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Abstract
Open Domain Question Answering (ODQA)001
has been advancing rapidly in recent times,002
driven by significant developments in dense003
passage retrieval and pretrained language mod-004
els. State-of-the-art models typically incorpo-005
rate the FiD framework, which is composed by006
a neural retriever alongside an encoder-decoder007
neural reader. In the answer generation process,008
the retriever will retrieve numerous passages009
(around 100 for instance), each of which is010
then individually encoded by the encoder. Sub-011
sequently, the decoder makes predictions based012
on these encoded passages. Nevertheless, this013
framework can be relatively time-consuming,014
particularly due to the extensive length of the015
gathered passages. To address this, we intro-016
duce FastFiD in this paper, a novel approach017
that executes sentence selection on the encoded018
passages. This aids in retaining valuable sen-019
tences while reducing the context length re-020
quired for generating answers. Experiments on021
three commonly used datasets (Natural Ques-022
tions, TriviaQA and ASQA) demonstrate that023
our method can enhance the inference speed024
by 2.3X-5.7X, while simultaneously maintain-025
ing the model’s performance. Moreover, an026
in-depth analysis of the model’s attention re-027
veals that the selected sentences indeed hold028
a substantial contribution towards the final an-029
swer.030

1 Introduction031

Open Domain Question Answering(ODQA) is a032

longstanding task in Natural Language Processing033

that involves generating an answer solely based on034

a given question. Recent advancements in this field035

have typically adopted the Retriever-Reader frame-036

work (Chen et al., 2017; Karpukhin et al., 2020;037

Lewis et al., 2020; Izacard and Grave, 2021b),038

which breaks down the task into two distinct stages.039

Initially, a retriever retrieves a set of relevant pas-040

sages from a high-quality collection of open do-041

main documents, such as Wikipedia. Subsequently,042
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Figure 1: Inference Time for FiD (base) and FastFiD
(base) with varying numbers of retrieved passages. As
the number of retrieved passages increases, FiD encoun-
ters increasingly severe efficiency issues. Our FastFiD
significantly accelerates the process by greatly reducing
decoding time.

a reader model generates an answer by considering 043

the question and the retrieved passages. Thanks 044

to advancements in neural models, the retriever 045

has transitioned from traditional search methods 046

like TF-IDF (Chen et al., 2017) to dense passage 047

retrieval (Karpukhin et al., 2020), resulting in im- 048

proved retrieval performance. Furthermore, driven 049

by the progress of Pretrained Language Models 050

(PLMs) (Devlin et al., 2019; Raffel et al., 2020; 051

Brown et al., 2020), the reader has evolved from 052

extracting answers from a single passage to gener- 053

ating answers from multiple passages (Izacard and 054

Grave, 2021b). This approach enables the model to 055

leverage information from various passages more 056

effectively, thereby producing more accurate an- 057

swers. 058

A recently successful model is Fuse-in-Decoder 059

(FiD) (Izacard and Grave, 2021b), which utilizes 060

Dense Passage Retrieval and a generative reader 061

based on T5 (Raffel et al., 2020), an encoder- 062

decoder model. FiD is capable of encoding each 063
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retrieved passage independently and subsequently064

