
Published as a conference paper at ICLR 2025

UNICO: ON UNIFIED COMBINATORIAL OPTIMIZATION
VIA PROBLEM REDUCTION TO MATRIX-ENCODED GEN-
ERAL TSP

Wenzheng Pan†, Hao Xiong†, Jiale Ma, Wentao Zhao, Yang Li, Junchi Yan∗

Sch. of Computer Science & Sch. of Artificial Intelligence, Shanghai Jiao Tong University
{pwz1121,taxuexh,heatingma,permanent,yanglily,yanjunchi}@sjtu.edu.cn
Code: https://github.com/Thinklab-SJTU/UniCO

ABSTRACT

Various neural solvers have been devised for combinatorial optimization (CO),
which are often tailored for specific problem types, e.g. TSP, CVRP and SAT, etc.
Yet, it remains an open question how to achieve universality regarding problem
representing and learning with a general framework. This paper first proposes
UniCO, to unify a set of CO problems by reducing them into the general TSP form
featured by distance matrices. The applicability of this strategy depends on the
efficiency of the problem reduction and solution transition procedures, which we
show that at least ATSP, HCP, and SAT are readily feasible. The hope is to allow
for the effective and even simultaneous use of as many types of CO instances as
possible to train a neural TSP solver, and optionally finetune it for specific problem
types. In particular, unlike the prevalent TSP benchmarks based on Euclidean
instances with 2-D coordinates, our studied domain of TSP could involve non-
metric, asymmetric or discrete distances without explicit node coordinates, which
is much less explored in TSP literature while poses new intellectual challenges.
Along this direction, we devise two neural TSP solvers with and without supervision
to conquer such matrix-formulated input, respectively: 1) MatPOENet and 2)
MatDIFFNet. The former is a reinforcement learning-based sequential model
with pseudo one-hot embedding (POE) scheme; and the latter is a Diffusion-based
generative model with the mix-noised reference mapping scheme. Experiments
on ATSP, 2DTSP, HCP- and SAT-distributed general TSPs show the strong ability
towards arbitrary matrix-encoded TSP with structure and size variation.

1 INTRODUCTION

NP

P

NP-Complete NP-Hard

General TSP

Euclidean
Symmetric
Asymmetric
Non-metric
Binary
...

SolveReduce

HCP

3SAT

SAT

Figure 1: CO problems and
the polynomial-time reduction.
HCP, 3SAT and SAT are used
as case studies in this paper.

Beyond heuristics, learning-based neural solvers have shown suc-
cess in solving combinatorial optimization (CO) problems. While
designing neural solvers for a specific type, e.g., TSP, has been a
popular pursuit (Khalil et al., 2017; Vinyals et al., 2015), yet such a
problem type-specific paradigm can be restrictive in real-world with
immense problem diversity, which prompts the following question:

• Can we develop a general framework capable of learning a range
of CO problems on graph in a unified manner?

In this paper, we resort to utilizing problem reduction, namely
transformation between different problem types which is in fact
largely neglected by previous research. By the theory of computa-
tional complexity, any NP problem can be transformed (or in a more
professional terminology, reduced) into an NP-Complete (NPC)
problem in polynomial time, and every NP problem can be reduced to an NP-hard problem in
polynomial time (Lewis, 1983; Van Leeuwen, 1991). The famous Karp’s 21 NPC problems (Karp,
1972) exemplify the polynomial-time reduction between 21 NPC CO problems.

∗Corresponding author, who is also affiliated with Shanghai Innovation Institute. †Equal contribution, in
alphabetical order of the last name. This work was partly supported by NSFC (92370201, 62222607).

1

https://github.com/Thinklab-SJTU/UniCO

Published as a conference paper at ICLR 2025

Table 1: Comparison of different current works with the key word “multi-task solver”. Refer to
Table 6 in Appendix B.4 for a more thorough comparison of recent related works.

Method MTCO
(Li & Liu, 2023)

ASP
(Wang et al., 2024)

MAB-MTL
(Wang & Yu, 2023)

MVMoE
(Zhou et al., 2024)

UniCO
(Ours)

Evaluated Problems PFSP 2DTSP, CVRP TSP, CVRP, OP, KP VRPs ATSP, 2DTSP, DHCP, 3SAT
Applicable Problems

N/A
(no solver is proposed)

{problem P| P ≤P general TSP}
Multi-Task % " Limited to VRP variants "

Multi-Scale " " " "

Single Solver % % " "

Solver Type Quadratic Programming Evaluated on ML-based ones ML-based ML-based ML-based

Brief Description
Enhance PFSP solving via

knowledge transferring
between similar instances

A model-/problem-agnostic
training framework to

improve generalizability

A multi-task neural solver
for specific problems

via multi-armed bandits

A multi-variant VRP
solver with hierarchical

gating mechanism

A neural CO framework with
two solvers for problems
reducible to general TSP

Specifically, by introducing the general Traveling Salesman Problem (general TSP, see Def. 1) as
the reduction endpoint, one can construct a problem reduction tree as shown in Fig. 1, suggesting
the potential of training a general TSP solver to tackle problems within the reduction tree. While
theoretically, other NP-hard problems, e.g., mixed integer linear programming (MILP), could also
serve as the reduction endpoint (Zhang et al., 2023), TSP has already fostered extensive research
attention in neural solvers in recent literature (U et al., 2021). In fact, existing machine learning
research on (end-to-end) MILP neural networks are sill limited (Zhang et al., 2023), compared with
the emerging progress in neural TSP (Li et al., 2023b; Ye et al., 2024b; Drakulic et al., 2023) solvers.

In the context of developing a general neural TSP solver for various CO problems as discussed above,
the reduced TSP instances in fact can be represented by an arbitrary distance matrix in both its size
as well as its elementary value, far beyond the popular 2D points form (Kwon et al., 2020) in the
well-studied Euclidean space. In another word, it can be no longer a metric space and the distance
may break the triangular inequality. Currently, Transformer (Vaswani et al., 2017) and graph neural
network (GNN) have become popular backbones for neural TSP solvers (Joshi et al., 2019; Kool et al.,
2018) where the 2D coordinates of the points are often used as node features, which constraints the
research scope of the TSP world. For the general TSP with arbitrary matrix as input, it is technically
nontrivial to achieve effective featuring of the problem instances with only pair-wise relationships
and have non-deterministic node numbers (Joshi et al., 2020). To address such challenges, this paper
proposes a novel framework called UniCO and two corresponding neural solvers (MatPOENet and
MatDIFFNet) that innovatively improves prevalent Transformer and Diffusion models as matrix
encoder for general TSP learning and solving. Our contributions can be summarised as follows:

• We conceptualize UniCO, namely Unified Combinatorial Optimization learning framework, lever-
aging the rich expressivity of general TSP with arbitrary positive-valued matrix for unified rep-
resentation of multiple CO problems (where reducible). We also construct standard datasets
benchmarking the under-explored capacity of the general TSP world accordingly. This practice, to
our best knowledge, has not been performed, especially in the context of machine learning for CO.

• We propose MatPOENet, namely Matrix encoding Network with Pseudo One-hot Embedding, a
reinforced Transformer-based model which utilizes a novel size-agnostic node embedding to aid
instance input, thereby significantly improving model scalability and performance of general TSP.

• We propose MatDIFFNet, namely Matrix encoding Diffusion Network, a supervised diffusion-
based model which leverages a novel mix-noised reference map module, thus extending the
promising ability of generative model for Euclidean TSP solving to matrix-formulated general TSP.

• We instantiate UniCO with the above two proposed neural backbones and one more existing method,
DIMES, and conduct experiments on general TSP with four types of CO problem distributions, i.e.,
ATSP, 2DTSP, DHCP, and 3SAT. Experiments show that measuring either the average TSP tour
length or the average rate that solvers find optimal solutions for decisive tasks, our best-performing
methods beat compared neural approaches, and outperform the strong heuristic LKH in some cases.

2 RELATED WORKS

Multi-Task CO Solvers. To the best of our knowledge, this is the first work that combines neurally
matrix-encoded general TSP solver and unified multi-task CO learning. While similar concepts, e.g.,
“multi-task solver”, “universal solver”, etc., have also appeared in recent literature, they often denote
quite different approaches and functionalities. For example, MTCO (Li & Liu, 2023) devises a
“multi-task” CO framework which measures the similarity between CO problems, and then transfers
knowledge between similar instances within the same problem type to gain search speed-ups in its
quadratic programming solver. However, it solely focuses on the permutation flowshop scheduling
problem (PFSP) and is not specifically designed for learning-based neural solvers, making the

2

Published as a conference paper at ICLR 2025

CO Problems

HCP

Output ToursTSP
0.66

0.12

0.02 0.04

0.11
0.43 0.54

0.23

Non-metric, asymmetric Euclidean

Cost Matrices

General TSP
Neural Solver

SAT

Different problems
Different scales

a) Problem reduction to general TSP b) Problem solving c) Result transformation

Solutions
TSP: the shortest tour
HCP: existence of the
Hamiltonian cycle &
the Hamiltonian cycle
SAT: satisfiability &
values of the variables

Figure 2: The 3-step workflow of the UniCO learning framework.

term “multi-task” in its title misleading from a learning perspective and irrelevant to the theme of
this paper. ASP (Wang et al., 2024) proposes a “universal” framework to address generalization
issues of neural CO solvers with a model-/problem-agnostic training policy. However, no specific
new solver is proposed, which we believe is technically nontrivial to deal with different problems.
MAB-MTL (Wang & Yu, 2023) proposes a multi-armed bandit framework to train a neural solver
with a shared encoder but different header and decoder. Yet, as the header and decoder necessitate
customized designs for specific problems, the solver cannot be readily applied to unseen problems
beyond its four training tasks. GCNCO (Li et al., 2025a) builds upon the similar header-encoder-
decoder structure yet additionally enforces the consistency of the optimization trajectories across
different problems to promote learning generalizable strategies corresponding to the shared structure
among different CO problems. MVMoE (Zhou et al., 2024) proposes a “multi-task” vehicle routing
solver with mixture-of-experts and a hierarchical gating mechanism to enhance the model capacity
with good computational complexity. However, its applicable problems are also limited to variants of
VRPs. Table 1 outlines the disparities between representative existing works and ours, highlighting
the uniqueness and novelty of our work. More recent works like MTNCO (Liu et al., 2024),
UNCO (Jiang et al., 2024), and GOAL (Drakulic et al., 2024), etc., are discussed in Appendix B.4.

General TSP Solvers. Besides traditional solvers and heuristics, neural methods for TSP with 2D
coordinates have been well studied in literature (Kool et al., 2018; Kwon et al., 2020; Qiu et al., 2022;
Sun & Yang, 2023; Li et al., 2023b; 2024; Xin et al., 2021), as systematically discussed in Li et al.
(2025b). However, neural solvers for general TSP are much more challenging due to a lack of effective
and scalable neural networks to handle the pairwise distance information. To our best knowledge, few
works have demonstrated comparable capability of general TSP solving. MatNet (Kwon et al., 2021)
proposes a Transformer-based solver for asymmetric TSP (ATSP), which takes distance matrices as in-
put. However, the adopted one-hot embedding has limitations in dealing with arbitrarily large matrices,
and its implementation typically includes a preset value of maximum size, restricting its generalization
ability. BQ-NCO (Drakulic et al., 2023) proposes leveraging bisimulation quotienting to enhance out-
of-distribution robustness on CO problems, which is capable of solving ATSP via Markov Decision
Process (MDP) formulation. The following research lines show the potential of adaptation to general
TSP solving without major revisions to the model architecture or learning paradigm. Divide-and-
conquer methods (Ye et al., 2024b; Zheng et al., 2024b; Luo et al., 2023) generally learn to break down
a problem into sub-problems to facilitate solving, which accommodate matrix encoding models like
MatNet as sub-problem solvers for general TSP solving. Non-autoregressive methods, including pre-
dictive solvers (Joshi et al., 2019; Qiu et al., 2022; Min et al., 2024) and recent generative solvers (Sun
& Yang, 2023; Li et al., 2023b; 2024), typically utilize GNNs to encode both node features (coor-
dinates) and edge features (distances) for directly preidicting solutions, which can be adapted for
general TSP solving with minor modifications to the node features at the cost of subpar results.

In Appendix B, we further discuss exact solvers, heuristic solvers for general TSP; auto- and non-
auto-regressive neural solvers and neural-heuristic solvers for 2DTSP, divide-and-conquere methods
for large routing problems, and specific solvers for other covered CO problems (HCP, SAT, etc.).

3 PRELIMINARIES

3.1 COVERED CO PROBLEMS

Definition 1 (Traveling Salesman Problem (TSP)). Given a complete, directed or undirected graph
without self-loops denoted by G = (V, E) (V = {1, 2, · · · , N}: the node set, E: the edge set) along
with a cost matrix C of the shape N × N where the entry Cij is the cost for edge (i, j) ∈ E , the
problem is to find the tour τ = (i1, · · · , iN) to minimize the total cost

∑N−1
k=1 Cikik+1

+CiN i1 .

3

Published as a conference paper at ICLR 2025

Algorithm 1 The training pipeline of UniCO.
Input: Problems {P} reduced to general TSP, batch size B, a general TSP solver S handling instances of
different scales.
repeat

Select a problem from {P} and generate a batch of B instances of the problem at the same scale;
Reduce the instances to general TSP instances with cost matrices {C(b)}Bb=1;
Train S with the input instances {C(b)}Bb=1;

until the training of S converges;

Definition 2 (Hamiltonian Cycle Problem (HCP)). Given a directed or undirected graph G =
(V, E), the problem is to determine whether there exists a Hamiltonian cycle in G.

Definition 3 (Boolean Satisfiability Problem (SAT) in conjunctive normal form (CNF)). SAT
aims to determine the existence of an interpretation that satisfies a given Boolean formula. A Boolean
formula in CNF is represented by a conjunction (denoted by ∧) of clauses that are disjunctions
(denoted by ∨) of variables. For example, (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ ¬x3) is a SAT instance of two
clauses (x1 ∨ ¬x2) and (¬x1 ∨ x2 ∨ ¬x3), and three variables x1, x2 and x3.

Special cases of TSP are defined according to the properties of the cost matrix C:

• Metric. A TSP is metric if the triangle inequality, i.e., Cij +Cjk ≥ Cik, holds for any different
three nodes i, j, and k. Specially, when C is derived from coordinates in Euclidean space, the TSP
is Euclidean.

• Symmetric. A TSP is symmetric if Cij = Cji for all i and j; otherwise, it is asymmetric.

We use the term “general TSP” to refer to TSPs either metric or non-metric, symmetric or asymmetric.
For HCP, without losing generality, we mainly discuss directed HCP (DHCP) in this paper. For SAT,
a special case of SAT in CNF with at most 3 variables is named as 3-Satisfiability Problem (3SAT).
Note any SAT problem can be reduced to 3SAT in polynomial time (Fouh et al., 2014). Throughout
this paper, for consistent representation and unified evaluation, when we mention any problem type
X, we prescribe a limit to its reduced general TSP formulation, i.e., differently distributed distance
matrices only. Furthermore, note that a wider range of problems (e.g., VC, Clique, certain VRPs,
FFSP, MIS, etc., as detailed in Appendix E.2), can be dealt with by our proposed methods.

3.2 POLYNOMIAL-TIME REDUCTION OF CO TO GENERAL TSP
The reduction relations of the covered CO problems in this paper can be summarized as 3SAT ≤P

HCP ≤P TSP (A ≤P B means that the problem A can be reduced to B in polynomial time). The
solutions can also be transformed from a TSP tour to the solution of the raw problem. The detailed
illustration of instance reduction and proofs are provided in Appendix A.

4 METHODOLOGY

4.1 UNICO: UNIFIED CO LEARNING FRAMEWORK

As illustrated in Fig. 2, given a CO instance, UniCO works in a 3-step pipeline: a) reduce the instance
to a general TSP instance with a distance matrix obtained by techniques in Sec. 3.2, b) feed the
distance matrix to a trained general tsp solver and output a tour, and c) transform the output tour into
the solution of the origin problem (efficiently). To prepare the training data, we build a problem pool
with CO problems of different scales that can be reduced to general TSP (see Sec. 5.1 for details).
During training, we randomly fetch problems from the pool, transform them to general TSP, and treat
the general CO solver training as an equivalent task to train the general TSP solver. A concise pipeline
is given in Algorithm 1. In the main context, we propose increments to two promising architectures
in solving general TSP across scales: the Transformer-based MatPOENet, and the Diffusion-based
MatDIFFNet, trained in the reinforcement (Williams, 1992) and supervised manner, respectively.
We describe the two architectures in Sec. 4.2 and Sec. 4.3. To demonstrate the general applicability
of UniCO to different backbone solvers, we additionally incorporate DIMES (Qiu et al., 2022), a
neural model based on GNN and meta-reinforcement learning, into our UniCO framework. Details
of model, training, and results of UniCO-DIMES are presented in Appendix E.1.

4.2 TRANSFORMER-BASED SOLVER: MATPOENET

Overview. As is known, MatNet (Kwon et al., 2021) is the first neural solver designed for matrix
encoding and asymmetric TSP. To overcome the inherent drawback that vanilla MatNet cannot scale

4

Published as a conference paper at ICLR 2025

POE POE· POET POE POE· POET OE OE· OET

d.1) POE with N=30, d=16 d.2) POE with N=10, d=16 d.3) Vanilla OE with N(=d)=10

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Rough Solver

a) Initial Distance Matrix b) Re-permutation c) POE Matrix

1

2
3

0

pos
𝑝𝑜𝑠

𝑁
+

𝑖

𝑑

Calculate POE Value

𝑝
𝑜
𝑠

𝑖

Figure 3: a-c) The three steps to generate the pseudo one-hot embedding (POE). d) The visualization
of POE when N > d (d.1) and N < d (d.2) and one-hot embeddings (OE) (d.3), lighter blocks
represent higher values. As the approximation of OE, POEs in Fig. d.1) and d.2) both achieve
concentrating POE pairs of high dot products near the diagonal of the dot product matrix.

to arbitrary size of input due to its fixed initial node embeddings, we propose MatPOENet, namely
Matrix encoding Network with Pseudo One-hot Embedding for general TSP, which greatly improves
model scalability as well as performance. MatPOENet utilizes an encoder-decoder Transformer
architecture to learn features of each city in the TSP, and is trained with deep reinforcement learning
scheme (DRL). Generally, the model takes two sets of initial node embeddings a0,b0 and a distance
matrix C as input, and sequentially calculates the probability of nodes selected for the next position in
the TSP tour via standard attention operations and a mask indicating whether a node has been visited.
The model is trained using POMO (Kwon et al., 2020) by DRL. For each instance with distance C,
N tours {τ1, · · · , τN} with different starting nodes are sampled to calculate the policy gradient:

∇θJ(θ) ≈
1

N

N∑
n=1

(
L(τn)− b(C)

)
∇θ log pθ(τ

n|C), (1)

where L(τ) is the length of tour τ , b(C) = 1/N
∑N

n=1 L(τ
n) is a baseline method, set as the mean

tour length of the N tours. Mathematical details of the model and training process is deferred to
Appendix C.1 and the general network structure is correspondingly illustrated in Fig. 4. The POE
technique introduced in Sec 4.2.1 is the highlight of our design, taking its effect by assigning b0 a
non-trivial position embedding to largely elevate the performance and scalability of the model.

