
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIFIED NEURAL SOLVERS FOR GENERAL TSP AND
MULTIPLE COMBINATORIAL OPTIMIZATION TASKS VIA
PROBLEM REDUCTION AND MATRIX ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Various neural solvers have been devised for combinatorial optimization (CO),
which are often tailored for specific problem types, ranging from TSP, CVRP to
SAT, etc. Yet, it remains an open question how to achieve universality regarding
problem representing and learning with a general framework. This paper first
proposes RedCO, to unify a set of CO problems by reducing them into the gen-
eral TSP form featured by distance matrices. The applicability of this strategy
is dependent on the efficiency of the problem reduction and solution transition
procedures, which we show that at least ATSP, HCP, and SAT are readily feasible.
The hope is to allow for the effective and even simultaneous use of as many types
of CO instances as possible to train a neural TSP solver, and optionally finetune
it for specific problem types. In particular, unlike the prevalent TSP benchmarks
based on Euclidean instances with 2-D coordinates, our focused domain of general
TSP could involve non-metric, asymmetric or discrete distances without explicit
node coordinates, which is much less explored in TSP literature while poses new
intellectual challenges. Along this direction, we devise two neural TSP solvers with
and without supervision to conquer such matrix-formulated input, respectively: 1)
MatPOENet and 2) MatDIFFNet. The former is a reinforcement learning-based
sequential model with pseudo one-hot embedding (POE) scheme; and the latter is a
Diffusion-based generative model with the mix-noised reference mapping scheme.
Extensive experiments on ATSP, 2DTSP, HCP- and SAT-distributed general TSPs
demonstrate the strong ability of our approaches towards arbitrary matrix-encoded
TSP with structure and size variation. Source code and data will be made public.

1 INTRODUCTION

TSP

SAT

3SAT

HCP

Euclidean
Metric
Non-Metric
Symmetric
etc.

(general)

reduce NP-complete

P

NP NP-hardsolve

Assume
P NP

Figure 1: CO problems and
the polynomial-time reduction.
HCP, 3SAT and SAT are used
as case studies in this paper.

Beyond heuristics, learning-based neural solvers have shown suc-
cess in solving combinatorial optimization (CO) problems1. While
designing neural solvers for a specific type e.g., TSP has been a
popular pursuit (Khalil et al., 2017; Vinyals et al., 2015), yet such a
problem type-specific paradigm can be restrictive in real-world with
immense problem diversity, which prompts the following question:

• Can we develop a general framework capable of learning a range
of CO problems on graph in a unified manner?

In this paper, we resort to utilizing problem reduction, namely trans-
formation between different problem types which is in fact largely
neglected by previous research. By the theory of computational
complexity, any NP problem can be transformed (or in a more pro-
fessional terminology, reduced) into an NP-Complete (NPC) problem in polynomial time, and every
NP problem can be reduced to an NP-hard problem in polynomial time (Lewis, 1983; Van Leeuwen,
1991). The famous Karp’s 21 NPC problems (Karp, 1972) exemplify the polynomial-time reduction
between 21 NPC CO problems.

1Methods discussed or proposed in this paper, are anchored to CO problems on graphs, especially those
technically reducible or structurally similar to general TSP, i.e., feasibly characterizable via matrix formulation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison of different current works with the key word “multi-task solver”. Refer to
Table 6 in Appendix B.4 for a more thorough comparison of recent related works.

Method MTCO
(Li & Liu, 2023)

ASP
(Wang et al., 2024)

MAB-MTL
(Wang & Yu, 2023)

MVMoE
(Zhou et al., 2024)

RedCO
(Ours)

Evaluated Problems PFSP 2DTSP, CVRP TSP, CVRP, OP, KP VRPs ATSP, 2DTSP, DHCP, 3SAT
Applicable Problems

N/A
(no solver is proposed)

{problem P| P ≤P general TSP}
Multi-Task % " Limited to VRP variants "

Multi-Scale " " " "

Single Solver % % " "

Solver Type Quadratic Programming Evaluated on ML-based ones ML-based ML-based ML-based

Brief Description
Enhance PFSP solving via

knowledge transferring
between similar instances

A model-/problem-agnostic
training framework to

improve generalizability

A multi-task neural solver
for specific problems

via multi-armed bandits

A multi-variant VRP
solver with hierarchical

gating mechanism

A neural CO framework with
two solvers for problems
reducible to general TSP

Specifically, by introducing the general Traveling Salesman Problem (general TSP, see Def. 1) as
the reduction endpoint, one can construct a problem reduction tree as shown in Fig. 1, suggesting
the potential of training a general TSP solver to tackle problems within the reduction tree. While
theoretically, other NP-hard problems, e.g., mixed integer linear programming (MILP) could also
serve as the reduction endpoint (Zhang et al., 2023), TSP has already fostered extensive research
attention in neural solvers in recent literature (U et al., 2021). In fact, existing machine learning
research on (end-to-end) MILP neural networks are sill very limited (Zhang et al., 2023), compared
with the emerging progress in TSP (Li et al., 2023; Ye et al., 2024b; Drakulic et al., 2023).

In the context of developing a general neural TSP solver for various CO problems as discussed above,
the reduced TSP instances in fact can be represented by an arbitrary distance matrix in both its size
as well as its elementary value, far beyond the popular 2D points form (Kwon et al., 2020) in the
well-studied Euclidean space. In another word, it can be no longer a metric space and the distance
may break the triangular inequality. Currently, Transformer (Vaswani et al., 2017) and graph neural
network (GNN) have become popular backbones for neural TSP solvers (Joshi et al., 2019; Kool et al.,
2018) where the 2D coordinates of the points are often used as node features, which largely hinges the
research scope of the TSP world. For the general TSP with arbitrary matrix as input, it is technically
nontrivial to achieve effective featuring of the problem instances with only pair-wise relationships
and have non-deterministic node numbers (Joshi et al., 2020). To address such challenges, this paper
proposes a novel framework called RedCO and two corresponding neural solvers (MatPOENet and
MatDIFFNet) that innovatively improves prevalent Transformer and Diffusion models as matrix
encoder for general TSP learning and solving. Our contributions can be summarised as follows:

• We conceptualize RedCO, namely Reductive Combinatorial Optimization learning framework,
leveraging the rich expressivity of general TSP with arbitrary positive-valued matrix for unified
representation of multiple CO problems (where reducible). We also construct standard datasets
benchmarking the under-explored capacity of the general TSP world accordingly. This practice, to
our best knowledge, has not been performed, especially in the context of machine learning for CO.

• We propose MatPOENet, namely Matrix encoding Network with Pseudo One-hot Embedding, a
reinforced Transformer-based model which utilizes a novel size-agnostic node embedding to aid
instance input, thereby significantly improving model scalability and performance of general TSP.

• We propose MatDIFFNet, namely Matrix encoding Diffusion Network, a supervised diffusion-
based model which leverages a novel mix-noised reference map module, thus extending the
promising ability of generative model for Euclidean TSP solving to matrix-formulated general TSP.

• We instantiate RedCO with the above two proposed neural backbones and one more existing method,
DIMES, and conduct experiments on general TSP with four types of CO problem distributions, i.e.,
ATSP, 2DTSP, DHCP, and 3SAT. Experiments show that measuring either the average TSP tour
length or the average rate that solvers find optimal solutions for decisive tasks, our best-performing
methods beat compared neural approaches, and outperform the strong heuristic LKH in some cases.

2 RELATED WORKS

Multi-Task CO Solvers. To our knowledge, this is the first work that combines neural matrix
encoding general TSP solver and unified multi-task CO learning. While similar concepts, e.g., “multi-
task solver”, “universal solver”, etc., have also appeared in recent literature, they often denote quite
different approaches and functionalities. For example, MTCO (Li & Liu, 2023) devises a “multi-task”
CO framework which measures the similarity between CO problems, and then transfers knowledge
between similar instances within the same problem type to gain search speed-ups in its quadratic
programming solver. However, it solely focuses on the permutation flowshop scheduling problem
(PFSP) and is not specifically designed for learning-based neural solvers, making the term “multi-task”

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

CO Problems

HCP

Output ToursTSP
0.66

0.12

0.02 0.04

0.11
0.43 0.54

0.23

Non-metric, asymmetric Euclidean

Cost Matrices

General TSP
Neural Solver

SAT

Different problems
Different scales

a) Problem reduction to general TSP b) Problem solving c) Result transformation

Solutions
TSP: the shortest tour
HCP: existence of the
Hamiltonian cycle &
the Hamiltonian cycle
SAT: satisfiability &
values of the variables

Figure 2: The 3-step workflow of the reductive CO (RedCO) learning framework.

in its title misleading from a learning perspective and irrelevant to the theme of this paper. ASP (Wang
et al., 2024) proposes a “universal” framework to address generalization issues of neural CO solvers,
which iteratively improves the generalizability to different distributions (including scales). ASP
proposes a model-/problem-agnostic training policy to improve generalizability. However, no specific
new solver is proposed, which we believe is technically nontrivial to deal with different problems.
In MAB-MTL (Wang & Yu, 2023), authors propose a multi-armed bandit framework to train a
neural solver with a shared encoder but different header and decoder. Yet, as the header and decoder
necessitate customized designs for specific problems, the solver cannot be readily applied to unseen
problems, restricting its applicability to the training dataset comprising four tasks. MVMoE (Zhou
et al., 2024) proposes a “multi-task” vehicle routing solver with mixture-of-experts and a hierarchical
gating mechanism to enhance the model capacity with good computational complexity. However, its
applicable problems are also limited to variants of VRPs. Table 1 outlines the disparities between
representative existing works and ours, highlighting the uniqueness and novelty of our work. More
recent works like MTNCO (Liu et al., 2024), UNCO (Jiang et al., 2024), and GOAL (Drakulic et al.,
2024), etc., are discussed in Appendix B.4.

General TSP Solvers. Besides traditional solvers and heuristics, neural methods for TSP with
coordinates have been well studied in literature (Kool et al., 2018; Kwon et al., 2020; Li et al.,
2023; Qiu et al., 2022; Sun & Yang, 2023; Vinyals et al., 2015; Xin et al., 2021). However, neural
solvers for general TSP are much more challenging due to a lack of effective and scalable neural
networks to handle the pairwise distance information. To our best knowledge, few works have
demonstrated comparable capability of general TSP solving without major revisions to the model
architecture or learning paradigm. MatNet (Kwon et al., 2021) proposes a Transformer-based solver
for asymmetric TSP (ATSP) which first takes distance matrices as input. However, the adopted
one-hot embedding has limitations in dealing with arbitrarily large matrix and its implementation
typically includes a preset value of maximum size, restricting its ability to generalize to arbitrarily
large scales. GLOP (Ye et al., 2024b) proposes a neural partition and conquering framework that can
incorporate matrix encoding models like MatNet as local reviser for general TSP solving, thus its
performance is largely relied on the adopted local solver. BQ-NCO (Drakulic et al., 2023) proposes
leveraging bisimulation quotienting to enhance out-of-distribution robustness on CO problems, which
is capable of solving ATSP via Markov Decision Process (MDP) formulation. DIMES (Qiu et al.,
2022) utilizes a GNN to encode both node features (coordinates) and edge features (distances) and
is trained by model-agnostic meta-learning and deep reinforcement learning. It can be adapted for
general TSP solving with minor modifications to the node features, at the cost of subpar results.

Additional related works are introduced in detail in Appendix B, including exact solvers, heuristic
solvers for general TSP, autoregressive, non-autoregressive neural solvers and neural-heuristic solvers
for 2DTSP, divide-and-conquere methods for large routing problems, as well as specific solvers for
other covered CO problems (HCP, SAT, etc.).

3 PRELIMINARIES

3.1 COVERED CO PROBLEMS

Definition 1 (Traveling Salesman Problem (TSP)). Given a complete, directed or undirected graph
without self-loops denoted by G = (V, E) (V = {1, 2, · · · , N}: the node set, E: the edge set) along
with a cost matrix C of the shape N × N where the entry Cij is the cost for edge (i, j) ∈ E , the
problem is to find the tour τ = (i1, · · · , iN) to minimizes the cost

∑N−1
k=1 Cikik+1

+CiN i1 .

Definition 2 (Hamiltonian Cycle Problem (HCP)). Given a directed or undirected graph G =
(V, E), the problem is to determine whether there exists a Hamiltonian cycle in G.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1 The training pipeline of RedCO.
Input: Problems {P} reduced to general TSP, batch size B, a general TSP solver S handling instances of
different scales.
repeat

Select a problem from {P} and generate a batch of B instances of the problem at the same scale;
Reduce the instances to general TSP instances with cost matrices {C(b)}Bb=1;
Train S with the input instances {C(b)}Bb=1;

until the training of S converges;

Definition 3 (Boolean Satisfiability Problem (SAT) in conjunctive normal form (CNF)). SAT
aims to determine the existence of an interpretation that satisfies a given Boolean formula. A Boolean
formula in CNF is represented by a conjunction (denoted by ∧) of clauses that are disjunctions
(denoted by ∨) of variables. For example, (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ ¬x3) is a SAT instance of two
clauses (x1 ∨ ¬x2) and (¬x1 ∨ x2 ∨ ¬x3), and three variables x1, x2 and x3.

Special cases of TSP are defined according to the properties of the cost matrix C:

• Metric. A TSP is metric if the triangle inequality, i.e., Cij +Cjk ≥ Cik, holds for any different
three nodes i, j, and k. Specially, when C is derived from coordinates in Euclidean space, the TSP
is Euclidean.

• Symmetric. A TSP is symmetric if Cij = Cji for all i and j; otherwise, it is asymmetric.

We use the term “general TSP” to refer to TSPs either metric or non-metric, symmetric or asymmetric.
For HCP, without losing generality, we mainly discuss directed HCP (DHCP) in this paper. For SAT,
a special case of SAT in CNF with at most 3 variables is named as 3-Satisfiability Problem (3SAT).
Note any SAT problem can be reduced to 3SAT in polynomial time (Fouh et al., 2014). Throughout
this paper, for consistent representation and unified evaluation, when we mention any problem type
X, we prescribe a limit to its reduced general TSP formulation, i.e., differently distributed distance
matrices only. Furthermore, note that a wider range of problems (e.g., VC, Clique, certain VRPs,
FFSP, MIS, etc., as detailed in Appendix E.2), can be dealt with by our proposed methods.

3.2 POLYNOMIAL-TIME REDUCTION OF CO TO GENERAL TSP
The reduction relations of the covered CO problems in this paper can be summarized as 3SAT ≤P

HCP ≤P TSP (A ≤P B means that the problem A can be reduced to B in polynomial time). The
solutions can also be transformed from a TSP tour to the solution of the raw problem. The detailed
illustration of instance reduction and proofs are provided in Appendix A.

4 METHODOLOGY

4.1 REDCO: REDUCTIVE CO LEARNING FRAMEWORK

As illustrated in Fig. 2, given a CO instance, RedCO works in a 3-step pipeline: a) reduce the instance
to a general TSP instance with a distance matrix obtained by techniques in Sec. 3.2, b) feed the
distance matrix to a trained general tsp solver and output a tour, and c) transform the output tour into
the solution of the origin problem (efficiently). To prepare the training data, we build a problem pool
with CO problems of different scales that can be reduced to general TSP (see Sec. 5.1 for details).
During training, we randomly fetch problems from the pool, transform them to general TSP, and treat
the general CO solver training as an equivalent task to train the general TSP solver. A concise pipeline
is given in Algorithm 1. In the main context, we propose increments to two promising architectures
in solving general TSP across scales: the Transformer-based MatPOENet, and the Diffusion-based
MatDIFFNet, trained in the reinforcement (Williams, 1992) and supervised manner, respectively.
We describe the two architectures in Sec. 4.2 and Sec. 4.3. To demonstrate the general applicability
of RedCO to different backbone solvers, we additionally incorporate DIMES (Qiu et al., 2022), a
neural model based on GNN and meta-reinforcement learning, into our RedCO framework. Details
of model, training, and results of RedCO-DIMES are presented in Appendix E.1.

4.2 TRANSFORMER-BASED SOLVER: MATPOENET

Overview. As is known, MatNet (Kwon et al., 2021) is the first neural solver designed for matrix
encoding and asymmetric TSP. To overcome the inherent drawback that vanilla MatNet cannot scale
to arbitrary size of input due to its fixed initial node embeddings, we propose MatPOENet, namely

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

POE POE· POET POE POE· POET OE OE· OET

d.1) POE with N=30, d=16 d.2) POE with N=10, d=16 d.3) Vanilla OE with N(=d)=10

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Rough Solver

a) Initial Distance Matrix b) Re-permutation c) POE Matrix

1

2
3

0

pos
𝑝𝑜𝑠

𝑁
+

𝑖

𝑑

Calculate POE Value

𝑝
𝑜
𝑠

𝑖

Figure 3: a-c) The three steps to generate the pseudo one-hot embedding (POE). d) The visualization
of POE when N > d (d.1) and N < d (d.2) and one-hot embeddings (OE) (d.3), lighter blocks
represent higher values. As the approximation of OE, POEs in Fig. d.1) and d.2) both achieve
concentrating POE pairs of high dot products near the diagonal of the dot product matrix.

Matrix encoding Network with Pseudo One-hot Embedding for general TSP, which greatly improves
model scalability as well as performance. MatPOENet utilizes an encoder-decoder Transformer
architecture to learn features of each city in the TSP, and is trained with deep reinforcement learning
scheme (DRL). Generally, the model takes two sets of initial node embeddings a0,b0 and a distance
matrix C as input, and sequentially calculates the probability of nodes selected for the next position in
the TSP tour via standard attention operations and a mask indicating whether a node has been visited.
The model is trained using POMO (Kwon et al., 2020) by DRL. For each instance with distance C,
N tours {τ1, · · · , τN} with different starting nodes are sampled to calculate the policy gradient:

∇θJ(θ) ≈
1

N

N∑
n=1

(
L(τn)− b(C)

)
∇θ log pθ(τ

n|C), (1)

where L(τ) is the length of tour τ , b(C) = 1/N
∑N

n=1 L(τ
n) is a baseline method, set as the mean

tour length of the N tours. Mathematical details of the model and training process is deferred to
Appendix C.1 and the general network structure is correspondingly illustrated in Fig. 4. The POE
technique introduced in Sec 4.2.1 is the highlight of our design, taking its effect by assigning b0 a
non-trivial position embedding to largely elevate the performance and scalability of the model.