concatenating these encoded passages to form an065

extensive context. The concatenated context is then066

used by the decoder to generate a response. Owing067

to its straightforward and extensible architecture,068

numerous subsequent works have introduced mod-069

ifications based on this framework (Sachan et al.,070

2021b; Yu et al., 2022; Wen et al., 2022). However,071

as the decoder must generate a response based on072

all retrieved passages, it can be time-consuming to073

enhance performance through the retrieval of addi-074

tional passages. Moreover, in real-world scenarios,075

the latency in generating an answer is a significant076

factor. As larger language models continue to be077

developed and demonstrate superior performance,078

this issue may become more pronounced.079

To address this issue, we introduce FastFiD, a080

novel approach that performs sentence selection081

post the encoder’s output and maintains only the082

essential sentences as references for the decoder,083

thereby significantly reducing the inference time084

for each query.085

To demonstrate the effectiveness of our ap-086

proach, we first carry out experiments to ascer-087

tain that the multi-task training, which involves088

sentence selection and answer generation, does089

not conflict with one another during the model’s090

learning process. This is achieved by seamlessly091

incorporating a selection loss on the encoder out-092

puts with a language modelling loss on answer093

generation, enabling the model to simultaneously094

handle both sentence selection and answer gener-095

ation tasks. An in-depth analysis of the decoder’s096

cross-attention reveals that tokens from the chosen097

sentences yield a higher average attention score098

compared to those unchosen. This finding provides099

compelling evidence that the selected sentences100

significantly contribute more to the model’s pre-101

dictions. Guided by this insight, we execute a102

secondary training phase, obliging the model to103

solely anchor to the selected encoder outputs when104

making the final prediction.105

The experimental results obtained from two106

widely used ODQA datasets, namely Natural Ques-107

tions (NQ) (Kwiatkowski et al., 2019) and Trivi-108

aQA (Joshi et al., 2017), along with a long-form109

QA dataset called ASQA (Hofstätter et al., 2023),110

demonstrate that FastFiD can achieve performance111

metrics comparable to the original FiD. Notably,112

it can reduce the context length by up to 38X and113

accelerate the inference time by 2.3X-5.7X on dif-114

ferent datasets. To validate the effectiveness of115

sentence selection, we also compare its perfor- 116

mance with passage reranking after the encoder 117

outputs. The results show that sentence selection 118

yields better performance while maintaining a sim- 119

ilar context length. This comparison indicates that 120

sentence selection is a more effective strategy for 121

compressing information across multiple passages. 122

In summary, our contributions can be encapsu- 123

lated within the following three key points: 124

• We implement a multi-task training approach, 125

demonstrating that a singular reader model 126

can concurrently perform sentence selection 127

and answer generation. 128

• We introduce a novel technique to enhance the 129

inference efficiency of FiD while preserving 130

its question-answering capabilities. 131

• We carry out plenty of experiments to validate 132

and analyze the effectiveness of our method. 133

2 Related Work 134

Open Domain Question Answering serves a 135

crucial role in natural language processing, with 136

its primary function being to respond to factoid 137

questions. Followed by Chen et al. (2017), cur- 138

rent ODQA systems usually use a large collec- 139

tion of documents like Wikipedia as the knowl- 140

edge source to answer questions. Since the docu- 141

ment collection usually contains millions of doc- 142

uments, the system always adds a retriever to re- 143

trieve some most relevant passages for the reader 144

to make predictions. To get better retriever perfor- 145

mance, Karpukhin et al. (2020) proposed a shift 146

from sparse retrieval systems like TF-IDF to dense 147

retrieval to enhance the efficiency of the retriever. 148

Subsequent research (Lewis et al., 2020; Sachan 149

et al., 2021b; Jiang et al., 2022; Lee et al., 2022) has 150

investigated the use of end-to-end training method- 151

ologies to further boost the performance of the 152

retriever, bypassing the need for pair-wise question- 153

document data. Izacard and Grave (2021a) demon- 154

strated an improvement in performance through 155

the distillation of knowledge from the reader to 156

the retriever. The idea of pretraining both the re- 157

triever and the reader on a vast, unlabeled corpus 158

has been explored by Guu et al. (2020) and Sachan 159

et al. (2021a). A different research trajectory has 160

aimed to augment the reader’s capacity to better 161

utilize retrieved passages. With the advancement 162

of PLMs, the reader has evolved from RNN-based 163
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Figure 2: An overview of our FastFiD training pipeline. The pipeline undergoes two stages of training to empower
the model with the capacity to generate answers based on the selected sentences, thereby minimizing inference time.