4.2.1 PSEUDO ONE-HOT EMBEDDING

In vanilla MatNet, zero embedding and one-hot embedding is adopted for initial node embedding.
However, the one-hot component is of fixed size and cannot accommodate arbitrary input matrix
sizes. Thus, we seek an input size-agnostic encoder with dimension d, thereby dismissing the need
for the one-hot embedding. As a solution, we propose the Pseudo One-hot Embedding (POE) in the
continuous vector space to replicate the functionality of the vanilla one-hot embedding. We denote
the input embedding as xi ∈ Rd where i is the node index. When we are applying the model on large
instances, i.e., N > d, we can never ensure xi · xj = 0,∀i ̸= j as with the one-hot embedding. That
means, there will unavoidably be some bias on the similarities between embeddings. So naturally, we
incorporate this bias into the POE design by assigning similar embeddings to nodes that are likely to
be connected in the solution.

Specifically, the POE works by the following steps: 1) (Fig. 3 a) We transform the input cost matrix
into a tour, forming a closed loop by a rough solver. To ensure efficiency, we adopt the nearest
neighbor (NN) heuristic as the rough solver, which can also be replaced by other possible choices.
Subsequently, each node on the tour is assigned a position index denoted by pos ranging from 0 to
N − 1. 2) (Fig. 3 b): We define an even function f : [− 1

2 ,
1
2] → (0, 1) with an “impulse-like” shape,

as depicted in Fig. 3 b). The POE is then generated based on f , with empirical success found using
f(x) = 1/ cosh(100x). 3) (Fig. 3 c). We rotationally shift f along the tour for different positions,
and generate POEs by sampling values from f . Mathematically, the i-th entry of the POE for position

5

Published as a conference paper at ICLR 2025

pos can be given by:

Ppos,i =

f(

pos

N
+

i

d
− 1

2
) if

pos

N
+

i

d
≤ 1

f(
pos

N
+

i

d
− 3

2
) if

pos

N
+

i

d
> 1

. (2)

The POE matrix P then becomes the substitution of B0 in the vanilla MatNet. To visualize the
similarity between POE and the original one-hot embeddings, Fig. 3 d.1-3) shows different cases of
the POE and one-hot embeddings.

4.3 DIFFUSION-BASED SOLVER: MATDIFFNET

Overview. Generative methods gain considerable attention and show promising performance in
TSP solving. Prominent models for the generative objective encompass variational autoencoders
(VAE) (Hottung et al., 2021a), diffusion models (e.g., DIFUSCO (Sun & Yang, 2023) and T2T (Li
et al., 2023b)), and consistency models (Li et al., 2024). These representative works demonstrate
good feasibility and competitive results of diffusion model solving TSP in the Euclidean space.
However, a robust generative backbone for general matrix-formulated (A)TSP which finely adapts
our UniCO framework has yet to be proposed. To fill this gap, we devise MatDIFFNet, namely
Matrix encoding Diffusion Network for general TSP, which can also be seamlessly incorporated
in our UniCO pipeline for multi-task and multi-scale unified training and solving. MatDIFFNet is
inspired by and developed upon Sun & Yang (2023) and Li et al. (2023b), endeavoring to characterize
a distribution of high-quality solutions for a given instance, i.e., estimating p(S|C), where S is the
solution distribution and C the distribution of distance matrix. the general framework of diffusion
includes a forward noising and a reverse denoising Markov process. The noising process takes
the initial solution S0 and progressively introduces noise to generate a sequence of latent variables
S1:T . The denoising process is learned by the model, which starts from the final latent variable ST

and denoises St at each time step to generate the preceding variables St−1 based on the instance
C, eventually recovering the target data distribution. The formulation of the denoising process is
expressed as pθ(S0:T |C) = p(ST)

∏T
t=1 pθ(St−1|St,C). The training optimization aims to align

pθ(S0|C) with the data distribution q(S0|C) using ELBO:

L =Eq

[∑
t>1

DKL [q(St−1|St,S0) ∥ pθ(St−1|St,C)]− log pθ(S0|S1,C)

]
+ C. (3)

We defer the mathematical elaboration of discrete diffusion process (derivation through Bayesian
theorem, transition probability matrix, etc.) to Appendix C.2 and the general network structure is
correspondingly illustrated in Fig. 5. The adaptive scheme proposed to enable matrix-input for our
generative general TSP solver is detailed in the following Sec. 4.3.1.

4.3.1 MIX-NOISED REFERENCE MAP AND DUAL FEATURE CONVOLUTION

In previous works, graph-based diffusion networks for TSP takes two core inputs for the GNN encoder.
One is the Euclidean 2D coordinates as initial node features, and the other is the noised reference
map which forms the initial edge embedding. However, in general TSP formulation, no coordinates
is available while and arbitrary distance matrix is instead provided. We endeavor to maintain the best
compatibility with previous design principles, thus proposing to combine the distance matrix and the
noised label matrix to obtain a mix-noised reference map to replace the original xt to leverage edge
information from pair-wise distances and enrich the initial edge embedding. Additionally considering
the asymmetry of the distance matrix for general TSP and inspired by the scheme adopted in Kwon
et al. (2021), we introduce two random vectors as pseudo coordinates for both ”from” points and ”to”
points as node inputs, which will be updated respectively in subsequent GNN aggregations.

Mix-Noised Reference Map. The fusion of distance matrix C ∈ RN×N and original noised
reference map xt ∈ RN×N is learned by a multilayer perceptron (MLP) with two input nodes and a
single output node and biases, conforming to that of vanilla MatNet. Mathematically, the mix-noised
reference map xC

t ∈ RN×N for the diffusion encoder can be calculated as follows. First, stack C and
xt along the last dimension to gain a mixture tensor M ∈ RN×N×2, where N denotes the number of
nodes and the batch size is omitted. Then, linear and activating operations are performed on M :

xC
t = Wmix2 (ReLU (Wmix1(M))) . (4)

6

Published as a conference paper at ICLR 2025

Subsequently, xC
t is used to compute the initial edge embedding for the GNN via sinusoidal featuring

of each input element respectively:

ẽi = concat

(
sin

ei

T
0
d

, cos
ei

T
0
d

, sin
ei

T
2
d

, cos
ei

T
2
d

, . . . , sin
ei

T
d
d

, cos
ei

T
d
d

)
, (5)

where ei denotes the i-th value of the N2 entries in xC
t , d is the embedding dimension, T is a large

number (usually selected as 10000), concat(·) denotes concatenation.

Dual Feature Convolution. Let t0 ∈ Rdt , where dt is the time feature embedding dimension. e is
the mix-noised reference map calculated above. As for node features, deviating from the widely used
GCN model (Joshi et al., 2019) that learns single node representation, we introduce xA, xB ∈ RN×2,
two random generated pseudo coordinates as initial node embeddings for the asymetric nodes in
general TSP, and maintain two distinct node features with two sets of learnable parameters throughout
the cross-layer convolution operations:

xl+1
A,i = xl

A,i +ReLU(BN(W l
A,1x

l
A,i +

∑
j∼i

Gl
ij ⊙ (W l

A,2x
l
A,j +W l

B,2x
l
B,j))), (6)

xl+1
B,i = xl

B,i +ReLU(BN(W l
B,1x

l
B,i +

∑
j∼i

Gl
ij ⊙ (W l

A,2x
l
A,j +W l

B,2x
l
B,j)

⊤)), (7)

el+1
ij = elij +ReLU(BN(W l

3e
l
ij +W l

A,4x
l
A,i +W l

B,4x
l
B,j)) +W l

5(ReLU(t0)), (8)

Gl
A,ij =

σ(elij)∑
j′∼i σ(e

l
ij′) + ϵ

, Gl
B,ij =

σ((elij)
⊤)∑

j′∼i σ((e
l
ij′)

⊤) + ϵ
, (9)

where WA,1,WB,1 · · · ,W5 ∈ Rh×h denote the model weights, Gl
ij denotes the dense attention map

for element-wise gating. The convolution operation integrates the edge feature to accommodate
the significance of edges in routing problems. The final prediction of the edge heatmap in TSP is
Hi,j = Softmax(norm(ReLU(Wee

L
i,j))) for subsequent decoding and searching process.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Hardware. MatPOENet is trained on an NVIDIA RTX3090 24GB GPU with AMD 3970X 32-Core
CPU for N ≤ 50, and on an RTX8000 48GB GPU with Intel Xeon W-3175X CPU for N ≈ 100.
MatDIFFNet is trained on 8 NVIDIA H800 80GB GPUs with Intel Xeon (Skylake, IBRS) 16-core
CPU. All evaluations are conducted on a single RTX3090 GPU with AMD 3970X 32-Core CPU.

Training data generation. The train data cover four CO problems: non-metric Asymmetric TSP
(ATSP), 2D Euclidean TSP (abbr. 2DTSP, metric and symmetric), Directed HCP (DHCP), and 3SAT,
all in their general TSP matrix formulation. Then we generate the training data for different problems
by the following protocols: i) For ATSP, 2DTSP, and HCP, we first randomly choose the number
of nodes N from [min scale, max scale]. Then ii) For ATSP, we generate the distance matrix C
from the distribution in Uniform(0, 1) with the diagonal entries being 0; iii) For 2DTSP, we assign
each node a random 2D coordinate by distribution Uniform(0, 1)× Uniform(0, 1) and then compute
the Euclidean distance matrix C; iv) For DHCP, we generate a node sequence τ = (i1, i2, · · · , iN)
by randomly permuting all the nodes and assigning Cin,in+1

= 0 for nodes in τ and CiN ,i1 = 0,
thus ensuring a Hamiltonian cycle in C. Then we pick a random amount of node pairs (i, j) and set
Cij = 0 as the noise edge. Finally we set all Cij = 1 for the rest node pairs (i, j). v) For 3SAT, the
TSP instance scale N is tied to the number of variables and clauses (Appendix A.2), so we cannot set
N to an arbitrary value. We first pick a set of variable number Nv and clause number Nc as specified
in Appendix D.2 to ensure that the scale of the reduced TSP instance fits different experimental scales.
Finally, the instances are transformed to the general TSP form, as described in Sec. 3.2.

Testing data preparation. Due to the absence of previous work to standardize the evaluation of
matrix-formatted general TSP across various problem distributions, we prepare 10K test instances
for 3 scales (conforming to mainstream works of the “multi-task” concentration, see Table 6 in
Appendix B.4), comprising 2,500 instances featuring each problem (ATSP, 2DTSP, HCP and 3SAT)
in the matrix formulation, in pursuit of comprehensive examination across general TSP tasks.

7

Published as a conference paper at ICLR 2025

Table 2: Main experimental results. Reported data for ATSP and 2DTSP are tour length. “Single”:
models trained and tested on each problem respectively. “Mixed”: unified models trained with a
mixture of 4 tasks on each scale. Asterisked (*): a unified model trained with a mixture of 4 tasks
and 3 scales. Bold: the best result of neural solvers. Underlined: the reference results for computing
the optimality gap. Red / blue boxes: ours that outperform LKH with 10K/500 trials respectively.
Time: the average time (seconds) per instance solving over each line, with batch size set to 1.

Methods Train Data ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓ Avg. Gap↓ Avg. FR↑ Time

Sc
al

e:
N

≈
2
0

Gurobi - 1.5349 3.8347 0.0000 100.00% 0.0000 100.00% 1.3424 - 100.00% 0.135
LKH (10000) - 1.5349 3.8347 0.0008 99.92% 0.0000 100.00% 1.3426 0.01% 99.96% 0.327
LKH (500) - 1.5349 3.8347 0.0056 99.44% 0.0000 100.00% 1.3438 0.11% 99.72% 0.038
Nearest Neighbor - 2.0069 4.5021 3.8556 0.48% 3.0504 0.32% 3.3428 149.02% 0.40% 0.000
Farthest Insertion - 1.7070 3.9695 3.3136 1.76% 4.8816 0.00% 3.4679 158.34% 0.88% 0.000

MatNet ATSP 1.5871 4.2612 2.9608 1.12% 3.4772 0.56% 3.0716 128.82% 0.84% 0.005
MatNet Mixed 1.6359 3.9114 0.9740 27.60% 3.4656 11.04% 2.4967 85.99% 19.32% 0.005
MatNet-8x Mixed 1.5645 3.8478 0.1936 80.92% 1.6272 1.36% 1.8083 34.71% 41.14% 0.037
DIMES Mixed 2.2335 4.1696 2.9448 2.67% 2.6660 2.12% 3.0035 123.74% 2.39% 0.035
DIMES-AS(100) Mixed 1.6790 3.9092 0.4596 60.12% 0.2828 77.12% 1.5826 17.90% 68.62% 0.522

MatPOENet Mixed 1.6445 3.8643 0.8676 32.60% 0.4540 61.88% 1.7076 27.21% 47.24% 0.006
MatPOENet-8x Mixed 1.5695 3.8389 0.1760 82.68% 0.0112 98.88% 1.3989 4.21% 90.78% 0.043
MatPOENet*-8x Mixed 1.5506 3.8372 0.0556 94.44% 0.0008 99.92% 1.3610 1.39% 97.18% 0.043

Sc
al

e:
N

≈
50

Gurobi - 1.5545 5.6952 0.0000 100.00% 0.0000 100.00% 1.8124 - 100.00% 0.296
LKH (10000) - 1.5548 5.6953 0.0000 100.00% 0.2784 74.80% 1.8821 3.85% 87.40% 0.513
LKH (500) - 1.5557 5.6964 0.0000 100.00% 0.4796 61.80% 1.9329 6.65% 80.90% 0.059
Nearest Neighbor - 2.0945 6.9977 5.1120 0.00% 5.9872 0.00% 5.0548 178.90% 0.00% 0.000
Farthest Insertion - 1.8387 6.0998 4.0224 5.28% 10.3964 0.00% 5.5893 208.39% 2.64% 0.001

MatNet ATSP 1.5753 7.3618 1.4856 11.80% 8.4020 0.00% 4.7062 159.67% 5.90% 0.007
MatNet Mixed 1.8098 6.0000 0.9288 30.84% 1.1900 30.52% 2.4821 36.95% 30.68% 0.007
MatNet-8x Mixed 1.7340 5.8664 0.3056 71.52% 0.2992 73.08% 2.0513 13.18% 72.30% 0.064
GLOP Single 1.8885 6.6499 3.7244 0.84% 4.9816 0.76% 4.3111 137.87% 0.80% 0.115
DIMES Mixed 2.3341 6.6271 3.1788 1.56% 5.3656 0.12% 4.3764 141.47% 0.84% 0.055
DIMES-AS(100) Mixed 1.6920 5.9447 0.5908 46.04% 1.5830 20.44% 2.4528 35.33% 33.24% 2.016

MatPOENet-8x Single 1.5643 5.7042 0.0652 93.52% 0.1888 81.72% 1.8806 3.76% 87.62% 0.066
MatPOENet Mixed 1.6881 5.7694 0.1444 86.20% 1.3644 27.08% 2.2416 23.68% 56.64% 0.009
MatPOENet-8x Mixed 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082 5.29% 87.94% 0.067
MatPOENet*-8x Mixed 1.6285 5.7575 0.0280 97.20% 0.1172 88.44% 1.8828 3.88% 92.82% 0.067

MatDIFFNet Single 2.0713 5.7954 2.0992 15.32% 0.0464 98.16% 2.5031 38.11% 56.74% 0.157
MatDIFFNet-2OPT Single 1.7186 5.7279 0.8324 44.08% 0.0188 98.64% 2.0744 14.46% 71.36% 0.165
MatDIFFNet Mixed 1.8385 6.2332 2.0648 15.76% 0.1112 94.68% 2.5619 41.35% 55.22% 0.155
MatDIFFNet-2OPT Mixed 1.6591 5.8619 0.8192 44.52% 0.0496 95.64% 2.0975 15.73% 70.08% 0.164

Sc
al

e:
N

≈
10

0

Gurobi - 1.5661 7.7619 0.0000 100.00% 0.0000 100.00% 2.3320 - 100.00% 0.689
LKH (10000) - 1.5674 7.7709 0.0000 100.00% 1.0008 44.80% 2.5848 10.84% 72.40% 0.811
LKH (500) - 1.5704 7.8015 0.0000 100.00% 1.6656 28.08% 2.7594 18.33% 64.04% 0.095
Nearest Neighbor - 2.1321 9.6696 5.4016 0.20% 8.3236 0.00% 6.3859 173.84% 0.10% 0.002
Farthest Insertion - 1.9333 8.4847 3.1256 26.64% 23.5160 0.00% 9.2649 297.29% 13.32% 0.003

MatNet ATSP 1.6217 19.0644 17.8620 0.00% 40.1188 0.00% 19.6667 743.34% 0.00% 0.015
MatNet Mixed 1.9849 8.2551 0.9776 31.68% 2.0408 13.84% 3.3146 42.14% 22.76% 0.018
MatNet-8x Mixed 1.9210 8.1028 0.3640 69.60% 0.7740 50.76% 2.7904 19.66% 60.18% 0.095
GLOP Single 1.8491 8.8849 2.7850 2.00% 6.4280 0.08% 4.9868 113.84% 1.04% 0.176
DIMES Mixed 2.5186 9.5777 3.8064 1.16% 3.8064 0.00% 6.4018 174.52% 0.58% 0.124
DIEMS-AS(100) Mixed 1.6968 8.3390 0.8480 24.00% 2.8040 7.16% 3.4220 46.74% 15.58% 8.437

MatPOENet Mixed 1.9183 8.2987 0.0984 90.28% 1.0704 32.32% 2.8465 22.06% 61.30% 0.017
MatPOENet-8x Mixed 1.8655 8.1719 0.0052 99.48% 0.2440 77.12% 2.5717 10.28% 88.30% 0.094
MatPOENet*-8x Mixed 1.7607 8.0817 0.0012 99.88% 0.3244 70.92% 2.5420 9.01% 85.40% 0.095

MatDIFFNet Single 1.9432 7.9684 4.4536 2.96% 0.0404 98.44% 3.6014 54.43% 50.70% 0.103
MatDIFFNet-2OPT Single 1.7165 7.8482 1.1404 37.72% 0.0240 98.60% 2.6823 15.02% 68.16% 0.112
MatDIFFNet Mixed 1.8763 8.9030 3.2524 5.68% 0.1940 90.52% 3.5564 52.50% 48.10% 0.102
MatDIFFNet-2OPT Mixed 1.6965 8.1804 0.9148 43.04% 0.0952 91.44% 2.7217 16.71% 67.24% 0.114

Metrics. Found Rate (FR): the percentage of optimal solutions found in the test instances for the
decisive problems HCP and SAT. A higher found rate indicates better performance. We also report
the the average FR (Avg. FR) of DHCP and 3SAT. Tour Length (L): This is the conventional metric
for any TSP. The lower length indicate the better performance of the general TSP solver. We report
the average tour length (Avg. L) over all the instances of different problem distributions. The average
gap (Avg. Gap) is the performance drop from Gurobi w.r.t the mean tour length across the four tasks.

Compared methods. Exact solver: Gurobi. Note that the current Concorde only fits Euclidean
TSP. Heuristics: LKH (500 and 10,000 trials), Nearest Neighbor, and Farthest Insertion. Neu-
ral sovlers: Vanilla MatNet (Kwon et al., 2021), DIMES (Qiu et al., 2022) (Trained under
UniCO. DIMES-AS(T) means tuned heatmap by T steps of active search, detailed in Appendix E.1),
GLOP (Ye et al., 2024b) (using vanilla MatNet as local reviser under GLOP framework). ATSP
results of BQ-NCO (Drakulic et al., 2023) and GOAL (Drakulic et al., 2024) are put in Appendix F.7
for reference only (estimated by their reported optimality gap as no pre-trained checkpoints are
available). MatPOENet (ours) and MatDIFFNet (ours) w/ and w/o post-inference improvements
(8x parallel running for MatPOENet and 2OPT for MatDIFFNet). All evaluated neural methods
are re-trained and tested on our unified dataset for fair comparison. Parameter settings are listed in
Appendix D.1. Note that for HCP and SAT problems, previous specific models performed on totally

8

Published as a conference paper at ICLR 2025

Table 3: Results of both solving time and solving quality comparing Mat-X-Net (ours) and different
settings of LKH. LKH-N: LKH with 1 runs and N max trials. Batch size = 1.