4.2.1 PSEUDO ONE-HOT EMBEDDING

In vanilla MatNet, zero embedding and one-hot embedding is adopted for initial node embedding.
However, the one-hot component is of fixed size and cannot accommodate arbitrary input matrix
sizes. Thus, we seek an input size-agnostic encoder with dimension d, thereby dismissing the need
for the one-hot embedding. As a solution, we propose the Pseudo One-hot Embedding (POE) in the
continuous vector space to replicate the functionality of the vanilla one-hot embedding. We denote
the input embedding as xi ∈ Rd where i is the node index. When we are applying the model on large
instances, i.e., N > d, we can never ensure xi · xj = 0,∀i ̸= j as with the one-hot embedding. That
means, there will unavoidably be some bias on the similarities between embeddings. So naturally, we
incorporate this bias into the POE design by assigning similar embeddings to nodes that are likely to
be connected in the solution.

Specifically, the POE works by the following steps: 1) (Fig. 3 a) We transform the input cost matrix
into a tour, forming a closed loop by a rough solver. To ensure efficiency, we adopt the nearest
neighbor (NN) heuristic as the rough solver, which can also be replaced by other possible choices.
Subsequently, each node on the tour is assigned a position index denoted by pos ranging from 0 to
N − 1. 2) (Fig. 3 b): We define an even function f : [− 1

2 ,
1
2] → (0, 1) with an “impulse-like” shape,

as depicted in Fig. 3 b). The POE is then generated based on f , with empirical success found using
f(x) = 1/ cosh(100x). 3) (Fig. 3 c). We rotationally shift f along the tour for different positions,
and generate POEs by sampling values from f . Mathematically, the i-th entry of the POE for position

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

pos can be given by:

Ppos,i =

f(

pos

N
+

i

d
− 1

2
) if

pos

N
+

i

d
≤ 1

f(
pos

N
+

i

d
− 3

2
) if

pos

N
+

i

d
> 1

. (2)

The POE matrix P then becomes the substitution of B0 in the vanilla MatNet. To visualize the
similarity between POE and the original one-hot embeddings, Fig. 3 d.1-3) shows different cases of
the POE and one-hot embeddings.

4.3 DIFFUSION-BASED SOLVER: MATDIFFNET

Overview. Generative methods gain considerable attention and show promising performance in
TSP solving. Prominent models for the generative objective encompass diffusion models (e.g., DI-
FUSCO (Sun & Yang, 2023) and T2T (Li et al., 2023)) and variational autoencoders (VAE) (Hottung
et al., 2021a). These representative works demonstrate good feasibility and competitive results of dif-
fusion model solving TSP in the Euclidean space. However, a robust generative backbone for general
matrix-formulated (A)TSP which finely adapts our RedCO framework has yet to be proposed. To fill
this gap, we devise MatDiffNet, namely Matrix encoding Diffusion Network for general TSP, which
can also be seamlessly incorporated in our RedCO pipeline for multi-task and multi-scale unified
training and solving. MatDiffNet is inspired by and developed upon Sun & Yang (2023) and Li et al.
(2023), endeavoring to characterize a distribution of high-quality solutions for a given instance, i.e.,
estimating p(S|C), where S is the solution distribution and C the distribution of distance matrix. the
general framework of diffusion includes a forward noising and a reverse denoising Markov process.
The noising process takes the initial solution S0 and progressively introduces noise to generate a
sequence of latent variables S1:T . The denoising process is learned by the model, which starts from
the final latent variable ST and denoises St at each time step to generate the preceding variables
St−1 based on the instance C, eventually recovering the target data distribution. The formulation
of the denoising process is expressed as pθ(S0:T |C) = p(ST)

∏T
t=1 pθ(St−1|St,C). The training

optimization aims to align pθ(S0|C) with the data distribution q(S0|C) using ELBO:

L =Eq

[∑
t>1

DKL [q(St−1|St,S0) ∥ pθ(St−1|St,C)]− log pθ(S0|S1,C)

]
+ C. (3)

We defer the mathematical elaboration of discrete diffusion process (derivation through Bayesian
theorem, transition probability matrix, etc.) to Appendix C.2 and the general network structure is
correspondingly illustrated in Fig. 5. The adaptive scheme proposed to enable matrix-input for our
generative general TSP solver is detailed in the following Sec. 4.3.1.

4.3.1 MIX-NOISED REFERENCE MAP AND DUAL FEATURE CONVOLUTION

In previous works, graph-based diffusion networks for TSP takes two core inputs for the GNN encoder.
One is the Euclidean 2D coordinates as initial node features, and the other is the noised reference
map which forms the initial edge embedding. However, in general TSP formulation, no coordinates
is available while and arbitrary distance matrix is instead provided. We endeavor to maintain the best
compatibility with previous design principles, thus proposing to combine the distance matrix and the
noised label matrix to obtain a mix-noised reference map to replace the original xt to leverage edge
information from pair-wise distances and enrich the initial edge embedding. Additionally considering
the asymmetry of the distance matrix for general TSP and inspired by the scheme adopted in Kwon
et al. (2021), we introduce two random vectors as pseudo coordinates for both ”from” points and ”to”
points as node inputs, which will be updated respectively in subsequent GNN aggregations.

Mix-Noised Reference Map. The fusion of distance matrix C ∈ RN×N and original noised
reference map xt ∈ RN×N is learned by a multilayer perceptron (MLP) with two input nodes and a
single output node and biases, conforming to that of vanilla MatNet. Mathematically, the mix-noised
reference map xC

t ∈ RN×N for the diffusion encoder can be calculated as follows. First, stack C and
xt along the last dimension to gain a mixture tensor M ∈ RN×N×2, where N denotes the number of
nodes and the batch size is omitted. Then, linear and activating operations are performed on M :

xC
t = Wmix2 (ReLU (Wmix1(M))) . (4)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Subsequently, xC
t is used to compute the initial edge embedding for the GNN via sinusoidal featuring

of each input element respectively:

ẽi = concat

(
sin

ei

T
0
d

, cos
ei

T
0
d

, sin
ei

T
2
d

, cos
ei

T
2
d

, . . . , sin
ei

T
d
d

, cos
ei

T
d
d

)
, (5)

where ei denotes the i-th value of the N2 entries in xC
t , d is the embedding dimension, T is a large

number (usually selected as 10000), concat(·) denotes concatenation.

Dual Feature Convolution. Let t0 ∈ Rdt , where dt is the time feature embedding dimension. e is
the mix-noised reference map calculated above. As for node features, deviating from the widely used
GCN model (Joshi et al., 2019) that learns single node representation, we introduce xA, xB ∈ RN×2,
two random generated pseudo coordinates as initial node embeddings for the asymetric nodes in
general TSP, and maintain two distinct node features with two sets of learnable parameters throughout
the cross-layer convolution operations:

xl+1
A,i = xl

A,i +ReLU(BN(W l
A,1x

l
A,i +

∑
j∼i

Gl
ij ⊙ (W l

A,2x
l
A,j +W l

B,2x
l
B,j))), (6)

xl+1
B,i = xl

B,i +ReLU(BN(W l
B,1x

l
B,i +

∑
j∼i

Gl
ij ⊙ (W l

A,2x
l
A,j +W l

B,2x
l
B,j)

⊤)), (7)

el+1
ij = elij +ReLU(BN(W l

3e
l
ij +W l

A,4x
l
A,i +W l

B,4x
l
B,j)) +W l

5(ReLU(t0)), (8)

Gl
A,ij =

σ(elij)∑
j′∼i σ(e

l
ij′) + ϵ

, Gl
B,ij =

σ((elij)
⊤)∑

j′∼i σ((e
l
ij′)

⊤) + ϵ
, (9)

where WA,1,WB,1 · · · ,W5 ∈ Rh×h denote the model weights, Gl
ij denotes the dense attention map

for element-wise gating. The convolution operation integrates the edge feature to accommodate
the significance of edges in routing problems. The final prediction of the edge heatmap in TSP is
Hi,j = Softmax(norm(ReLU(Wee

L
i,j))) for subsequent decoding and searching process.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Hardware. MatPOENet is trained on an NVIDIA RTX3090 24GB GPU with AMD 3970X 32-Core
CPU for N ≤ 50, and on an RTX8000 48GB GPU with Intel Xeon W-3175X CPU for N ≈ 100.
MatDIFFNet is trained on 8 NVIDIA H800 80GB GPUs with Intel Xeon (Skylake, IBRS) 16-core
CPU. All evaluations are conducted on a single RTX3090 GPU with AMD 3970X 32-Core CPU.

Training data generation. The train data cover four CO problems: non-metric Asymmetric TSP
(ATSP), 2D Euclidean TSP (abbr. 2DTSP, metric and symmetric), Directed HCP (DHCP), and 3SAT,
all in their general TSP matrix formulation. Then we generate the training data for different problems
by the following protocols: i) For ATSP, 2DTSP, and HCP, we first randomly choose the number
of nodes N from [min scale, max scale]. Then ii) For ATSP, we generate the distance matrix C
from the distribution in Uniform(0, 1) with the diagonal entries being 0; iii) For 2DTSP, we assign
each node a random 2D coordinate by distribution Uniform(0, 1)× Uniform(0, 1) and then compute
the Euclidean distance matrix C; iv) For DHCP, we generate a node sequence τ = (i1, i2, · · · , iN)
by randomly permuting all the nodes and assigning Cin,in+1

= 0 for nodes in τ and CiN ,i1 = 0,
thus ensuring a Hamiltonian cycle in C. Then we pick a random amount of node pairs (i, j) and set
Cij = 0 as the noise edge. Finally we set all Cij = 1 for the rest node pairs (i, j). v) For 3SAT, the
TSP instance scale N is tied to the number of variables and clauses (Appendix A.2), so we cannot set
N to an arbitrary value. We first pick a set of variable number Nv and clause number Nc as specified
in Appendix D.2 to ensure that the scale of the reduced TSP instance fits different experimental scales.
Finally, the instances are transformed to the general TSP form, as described in Sec. 3.2.

Testing data preparation. Due to the absence of previous work to standardize the evaluation of
matrix-formatted general TSP across various problem distributions, we prepare 10K test instances
for 3 scales (conforming to mainstream works of the “multi-task” concentration, see Table 6 in
Appendix B.4), comprising 2,500 instances featuring each problem (ATSP, 2DTSP, HCP and 3SAT)
in the matrix formulation, in pursuit of comprehensive examination across general TSP tasks.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Main experimental results. Reported data for ATSP and 2DTSP are tour length. “Single”:
models trained and tested on each problem respectively. “Mixed”: unified models trained with a
mixture of 4 tasks on each scale. Asterisked (*): a unified model trained with a mixture of 4 tasks
and 3 scales. Bold: the best result of neural solvers. Underlined: the reference results for computing
the optimality gap. Red / blue boxes: ours that outperform LKH with 10K/500 trials respectively.
Time: the average time (seconds) per instance solving over each line, with batch size set to 1.

Methods Train Data ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓ Avg. Gap↓ Avg. FR↑ Time

Sc
al

e:
N

≈
2
0

Gurobi - 1.5349 3.8347 0.0000 100.00% 0.0000 100.00% 1.3424 - 100.00% 0.135
LKH (10000) - 1.5349 3.8347 0.0008 99.92% 0.0000 100.00% 1.3426 0.01% 99.96% 0.327
LKH (500) - 1.5349 3.8347 0.0056 99.44% 0.0000 100.00% 1.3438 0.11% 99.72% 0.038
Nearest Neighbor - 2.0069 4.5021 3.8556 0.48% 3.0504 0.32% 3.3428 149.02% 0.40% 0.000
Farthest Insertion - 1.7070 3.9695 3.3136 1.76% 4.8816 0.00% 3.4679 158.34% 0.88% 0.000

MatNet ATSP 1.5871 4.2612 2.9608 1.12% 3.4772 0.56% 3.0716 128.82% 0.84% 0.005
MatNet Mixed 1.6359 3.9114 0.9740 27.60% 3.4656 11.04% 2.4967 85.99% 19.32% 0.005
MatNet-8x Mixed 1.5645 3.8478 0.1936 80.92% 1.6272 1.36% 1.8083 34.71% 41.14% 0.037
DIMES Mixed 2.2335 4.1696 2.9448 2.67% 2.6660 2.12% 3.0035 123.74% 2.39% 0.035
DIMES-AS(100) Mixed 1.6790 3.9092 0.4596 60.12% 0.2828 77.12% 1.5826 17.90% 68.62% 0.522

MatPOENet Mixed 1.6445 3.8643 0.8676 32.60% 0.4540 61.88% 1.7076 27.21% 47.24% 0.006
MatPOENet-8x Mixed 1.5695 3.8389 0.1760 82.68% 0.0112 98.88% 1.3989 4.21% 90.78% 0.043
MatPOENet*-8x Mixed 1.5506 3.8372 0.0556 94.44% 0.0008 99.92% 1.3610 1.39% 97.18% 0.043

Sc
al

e:
N

≈
50

Gurobi - 1.5545 5.6952 0.0000 100.00% 0.0000 100.00% 1.8124 - 100.00% 0.296
LKH (10000) - 1.5548 5.6953 0.0000 100.00% 0.2784 74.80% 1.8821 3.85% 87.40% 0.513
LKH (500) - 1.5557 5.6964 0.0000 100.00% 0.4796 61.80% 1.9329 6.65% 80.90% 0.059
Nearest Neighbor - 2.0945 6.9977 5.1120 0.00% 5.9872 0.00% 5.0548 178.90% 0.00% 0.000
Farthest Insertion - 1.8387 6.0998 4.0224 5.28% 10.3964 0.00% 5.5893 208.39% 2.64% 0.001

MatNet ATSP 1.5753 7.3618 1.4856 11.80% 8.4020 0.00% 4.7062 159.67% 5.90% 0.007
MatNet Mixed 1.8098 6.0000 0.9288 30.84% 1.1900 30.52% 2.4821 36.95% 30.68% 0.007
MatNet-8x Mixed 1.7340 5.8664 0.3056 71.52% 0.2992 73.08% 2.0513 13.18% 72.30% 0.064
GLOP Single 1.8885 6.6499 3.7244 0.84% 4.9816 0.76% 4.3111 137.87% 0.80% 0.115
DIMES Mixed 2.3341 6.6271 3.1788 1.56% 5.3656 0.12% 4.3764 141.47% 0.84% 0.055
DIMES-AS(100) Mixed 1.6920 5.9447 0.5908 46.04% 1.5830 20.44% 2.4528 35.33% 33.24% 2.016

MatPOENet-8x Single 1.5643 5.7042 0.0652 93.52% 0.1888 81.72% 1.8806 3.76% 87.62% 0.066
MatPOENet Mixed 1.6881 5.7694 0.1444 86.20% 1.3644 27.08% 2.2416 23.68% 56.64% 0.009
MatPOENet-8x Mixed 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082 5.29% 87.94% 0.067
MatPOENet*-8x Mixed 1.6285 5.7575 0.0280 97.20% 0.1172 88.44% 1.8828 3.88% 92.82% 0.067

MatDIFFNet Single 2.0713 5.7954 2.0992 15.32% 0.0464 98.16% 2.5031 38.11% 56.74% 0.157
MatDIFFNet-2OPT Single 1.7186 5.7279 0.8324 44.08% 0.0188 98.64% 2.0744 14.46% 71.36% 0.165
MatDIFFNet Mixed 1.8385 6.2332 2.0648 15.76% 0.1112 94.68% 2.5619 41.35% 55.22% 0.155
MatDIFFNet-2OPT Mixed 1.6591 5.8619 0.8192 44.52% 0.0496 95.64% 2.0975 15.73% 70.08% 0.164

Sc
al

e:
N

≈
10

0

Gurobi - 1.5661 7.7619 0.0000 100.00% 0.0000 100.00% 2.3320 - 100.00% 0.689
LKH (10000) - 1.5674 7.7709 0.0000 100.00% 1.0008 44.80% 2.5848 10.84% 72.40% 0.811
LKH (500) - 1.5704 7.8015 0.0000 100.00% 1.6656 28.08% 2.7594 18.33% 64.04% 0.095
Nearest Neighbor - 2.1321 9.6696 5.4016 0.20% 8.3236 0.00% 6.3859 173.84% 0.10% 0.002
Farthest Insertion - 1.9333 8.4847 3.1256 26.64% 23.5160 0.00% 9.2649 297.29% 13.32% 0.003

MatNet ATSP 1.6217 19.0644 17.8620 0.00% 40.1188 0.00% 19.6667 743.34% 0.00% 0.015
MatNet Mixed 1.9849 8.2551 0.9776 31.68% 2.0408 13.84% 3.3146 42.14% 22.76% 0.018
MatNet-8x Mixed 1.9210 8.1028 0.3640 69.60% 0.7740 50.76% 2.7904 19.66% 60.18% 0.095
GLOP Single 1.8491 8.8849 2.7850 2.00% 6.4280 0.08% 4.9868 113.84% 1.04% 0.176
DIMES Mixed 2.5186 9.5777 3.8064 1.16% 3.8064 0.00% 6.4018 174.52% 0.58% 0.124
DIEMS-AS(100) Mixed 1.6968 8.3390 0.8480 24.00% 2.8040 7.16% 3.4220 46.74% 15.58% 8.437

MatPOENet Mixed 1.9183 8.2987 0.0984 90.28% 1.0704 32.32% 2.8465 22.06% 61.30% 0.017
MatPOENet-8x Mixed 1.8655 8.1719 0.0052 99.48% 0.2440 77.12% 2.5717 10.28% 88.30% 0.094
MatPOENet*-8x Mixed 1.7607 8.0817 0.0012 99.88% 0.3244 70.92% 2.5420 9.01% 85.40% 0.095

MatDIFFNet Single 1.9432 7.9684 4.4536 2.96% 0.0404 98.44% 3.6014 54.43% 50.70% 0.103
MatDIFFNet-2OPT Single 1.7165 7.8482 1.1404 37.72% 0.0240 98.60% 2.6823 15.02% 68.16% 0.112
MatDIFFNet Mixed 1.8763 8.9030 3.2524 5.68% 0.1940 90.52% 3.5564 52.50% 48.10% 0.102
MatDIFFNet-2OPT Mixed 1.6965 8.1804 0.9148 43.04% 0.0952 91.44% 2.7217 16.71% 67.24% 0.114

Metrics. Found Rate (FR): the percentage of optimal solutions found in the test instances for the
decisive problems HCP and SAT. A higher found rate indicates better performance. We also report
the the average FR (Avg. FR) of DHCP and 3SAT. Tour Length (L): This is the conventional metric
for any TSP. The lower length indicate the better performance of the general TSP solver. We report
the average tour length (Avg. L) over all the instances of different problem distributions. The average
gap (Avg. Gap) is the performance drop from Gurobi w.r.t the mean tour length across the four tasks.
Compared methods. Exact solver: Gurobi. Note that the current Concorde only fits Euclidean
TSP. Heuristics: LKH (500 and 10,000 trials), Nearest Neighbor, and Farthest Insertion. Neu-
ral sovlers: Vanilla MatNet (Kwon et al., 2021), DIMES (Qiu et al., 2022) (Trained under
RedCO. DIMES-AS(T) means tuned heatmap by T steps of active search, detailed in Appendix E.1),
GLOP (Ye et al., 2024b) (using vanilla MatNet as local reviser under GLOP framework). ATSP
results of BQ-NCO (Drakulic et al., 2023) and GOAL (Drakulic et al., 2024) are put in Appendix F.7
for reference only (estimated by their reported optimality gap as they are not open-sourced). Mat-
POENet (ours) and MatDIFFNet (ours) w/ and w/o post-inference improvements (8x parallel
running for MatPOENet and 2OPT for MatDIFFNet). All evaluated neural methods are re-trained and
tested on our unified dataset for fair comparison. Parameter settings are listed in Appendix D.1. Note
that for HCP and SAT problems, previous specific models performed on totally different problem

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

formulation, thus orthogonal to our target of general matrix encoding TSP solving pipeline and are
reasonably excluded from evaluation in this paper. Detailed clarification of this issue is sincerely
explained in Appendix B.6 for possible concerns.