models (Chen et al., 2017) to BERT-based extrac-164

tive readers (Karpukhin et al., 2020) and T5 or165

BART-based generative readers (Lewis et al., 2020;166

Izacard and Grave, 2021b). Recent studies (Cheng167

et al., 2021; Fajcik et al., 2021; Wen et al., 2022)168

have pivoted towards a hybrid approach, exploring169

the integration of both generative and extractive170

readers to further enhance system performance.171

Efficient ODQA The majority of contemporary172

Open-Domain Question Answering (ODQA) sys-173

tems face efficiency challenges, primarily due to174

the large-scale document processing and the use175

of sizable pre-trained language models. These effi-176

ciency challenges arise in two stages.177

The first stage is retrieval efficiency. Given the178

potentially massive number of passages, dense re-179

trieval can be extremely slow. Instead of relying180

solely on brute force search methods, alternative181

algorithms such as Approximate Nearest Neigh-182

bor (ANN) (Johnson et al., 2021) and Hierarchi-183

cal Navigable Small World (HNSW) (Malkov and184

Yashunin, 2020) can be employed to expedite the185

retrieval process.186

The second efficiency challenge lies in the read-187

ing process, which involves handling multiple pas-188

sages for each query. To address this, Hofstätter189

et al. (2023) propose FiD-Light, which limits the190

decoder’s attention to the first k tokens of each pas-191

sage to reduce the context length. FiDO (de Jong192

et al., 2023) explores reducing the number of cross193

attention layers in FiD’s decoder to increase effi-194

ciency, but this comes at the cost of re-pretraining195

the base model. Other complementary strategies196

explore to identify and stop processing less relevant197

passages early on by utilizing adaptive computa-198

tion (Wu et al., 2020, 2021) or knowledge graph199

with GNN network (Yu et al., 2022). Addition-200

ally, some research has focused on directly retriev-201

ing answers to questions without the need for pas- 202

sage processing (Seo et al., 2019; Lee et al., 2021; 203

Lewis et al., 2021), or using language models to 204

generate answers directly by finetuning and few- 205

shot prompting (Roberts et al., 2020; Brown et al., 206

2020). 207

3 Methods 208

In this section, we propose FastFiD, which is based 209

on FiD (Izacard and Grave, 2021b) to reduce its 210

inference time and make it more efficient. FastFiD 211

contains a two-stage training procedure. Initially, 212

in the first stage, we introduce a multi-task train- 213

ing objective that allows for simultaneous training 214

of sentence selection and answer generation (Sec- 215

tion 3.1). Then, in the second stage, we use the 216

model trained in the first stage as the base model 217

and perform continuous training on generating an- 218

swers with reference to the selected tokens. (Sec- 219

tion 3.2). Finally, in the inference stage, the en- 220

coder transcodes each passage into context embed- 221

dings and curates a selection of valuable sentences, 222

which are then employed in the decoder generation 223

process to expedite inference time (Section 3.3). 224

The overall framework is shown in Figure 2. 225

3.1 Multi-Task Training 226

In this section, we present our multi-task train- 227

ing approach. Following FiD, we utilize T5, an 228

encoder-decoder based PLM, as our base model. 229

Given a question-answer pair (q, a), we initially 230

retrieve K relevant passages p1, p2, ..., pK , with 231

their respective titles t1, t2, ..., tK from an exten- 232

sive knowledge base, predicated on the question 233

q. Subsequently, the question q and each corre- 234

sponding passage pk are combined to generate a 235

comprehensive input in the following structure: 236

Ik = Question: q Title: tk Context: pk (1) 237
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After this, the model’s encoder transcodes each238

input Ik into context embeddings hk1, h
k
2, ..., h

k
N ∈239

Rd, where N represents the max sequence length240

of the input text. Our multi-task training objective,241

which encompasses sentence selection and answer242

generation, is built upon these encoded context243

embeddings.244

3.1.1 Sentence Selection245

In the context of a given retrieved passage pk,246

there exist Mk key sentences, represented as Sk =247

sk1, s
k
2, ..., s

k
Mk

, that are crucial for answering the248

question. As established in prior extractive reader249

works (Chen et al., 2017; Kwiatkowski et al., 2019;250

Min et al., 2019; Cheng et al., 2021), we implement251

a classification head to anticipate the begin and end252

positions of each key sentence. Taking into account253

the conclusions of Cheng et al. (2020) and Cheng254

et al. (2021), we employ a multi-objective approach255

to enhance sentence selection performance.256

In formal terms, the probability of a span (ik, jk)257

being a selected sentence can be broken down into258

the product of the probabilities of the ik-th token259

being the start token and the jk-th token being the260

end token. We integrate some learned parameters,261

namely wb, we, bb, be, to calculate the start and end262

score:263

Sb(i
k) = wT

b h
k
i + bb;

Se(j
k) = wT

e h
k
j + be

(2)264

By calculating the probability based on differ-265

ent normalizing factors, we can derive the lo-266

cal passage-level probability and the global multi-267

passage-level probability. With local probability,268

the probability of each token in different retrieved269

passages will not affect one another. By normaliz-270

ing the start and end probabilities by the total scores271

of all tokens in input Ik, we derive the probability272

as follows:273

PL
b (i

k) =
exp(Sb(i

k))∑
n exp(Sb(nk))

;

PL
e (j

k) =
exp(Se(j

k))∑
n exp(Se(nk))

(3)274

In the case of global probability, we calculate275

the probability taking into account all the tokens in276

the top-K passages from the retriever. Therefore,277

the probability of each token being the start or end278

of the selected sentence will be jointly optimized279

across different passages:280

PG
b (ik) =

exp(Sb(i
k))∑

k

∑
n exp(Sb(nk))