Method Time↓ ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓

N
≈

50

MatPOENet 7m31s 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082
MatDIFFNet 21m48s 1.7186 5.7279 0.8324 44.08% 0.0188 98.64% 2.0744

LKH-500 9m9s 1.5557 5.6964 0.0000 100.00% 0.4796 61.80% 1.9329
LKH-1000 13m53s 1.5554 5.6957 0.0000 100.00% 0.4160 65.68% 1.9168

LKH-10000 1h22m 1.5548 5.6953 0.0000 100.00% 0.2784 74.80% 1.8821

N
≈

10
0

MatPOENet 15m35s 1.8655 8.1719 0.0052 99.48% 0.2440 77.12% 2.5717
MatDIFFNet 28m21s 1.7165 7.8482 1.1404 37.72% 0.0240 98.60% 2.6823

LKH-500 15m49s 1.5704 7.8015 0.0000 100.00% 1.6656 28.08% 2.7594
LKH-1000 24m39s 1.5692 7.7909 0.0000 100.00% 1.4400 32.52% 2.7000

LKH-10000 2h15m 1.5674 7.7709 0.0000 100.00% 1.0008 44.80% 2.5848

Table 4: Case study of N > d: d1 = 512, d2 = 32 on the scale N ≈ 50.
Method ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT(L↓, FR↑) Avg. L↓

MatPOENet (N << d1) 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082
MatPOENet (N > d2) 1.8799 5.9742 0.4548 60.24% 0.3292 75.56% 2.1595

different problem formulation, thus orthogonal to our target of general matrix encoding TSP solving
pipeline and are reasonably excluded from evaluation in this paper. Detailed clarification of this issue
is sincerely explained in Appendix B.6 for possible concerns.

5.2 RESULTS AND DISCUSSIONS

Main results are shown in Table 2. In the following part, RQ1-RQ3 discuss the eternal topics of
performance, efficiency, and scalability; RQ4 analyzes the ablations upon the POE embedding;
RQ5-RQ7 introduce different applications and additional experiments based on UniCO.

RQ1: Performance. MatPOENet outperforms LKH when N ≈ 50 and 100 on the average length of
the full dataset. Outperforming LKH on TSP has been a pursuit by neural CO solver for long, while
scarcely are there methods achieving it, let alone on the problem of general TSP. As highlighted in
Table 2, on the scale N ≈ 50, MatPOENet* achieves to outperform LKH with max trials=500 on the
Avg. L i.e., the overall performance, and on the scale N ≈ 100, MatPOENet* outperforms LKH with
as many trials as max trials=10,000 on the Avg. L metric. The competent results compared with LKH
indicates that our method MatPOENet* can not only serve as a strong baseline for future research,
but also becomes a current SOTA over the problem of general TSP. Diving deeper into the results, we
observe that LKH performs stably well on general TSP instances in continuous data space (ATSP
and 2DTSP) but is not always that good in discrete data space: It may be because of the crash of the
inherent so-called “alpha-measure” of LKH, which relies on the computing of minimum 1-tree that is
not unique in the discrete cases. We detail the observation and analyses for LKH in Appendix G.1.
The discovery of LKH’s crash also suggests the significance of developing neural solvers for general
TSP that can work simultaneously on the instances in both continuous and discrete spaces.

RQ2: Efficiency. We extract the total solving time in Table 3 for a clearer comparison. On N ≈ 50
data, MatPOENet achieves better tour length (1.91 v.s. 1.93) within shorter time (7m31s v.s. 9m9s)
compared to LKH-500. More impressively, on N ≈ 100 data, MatPOENet not only beats LKH-500
on both run-time efficiency and average quality, but also show superiority in solving performance (2.57
v.s. 2.58) compared to LKH-10000 which consumes 8.7x time (15m35s v.s. 2h15m). MatDIFFNet
consumes more solving time for its complex inference denoising steps of diffusion, yet also reaches
competitive results against LKH within a similar sovling time.

RQ3: Scalability. Experiments are conducted from three aspects to show the multi-scale general-
izability: i) MatPOENet trained on all the scales. We train an MatPOENet with training data of
all the scales, denoted by MatPOENet* in Table 2. Competitive results are obtained compared to
single training, demonstrating the feasibility of, and even benefits brought by multi-scale training. ii)
Scale-free initializer POE on the scale N > d. In response to the motivation of designing POE
in Sec. 4.2.1, we show that MatPOENet can be trained on instances at the scale N larger than the
pre-set one-hot embedding dimension d, which is the case where vanilla MatNet fails. Results in the
case N > d are given in Table 4. Compared with the model trained with a higher d, we observe that
a reduced d would cause a reasonable degeneracy of model performance. iii) On larger-scaled data.
In terms of solving large scaled CO problems, resorting to divide-and-conquer paradigm is popular

9

Published as a conference paper at ICLR 2025

Table 5: Results on large-scaled ATSP instances.
Scale Method ATSP (L↓) Time BiTSP (L↓) Time HCP (L↓) FR↑ Time

1K
Greedy 2.146 21s 5.609 21s 5.734 0.00% 21s
MatNet 2.130 1m24s 4.352 1m 3.063 0.78% 45s
Ours 2.092 57s 0.517 40s 0.563 64.84% 41s

10K
Greedy 9.516 4m32s 5.938 4m32s 5.438 0.00% 4m32s
MatNet 9.184 23m17s 3.313 6m10s 2.750 0.00% 23m22s
Ours 8.355 5m27s 0.688 5m10s 0.625 62.50% 5m40s

and proved feasible and performant (Ye et al., 2024b; Luo et al., 2024; Fu et al., 2021), where a strong
solver at small-to-medium instances is still of irreplaceable importance. We readily incorporated
the state-of-the-art GLOP (Ye et al., 2024b) which greatly improves MatNet’s scalability. Results of
the GLOP-empowered MatPOENet (Ours) are presented below, which can be regarded as an initial
indication for the efficiency of our proposed POE at large scaled problems (128 instances for N = 1K
and 16 instances for N = 10K). Note BiTSP is a direct simulation of decisive CO problems in general
TSP formulation, referring to randomly generated instances that has binary distances but doese not
necessarily possess a zero-length loop. A more thorough discussion of scalability and applicability
issues from the view of current research status of unified NCO is deferred to Appendix G.2.

RQ4: Ablations of POE (Appendix F.1). i) MatNet v.s. MatPOENet. Main results in Table 2
validate the effectiveness of introducing POE to enhance MatNet. ii) Comparison of different initial
rough solver. Results of nearest neighbor (NN), farthest insertion (FI), and an ablation without rough
solvers (Non) in Table 10 show superiority of NN as the initial solver for POE. We speculate that it is
because NN pays more attention to the local structure, complementing subsequent attention layers
where global information are learned. iii) POE v.s. alternatives. Fixed random vectors and trainable
embeddings are tested as the substitution of the proposed POE. Results in Table 11 show that our
POE outperforms the other two options suggested in the paper of MatNet (Kwon et al., 2021).

RQ5: UniCO for pretraining-Finetuning (Appendix F.2). With MatPOENet, UniCO executes
both i) cross-task and ii) cross-scale experiments for pretraining-finetuning applications. With
MatDIFFNet, UniCO also trains the model in the curriculum learning manner, i.e., models on larger
scales are trained upon existing weights gained during training of small scaled data. Results in
Appendix F.2 demonstrate applicability of UniCO as a pretraining-finetuing framework.

RQ6: UniCO for other learning paradigms and problems. (Appendix F.3 & F.4). Besides afore-
mentioned methods (DRL, Generative, etc.), UniCO is also available for the mainstream supervised
learning (SL) of neural heatmap for general TSP solving. We perform minimum modification to the
backbone model in MatPOENet to obtain a heatmap predictor via pure supervised learning. Results
are provided in Appendix F.3 Also, supplementary experiments on the vertex cover problem (VC)
have been conducted using UniCO. Results and discussions are in F.4. To conclude, UniCO along
with our Mat-X-Nets possess good adaptability to embrace new learning paradigms and tasks.

RQ7: UniCO for standard TSP and real-world generalization (Appendix F.5 & F.6). In order to
reach better alignment to previous works that focused on 2DTSP only, we have conducted experiments
on the standard test set shared by a series typical works (Kool et al., 2018; Joshi et al., 2019; Min
et al., 2024; Qiu et al., 2022; Li et al., 2023b; Hudson et al., 2021), with 1280 instances each for
TSP-50 and TSP-100. Also, we test MatPOENet and MatDIFFNet on 45 selected real-world instances
(N ∈ [14, 195]) from the well-kown TSPLIB. Results (in Table 18, 19, 21, respectively) demonstrate
that our designed networks manage to solve the conventional Euclidean TSPs without coordination as
input, yielding comparable performance and capability of generalization towards distribution shifts.

6 CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we first propose the UniCO framework to embed different CO problems
in a consistent general TSP matrix format via problem reduction. Further, we delve into the under-
explored realm of matrix-formulated TSP and devise MatPOENet and MatDIFFNet as plugs-in of
UniCO, in aid of current lack of neural capability targeting general TSP.
Limitations and Future Work. We have made an initial step towards the general neural CO
solver. Future works include: i) More problems. More CO problems reducible to general TSP
(Appendix E.2) shall be included for evaluation. ii) Stronger capability. Gaps still exist comparing
to exact solvers at specific problem solving. iii) Better scalability. MatDIFFNet has the potential to
scale larger and work as a consistency model in the future (Appendix G.4).

10

Published as a conference paper at ICLR 2025

ETHICS STATEMENT

The methods proposed in this paper aim to improve the field of neural combinatorial optimization
(NCO), especially neural solvers with better generality. A dataset comprising synthetic instances of
general TSPs with different problem distributions is released to facilitate the under-studied branch of
matrix-formulated TSPs, thereby standardizing the evaluation of unified NCO solvers. To our best
knowledge, no ethical issues or harmful insights of this work need to be otherwise stated.

REPRODUCIBILITY STATEMENT

The hardware and the preparation of the used data are described in Sec. 5.1. The detailed parameteri-
zation and implementation of the models for training and testing are provided in Appendix D. Source
code and datasets can be accessed at https://github.com/Thinklab-SJTU/UniCO.

REFERENCES

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-SAT: An
unsupervised differentiable approach. In International Conference on Learning Representations,
2019a.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Pdp: A general neural framework for
learning constraint satisfaction solvers. arXiv preprint arXiv:1903.01969, 2019b.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34, 2021.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combi-
natorial optimization with reinforcement learning. In International Conference on Learning
Representations, 2017.

Federico Berto, Chuanbo Hua, Junyoung Park, Minsu Kim, Hyeonah Kim, Jiwoo Son, Haeyeon
Kim, Joungho Kim, and Jinkyoo Park. RL4CO: a unified reinforcement learning for combinatorial
optimization library. In NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023.

Léo Boisvert, Hélène Verhaeghe, and Quentin Cappart. Towards a generic representation of com-
binatorial problems for learning-based approaches, 2024. URL https://arxiv.org/abs/
2403.06026.

Xavier Bresson and Thomas Laurent. An experimental study of neural networks for variable graphs.
ICLR workshop, 2018.

Chris Cameron, Rex Chen, Jason Hartford, and Kevin Leyton-Brown. Predicting propositional satis-
fiability via end-to-end learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 3324–3331, 2020.

Xinyan Chen, Yang Li, Runzhong Wang, and Junchi Yan. Mixsatgen: Learning graph mixing for sat
instance generation. In The Twelfth International Conference on Learning Representations, 2024.

Paulo R d O da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt
heuristics for the traveling salesman problem via deep reinforcement learning. In Sinno Jialin Pan
and Masashi Sugiyama (eds.), Proceedings of The 12th Asian Conference on Machine Learning,
volume 129 of Proceedings of Machine Learning Research, pp. 465–480. PMLR, 18–20 Nov 2020.
URL https://proceedings.mlr.press/v129/costa20a.html.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco:
Bisimulation quotienting for efficient neural combinatorial optimization, 2023. URL https:
//arxiv.org/abs/2301.03313.

Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial optimiza-
tion agent learner, 2024. URL https://arxiv.org/abs/2406.15079.

11

https://github.com/Thinklab-SJTU/UniCO
https://arxiv.org/abs/2403.06026
https://arxiv.org/abs/2403.06026
https://proceedings.mlr.press/v129/costa20a.html
https://arxiv.org/abs/2301.03313
https://arxiv.org/abs/2301.03313
https://arxiv.org/abs/2406.15079

Published as a conference paper at ICLR 2025

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Eric Fouh, Ville Karavirta, Daniel A Breakiron, Sally Hamouda, Simin Hall, Thomas L Naps, and
Clifford A Shaffer. Design and architecture of an interactive etextbook–the opendsa system.
Science of computer programming, 88:22–40, 2014.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Wenxuan Guo, Hui-Ling Zhen, Xijun Li, Wanqian Luo, Mingxuan Yuan, Yaohui Jin, and Junchi
Yan. Machine learning methods in solving the boolean satisfiability problem. Machine Intelligence
Research, 20(5):640–655, June 2023. ISSN 2731-5398. doi: 10.1007/s11633-022-1396-2. URL
http://dx.doi.org/10.1007/s11633-022-1396-2.

LLC Gurobi Optimization. Gurobi optimizer reference manual. Gurobi, pp. 2–12, 2021.

Michael Hahsler and Kurt Hornik. Tsp-infrastructure for the traveling salesperson problem. Journal
of Statistical Software, 23(2):1–21, 2007.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing
problems using variational autoencoders. In International Conference on Learning Representations,
2021a.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient active search for combinatorial
optimization problems. arXiv preprint arXiv:2106.05126, 2021b.

Benjamin Hudson, Qingbiao Li, Matthew Malencia, and Amanda Prorok. Graph neural network
guided local search for the traveling salesperson problem. arXiv preprint arXiv:2110.05291, 2021.

Sebastian Jaszczur, Michał Łuszczyk, and Henryk Michalewski. Neural heuristics for sat solving.
arXiv preprint arXiv:2005.13406, 2020.

Xia Jiang, Yaoxin Wu, Yuan Wang, and Yingqian Zhang. Unco: Towards unifying neural combina-
torial optimization through large language model, 2024. URL https://arxiv.org/abs/
2408.12214.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Chaitanya K. Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning the
travelling salesperson problem requires rethinking generalization. arXiv preprint arXiv:2006.07054,
2020.

Richard M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations: Proceedings of a symposium on the Complexity of Computer Computa-
tions, 1972. doi: 10.1007/978-1-4684-2001-2 9. URL https://doi.org/10.1007/
978-1-4684-2001-2_9.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. Advances in neural information processing systems, 30,
2017.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural
combinatorial optimization. Advances in Neural Information Processing Systems, 35:1936–1949,
2022.

12

http://dx.doi.org/10.1007/s11633-022-1396-2
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2408.12214
https://arxiv.org/abs/2408.12214
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Published as a conference paper at ICLR 2025

Minsu Kim, Sanghyeok Choi, Jiwoo Son, Hyeonah Kim, Jinkyoo Park, and Yoshua Bengio. Ant
colony sampling with gflownets for combinatorial optimization. arXiv preprint arXiv:2403.07041,
2024.

DP Kingma. Adam: a method for stochastic optimization. In Int Conf Learn Represent, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 REINFORCE samples, get a baseline for
free! In Deep Reinforcement Learning Meets Structured Prediction, ICLR 2019 Workshop, New
Orleans, Louisiana, United States, May 6, 2019, 2019. URL https://openreview.net/
forum?id=r1lgTGL5DE.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep policy dynamic pro-
gramming for vehicle routing problems. In International conference on integration of constraint
programming, artificial intelligence, and operations research, pp. 190–213. Springer, 2022.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Harry R Lewis. Michael r. πgarey and david s. johnson. computers and intractability. a guide to the
theory of np-completeness. wh freeman and company, san francisco1979, x+ 338 pp. The Journal
of Symbolic Logic, 48(2):498–500, 1983.

Peng Li and Bo Liu. Multi-task combinatorial optimization: Adaptive multi-modality knowledge
transfer by an explicit inter-task distance. arXiv preprint arXiv:2305.12807, 2023.

Yang Li, Xinyan Chen, Wenxuan Guo, Xijun Li, Wanqian Luo, Junhua Huang, Hui-Ling Zhen,
Mingxuan Yuan, and Junchi Yan. Hardsatgen: Understanding the difficulty of hard sat formula
generation and a strong structure-hardness-aware baseline. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, 2023a.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training to
gradient search in testing for combinatorial optimization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023b. URL https://openreview.net/forum?id=
JtF0ugNMv2.

Yang Li, Jinpei Guo, Runzhong Wang, Hongyuan Zha, and Junchi Yan. Fast t2t: Optimization
consistency speeds up diffusion-based training-to-testing solving for combinatorial optimization.
Advances in Neural Information Processing Systems, 2024.

Yang Li, Jiaxi Liu, Qitian Wu, Xiaohan Qin, and Junchi Yan. Toward learning generalized
cross-problem solving strategies for combinatorial optimization, 2025a. URL https://
openreview.net/forum?id=VnaJNW80pN.

Yang Li, Jiale Ma, Wenzheng Pan, Runzhong Wang, Haoyu Geng, Nianzu Yang, and Junchi Yan.
Unify ml4tsp: Drawing methodological principles for tsp and beyond from streamlined design
space of learning and search. In International Conference on Learning Representations, 2025b.

Zhaoyu Li and Xujie Si. Nsnet: A general neural probabilistic framework for satisfiability problems.
Advances in Neural Information Processing Systems, 35:25573–25585, 2022.

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Xialiang Tong, and Mingxuan Yuan. Multi-
task learning for routing problem with cross-problem zero-shot generalization, 2024. URL
https://arxiv.org/abs/2402.16891.

13

https://openreview.net/forum?id=r1lgTGL5DE
https://openreview.net/forum?id=r1lgTGL5DE
https://openreview.net/forum?id=JtF0ugNMv2
https://openreview.net/forum?id=JtF0ugNMv2
https://openreview.net/forum?id=VnaJNW80pN
https://openreview.net/forum?id=VnaJNW80pN
https://arxiv.org/abs/2402.16891

Published as a conference paper at ICLR 2025

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with
heavy decoder: Toward large scale generalization. Advances in Neural Information Processing
Systems, 36:8845–8864, 2023.

Fu Luo, Xi Lin, Zhenkun Wang, Xialiang Tong, Mingxuan Yuan, and Qingfu Zhang. Self-improved
learning for scalable neural combinatorial optimization, 2024. URL https://arxiv.org/
abs/2403.19561.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible regions
of routing problems with flexible neural k-opt. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=q1JukwH2yP.

Yimeng Min, Frederik Wenkel, and Guy Wolf. Geometric scattering attention networks. In ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, June 2021. doi: 10.1109/icassp39728.2021.9414557. URL http://dx.doi.org/10.
1109/ICASSP39728.2021.9414557.

Yimeng Min, Yiwei Bai, and Carla P. Gomes. Unsupervised learning for solving the travelling
salesman problem, 2024. URL https://arxiv.org/abs/2303.10538.

Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs
Kozlovics. Goal-aware neural sat solver. In 2022 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8. IEEE, 2022.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. DIMES: A differentiable meta solver for combinatorial
optimization problems. In Advances in Neural Information Processing Systems 35, 2022.

Sebastian Sanokowski, Wilhelm Berghammer, Sepp Hochreiter, and Sebastian Lehner. Variational
annealing on graphs for combinatorial optimization. In Advances in Neural Information Processing
Systems, volume 36, pp. 63907–63930, 2023.