5.2 RESULTS AND DISCUSSIONS

Main results are shown in Table 2. In the following part, RQ1-RQ3 discuss the eternal topics of
performance, efficiency, and scalability; RQ4 analyzes the ablations upon the POE embedding;
RQ5-RQ7 introduce different applications and additional experiments based on RedCO.

RQ1: Performance. MatPOENet outperforms LKH when N ≈ 50 and 100 on the average length of
the full dataset. Outperforming LKH on TSP has been a pursuit by neural CO solver for long, while
scarcely are there methods achieving it, let alone on the problem of general TSP. As highlighted in
Table 2, on the scale N ≈ 50, MatPOENet* achieves to outperform LKH with max trials=500 on the
Avg. L i.e., the overall performance, and on the scale N ≈ 100, MatPOENet* outperforms LKH with
as many trials as max trials=10,000 on the Avg. L metric. The competent results compared with LKH
indicates that our method MatPOENet* can not only serve as a strong baseline for future research,
but also becomes a current SOTA over the problem of general TSP. Diving deeper into the results, we
observe that LKH performs stably well on general TSP instances in continuous data space (ATSP
and 2DTSP) but is not always that good in discrete data space: It may be because of the crash of the
inherent so-called “alpha-measure” of LKH, which relies on the computing of minimum 1-tree that is
not unique in the discrete cases. We detail the observation and analyses for LKH in Appendix G.1.
The discovery of LKH’s crash also suggests the significance of developing neural solvers for general
TSP that can work simultaneously on the instances in both continuous and discrete spaces.

RQ2: Efficiency. We extract the total solving time in Table 3 for a clearer comparison. On N ≈ 50
data, MatPOENet achieves better tour length (1.91 v.s. 1.93) within shorter time (7m31s v.s. 9m9s)
compared to LKH-500. More impressively, on N ≈ 100 data, MatPOENet not only beats LKH-500
on both run-time efficiency and average quality, but also show superiority in solving performance (2.57
v.s. 2.58) compared to LKH-10000 which consumes 8.7x time (15m35s v.s. 2h15m). MatDIFFNet
consumes more solving time for its complex inference denoising steps of diffusion, yet also reaches
competitive results against LKH within a similar sovling time.

Table 3: Results of both solving time and solving quality comparing Mat-X-Net (ours) and different
settings of LKH. LKH-N: LKH with 1 runs and N max trials. Batch size = 1.

Method Time↓ ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓

N
≈

50

MatPOENet 7m31s 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082
MatDIFFNet 21m48s 1.7186 5.7279 0.8324 44.08% 0.0188 98.64% 2.0744

LKH-500 9m9s 1.5557 5.6964 0.0000 100.00% 0.4796 61.80% 1.9329
LKH-1000 13m53s 1.5554 5.6957 0.0000 100.00% 0.4160 65.68% 1.9168

LKH-10000 1h22m 1.5548 5.6953 0.0000 100.00% 0.2784 74.80% 1.8821

N
≈

10
0

MatPOENet 15m35s 1.8655 8.1719 0.0052 99.48% 0.2440 77.12% 2.5717
MatDIFFNet 28m21s 1.7165 7.8482 1.1404 37.72% 0.0240 98.60% 2.6823

LKH-500 15m49s 1.5704 7.8015 0.0000 100.00% 1.6656 28.08% 2.7594
LKH-1000 24m39s 1.5692 7.7909 0.0000 100.00% 1.4400 32.52% 2.7000

LKH-10000 2h15m 1.5674 7.7709 0.0000 100.00% 1.0008 44.80% 2.5848

RQ3: Scalability. Experiments are conducted from three aspects to show the multi-scale general-
izability: i) MatPOENet trained on all the scales. We train an MatPOENet with training data of
all the scales, denoted by MatPOENet* in Table 2. Competitive results are obtained compared to
single training, demonstrating the feasibility of, and even benefits brought by multi-scale training. ii)

Table 4: Case study of N > d: d1 = 512, d2 = 32 on the scale N ≈ 50.
Method ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT(L↓, FR↑) Avg. L↓

MatPOENet (N << d1) 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082
MatPOENet (N > d2) 1.8799 5.9742 0.4548 60.24% 0.3292 75.56% 2.1595

Scale-free initializer POE on the scale N > d. In response to the motivation of designing POE
in Sec. 4.2.1, we show that MatPOENet can be trained on instances at the scale N larger than the
pre-set one-hot embedding dimension d, which is the case where vanilla MatNet fails. Results in the
case N > d are given in Table 4. Compared with the model trained with a higher d, we observe that
a reduced d would cause a reasonable degeneracy of model performance. iii) On larger-scaled data.
In terms of solving large scaled CO problems, resorting to divide-and-conquer paradigm is popular

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and proved feasible and performant (Ye et al., 2024b; Luo et al., 2024; Fu et al., 2021), where a strong
solver at small-to-medium instances is still of irreplaceable importance. We readily incorporated
the state-of-the-art GLOP (Ye et al., 2024b) which greatly improves MatNet’s scalability. Results of
the GLOP-empowered MatPOENet (Ours) are presented below, which can be regarded as an initial
indication for the efficiency of our proposed POE at large scaled problems (128 instances for N = 1K
and 16 instances for N = 10K). Note BiTSP is a direct simulation of decisive CO problems in general
TSP formulation, referring to randomly generated instances that has binary distances but doese not
necessarily possess a zero-length loop. A more thorough discussion of scalability and applicability
issues from the view of current research status of unified NCO is deferred to Appendix G.2.

Table 5: Results on large-scaled ATSP instances.
Scale Method ATSP (L↓) Time BiTSP (L↓) Time HCP (L↓) FR↑ Time

1K
Greedy 2.146 21s 5.609 21s 5.734 0.00% 21s
MatNet 2.130 1m24s 4.352 1m 3.063 0.78% 45s
Ours 2.092 57s 0.517 40s 0.563 64.84% 41s

10K
Greedy 9.516 4m32s 5.938 4m32s 5.438 0.00% 4m32s
MatNet 9.184 23m17s 3.313 6m10s 2.750 0.00% 23m22s
Ours 8.355 5m27s 0.688 5m10s 0.625 62.50% 5m40s

RQ4: Ablations of POE (Appendix F.1). i) MatNet v.s. MetPOENet. Main results in Table 2
validate the effectiveness of introducing POE to enhance MatNet. ii) Comparison of different initial
rough solver. Results of nearest neighbor (NN), farthest insertion (FI), and an ablation without rough
solvers (Non) in Table 10 show superiority of NN as the initial solver for POE. We speculate that it is
because NN pays more attention to the local structure, complementing subsequent attention layers
where global information are learned. iii) POE v.s. alternatives. Fixed random vectors and trainable
embeddings are tested as the substitution of the proposed POE. Results in Table 11 show that our
POE outperforms the other two options suggested in the paper of MatNet (Kwon et al., 2021).

RQ5: RedCO for Pretraining-Finetuning (Appendix F.2). With MatPOENet, RedCO executes
both i) cross-task and ii) cross-scale experiments for pretraining-finetuning applications. With
MatDIFFNet, RedCO also trains the model in the curriculum learning manner, i.e., models on
larger scales are trained upon existing weights gained during training of small scaled data. Results in
Appendix F.2 demonstrate applicability of RedCO as a pretraining-finetuing framework.

RQ6: RedCO for Other Learning Paradigms and Problems. (Appendix F.3 & F.4). Besides
aforementioned methods (DRL, Generative, etc.), RedCO is also available for the mainstream super-
vised learning (SL) of neural heatmap for general TSP solving. We perform minimum modification
to the backbone model in MatPOENet to obtain a heatmap predictor via pure supervised learning.
Results are provided in Appendix F.3 Also, supplementary experiments on the vertex cover problem
(VC) have been conducted using RedCO. Results and discussions are in F.4. To conclude, RedCO
along with our Mat-X-Nets possess good adaptability to embrace new learning paradigms and tasks.

RQ7: RedCO for standard TSP and Real-world Generalization (Appendix F.5 & F.6). In
order to reach better alignment to previous works that focused on 2DTSP only, we have conducted
experiments on the standard test set shared by a series typical works (Kool et al., 2018; Joshi et al.,
2019; Min et al., 2024; Qiu et al., 2022; Li et al., 2023; Hudson et al., 2021), with 1280 instances
each for TSP-50 and TSP-100. Also, we test MatPOENet and MatDIFFNet on 45 selected real-world
instances (N ∈ [14, 195]) from the well-kown TSPLIB. Results (in Table 18, 19, 21, respectively)
demonstrate that our designed networks manage to solve the conventional Euclidean TSPs without
coordination as input, yielding comparable performance and generalizability.

6 CONCLUSION AND FUTURE WORK
Conclusion. In this paper, we first propose the RedCO framework to embed different CO problems
in a consistent general TSP matrix format via problem reduction. Further, we delve into the under-
explored realm of matrix-formulated TSP and devise MatPOENet and MatDIFFNet as plugs-in of
RedCO, in aid of current lack of neural capability targeting general TSP.
Limitations and Future Work. We have made an initial step towards the general neural CO
solver. Future works include: i) More problems. More CO problems reducible to general TSP
(Appendix E.2) shall be included for evaluation. ii) Stronger capability. Gaps still exist comparing
to exact solvers at specific problem solving. iii) Better scalability. MatDIFFNet has the potential to
scale larger and work as a consistency model in the future (Appendix G.4).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

The methods proposed in this paper aim to improve the field of neural CO solver with better generality.
A dataset comprising synthetic instances of general TSPs with different problem distributions will be
released upon publication, to facilitate the under-studied branch of matrix-formulated TSP thereby
broadening the scope of evaluation of the ML4TSP and even the ML4CO community. To our best
knowledge, no potential harmful insights of this work that need to be otherwise stated.

REPRODUCIBILITY STATEMENT

The hardware and the preparation of the used data are described in Sec. 5.1. The detailed parameteri-
zation and implementation of the models for training and testing are provided in Appendix D. Source
code and datasets shall be open-sourced after the review process.

REFERENCES

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An
unsupervised differentiable approach. In International Conference on Learning Representations,
2018.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Pdp: A general neural framework for
learning constraint satisfaction solvers. arXiv preprint arXiv:1903.01969, 2019.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces, 2023. URL https://arxiv.org/abs/
2107.03006.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan
Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni,
Wouter Kool, Zhiguang Cao, Qingfu Zhang, Joungho Kim, Jie Zhang, Kijung Shin, Cathy Wu,
Sungsoo Ahn, Guojie Song, Changhyun Kwon, Kevin Tierney, Lin Xie, and Jinkyoo Park. Rl4co:
an extensive reinforcement learning for combinatorial optimization benchmark, 2024. URL
https://arxiv.org/abs/2306.17100.

Léo Boisvert, Hélène Verhaeghe, and Quentin Cappart. Towards a generic representation of com-
binatorial problems for learning-based approaches, 2024. URL https://arxiv.org/abs/
2403.06026.

Xavier Bresson and Thomas Laurent. An experimental study of neural networks for variable graphs.
ICLR workshop, 2018.

Chris Cameron, Rex Chen, Jason Hartford, and Kevin Leyton-Brown. Predicting propositional satis-
fiability via end-to-end learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 3324–3331, 2020.

Paulo R d O da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt
heuristics for the traveling salesman problem via deep reinforcement learning. In Sinno Jialin Pan
and Masashi Sugiyama (eds.), Proceedings of The 12th Asian Conference on Machine Learning,
volume 129 of Proceedings of Machine Learning Research, pp. 465–480. PMLR, 18–20 Nov 2020.
URL https://proceedings.mlr.press/v129/costa20a.html.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco:
Bisimulation quotienting for efficient neural combinatorial optimization, 2023. URL https:
//arxiv.org/abs/2301.03313.

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial optimiza-
tion agent learner, 2024. URL https://arxiv.org/abs/2406.15079.

11

https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2306.17100
https://arxiv.org/abs/2403.06026
https://arxiv.org/abs/2403.06026
https://proceedings.mlr.press/v129/costa20a.html
https://arxiv.org/abs/2301.03313
https://arxiv.org/abs/2301.03313
https://arxiv.org/abs/2406.15079

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Eric Fouh, Ville Karavirta, Daniel A Breakiron, Sally Hamouda, Simin Hall, Thomas L Naps, and
Clifford A Shaffer. Design and architecture of an interactive etextbook–the opendsa system.
Science of computer programming, 88:22–40, 2014.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Wenxuan Guo, Hui-Ling Zhen, Xijun Li, Wanqian Luo, Mingxuan Yuan, Yaohui Jin, and Junchi
Yan. Machine learning methods in solving the boolean satisfiability problem. Machine Intelligence
Research, 20(5):640–655, June 2023. ISSN 2731-5398. doi: 10.1007/s11633-022-1396-2. URL
http://dx.doi.org/10.1007/s11633-022-1396-2.

LLC Gurobi Optimization. Gurobi optimizer reference manual. Gurobi, pp. 2–12, 2021.

Michael Hahsler and Kurt Hornik. Tsp-infrastructure for the traveling salesperson problem. Journal
of Statistical Software, 23(2):1–21, 2007.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representations,
2021a.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. arXiv preprint arXiv:2106.05126, 2021b.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. arXiv preprint arXiv:2110.05291, 2021.

Sebastian Jaszczur, Michał Łuszczyk, and Henryk Michalewski. Neural heuristics for sat solving.
arXiv preprint arXiv:2005.13406, 2020.

Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. Unco: Towards unifying neural combina-
torial optimization through large language model, 2024. URL https://arxiv.org/abs/
2408.12214.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
travelling salesperson problem requires rethinking generalization. arXiv preprint arXiv:2006.07054,
2020.

Richard M. Karp. Reducibility among Combinatorial Problems, pp. 85–103. Springer US, Boston,
MA, 1972. ISBN 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2 9. URL https:
//doi.org/10.1007/978-1-4684-2001-2_9.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural
combinatorial optimization. Advances in Neural Information Processing Systems, 35:1936–1949,
2022.

12

http://dx.doi.org/10.1007/s11633-022-1396-2
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2408.12214
https://arxiv.org/abs/2408.12214
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park, and Yoshua Bengio. Ant
colony sampling with gflownets for combinatorial optimization. arXiv preprint arXiv:2403.07041,
2024.

DP Kingma. Adam: a method for stochastic optimization. In Int Conf Learn Represent, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free!
2019.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. In International conference on integration of constraint
programming, artificial intelligence, and operations research, pp. 190–213. Springer, 2022.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Harry R Lewis. Michael r. πgarey and david s. johnson. computers and intractability. a guide to the
theory of np-completeness. wh freeman and company, san francisco1979, x+ 338 pp. The Journal
of Symbolic Logic, 48(2):498–500, 1983.

Peng Li and Bo Liu. Multi-task combinatorial optimization: Adaptive multi-modality knowledge
transfer by an explicit inter-task distance. arXiv preprint arXiv:2305.12807, 2023.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training
to gradient search in testing for combinatorial optimization. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=JtF0ugNMv2.

Zhaoyu Li and Xujie Si. Nsnet: A general neural probabilistic framework for satisfiability problems.
Advances in Neural Information Processing Systems, 35:25573–25585, 2022.

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Multi-
task learning for routing problem with cross-problem zero-shot generalization, 2024. URL
https://arxiv.org/abs/2402.16891.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Fu Luo, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Self-improved
learning for scalable neural combinatorial optimization, 2024. URL https://arxiv.org/
abs/2403.19561.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions
of routing problems with flexible neural k-opt. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=q1JukwH2yP.

Yimeng Min, Frederik Wenkel, and Guy Wolf. Geometric scattering attention networks. In ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, June 2021. doi: 10.1109/icassp39728.2021.9414557. URL http://dx.doi.org/10.
1109/ICASSP39728.2021.9414557.

Yimeng Min, Yiwei Bai, and Carla P. Gomes. Unsupervised learning for solving the travelling
salesman problem, 2024. URL https://arxiv.org/abs/2303.10538.