;

PG
e (jk) =

exp(Se(j
k))∑

k

∑
n exp(Se(nk))

(4) 281

We then obtain the local and global probabilities 282

of a span being the supported sentence as follows: 283

P {L,G}
s (ik, jk) = P

{L,G}
b (ik)× P {L,G}

e (jk) (5) 284

Following the methodology of Cheng et al. 285

(2021), we utilize a multi-objective formulation 286

to merge the HardEM (Min et al., 2019) and 287

MML (Karpukhin et al., 2020) objectives for more 288

efficient training. In the multi-objective formu- 289

lation, we calculate the HardEM loss on global 290

probability and the MML loss on local probability. 291

The final sentence selection loss is calculated as 292

follows: 293

LS =− log max
(i,j)∈S

PG
s (i, j)−

1

K

K∑
k

log
∑

(ik,jk)∈Sk

PL
s (i

k, jk)
(6) 294

where S = S1 ∪ S2 ∪ ... ∪ SK is the set of 295

all crucial sentences in the top-K retrieved pas- 296

sages. Since ODQA datasets usually only contain 297

question-answer pairs without annotated valuable 298

sentences, we consider the sentences that include 299

the short span answer in each retrieved passage as 300

the crucial sentences. 301

3.1.2 Answer Generation 302

As the pipeline in FiD, we employ the decoder to 303

fuse the information of retrieved passages and make 304

a prediction. More specifically, we first concatenate 305

the context embeddings of all inputs: 306

H = (H1;H2; ...;HK) (7) 307

where Hk represents the context embeddings for 308

input Ik, therefore H have an overall length of 309

N ×K. Subsequently, the decoder conducts cross- 310

attention over the concatenated context embed- 311

dings to make generation. 312

For the training objective, it optimizes the lan- 313

guage modelling loss of generating the golden 314

answer a, a sequence of tokens represented as 315

{a1, a2, ..., aNa}: 316

LG = − log

Na∑
i

Pθd(ai|H, a1:i−1) (8) 317
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where θd is parameters of the decoder.318

Finally, in the first-stage multi-task training, we319

integrate the sentence selection objective and an-320

swer generation objective in the following manner321

to simultaneously equip the model with these two322

capabilities. The variable λ is a hyper-parameter323

that balances these two objectives:324

L1 = LG + λLS (9)325

3.2 Select Generation Training326

After completing the initial stage of training as out-327

lined in Section 3.1, our preliminary experiments328

reveal that while the model possesses the capacity329

to select valuable sentences and make predictions330

at the same time, directly requiring the decoder to331

form predictions solely based on these selected sen-332

tences significantly hampers the performance of the333

model. We hypothesise that this is because of the334

gap in context length for decoder between training335

and inference. Therefore, we introduce a second336

stage of continuous training aimed at minimizing337

this discrepancy linked with context length.338

More specifically, we initially obtain the context339

embeddings of the selected sentences, and this is340

done by the global multi-passage-level selection341

probability.342

Hs =
⋃

hik:jk ;

(ik, jk) ∈ TopK(PG
s (i, j))

(10)343

The resultant loss for answer generation can then344

be expressed as follows:345

Ls
G = − log

Na∑
i

Pθd(ai|Hs, a1:i−1) (11)346

Throughout the second stage of training, we347

maintain the use of a multi-task training objective348

to keep both the sentence selection ability and an-349

swer generation ability, thereby facilitating better350

performance.351

L2 = Ls
G + λLS (12)352

3.3 Select Generation Inference353

Following the two-stage training process, we ac-354

quire a model that is capable of dynamically select-355

ing valuable sentences for the decoder to make356

generation. The inference process closely mir-357

rors the second stage of training described in Sec-358

tion 3.2. Initially, valuable context embeddings are359

#Train #Dev #Test #Sent.