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework
for unsupervised neural combinatorial optimization. In Forty-first International Conference on
Machine Learning, 2024.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

Daniel Selsam and Nikolaj Bjørner. Guiding high-performance sat solvers with unsat-core predictions.
In Theory and Applications of Satisfiability Testing–SAT 2019: 22nd International Conference,
SAT 2019, Lisbon, Portugal, July 9–12, 2019, Proceedings 22, pp. 336–353. Springer, 2019.

Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L Dill.
Learning a sat solver from single-bit supervision. arXiv preprint arXiv:1802.03685, 2018.

Mohamed A Wahby Shalaby, Ayman R Mohammed, and Sally S Kassem. Supervised fuzzy c-means
techniques to solve the capacitated vehicle routing problem. Int. Arab J. Inf. Technol., 18(3A):
452–463, 2021.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. CoRR,
abs/2010.02502, 2020. URL https://arxiv.org/abs/2010.02502.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. In The
Twelfth International Conference on Learning Representations, 2023.

IBM ILOG CPLEX Optimization Studio. V20.1: User’s manual for cplex. IBM Corp, pp. 1–20,
2020.

Jingyan Sui, Shizhe Ding, Rui Tao Liu, Liming Xu, and Dongbo Bu. Learning 3-opt heuristics for trav-
eling salesman problem via deep reinforcement learning. In Asian Conference on Machine Learn-
ing, 2021. URL https://api.semanticscholar.org/CorpusID:249038331.

14

https://arxiv.org/abs/2403.19561
https://arxiv.org/abs/2403.19561
https://openreview.net/forum?id=q1JukwH2yP
http://dx.doi.org/10.1109/ICASSP39728.2021.9414557
http://dx.doi.org/10.1109/ICASSP39728.2021.9414557
https://arxiv.org/abs/2303.10538
https://arxiv.org/abs/2010.02502
https://api.semanticscholar.org/CorpusID:249038331

Published as a conference paper at ICLR 2025

Jingyan Sui, Shizhe Ding, Boyang Xia, Ruizhi Liu, and Dongbo Bu. Neuralgls: learning to guide
local search with graph convolutional network for the traveling salesman problem. Neural Comput.
Appl., 36(17):9687–9706, October 2023. ISSN 0941-0643. doi: 10.1007/s00521-023-09042-6.
URL https://doi.org/10.1007/s00521-023-09042-6.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Junior Mele U, Maria Gambardella L, and Montemanni R. Machine. Machine learning approaches for
the traveling salesman problem: A survey. In Proceedings of the 2021 8th International Conference
on Industrial Engineering and Applications (Europe), 2021.

Pashootan Vaezipoor, Gil Lederman, Yuhuai Wu, Chris Maddison, Roger B Grosse, Sanjit A Se-
shia, and Fahiem Bacchus. Learning branching heuristics for propositional model counting. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 12427–12435, 2021.

Jan Van Leeuwen. Handbook of theoretical computer science (vol. A) algorithms and complexity.
Mit Press, 1991.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural In-
formation Processing Systems, volume 28. Curran Associates, Inc., 2015. URL
https://proceedings.neurips.cc/paper_files/paper/2015/file/
29921001f2f04bd3baee84a12e98098f-Paper.pdf.

Chenguang Wang and Tianshu Yu. Efficient training of multi-task combinarotial neural solver with
multi-armed bandits. arXiv preprint arXiv:2305.06361, 2023.

Chenguang Wang, Zhouliang Yu, Stephen McAleer, Tianshu Yu, and Yaodong Yang. Asp: Learn a
universal neural solver! IEEE TPAMI, 2024.

Runzhong Wang, Zhigang Hua, Gan Liu, Jiayi Zhang, Junchi Yan, Feng Qi, Shuang Yang, Jun Zhou,
and Xiaokang Yang. A bi-level framework for learning to solve combinatorial optimization on
graphs. Advances in Neural Information Processing Systems, 34:21453–21466, 2021.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
post-hoc search-based neural approaches for solving large-scale traveling salesman problems, 2024.
URL https://arxiv.org/abs/2406.03503.

Yubin Xiao, Di Wang, Boyang Li, Mingzhao Wang, Xuan Wu, Changliang Zhou, and You Zhou.
Distilling autoregressive models to obtain high-performance non-autoregressive solvers for vehicle
routing problems with faster inference speed, 2024. URL https://arxiv.org/abs/2312.
12469.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Neurolkh: Combining deep learning model
with lin-kernighan-helsgaun heuristic for solving the traveling salesman problem. In Advances in
Neural Information Processing Systems, volume 34, 2021.

Hao Xiong, Yehui Tang, Yunlin He, Wei Tan, and Junchi Yan. Node2ket: Efficient high-dimensional
network embedding in quantum hilbert space. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=lROh08eK6n.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Helan Liang, and Yong Li. Deepaco: neural-enhanced ant
systems for combinatorial optimization. Advances in Neural Information Processing Systems, 36,
2024a.

15

https://doi.org/10.1007/s00521-023-09042-6
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://arxiv.org/abs/2406.03503
https://arxiv.org/abs/2312.12469
https://arxiv.org/abs/2312.12469
https://openreview.net/forum?id=lROh08eK6n

Published as a conference paper at ICLR 2025

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. Glop: Learning
global partition and local construction for solving large-scale routing problems in real-time. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2024b.

J Zhang, C Liu, X Li, HL Zhen, M Yuan, Y Li, and J. Yan. A survey for solving mixed integer
programming via machine learning. Neurocomputing, 2023.

Jiongzhi Zheng, Kun He, Jianrong Zhou, Yan Jin, and Chu-Min Li. Combining reinforcement learning
with lin-kernighan-helsgaun algorithm for the traveling salesman problem. Proceedings of the AAAI
Conference on Artificial Intelligence, 35(14):12445–12452, May 2021. doi: 10.1609/aaai.v35i14.
17476. URL https://ojs.aaai.org/index.php/AAAI/article/view/17476.

Xinhao Zheng, Yang Li, Cunxin Fan, Huaijin Wu, Xinhao Song, and Junchi Yan. Learning plaintext-
ciphertext cryptographic problems via anf-based sat instance representation. Advances in Neural
Information Processing Systems, 2024a.

Zhi Zheng, Changliang Zhou, Tong Xialiang, Mingxuan Yuan, and Zhenkun Wang. Udc: A unified
neural divide-and-conquer framework for large-scale combinatorial optimization problems. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Chi Xu. Mvmoe:
Multi-task vehicle routing solver with mixture-of-experts, 2024. URL https://arxiv.org/
abs/2405.01029.

16

https://ojs.aaai.org/index.php/AAAI/article/view/17476
https://arxiv.org/abs/2405.01029
https://arxiv.org/abs/2405.01029

Published as a conference paper at ICLR 2025

Appendix

CONTENTS

A Details of Problem Reduction and Solution Transformation 19

A.1 HCP v.s. TSP . 19

A.2 3SAT v.s. HCP . 19

A.2.1 Reduction from 3SAT to HCP . 19

A.2.2 Transform HCP Solution to 3SAT Solution 20

B Additional Related Work 20

B.1 Conventional Solvers . 20

B.2 Learning Methods for TSP . 20

B.3 Combination of Neural and OR Methods . 21

B.4 Multi-Task CO Models . 21

B.5 Specific Solvers for SAT and HCP . 23

B.6 Note on Evaluation of Specific Solvers . 23

C Network Details 24

C.1 Vanilla MatNet and MatPOENet . 24

C.2 Graph-based Diffusion and MatDIFFNet . 25

D Experimental Details 27

D.1 Hyperparameters . 27

D.2 Scale Setting of 3SAT Instances . 27

D.3 Training Curves . 27

E More Applications of UniCO 28

E.1 More Adaptable Backbone: GNN-based DIMES 29

E.1.1 Network Architecture . 29

E.1.2 Training Process . 29

E.1.3 Results and Discussion . 30

E.2 More Applicable Problems . 31

E.2.1 Vertex Cover . 31

E.2.2 Clique Problem . 31

E.2.3 Independent Set Problem . 32

E.2.4 Vehicle Routing Problems . 32

E.2.5 MatPOENet & MatDIFFNet as Problem-Specific Solver 33

F Supplementary Experiments 34

F.1 Further Experiments of POE . 34

17

Published as a conference paper at ICLR 2025

F.2 Pretraining-Finetuning Applications . 34

F.3 Comparison of Learning Paradigms . 35

F.4 Results on Vertex Cover Problem . 36

F.5 Results on Standard Symmetric TSP . 36

F.6 Results on Real-world Instances . 36

F.7 Full Experimental Results . 38

G Further Discussions 38

G.1 Note on LKH . 38

G.2 Note on the Scalability and Applicability . 38

G.3 Discussion of MatPOENet v.s. MatDIFFNet . 40

G.4 Discussion of Generative Combinatorial Optimization 40

18

Published as a conference paper at ICLR 2025

A DETAILS OF PROBLEM REDUCTION AND SOLUTION TRANSFORMATION

For easy reading, here we give a review of the mathematical definitions of covered problems. Then we
give the proof to problem reduction relations in the following sections. Note that methods discussed
or proposed in this paper, are anchored to CO problems on graphs, especially those technically
reducible or structurally similar to general TSP, i.e., feasibly characterizable via matrix formulation.

Definition 1 (Traveling Salesman Problem (TSP)). Given a complete, directed or undirected graph
without self-loops denoted by G = (V, E) (V = {1, 2, · · · , N}: the node set, E: the edge set) along
with a cost matrix C of the shape N × N where the entry Cij is the cost for edge (i, j) ∈ E , the
problem is to find the tour τ = (i1, · · · , iN) to minimize the cost

∑N−1
k=1 Cikik+1

+CiN i1 .

Definition 2 (Hamiltonian Cycle Problem (HCP)). Given a directed or undirected graph G = (V, E),
the problem is to determine whether there exists a Hamiltonian cycle in G.

Definition 3 (Boolean Satisfiability Problem (SAT) in conjunctive normal form (CNF)). SAT aims
to determine the existence of an interpretation that satisfies a given Boolean formula. A Boolean
formula in CNF is represented by a conjunction (denoted by ∧) of clauses that are disjunctions
(denoted by ∨) of variables. For example, (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2 ∨ ¬x3) is a SAT instance of two
clauses (x1 ∨ ¬x2) and (¬x1 ∨ x2 ∨ ¬x3), and three variables x1, x2 and x3.

A special case of SAT in CNF where the number of variables is no more than 3 is named as 3-
Satisfiability (3SAT). Note any SAT problem can be reduced to 3SAT in polynomial time (Fouh et al.,
2014). So without losing generality, we pick 3SAT for evaluation.

A.1 HCP V.S. TSP

To transform the graph G = (V, E) of an HCP instance to the cost matrix C of a TSP instance, we
simply set Cij = 0 if (i, j) ∈ E and Cij = 1 otherwise. Then the problem of finding a Hamiltonian
cycle becomes finding a tour of length 0 (also the minimum length) for the TSP instance with cost
matrix C. It is obvious that the procedure is polynomial-time.

A.2 3SAT V.S. HCP

A.2.1 REDUCTION FROM 3SAT TO HCP

Suppose we have a 3SAT instance of Nv variables {x0, x1, · · · , xNv−1} and Nc clauses, reducing it
to an HCP instance follows the below two steps. More details of illustrations and proofs for claims in
this subsection can be found in references, Section 28.12 of OpenDSA (Fouh et al., 2014) (slightly
different).

Step 1. Construct variable-clause nodes and edges. We first construct 2Nc nodes for each
variable, 2NvNc nodes in all. We call these nodes “variable-clause nodes”. We assign the indices
0 to 2NvNc − 1 to these nodes. For a variable xi, the indices of corresponding nodes are from
2Nci to 2Nc(i+ 1)− 1. Then we construct edges (m,m+ 1) and (m+ 1,m) for m ranges from
2Nci to 2Nc(i + 1) − 2. If i < Nv − 1, we further construct four edges

(
2Nci, 2Nc(i + 1)

)
,(

2Nci, 2Nc(i + 2) − 1
)
,
(
2Nc(i + 1) − 1, 2Nc(i + 1)

)
, and

(
2Nc(i + 1) − 1, 2Nc(i + 2) − 1

)
;

else if i = Nv − 1, we construct four edges (2Nci, 0), (2Nci, 2Nc − 1),
(
2Nc(i+ 1)− 1, 0

)
, and(

2Nc(i+ 1)− 1, 2Nc − 1
)
.

Step 2. Construct clause nodes and edges. We then construct Nc nodes for the clauses. We call these
nodes ‘clause nodes’. We denote the clauses as {C1, C2, · · · , CNc−1} We assign indices from 2NvNc

to 2NvNc+Nc−1. If clause Cj contains variable xi, then we construct edges
(
2Nci+2j, 2NvNc+j

)
and

(
2NvNc + j, 2Nci+ 2j + 1

)
. If clause Cj contains variable ¬xi, then we construct edges in the

opposite directions, i.e.,
(
2NvNc + j, 2Nci+ 2j

)
and

(
2Nci+ 2j + 1, 2NvNc + j

)
.

So far, we have reduced the 3SAT instance to the graph of a HCP instance G containing 2NvNc+Nc

nodes in polynomial time. It can be easily proved that the 3SAT is satisfiable if and only if G has a
Hamiltonian path.

19

Published as a conference paper at ICLR 2025

A.2.2 TRANSFORM HCP SOLUTION TO 3SAT SOLUTION

If the tour τ traverse two variable-clause nodes whose index are 2Nci+ 2j and 2Nci+ 2j + 1 in the
order 2Nci+ 2j → a clause node → 2Nci+ 2j + 1, then the variable xi is set to True; else if the
order is 2Nci+ 2j + 1 → a clause node → 2Nci+ 2j, then xi is set to False.

B ADDITIONAL RELATED WORK

Apart from the literature mentioned in the main context, we hereby present a detailed summary of
related works including conventional methods for TSP solving, machine learning methods for TSP
solving, recent pursuit for a unified framework towards general combinatorial optimization, and
specific solvers for HCP and SAT problem.

B.1 CONVENTIONAL SOLVERS

Exact Solvers. Solvers for linear programming and mixed integer linear programming, including
Gurobi (Gurobi Optimization, 2021) and CPLEX (Studio, 2020), can be used to solve general
TSP with optimal solutions as output. Concorde is a famous TSP solver but is only applicable
to 2D symmetric TSP (Hahsler & Hornik, 2007), and according to our preliminary trials, few
open-source implementations produce stable and efficient solutions to ATSP. These methods can be
time-consuming, especially in real-world applications where the scale of instances may be large.

Heuristic Solvers. Heuristic algorithms include nearest neighbor (NN), furthest insertion (FI), etc.
Among the heuristics, LKH (currently LKH-3.0.9 (Helsgaun, 2017)) is the most famous one for its
high efficiency and near-optimal solutions. Technical details of LKH has been elaborated in the main
context.

B.2 LEARNING METHODS FOR TSP

The learning models for TSP solving generally receive input features from the instance graph, where
typically the node features indicates the 2D coordinates of the nodes, and edge features indicating
the weight of the edges. These neural methods can be generally categorized into two classes, i.e.,
autoregressive (AR) and non-autoregressive (NAR) methods, according to their learning and inference
paradigm.

NAR Methods. Non-autoregressive models usually output neural heatmaps in a one-shot manner,
indicative of the predicted likelihood of each eadge being included in the optimal solution. These
networks are mostly developed on the basis of GNN or its variants. GCN (Joshi et al., 2019),
Att-GCN (Fu et al., 2021) are representative works that adopts graph convolutional network (Kipf
& Welling, 2016) and graph representaion learning (Xiong et al., 2024) for edge prediction using
supervised solution proximity. UTSP (Min et al., 2024) proposes a unsupervised framework based
on Scattering Attention GNN (SAG) (Min et al., 2021). DIMES (Qiu et al., 2022) devises a novel
meta-reinforce learning framework to work cooperatively with the active search technique for scaled
2D-TSP instances. The physics-inspired GNN (Schuetz et al., 2022) presents to leverage the Quadratic
Unconstrained Binary Optimization (QUBO) and Ising models from statistical physics to encode
optimization problems as differentiable loss functions to support scalable unsupervised learning, but
the design of Hamiltonian formulation of specific problem can be difficult. Authors of Xia et al.
(2024) also demonstrate the limitations of heatmap generation for TSP. Deviating from the prediction
of a single solution with supervised learning, generative modeling methods (Sun & Yang, 2023; Li
et al., 2023b; Hottung et al., 2021a) endeavor to characterize a distribution of high-quality solutions
for a given instance. Solutions can be established by sampling from the distribution. GNARKD (Xiao
et al., 2024) obtains NAR VRP solvers through knowledge distillation, but limited its evaluation to
symmetric TSP and CVRP.

AR Methods. Instead of global prediction in one shot, sequence models decompose the TSP task
into an n-step node prediction, where each step offers the prediction map of the next node selection
based on the current state. The sequence models generally follow an attention based encoder-decoder
model where the encoder produces embeddings of all input nodes and the decoder produces the

20

Published as a conference paper at ICLR 2025

per-step node predictions accordingly. RL4CO community develops a comprehensive repository for
this category of methods (Berto et al., 2023). Representatively, AM (Kool et al., 2018) first proposes
using transformer-based attention model for routing problems. POMO (Kwon et al., 2020) proposes
the policy optimization with multiple optima for reinforcement learning; Sym-NCO (Kim et al., 2022)
leverages symmetricity for neural combinatorial optimization, which is widely adopted in subsequent
literature. Recent work BQ-NCO (Drakulic et al., 2023) introduces a novel Markov Decision Process
(MDP) formulation for COPs, leveraging bisimulation quotienting to enhance out-of-distribution
robustness.

Divide-and-Conquer Frameworks In the context of neural solvers for combinatorial optimization,
scalability has been a longstanding concern and challenge for the community. For NAR methods, we
notice that acquiring supervision for edge regret is extremely time-consuming, making it impractical
for solving larger-scale problems than TSP-500. Meanwhile, RL-based sequence models also face
challenges on larger-scale problems due to issues like sparse rewards and training instability, which
also struggle to support training on larger-scale instances (even impractical for N ≥ 100). To
address this issue, apart from effort to tailor specific architectures or training techniques, resorting to
divide-and-conquer is proven feasible and performant. Authors of Fu et al. (2021) train a small-scale
model, which could be repetitively used to build heat maps for TSP instances of arbitrarily large
size. Luo et al. (2024) proposes a novel self-improved learning method for better scalability of
neural combinatorial optimization, powered by an innovative local reconstruction approach that
iteratively generates better solutions by itself as pseudo-labels to guide efficient model training.
Most recently, GLOP (Ye et al., 2024b) learns to partition large routing problems into TSPs and
TSPs into Shortest Hamiltonian Path Problems (SHPPs), which subsequently get conquered by
local revisers. These methods improve the scales of TSPs applicable to neural solvers up to 10000
nodes. UDC (Zheng et al., 2024b) develops a unified neural divide-and-conquer framework with a
Divide-Conquer-Reunion (DCR) training method for solving general large-scale CO problems, which
tries to address the sub-optimal dividing policy via high-efficiency GNNs for global instance dividing
and a fixed-length sub-path solver for conquering divided sub-problems.

Remarks. It should be highlighted that the effective divide-and-conquer frameworks are indeed
orthogonal to our proposed generic solver, where a significant synergy can be reached to enhance
both model scalability and solving quality.

