
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SLICEFINE: THE UNIVERSAL WINNING-SLICE
HYPOTHESIS FOR PRETRAINED NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents a theoretical framework that explains why fine-tuning small,
randomly selected subnetworks (slices) within pre-trained models is sufficient for
downstream adaptation. We prove that pretrained networks exhibit a universal
winning slice property, arising from two phenomena: (1) spectral balance—
the eigenspectra of different weight matrix slices are remarkably similar—and
(2) high task energy—their backbone representations (pretrained weights) retain
rich, task-relevant features. This leads to the Universal Winning Slice Hypothesis,
which provides a theoretical foundation for parameter-efficient fine-tuning (PEFT)
in large-scale models. Inspired by this, we propose SliceFine, a PEFT method
that uses this inherent redundancy by updating only selected slices of the origi-
nal weights—introducing zero new parameters, unlike adapter-based approaches.
Empirically, SliceFine matches the performance of SOTA PEFT methods across
various language and vision tasks, while significantly improving training speed,
memory efficiency, and model compactness. Our work bridges theory and prac-
tice, offering a theoretically grounded alternative to existing PEFT techniques.

Figure 1: (Left) Winning Tickets. In a pretrained network, a randomly chosen slice of a layer
W (ℓ) ∈ Rdℓ×dℓ−1 acts as a local winning ticket: tuning only that slice lowers the loss while keep-
ing the backbone frozen. A few such slices (row, column, or row-column) selected across layers
constitute a global winning ticket. (Right) SliceFine. At step t, only a slice of the weight matrix
W (ℓ) is updated; all other entries remain fixed. Every N steps, we activate a new slice at a different
position for learning; the previously active slice retains its learned update but is frozen. Top: col-
umn sweep—the slice slides across columns. Bottom: row–column alternation—the slice alternates
between a column block and a row block to cover complementary directions. Similarly, In row
sweep—the slice slides across rows. This schedule updates only a tiny portion of the model at a time
while gradually covering many regions; applying it across several layers yields a global winner.

1 INTRODUCTION

Large pretrained models work well across many tasks, yet we still lack a simple picture of why small
changes are often enough to adapt them. Popular parameter-efficient fine-tuning (PEFT) methods
add small modules (e.g., adapters, low-rank layers) and train only those parts while freezing the rest
(Hu et al., 2021; Kowsher et al., 2024b; Zhang et al., 2023b; Liu et al., 2024b; Prottasha et al., 2025).
This raises a basic question: why do these small modules work, and do we actually need to add new
parameters—or is there already enough useful structure inside the pretrained weights themselves?

This paper addresses this question by introducing the Universal Winning Slice Hypothesis, which
provides a simple, testable explanation for fine-tuning behavior in large-scale pretrained models and

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

guides a very light form of adaptation. First, we briefly fix terminology and state the Universal
Winning–Slice Hypothesis.

Terminology. Let fθ0 : Rd → Rk denote a pretrained neural network of depth L, where each layer ℓ
is parameterized by a weight matrix W (ℓ) ∈ Rdℓ×dℓ−1 . A slice of a layer l is a contiguous set of rows
or columns of a single weight matrix W (ℓ), specified by a mask M (ℓ) ∈ {0, 1}dℓ×dℓ−1 . A winning
slice (local winner) is a slice whose update alone reduces the loss at θ0. A slice set T = {Mi}mi=1 is
a small collection of slices across layers. When the joint update over T attains near full fine-tuning
performance, T is a global winning ticket. We call r the slice rank (number of selected columns or
rows). Slice rank is not the matrix rank of W (ℓ); it measures the slice width (capacity).

Universal Winning–Slice Hypothesis (UWSH). In a dense, pretrained network, any random slice
with sufficient width has a local winning ticket: training only that slice while freezing the rest im-
proves downstream performance (a local winner). Moreover, tuning a small set of such slices across
layers can match full fine-tuning accuracy while updating far fewer parameters (a global winner).