13

https://openreview.net/forum?id=JtF0ugNMv2
https://openreview.net/forum?id=JtF0ugNMv2
https://arxiv.org/abs/2402.16891
https://arxiv.org/abs/2403.19561
https://arxiv.org/abs/2403.19561
https://openreview.net/forum?id=q1JukwH2yP
http://dx.doi.org/10.1109/ICASSP39728.2021.9414557
http://dx.doi.org/10.1109/ICASSP39728.2021.9414557
https://arxiv.org/abs/2303.10538

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs
Kozlovics. Goal-aware neural sat solver. In 2022 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE, 2022.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
optimization problems. In Advances in Neural Information Processing Systems 35, 2022.

Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Variational
annealing on graphs for combinatorial optimization. volume 36, pp. 63907–63930, 2023.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework
for unsupervised neural combinatorial optimization. In Forty-first International Conference on
Machine Learning, 2024.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

Daniel Selsam and Nikolaj Bjørner. Guiding high-performance sat solvers with unsat-core predictions.
In Theory and Applications of Satisfiability Testing–SAT 2019: 22nd International Conference,
SAT 2019, Lisbon, Portugal, July 9–12, 2019, Proceedings 22, pp. 336–353. Springer, 2019.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L Dill.
Learning a sat solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

Mohamed A Wahby Shalaby, Ayman R Mohammed, and Sally S Kassem. Supervised fuzzy c-means
techniques to solve the capacitated vehicle routing problem. Int. Arab J. Inf. Technol., 18(3A):
452–463, 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. CoRR,
abs/2010.02502, 2020. URL https://arxiv.org/abs/2010.02502.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In The
Twelfth International Conference on Learning Representations.

IBM ILOG CPLEX Optimization Studio. V20.1: User’s manual for cplex. IBM Corp, pp. 1–20,
2020.

Jingyan Sui, Shizhe Ding, Rui Tao Liu, Liming Xu, and Dongbo Bu. Learning 3-opt heuristics for trav-
eling salesman problem via deep reinforcement learning. In Asian Conference on Machine Learn-
ing, 2021. URL https://api.semanticscholar.org/CorpusID:249038331.

Jingyan Sui, Shizhe Ding, Boyang Xia, Ruizhi Liu, and Dongbo Bu. Neuralgls: learning to guide
local search with graph convolutional network for the traveling salesman problem. Neural Comput.
Appl., 36(17):9687–9706, October 2023. ISSN 0941-0643. doi: 10.1007/s00521-023-09042-6.
URL https://doi.org/10.1007/s00521-023-09042-6.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Junior Mele U, Maria Gambardella L, and Montemanni R. Machine. Machine learning approaches for
the traveling salesman problem: A survey. In Proceedings of the 2021 8th International Conference
on Industrial Engineering and Applications (Europe), 2021.

Pashootan Vaezipoor, Gil Lederman, Yuhuai Wu, Chris Maddison, Roger B Grosse, Sanjit A Se-
shia, and Fahiem Bacchus. Learning branching heuristics for propositional model counting. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 12427–12435, 2021.

Jan Van Leeuwen. Handbook of theoretical computer science (vol. A) algorithms and complexity.
Mit Press, 1991.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

14

https://arxiv.org/abs/2010.02502
https://api.semanticscholar.org/CorpusID:249038331
https://doi.org/10.1007/s00521-023-09042-6

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 28. Curran Associates, Inc., 2015. URL
https://proceedings.neurips.cc/paper_files/paper/2015/file/
29921001f2f04bd3baee84a12e98098f-Paper.pdf.

Chenguang Wang and Tianshu Yu. Efficient training of multi-task combinarotial neural solver with
multi-armed bandits. arXiv preprint arXiv:2305.06361, 2023.

Chenguang Wang, Zhouliang Yu, Stephen McAleer, Tianshu Yu, and Yaodong Yang. Asp: Learn a
universal neural solver! IEEE TPAMI, 2024.

Runzhong Wang, Zhigang Hua, Gan Liu, Jiayi Zhang, Junchi Yan, Feng Qi, Shuang Yang, Jun Zhou,
and Xiaokang Yang. A bi-level framework for learning to solve combinatorial optimization on
graphs. Advances in Neural Information Processing Systems, 34:21453–21466, 2021.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
post-hoc search-based neural approaches for solving large-scale traveling salesman problems, 2024.
URL https://arxiv.org/abs/2406.03503.

Yubin Xiao, Di Wang, Boyang Li, Mingzhao Wang, Xuan Wu, Changliang Zhou, and You Zhou.
Distilling autoregressive models to obtain high-performance non-autoregressive solvers for vehicle
routing problems with faster inference speed, 2024. URL https://arxiv.org/abs/2312.
12469.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model
with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. In Advances in
Neural Information Processing Systems, volume 34, 2021.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: neural-enhanced ant
systems for combinatorial optimization. Advances in Neural Information Processing Systems, 36,
2024a.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2024b.

J Zhang, C Liu, X Li, HL Zhen, M Yuan, Y Li, and J. Yan. A survey for solving mixed integer
programming via machine learning. Neurocomputing, 2023.

Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. Combining reinforcement learning
with lin-kernighan-helsgaun algorithm for the traveling salesman problem. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(14):12445–12452, May 2021. doi: 10.1609/aaai.v35i14.
17476. URL https://ojs.aaai.org/index.php/AAAI/article/view/17476.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe:
Multi-task vehicle routing solver with mixture-of-experts, 2024. URL https://arxiv.org/
abs/2405.01029.

15

https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://arxiv.org/abs/2406.03503
https://arxiv.org/abs/2312.12469
https://arxiv.org/abs/2312.12469
https://ojs.aaai.org/index.php/AAAI/article/view/17476
https://arxiv.org/abs/2405.01029
https://arxiv.org/abs/2405.01029

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

A Details of Problem Reduction and Solution Transformation 18

A.1 HCP v.s. TSP . 18

A.2 3SAT v.s. HCP . 18

A.2.1 Reduction from 3SAT to HCP . 18

A.2.2 Transform HCP Solution to 3SAT Solution 19

B Additional Related Work 19

B.1 Conventional Solvers . 19

B.2 Learning Methods for TSP . 19

B.3 Combination of Neural and OR Methods . 20

B.4 Multi-Task CO Models . 20

B.5 Specific Solvers for SAT and HCP . 22

B.6 Note on Evaluation of Specific Solvers . 22

C Network Details 22

C.1 Vanilla MatNet and MatPOENet . 22

C.2 Graph-based Diffusion and MatDIFFNet . 24

D Experimental Details 25

D.1 Hyperparameters . 25

D.2 Scale Setting of 3SAT Instances . 26

D.3 Training Curves . 26

E More Applications of RedCO 27

E.1 More Adaptable Backbone: GNN-based DIMES 27

E.1.1 Network Architecture . 28

E.1.2 Training Process . 28

E.1.3 Results and Discussion . 29

E.2 More Applicable Problems . 30

E.2.1 Vertex Cover . 30

E.2.2 Clique Problem . 30

E.2.3 Independent Set Problem . 30

E.2.4 Vehicle Routing Problems . 31

E.2.5 MatPOENet & MatDIFFNet as Problem-Specific Solver 31

F Supplementary Experiments 31

F.1 Further Experiments of POE . 31

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

F.2 Pretraining-Finetuning Applications . 32

F.3 Comparison of Learning Paradigms . 33

F.4 Results on Vertex Cover Problem . 33

F.5 Results on Standard Symmetric TSP . 34

F.6 Results on Real-world Instances . 34

F.7 Full Experimental Results . 35

G Further Discussions 35

G.1 Note on LKH . 35

G.2 Note on the Scalability and Applicability . 37

G.3 Discussion of MatPOENet v.s. MatDIFFNet . 37

G.4 Discussion of Generative Combinatorial Optimization 38

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A DETAILS OF PROBLEM REDUCTION AND SOLUTION TRANSFORMATION

For easy reading, here we give a review of the mathematical definitions of covered problems. Then
we give the proof to problem reduction relations in the following sections.

Definition 1 (Traveling Salesman Problem (TSP)). Given a complete, directed or undirected graph
without self-loops denoted by G = (V, E) (V = {1, 2, · · · , N}: the node set, E: the edge set) along
with a cost matrix C of the shape N × N where the entry Cij is the cost for edge (i, j) ∈ E , the
problem is to find the tour τ = (i1, · · · , iN) to minimizes the cost

∑N−1
k=1 Cikik+1

+CiN i1 .

Definition 2 (Hamiltonian Cycle Problem (HCP)). Given a directed or undirected graph G = (V, E),
the problem is to determine whether there exists a Hamiltonian cycle in G.

Definition 3 (Boolean Satisfiability Problem (SAT) in conjunctive normal form (CNF)). SAT aims
to determine the existence of an interpretation that satisfies a given Boolean formula. A Boolean
formula in CNF is represented by a conjunction (denoted by ∧) of clauses that are disjunctions
(denoted by ∨) of variables. For example, (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ ¬x3) is a SAT instance of two
clauses (x1 ∨ ¬x2) and (¬x1 ∨ x2 ∨ ¬x3), and three variables x1, x2 and x3.

A special case of SAT in CNF where the number of variables is no more than 3 is named as 3-
Satisfiability (3SAT). Note any SAT problem can be reduced to 3SAT in polynomial time (Fouh et al.,
2014). So without losing generality, we pick 3SAT for evaluation.

A.1 HCP V.S. TSP

To transform the graph G = (V, E) of an HCP instance to the cost matrix C of a TSP instance, we
simply set Cij = 0 if (i, j) ∈ E and Cij = 1 otherwise. Then the problem of finding a Hamiltonian
cycle becomes finding a tour of length 0 (also the minimum length) for the TSP instance with cost
matrix C. It is obvious that the procedure is polynomial-time.

A.2 3SAT V.S. HCP

A.2.1 REDUCTION FROM 3SAT TO HCP

Suppose we have a 3SAT instance of Nv variables {x0, x1, · · · , xNv−1} and Nc clauses, reducing it
to an HCP instance follows the below two steps. More details of illustrations and proofs for claims in
this subsection can be found in references, Section 28.12 of OpenDSA (Fouh et al., 2014) (slightly
different).

Step 1. Construct variable-clause nodes and edges. We first construct 2Nc nodes for each
variable, 2NvNc nodes in all. We call these nodes “variable-clause nodes”. We assign the indices
0 to 2NvNc − 1 to these nodes. For a variable xi, the indices of corresponding nodes are from
2Nci to 2Nc(i+ 1)− 1. Then we construct edges (m,m+ 1) and (m+ 1,m) for m ranges from
2Nci to 2Nc(i + 1) − 2. If i < Nv − 1, we further construct four edges

(
2Nci, 2Nc(i + 1)

)
,(

2Nci, 2Nc(i + 2) − 1
)
,
(
2Nc(i + 1) − 1, 2Nc(i + 1)

)
, and

(
2Nc(i + 1) − 1, 2Nc(i + 2) − 1

)
;

else if i = Nv − 1, we construct four edges (2Nci, 0), (2Nci, 2Nc − 1),
(
2Nc(i+ 1)− 1, 0

)
, and(

2Nc(i+ 1)− 1, 2Nc − 1
)
.

Step 2. Construct clause nodes and edges. We then construct Nc nodes for the clauses. We call these
nodes ‘clause nodes’. We denote the clauses as {C1, C2, · · · , CNc−1} We assign indices from 2NvNc

to 2NvNc+Nc−1. If clause Cj contains variable xi, then we construct edges
(
2Nci+2j, 2NvNc+j

)
and

(
2NvNc + j, 2Nci+ 2j + 1

)
. If clause Cj contains variable ¬xi, then we construct edges in the

opposite directions, i.e.,
(
2NvNc + j, 2Nci+ 2j

)
and

(
2Nci+ 2j + 1, 2NvNc + j

)
.

So far, we have reduced the 3SAT instance to the graph of a HCP instance G containing 2NvNc+Nc

nodes in polynomial time. It can be easily proved that the 3SAT is satisfiable if and only if G has a
Hamiltonian path.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.2.2 TRANSFORM HCP SOLUTION TO 3SAT SOLUTION

If the tour τ traverse two variable-clause nodes whose index are 2Nci+ 2j and 2Nci+ 2j + 1 in the
order 2Nci+ 2j → a clause node → 2Nci+ 2j + 1, then the variable xi is set to True; else if the
order is 2Nci+ 2j + 1 → a clause node → 2Nci+ 2j, then xi is set to False.

B ADDITIONAL RELATED WORK

Apart from the literature mentioned in the main context, we hereby present a detailed summary of
related works including conventional methods for TSP solving, machine learning methods for TSP
solving, recent pursuit for a unified framework towards general combinatorial optimization, and
specific solvers for HCP and SAT problem.

B.1 CONVENTIONAL SOLVERS

Exact Solvers. Solvers for linear programming and mixed integer linear programming, including
Gurobi (Gurobi Optimization, 2021) and CPLEX (Studio, 2020), can be used to solve general
TSP with optimal solutions as output. Concorde is a famous TSP solver but is only applicable
to 2D symmetric TSP (Hahsler & Hornik, 2007), and according to our preliminary trials, few
open-source implementations produce stable and efficient solutions to ATSP. These methods can be
time-consuming, especially in real-world applications where the scale of instances may be large.

Heuristic Solvers. Heuristic algorithms include nearest neighbor (NN), furthest insertion (FI), etc.
Among the heuristics, LKH (currently LKH-3.0.9 (Helsgaun, 2017)) is the most famous one for its
high efficiency and near-optimal solutions. Technical details of LKH has been elaborated in the main
context.

B.2 LEARNING METHODS FOR TSP

The learning models for TSP solving generally receive input features from the instance graph, where
typically the node features indicates the 2D coordinates of the nodes, and edge features indicating
the weight of the edges. These neural methods can be generally categorized into two classes, i.e.,
autoregressive (AR) and non-autoregressive (NAR) methods, according to their learning and inference
paradigm.

NAR Methods. Non-autoregressive models usually output neural heatmaps in a one-shot manner,
indicative of the predicted likelihood of each eadge being included in the optimal solution. These
networks are mostly developed on the basis of GNN or its variants. GCN (Joshi et al., 2019), Att-
GCN (Fu et al., 2021) are representative works that adopts graph convolutional network (Kipf &
Welling, 2016) for edge prediction using supervised solution proximity. UTSP (Min et al., 2024)
proposes a unsupervised framework based on Scattering Attention GNN (SAG) (Min et al., 2021).
DIMES (Qiu et al., 2022) devises a novel meta-reinforce learning framework to work cooperatively
with the active search technique for scaled 2D-TSP instances. The physics-inspired GNN (Schuetz
et al., 2022) presents to leverage the Quadratic Unconstrained Binary Optimization (QUBO) and
Ising models from statistical physics to encode optimization problems as differentiable loss functions
to support scalable unsupervised learning, but the design of Hamiltonian formulation of specific
problem can be difficult. Authors of Xia et al. (2024) also demonstrate the limitations of heatmap
generation for TSP. Deviating from the prediction of a single solution with supervised learning,
generative modeling methods (Sun & Yang, 2023; Li et al., 2023; Hottung et al., 2021a) endeavor to
characterize a distribution of high-quality solutions for a given instance. Solutions can be established
by sampling from the distribution. GNARKD (Xiao et al., 2024) obtains NAR VRP solvers through
knowledge distillation, but limited its evaluation to symmetric TSP and CVRP.

AR Methods. Instead of global prediction in one shot, sequence models decompose the TSP task
into an n-step node prediction, where each step offers the prediction map of the next node selection
based on the current state. The sequence models generally follow an attention based encoder-decoder
model where the encoder produces embeddings of all input nodes and the decoder produces the
per-step node predictions accordingly. RL4CO community develops a comprehensive repository for

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

this category of methods (Berto et al., 2024). Representatively, AM (Kool et al., 2018) first proposes
using transformer-based attention model for routing problems. POMO (Kwon et al., 2020) proposes
the policy optimization with multiple optima for reinforcement learning; Sym-NCO (Kim et al., 2022)
leverages symmetricity for neural combinatorial optimization, which is widely adopted in subsequent
literature. Recent work BQ-NCO (Drakulic et al., 2023) introduces a novel Markov Decision Process
(MDP) formulation for COPs, leveraging bisimulation quotienting to enhance out-of-distribution
robustness.

Divide-and-Conquer Frameworks In the context of neural solvers for combinatorial optimization,
scalability has been a longstanding concern and challenge for the community. For NAR methods, we
notice that acquiring supervision for edge regret is extremely time-consuming, making it impractical
for solving larger-scale problems than TSP-500. Meanwhile, RL-based sequence models also face
challenges on larger-scale problems due to issues like sparse rewards and training instability, which
also struggle to support training on larger-scale instances (even impractical for N ≥ 100). To
address this issue, apart from effort to tailor specific architectures or training techniques, resorting to
divide-and-conquer is proven feasible and performant. Authors of Fu et al. (2021) train a small-scale
model, which could be repetitively used to build heat maps for TSP instances of arbitrarily large size.
Luo et al. (2024) proposes a novel Self-Improved Learning method for better scalability of neural
combinatorial optimization, powered by an innovative local reconstruction approach that iteratively
generates better solutions by itself as pseudo-labels to guide efficient model training. Most recently,
GLOP (Ye et al., 2024b) learns to partition large routing problems into TSPs and TSPs into Shortest
Hamiltonian Path Problems (SHPPs), which subsequently get conquered by local revisers. These
methods improve the scales of TSPs applicable to neural solvers up to 10000 nodes.

Remarks. It should be highlighted that the effective divide-and-conquer frameworks are indeed
orthogonal to our proposed generic solver, where a significant synergy can be reached to enhance
both model scalability and solving quality.