B.3 COMBINATION OF NEURAL AND OR METHODS

In addition to end-to-end approaches for CO problems on graphs (COPG), resorting to the com-
bination of neural networks and operations research (OR) methods is studied in several works.
VSRLKH (Zheng et al., 2021) and NeuroLKH (Xin et al., 2021) combines the strong traditional
heuristic Lin-Kernighan-Helsgaun (LKH) for TSP with reinforcement learning and supervised learn-
ing respectively. GNNGLS (Hudson et al., 2021) and NeuralGLS (Sui et al., 2023) present hybrid
approaches for solving the TSP based on GNNs and Guided Local Search (GLS), which searches
for solutions from neurally predicted regret of including each edge. da Costa et al. (2020), Sui
et al. (2021) and Ma et al. (2023) are similar works that solve TSP through automatically learning
effective 2-, 3- and k-opt heuristics in a data-driven manner. DPDP (Kool et al., 2022) proposes a
Deep Policy Dynamic Programming (DPDP) scheme, which aims to combine the strengths of learned
neural heuristics with those of DP algorithms. However, it only scales up to 100 nodes in terms of
solving TSPs and VRPs. DeepACO (Ye et al., 2024a) is a meta-heuristic algorithm which leverages
deep reinforcement learning to automate heuristic designs. GFACS (Kim et al., 2024) develops a
neural-guided probabilistic search algorithm for solving COPs.

Remarks. A common limitation of these methods is the over dependence of their performance on
the effectiveness of the local search, rendering the necessity of the neural parts questionable.

B.4 MULTI-TASK CO MODELS

Recent literature show growing interest of general neural CO solver for multiple problems. While
similar concepts, e.g., “multi-task solver”, “universal solver”, etc., have frequently appeared in some
latest works, they often denote quite different approaches and functionalities. For example, MTCO
(Li & Liu, 2023) devises a “multi-task” CO framework which first measures the similarity between

21

Published as a conference paper at ICLR 2025

Table 6: Comparison of different recent works that involve “multi-task” or “general TSP” solving.
“Multi-Task”: Whether the method aims for multi-task CO solving. “Multi-Scale”: Whether the
model adapts to differently scaled instances on the fly without pre-setting parameters. “Single
Solver”: Whether a unified solver learns multiple problems simultaneously. “General TSP”: Whether
the method supports general TSP input, i.e., (probably asymmetric or discrete) distance matrix
only. “QP”: Quadratic Programming. “RL”: Reinforcement Learning. “SL”: Supervised Learning.
“Evaluated Scale”: the first line means the maximal (TSP/VRP) scale in the main experiments, and the
second line (if exists) means the maximal scale evaluated in additional experiments (supplementary
results, divide-and-conquer application, generalizability, etc.). “"∗”: limited to variants of VRPs.

Method Evaluated
Problems

Applicable
Problems

Evaluated
Scale

Multi-
Task

Multi-
Scale

Single
Solver

General
TSP Solver Type

MTCO
(Li & Liu, 2023) PFSP N/A % " % % QP

ASP
(Wang et al., 2024) TSP, CVRP N/A 100

(∼300) N/A N/A N/A % ML-based

MAB-MTL
(Wang & Yu, 2023) TSP, CVRP, OP, KP 100 " " % % RL

GCNCO
(Li et al., 2025a) TSP, CVRP, OP, KP 100 " " " % RL

MVMoE
(Zhou et al., 2024) 16 VRPs VRP variants 100

(1000) "∗ " " % RL

MTNCO
(Liu et al., 2024) 11 VRPs VRP variants 100

(∼1000) "∗ " " % RL

UNCO
(Jiang et al., 2024) TSP, CVRP, KP, MVCP, SMTWTP 100 " " " % LLM + RL

GOAL
(Drakulic et al., 2024) ATSP, CVRP, OP, JSSP 100

(1000) " " " " SL

MatNet
(Kwon et al., 2021) ATSP, FFSP P in matrix format 100 % % % " RL

DIMES
(Qiu et al., 2022) TSP, MIS 10K % % % % Meta-RL

T2T & Fast T2T
(Li et al., 2023b; 2024) TSP, MIS 10K % " % % Generative

BQ-NCO
(Drakulic et al., 2023) TSP, ATSP, CVRP, OP 100

(1000) % % % " RL

GLOP
(Ye et al., 2024b)

TSP, ATSP,
CVRP, PCTSP (Large) VRPs 10K

(100K) % " % " RL

UniCO
(Ours)

ATSP, TSP,
HCP, SAT

P ≤P general TSP
or P in matrix format
(VC, Clique, VRPs,

FFSP, MIS, etc.)

100
(10K) " " " "

RL, Meta-RL,
SL, Generative,

etc.

CO problems, and then transfers knowledge between similar instances within the same problem
type to gain search speed-ups in its quadratic programming solver. However, it primarily focuses
on the permutation flowshop scheduling problem (PFSP) and does not explore the application of its
method in handling different types of problems. Moreover, MTCO is not specifically designed for
learning-based neural solvers, making the term “multi-task” in its title misleading from a learning
perspective and irrelevant to the theme of this paper. ASP (Wang et al., 2024) proposes a “universal”
framework to address generalization issues of neural CO solvers, which iteratively improves the
generalizability to different distributions (including scales). ASP proposes a model-/problem-agnostic
training policy to improve generalizability. However, it is also focused on PFSP, and does not provide
a specific neural solver which we believe is technically nontrivial that can deal with different types of
problems. In the work (Wang & Yu, 2023), authors propose a multi-armed bandit framework to train
a neural solver for different CO problems, whereby problems share a common encoder but differ
in the header and the decoder. Yet, as the header and decoder necessitate customized designs for
specific problems, the solver cannot be readily applied to unseen problems, restricting its applicability
to the training dataset comprising TSP, CVRP, OP and KP. MVMoE (Zhou et al., 2024) develops
a multi-task VRP solver with mixture-of-experts utilizing a hierarchical gating mechanism, which
achieves good zero-shot generalization performance on multiple VRP variants. Boisvert et al. (2024)
proposes a new generic representation that encodes problem constraints into a graph structure by
breaking down each constraint into an abstract syntax tree and connecting related variables and
constraints through edges. However, the authors also identify limitations in terms of training time and

22

Published as a conference paper at ICLR 2025

the size of the generated graphs. Resembling MVMoE, MTNCO (Liu et al., 2024) tackles the cross-
problem generalization among variants of VRPs using shared underlying attributes and solve them
simultaneously via a single model through attribute composition. More recently, UNCO (Jiang et al.,
2024) resorts to large language models (LLMs) that take natural language to formulate text-attributed
instances for different COPs and encode them in the same embedding space, thereby facilitating a
unified process of solution construction. But the solving quality and scalability has considerable
room for improvement. GOAL (Drakulic et al., 2024) proposes a single backbone plus light-weight
problem specific adapters that solves a variety of COPs include ATSP but with inferior performance.

B.5 SPECIFIC SOLVERS FOR SAT AND HCP

SAT. Neural methods for solving the SAT problem can be broadly classified into two categories:
standalone neural solvers and neural-guided solvers. Direct neural solvers, such as NeuroSAT (Selsam
et al., 2018) and subsequent works (Cameron et al., 2020; Jaszczur et al., 2020), classify CNF formulas
as satisfiable or unsatisfiable while simultaneously constructing possible assignments by decoding
literal embeddings. Several alternative approaches (Amizadeh et al., 2019a;b; Ozolins et al., 2022)
focus on directly generating satisfying assignments, leveraging different GNN architectures and
employing unsupervised loss for training. These methods generally aim to predict a single satisfying
solution for each instance, failing to account for other possible solutions. In the category of neural-
guided methods, NeuroCore (Selsam & Bjørner, 2019) and #Neuro (Vaezipoor et al., 2021) utilize
neural networks to guide the branching decisions of SAT and #SAT solvers. NSNet (Li & Si, 2022)
models satisfiability problems as probabilistic inference, using a graph neural network (GNN) to
parameterize belief propagation (BP) in the latent space, thereby guiding a local search for a satisfying
assignment. CryptoANFNet (Zheng et al., 2024a) proposes a graph structure based on Arithmetic
Normal Form (ANF) to more effectively encode cryptographic problems and uses GNN to solve the
corresponding SAT instances. Methods have also been proposed using neural models to generate
pseudo-industrial SAT instances to resolve data bottlenck (Li et al., 2023a; Chen et al., 2024). Readers
can refer to Guo et al. (2023) for a thorough survey of solving SAT problem with neural approaches.

HCP. It is noteworthy that HCP have not yet been extensively discussed within the ML4CO
community. One recent work incorporating HCP as a case study is Wang et al. (2021), which
proposes a bi-level framework with an upper-level learning method to optimize the graph (e.g.,
adding, deleting, or modifying edges), combined with a lower-level heuristic algorithm solving
the optimized graph. This framework utilizes an actor-critic-based RL method to train a graph
convolutional network (GCN) and tests it on 1001 large HCP instances, achieving results comparable
to LKH.

B.6 NOTE ON EVALUATION OF SPECIFIC SOLVERS

It can be controversial that we have not yet incorporated the so-called “specialized solvers” for the
individual type of CO problems covered in this paper. We hereby provide our detailed consideration
and clarification upon this issue in hope to eliminate possible ambiguity and misunderstanding.

Conforming to Our Motivation. As our primary motivation goes, proposing a competitive yet com-
pact workflow capable of effectively tackling (A)TSP instances with different problem distributions
comes foremost.

Lack of Companion Methods. To our best knowledge, few existing specialized solvers match
our formulation of CO problems, nor are there prevalent evaluation protocols. Notably, there is
limited exploration of the potential to unify various combinatorial optimization problems on graphs
and exploit matrix representations for developing neural solvers with cross-task universality or
cross-distribution robustness.

Existing Research Convention. There is precedent in top literature for evaluating different problems
within a primarily targeted problem type. E.g., in NeuroSAT (Selsam et al., 2018), the authors, despite
focusing on a new SAT solver, gained recognition for its cross-task applicability by modeling and
solving graph coloring, dominating-set, and node cover problems within the SAT formulation.

Remarks. Therefore, it is supposed to be reasonable to compare within the scope of general TSP
solvers on our unified matrix datasets where various CO tasks are implicitly embedded, also in hope
to facilitate standardized comparison of the general neural combinatorial optimization community.

23

Published as a conference paper at ICLR 2025

C NETWORK DETAILS

C.1 VANILLA MATNET AND MATPOENET

Encoder. Each node i in the graph form of the input matrix is assigned with two embedding
vectors1 ai,bi ∈ Rd. We denote the embedding matrix of all nodes at the l-th layer as Al =
[al1,a

l
2, · · · ,alN] ∈ Rd×N and Bl of the same shape. The input A0 and B0 are initialized as zero

embeddings and one-hot embeddings respectively. Note that B0 may not be a square matrix, so
MatNet forces d ≥ N and set B0 as an one-hot square matrix OE ∈ RN×N padded with zero values
0 ∈ RN×(d−N), i.e., mathematically B0 = [OE,0]⊤. Notably, B0 = POE in MatNetPOE and
need not paddings.

Taking embedding A as example:

Ql
a = WQ

a A
l, Kl

a = WK
a Bl, Vl

a = WV
a B

l, (10)

MixedScoreAttla = softmax
(

MLP1

([
C;

Ql⊤

a Kl
a√

dqkv

]))
, (11)

Al+1 = MLP2

(
MixedScoreAttlaV

l⊤

a

)⊤
, (12)

where WQ
a ,W

K
a ,WV

a ∈ Rdqkv×d are learnable parameters for attention modeling, [·; ·] denotes the
concatenation operation, MLP(·) denotes a multilayer perceptron layer with activation functions
and batch normalization operations inside. The input and output dimensions of MLP1 are 2 and 1
respectively, so MLP1 achieves to mix the attention values and the cost matrix, yielding the mixed
score MixedScoreAttla ∈ RN×N . The input and output dimensions of MLP2 is are both d.

Computing Bl+1 is completely symmetrical with Al+1 as shown in Eq. 10 to Eq. 12, by exchanging
the positions of Al and Bl and introducing new parameters WQ

b ,W
K
b ,WV

b .

MatNet extends the mixed-score attention to a multi-head one, just as the original Transformer
(Vaswani et al., 2017).

Decoder. Given the output embedding A and B of the last layer of the encoder, the decoder aims to
conduct the so-called ‘rollout’ to obtain a tour τ = {i1, i2, · · · , iN}. The first step is to compute the
key and value matrices by Kdec = WK

decB and Vdec = WV
decB, where WK

dec,W
V
dec ∈ Rdqkv×d

are trainable parameters. When node in is selected as n-th node in the tour τ , the query vector
qn+1
dec ∈ Rdqkv containing information of previously selected nodes {i1, · · · , in} is computed by:

q1
dec = WQ1

decai1 , q
n+1
dec = WQ0

decain + q1
dec, (13)

where WQ1

dec,W
Q0

dec ∈ Rdqkv×d are trainable parameters for the query vectors. Then, the output
embedding of n-th iteration of the rollout on+1

dec can be obtained by:

on+1
dec = Linear

(
softmax

(
Inf in′≤n

+
qn⊤

decKdec√
dqkv

)
Vdec

)
, (14)

where Inf in′≤n
is a vector of length N whose in′ -th element is set to negative infinity for all n′ ≤ n

and other elements are set to 0, Linear(·) is a linear layer whose input dimension is dqkv and output
dimension is d. In practice, Eq. 14 is further enhanced by multi-head attention. By Eq. 14, on+1

dec
becomes a linear combination of the embeddings bs of unselected nodes, while the weights are
determined by the selected nodes whose information is contain in qn

dec.

The probability vector to select the next node in+1 is:

pθ(in+1|in′≤n)=softmax
(
Inf in′≤n

+tanh

(
B⊤on+1

dec√
d

))
. (15)

After N rollout iterations, a complete tour can be obtained.

1By default, all mentioned vectors are column vectors.

24

Published as a conference paper at ICLR 2025

Model training. It is trained in the same way as POMO (Kwon et al., 2020) based on DRL. For each
instance with C, it samples N tours {τ1, τ2, · · · , τN} with different nodes as start. Then the policy
gradient is:

∇θJ(θ) ≈
1

N

N∑
n=1

(
L(τn)− b(C)

)
∇θ log pθ(τ

n|C), (16)

where L(τ) is the length of tour τ , b(C) is a baseline method which is instantialized as the mean tour
length of the N tours, mathematically b(C) = 1/N

∑N
n=1 L(τ

n).

Instance

Zero
Embedding

POE
Matrix

Mix-Score Attention

E
ncoder

Decoder Layer
Input Node

Next Node

D
ecoder

Tour

Inf Mask

Untrainable

Tempt Variable

Trainable

Scale-free initializer: POE

Figure 4: General structure of MatPOENet.

Fig. 4 illustrates the general neural structure of MatPOENet, highlighting with dashed square the
adaptive design for initial node embedding, i.e., the scale-free initializer, pseudo one-hot embedding
scheme.

C.2 GRAPH-BASED DIFFUSION AND MATDIFFNET

Overview. Given the distribution of problem instance with distance matrix C, solutions (S) can be
established by sampling from the distribution and maximizing the conditional likelihood estimation
E[log pθ(S|C)], where θ is the model parameters. The model is optimized through the evidence
lower bound (ELBO) in Eq. 17, where q is the posterior and Z is the latent variable.

L = −Eq(Z|S,C)

[
log

pθ(S,Z|C)

q(Z|S,C)

]
≥ E [− log pθ(S|C)] . (17)

Details. MatDIFFNet generates general TSP solutions S0 ∈ {0, 1}n×n by T -step denoising process
from random noises ST , and the latent variables include noised solution S1:T , outputting a binary
heatmap guiding the search of a valid TSP tour. The discrete diffusion models generate solutions
S0 ∈ {0, 1}n×n by T -step denoising process from random noises ST , and the latent variables include
noised solution S1:T . For each entry, the model estimates a Bernoulli distribution indicating whether
this entry should be selected. In implementation, each entry of solution is represented by a one-hot
vector2 such that S0 ∈ {0, 1}n×n×2. Following the notations of Ho et al. (2020); Austin et al. (2021),
the general framework of diffusion includes a forward noising and a reverse denoising Markov process.

2Each entry with [0, 1] indicates that it is included in S and [1, 0] indicates the opposite.

25

Published as a conference paper at ICLR 2025

Pseudo
Coordinates A

Pseudo
Coordinates B

GCN: Encoder Layers × 𝐿

Instance
C

Noised Label
𝑿𝒕

MLP:
Matrix
Mixer

Mix-Noised
Map 𝑿𝒕

𝑪

Model Prediction 𝑿𝟎
𝑪

Denoised Heatmap 𝑯Tour 𝜏

Matrix-input adaptor:
Mix-noised map &
Dual feature convolution

Trainable

Untrainable

Tempt Vari able

Figure 5: General structure of MatDIFFNet.

The noising process takes the initial solution S0 and progressively introduces noise to generate a
sequence of latent variables S1:T . The denoising process is learned by the model, which starts from
the final latent variable ST and denoises St at each time step to generate the preceding variables
St−1 based on the instance C, eventually recovering the target data distribution. The formulation
of the denoising process is expressed as pθ(S0:T |C) = p(ST)

∏T
t=1 pθ(St−1|St,C). The training

optimization aims to align pθ(S0|C) with the data distribution q(S0|C) using ELBO:

L =Eq

[∑
t>1

DKL [q(St−1|St,S0) ∥ pθ(St−1|St,C)]− log pθ(S0|S1,C)

]
+ C. (18)

Specifically, the forward noising process is achieved by multiplying St ∈ [0, 1]N×N×2 at step t
with a forward transition probability matrix Qt ∈ [0, 1]2×2 where [Qt]i,j indicates the probability

of transforming Ei in each entry to Ej . We set Qt =

[
βt 1− βt

1− βt βt

]
(Austin et al., 2021),

where βt ∈ [0, 1] such that the transition matrix is doubly stochastic with strictly positive entries,
ensuring that the stationary distribution is uniform which is an unbiased prior for sampling. The
noising process for each step and the t-step marginal are formulated as:

q(St|St−1) = Cat(St;p = St−1Qt) and q(St|S0) = Cat(St;p = S0Qt), (19)

where Cat(S;p) is a categorical distribution over N one-hot variables with probabilities given by
vector p and Qt = Q1Q2 · · ·Qt. Through Bayes’ theorem, the posterior can be achieved as:

q(St−1|St,S0) =
q(St|St−1,S0)q(St−1|S0)

q(St|S0)
= Cat

(
St−1;p =

StQ
⊤
t ⊙ S0Qt−1

S0QtS
⊤
t

)
. (20)

The neural network is trained to predict the logits of the distribution p̃θ(S̃0|St,C), such that the
denoising process can be parameterized through q(St−1|St, S̃0):

pθ(St−1|St) ∝
∑
S̃0

q(St−1|St, S̃0)p̃θ(S̃0|St,C). (21)

Fig. 5 illustrates the general neural structure of MatDIFFNet, highlighting with dashed square the
adaptive design for matrix input, i.e., the mix-noised reference map and dual feature convolution
scheme.

26

Published as a conference paper at ICLR 2025

D EXPERIMENTAL DETAILS

D.1 HYPERPARAMETERS

MatPOENet. We set 512 as the positional embedding dimension as well as all hidden dimensions
in the network. For N ≈ 20 and 50, 8 layers of mix-score attention block is adopted to better capture
problem features, whereas 5 layers are set for N ≈ 100 for space saving. We train our model using
Adam optimizer (Kingma, 2014) with a learning rate of 4 × 10−4 with a decay of 1 × 10−6. The
batch size is set to 200 for N ≈ 20, 50 and 150 for N ≈ 100. Defining a training epoch as 10,000
randomly generated problem instances, we find the performance sufficiently noteworthy within 2,000
epochs for all scales, despite the fact that more training steps might produce better convergence and
outcomes.

