . . . . . . . . . . . . . . . . . . . . . . 12

C.2 Naive Kernel (Mean/Covar) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

C.3 Chamfer Distance Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

C.4 Hausdorff Distance Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

A RELATED WORK

Various works have addressed discovering symmetry breaking in physical datasets including Wang
et al. (2024c); Finzi et al. (2021); McNeela (2023); Hofgard et al. (2024); Smidt et al. (2021); Ur-
bano & Romero (2024). In particular, Wang et al. (2024c) distinguishes between distributional and
functional symmetry breaking. Distributional symmetry has also been termed extrinsic equivariance
(Wang et al., 2023) and Wang et al. (2024b) showed that, in some cases, using an equivariant model
for a problem with extrinsic equivariance can be harmful. Shao et al. (2024) established that any
equivariant algorithm applied to extrinsically equivariant data, under certain assumptions on the hy-
pothesis class, cannot obtain optimal sample complexity in terms of PAC learnability. This provides
strong motivation for our method to detect extrinsic equivariance.

Desai et al. (2022) proposes a generative model framework for discovering distributional symme-
try breaking (SymmetryGAN) with respect to some reference density. Indeed, Desai et al. (2022)
and Yang et al. (2023) train discriminative networks for symmetry discovery in a similar way to
our binary classifier, but do not produce a quantitative measure of distributional asymmetry. Chiu
& Bloem-Reddy (2023) framed testing for distributional symmetry breaking as a non-parametric
hypothesis test, following literature on two-sample tests, and uses the distance between the group-
averaged and the original distributions as the test statistic. Lopez-Paz & Oquab (2017) posits that
one can use a binary classifier for the test statistic for a more interpretable metric.

B EXPERIMENTS

B.1 COMPUTATION OF P-VALUES

AlgorithmB.1 outlines the process for computing p-values.

B.2 RMD17

We use the revised MD17 dataset Christensen & von Lilienfeld (2020), as the original MD17 dataset
has a high level of numerical noise Chmiela et al. (2017). The revised MD17 dataset was cal-
culated with a more accurate DFT functional/convergence criteria than the original MD17. We
use the provided five train/test splits from https://figshare.com/articles/dataset/
Revised_MD17_dataset_rMD17_/12672038 and train a separate model for each molecule.
Note it is not recommended to train a model on more than 1,000 samples from rMD17 Christensen
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Algorithm 1 P-value Computation

1: Input: Training set Dtrain, test set Dtest, calibration distances sample size n1, actual distances
sample size n2, distance function Distance(·, ·).

2: Output: p-value
3: actual dists← []
4: calibration dists← []

▷ Compute calibration distances under null hypothesis
5: for i = 1 to n1 do
6: Sample training set D̃train and test set D̃test from Dtrain and Dtest.
7: Apply rotation transformation to all data
8: dc ← Distance(D̃train, D̃test)
9: calibration dists.append(dc)

10: end for
▷ Compute actual distances

11: for i = 1 to n2 do
12: Sample training set D̃′

train and test set D̃′
test from Dtrain and Dtest.

13: Apply rotation transformation to subset of data
14: da ← Distance(D̃′

train, D̃′
test)

15: actual dists.append(da)
16: end for
17: d̄a ← 1

n2

∑n2

i=1 actual dists[i] ▷ Compute mean of actual distances
18: count← |{dc ∈ calibration dists : dc > d̄a}|
19: p-value← 1+count

1+n1

return p-value

& von Lilienfeld (2020), even though the dataset has 100,000 conformers for each trajectory. We
train a generic transformer with 812k parameters for 50 epochs on the train/test splits provided with
the Adam optimizer at learning rate 1e-5 and batch size 128.

As seen in Figure 5, all molecules are canonicalized, yet ethanol and malohaldehyde have a notice-
ably lower degree of canonicalization. We plan to explore this finding in future work and determine
whether it is related to local symmetric motifs within each molecule. As a physical sanity check
for our distributional symmetry breaking metric, we plot the distributions for the principal moments
of inertia for each molecule. Examples of more canonicalized and less canonicalized molecules as
determined by our metric are shown in Figure 6.

For a discrete system of point masses, the inertia tensor I is given by:

I =
∑
i

mi

[
∥ri∥2I− rir

T
i

]
The eigenvalues of the inertia tensor are the principal moments and represent the resistances to
rotation around the body’s principal axes (which are the eigenvectors). Intuitively, if a molecule is
more canonicalized over the MD trajectory, we would expect it to stay in one orientatation and for
the distributions of the principal axes over time to remain distinct. If it is less canonicalized, there
may be more overlap between the distributions.