This view differs from the Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2019; Yu et al.,
2021; Chen et al., 2020), which posits a special, sparse subnetwork (“winning ticket”) that must
be found by pruning and then trained—often from its original initialization—to match full–network
performance. Most analyses of LTH rely on carefully identifying such subnetworks via iterative
pruning by randomly (Bai et al., 2022) or importance-based selection (You et al., 2022). In contrast,
we study large-scale, dense, pretrained networks and establish a theoretical framework showing that
a random simple slice can serve as a winning ticket. Consequently, our goal is to fine-tune only
these slices—without adding new parameters—as a PEFT strategy for adapting pretrained models
to downstream tasks. The reason every sufficiently wide slice can be a winning ticket is twofold:
First, spectral balance. Take any layer and split its weight matrix into simple groups of rows or
columns (slices). In Figure 2, if we look at each group’s covariance and its eigenvalues, we find that
the average size of the eigenvalues and the way they decay are very similar across groups, implying
that all slices have comparable capacity for fine-tuning. Second, high task energy. After pretraining,
the backbone features of a model already line up a large share of their variation with directions that
are useful for downstream tasks. This shows up as high cumulative explained variance of the top
PCA components of the centered features (details in Lemma 2.5), or, equivalently, a “lazy” NTK
spectrum where a few top directions dominate. When most of the useful signal lives in a small set
of directions, a small slice that has enough rank will inevitably touch those directions and can move
the model in the right way.

Together, these two facts give a simple rule of thumb. Because slices are balanced in strength, which
slice we pick is not critical. Because the backbone already concentrates task energy, a slice in W (ℓ)

overlaps with the task-relevant subspace, produces a nonzero restricted gradient, and reduces the
loss. This picture also clarifies common PEFT observations: adapters help because the backbone
already carries most of what is needed (see Corollary D.2).

As every sufficiently wide slice in W (ℓ) has a local winning ticket, can we fine-tune only a slice?
Based on the UWSH, we propose SliceFine, which trains a set of slices T across different layers
(to get a global winning ticket) while keeping the backbone frozen and adds no new parameters.
The per-layer cost scales with the slice rank, and in practice very small ranks—often r=1—already
match full fine-tuning or strong PEFT baselines on downstream tasks. Although Figure 12 shows
good accuracy on downstream tasks when training only a fixed slice in W (ℓ), to cover more direc-
tions over time we freeze the active slice after a fixed number of steps N and then activate a new
slice at a different position, effectively performing block-coordinate descent across the layer. In
practice, we do not need to traverse all possible positions; switching the active slice every N = 500
training steps and making only 5–10 switches in total achieves optimal performance across all of our
experiments. Figure 1 (right top) illustrates a column-slice schedule: at t=0 the first column group
is trained; after N steps the slice shifts to the next column group, and so on. Figure 1 (right bottom)
shows an alternating schedule: at t=0 a column slice is trained; at t=N the slice switches to a row
group; subsequent shifts continue alternating between columns and rows.

Our contributions are summarized as follows: (i) A theoretical and testable hypothesis, UWSH:
in pretrained networks, an arbitrary sufficiently wide slice is a local winning ticket; multiple slices
across layers form a global winning ticket. (ii) A PEFT method SliceFine by following UWSH: trains
only a set of slice T across different layers, with no new parameters. (iii) Broad empirical study

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

across language and vision showing accuracy on par with—or better than—strong PEFT baselines,
with lower memory, faster throughput, and smaller model footprints. (iv) Ablations that connect
rank choice, slice selection, switching interval, initialization, and backbone pruning to the simple
picture above, using explained variance/NTK laziness as a guide.

2 WINNER SLICES IN PRETRAINED NETWORKS

Let Y ∈ Rc×n be the label encoding matrix for n downstream examples across c classes, and let
PY ∈ Rn×n be the orthogonal projector onto the column space of Y . The task covariance at layer
ℓ is Σtask := 1

n Φℓ PY Φ⊤
ℓ and task subspace ktask := rank(Σtask).