MatDIFFNet. The parameter setting of MatDIFFNet basically follows Li et al. (2023b). We set
the dimension of the input features for implemented graph neural networks equals 2 indicating the
pseudo 2D coordinates of the nodes, and set the feature dimension of the intermediate layers to
256. The output channel dimensions of the networks are set as 2 for the classification modelling.
Default number of GNN layers is set to 12. Models at all scales are trained with a cosine learning
rate schedule starting from 4 × 10−4 and ending at 0. For each type of problem distribution, we
generally use 1.28M random instances for each epoch of training and train the models for 100 epochs.
We apply curriculum learning and initialize the models from N ≈ 50 checkpoints. For mixed data
training, 400 epochs are conducted to gain an equivalent period to those trained individually. Training
batch-size is set to 128 for N ≈ 50 and 32 for N ≈ 100. For the diffusion part, We implement the
model with 50 inference steps for denoising, and the models are trained with 1000 denoising steps,
i.e., Tdenoise = 1000. We additionally apply the technique of denoising diffusion implicit models
(DDIMs (Song et al., 2020)) for accelerating inference and solution reconstruction.

UniCO-DIMES. We set 8 layers for the backbone GNN with 64 hidden units for each. For both
outer updates and inner meta-steps, we use AdamW (Loshchilov & Hutter, 2018) as optimizer, with
a learning rate of 1× 10−3 and 1× 10−1 respectively. For all scales of problems, we train the model
for 1000 outer epochs, each containing Tmeta = 15 inner meta-updates with K = 1000 samples. In
the testing phase, we set the (inner) learning rate of active search to 0.5 for faster optimization and
with a typical 100 steps.

D.2 SCALE SETTING OF 3SAT INSTANCES

To align with our experimental setup (N ≈ 20, 50, 100), we manually tailor the number of variables
Nv and clauses Nc as outlined in Table 7. During training at a specific scale, each batch of 3SAT
instances are generated with a randomly determined parameter line within the corresponding scale
group.

D.3 TRAINING CURVES

0 250 500 750 1000
2.1

2.2

2.3

2.4

2.5

2.6

To
ur

 le
ng

th

Full set

0 250 500 750 1000

1.70

1.75

1.80

1.85

1.90

1.95

ATSP

0 250 500 750 1000
Epoch

6.0

6.2

6.4

2DTSP

0 250 500 750 1000

0.5

1.0

1.5

2.0
HCP

0 250 500 750 1000

1.0

1.5

2.0

2.5

3SAT

Figure 6: Tour length of different problem categories during UniCO-empowered mixed-data training
of MatPOENet with N ≈ 50.

Fig. 6, Fig. 7, and Fig. 8 depict the solved tour length during the training process of MatPOENet,
MatDIFFNet, and DIMES under our UniCO framework. Note that the ATSP curve for MatDIFFNet is
smoothed by exponential moving average with α = 0.01 for better clarity, as it reaches the fluctuation
stage sharply within the initial epochs. The RL-based training curves (MatPOENet and DIMES) are

27

Published as a conference paper at ICLR 2025

Table 7: Detailed scale parameters of 3SAT instances contained in different experimental groups.

Scale group # Variables (Nv) # Clauses (Nc) Exact N Average N

N ≈ 20
4 2 18

20.33 3 21
5 2 22

N ≈ 50

6 3 39

49.8
3 7 49
6 4 52
4 6 54
5 5 55

N ≈ 100

9 5 95

101.0
5 9 99
8 6 102
6 8 104
7 7 105

0 100 200 300 400

4

6

8

To
ur

 le
ng

th

Full set

0 100 200 300 400

1.658

1.660

1.662

1.664

1.666

ATSP

0 100 200 300 400
Epoch

6

8

10

12

14

16

18

2DTSP

0 100 200 300 400

2

4

6

8

10

12
HCP

0 100 200 300 400
0

2

4

6

3SAT

Figure 7: Tour length of different problem categories during UniCO-empowered mix-data training of
MatDIFFNet with N ≈ 50.

0 250 500 750 1000

3.5

4.0

4.5

5.0

5.5

To
ur

 le
ng

th

Full set

0 250 500 750 1000

2.0

2.1

2.2

2.3

ATSP

0 250 500 750 1000
Epoch

6.0

6.5

7.0

7.5

8.0

8.5

9.0

2DTSP

0 250 500 750 1000

2.0

2.5

3.0

3.5

4.0
HCP

0 250 500 750 1000

4

5

6

7

3SAT

Figure 8: Tour length of different problem categories during UniCO-empowered mix-data training of
DIMES-AS with N ≈ 50.

sampled with a time step of 10. It can be observed that Transformer-, Diffusion- and GNN-based
backbones are all well optimized under UniCO with problem instance reduction. Furthermore,
detailed training objective curves for each individual problem type demonstrate consistency and
stability of convergence across all involved problem categories, addressing our claim of multi-task
robustness.

E MORE APPLICATIONS OF UNICO

In this section, we provide the details of possible applications of our proposed UniCO. For backbone
model, we adapt DIMES (Qiu et al., 2022) for multi-task training under UniCO by simply replacing
its input of nodes coordinates by random vectors. In Sec. E.1, we carefully introduce its model
architecture and training policy. For more applicable problems, Sec. E.2 presents a list of feasible CO
problems that can i) be reduced to general TSP form, ii) formulated via matrix representation,
or iii) resolved by our proposed models as specific solvers. In the conclusion, we provide further
clarification upon the orthogonality of UniCO and the proposed backbone solvers, reiterating the
motivation and position of our paper.

28

Published as a conference paper at ICLR 2025

E.1 MORE ADAPTABLE BACKBONE: GNN-BASED DIMES

DIMES (Qiu et al., 2022) proposes a scalable neural solver for 2DTSP based on meta-learning and
deep RL.

For TSP, parallel to attention models that sequentially decode node selections, GNN-based techniques
have gained prominence for predicting heatmaps in support of online searching. To this end, we
endeavor to pinpoint a GNN-based architecture that aligns seamlessly with the implementation of our
instance reduction-based general CO training framework. Several observations guide this exploration:
1) High cost of supervised training. Preparing supervision for TSP is primarily time-consuming.
Even worse, matrix input of general TSP can be intractable for space as well, compared to existing
works that often take the convenience of storing coordinate representations only. 2) Embedding
limitations. Prevailing GNN methods, often designed for TSP as an edge classification task, heavily
rely on coordinate inputs, which remains open problem. 3) Data distribution variability. Notable
divergence of data distribution exists subsequent to the reduction of TSP from diverse problem
instances. This variability poses a considerable challenge for supervised training of GNN.

Our exploration of existing models unveil that meta-learning and RL-based active search strategies in
DIMES resonate with our intuitive perspective. We adapt vanilla DIMES into our UniCO architecture,
underscoring its proper alignment with our motivation of tackling multi-task CO problems, and in
turn validating the feasibility of our proposed framework.

Overview. DIMES uses an Anisotropic GNN (Bresson & Laurent, 2018) as backbone to capture
representations of different types of problem instances. The vanilla DIMES takes node coordinates as
the input node features and the distanrces as the input edge features. To generalize DIMES to general
TSP, we empirically use random numbers sampled from [0, 1] of a fixed dimension d (d = 64 by
default) as the node feature. The training process combines Model-Agnostic Meta-Learning (MAML)
and DRL. The primary objective is to enhance the prediction of heatmap initialization that later
yields optimal solving results after the RL-based active search in the testing phase. Following the
paradigm of meta-learning, the training process of DIMES involves outer epochs which optimizes
the backbone GNN parameters utilizing the estimated policy gradients computed with one or more
inner meta-updates. We present the detailed mathematical formulations below.

E.1.1 NETWORK ARCHITECTURE

The GNN layers work as the following message passing scheme:

hl+1
i = hl

i + α
[
BN
(
Ulhl

i +Aj∈Ni

(
σ(elij)⊙Vlhl

j

))]
, (22)

el+1
ij = elij + α

(
BN(Plelij +Qlhl

i +Rlhl
j)
)
, (23)

where hl
i and elij respectively denote the node embedding of node i and the edge embedding of edge

(i, j) at the l-th layer, Ul,Vl,Pl,Ql,Rl are learnable parameters of l-th layer, α(·) is the activation
function (set as SiLU (Elfwing et al., 2018) in practice), BN(·) is the batch normalization function.

E.1.2 TRAINING PROCESS

Let FΦ denote the graph neural network parametrized by Φ. For each TSP graph instance s reduced
from the problem pool C, the instance-specific input to the network is its distance matrix Ds, and the
output θs ∈ Rn×n := FΦ(Ds) acts as the initial heatmap guiding the search of a TSP tour. A higher
valued θi,j indicates a higher probability for the edge from node i to node j to be sampled. The
vanilla loss function is articulated as the expected cost of the solution for any graph in the collection:

L(Φ|C) = Es∈CS(θs) = Es∈CS(FΦ(Ds)), (24)

where S(·) denotes the sampling-based baseline function (Kool et al., 2019) from a given distribution
representation of predicted heatmap. Specifically, a batch of graph instances of the same problem
type and scale is generated randomly from C in every outer training epoch, within which T inner
meta-steps are taken to fine-tune the parameters on each instance by RL-based updates, referred
to as active search (Bello et al., 2017; Hottung et al., 2021b). The fine-tuned parameters Φ(T)

s are

29

Published as a conference paper at ICLR 2025

computed using these gradient updates for each graph instance s with a inner learning rate α, thus
having Φ

(0)
s = Φ and for 1 ≤ t ≤ T :

Φ(t)
s = Φ(t−1)

s − α∇
Φ

(t−1)
s

L(Φ(t−1)
s |{s}). (25)

Through the inner steps, we obtain the updated heatmap θ
(T)
s = F

Φ
(T)
s

(Ds). For each instance s in the

batch, K solutions {τ1, τ2, · · · , τK} are sampled on the basis of θ(T)
s to calculate the reinforcement

learning-estimated gradient of θ:

∇θEτ [L(τ)] = Eτ [(L(τ)− S(s))∇θ log pθ(τ)] , (26)

where L(·) denotes the length of a feasible tour and pθ is an auxiliary distribution to compute the
probability of a feasible solution for TSP with random start node and chain rule factorization:

pθ(in+1|in′≤n) =
exp(sin,in+1)∑N

n′=n+1 exp(sin,in′)
. (27)

Subsequently, we optimize the performance of the graph neural network with the estimated gradient
and a meta-objective, closing the outer loop:

Lmeta(Φ|C) = Es∈CS(θ
(T)
s |s). (28)

E.1.3 RESULTS AND DISCUSSION

Performance. As demonstrated in Table 8, with our modified input node embeddings, DIMES
works finely with our UniCO framework as a matrix encoder for general TSP, achieving comparable
solving quality via active searching. Despite notable gap from DIMES to MatPOENet and MatD-
IFFNet, DIMES shows good compatibility of UniCO and have the potential to effectively scale to
larger instances, which can also be a valuable research direction in the future.

Table 8: Results of UniCO-DIMES trained on mixed problem data.
Scale Methods ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓

20
DIMES 2.2335 4.1696 2.9448 2.67% 2.6660 2.12% 3.0035
DIMES-AS(100) 1.6790 3.9092 0.4596 60.12% 0.2828 77.12% 1.5826
DIMES-AS(200) 1.6439 3.8809 0.4464 61.92% 0.3068 75.16% 1.5695

50
DIMES 2.3341 6.6271 3.1788 1.56% 5.3656 0.12% 4.3764
DIMES-AS(100) 1.6920 5.9447 0.5908 46.04% 1.5830 20.44% 2.4528
DIMES-AS(200) 1.6794 5.9194 0.5000 54.20% 1.4296 23.36% 2.3821

100 DIMES 2.5186 9.5777 3.8064 1.16% 3.8064 0.00% 6.4018
DIEMS-AS(100) 1.6968 8.3390 0.8480 24.00% 2.8040 7.16% 3.4220

Efficiency. Table 8 lists the solving efficiency of vanilla MatNet and DIMES under our UniCO
framework. MatNet benefits from its light-weight architecture and sequential decision paradigm and
have better time advantage. Active search process endows DIMES with better per-instance solving
performance, while consumes much more time due to its gradient-based local search.

Table 9: Solving efficiency comparison under our UniCO framework. Setting: N ≈ 50, batch size =
100, 2500 instances. DIMES(T): DIMES with T inner updates of active search.

Backbone MatNet MatNet(8×) DIMES DIMES(15) DIMES(100)

Time 15s 2m40s 2m17s 10m35s 1h24m

30

Published as a conference paper at ICLR 2025

MatNet v.s. DIMES: MatNet wins on both efficiency and model performance, but DIMES
has better scalability. We compare vanilla MatNet without augmentation and DIMES without
fine-tuning, both trained with mixed data. We see that MatNet outperforms DIMES significantly.
We also present the solving time of vanilla MatNet and DIMES in Table 9, which demonstrates
the high efficiency of MatNet. Though MatNet wins on both efficiency and model performance,
according to their official papers, DIMES can be run on TSP-10,000 (Qiu et al., 2022), but MatNet
only scales to about TSP-100 (Kwon et al., 2021), indicating better scalabilty of DIMES. It is because
DIMES adopts a lighter neural architecture, but MatNet has a complex rollout scheme, causing a
non-negligible amount of temporal variables, thus limiting its scalability.

DIMES v.s. DIMES-AS(T): The trade-off between efficiency and effectiveness brought by
fine-tuning on test cases. By comparing DIMES-AS(T) with vanilla DIMES, DIMES-AS(T)
improves DIMES significantly with fine-tuning on the test cases. However, DIMES-AS(T) may
suffer from severe scalability issue in real-world applcations. The solving time in Table 9 shows that
DIMES(15) may take about 4.6 times as DIMES.

E.2 MORE APPLICABLE PROBLEMS

E.2.1 VERTEX COVER

Definition 4 (Vertex Cover Problem (VC)). Given an undirected graph G and a positive integer k, a
vertex cover of G is a set S of vertices so that every edge is incident on at least one vertex of G. The
problem is to determine whether G has a vertex cover of size no more than k.

Reduction from VC to HCP. Let the (undirected) graph of VC instance be G(V, E) and the target
is to determine whether there exists a vertex cover S containing no more than k vertices. We can
construct an HCP graph G′(V ′, E ′) with 4|E|+ k vertices. Indexing the edges in E from 1 to |E|, G′

can be mathematically described as:

V ′ = {a1, a2, · · · , ak} ∪ {[u, i, 0], [u, i, 1]|u ∈ V, i ∈ E} , (29)

where i is incident on u.

E ′ = {([u, i, 0], [u, i, 1]) |[u, i, 0] ∈ V ′}
∪ {([u, i, a], [v, i, a]) | i ∈ E , i = (u, v), a ∈ {0, 1}}
∪ {([u, i, 1], [u, j, 0]) |∄ e s.t. i < e < j, [u, e, 0] ∈ V}
∪{([u, i, 1], af) | 1 ≤ f ≤ k, ∄ e s.t. e > i, [u, e, i] ∈ V}
∪{(af , [u, i, 0]) | 1 ≤ f ≤ k, ∄ e s.t. e < i, [u, e, i] ∈ V} .

(30)

Transform HCP Solution to VC Decision. If there exists a Hamiltonian cycle τ in G′, we first
select all vertices in τ that connect any vertex in {a1, a2 · · · , ak}. The selected vertices are necessarily
in the form of < u, i, a >, and all these u ∈ V constitute the vertex cover of G within k vertices.

Note that the VC problem has been incorporated in UniCO framework and implemented for evaluation.
The details of data generation and empirical results are provided in Appendix F.4.

E.2.2 CLIQUE PROBLEM

Definition 5 (Clique Problem). A clique is a (sub)graph induced by a vertex set K in which all
vertices are pairwise adjacent, i.e., for all distinct u, v ∈ K, (u, v) ∈ E. A clique of size k is denoted
as Kk. The clique problem is to determine whether a graph on n vertices has a clique of size k.

Reduction from clique problem to SAT. Given an clique instance, we introduce the following to
for an SAT instance:

Variables:

yi,r (true if node i is the r-th node of the clique) for 1 ≤ i ≤ n, 1 ≤ r ≤ k.

Clauses:

31

Published as a conference paper at ICLR 2025

1) For each r, y1,r ∨ y2,r ∨ . . . ∨ yn,r(some node is the rth node of the clique).

2) For each i, r < s, ¬yi,r ∨ ¬yi,s (no node is both the r-th and s-th node of the clique).

3) For each r ̸= s and i < j such that (i, j) is not an edge of G, ¬yi,r ∨ ¬yj,s. (If there’s no edge
from i to j then nodes i and j cannot both be in the clique).

That’s the entire formula that will be satisfiable if and only if G has a clique of size k. As SAT
problem can be transformed to 3SAT and further reduced to general TSP in polynomial time, the
decision of Clique problem can be solved by UniCO-empowered solvers.

E.2.3 INDEPENDENT SET PROBLEM

Definition 6 (Independent Set). An independent set is vertex set S in which no two vertices are
adjacent, i.e., for all distinct u, v ∈ S, (u, v) /∈ E.
Definition 7 (Complement Graph). Let G = (V,E) be a graph, the complement graph of G, denoted
as G = (V,E), is defined such that E contains all the edges not present in G.

By definition of complement, (u, v) ∈ E ↔ (u, v) /∈ E. The statement that S ⊆ V is an independent
set in G is equivalent to the fact that S induces a clique in G. Therefore, an IS problem can be
transformed into a Clique decision, and solved by the same reduction of Clique problem to general
TSP thereafter.

E.2.4 VEHICLE ROUTING PROBLEMS

Solving via sub-TSPs. While problems like CVRP cannot be directly solved by a direct transfor-
mation, the TSP solver can still be utilized. E.g, the Cluster-First Route-Second Method (Shalaby
et al., 2021), solves CVRP by first clustering points and then solving each cluster as a TSP. Thus, a
robust TSP solver is effective in the second phase for CVRP. Additionally, as mentioned in Ye et al.
(2024b), large routing problems can be partitioned into TSPs and TSPs into Shortest Hamiltonian Path
Problems (SHPPs), solidifying the significant role a good TSP solver plays targeting sub-structures
of complex VRPs.

Solving via sub-VRPs and SAT. We also notice that in latest works like Zheng et al. (2024b), CVRP
of large scales are divided into sub-CVRPs. Thus, a theoretical valid transformation of VRP to SAT
problem makes a significant difference to our proposed UniCO framework. Below provides a general
formulation of the VRP constraints via variables and clauses in SAT. Subsequently, we discuss the
challenges of incorporating capacity or other integer constraints via conjunctions and disjunctions of
Boolean variables along with our possible solution and analysis of this idea.

Consider the three basic inputs of a VRP instance, the number of nodes N , the number of vehicles K,
and the pair-wise costs dij . The three-dimensional decision variable xijk is introduced in the SAT
instance, where i, j ∈ {0, 1, · · · , N} are the indices of N nodes (0 denotes the central depot), and
k ∈ {1, · · · ,K} is the index of K vehicles. xijk is the Boolean variables indicating whether vehicle
k is assigned to travel directly from node i to node j.