B.3 COMBINATION OF NEURAL AND OR METHODS

In addition to end-to-end approaches for CO problems on graphs (COPG), resorting to the com-
bination of neural networks and operations research (OR) methods is studied in several works.
VSRLKH (Zheng et al., 2021) and NeuroLKH (Xin et al., 2021) combines the strong traditional
heuristic Lin-Kernighan-Helsgaun (LKH) for TSP with reinforcement learning and supervised learn-
ing respectively. GNNGLS (Hudson et al., 2021) and NeuralGLS (Sui et al., 2023) present hybrid
approaches for solving the TSP based on GNNs and Guided Local Search (GLS), which searches
for solutions from neurally predicted regret of including each edge. da Costa et al. (2020), Sui
et al. (2021) and Ma et al. (2023) are similar works that solve TSP through automatically learning
effective 2-, 3- and k-opt heuristics in a data-driven manner. DPDP (Kool et al., 2022) proposes a
Deep Policy Dynamic Programming (DPDP) scheme, which aims to combine the strengths of learned
neural heuristics with those of DP algorithms. However, it only scales up to 100 nodes in terms of
solving TSPs and VRPs. DeepACO (Ye et al., 2024a) is is a meta-heuristic algorithm which leverages
deep reinforcement learning to automate heuristic designs. GFACS (Kim et al., 2024) develops a
neural-guided probabilistic search algorithm for solving COPs.

Remarks. A common limitation of these methods is the over dependence of their performance on
the effectiveness of the local search, rendering the necessity of the neural parts questionable.

B.4 MULTI-TASK CO MODELS

Recent literature show growing interest of general neural CO solver for multiple problems. While
similar concepts, e.g., “multi-task solver”, “universal solver”, etc., have frequently appeared in some
latest works, they often denote quite different approaches and functionalities. For example, MTCO
(Li & Liu, 2023) devises a “multi-task” CO framework which first measures the similarity between
CO problems, and then transfers knowledge between similar instances within the same problem
type to gain search speed-ups in its quadratic programming solver. However, it primarily focuses
on the permutation flowshop scheduling problem (PFSP) and does not explore the application of its
method in handling different types of problems. Moreover, MTCO is not specifically designed for
learning-based neural solvers, making the term “multi-task” in its title misleading from a learning

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 6: Comparison of different recent works that involve “multi-task” or “general TSP” solving.
“Multi-Task”: Whether the method aims for multi-task CO solving. “Multi-Scale”: Whether the
model adapts to differently scaled instances on the fly without pre-setting parameters. “Single
Solver”: Whether a unified solver learns multiple problems simultaneously. “General TSP”: Whether
the method supports general TSP input, i.e., (probably asymmetric or discrete) distance matrix
only. “QP”: Quadratic Programming. “RL”: Reinforcement Learning. “SL”: Supervised Learning.
“Evaluated Scale”: the first line means the maximal (TSP/VRP) scale in the main experiments, and the
second line (if exists) means the maximal scale evaluated in additional experiments (supplementary
results, divide-and-conquer application, generalizability, etc.). “"∗”: limited to variants of VRPs.

Method Evaluated
Problems

Applicable
Problems

Evaluated
Scale

Multi-
Task

Multi-
Scale

Single
Solver

General
TSP Solver Type

MTCO
(Li & Liu, 2023) PFSP N/A % " % % QP

ASP
(Wang et al., 2024) TSP, CVRP N/A 100

(∼300) N/A N/A N/A % ML-based

MAB-MTL
(Wang & Yu, 2023) TSP, CVRP, OP, KP 100 " " % % RL

MVMoE
(Zhou et al., 2024) 16 VRPs VRP variants 100

(1000) "∗ " " % RL

MTNCO
(Liu et al., 2024) 11 VRPs VRP variants 100

(∼1000) "∗ " " % RL

UNCO
(Jiang et al., 2024) TSP, CVRP, KP, MVCP, SMTWTP 100 " " " % LLM + RL

GOAL
(Drakulic et al., 2024) ATSP, CVRP, OP, JSSP 100

(1000) " " " " SL

MatNet
(Kwon et al., 2021) ATSP, FFSP P in matrix format 100 % % % " RL

DIMES
(Qiu et al., 2022) TSP, MIS 10K % % % % Meta-RL

BQ-NCO
(Drakulic et al., 2023) TSP, ATSP, CVRP, OP 100

(1000) % % % " RL

GLOP
(Ye et al., 2024b)

TSP, ATSP,
CVRP, PCTSP (Large) VRPs 10K

(100K) % " % " RL

RedCO
(Ours)

ATSP, TSP,
HCP, SAT

P ≤P general TSP
or P in matrix format
(VC, Clique, VRPs,

FFSP, MIS, etc.)

100
(10K) " " " "

RL, Meta-RL,
SL, Generative,

etc.

perspective and irrelevant to the theme of this paper. ASP (Wang et al., 2024) proposes a “universal”
framework to address generalization issues of neural CO solvers, which iteratively improves the
generalizability to different distributions (including scales). ASP proposes a model-/problem-agnostic
training policy to improve generalizability. However, it is also focused on PFSP, and does not provide
a specific neural solver which we believe is technically nontrivial that can deal with different types of
problems. In the work (Wang & Yu, 2023), authors propose a multi-armed bandit framework to train
a neural solver for different CO problems, whereby problems share a common encoder but differ
in the header and the decoder. Yet, as the header and decoder necessitate customized designs for
specific problems, the solver cannot be readily applied to unseen problems, restricting its applicability
to the training dataset comprising TSP, CVRP, OP and KP. MVMoE (Zhou et al., 2024) develops
a multi-task VRP solver with mixture-of-experts utilizing a hierarchical gating mechanism, which
achieves good zero-shot generalization performance on multiple VRP variants. Boisvert et al. (2024)
proposes a new generic representation that encodes problem constraints into a graph structure by
breaking down each constraint into an abstract syntax tree and connecting related variables and
constraints through edges. However, the authors also identify limitations in terms of training time and
the size of the generated graphs. Resembling MVMoE, MTNCO (Liu et al., 2024) tackles the cross-
problem generalization among variants of VRPs using shared underlying attributes and solve them
simultaneously via a single model through attribute composition. More recently, UNCO (Jiang et al.,
2024) resorts to large language models (LLMs) that take natural language to formulate text-attributed
instances for different COPs and encode them in the same embedding space, thereby facilitating a
unified process of solution construction. But the solving quality and scalability has considerable
room for improvement. GOAL (Drakulic et al., 2024) proposes a single backbone plus light-weight
problem specific adapters that solves a variety of COPs include ATSP but with inferior performance.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.5 SPECIFIC SOLVERS FOR SAT AND HCP

SAT. Neural methods for solving the SAT problem can be broadly classified into two categories:
standalone neural solvers and neural-guided solvers. Direct neural solvers, such as NeuroSAT (Selsam
et al., 2018) and subsequent works (Cameron et al., 2020; Jaszczur et al., 2020), classify CNF formulas
as satisfiable or unsatisfiable while simultaneously constructing possible assignments by decoding
literal embeddings. Several alternative approaches (Amizadeh et al., 2018; 2019; Ozolins et al.,
2022) focus on directly generating satisfying assignments, leveraging different GNN architectures
and employing unsupervised loss for training. These methods generally aim to predict a single
satisfying solution for each instance, failing to account for other possible solutions. In the category of
neural-guided methods, NeuroCore (Selsam & Bjørner, 2019) and #Neuro (Vaezipoor et al., 2021)
utilize neural networks to guide the branching decisions of SAT and #SAT solvers. NSNet (Li &
Si, 2022) models satisfiability problems as probabilistic inference, using a graph neural network
(GNN) to parameterize belief propagation (BP) in the latent space, thereby guiding a local search for
a satisfying assignment. Readers can refer to Guo et al. (2023) for a thorough survey of solving SAT
problem with neural approaches.

HCP. It is noteworthy that HCP have not yet been extensively discussed within the ML4CO
community. One recent work incorporating HCP as a case study is Wang et al. (2021), which
proposes a bi-level framework with an upper-level learning method to optimize the graph (e.g.,
adding, deleting, or modifying edges), combined with a lower-level heuristic algorithm solving
the optimized graph. This framework utilizes an actor-critic-based RL method to train a graph
convolutional network (GCN) and tests it on 1001 large HCP instances, achieving results comparable
to LKH.

B.6 NOTE ON EVALUATION OF SPECIFIC SOLVERS

It can be controversial that we have not yet incorporated the so-called “specialized solvers” for the
individual type of CO problems covered in this paper. We hereby provide our detailed consideration
and clarification upon this issue in hope to eliminate possible ambiguity and misunderstanding.

Conforming to Our Motivation. As our primary motivation goes, proposing a competitive yet com-
pact workflow capable of effectively tackling (A)TSP instances with different problem distributions
comes foremost.

Lack of Companion Methods. To our best knowledge, few existing specialized solvers match
our formulation of CO problems, nor are there prevalent evaluation protocols. Notably, there is
limited exploration of the potential to unify various combinatorial optimization problems on graphs
and exploit matrix representations for developing neural solvers with cross-task universality or
cross-distribution robustness.

Existing Research Convention. There is precedent in top literature for evaluating different problems
within a primarily targeted problem type. E.g., in NeuroSAT (Selsam et al., 2018), the authors, despite
focusing on a new SAT solver, gained recognition for its cross-task applicability by modeling and
solving graph coloring, dominating-set, and node cover problems within the SAT formulation.

Remarks. Therefore, it is supposed to be reasonable to compare within the scope of general TSP
solvers on our unified matrix datasets where various CO tasks are implicitly embedded, also in hope
to facilitate standardized comparison of the general neural combinatorial optimization community.

C NETWORK DETAILS

C.1 VANILLA MATNET AND MATPOENET

Encoder. Each node i in the graph form of the input matrix is assigned with two embedding
vectors2 ai,bi ∈ Rd. We denote the embedding matrix of all nodes at the l-th layer as Al =
[al1,a

l
2, · · · ,alN] ∈ Rd×N and Bl of the same shape. The input A0 and B0 are initialized as zero

embeddings and one-hot embeddings respectively. Note that B0 may not be a square matrix, so
MatNet forces d ≥ N and set B0 as an one-hot square matrix OE ∈ RN×N padded with zero values

2By default, all mentioned vectors are column vectors.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0 ∈ RN×(d−N), i.e., mathematically B0 = [OE,0]⊤. Notably, B0 = POE in MatNetPOE and
need not paddings.

Taking embedding A as example:

Ql
a = WQ

a A
l, Kl

a = WK
a Bl, Vl

a = WV
a B

l, (10)

MixedScoreAttla = softmax
(

MLP1

([
C;

Ql⊤

a Kl
a√

dqkv

]))
, (11)

Al+1 = MLP2

(
MixedScoreAttlaV

l⊤

a

)⊤
, (12)

where WQ
a ,W

K
a ,WV

a ∈ Rdqkv×d are learnable parameters for attention modeling, [·; ·] denotes the
concatenation operation, MLP(·) denotes a multilayer perceptron layer with activation functions
and batch normalization operations inside. The input and output dimensions of MLP1 are 2 and 1
respectively, so MLP1 achieves to mix the attention values and the cost matrix, yielding the mixed
score MixedScoreAttla ∈ RN×N . The input and output dimensions of MLP2 is are both d.

Computing Bl+1 is completely symmetrical with Al+1 as shown in Eq. 10 to Eq. 12, by exchanging
the positions of Al and Bl and introducing new parameters WQ

b ,W
K
b ,WV

b .

MatNet extends the mixed-score attention to a multi-head one, just as the original Transformer
(Vaswani et al., 2017).

Decoder. Given the output embedding A and B of the last layer of the encoder, the decoder aims to
conduct the so-called ‘rollout’ to obtain a tour τ = {i1, i2, · · · , iN}. The first step is to compute the
key and value matrices by Kdec = WK

decB and Vdec = WV
decB, where WK

dec,W
V
dec ∈ Rdqkv×d

are trainable parameters. When node in is selected as n-th node in the tour τ , the query vector
qn+1
dec ∈ Rdqkv containing information of previously selected nodes {i1, · · · , in} is computed by:

q1
dec = WQ1

decai1 , q
n+1
dec = WQ0

decain + q1
dec, (13)

where WQ1

dec,W
Q0

dec ∈ Rdqkv×d are trainable parameters for the query vectors. Then, the output
embedding of n-th iteration of the rollout on+1

dec can be obtained by:

on+1
dec = Linear

(
softmax

(
Inf in′≤n

+
qn⊤

decKdec√
dqkv

)
Vdec

)
, (14)

where Inf in′≤n
is a vector of length N whose in′ -th element is set to negative infinity for all n′ ≤ n

and other elements are set to 0, Linear(·) is a linear layer whose input dimension is dqkv and output
dimension is d. In practice, Eq. 14 is further enhanced by multi-head attention. By Eq. 14, on+1

dec
becomes a linear combination of the embeddings bs of unselected nodes, while the weights are
determined by the selected nodes whose information is contain in qn

dec.

The probability vector to select the next node in+1 is:

pθ(in+1|in′≤n)=softmax
(
Inf in′≤n

+tanh

(
B⊤on+1

dec√
d

))
. (15)

After N rollout iterations, a complete tour can be obtained.

Model training. It is trained in the same way as POMO (Kwon et al., 2020) based on DRL. For each
instance with C, it samples N tours {τ1, τ2, · · · , τN} with different nodes as start. Then the policy
gradient is:

∇θJ(θ) ≈
1

N

N∑
n=1

(
L(τn)− b(C)

)
∇θ log pθ(τ

n|C), (16)

where L(τ) is the length of tour τ , b(C) is a baseline method which is instantialized as the mean tour
length of the N tours, mathematically b(C) = 1/N

∑N
n=1 L(τ

n).

Fig. 4 illustrates the general neural structure of MatPOENet, highlighting with dashed square the
adaptive design for initial node embedding, i.e., the scale-free initializer, pseudo one-hot embedding
scheme.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Instance

Zero
Embedding

POE
Matrix

Mix-Score Attention
E

ncoder

Decoder Layer
Input Node

Next Node

D
ecoder

Tour

Inf Mask

Untrainable

Tempt Variable

Trainable

Scale-free initializer: POE

Figure 4: General structure of MatPOENet.

C.2 GRAPH-BASED DIFFUSION AND MATDIFFNET

Overview. Given the distribution of problem instance with distance matrix C, solutions (S) can be
established by sampling from the distribution and maximizing the conditional likelihood estimation
E[log pθ(S|C)], where θ is the model parameters. The model is optimized through the evidence
lower bound (ELBO) in Eq. 17, where q is the posterior and Z is the latent variable.

L = −Eq(Z|S,C)

[
log

pθ(S,Z|C)

q(Z|S,C)

]
≥ E [− log pθ(S|C)] . (17)

Details. MatDIFFNet generates general TSP solutions S0 ∈ {0, 1}n×n by T -step denoising process
from random noises ST , and the latent variables include noised solution S1:T , outputting a binary
heatmap guiding the search of a valid TSP tour. The discrete diffusion models generate solutions
S0 ∈ {0, 1}n×n by T -step denoising process from random noises ST , and the latent variables include
noised solution S1:T . For each entry, the model estimates a Bernoulli distribution indicating whether
this entry should be selected. In implementation, each entry of solution is represented by a one-hot
vector3 such that S0 ∈ {0, 1}n×n×2. Following the notations of Ho et al. (2020); Austin et al. (2023),
the general framework of diffusion includes a forward noising and a reverse denoising Markov process.
The noising process takes the initial solution S0 and progressively introduces noise to generate a
sequence of latent variables S1:T . The denoising process is learned by the model, which starts from
the final latent variable ST and denoises St at each time step to generate the preceding variables
St−1 based on the instance C, eventually recovering the target data distribution. The formulation
of the denoising process is expressed as pθ(S0:T |C) = p(ST)

∏T
t=1 pθ(St−1|St,C). The training

optimization aims to align pθ(S0|C) with the data distribution q(S0|C) using ELBO:

L =Eq

[∑
t>1

DKL [q(St−1|St,S0) ∥ pθ(St−1|St,C)]− log pθ(S0|S1,C)

]
+ C. (18)

Specifically, the forward noising process is achieved by multiplying St ∈ [0, 1]N×N×2 at step t
with a forward transition probability matrix Qt ∈ [0, 1]2×2 where [Qt]i,j indicates the probability

of transforming Ei in each entry to Ej . We set Qt =

[
βt 1− βt

1− βt βt

]
(Austin et al., 2023),

3Each entry with [0, 1] indicates that it is included in S and [1, 0] indicates the opposite.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where βt ∈ [0, 1] such that the transition matrix is doubly stochastic with strictly positive entries,
ensuring that the stationary distribution is uniform which is an unbiased prior for sampling. The
noising process for each step and the t-step marginal are formulated as:

q(St|St−1) = Cat(St;p = St−1Qt) and q(St|S0) = Cat(St;p = S0Qt), (19)

where Cat(S;p) is a categorical distribution over N one-hot variables with probabilities given by
vector p and Qt = Q1Q2 · · ·Qt. Through Bayes’ theorem, the posterior can be achieved as:

q(St−1|St,S0) =
q(St|St−1,S0)q(St−1|S0)

q(St|S0)
= Cat

(
St−1;p =

StQ
⊤
t ⊙ S0Qt−1

S0QtS
⊤
t

)
. (20)

The neural network is trained to predict the logits of the distribution p̃θ(S̃0|St,C), such that the
denoising process can be parameterized through q(St−1|St, S̃0):

pθ(St−1|St) ∝
∑
S̃0

q(St−1|St, S̃0)p̃θ(S̃0|St,C). (21)

Pseudo
Coordinates A

Pseudo
Coordinates B

GCN: Encoder Layers × 𝐿

Instance
C

Noised Label
𝑿𝒕

MLP:
Matrix
Mixer

Mix-Noised
Map 𝑿𝒕

𝑪

Model Prediction 𝑿𝟎
𝑪

Denoised Heatmap 𝑯Tour 𝜏

Matrix-input adaptor:
Mix-noised map &
Dual feature convolution

Trainable

Untrainable

Tempt Vari able

Figure 5: General structure of MatDIFFNet.

Fig. 5 illustrates the general neural structure of MatDIFFNet, highlighting with dashed square the
adaptive design for matrix input, i.e., the mix-noised reference map and dual feature convolution
scheme.