Consider a network fθ0 is pretrained on a large dataset so that, for each layer ℓ, the intermediate
representations ϕℓ(x) ∈ Rdℓ satisfy: rank(Φℓ) = rank([ϕℓ(x1), . . . , ϕℓ(xn)]) ≥ ktask, where
Φℓ ∈ Rdℓ×n is the matrix of downstream representations and ktask is the intrinsic dimension of
the downstream task in the representation space at layer ℓ, i.e., the smallest number of orthogonal
directions needed to achieve perfect linear classification of the labels.

Formally, the slice parameters M (ℓ) ⊙ W (ℓ) (where ⊙ denotes element-wise multiplication) are
trainable, while all other entries remain fixed at their pretrained values. Unlike pruning in LTH (Yu
et al., 2021; Chen et al., 2020), the frozen weights are not zeroed out; they continue to contribute
during forward propagation, providing a representational scaffold that allows the trainable slice to
adapt effectively. The learned increment is ∆W (ℓ) = M (ℓ)⊙U (ℓ), where U (ℓ) denotes the gradient-
driven update. Given a downstream dataset D = {(xi, yi)}ni=1 and convex per-sample loss ℓ, the
fine-tuning objective is: L(θ) = 1

n

∑n
i=1 ℓ(fθ(xi), yi).

Let Uktask
∈ Rdℓ×ktask denote the top ktask left singular vectors of Φℓ, spanning the task-relevant

subspace. The projection operator is PUktask
= Uktask

U⊤
ktask

. The quantity ktask captures the min-
imum number of feature-space directions required for perfect linear separation of the downstream
labels. In SliceFine, we must determine whether each slice of a pretrained weight matrix overlaps
enough with the ktask-dimensional task subspace to reduce downstream loss. The lemma below
shows that, in pretrained networks fθ0 , slices from the W (ℓ) have similar average spectral energy
and comparable eigenvalue decay—a property we call spectral balance.

Lemma 2.1 (Spectral Balance Across Slices). Consider a pretrained layer W (ℓ) partitioned into k
disjoint groups {Wg}kg=1. Let Σg := WgW

⊤
g and let λ1(Σg) ≥ · · · ≥ λdℓ/k(Σg) denote its eigen-

values in descending order. Although each group is anisotropic—its eigenvalues decay from large

to small—the groups exhibit spectral balance in the sense that:
1

dℓ/k

∑dℓ/k

i=1 λi(Σg)

1
dℓ/k

∑dℓ/k

i=1 λi(Σg′)
≈ 1, ∀g, g′ ∈

{1, . . . , k}, and their decay profiles are boundedly similar: max1≤i≤dℓ/k
|λi(Σg)−λi(Σg′)|

λi(Σg′)
≤ ρ, for

some small ρ≪ 1 independent of g, g′. Thus, no group is disproportionately “weak” or “strong” in
average spectral energy, and each slice retains non-trivial overlap with the task-relevant subspace.

This property guarantees that no slice is degenerate with respect to the task subspace: all slices
retain comparable spectral energy and a non-zero projection onto task-relevant directions. Conse-
quently, each slice admits a non-zero restricted gradient with respect to the downstream loss and can
independently reduce the loss—i.e., it qualifies as a local winning slice.

Figure 2: Eigenvalue spectra of FFN, Key, Query, and Value weight matrices from different layers
of a pretrained RoBERTa-base model. For each matrix, weights are partitioned into groups, and the
eigenvalues of the within-group covariance Σg = W

(ℓ)
g W

(ℓ)⊤
g are plotted in descending order.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2 shows that, although each group’s eigen-spectrum is anisotropic—dominated by a few
large eigenvalues—the decay profiles and the average spectral energy are nearly identical across
groups. Groups are constructed by partitioning the weight matrix into n equal blocks: for a row-
wise partition (first two figures) we split the dℓ rows into n groups (each of rank r = dℓ/n), and
for a column-wise partition (last two figures) we split the dℓ−1 columns into n groups (each of rank
r = dℓ−1/n). Empirically, the average inter-group variance metric ρ computed across all groups
and eigen-components is 0.00125, 0.00192, 0.00255, and 0.00102 respectively, indicating negligible
dispersion. This supports the spectral balance property of Lemma 2.1, implying that no group is
disproportionately weak or strong.