Constraint 1: all vehicles departs from and returns to the depot exactly once. I.e.,

∀k ∈ {1, ...,K},
N∑
j=1

x0jk =

N∑
j=1

xj0k = 1, (31)

which form the following Boolean clauses. For each vehicle k ∈ {1, ...,K},
C1 =(x01k ∨ x02k ∨ · · · ∨ x0Nk) (32)
C2 =(x10k ∨ x20k ∨ · · · ∨ xN0k) (33)
C3 ={(¬x0j1k ∨ ¬x0j2k)|∀j1, j2 ∈ {1, · · · , N}, j1 ̸= j2} (34)
C4 ={(¬xi10k ∨ ¬xi20k)|∀i1, i2 ∈ {1, · · · , N}, i1 ̸= i2} (35)

Constraint 2: all customer nodes should be visited exactly once. Mathematically,

∀i ∈ {1, ..., N},
K∑

k=1

N∑
j=1

xijk = 1, (36)

32

Published as a conference paper at ICLR 2025

which form the following Boolean clauses. For each node i ∈ {1, ..., N},

C5 =(xi11 ∨ · · · ∨ xiN1) ∨ · · · ∨ (xi1K ∨ xi2K ∨ · · · ∨ xiNK) (37)
C6 ={(¬xij1k ∨ ¬xij2k)|∀j1, j2 ∈ {1, · · · , N}, j1 ̸= j2,∀k ∈ {1, · · · ,K}} (38)

So far, we have built the basic constraints of general VRPs. A Boolean formula can be obtained by
ϕ =

∧6
i=1 Ci in the SAT instance to ensure feasibility of a VRP solution.

Next, when stepping into the capacity demands for CVRP (Q: the maximum capacity of each vehicle;
mi: the demand quantity of each node), the following constraint should be added.

Constraint 3: the loading capacity of all vehicles should not exceed the limit. Mathematically,

∀k ∈ {1, ...,K},
N∑
i=0

N∑
j=0

mj · xijk ≤ Q (39)

This arouse difficulty for an SAT instance with its binary variables and Boolean clauses to di-
rectly formulate the complex integer constraint. One way to handle this problem is split the
vehicles and customer nodes into many sub-vehicles and sub-nodes with unit capacity and de-
mand, according to the quantity of Q and mi. Mathematically, the number of nodes and ve-
hicles will be changed to

∑N
i mi and KQ, thus the decision space of xijk is expanding to

i, j ∈ {(1, 2, ...,m1), (m1 + 1,m1 + 2, ...,m1 + m2), ...,
∑N

i mi} and K ∈ {(1, ..., Q), (Q +
1, ..., 2Q), ...,KQ}. Subsequently, extra constraints shall be added to guarantee the consistency
among sub-nodes and sub-vehicles which belong to the same original group, i.e., mathematically, For
all nodes i, j ∈ (

∑T
s=1 ms,

∑T+1
s=1 ms],∀T ∈ {0, ..., N − 1} and vehicle k ∈ (Qr,Q(r + 1)],∀r ∈

{0, ...,K − 1}, we add clauses (
∧
{xijk}) ∨ (

∧
{¬xijk}) to the SAT formula.

Remarks. Thus far, the constraint conditions of the CVRP are transformed into SAT form using
the 3-dimensional variables xijk. Here, a satisfiable variable assignment corresponds to a feasible
solution to the VRP instance. The obtained candidates can then be further optimized for lower total
costs. This attempt facilitates the possibility of solving sub-VRPs within our UniCO framework
in the first place and provides rich implication as another viable perspective of incorporating more
COPs with complex constraints using Boolean formulation of SAT. We would like to reiterate that
the above descriptions are an initial conception to foster as much inspiration for future research. In
practice, considering 1) the heavy computational overhead of this transformation, 2) the maturity of
the two-dimensional matrix solver for general TSP, and 3) SAT instances shall also be reduced to
general TSP later in our framework, we still recommend readers to resort to transforming complex
routing tasks into sub-TSPs, if within our framework.

E.2.5 MATPOENET & MATDIFFNET AS PROBLEM-SPECIFIC SOLVER

In addition to the problems mentioned above that can be consistently learned and solved by reducing
to general TSP, our proposed MatPOENet and MatDIFFNet can also serve as problem-specific
individual solvers decoupled from UniCO, thus enabling a wider range of applicable problems, as
long as specified in a matrix form of parameters quantifying the relationship between two groups of
items. For instance, as evaluated in Kwon et al. (2021) and Li et al. (2023b), Flexible Flow Shop
Problem (FFSP) and Maximal Independent Set (MIS) problem are readily modelled for MatPOENet
and MatDIFFNet, respectively.

Conclusion. Application of the reduction scheme to a wider range of problems are theoretically
guaranteed by the computational complexity theory, and will be further studied in our future research.
Note that resorting to problem reduction for general solving of different CO problems has limitations,
where some tasks with more complicated constraints or high transformation complexity are not
practical. However, the orthogonality between UniCO and specific solvers should be noted, as more
problems has the potential to be solved via individual modelling for our proposed neural solvers.

33

Published as a conference paper at ICLR 2025

Table 10: Ablation studies for the rough solver of MatNet-POE. Scale N ≈ 50. Trained on mixed
data, tested with 8x augmentation.

Methods ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓ Avg. FR↑

Non-MatNet-POE 1.7988 5.8178 0.4080 64.72% 1.0020 34.76% 2.2566 49.74%
FI-MatNet-POE 1.8370 6.0962 0.1920 82.80% 0.6060 55.72% 2.1828 69.26%

MatPOENet (NN) 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082 87.94%

F SUPPLEMENTARY EXPERIMENTS

F.1 FURTHER EXPERIMENTS OF POE

Different Initial Rough Solvers. As mentioned in RQ4 in the main context, we tested different
solvers to prepare the rough solution to initialize POE. In Table 10, among nearest neighbor (NN),
farthest insertion (FI) and without initial solution (Non), NN outperforms the others, which proves
the efficacy of choosing the simple nearest neighbor heuristic as initial rough solver to capture local
information for POE.

Different Initial Node Embeddings. As mentioned in RQ4 in the main context, we have addition-
ally implemented the two advisable ways mentioned as alternative initial embeddings for MatNet in
its paper (Kwon et al., 2021). Note that they are both aimed at breaking the dimension restriction as
our proposed POE.

Table 11: Results of MatNet model equipped with different initial node embeddings on N ≈ 50
dataset. “Trainable”: Nmax different vectors made of learnable parameters. “Random”: completely
random vectors for each problem instance.

Init. Embed. Type ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓

MatNet-Random 2.1044 5.8981 0.8560 33.20% 1.1620 30.44% 2.5051
MatNet-Trainable 1.8923 5.8157 0.4148 63.96% 0.5012 58.52% 2.1560
MatPOENet (ours) 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082

Through this experiment and results in Table 11, we ackowledge the potential capability of tailored
trainable emeddings and anticipate further studies, though, within our time and knowledge, better
performance is achieved using our proposed POE over vanilla random vectors or trainable parameter
matrices of the same shape.

F.2 PRETRAINING-FINETUNING APPLICATIONS

As claimed in the main context that our proposed UniCO serves properly as a pretraining-finetuning
framework, we hereby present two supportive experiments in conventional scenarios:

i) Cross-task scenario: pretrained on several problem types, finetuned on an unseen problem type.

Table 12: Results of the cross-task finetuning on 3SAT. MatPOENet is pretrained under UniCO
framework with dataset comprising ATSP, 2DTSP and DHCP instances of N ≈ 50 for 2,000 epochs
and subsequently finetuned on the new task of 3SAT data for (a much fewer) 500 iterations.

Description 3SAT (L)↓ 3SAT(FR)↑ #Epochs

Pretrained on ATSP, 2DTSP, DHCP w/o Finetuning 1.4080 17.92% 2000

Pretrained on ATSP, 2DTSP, DHCP w/ Finetuning on 3SAT
0.0404 95.96% 50
0.0360 96.40% 100
0.0292 97.08% 200

Trained on merely 3SAT (control group) 0.0400 96.08% 2000

34

Published as a conference paper at ICLR 2025

From Table 12, We observe that after finetuning on the unseen task data (3SAT), the model perfor-
mance is improved significantly compared with that without finetuning (the first row of the table),
and can yield a similar performance compared to the case where the model is premarily trained
on 3SAT only (the third row of the table). These results demonstrate the applicability of UniCO
for pretraining-finetuing, which also directs a feasible path to address the generalizability issue of
MatNet-POE.

ii) Cross-scale scenario: pretrained on smaller scaled dataset, finetuned on larger scaled dataset.

Table 13: Results of the cross-scale finetuning experiments on N ≈ 100 sets. The MatPOENet
model is pretrained under UniCO framework with different dataset of N ≈ 50 for 2,000 epochs and
subsequently finetuned on mixed data of N ≈ 100 scale for (a much fewer) 500 iterations.

Pretrain data Finetune data ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓

Mixed-50 - 2.5656 8.5404 23.5064 0.00% 17.5564 0.00% 13.0422

Mixed-50 Mixed-100 1.9798 8.0573 1.7796 6.60% 2.0664 11.68% 3.4708
ATSP-50 Mixed-100 1.8855 8.3838 0.6712 46.72% 0.2888 72.76% 2.8073

Mixed-100 - 1.8655 8.1719 0.0052 99.48% 0.2440 77.12% 2.5717

Remarkably, we observed from Table 13 that pretraining on smaller instances of ATSP leads to greatly
improved outcomes when fine-tuned on larger scaled multi-task datasets, possibly suggesting the
significance of capturing general problem patterns as well as handling hard cases during pretraining.
The bold numbers are the best among finetuned settings, approaching competitive performance of the
model primarily trained on N ≈ 100 data (the last row) with much shorter training time.

These empirical findings provide strong support for our assertion regarding UniCO’s capability to
serve as a pretraining-finetuning framework. Furthermore, they spark further interest and exploration
into leveraging this paradigm to enhance the model’s scalability as well as generalization performance.

F.3 COMPARISON OF LEARNING PARADIGMS

We have already tried to combine the idea of instance reduction to general TSP with supervised
approach. To ensure fair competition, we modified MatNet architecture into a heavy-encoder and
light-decoder model for SL, which by convention, outputs a heatmap to guide subsequent local
searches. Note that calculating supervision solutions for ATSP/2DTSP at scale is extremely time-
consuming, we implemented the method on decision problem (HCP and 3SAT) instances where the
ground truth is easier to obtain.

Table 14: Performance comparison for HCP and 3SAT problems with different learning paradigms
under UniCO.

Method HCP-50 (L↓) FR↑ Time 3SAT-50 (L↓) FR↑ Time

Greedy 6.014 0.04% 0s 5.987 0.00% 0s
LKH 0.000 100.00% 1m29s 0.140 86.28% 2m11s
MatNet 0.481 53.04% 4m12s 0.329 73.12% 2m
UniCO-RL 0.017 98.28% 4m8s 0.117 88.44% 2m4s
UniCO-SL 0.000 100.00% 2m29s 0.077 92.32% 2m39s

Table 15: Performance comparison for larger HCP and 3SAT problems with different learning
paradigms under UniCO.

Method HCP-500 (L↓) FR↑ Time 3SAT-500 (L↓) FR↑ Time

Greedy 6.924 0.00% 1m27s 15.149 0.00% 1m15s
LKH 0.526 55.88% 1h1m 5.812 3.92% 1h10m
UniCO-SL 0.127 88.12% 1h24m 2.124 65.60% 1h22m

35

Published as a conference paper at ICLR 2025

Results show that SL paradigm also works performantly under our UniCO framework, with better
scalability but more preliminary overheads for supervision and post searching. (UniCO-RL refers to
the setting where UniCO is instantiated by MatPOENet.)

F.4 RESULTS ON VERTEX COVER PROBLEM

Echoing the introduction of more applicable problems in Appendix E.2, we have conducted additional
experiments on vertex cover (with 2500 test cases on N ≈ 50), following the reduction procedures
provided. Similar to the SAT-distributed general TSP, we specified the important parameters for data
generation as specified in Table 16. The experimental results are shown in Table 17.

Table 16: Parameters for vertex cover instance generation.
TSP Scale N Num Edges E Cover Size k Num Nodes NV C Range of N Average N

N ≈ 50 Uniform(10, 12) Uniform(3, 8) Uniform(8, 17) [43, 56] 50.0

Note that our initial experimental results show that our proposed models are easily adaptable into
the UniCO framework and perform decently on the new problem VC. With the transformation of
complementary graphs, a series of node selection tasks on the graph could also be addressed similarly.
Thus far, a representative range of edge-wise tasks (TSP, ATSP, HCP), node-wise tasks (VC, Clique,
etc.) and decisive problem (SAT) combined have formed a good coverage of mainstream COPs on
graphs. In the future, we will delve further into the detailed implementation and improvements on the
instance-level performance and work on more problems.

F.5 RESULTS ON STANDARD SYMMETRIC TSP

To better align our work with previous literature in pursuit of 2D TSP, additional experiments have
been conducted on the consistent test dataset of symmetric TSP-50 and TSP-100. Each dataset
consists of 1280 instances featured by node coordinates. Results are shown in Table 18 and Table 19.
The results of previous works are re-implemented or re-executed with the provided model weights
within our consistent evaluation environment to ensure fair comparison.

Note. All methods except MatNet and those proposed in this paper adopt 2D coordinates as input
node features. In contrast, our methods solely encode the distance matrix as input information.
Additionally, our models can be trained on mixed data, whereas previous works were exclusively
trained on symmetric TSP only. These comparative results demonstrate that our models can achieve
comparable (and even better in some cases) performance without utilizing coordinates, validating our
proposed MatPOENet and MatDIFFNet as successful matrix encoders for symmetric TSP.

F.6 RESULTS ON REAL-WORLD INSTANCES

In the main experiment, this paper primarily focuses on synthetic data for testing. To address this
limitation, we have additionally tested our methods on a subset of standard TSPLIB instances, which
are renowned for their real-world scenarios in TSP evaluation. We selected 45 instances with city
scales ranging from 14 to 195 (as listed in Table 20). These instances encompass different distance
types (such as “EUC 2D”, “GEO”, etc.) and representation formats (such as “coordinates”, “full
matrix”, “diagonal matrix”, etc.). To ensure a fair evaluation and optimally leverage the matrix-
encoding capability of our unified framework and models, we have rewritten the selected instances

Table 17: Results on vertex cover.
Method Tour length (↓) Found rate (↑)

GUROBI 0.000 100.00%
Greedy 7.351 0.00%
MatNet 2.349 1.08%
MatPOENet-8x 0.220 78.28%
MatDIFFNet-2OPT 0.477 66.60%

36

Published as a conference paper at ICLR 2025

Table 18: Performance comparison on standard symmetric TSP-50 test set.
Method Tour length (↓) Optimality gap (↓) Time/instance

Concorde (Optimal) 5.688 – 0.074s
AM (Kool et al., 2018) 5.747 1.04% 0.013s
POMO (Kwon et al., 2020) 5.698 0.18% 0.218s
Sym-NCO (Kim et al., 2022) 5.738 0.68% 0.077s
GCN (Joshi et al., 2019) 5.776 1.53% 0.008s
UTSP+MCTS (Min et al., 2024) 5.818 2.30% 0.063s
DIMES+S+AS (Qiu et al., 2022) 5.859 3.01% 2.884s
DIFUSCO (Sun & Yang, 2023) 5.709 0.38% 0.388s
T2T+GS (Li et al., 2023b) 5.690 0.04% 1.164s
GNNGLS-1s (Hudson et al., 2021) 5.693 0.10% 1.080s
MatNet-8x (Kwon et al., 2021) 5.857 2.97% 0.056s
MatPOENet*-8x (Ours) 5.781 1.63% 0.059s
MatPOENet*-128x (Ours) 5.726 0.66% 0.296s
MatDIFFNet-2OPT (Ours) 5.721 0.59% 0.509s

Table 19: Performance comparison on standard symmetric TSP-100 test set.
Method Tour length (↓) Optimality gap (↓) Time/instance

Concorde (Optimal) 7.756 – 0.404s
AM (Kool et al., 2018) 7.951 2.52% 0.026s
POMO (Kwon et al., 2020) 7.883 1.64% 0.205s
Sym-NCO (Kim et al., 2022) 7.927 2.21% 0.078s
GCN (Joshi et al., 2019) 8.307 7.08% 0.011s
UTSP+MCTS (Min et al., 2024) 8.069 4.46% 0.223s
DIMES+S+AS (Qiu et al., 2022) 8.061 3.94% 8.508s
DIFUSCO (Sun & Yang, 2023) 7.845 1.14% 0.409s
T2T+GS (Li et al., 2023b) 7.788 0.13% 1.198s
GNNGLS-1s (Hudson et al., 2021) 7.837 1.05% 1.389s
MatPOENet*-8x (Ours) 8.127 4.78% 0.262s
MatPOENet*-128x (Ours) 7.933 2.28% 0.758s
MatDIFFNet-2OPT (Ours) 7.840 1.08% 0.769s

Table 20: Tested 45 TSPLIB instances of scale range: [14, 195]
att48.tsp berlin52.tsp ch130.tsp ch150.tsp eil101.tsp
eil51.tsp eil76.tsp kroA100.tsp kroC100.tsp kroD100.tsp

lin105.tsp pr76.tsp rd100.tsp st70.tsp bayg29.tsp
bays29.tsp brg180.tsp fri26.tsp gr120.tsp gr24.tsp

gr48.tsp gr96.tsp ulysses16.tsp ulysses22.tsp bier127.tsp
d198.tsp kroA150.tsp kroB100.tsp kroB150.tsp kroE100.tsp

pr107.tsp pr124.tsp pr136.tsp pr144.tsp pr152.tsp
rat195.tsp rat99.tsp u159.tsp brazil58.tsp dantzig42.tsp

gr17.tsp gr21.tsp hk48.tsp swiss42.tsp burma14.tsp

into a consistent format of “EDGE WEIGHT TYPE: EXPLICIT” and “EDGE WEIGHT FORMAT:
FULL MATRIX”, with all distances scaled to [0, 1]. The results are given in Table 21.

The results demonstrate that our models are also effective on problem instances with completely
unseen distributions and varying sizes. We would like to kindly remind the readers that an important
aspect is that we are the first to evaluate the TSPLIB instances without any initial knowledge from
node coordinates. Thank you again for enhancing the completeness of our evaluation. The task of
improving the generalizability towards more real-world cases are planned for future research.

37

Published as a conference paper at ICLR 2025

Table 21: Results on TSPLIB instances.
Method Avg. tour length

LKH3 4.8622
Greedy 5.4455
MatPOENet 5.0811
MatDIFFNet 5.2744

F.7 FULL EXPERIMENTAL RESULTS

For your quick reference, we present a complete version of experimental results in Table 22, supple-
mentary to Table 2 in the main context, containing both major results and most additional results. A
substantial quantity of empirical investigations are conducted to provide a comprehensive evaluation
of our proposed framework and models.

G FURTHER DISCUSSIONS

G.1 NOTE ON LKH

We have been conducting a preliminary study on the boundary of the strong heuristic LKH when
dealing with general TSP beyond the 2D Euclidean space where it holds an overwhelming advantage.
LKH is a heuristic with three main components: the α-nearest measure, node penalties, and the k-opt
searching algorithm. It operates in the following steps:

1. Compute the α-Nearest Measure: The α-measure of an edge is calculated based on the
length of the minimum 1-tree of a graph and the minimum 1-tree containing that edge. The
α-measures are used to specify the edge candidate set.

2. Node Penalties: LKH employs a subgradient optimization technique to obtain penalties over
each node and modifies the distances.

3. Search Solutions by k-Opt: k edges in the current tour are exchanged by another set of k
edges from the candidate sets to improve the tour until no more exchanges can be found.

There is a fatal flaw of LKH on binary TSP (such as the SAT-distributed TSP in our case) in the first
step of computing α(i, j). For a discrete TSP problem instance, α(i, j) can only be either 0 or 1.
This implies that many edges may have the same α(i, j) value of 0, making it difficult to distinguish
effective candidates and consequently leading to suboptimal performance on such discrete instances.
Moreover, unlike the generation of HCP instances in our experiments where the ones and zeros are
randomly sampled from a uniform distribution and a zero-length cycle is forced in each problem
matrix, the 3SAT-distributed TSP cases are more complex due to their highly structured translation
from variables and clauses to the HCP distance matrix. One possible approach to address this problem
is to use a learned neural mapping network to transform some difficult binary distance matrices into
the more softened and thus easier space to assist LKH solving.