Figure 8 demonstrates the values used in our computation of the p-values for each method (on a
row) and different levels of augmentation in the detection dataset (column) for one of the molecules
in rMD17 (benzene). The p-value plots were computed using 20 samples (for each histogram) of
size 1k corresponding to the given train/test splits, trained for 20 epochs (in the case of the clas-
sifier metric). As shown, all methods separate the calibration distances from the actual distances,
resulting in identical, statistically significant p-values. As the tests are asked to distinguish between
increasingly similar datasets (moving from left to right), the histograms gradually move closer to-
gether, until they overlap. For ease of visualization, Figure 7 plots the mean distance computed from
each histogram for benzene (excluding the calibration distances). We also plot the p-value vs. the
augmented fraction Figure 9. As for OC20 in Figure 2, the Chamfer and Hausdorff kernels exhibit
similar trends to the classifier, and the naive mean/covar kernel exhibits less reasonable behavior.

8



Published at AI4MAT 2025

0.0 0.2 0.4 0.6 0.8 1.0
Augmented Fraction

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y 
(%

)

Test Accuracy vs. Augmented Fraction for MD17
naphthalene
aspirin
uracil
salicylic
paracetamol
malonaldehyde
toluene
azobenzene
benzene
ethanol

Figure 5: Test accuracy vs. augmented fraction for all molecules in rMD17. Note the difference
between the 8 more canonicalized molecules and ethanol/malonaldehyde.

Figure 6: Comparisons of the principal components of the inertia tensor for more canonicalized (top
row) and less canonicalized (bottom row) molecules.

This illustrates the importance of choosing a good kernel and provides a relative advantage of our
method. All other molecules in rMD17 exhibted similar trends for the p-values.

B.3 QM9

We use torch geometric for loading the dataset, and train a generic transformer architecture
with 812k parameters for 20 epochs with a randomly selected 60%/20%/20% train/validation/test
split and the Adam optimizer at learning rate 1e-5 and batch size 128.

Figure 10 demonstrates the values used in our computation of the p-values for each method (on
a row) and different levels of augmentation in the detection dataset (column). The p-value plots
were computed using 20 samples (for each histogram) of size 1k, trained for 20 epochs (in the
case of the classifier metric). All methods exhibit the expected behavior: as the augmented fraction
increases —i.e. as the distribution becomes more similar to the reference, perfectly symmetrized
distribution—the distance decreases. It is important to note that the classifier distance does not
match Figure 3 due to the difference in batch size: the classifier was trained on a much smaller
dataset, and as shown in the loss plot in Figure 13, training did not converge in this time. This time
constraint was necessary to facilitate the number of runs necessary to compute a p-value. However,
conversely, the baseline methods cannot scale to the entire datset, whereas the classifier method
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Figure 7: Different distance metrics from a perfectly symmetrized distribution, as a function of the
degree of synthetic augmentation of the rMD17 dataset for benezene. (Higher augmented fraction
indicates a greater similarity to the symmetrized distribution).

can. Moreover, even without the convergence, the histograms corresponding to the classifier metric
in Figure 10 are still sufficiently well-separated to provide reasonable p-values on our synthetic
experiment. See also Figure 12 for the p-values; note that all methods agree at the level of p-value
on the original dataset.

As with the MD17 dataset, we also plot the distribution of the principal moments of inertia. As
QM9 contains different molecules (with different masses), we normalize the inertia tensor for each
molecule by its total mass. This is shown in Figure 14. We note that I1 is more sharply peaked, while
I2 and I3 are quite similar. This suggests there are two directions that are rotationally equivalent
for many molecules (e.g. in-plane symmetry such as in a benzene ring) and that there may be one
consistent direction that molecules are aligned with. We plan to conduct further exploration of how
the QM9 dataset was generated using CORINA and the algorithms used within CORINA.

B.3.1 EVALUATION OF CLASSIFIER PREDICTIONS ON ROTATED INPUTS

A primary motivator for using the classifier distance for distributional asymmetry detection, is for
the opportunities for exploration and interpretation of the trained classifier. As a first step in this
direction, we evaluate the sigmoid of the classifier’s logits on a discrete grid of 3D rotations (where
two Euler angles are varied and the third is held constant) of a few inputs, shown in Figure 15.