NQ 79,168 8,757 3,610 14.84
TriviaQA 76,423 8,837 11,313 30.58

ASQA 4,353 968 1,015 22.32

Table 1: Statistics of two ODQA datasets.
#Train/#Dev/#Test imply the number of train/dev/test
samples. #Sent. means the average number of valuable
sentences recognized in top-100 retrived passages.

selected based on global selection probability. Sub- 360

sequently, a greedy decoding strategy is employed 361

to generate the answer based on the selected con- 362

text embeddings denoted as Hs. 363

4 Experiments 364

4.1 Experimental Setup 365

Same as FiD (Izacard and Grave, 2021b), we uti- 366

lize T5 (Raffel et al., 2020) as our base model. For 367

passage retrieval, we utilize the retriever demon- 368

strated by Izacard and Grave (2021a) which has 369

superior retrieval performance. Following previous 370

work (Lee et al., 2019; Karpukhin et al., 2020), we 371

use the preprocessed English Wikipedia Snapshot 372

on 12-30-2018 as our knowledge source. And we 373

use average time per question (TPQ) to measure 374

model’s inference efficiency. We conduct exper- 375

iments on two commonly used ODQA datasets 376

and one long-form QA dataset. Their statistics are 377

shown in Table 1. We use the original train/dev/test 378

split to conduct our experiments. 379

Natural Questions (Kwiatkowski et al., 2019) 380

is a large ODQA dataset where all questions are 381

mined from Google Search real queries. The anno- 382

tated answers are all created by human annotators 383

based on Wikipedia documents. Lee et al. (2019) 384

further filter out questions with short answers to 385

construct the open domain version of NQ, which 386

we used in our experiment. We evaluate the perfor- 387

mance of our model on NQ using the Exact Match 388

(EM) metric. 389

TriviaQA (Joshi et al., 2017) is collected from 390

14 trivia and quiz-league websites with human- 391

annotated answers and a set of answer aliases 392

gathered from Wikipedia. We use the unfiltered 393

question-answer pairs and discard the distantly su- 394

pervised documents as our open domain version. 395

Similar to NQ, we assess our model’s performance 396

on TriviaQA using the Exact Match (EM) metric. 397
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ASQA (Stelmakh et al., 2023) is a long-form398

question answering dataset that builds upon the399

AmbigQA (Min et al., 2020) dataset. It consists400

of ambiguous questions with multiple short span401

answers and long-form answers from human anno-402

tators that coverage all possible short span answers.403

In line with Stelmakh et al. (2023), we evaluate the404

performance of our model on this dataset using the405

STR-EM (String Exact Match) metric. STR-EM406

measures the proportion of disambiguated short an-407

swers that are correctly identified within the long408

answer. Since the test set of ASQA is not publicly409

available, our evaluation is conducted solely on the410

development set of ASQA.411

Baselines We mainly compare our method with412

vanilla FiD, aiming at enhancing its inference effi-413

ciency. Additionally, we contrast our approach with414

the model resulting from our first training stage, re-415

ferred to as HybridFiD, a model that is capable of416

simultaneously performing answer generation and417

sentence selection. Besides, we also compare with418

FiD-Light (Hofstätter et al., 2023), which propose419

to select the first-k tokens from each passage as the420

context for decoder and improve efficiency.421

Implementation Our method is implemented us-422

ing PyTorch (Paszke et al., 2019) and Huggingface423

Transformers (Wolf et al., 2020), with training effi-424

ciency enhanced by DeepSpeed ZeRO-2 (Rajbhan-425

dari et al., 2020). Due to GPU limitations, we con-426

duct experiments using T5-Base, which has 345M427

parameters. We employ the AdamW (Loshchilov428

and Hutter, 2019) optimizer for stable training.429

More implementation details are shown in Ap-430

pendix A.431

4.2 Main Results432

Answer Generation The performance and infer-433

ence speed of our FastFiD and other baselines are434

presented in Table 2. Unlike FiD-Light, which sac-435

rifices QA performance to accelerate the inference436

process, FastFiD achieves substantial acceleration437

while maintaining similar or even superior QA per-438

formance compared to vanilla FiD. Additionally,439

FastFiD demonstrates significantly greater infer-440

ence speedup than FiD-Light on NQ and ASQA,441

and comparable acceleration on TriviaQA. This442

can be attributed to our context-aware compres-443

sion methods, which extract more essential infor-444

mation with fewer tokens compared to the static445

method employed in FiD-Light. Among the three446

datasets, FastFiD achieves the highest acceleration447
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Figure 3: Sentence selection performance on NQ-Dev
for HybirdFiD and FastFiD with 100 retrieved passages.
Retriever means the accuracy of our retriever when re-
trieving 100 passages, which can be seen as an upper
bound.