G.2 NOTE ON THE SCALABILITY AND APPLICABILITY

Scalability remains one of the most frequently encountered challenges in the field of neural combina-
torial optimization. The following is a conclusion of our observations and clarifications regarding the
scalability issue, based on our investigations and experiments.

Current Status of General TSP Solving. Firstly, as demonstrated by the main experiments (Ta-
ble 22), although the scale of the tested instances is not extremely large, the baseline TSP solvers
(including both neural methods and strong heuristics such as LKH3) do not yield satisfactory results
within an acceptable time frame. This indicates that for the relatively underexplored task of general
TSP, the solvers at the current scale are still insufficiently effective, not to mention generalizing to
larger scales.

A Shared Convention. From a peer perspective, a common phenomenon can be observed in top
published literature targeting “multi-task”, “general”, and even “universal” combinatorial optimiza-
tion, that an evaluation on problems with up to 100 nodes is generally an acknowledged convention.

38

Published as a conference paper at ICLR 2025

Table 22: Full experimental results. Reported data for ATSP and 2DTSP are tour length. “Single”:
models trained and tested on each problem respectively. “Mixed”: unified models trained with a
mixture of 4 tasks on each scale. Asterisked (*): a unified model trained with a mixture of 4 tasks
and 3 scales. “8x”: representing 8 parallel trials for sequential model solving. BQ-NCO (Drakulic
et al., 2023) and GOAL (Drakulic et al., 2024) reports their results on ATSP but have not been
open-sourced yet. We make estimation according to their reported optimality gap for reference only.
Bold: the best score of neural solvers in each column. Underlined: the best solved length over the
full set for reference. Red box and blue box : ours that outperform LKH with max trials=10,000
and max trials=500 respectively. Time: the average time (seconds) per instance solving over each
line, with batch size set to 1.

ID Methods Train Data ATSP↓ 2DTSP↓ DHCP (L↓, FR↑) 3SAT (L↓, FR↑) Avg. L↓ Avg. Gap↓ Avg. FR↑ Time

Sc
al

e:
N

≈
20

1 Gurobi - 1.5349 3.8347 0.0000 100.00% 0.0000 100.00% 1.3424 - 100.00% 0.135
2 LKH (10000) - 1.5349 3.8347 0.0008 99.92% 0.0000 100.00% 1.3426 0.01% 99.96% 0.327
3 LKH (500) - 1.5349 3.8347 0.0056 99.44% 0.0000 100.00% 1.3438 0.11% 99.72% 0.038
4 Nearest Neighbor - 2.0069 4.5021 3.8556 0.48% 3.0504 0.32% 3.3428 149.02% 0.40% 0.000
5 Farthest Insertion - 1.7070 3.9695 3.3136 1.76% 4.8816 0.00% 3.4679 158.34% 0.88% 0.000

6 MatNet ATSP 1.5871 4.2612 2.9608 1.12% 3.4772 0.56% 3.0716 128.82% 0.84% 0.005
7 MatNet-8x ATSP 1.5391 3.9735 1.5476 9.28% 1.9184 6.08% 2.2446 67.21% 7.68% 0.036
8 MatNet Mixed 1.6359 3.9114 0.9740 27.60% 3.4656 11.04% 2.4967 85.99% 19.32% 0.005
9 MatNet-8x Mixed 1.5645 3.8478 0.1936 80.92% 1.6272 1.36% 1.8083 34.71% 41.14% 0.037

10 Non-MatNet-POE Mixed 1.7133 3.8990 0.8400 33.24% 0.5760 50.64% 1.7571 30.89% 41.94% 0.005
11 Non-MatNet-POE-8x Mixed 1.6057 3.8695 0.5444 53.28% 0.3344 67.52% 1.6057 19.62% 60.40% 0.035
12 DIMES Mixed 2.2335 4.1696 2.9448 2.67% 2.6660 2.12% 3.0035 123.74% 2.39% 0.035
13 DIMES-AS(100) Mixed 1.6790 3.9092 0.4596 60.12% 0.2828 77.12% 1.5826 17.90% 68.62% 0.522
14 DIMES-AS(200) Mixed 1.6439 3.8809 0.4464 61.92% 0.3068 75.16% 1.5695 16.92% 68.54% 1.124

15 MatPOENet Mixed 1.6445 3.8643 0.8676 32.60% 0.4540 61.88% 1.7076 27.21% 47.24% 0.006
16 MatPOENet-8x Mixed 1.5695 3.8389 0.1760 82.68% 0.0112 98.88% 1.3989 4.21% 90.78% 0.043
17 MatPOENet* Mixed 1.5933 3.8632 0.4052 62.24% 0.1528 84.88% 1.5036 12.01% 73.56% 0.006
18 MatPOENet*-8x Mixed 1.5506 3.8372 0.0556 94.44% 0.0008 99.92% 1.3610 1.39% 97.18% 0.043

Sc
al

e:
N

≈
50

19 Gurobi - 1.5545 5.6952 0.0000 100.00% 0.0000 100.00% 1.8124 - 100.00% 0.296
20 LKH (10000) - 1.5548 5.6953 0.0000 100.00% 0.2784 74.80% 1.8821 3.85% 87.40% 0.513
21 LKH (500) - 1.5557 5.6964 0.0000 100.00% 0.4796 61.80% 1.9329 6.65% 80.90% 0.059
22 Nearest Neighbor - 2.0945 6.9977 5.1120 0.00% 5.9872 0.00% 5.0548 178.90% 0.00% 0.000
23 Farthest Insertion - 1.8387 6.0998 4.0224 5.28% 10.3964 0.00% 5.5893 208.39% 2.64% 0.001

24 MatNet ATSP 1.5753 7.3618 1.4856 11.80% 8.4020 0.00% 4.7062 159.67% 5.90% 0.007
25 MatNet-8x ATSP 1.5612 6.9445 0.6036 49.24% 6.3468 0.00% 3.8640 113.20% 24.62% 0.061
26 MatNet Mixed 1.8098 6.0000 0.9288 30.84% 1.1900 30.52% 2.4821 36.95% 30.68% 0.007
27 MatNet Mixed 1.7340 5.8664 0.3056 71.52% 0.2992 73.08% 2.0513 13.18% 72.30% 0.007
28 Non-MatNet-POE Mixed 1.8606 5.8855 1.0392 27.28% 1.1416 31.32% 2.4817 36.93% 29.30% 0.007
29 Non-MatNet-POE-8x Mixed 1.7988 5.8178 0.4080 64.72% 1.0020 34.76% 2.2566 24.51% 49.74% 0.060
30 Rand-MatNet-POE Mixed 1.8282 6.0207 0.9380 30.00% 1.4404 22.12% 2.5568 41.07% 26.06% 0.006
31 Rand-MatNet-POE-8x Mixed 1.7513 5.8853 0.3096 71.52% 0.4708 60.84% 2.1042 16.10% 66.18% 0.063
32 FI-MatNet-POE-8x Mixed 1.8370 6.0962 0.1920 82.80% 0.6060 55.72% 2.1828 20.44% 69.26% 0.064
33 MatNet-Random-8x Mixed 2.1044 5.8981 0.8560 33.20% 1.1620 30.44% 2.5051 38.22% 31.82% 0.064
34 MatNet-Trainable-8x Mixed 1.8923 5.8157 0.4148 63.96% 0.5012 58.52% 2.1560 18.96% 61.24% 0.071
35 GLOP Single 1.8885 6.6499 3.7244 0.84% 4.9816 0.76% 4.3111 137.87% 0.80% 0.115
36 DIMES Mixed 2.3341 6.6271 3.1788 1.56% 5.3656 0.12% 4.3764 141.47% 0.84% 0.055
37 DIMES-AS(100) Mixed 1.6920 5.9447 0.5908 46.04% 1.5830 20.44% 2.4528 35.33% 33.24% 2.016
38 DIMES-AS(200) Mixed 1.6794 5.9194 0.5000 54.20% 1.4296 23.36% 2.3821 31.43% 38.78% 3.879

39 MatPOENet-8x Single 1.5643 5.7042 0.0652 93.52% 0.1888 81.72% 1.8806 3.76% 87.62% 0.066
40 MatPOENet Mixed 1.6881 5.7694 0.1444 86.20% 1.3644 27.08% 2.2416 23.68% 56.64% 0.009
41 MatPOENet-8x Mixed 1.6417 5.7283 0.0172 98.28% 0.2456 77.60% 1.9082 5.29% 87.94% 0.067
42 MatPOENet* Mixed 1.6753 5.8633 0.2112 80.48% 0.8172 42.40% 2.1417 18.17% 61.44% 0.008
43 MatPOENet*-8x Mixed 1.6285 5.7575 0.0280 97.20% 0.1172 88.44% 1.8828 3.88% 92.82% 0.067
44 MatPOENet-8x (N > d) Mixed 1.8799 5.9742 0.4548 60.24% 0.3292 75.56% 2.1595 19.15% 68.00% 0.062

45 MatDIFFNet Single 2.0713 5.7954 2.0992 15.32% 0.0464 98.16% 2.5031 38.11% 56.74% 0.157
46 MatDIFFNet-2OPT Single 1.7186 5.7279 0.8324 44.08% 0.0188 98.64% 2.0744 14.46% 71.36% 0.165
47 MatDIFFNet Mixed 1.8385 6.2332 2.0648 15.76% 0.1112 94.68% 2.5619 41.35% 55.22% 0.155
48 MatDIFFNet-2OPT Mixed 1.6591 5.8619 0.8192 44.52% 0.0496 95.64% 2.0975 15.73% 70.08% 0.164

Sc
al

e:
N

≈
10

0

49 Gurobi - 1.5661 7.7619 0.0000 100.00% 0.0000 100.00% 2.3320 - 100.00% 0.689
50 LKH (10000) - 1.5674 7.7709 0.0000 100.00% 1.0008 44.80% 2.5848 10.84% 72.40% 0.811
51 LKH (500) - 1.5704 7.8015 0.0000 100.00% 1.6656 28.08% 2.7594 18.33% 64.04% 0.095
52 Nearest Neighbor - 2.1321 9.6696 5.4016 0.20% 8.3236 0.00% 6.3859 173.84% 0.10% 0.002
53 Farthest Insertion - 1.9333 8.4847 3.1256 26.64% 23.5160 0.00% 9.2649 297.29% 13.32% 0.003

54 MatNet ATSP 1.6217 19.0644 17.8620 0.00% 40.1188 0.00% 19.6667 743.34% 0.00% 0.015
55 MatNet-8x ATSP 1.5983 17.8146 13.5196 0.00% 35.3216 0.00% 17.0635 631.71% 0.00% 0.094
56 MatNet Mixed 1.9849 8.2551 0.9776 31.68% 2.0408 13.84% 3.3146 42.14% 22.76% 0.018
57 MatNet-8x Mixed 1.9210 8.1028 0.3640 69.60% 0.7740 50.76% 2.7904 19.66% 60.18% 0.095
58 GLOP Single 1.8491 8.8849 2.7850 2.00% 6.4280 0.08% 4.9868 113.84% 1.04% 0.176
59 BQ-NCO ATSP 1.5904 - - - - - - - - 0.016
60 GOAL ATSP 1.5771 - - - - - - - - 0.039
61 Non-MatNet-POE Mixed 2.0307 8.9929 1.0616 28.76% 1.2944 26.88% 3.3449 43.43% 27.82% 0.015
62 Non-MatNet-POE-8x Mixed 1.9800 8.7895 0.4420 63.60% 1.0796 31.80% 3.0728 31.77% 47.70% 0.093
63 DIMES Mixed 2.5186 9.5777 3.8064 1.16% 3.8064 0.00% 6.4018 174.52% 0.58% 0.124
64 DIEMS-AS(100) Mixed 1.6968 8.3390 0.8480 24.00% 2.8040 7.16% 3.4220 46.74% 15.58% 8.437

65 MatPOENet Mixed 1.9183 8.2987 0.0984 90.28% 1.0704 32.32% 2.8465 22.06% 61.30% 0.017
66 MatPOENet-8x Mixed 1.8655 8.1719 0.0052 99.48% 0.2440 77.12% 2.5717 10.28% 88.30% 0.094
67 MatPOENet* Mixed 1.8107 8.2703 0.0796 92.12% 1.2856 26.04% 2.8616 22.71% 59.08% 0.017
68 MatPOENet*-8x Mixed 1.7607 8.0817 0.0012 99.88% 0.3244 70.92% 2.5420 9.01% 85.40% 0.095

69 MatDIFFNet Single 1.9432 7.9684 4.4536 2.96% 0.0404 98.44% 3.6014 54.43% 50.70% 0.103
70 MatDIFFNet-2OPT Single 1.7165 7.8482 1.1404 37.72% 0.0240 98.60% 2.6823 15.02% 68.16% 0.112
71 MatDIFFNet Mixed 1.8763 8.9030 3.2524 5.68% 0.1940 90.52% 3.5564 52.50% 48.10% 0.102
72 MatDIFFNet-2OPT Mixed 1.6965 8.1804 0.9148 43.04% 0.0952 91.44% 2.7217 16.71% 67.24% 0.114

39

Published as a conference paper at ICLR 2025

Table 6 presents a recent review of these works, ranging from the applicable problems to the evaluated
scales of tasks.

Technical Limitations. The training of MatPOENet consumes O(N3) space (O(N2) space for
the attention mechanism and O(N) space for N rollout iterations), making it impractical to run on
large-scale instances (e.g., N ≥ 500) on a single GPU. However, as shown in Table 5, UniCO’s
ability to learn larger-scaled instances can be achieved by switching to different learning paradigms.
For example, a modified version of heatmap-based MatPOENet performs well on N ≈ 500 through
vanilla supervised learning. Another approach to improving the ability to solve large-scale combinato-
rial optimization problems is to resort to the divide-and-conquer paradigm, which is also a consensus
and has been proven feasible and effective (Ye et al., 2024b; Fu et al., 2021; Luo et al., 2024). In this
context, a strong solver for small-to-medium-sized instances remains of irreplaceable importance. We
have readily incorporated the latest work GLOP, which significantly enhances MatNet’s scalability.
Moreover, the promising generative models for discrete optimization can be considered as detailed in
Appendix G.4, which is also planned for our future work.

G.3 DISCUSSION OF MATPOENET V.S. MATDIFFNET

A Trade-off among Quality, Efficiency, and Scalability. As shown in the main result table,
MatPOENet excels at smaller instances as a strong yet compact solver with faster inference and more
transparent training process but can hardly scale due to its RL nature, whereas MatDIFFNet has more
potential to scale to larger cases with more accurate proximity of the solution space (especially in
continuous 2DTSP and complex discrete space, e.g., 3SAT) via its generative design but consumes
much longer time to train and infer due to its heavier architecture and diffusion processes.

Comparison of Stability. MatDIFFNet does not directly generate solutions but decodes the heatmap
to obtain them. Consequently, the solution quality of MatDIFFNet is less stable than that of Mat-
POENet. Specifically, in the case of MatDIFFNet, if there is an error in predicting a particular node,
it will directly impact the predictions of all subsequent nodes. In contrast, MatPOENet generates
solutions step by step and can select better subsequent nodes based on the current state even if there
is an error in a particular node. This instability also results in the relatively poor performance of
MatDIFFNet when solving the Hamiltonian cycle problem (HCP).

G.4 DISCUSSION OF GENERATIVE COMBINATORIAL OPTIMIZATION

Strong scalability of neural backbone and sparsification. In addition to the fact that SL-based
neural networks generally outperform their RL counterparts in terms of scalability, MatDIFFNet
employs a GNN as the backbone encoder, which enables convenient graph sparsification (e.g., k-
nearest neighbor) on TSP. This effectively reduces computational overhead and improves inference
efficiency. As demonstrated in previous research (Qiu et al., 2022), training TSP solvers with a
sparsification factor of, for example 50, significantly reduces the memory and time overhead when
training graphs with while maintaining competitive performance. This is also one of the crucial
reasons we choose general TSP, an edge-based selection task, as the endpoint for problem reduction.
In contrast, such an edge sparsification scheme cannot be adopted when learning to solve most
node-based selection problems, such as vertex cover and independent set.

Rich expressivity of learning solution space distribution. In our investigation of recent literature
on neural solving of combinatorial optimization, especially for graph problems like TSP, a notable
observation is the growing attention and demonstrated performance of diffusion-based generative
models (Sun & Yang, 2023; Li et al., 2023b). From DIFUSCO and T2T to our proposed MatDIFFNet
and its future versions, generative models possess powerful expressive and modeling capabilities.
They can learn the distribution of high-quality solutions conditioned on specific problem instances,
which is beneficial for providing a good starting point or exploration direction in the solution space.
In the context of combinatorial optimization, this means they can potentially generate a variety of
solutions that might be closer to the optimal one, rather than being limited to a single or a few
predicted solutions as in some traditional methods.

Good prospects of consistency model and unsupervised tuning. Moreover, the latest research
on generative combinatorial optimization indicates that diffusion models can be improved through

40

Published as a conference paper at ICLR 2025

consistency training (Song & Dhariwal, 2023). Consistency models learn to map directly from
different noise levels to the optimal solution for a given instance, thereby achieving a high-quality,
rapid one-step generation solution. This approach reduces the number of iterations and enhances
efficiency. Therefore, we will introduce consistency models into our framework in the future to
optimize the inference speed and computational efficiency of diffusion models. Also, as suggested in
works (Sanokowski et al., 2023; 2024), diffusion models finely foster the applicability of unsupervised
learning of combinatorial optimization.

For these reasons, we believe it appropriate to present MatDIFFNet in parallel with MatPOENet in the
main context. This represents both conventional powerful autoregressive solvers using reinforcement
learning and a model with wider extendability and value for further exploration. We maintain that
this provides a more comprehensive view of the current trend in neural combinatorial optimization.

41

	Introduction
	Related Works
	Preliminaries
	Covered CO Problems
	Polynomial-Time Reduction of CO to General TSP

	Methodology
	UniCO: Unified CO Learning Framework
	Transformer-based Solver: MatPOENet
	Pseudo One-hot Embedding

	Diffusion-based Solver: MatDIFFNet
	Mix-Noised Reference Map and Dual Feature Convolution

	Experiments
	Experimental Setup
	Results and Discussions

	Conclusion and Future Work
	Details of Problem Reduction and Solution Transformation
	HCP v.s. TSP
	3SAT v.s. HCP
	Reduction from 3SAT to HCP
	Transform HCP Solution to 3SAT Solution

	Additional Related Work
	Conventional Solvers
	Learning Methods for TSP
	Combination of Neural and OR Methods
	Multi-Task CO Models
	Specific Solvers for SAT and HCP
	Note on Evaluation of Specific Solvers

	Network Details
	Vanilla MatNet and MatPOENet
	Graph-based Diffusion and MatDIFFNet

	Experimental Details
	Hyperparameters
	Scale Setting of 3SAT Instances
	Training Curves

	More Applications of UniCO
	More Adaptable Backbone: GNN-based DIMES
	Network Architecture
	Training Process
	Results and Discussion

	More Applicable Problems
	Vertex Cover
	Clique Problem
	Independent Set Problem
	Vehicle Routing Problems
	MatPOENet & MatDIFFNet as Problem-Specific Solver

	Supplementary Experiments
	Further Experiments of POE
	Pretraining-Finetuning Applications
	Comparison of Learning Paradigms
	Results on Vertex Cover Problem
	Results on Standard Symmetric TSP
	Results on Real-world Instances
	Full Experimental Results

	Further Discussions
	Note on LKH
	Note on the Scalability and Applicability
	Discussion of MatPOENet v.s. MatDIFFNet
	Discussion of Generative Combinatorial Optimization