Spectral balance is the key precondition that motivates the following two definitions. We first define
a local winning slice to capture the ability of a slice to reduce downstream loss, and then a global
winning ticket to describe a set of slices τ across different layers whose joint optimization achieves
full fine-tuning performance.
Definition 2.2 (Local Winner). A mask M is a local winning slice if there exists an update U
such that L(θ0 + M ⊙ U) ≤ L(θ0) − δ for some δ > 0, and the restricted gradient is non-zero:

∥∇ML(θ0)∥2 =

∥∥∥∥∥ ∂L(θ)
∂(M⊙W (ℓ))

∣∣∣∣∣
θ=θ0

∥∥∥∥∥
2

> 0. Under spectral balance, every slice has comparable

spectral energy and retains overlap with the task subspace, ensuring its restricted gradient is non-
zero and enabling it to independently reduce loss.
Definition 2.3 (Global Winner). A set of masks T = {Mi}mi=1 forms a global winning ticket if

there exist updates {Ui}mi=1 such that L
(
θ0 +

∑m
i=1 Mi ⊙ Ui

)
≤ ϵ, for some ϵ > 0, achieving

performance close to full fine-tuning while updating only a small fraction of weights.

While the local winning slice definition ensures each slice can make independent progress, the global
winning ticket definition captures the compositional effect: if different slices contribute complemen-
tary directions in the task subspace, their combined span can cover the full ktask subspace, matching
full fine-tuning performance.
Theorem 2.4 (Universal Winning Ticket). Let fθ0 be a pretrained network of depth L. For each

layer ℓ, let Φℓ = [ϕℓ(x1), . . . , ϕℓ(xn)] have singular values σ1 ≥ σ2 ≥ . . . satisfying
∑ktask

j=1 σ2
j∑

j σ2
j
≥

η, for some η ∈ (0, 1). Assume further that every slice vector wj of W (ℓ) has non-trivial projection
into the top-ktask subspace: ∥PUktask

wj∥22 ≥ γ > 0.

Then: 1. (Local winners) For any binary mask M selecting a slice of weights in layer ℓ, if the
restricted Jacobian JM (x) := ∇M⊙W (ℓ)fθ0(x) satisfies rank(JM) ≥ ktask > 0, then the gradient

on the slice is nonzero:
∥∥∥ ∂L(θ)
∂(M⊙W (ℓ))

∥∥∥
F

∣∣∣∣∣
θ=θ0

> 0. Consequently, there exists a perturbation U

supported on M such that, for sufficiently small η > 0, L(θ0 + ηM ⊙U) < L(θ0)− δ, making the
slice a local winner. This follows from spectral balance and projection properties, which ensure JM
retains task-relevant directions.

2. (Global tickets) There exists a collection {Mi}mi=1, with m≪
∑

ℓ dℓ, such that joint or sequential

optimization yields L
(
θ0 +

∑m
i=1 Mi ⊙ Ui

)
≤ ϵ, for arbitrarily small ϵ. This holds because

the combined Jacobians dim span(JM1
(x), . . . , JMm

(x)) → ktask, incrementally span the task-
relevant subspace, enabling near full fine-tuning performance while updating only a small subset of
weights.

Theorem 2.4 follows naturally: spectral balance ensures that any slice is a local winner (Part 1),
while the finite rank ktask determines the number of slices required to assemble a global ticket
(Part 2). Details of the proof are provided in Appendix A.