on ASQA due to the longer answer format. This 448

showcases the effectiveness of FastFiD in long- 449

form QA, which is a widely utilized task by modern 450

LLM system like New Bing1 and ChatGPT2. 451

We also conducted experiments with varying 452

numbers of retrieved passages on NQ, and the re- 453

sults are presented in Table 3. As observed, regard- 454

less of the number of retrieved passages, our Fast- 455

FiD consistently matches or even surpasses FiD 456

and HybridFiD in terms of EM, while significantly 457

reducing the context length and inference time. 458

Moreover, as the number of retrieved passages in- 459

creases, the speedup rate also expands. This evi- 460

dence underscores the potential of our method for 461

effective implementation with a larger number of 462

passages or lengthy documents. 463

Sentence Selection Similar to the metrics em- 464

ployed in the retriever, we measure the performance 465

of sentence selection utilizing the accuracy@k, 466

which assesses whether the correct answer appears 467

within the top-k sentences. As depicted in Fig- 468

ure 3, there is a positive correlation between the 469

increase in selected sentence numbers and accu- 470

racy, eventually surpassing 95% of the retriever’s 471

accuracy for both HybridFiD and FastFiD. This 472

demonstrates their substantial capability to select 473

valuable sentences. A comparative evaluation of 474

FastFiD and HybridFiD indicates that the second- 475

stage training has a minimal impact on the sentence 476

selection performance. Its main contribution is to 477

1https://www.bing.com/
2https://chat.openai.com/
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Model NQ TriviaQA ASQA
EM TPQ Speed EM TPQ Speed STR-EM TPQ Speed

FiD 50.06 514 1.0X 69.79 550 1.0X 33.35 3,323 1.0X
FiD-Light 40.91 201 2.6X 63.15 218 2.5X 27.34 867 3.8X
HybridFiD 50.14 513 1.0X 69.77 540 1.0X 35.13 3,330 1.0X
FastFiD 50.17 148 3.5X 69.34 241 2.3X 37.22 586 5.7X

Table 2: Performance of vanilla FiD, FiD-Light, HybridFiD, FastFiD with 100 retrieved passages on test set
(development set for ASQA). We select 200 sentences for NQ and ASQA, 400 sentences for TriviaQA. For FiD-
Light, we utilize a value of 64 for k, which as demonstrated by Hofstätter et al. (2023), yields the best performance.
TPQ is measured by milliseconds.

Model # Doc NQ-Dev NQ-Test Context Length TPQ Speed

FiD 25 47.33 47.23 9,600 197 1.0X
HybridFiD 25 47.71 48.42 9,600 194 1.0X
FastFiD 25 47.52 48.06 920 84 2.4X
FiD 50 47.79 47.89 19,200 354 1.0X
HybirdFiD 50 48.12 49.09 19,200 354 1.0X
FastFiD 50 47.96 48.89 1,035 110 3.2X
FiD 100 49.10 50.06 38,400 514 1.0X
HybirdFiD 100 48.65 50.14 38,400 513 1.0X
FastFiD 100 48.98 50.17 1,008 148 3.5X

Table 3: Detailed performance of vanilla FiD, HybridFiD and FastFiD on NQ with different number of passages.

adapt the model to the reduced context length, as478

we anticipated.479

Discussion The performance of HybridFiD, as480

presented in Table 2 and Figure 3, highlights that481

answer generation and sentence selection are not482

mutually exclusive, and a multi-task training ob-483

jective enables both capabilities. To further ex-484

plore the relationship between sentence selection485

and answer generation, we examined the average486

cross-attention scores for tokens within the top 200487

sentences and the non-selected segments. This anal-488

ysis was conducted using HybridFiD with 100 re-489

trieved passages on NQ. Following the approach490

of Izacard and Grave (2021a), we calculated the491

cross-attention score of each token in the inputs by492

averaging across all decoder layers, attention heads493

per layer, and all generated tokens.494

Table 4 shows that the selected sentences have495

significantly higher average cross-attention scores496

compared to the non-selected segments, indicat-497

ing that they contribute more significantly to the498

final answer generation. Conversely, this suggests499

that the non-selected segments largely contain ir-500

relevant information, contributing less to answer501

generation despite being present in the context, and502

can therefore be disregarded during the decoding 503

process. This insight also served as a motivation 504

for our second-stage training, as described in Sec- 505

tion 3.2. Furthermore, for a more comprehensive 506

understanding of the effectiveness of our FastFiD 507

approach, we provide a detailed case study in Ap- 508

pendix B. 509

NQ-Dev NQ-Test

Selected 5.28E-4 5.32E-4
Non-Selected 3.46E-5 3.43E-5

Table 4: Average cross-attention score for tokens in top-
200 selected sentences and non-selected sentences for
HybirdFiD with 100 retrieved passages.