B.4 OPEN CATALYST PROJECT 2020 (OC20)

For our study, we use the 200K subset from the structure to energy and forces (S2EF)
task, available at https://fair-chem.github.io/core/datasets/oc20.html#
structure-to-energy-and-forces-s2ef-task. It would be interesting in the future
to explore other tasks (e.g. Initial Structure to Relaxed Structure) and larger dataset sizes, as the
OC20 dataset training set alone has 20 million structures. We use the preprocessing pipeline pro-
vided at https://fair-chem.github.io/core/datasets/oc20.html. Positions for
each catalyst+adsorbate are tagged with 0: catalyst surface, 1: catalyst sub-surface, and 2: adsor-
bate. The unit cell for the catalyst is repeated twice in the x direction, twice in the y direction, and
once in the z direction, leading to the slab’s alignment with the xy plane. This alignment most likely
trivially causes our metric to report distributional symmetry breaking. It would thus be interesting in
future work to consider how to treat periodic crystalline systems. The p-value plots were computed
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Figure 8: Distance metrics for different methods, and at different levels of augmentation for benzene
(i.e. different levels of underlying distributional similarity).
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Figure 9: p-value vs augmented fraction for benzene rMD17.

using 20 samples (for each histogram) of size 50k, trained for 20 epochs (in the case of the classifier
metric). The p-values follow the expected trends as was the case for the other datasets.
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Figure 10: Distance metrics for different methods, and at different levels of augmentation (i.e. dif-
ferent levels of underlying distributional similarity).
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Figure 11: Different distance metrics from a perfectly symmetrized distribution, as a function of
the degree of synthetic augmentation of the QM9 dataset. (Higher augmented fraction indicates a
greater similarity to the symmetrized distribution.)

C MAXIMUM MEAN DISCREPANCY (MMD) FOR POINT CLOUDS

C.1 MAXIMUM MEAN DISCREPANCY (MMD)

MMD is a statistical distance metric that measures the discrepancy between two probability distribu-
tions p0, p1. Unlike many other distance metrics, MMD does not require any assumptions about the
distributions or explicit density estimation. Thus, MMD is useful for high-dimensional or complex
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Figure 12: p-values for different methods, and at different levels of augmentation (i.e. different
levels of underlying distributional similarity).
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Figure 13: Left: the loss curve from one of the 20 training runs used to compute the classifier
distance in the p-value computation, on 1k examples. Right: the loss curve from a training run used
to compute the classifier distance over the full dataset. As shown, the loss converged much faster
for the full dataset, whereas with only 1k examples (one one-hundredth of the size), convergence is
much slower.
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Figure 14: Principal moments of inertia distribution normalized by molecular mass for QM9.

distributions. The definition of MMD is:

MMD2(p0, p1) = Ex0,x′
0∼p0

[k(x0, x
′
0)] + Ex1,x′

1∼p1
[k(x1, x

′
1)]− 2Ex0∼p0,x1∼p1

[k(x0, x1)] ,

Where k(·, ·) is the kernel function. To compute the MMD, we can use the empirical MMD, which
is an unbiased estimator of the true MMD and only needs a set of samples from each distribution.
Algorithm C.1 provides pseudocode for the implementation of empirical MMD.

To compute the MMD, we need to choose a kernel function that is positive definite and characteristic.
The choice of kernel can have a significant impact on the MMD value. Based on natural distance
measures between point clouds, we implement three different kernels for our experiments: the naive
kernelMean/Covar, the Chamfer distance kernel, and the Hausdorff distance kernel.

C.2 NAIVE KERNEL (MEAN/COVAR)

The most naive way to compute the distance between point clouds is to compute the distance be-
tween their respective means and covariances. We call this method “MMD Mean/Covar”, as well as
the naive kernel. Since the naive kernel only uses the means and covariances of the point clouds, it
lacks the ability to capture the local information of the point clouds. AlgorithmC.2 gives an imple-
mentation of the Naive kernel:

C.3 CHAMFER DISTANCE KERNEL

The Chamfer distance is a commonly used distance metric, measuring the similarity between two
point clouds. It is defined as the sum of the average of squared Euclidean distances from each point
in one set to its nearest neighbor in the other set. Formally, the Chamfer distance is defined as:

CD(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y
||x− y||2 + 1

|Y |
∑
y∈Y

min
x∈X
||x− y||2,

where X and Y are two point clouds, x and y are points in the point clouds, and ||x − y|| is the
Euclidean distance between points x and y.

Since the Chamfer distance kernel uses the minimum distance between points, it mainly captures
local information, and always ignores global structure (such as the overall shape distribution and
point cloud density). AlgorithmC.3 gives an implementation of Chamfer distance kernel.