D EXPERIMENTAL DETAILS

D.1 HYPERPARAMETERS

MatPOENet. We set 512 as the positional embedding dimension as well as all hidden dimensions
in the network. For N ≈ 20 and 50, 8 layers of mix-score attention block is adopted to better capture
problem features, whereas 5 layers are set for N ≈ 100 for space saving. We train our model using
Adam optimizer (Kingma, 2014) with a learning rate of 4 × 10−4 with a decay of 1 × 10−6. The
batch size is set to 200 for N ≈ 20, 50 and 150 for N ≈ 100. Defining a training epoch as 10,000
randomly generated problem instances, we find the performance sufficiently noteworthy within 2,000
epochs for all scales, despite the fact that more training steps might produce better convergence and
outcomes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

MatDIFFNet. The parameter setting of MatDIFFNet basically follows Li et al. (2023). We set
the dimension of the input features for implemented graph neural networks equals 2 indicating the
pseudo 2D coordinates of the nodes, and set the feature dimension of the intermediate layers to
256. The output channel dimensions of the networks are set as 2 for the classification modelling.
Default number of GNN layers is set to 12. Models at all scales are trained with a cosine learning
rate schedule starting from 4 × 10−4 and ending at 0. For each type of problem distribution, we
generally use 1.28M random instances for each epoch of training and train the models for 100 epochs.
We apply curriculum learning and initialize the models from N ≈ 50 checkpoints. For mixed data
training, 400 epochs are conducted to gain an equivalent period to those trained individually. Training
batch-size is set to 128 for N ≈ 50 and 32 for N ≈ 100. For the diffusion part, We implement the
model with 50 inference steps for denoising, and the models are trained with 1000 denoising steps,
i.e., Tdenoise = 1000. We additionally apply the technique of denoising diffusion implicit models
(DDIMs (Song et al., 2020)) for accelerating inference and solution reconstruction.

RedCO-DIMES. We set 8 layers for the backbone GNN with 64 hidden units for each. For both
outer updates and inner meta-steps, we use AdamW (Loshchilov & Hutter, 2018) as optimizer, with
a learning rate of 1× 10−3 and 1× 10−1 respectively. For all scales of problems, we train the model
for 1000 outer epochs, each containing Tmeta = 15 inner meta-updates with K = 1000 samples. In
the testing phase, we set the (inner) learning rate of active search to 0.5 for faster optimization and
with a typical 100 steps.

D.2 SCALE SETTING OF 3SAT INSTANCES

To align with our experimental setup (N ≈ 20, 50, 100), we manually tailor the number of variables
Nv and clauses Nc as outlined in Table 7. During training at a specific scale, each batch of 3SAT
instances are generated with a randomly determined parameter line within the corresponding scale
group.

Table 7: Detailed scale parameters of 3SAT instances contained in different experimental groups.

Scale group # Variables (Nv) # Clauses (Nc) Exact N Average N

N ≈ 20
4 2 18

20.33 3 21
5 2 22

N ≈ 50

6 3 39

49.8
3 7 49
6 4 52
4 6 54
5 5 55

N ≈ 100

9 5 95

101.0
5 9 99
8 6 102
6 8 104
7 7 105

D.3 TRAINING CURVES

Fig. 6, Fig. 7, and Fig. 8 depict the solved tour length during the training process of MatPOENet,
MatDIFFNet, and DIMES under our RedCO framework. Note that the ATSP curve for MatDIFFNet is
smoothed by exponential moving average with α = 0.01 for better clarity, as it reaches the fluctuation
stage sharply within the initial epochs. The RL-based training curves (MatPOENet and DIMES) are
sampled with a time step of 10. It can be observed that Transformer-, Diffusion- and GNN-based
backbones are all well optimized under RedCO with problem instance reduction. Furthermore,
detailed training objective curves for each individual problem type demonstrate consistency and
stability of convergence across all involved problem categories, addressing our claim of multi-task
robustness.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 250 500 750 1000
2.1

2.2

2.3

2.4

2.5

2.6

To
ur

 le
ng

th

Full set

0 250 500 750 1000

1.70

1.75

1.80

1.85

1.90

1.95

ATSP

0 250 500 750 1000
Epoch

6.0

6.2

6.4

2DTSP

0 250 500 750 1000

0.5

1.0

1.5

2.0
HCP

0 250 500 750 1000

1.0

1.5

2.0

2.5

3SAT

Figure 6: Tour length of different problem categories during RedCO-empowered mixed-data training
of MatPOENet with N ≈ 50.

0 100 200 300 400

4

6

8

To
ur

 le
ng

th

Full set

0 100 200 300 400

1.658

1.660

1.662

1.664

1.666

ATSP

0 100 200 300 400
Epoch

6

8

10

12

14

16

18

2DTSP

0 100 200 300 400

2

4

6

8

10

12
HCP

0 100 200 300 400
0

2

4

6

3SAT

Figure 7: Tour length of different problem categories during RedCO-empowered mixed-data training
of MatDIFFNet with N ≈ 50.

0 250 500 750 1000

3.5

4.0

4.5

5.0

5.5

To
ur

 le
ng

th

Full set

0 250 500 750 1000

2.0

2.1

2.2

2.3

ATSP

0 250 500 750 1000
Epoch

6.0

6.5

7.0

7.5

8.0

8.5

9.0

2DTSP

0 250 500 750 1000

2.0

2.5

3.0

3.5

4.0
HCP

0 250 500 750 1000

4

5

6

7

3SAT

Figure 8: Tour length of different problem categories during RedCO-empowered mixed-data training
of DIMES-AS with N ≈ 50.

E MORE APPLICATIONS OF REDCO

In this section, we provide the details of possible applications of our proposed RedCO. For backbone
model, we adapt DIMES (Qiu et al., 2022) for multi-task training under RedCO by simply replacing
its input of nodes coordinates by random vectors. In Sec. E.1, we carefully introduce its model
architecture and training policy. For more applicable problems, Sec. E.2 presents a list of feasible CO
problems that can i) be reduced to general TSP form, ii) formulated via matrix representation,
or iii) resolved by our proposed models as specific solvers. In the conclusion, we provide further
clarification upon the orthogonality of RedCO and the proposed backbone solvers, reiterating the
motivation and position of our paper.

E.1 MORE ADAPTABLE BACKBONE: GNN-BASED DIMES

DIMES (Qiu et al., 2022) proposes a scalable neural solver for 2DTSP based on meta-learning and
deep RL.

For TSP, parallel to attention models that sequentially decode node selections, GNN-based techniques
have gained prominence for predicting heatmaps in support of online searching. To this end, we
endeavor to pinpoint a GNN-based architecture that aligns seamlessly with the implementation of our
instance reduction-based general CO training framework. Several observations guide this exploration:
1) High cost of supervised training. Preparing supervision for TSP is primarily time-consuming.
Even worse, matrix input of general TSP can be intractable for space as well, compared to existing
works that often take the convenience of storing coordinate representations only. 2) Embedding
limitations. Prevailing GNN methods, often designed for TSP as an edge classification task, heavily
rely on coordinate inputs, which remains open problem. 3) Data distribution variability. Notable

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

divergence of data distribution exists subsequent to the reduction of TSP from diverse problem
instances. This variability poses a considerable challenge for supervised training of GNN.

Our exploration of existing models unveil that meta-learning and RL-based active search strategies in
DIMES resonate with our intuitive perspective. We adapt vanilla DIMES into our RedCO architecture,
underscoring its proper alignment with our motivation of tackling multi-task CO problems, and in
turn validating the feasibility of our proposed framework.

Overview. DIMES uses an Anisotropic GNN (Bresson & Laurent, 2018) as backbone to capture
representations of different types of problem instances. The vanilla DIMES takes node coordinates as
the input node features and the distanrces as the input edge features. To generalize DIMES to general
TSP, we empirically use random numbers sampled from [0, 1] of a fixed dimension d (d = 64 by
default) as the node feature. The training process combines Model-Agnostic Meta-Learning (MAML)
and DRL. The primary objective is to enhance the prediction of heatmap initialization that later
yields optimal solving results after the RL-based active search in the testing phase. Following the
paradigm of meta-learning, the training process of DIMES involves outer epochs which optimizes
the backbone GNN parameters utilizing the estimated policy gradients computed with one or more
inner meta-updates. We present the detailed mathematical formulations below.

E.1.1 NETWORK ARCHITECTURE

The GNN layers work as the following message passing scheme:

hl+1
i = hl

i + α
[
BN
(
Ulhl

i +Aj∈Ni

(
σ(elij)⊙Vlhl

j

))]
, (22)

el+1
ij = elij + α

(
BN(Plelij +Qlhl

i +Rlhl
j)
)
, (23)

where hl
i and elij respectively denote the node embedding of node i and the edge embedding of edge

(i, j) at the l-th layer, Ul,Vl,Pl,Ql,Rl are learnable parameters of l-th layer, α(·) is the activation
function (set as SiLU (Elfwing et al., 2018) in practice), BN(·) is the batch normalization function.

E.1.2 TRAINING PROCESS

Let FΦ denote the graph neural network parametrized by Φ. For each TSP graph instance s reduced
from the problem pool C, the instance-specific input to the network is its distance matrix Ds, and the
output θs ∈ Rn×n := FΦ(Ds) acts as the initial heatmap guiding the search of a TSP tour. A higher
valued θi,j indicates a higher probability for the edge from node i to node j to be sampled. The
vanilla loss function is articulated as the expected cost of the solution for any graph in the collection:

L(Φ|C) = Es∈CS(θs) = Es∈CS(FΦ(Ds)), (24)

where S(·) denotes the sampling-based baseline function (Kool et al., 2019) from a given distribution
representation of predicted heatmap. Specifically, a batch of graph instances of the same problem
type and scale is generated randomly from C in every outer training epoch, within which T inner
meta-steps are taken to fine-tune the parameters on each instance by RL-based updates, referred
to as active search (Bello et al., 2016; Hottung et al., 2021b). The fine-tuned parameters Φ(T)

s are
computed using these gradient updates for each graph instance s with a inner learning rate α, thus
having Φ

(0)
s = Φ and for 1 ≤ t ≤ T :

Φ(t)
s = Φ(t−1)

s − α∇
Φ

(t−1)
s

L(Φ(t−1)
s |{s}). (25)

Through the inner steps, we obtain the updated heatmap θ
(T)
s = F

Φ
(T)
s

(Ds). For each instance s in the

batch, K solutions {τ1, τ2, · · · , τK} are sampled on the basis of θ(T)
s to calculate the reinforcement

learning-estimated gradient of θ:
∇θEτ [L(τ)] = Eτ [(L(τ)− S(s))∇θ log pθ(τ)] , (26)

where L(·) denotes the length of a feasible tour and pθ is an auxiliary distribution to compute the
probability of a feasible solution for TSP with random start node and chain rule factorization:

pθ(in+1|in′≤n) =
exp(sin,in+1

)∑N
n′=n+1 exp(sin,in′)

. (27)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Subsequently, we optimize the performance of the graph neural network with the estimated gradient
and a meta-objective, closing the outer loop:

Lmeta(Φ|C) = Es∈CS(θ
(T)
s |s). (28)

E.1.3 RESULTS AND DISCUSSION

Performance. As demonstrated in Table 8, with our modified input node embeddings, DIMES
works finely with our RedCO framework as a matrix encoder for general TSP, achieving comparable
solving quality via active searching. Despite notable gap from DIMES to MatPOENet and MatD-
IFFNet, DIMES show good compatibility of RedCO and have the potential to effectively scale to
larger instances, which can also be a valuable research direction in the future.

Table 8: Results of RedCO-DIMES trained on mixed problem data.
Scale Methods ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓

20
DIMES 2.2335 4.1696 2.9448 2.67% 2.6660 2.12% 3.0035
DIMES-AS(100) 1.6790 3.9092 0.4596 60.12% 0.2828 77.12% 1.5826
DIMES-AS(200) 1.6439 3.8809 0.4464 61.92% 0.3068 75.16% 1.5695

50
DIMES 2.3341 6.6271 3.1788 1.56% 5.3656 0.12% 4.3764
DIMES-AS(100) 1.6920 5.9447 0.5908 46.04% 1.5830 20.44% 2.4528
DIMES-AS(200) 1.6794 5.9194 0.5000 54.20% 1.4296 23.36% 2.3821

100 DIMES 2.5186 9.5777 3.8064 1.16% 3.8064 0.00% 6.4018
DIEMS-AS(100) 1.6968 8.3390 0.8480 24.00% 2.8040 7.16% 3.4220

Efficiency. Table 8 lists the solving efficiency of vanilla MatNet and DIMES under our RedCO
framework. MatNet benefits from its light-weight architecture and sequential decision paradigm and
have better time advantage. Active search process endows DIMES with better per-instance solving
performance, while consumes much more time due to its gradient-based local search.

Table 9: Solving efficiency comparison under our RedCO framework. Setting: N ≈ 50, batch size =
100, 2500 instances. DIMES(T): DIMES with T inner updates of active search.

Backbone MatNet MatNet(8×) DIMES DIMES(15) DIMES(100)

Time 15s 2m40s 2m17s 10m35s 1h24m

MatNet v.s. DIMES: MatNet wins on both efficiency and model performance, but DIMES
has better scalability. We compare vanilla MatNet without augmentation and DIMES without
fine-tuning, both trained with mixed data. We see that MatNet outperforms DIMES significantly.
We also present the solving time of vanilla MatNet and DIMES in Table 9, which demonstrates
the high efficiency of MatNet. Though MatNet wins on both efficiency and model performance,
according to their official papers, DIMES can be run on TSP-10,000 (Qiu et al., 2022), but MatNet
only scales to about TSP-100 (Kwon et al., 2021), indicating better scalabilty of DIMES. It is because
DIMES adopts a lighter neural architecture, but MatNet has a complex rollout scheme, causing a
non-negligible amount of temporal variables, thus limiting its scalability.

DIMES v.s. DIMES-AS(T): The trade-off between efficiency and effectiveness brought by
fine-tuning on test cases. By comparing DIMES-AS(T) with vanilla DIMES, DIMES-AS(T)
improves DIMES significantly with fine-tuning on the test cases. However, DIMES-AS(T) may
suffer from severe scalability issue in real-world applcations. The solving time in Table 9 shows that
DIMES(15) may take about 4.6 times as DIMES.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E.2 MORE APPLICABLE PROBLEMS

E.2.1 VERTEX COVER

Definition 4 (Vertex Cover Problem (VC)). Given an undirected graph G and a positive integer k, a
vertex cover of G is a set S of vertices so that every edge is incident on at least one vertex of G. The
problem is to determine whether G has a vertex cover of size no more than k.

Reduction from VC to HCP. Let the (undirected) graph of VC instance be G(V, E) and the target
is to determine whether there exists a vertex cover S containing no more than k vertices. We can
construct an HCP graph G′(V ′, E ′) with 4|E|+ k vertices. Indexing the edges in E from 1 to |E|, G′

can be mathematically described as:

V ′ = {a1, a2, · · · , ak} ∪ {[u, i, 0], [u, i, 1]|u ∈ V, i ∈ E} , (29)

where i is incident on u.

E ′ = {([u, i, 0], [u, i, 1]) |[u, i, 0] ∈ V ′}
∪ {([u, i, a], [v, i, a]) | i ∈ E , i = (u, v), a ∈ {0, 1}}
∪ {([u, i, 1], [u, j, 0]) |∄ e s.t. i < e < j, [u, e, 0] ∈ V}
∪{([u, i, 1], af) | 1 ≤ f ≤ k, ∄ e s.t. e > i, [u, e, i] ∈ V}
∪{(af , [u, i, 0]) | 1 ≤ f ≤ k, ∄ e s.t. e < i, [u, e, i] ∈ V} .

(30)

Transform HCP Solution to VC Decision. If there exists a Hamiltonian cycle τ in G′, we first
select all vertices in τ that connect any vertex in {a1, a2 · · · , ak}. The selected vertices are necessarily
in the form of < u, i, a >, and all these u ∈ V constitute the vertex cover of G within k vertices.

Note that the VC problem has been incorporated in RedCO framework and implemented for evaluation.
The details of data generation and empirical results are provided in Appendix F.4.

E.2.2 CLIQUE PROBLEM

Definition 5 (Clique Problem). A clique is a (sub)graph induced by a vertex set K in which all
vertices are pairwise adjacent, i.e., for all distinct u, v ∈ K, (u, v) ∈ E. A clique of size k is denoted
as Kk. The clique problem is to determine whether a graph on n vertices has a clique of size k.

Reduction from clique problem to SAT. Given an clique instance, we introduce the following to
for an SAT instance:

Variables:

yi,r (true if node i is the r-th node of the clique) for 1 ≤ i ≤ n, 1 ≤ r ≤ k.

Clauses:

1) For each r, y1,r ∨ y2,r ∨ . . . ∨ yn,r(some node is the rth node of the clique).

2) For each i, r < s, ¬yi,r ∨ ¬yi,s (no node is both the r-th and s-th node of the clique).

3) For each r ̸= s and i < j such that (i, j) is not an edge of G, ¬yi,r ∨ ¬yj,s. (If there’s no edge
from i to j then nodes i and j cannot both be in the clique).

That’s the entire formula that will be satisfiable if and only if G has a clique of size k. As SAT
problem can be transformed to 3SAT and further reduced to general TSP in polynomial time, the
decision of Clique problem can be solved by RedCO-empowered solvers.

E.2.3 INDEPENDENT SET PROBLEM

Definition 6 (Independent Set). An independent set is vertex set S in which no two vertices are
adjacent, i.e., for all distinct u, v ∈ S, (u, v) /∈ E.

Definition 7 (Complement Graph). Let G = (V,E) be a graph, the complement graph of G, denoted
as G = (V,E), is defined such that E contains all the edges not present in G.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 10: Ablation studies for the rough solver of MatNet-POE. Scale N ≈ 50. Trained on mixed
data, tested with 8x augmentation.