5 Further Analysis 510

In this section, we conduct more experiments to 511

show the effectiveness of our method. First, we 512

compare the sentence selection method with pas- 513

sage reranking method in Section 5.1. Second, we 514

compare our method with different number of se- 515

lected sentences in Section 5.2. Finally, we make 516

an ablation study to verify the importance of our 517
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Model # Doc NQ-Dev NQ-Test Context
Length

FastFiD 25 47.52 48.06 920
RerankFiD 25 46.42 47.20 1,152
FastFiD 50 47.96 48.89 1,035
RerankFiD 50 46.64 47.23 1,152
FastFiD 100 48.98 50.17 1,008
RerankFiD 100 46.45 48.09 1,152

Table 5: Comparison between FastFiD and RerankFiD
among different number of retrieved passages. FastFiD
consistently outperforms RerankFiD within similar con-
text length.

two-stage training in Section 5.3.518

5.1 Sentence Selection vs Passage Rerank519

Similar to conducting sentence selection after the520

encoder, another method is to conduct passage521

rerank after encoder’s outputs and thus reducing522

context length and inference time. In alignment523

with our two-stage training pipeline, we substitute524

the sentence selection loss with a passage reranking525

loss as utilized by Nogueira and Cho (2020), lead-526

ing to a model we name RerankFiD. We evaluate527

the performance of FastFiD and RerankFiD un-528

der comparable context lengths, with the findings529

presented in Table 5. Consistently, our FastFiD530

method outperforms RerankFiD across a range of531

retrieved passage quantities. We hypothesize that532

this is due to the higher density of related infor-533

mation in the selected sentences compared to the534

reranked passages, as a passage often includes nu-535

merous irrelevant sentences even if it contains the536

correct answer.537

5.2 Number of Selected Sentences538

To evaluate the impact of varying the number of539

selected sentences, we conducted experiments on540

NQ with 100 retrieved passages. The results in Ta-541

ble 6 show that increasing the number of selected542

sentences leads to a nearly linear increase in the543

context length for the decoder. In terms of answer544

generation effectiveness, FastFiD performs well545

even with only 50 selected sentences and improves546

gradually with more sentences selected. It is worth547

noting that performance reaches a plateau after a548

certain number of sentences, such as 200. Beyond549

this point, selecting additional sentences does not550

yield further improvement but only increases con-551

text length and inference time.552

Model # Select
Sentence NQ-Dev NQ-Test Context

Length

FiD - 49.10 50.06 38,400
FastFiD 50 48.25 49.11 378
FastFiD 100 48.29 49.28 639
FastFiD 200 48.98 50.17 1,008
FastFiD 400 49.05 49.83 1,661

Table 6: Experiments on the number of selected sen-
tences.

5.3 Two-Stage Training 553

To corroborate the efficacy of our two-stage train- 554

ing approach, we undertake experiments wherein 555

each training stage is separately removed, with the 556

outcomes displayed in Table 7. It is evident that 557

the removal of either training stage results in a 558

decrement in the final performance. Moreover, the 559

second stage of training appears to be more con- 560

sequential than the first stage, as demonstrated by 561

the nearly 10-point drop in performance when the 562

second stage is removed, compared to a decrease 563

of less than 1-point when only the second stage is 564

implemented. 565

Model # Doc # Select
Sentence NQ-Dev NQ-Test

FastFiD 50 200 47.96 48.89
- 2nd-stage 50 200 36.61 37.67
- 1st-stage 50 200 47.62 48.03
FastFiD 100 200 48.98 50.17
- 2nd-stage 100 200 38.62 39.25
- 1st-stage 100 200 48.25 49.17

Table 7: Ablation study on two-stage training method.