C.4 HAUSDORFF DISTANCE KERNEL

The Hausdorff distance is also a distance metric that measures the distance between two sets of
points. By replacing the average operation in Chamfer distance with the maximum operation, we
obtain the Hausdorff distance as:
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Figure 15: Left: example molecules from QM9. Right: the corresponding plot of the trained binary
classifier’s predicted probability that that rotation of the input came from the original, canonicalized
dataset.
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Algorithm 2 Compute Maximum Mean Discrepancy (MMD)

Require: x, y (input samples), mask x,mask y (optional masks), kernel func (kernel function)
1: nx ← length of x, ny ← length of y ▷ Compute XX pairwise similarities
2: xx indices← upper triangular indices of (nx, nx)
3: if mask x is not None then

xx distances← kernel func(x[xx indices0], x[xx indices1],
mask x[xx indices0],mask x[xx indices1])

4: xx diag ← kernel func(x, x,mask x,mask x)
5: else
6: xx distances← kernel func(x[xx indices0], x[xx indices1])
7: xx diag ← kernel func(x, x)
8: end if
9: xx mean← 2

∑
xx distances+

∑
xx diag

nx·nx

▷ Compute YY pairwise similarities
10: yy indices← upper triangular indices of (ny, ny)
11: if mask y is not None then

yy distances← kernel func(y[yy indices0], y[yy indices1],
mask y[yy indices0],mask y[yy indices1])

12: yy diag ← kernel func(y, y,mask y,mask y)
13: else
14: yy distances← kernel func(y[yy indices0], y[yy indices1])
15: yy diag ← kernel func(y, y)
16: end if
17: yy mean← 2

∑
yy distances+

∑
yy diag

ny·ny

▷ Compute XY cross similarities
18: if mask x is not None and mask y is not None then

xy distances← kernel func(x[:, None], y[None, :],
mask x[:, None],mask y[None, :])

19: else
20: xy distances← kernel func(x[:, None], y[None, :])
21: end if
22: xy mean← mean of xy distances

▷ Compute final MMD value
23: mmd← xx mean+ yy mean− 2 · xy mean

return mmd
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Algorithm 3 Naive Kernel Computation

Require: x, y (input tensors), mask x,mask y (optional masks, related to the variable numbers of
nodes across input molecules), σ (scaling parameter)

▷ Compute mean and covariance with or without masks
if mask x is not None and mask y is not None then

2: meanx ←
∑

x∑
mask x

meany ←
∑

y∑
mask y

4: covx ←
∑

xxT∑
mask x

covy ←
∑

yyT∑
mask y

6: else
meanx ← mean of x, meany ← mean of y

8: covx ←
∑

xxT

|x|

covy ←
∑

yyT

|y|
10: end if

▷ Compute embeddings
embeddingx ← concatenate(meanx,flatten(covx))

12: embeddingy ← concatenate(meany,flatten(covy))

▷ Compute pairwise distance and apply Gaussian kernel
14: dist← ||embeddingx − embeddingy||

kernel val← exp(−dist2/σ)
return kernel val

Algorithm 4 Chamfer Kernel Computation

Require: x, y (input tensors), mask x,mask y (optional masks), σ (scaling parameter)
▷ Compute Chamfer distances

1: dist1 ← minimum pairwise Euclidean distance from x to y
2: dist2 ← minimum pairwise Euclidean distance from y to x

▷ Handle masks if provided
3: if mask x is not None and mask y is not None then
4: masked min dist1 ← dist1 ·mask x
5: masked min dist2 ← dist2 ·mask y

6: chamfer dist← 1
2

(∑
masked min dist1∑

mask x +
∑

masked min dist2∑
mask y

)
7: else
8: chamfer dist← 1

2 (mean(dist1) + mean(dist2))
9: end if

▷ Apply Gaussian kernel transformation
10: kernel val← exp

(
− chamfer dist

2σ2

)
return kernel val
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Figure 16: Different distance metrics from a perfectly symmetrized distribution, as a function of
the degree of synthetic augmentation of the OC20 dataset. (Higher augmented fraction indicates a
greater similarity to the symmetrized distribution).

HD(X,Y ) = max

(
max
x∈X

min
y∈Y
||x− y||,max

y∈Y
min
x∈X
||x− y||

)
.

Because the Hausdorff distance kernel uses the maximum distance between points, it is more sensi-
tive to outliers than Chamfer distance. AlgorithmC.4 gives an implementation of Hausdorff distance
kernel.

Algorithm 5 Hausdorff Kernel Computation

Require: x, y (input tensors), mask x,mask y (optional masks), σ (scaling parameter)
▷ Compute pairwise minimum distances

1: dist1 ← minimum pairwise Euclidean distance from x to y
2: dist2 ← minimum pairwise Euclidean distance from y to x

▷ Handle masks if provided
3: if mask x is not None and mask y is not None then
4: masked dist1 ← dist1 ·mask x
5: masked dist2 ← dist2 ·mask y
6: hausdorff dist← max (max(masked dist1),max(masked dist2))
7: else
8: hausdorff dist← max (max(dist1),max(dist2))
9: end if

▷ Apply Gaussian kernel transformation
10: kernel val← exp

(
−hausdorff dist

2σ2

)
return kernel val
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Figure 17: Distance metrics for different methods, and at different levels of augmentation for OC20
(i.e. different levels of underlying distributional similarity).
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