Methods ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓ Avg. FR↑

Non-MatNet-POE 1.7988 5.8178 0.4080 64.72% 1.0020 34.76% 2.2566 49.74%
FI-MatNet-POE 1.8370 6.0962 0.1920 82.80% 0.6060 55.72% 2.1828 69.26%

MatPOENet (NN) 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082 87.94%

By definition of complement, (u, v) ∈ E ↔ (u, v) /∈ E. The statement that S ⊆ V is an independent
set in G is equivalent to the fact that S induces a clique in G. Therefore, an IS problem can be
transformed into a Clique decision, and solved by the same reduction of Clique problem to general
TSP thereafter.

E.2.4 VEHICLE ROUTING PROBLEMS

While problems like CVRP cannot be directly solved by a direct transformation, the TSP solver can
still be utilized. E.g, the Cluster-First Route-Second Method (Shalaby et al., 2021), solves CVRP by
first clustering points and then solving each cluster as a TSP. Thus, a robust TSP solver is effective in
the second phase for CVRP. Additionally, as mentioned in Ye et al. (2024b), large routing problems
can be partitioned into TSPs and TSPs into Shortest Hamiltonian Path Problems (SHPPs), solidifying
the significant role a good TSP solver plays targeting sub-structures of complex VRPs.

E.2.5 MATPOENET & MATDIFFNET AS PROBLEM-SPECIFIC SOLVER

In addition to the problems mentioned above that can be consistently learned and solved by reducing
to general TSP, our proposed MatPOENet and MatDIFFNet can also serve as problem-specific
individual solvers decoupled from RedCO, thus enabling a wider range of applicable problems, as
long as specified in a matrix form of parameters quantifying the relationship between two groups
of items. For instance, as evaluated in Kwon et al. (2021) and Li et al. (2023), Flexible Flow Shop
Problem (FFSP) and Maximal Independent Set (MIS) problem are readily modelled for MatPOENet
and MatDIFFNet, respectively.

Conclusion. Application of the reduction scheme to a wider range of problems are theoretically
guaranteed by the computational complexity theory, and will be further studied in our future research.
Note that resorting to problem reduction for general solving of different CO problems has limitations,
where some tasks with more complicated constraints or high transformation complexity are not
practical. However, the orthogonality between RedCO and specific solvers should be noted, as more
problems has the potential to be solved via individual modelling for our proposed neural solvers.

F SUPPLEMENTARY EXPERIMENTS

F.1 FURTHER EXPERIMENTS OF POE

Different Initial Rough Solvers. As mentioned in RQ4 in the main context, we tested different
solvers to prepare the rough solution to initialize POE. In Table 10, among nearest neighbor (NN),
farthest insertion (FI) and without initial solution (Non), NN outperforms the others, which proves
the efficacy of choosing the simple nearest neighbor heuristic as initial rough solver to capture local
information for POE.

Different Initial Node Embeddings. As mentioned in RQ4 in the main context, we have addition-
ally implemented the two advisable ways mentioned as alternative initial embeddings for MatNet in
its paper (Kwon et al., 2021). Note that they are both aimed at breaking the dimension restriction as
our proposed POE.

Through this experiment and results in Table 11, we ackowledge the potential capability of tailored
trainable emeddings and anticipate further studies, though, within our time and knowledge, better
performance is achieved using our proposed POE over vanilla random vectors or trainable parameter
matrices of the same shape.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 11: Results of MatNet model equipped with different initial node embeddings on N ≈ 50
dataset. “Trainable”: Nmax different vectors made of learnable parameters. “Random”: completely
random vectors for each problem instance.

Init. Embed. Type ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓

MatNet-Random 2.1044 5.8981 0.8560 33.20% 1.1620 30.44% 2.5051
MatNet-Trainable 1.8923 5.8157 0.4148 63.96% 0.5012 58.52% 2.1560
MatPOENet (ours) 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082

F.2 PRETRAINING-FINETUNING APPLICATIONS

As claimed in the main context that our proposed RedCO serves properly as a pretraining-finetuning
framework, we hereby present two supportive experiments in conventional scenarios:

i) Cross-task scenario: pretrained on several problem types, finetuned on an unseen problem type.

Table 12: Results of the cross-task finetuning on 3SAT. MatPOENet is pretrained under RedCO
framework with dataset comprising ATSP, 2DTSP and DHCP instances of N ≈ 50 for 2,000 epochs
and subsequently finetuned on the new task of 3SAT data for (a much fewer) 500 iterations.

Description 3SAT (L)↓ 3SAT(FR)↑ #Epochs

Pretrained on ATSP, 2DTSP, DHCP w/o Finetuning 1.4080 17.92% 2000

Pretrained on ATSP, 2DTSP, DHCP w/ Finetuning on 3SAT
0.0404 95.96% 50
0.0360 96.40% 100
0.0292 97.08% 200

Trained on merely 3SAT (control group) 0.0400 96.08% 2000

From Table 12, We observe that after finetuning on the unseen task data (3SAT), the model perfor-
mance is improved significantly compared with that without finetuning (the first row of the table),
and can yield a similar performance compared to the case where the model is premarily trained
on 3SAT only (the third row of the table). These results demonstrate the applicability of RedCO
for pretraining-finetuing, which also directs a feasible path to address the generalizability issue of
MatNet-POE.

ii) Cross-scale scenario: pretrained on smaller scaled dataset, finetuned on larger scaled dataset.

Table 13: Results of the cross-scale finetuning experiments on N ≈ 100 sets. The MatPOENet
model is pretrained under RedCO framework with different dataset of N ≈ 50 for 2,000 epochs and
subsequently finetuned on mixed data of N ≈ 100 scale for (a much fewer) 500 iterations.

Pretrain data Finetune data ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓

Mixed-50 - 2.5656 8.5404 23.5064 0.00% 17.5564 0.00% 13.0422

Mixed-50 Mixed-100 1.9798 8.0573 1.7796 6.60% 2.0664 11.68% 3.4708
ATSP-50 Mixed-100 1.8855 8.3838 0.6712 46.72% 0.2888 72.76% 2.8073

Mixed-100 - 1.8655 8.1719 0.0052 99.48% 0.2440 77.12% 2.5717

Remarkably, we observed from Table 13 that pretraining on smaller instances of ATSP leads to greatly
improved outcomes when fine-tuned on larger scaled multi-task datasets, possibly suggesting the
significance of capturing general problem patterns as well as handling hard cases during pretraining.
The bold numbers are the best among finetuned settings, approaching competitive performance of the
model primarily trained on N ≈ 100 data (the last row) with much shorter training time.

These empirical findings provide strong support for our assertion regarding RedCO’s capability to
serve as a pretraining-finetuning framework. Furthermore, they spark further interest and exploration
into leveraging this paradigm to enhance the model’s scalability as well as generalization performance.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

F.3 COMPARISON OF LEARNING PARADIGMS

We have already tried to combine the idea of instance reduction to general TSP with supervised
approach. To ensure fair competition, we modified MatNet architecture into a heavy-encoder and
light-decoder model for SL, which by convention, outputs a heatmap to guide subsequent local
searches. Note that calculating supervision solutions for ATSP/2DTSP at scale is extremely time-
consuming, we implemented the method on decision problem (HCP and 3SAT) instances where the
ground truth is easier to obtain.

Table 14: Performance comparison for HCP and 3SAT problems with different learning paradigms
under RedCO.

Method HCP-50 (L↓) FR↑ Time 3SAT-50 (L↓) FR↑ Time

Greedy 6.014 0.04% 0s 5.987 0.00% 0s
LKH 0.000 100.00% 1m29s 0.140 86.28% 2m11s
MatNet 0.481 53.04% 4m12s 0.329 73.12% 2m
RedCO-RL 0.017 98.28% 4m8s 0.117 88.44% 2m4s
RedCO-SL 0.000 100.00% 2m29s 0.077 92.32% 2m39s

Table 15: Performance comparison for larger HCP and 3SAT problems with different learning
paradigms under RedCO.

Method HCP-500 (L↓) FR↑ Time 3SAT-500 (L↓) FR↑ Time

Greedy 6.924 0.00% 1m27s 15.149 0.00% 1m15s
LKH 0.526 55.88% 1h1m 5.812 3.92% 1h10m
RedCO-SL 0.127 88.12% 1h24m 2.124 65.60% 1h22m

Results show that SL paradigm also works performantly under our RedCO framework, with better
scalability but more preliminary overheads for supervision and post searching. (RedCO-RL refers to
MatPOENet)

F.4 RESULTS ON VERTEX COVER PROBLEM

Echoing the introduction of more applicable problems in Appendix E.2, we have conducted additional
experiments on vertex cover (with 2500 test cases on N ≈ 50), following the reduction procedures
provided. Similar to the SAT-distributed general TSP, we specified the important parameters for data
generation as specified in Table 16. The experimental results are shown in Table 17.

Table 16: Parameters for vertex cover instance generation.
TSP Scale N Num Edges E Cover Size k Num Nodes NV C Range of N Average N

N ≈ 50 Uniform(10, 12) Uniform(3, 8) Uniform(8, 17) [43, 56] 50.0

Note that our initial experimental results show that our proposed models are easily adaptable into
the RedCO framework and perform decently on the new problem VC. With the transformation of
complementary graphs, a series of node selection tasks on the graph could also be addressed similarly.
Thus far, a representative range of edge-wise tasks (TSP, ATSP, HCP), node-wise tasks (VC, Clique,

Table 17: Results on vertex cover.
Method Tour length (↓) Found rate (↑)

GUROBI 0.000 100.00%
Greedy 7.351 0.00%
MatNet 2.349 1.08%
MatPOENet-8x 0.220 78.28%
MatDIFFNet-2OPT 0.477 66.60%

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Table 18: Performance comparison on standard symmetric TSP-50 test set.
Method Tour length (↓) Optimality gap (↓) Time/instance

Concorde (Optimal) 5.688 – 0.074s
AM (Kool et al., 2018) 5.747 1.04% < 0.001s
POMO (Kwon et al., 2020) 5.698 0.18% < 0.001s
Sym-NCO (Kim et al., 2022) 5.738 0.68% < 0.001s
GCN (Joshi et al., 2019) 5.776 1.53% 0.008s
UTSP+MCTS (Min et al., 2024) 5.818 2.30% 0.063s
DIMES+S+AS (Qiu et al., 2022) 5.859 3.01% 2.884s
DIFUSCO (Sun & Yang, 2023) 5.709 0.38% 0.388s
T2T+GS (Li et al., 2023) 5.690 0.04% 1.164s
GNNGLS-1s (Hudson et al., 2021) 5.693 0.10% 1.080s
MatNet-8x (Kwon et al., 2021) 5.857 2.97% 0.056s
MatPOENet*-8x (Ours) 5.781 1.63% 0.059s
MatPOENet*-128x (Ours) 5.726 0.66% 0.296s
MatDIFFNet-2OPT (Ours) 5.721 0.59% 0.509s

Table 19: Performance comparison on standard symmetric TSP-100 test set.
Method Tour length (↓) Optimality gap (↓) Time/instance

Concorde (Optimal) 7.756 – 0.404s
AM (Kool et al., 2018) 7.951 2.52% < 0.001s
POMO (Kwon et al., 2020) 7.883 1.64% 0.001s
Sym-NCO (Kim et al., 2022) 7.927 2.21% < 0.001s
GCN (Joshi et al., 2019) 8.307 7.08% 0.011s
UTSP+MCTS (Min et al., 2024) 8.069 4.46% 0.223s
DIMES+S+AS (Qiu et al., 2022) 8.061 3.94% 8.508s
DIFUSCO (Sun & Yang, 2023) 7.845 1.14% 0.409s
T2T+GS (Li et al., 2023) 7.788 0.13% 1.198s
GNNGLS-1s (Hudson et al., 2021) 7.837 1.05% 1.389s
MatPOENet*-8x (Ours) 8.127 4.78% 0.262s
MatPOENet*-128x (Ours) 7.933 2.28% 0.758s
MatDIFFNet-2OPT (Ours) 7.840 1.08% 0.769s

etc.) and decisive problem (SAT) combined have formed a good coverage of mainstream COPs on
graphs. In the future, we will delve further into the detailed implementation and improvements on the
instance-level performance and work on more problems.

F.5 RESULTS ON STANDARD SYMMETRIC TSP

To better align our work with previous literature in pursuit of 2D TSP, additional experiments have
been conducted on the consistent test dataset of symmetric TSP-50 and TSP-100. Each dataset
consists of 1280 instances featured by node coordinates. Results are shown in Table 18 and Table 19.
The results of previous works are re-implemented or re-executed with the provided model weights
within our consistent evaluation environment to ensure fair comparison.

Note. All methods except MatNet and those proposed in this paper adopt 2D coordinates as input
node features. In contrast, our methods solely encode the distance matrix as input information.
Additionally, our models can be trained on mixed data, whereas previous works were exclusively
trained on symmetric TSP only. These comparative results demonstrate that our models can achieve
comparable (and even better in some cases) performance without utilizing coordinates, validating our
proposed MatPOENet and MatDIFFNet as successful matrix encoders for symmetric TSP.

F.6 RESULTS ON REAL-WORLD INSTANCES

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Table 20: Tested 45 TSPLIB instances of scale range: [14, 195]
att48.tsp berlin52.tsp ch130.tsp ch150.tsp eil101.tsp
eil51.tsp eil76.tsp kroA100.tsp kroC100.tsp kroD100.tsp

lin105.tsp pr76.tsp rd100.tsp st70.tsp bayg29.tsp
bays29.tsp brg180.tsp fri26.tsp gr120.tsp gr24.tsp

gr48.tsp gr96.tsp ulysses16.tsp ulysses22.tsp bier127.tsp
d198.tsp kroA150.tsp kroB100.tsp kroB150.tsp kroE100.tsp

pr107.tsp pr124.tsp pr136.tsp pr144.tsp pr152.tsp
rat195.tsp rat99.tsp u159.tsp brazil58.tsp dantzig42.tsp

gr17.tsp gr21.tsp hk48.tsp swiss42.tsp burma14.tsp

Table 21: Results on TSPLIB instances.
Method Avg. tour length

LKH3 4.8622
Greedy 5.4455
MatPOENet 5.0811
MatDIFFNet 5.2744

In the main experiment, this paper primarily focuses on synthetic data for testing. To address this
limitation, we have additionally tested our methods on a subset of standard TSPLIB instances, which
are renowned for their real-world scenarios in TSP evaluation. We selected 45 instances with city
scales ranging from 14 to 195 (as listed in Table 20). These instances encompass different distance
types (such as “EUC 2D”, “GEO”, etc.) and representation formats (such as “coordinates”, “full
matrix”, “diagonal matrix”, etc.). To ensure a fair evaluation and optimally leverage the matrix-
encoding capability of our unified framework and models, we have rewritten the selected instances
into a consistent format of ‘EDGE WEIGHT TYPE: EXPLICIT’ and ‘EDGE WEIGHT FORMAT:
FULL MATRIX’, with all distances scaled to [0, 1]. The results are given in Table 21.

The results demonstrate that our models are also effective on problem instances with completely
unseen distributions and varying sizes. We would like to kindly remind the readers that an important
aspect is that we are the first to evaluate the TSPLIB instances without any initial knowledge from
node coordinates. Thank you again for enhancing the completeness of our evaluation. The task of
improving the generalizability towards more real-world cases are planned for future research.

F.7 FULL EXPERIMENTAL RESULTS

For your quick reference, we present a complete version of experimental results in Table 22, supple-
mentary to Table 2 in the main context, containing both major results and most additional results. A
substantial quantity of empirical investigations are conducted to provide a comprehensive evaluation
of our proposed framework and models.

G FURTHER DISCUSSIONS

G.1 NOTE ON LKH

We have been conducting a preliminary study on the boundary of the strong heuristic LKH when
dealing with general TSP beyond the 2D Euclidean space where it holds an overwhelming advantage.
LKH is a heuristic with three main components: the α-nearest measure, node penalties, and the k-opt
searching algorithm. It operates in the following steps:

1. Compute the α-Nearest Measure: The α-measure of an edge is calculated based on the
length of the minimum 1-tree of a graph and the minimum 1-tree containing that edge. The
α-measures are used to specify the edge candidate set.

2. Node Penalties: LKH employs a subgradient optimization technique to obtain penalties over
each node and modifies the distances.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 22: Full experimental results. Reported data for ATSP and 2DTSP are tour length. “Single”:
models trained and tested on each problem respectively. “Mixed”: unified models trained with a
mixture of 4 tasks on each scale. Asterisked (*): a unified model trained with a mixture of 4 tasks
and 3 scales. ‘8x’: representing 8 parallel trials for sequential model solving. BQ-NCO (Drakulic
et al., 2023) and GOAL (Drakulic et al., 2024) reports their results on ATSP but have not been
open-sourced yet. We make estimation according to their reported optimality gap for reference only.
Bold: the best score of neural solvers in each column. Underlined: the best solved length over the
full set for reference. Red box and blue box : ours that outperform LKH with max trials=10,000
and max trials=500 respectively. Time: the average time (seconds) per instance solving over each
line, with batch size set to 1.