6 Conclusion 566

In this paper, we present FastFiD, a model based on 567

the FiD framework, designed to accelerate the in- 568

ference process for ODQA tasks. FastFiD utilizes a 569

two-stage training technique to enable the selection 570

of valuable sentences and focus its predictions ex- 571

clusively on these sentences. Experimental results 572

demonstrate that FastFiD substantially improves in- 573

ference speed while maintaining its original answer 574

generation performance. And our ablation study 575

confirms the effectiveness of the two-stage training 576

approach, showing a decrease in final performance 577

when any single training stage is omitted. 578

Limitations 579

The limitations of our FastFiD approach can be pri- 580

marily summarized into the following two points: 581

8



• Firstly, due to constraints related to GPU re-582

sources, our experiments are performed using583

the T5-Base model, a comparatively modest584

model when compared with larger language585

models. While our method is theoretically586

adaptable to larger models, further experimen-587

tation using such models is anticipated to sub-588

stantiate this claim.589

• Secondly, with the widespread use of Chat-590

GPT, most large language models currently591

in use are built on a decoder-only architec-592

ture. Unfortunately, this architecture is not593

compatible with the FiD framework utilized594

by our FastFiD method. As a result, FastFiD595

cannot be directly applied to the majority of596

existing large language models. Therefore,597

it becomes crucial and promising to explore598

acceleration techniques specifically designed599

for decoder-only models, as they face more600

significant challenges in terms of inference601

speed. And we believe that attempting to re-602

move irrelevant information and reduce the603

context length will be a promising approach604

to address this challenge.605
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Appendices 881

A Implementation Details 882

In the first stage of training, we employ a linear 883

scheduler with a warmup ratio of 0.1 and a maxi- 884

mum learning rate of 1e− 4 for 10 epochs. The se- 885

lection of the best checkpoint for the second-stage 886

training is based on performance evaluation on the 887

development set. In the second training stage, we 888

use a constant learning rate of 5e− 5 for 5 epochs. 889

We evaluate the performance of the hyperparameter 890

λ in the training objective using values of 0.1 and 891

0.05, and select the one that yields better results 892

for each dataset. Specifically, we use 0.1 for NQ 893

and ASQA, and 0.05 for TriviaQA, considering its 894

higher number of annotated sentences as indicated 895

in Table 1. 896

During inference, we follow the approach of 897

previous work (Hofstätter et al., 2023) by utilizing 898

beam search with a beam size of 4. The maximum 899

decoding length is set to 32 for NQ and TriviaQA, 900

while it is set to 128 for ASQA due to the longer 901

answer lengths in that dataset. 902

B Case Study 903

To demonstrate the effectiveness of our FastFiD 904

approach, we present an example using the test 905

set of NQ, as depicted in Figure 4. In this figure, 906

the text highlighted in yellow represents the valu- 907

able sentences identified by FastFiD, which are 908

subsequently utilized in the decoding process. It 909

is evident that FastFiD possesses the capability to 910

recognize valuable sentences that often contain the 911

correct answer, even if they are not in the highly- 912

ranked documents. Additionally, these valuable 913

sentences only constitute a small portion of all the 914
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Question: When is the next Deadpool movie being released?
Answer: May 18, 2018
Document [1] (Deadpool 2): Deadpool 2 is a 2018 American superhero film based on the Marve …
Document [2] (Deadpool 2): integrate him into the PG-13 MCU. Deadpool 2 is …
Document [3] (Deadpool 2): The film‘s score is the first to receive a parental advisory warning for explicit content, 
and the soundtrack also includes the original song “Ashes” by Céline Dion. “Deadpool 2” was released in the United 
States on May 18, 2018. It has grossed over $738 million worldwide, becoming the …
…
Document [15] (Deadpool (film)): “Deadpool 2” was released on May 18, 2018, with Baccarin, T. J. Miller, 
Uggams, Hildebrand, and Kapičić all returning. Josh Brolin joined them as Cable. The film explores the team X-
Force, which includes Deadpool and Cable …
Document [16] (Deadpool 2): January, the film‘s release was moved up to May 18, 2018. In February 2018, Terry 
Crews was revealed to have a role in the film, the character Shatterstar was confirmed to be appearing, and the 
production returned to Vancouver for six days of reshoots under a new working title, “Daisy”. Some reports emerged 
by mid-March claiming that these reshoots …
…
Document [99] (Josh Brolin): Summers / Cable in the “X-Men” film series. 2018‘s “Deadpool 2” is his first 
installment within that contract. He is set to reprise his role in ...

Figure 4: An example from the test set of NQ with 100 retrieved passages. The text highlighted in yellow represents
the valuable sentences identified by our FastFiD.

retrieved passages which is important for us to ac-915

celerate inference. However, it is important to note916

that not all selected sentences are necessarily rele-917

vant to the given question. For instance, the second918

selected sentence in DOCUMENT [16] may not919

carry any meaningful information. Consequently,920

we need to select a specific number of sentences921

to retain all the pertinent information for achiev-922

ing satisfactory performance, as demonstrated in923

Section 5.2.924
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