ID Methods Train Data ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓ Avg. Gap↓ Avg. FR↑ Time

Sc
al

e:
N

≈
20

1 Gurobi - 1.5349 3.8347 0.0000 100.00% 0.0000 100.00% 1.3424 - 100.00% 0.135
2 LKH (10000) - 1.5349 3.8347 0.0008 99.92% 0.0000 100.00% 1.3426 0.01% 99.96% 0.327
3 LKH (500) - 1.5349 3.8347 0.0056 99.44% 0.0000 100.00% 1.3438 0.11% 99.72% 0.038
4 Nearest Neighbor - 2.0069 4.5021 3.8556 0.48% 3.0504 0.32% 3.3428 149.02% 0.40% 0.000
5 Farthest Insertion - 1.7070 3.9695 3.3136 1.76% 4.8816 0.00% 3.4679 158.34% 0.88% 0.000

6 MatNet ATSP 1.5871 4.2612 2.9608 1.12% 3.4772 0.56% 3.0716 128.82% 0.84% 0.005
7 MatNet-8x ATSP 1.5391 3.9735 1.5476 9.28% 1.9184 6.08% 2.2446 67.21% 7.68% 0.036
8 MatNet Mixed 1.6359 3.9114 0.9740 27.60% 3.4656 11.04% 2.4967 85.99% 19.32% 0.005
9 MatNet-8x Mixed 1.5645 3.8478 0.1936 80.92% 1.6272 1.36% 1.8083 34.71% 41.14% 0.037

10 Non-MatNet-POE Mixed 1.7133 3.8990 0.8400 33.24% 0.5760 50.64% 1.7571 30.89% 41.94% 0.005
11 Non-MatNet-POE-8x Mixed 1.6057 3.8695 0.5444 53.28% 0.3344 67.52% 1.6057 19.62% 60.40% 0.035
12 DIMES Mixed 2.2335 4.1696 2.9448 2.67% 2.6660 2.12% 3.0035 123.74% 2.39% 0.035
13 DIMES-AS(100) Mixed 1.6790 3.9092 0.4596 60.12% 0.2828 77.12% 1.5826 17.90% 68.62% 0.522
14 DIMES-AS(200) Mixed 1.6439 3.8809 0.4464 61.92% 0.3068 75.16% 1.5695 16.92% 68.54% 1.124

15 MatPOENet Mixed 1.6445 3.8643 0.8676 32.60% 0.4540 61.88% 1.7076 27.21% 47.24% 0.006
16 MatPOENet-8x Mixed 1.5695 3.8389 0.1760 82.68% 0.0112 98.88% 1.3989 4.21% 90.78% 0.043
17 MatPOENet* Mixed 1.5933 3.8632 0.4052 62.24% 0.1528 84.88% 1.5036 12.01% 73.56% 0.006
18 MatPOENet*-8x Mixed 1.5506 3.8372 0.0556 94.44% 0.0008 99.92% 1.3610 1.39% 97.18% 0.043

Sc
al

e:
N

≈
50

19 Gurobi - 1.5545 5.6952 0.0000 100.00% 0.0000 100.00% 1.8124 - 100.00% 0.296
20 LKH (10000) - 1.5548 5.6953 0.0000 100.00% 0.2784 74.80% 1.8821 3.85% 87.40% 0.513
21 LKH (500) - 1.5557 5.6964 0.0000 100.00% 0.4796 61.80% 1.9329 6.65% 80.90% 0.059
22 Nearest Neighbor - 2.0945 6.9977 5.1120 0.00% 5.9872 0.00% 5.0548 178.90% 0.00% 0.000
23 Farthest Insertion - 1.8387 6.0998 4.0224 5.28% 10.3964 0.00% 5.5893 208.39% 2.64% 0.001

24 MatNet ATSP 1.5753 7.3618 1.4856 11.80% 8.4020 0.00% 4.7062 159.67% 5.90% 0.007
25 MatNet-8x ATSP 1.5612 6.9445 0.6036 49.24% 6.3468 0.00% 3.8640 113.20% 24.62% 0.061
26 MatNet Mixed 1.8098 6.0000 0.9288 30.84% 1.1900 30.52% 2.4821 36.95% 30.68% 0.007
27 MatNet Mixed 1.7340 5.8664 0.3056 71.52% 0.2992 73.08% 2.0513 13.18% 72.30% 0.007
28 Non-MatNet-POE Mixed 1.8606 5.8855 1.0392 27.28% 1.1416 31.32% 2.4817 36.93% 29.30% 0.007
29 Non-MatNet-POE-8x Mixed 1.7988 5.8178 0.4080 64.72% 1.0020 34.76% 2.2566 24.51% 49.74% 0.060
30 Rand-MatNet-POE Mixed 1.8282 6.0207 0.9380 30.00% 1.4404 22.12% 2.5568 41.07% 26.06% 0.006
31 Rand-MatNet-POE-8x Mixed 1.7513 5.8853 0.3096 71.52% 0.4708 60.84% 2.1042 16.10% 66.18% 0.063
32 FI-MatNet-POE-8x Mixed 1.8370 6.0962 0.1920 82.80% 0.6060 55.72% 2.1828 20.44% 69.26% 0.064
33 MatNet-Random-8x Mixed 2.1044 5.8981 0.8560 33.20% 1.1620 30.44% 2.5051 38.22% 31.82% 0.064
34 MatNet-Trainable-8x Mixed 1.8923 5.8157 0.4148 63.96% 0.5012 58.52% 2.1560 18.96% 61.24% 0.071
35 GLOP Single 1.8885 6.6499 3.7244 0.84% 4.9816 0.76% 4.3111 137.87% 0.80% 0.115
36 DIMES Mixed 2.3341 6.6271 3.1788 1.56% 5.3656 0.12% 4.3764 141.47% 0.84% 0.055
37 DIMES-AS(100) Mixed 1.6920 5.9447 0.5908 46.04% 1.5830 20.44% 2.4528 35.33% 33.24% 2.016
38 DIMES-AS(200) Mixed 1.6794 5.9194 0.5000 54.20% 1.4296 23.36% 2.3821 31.43% 38.78% 3.879

39 MatPOENet-8x Single 1.5643 5.7042 0.0652 93.52% 0.1888 81.72% 1.8806 3.76% 87.62% 0.066
40 MatPOENet Mixed 1.6881 5.7694 0.1444 86.20% 1.3644 27.08% 2.2416 23.68% 56.64% 0.009
41 MatPOENet-8x Mixed 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082 5.29% 87.94% 0.067
42 MatPOENet* Mixed 1.6753 5.8633 0.2112 80.48% 0.8172 42.40% 2.1417 18.17% 61.44% 0.008
43 MatPOENet*-8x Mixed 1.6285 5.7575 0.0280 97.20% 0.1172 88.44% 1.8828 3.88% 92.82% 0.067
44 MatPOENet-8x (N > d) Mixed 1.8799 5.9742 0.4548 60.24% 0.3292 75.56% 2.1595 19.15% 68.00% 0.062

45 MatDIFFNet Single 2.0713 5.7954 2.0992 15.32% 0.0464 98.16% 2.5031 38.11% 56.74% 0.157
46 MatDIFFNet-2OPT Single 1.7186 5.7279 0.8324 44.08% 0.0188 98.64% 2.0744 14.46% 71.36% 0.165
47 MatDIFFNet Mixed 1.8385 6.2332 2.0648 15.76% 0.1112 94.68% 2.5619 41.35% 55.22% 0.155
48 MatDIFFNet-2OPT Mixed 1.6591 5.8619 0.8192 44.52% 0.0496 95.64% 2.0975 15.73% 70.08% 0.164

Sc
al

e:
N

≈
10

0

49 Gurobi - 1.5661 7.7619 0.0000 100.00% 0.0000 100.00% 2.3320 - 100.00% 0.689
50 LKH (10000) - 1.5674 7.7709 0.0000 100.00% 1.0008 44.80% 2.5848 10.84% 72.40% 0.811
51 LKH (500) - 1.5704 7.8015 0.0000 100.00% 1.6656 28.08% 2.7594 18.33% 64.04% 0.095
52 Nearest Neighbor - 2.1321 9.6696 5.4016 0.20% 8.3236 0.00% 6.3859 173.84% 0.10% 0.002
53 Farthest Insertion - 1.9333 8.4847 3.1256 26.64% 23.5160 0.00% 9.2649 297.29% 13.32% 0.003

54 MatNet ATSP 1.6217 19.0644 17.8620 0.00% 40.1188 0.00% 19.6667 743.34% 0.00% 0.015
55 MatNet-8x ATSP 1.5983 17.8146 13.5196 0.00% 35.3216 0.00% 17.0635 631.71% 0.00% 0.094
56 MatNet Mixed 1.9849 8.2551 0.9776 31.68% 2.0408 13.84% 3.3146 42.14% 22.76% 0.018
57 MatNet-8x Mixed 1.9210 8.1028 0.3640 69.60% 0.7740 50.76% 2.7904 19.66% 60.18% 0.095
58 GLOP Single 1.8491 8.8849 2.7850 2.00% 6.4280 0.08% 4.9868 113.84% 1.04% 0.176
59 BQ-NCO ATSP 1.5904 - - - - - - - - 0.016
60 GOAL ATSP 1.5771 - - - - - - - - 0.039
61 Non-MatNet-POE Mixed 2.0307 8.9929 1.0616 28.76% 1.2944 26.88% 3.3449 43.43% 27.82% 0.015
62 Non-MatNet-POE-8x Mixed 1.9800 8.7895 0.4420 63.60% 1.0796 31.80% 3.0728 31.77% 47.70% 0.093
63 DIMES Mixed 2.5186 9.5777 3.8064 1.16% 3.8064 0.00% 6.4018 174.52% 0.58% 0.124
64 DIEMS-AS(100) Mixed 1.6968 8.3390 0.8480 24.00% 2.8040 7.16% 3.4220 46.74% 15.58% 8.437

65 MatPOENet Mixed 1.9183 8.2987 0.0984 90.28% 1.0704 32.32% 2.8465 22.06% 61.30% 0.017
66 MatPOENet-8x Mixed 1.8655 8.1719 0.0052 99.48% 0.2440 77.12% 2.5717 10.28% 88.30% 0.094
67 MatPOENet* Mixed 1.8107 8.2703 0.0796 92.12% 1.2856 26.04% 2.8616 22.71% 59.08% 0.017
68 MatPOENet*-8x Mixed 1.7607 8.0817 0.0012 99.88% 0.3244 70.92% 2.5420 9.01% 85.40% 0.095

69 MatDIFFNet Single 1.9432 7.9684 4.4536 2.96% 0.0404 98.44% 3.6014 54.43% 50.70% 0.103
70 MatDIFFNet-2OPT Single 1.7165 7.8482 1.1404 37.72% 0.0240 98.60% 2.6823 15.02% 68.16% 0.112
71 MatDIFFNet Mixed 1.8763 8.9030 3.2524 5.68% 0.1940 90.52% 3.5564 52.50% 48.10% 0.102
72 MatDIFFNet-2OPT Mixed 1.6965 8.1804 0.9148 43.04% 0.0952 91.44% 2.7217 16.71% 67.24% 0.114

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

3. Search Solutions by k-Opt: k edges in the current tour are exchanged by another set of k
edges from the candidate sets to improve the tour until no more exchanges can be found.

There is a fatal flaw of LKH on binary TSP (such as the SAT-distributed TSP in our case) in the first
step of computing α(i, j). For a discrete TSP problem instance, α(i, j) can only be either 0 or 1.
This implies that many edges may have the same α(i, j) value of 0, making it difficult to distinguish
effective candidates and consequently leading to suboptimal performance on such discrete instances.
Moreover, unlike the generation of HCP instances in our experiments where the ones and zeros are
randomly sampled from a uniform distribution and a zero-length cycle is forced in each problem
matrix, the 3SAT-distributed TSP cases are more complex due to their highly structured translation
from variables and clauses to the HCP distance matrix. One possible approach to address this problem
is to use a learned neural mapping network to transform some difficult binary distance matrices into
the more softened and thus easier space to assist LKH solving.

G.2 NOTE ON THE SCALABILITY AND APPLICABILITY

Scalability remains one of the most frequently encountered challenges in the field of neural combina-
torial optimization. The following is a conclusion of our observations and clarifications regarding the
scalability issue, based on our investigations and experiments.

Current Status of General TSP Solving. Firstly, as demonstrated by the main experiments (Ta-
ble 22), although the scale of the tested instances is not extremely large, the baseline TSP solvers
(including both neural methods and strong heuristics such as LKH3) do not yield satisfactory results
within an acceptable time frame. This indicates that for the relatively underexplored task of general
TSP, the solvers at the current scale are still insufficiently effective, not to mention generalizing to
larger scales.

A Shared Convention. From a peer perspective, a common phenomenon can be observed in top
published literature targeting “multi-task”, “general”, and even “universal” combinatorial optimiza-
tion, that an evaluation on problems with up to 100 nodes is generally an acknowledged convention.
Table 6 presents a recent review of these works, ranging from the applicable problems to the evaluated
scales of tasks.

Technical Limitations. The training of MatPOENet consumes O(N3) space (O(N2) space for
the attention mechanism and O(N) space for N rollout iterations), making it impractical to run on
large-scale instances (e.g., N ≥ 500) on a single GPU. However, as shown in Table 5, RedCO’s
ability to learn larger-scaled instances can be achieved by switching to different learning paradigms.
For example, a modified version of heatmap-based MatPOENet performs well on N ≈ 500 through
vanilla supervised learning. Another approach to improving the ability to solve large-scale combinato-
rial optimization problems is to resort to the divide-and-conquer paradigm, which is also a consensus
and has been proven feasible and effective (Ye et al., 2024b; Fu et al., 2021; Luo et al., 2024). In this
context, a strong solver for small-to-medium-sized instances remains of irreplaceable importance. We
have readily incorporated the latest work GLOP, which significantly enhances MatNet’s scalability.
Moreover, the promising generative models for discrete optimization can be considered as detailed in
Appendix G.4, which is also planned for our future work.

G.3 DISCUSSION OF MATPOENET V.S. MATDIFFNET

A Trade-off among Quality, Efficiency, and Scalability. As shown in the main result table,
MatPOENet excels at smaller instances as a strong yet compact solver with faster inference and more
transparent training process but can hardly scale due to its RL nature, whereas MatDIFFNet has more
potential to scale to larger cases with more accurate proximity of the solution space (especially in
continuous 2DTSP and complex discrete space, e.g., 3SAT) via its generative design but consumes
much longer time to train and infer due to its heavier architecture and diffusion processes.

Comparison of Stability. MatDIFFNet does not directly generate solutions but decodes the heatmap
to obtain them. Consequently, the solution quality of MatDIFFNet is less stable than that of Mat-
POENet. Specifically, in the case of MatDIFFNet, if there is an error in predicting a particular node,
it will directly impact the predictions of all subsequent nodes. In contrast, MatPOENet generates
solutions step by step and can select better subsequent nodes based on the current state even if there

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

is an error in a particular node. This instability also results in the relatively poor performance of
MatDIFFNet when solving the Hamiltonian cycle problem (HCP).

G.4 DISCUSSION OF GENERATIVE COMBINATORIAL OPTIMIZATION

Strong scalability of neural backbone and sparsification. In addition to the fact that SL-based
neural networks generally outperform their RL counterparts in terms of scalability, MatDIFFNet
employs a GNN as the backbone encoder, which enables convenient graph sparsification (e.g., k-
nearest neighbor) on TSP. This effectively reduces computational overhead and improves inference
efficiency. As demonstrated in previous research (Qiu et al., 2022), training TSP solvers with a
sparsification factor of, for example 50, significantly reduces the memory and time overhead when
training graphs with while maintaining competitive performance. This is also one of the crucial
reasons we choose general TSP, an edge-based selection task, as the endpoint for problem reduction.
In contrast, such an edge sparsification scheme cannot be adopted when learning to solve most
node-based selection problems, such as vertex cover and independent set.

Rich expressivity of learning solution space distribution. In our investigation of recent literature
on neural solving of combinatorial optimization, especially for graph problems like TSP, a notable
observation is the growing attention and demonstrated performance of diffusion-based generative
models (Sun & Yang, 2023; Li et al., 2023). From DIFUSCO and T2T to our proposed MatDIFFNet
and its future versions, generative models possess powerful expressive and modeling capabilities.
They can learn the distribution of high-quality solutions conditioned on specific problem instances,
which is beneficial for providing a good starting point or exploration direction in the solution space.
In the context of combinatorial optimization, this means they can potentially generate a variety of
solutions that might be closer to the optimal one, rather than being limited to a single or a few
predicted solutions as in some traditional methods.

Good prospects of consistency model and unsupervised tuning. Moreover, the latest research on
generative combinatorial optimization indicates that diffusion models can be improved through con-
sistency training (Song & Dhariwal). Consistency models learn to map directly from different noise
levels to the optimal solution for a given instance, thereby achieving a high-quality, rapid one-step gen-
eration solution. This approach reduces the number of iterations and enhances efficiency. Therefore,
we will introduce consistency models into our framework in the future to optimize the inference speed
and computational efficiency of diffusion models. Also, as suggested in works (Sanokowski et al.,
2023; 2024), diffusion models finely foster the applicability of unsupervised learning of combinatorial
optimization.

For these reasons, it is appropriate to present MatDIFFNet in parallel with MatPOENet in the main
context. This represents both conventional powerful autoregressive solvers using reinforcement
learning and a model with wider extendability and value for further exploration. We maintain that
this provides a more comprehensive view of the current trend in neural combinatorial optimization.

38

	Introduction
	Related Works
	Preliminaries
	Covered CO Problems
	Polynomial-Time Reduction of CO to General TSP

	Methodology
	RedCO: Reductive CO Learning Framework
	Transformer-based Solver: MatPOENet
	Pseudo One-hot Embedding

	Diffusion-based Solver: MatDIFFNet
	Mix-Noised Reference Map and Dual Feature Convolution

	Experiments
	Experimental Setup
	Results and Discussions

	Conclusion and Future Work
	Details of Problem Reduction and Solution Transformation
	HCP v.s. TSP
	3SAT v.s. HCP
	Reduction from 3SAT to HCP
	Transform HCP Solution to 3SAT Solution

	Additional Related Work
	Conventional Solvers
	Learning Methods for TSP
	Combination of Neural and OR Methods
	Multi-Task CO Models
	Specific Solvers for SAT and HCP
	Note on Evaluation of Specific Solvers

	Network Details
	Vanilla MatNet and MatPOENet
	Graph-based Diffusion and MatDIFFNet

	Experimental Details
	Hyperparameters
	Scale Setting of 3SAT Instances
	Training Curves

	More Applications of RedCO
	More Adaptable Backbone: GNN-based DIMES
	Network Architecture
	Training Process
	Results and Discussion

	More Applicable Problems
	Vertex Cover
	Clique Problem
	Independent Set Problem
	Vehicle Routing Problems
	MatPOENet & MatDIFFNet as Problem-Specific Solver

	Supplementary Experiments
	Further Experiments of POE
	Pretraining-Finetuning Applications
	Comparison of Learning Paradigms
	blue Results on Vertex Cover Problem
	blue Results on Standard Symmetric TSP
	blue Results on Real-world Instances
	Full Experimental Results

	blue Further Discussions
	blue Note on LKH
	blue Note on the Scalability and Applicability
	blue Discussion of MatPOENet v.s. MatDIFFNet
	blue Discussion of Generative Combinatorial Optimization