We now examine how large a slice must be to act as a winner. Empirically, our ablation study (Ap-
pendix E.1) shows that training a slice with rank one (r = 1 i.e., updating a single column or a
single row of a pretrained weight matrix) is often sufficient. Theoretically, we find that this rank
requirement is determined by the spectral structure of the representation space, which can be un-
derstood via the relationship between the linearized NTK kernel and the PCA decomposition of the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

features. We observe a strong dependence on the domain. When the feature spectrum exhibits high
cumulative explained variance (CEV) and the model remains in a lazy NTK regime after fine-tuning,
a slice rank r suffices to capture the task directions. Conversely, when the spectrum has lower CEV
and the NTK is less lazy, larger slices are needed to cover enough task-relevant directions. Since,
in the linearized regime, the NTK spectrum matches the PCA spectrum of the centered features
(Lemma 2.5), the PCA curve gives a direct guide: a steeper curve suggests a slice suffices; a flatter
curve calls for a larger slice.

Lemma 2.5 (PCA Decomposition of the Representation/Linearized NTK Kernel). Let H ∈ Rn×d

be hidden representations and H̃ := H − 1
n11

⊤H the centered features. Let Σ := 1
n−1H̃

⊤H̃

with eigendecomposition Σ = V ΛV ⊤, where V ∈ Rd×r has orthonormal columns and Λ =
diag(λ1, . . . , λr) with λi > 0.

Define P := H̃V ∈ Rn×r. Then the (centered) feature Gram matrix (a.k.a. linearized representa-

tion kernel) K := H̃H̃⊤ ∈ Rn×n admits the exact decomposition K = PP⊤ .

Moreover, the nonzero eigenvalues of K are (n − 1)λ1, . . . , (n − 1)λr. Consequently, for any

k ≤ r,
∑k

i=1 λi∑r
j=1 λj

=
∑k

i=1 µi∑r
j=1 µj

, µi := (n − 1)λi, so PCA explained-variance ratios in feature
space match those of K.

Corollary 2.6 (Minimal Slice Rank from PCA/NTK Spectrum). Let ktask(τ) be the smallest integer
m such that

∑m
i=1 λi/

∑r
j=1 λj ≥ τ for a threshold τ ∈ (0, 1]. If the slice rank rslice ≥ ktask(τ),

then with high probability the slice intersects the task-relevant subspace, and thus can serve as
a local winner. For familiar domains, ktask(τ) is small due to a steep PCA/NTK spectrum; for
unfamiliar domains, it is larger due to a flatter spectrum.

The proof of Lemma 2.5 is given in Appendix B. Additional discussion and empirical evidence
connecting slice rank, NTK laziness, and PCA variance profiles are provided in Appendix C.

Now we turn our attention to analyzing how much task energy the frozen backbone already carries
for an r-rank slice to be a winner. We measure this with the PCA/NTK cumulative explained vari-
ance of the features: when the CEV is high, most of the feature energy lies in a small set of directions
that separate the labels (the “task subspace”). From a small calibration set, estimate ktask(τ): the
fewest principal components that explain at least a fraction τ of the feature variance. Then set the
slice size rslice ≥ ktask(τ). Under the same spectral-balance assumption as in Lemma D.1, any
slice of this size has nonzero overlap with the task subspace, so its gradient is nonzero and the loss
decreases when we update it. In short: if the backbone shows high task energy, a slice that is large
enough will train well. This also explains the failure modes. If we weaken the backbone (e.g., heavy
pruning or strong domain shift), the CEV curve becomes flatter, the effective task subspace grows,
and the slice’s overlap shrinks. Lemma D.1 then predicts smaller gradients and smaller guaranteed
improvement. To recover performance we must increase rslice or combine several slices until their
total span reaches ktask(τ). These trends match our experiments: familiar domains (high CEV)
work with very small slices, while unfamiliar or degraded backbones require larger slices (Details
in Appendix D).

3 SLICEFINE: SLICE AS EFFICIENT FINE-TUNING

Section 2 established two key facts: (i) spectral balance—different row/column groups in a pre-
trained layer have similar spectral strength—and (ii) high task energy—the frozen features already
concentrate variance along task-relevant directions. Theorem 2.4 implies a simple recipe: every
slice whose rank satisfies rslice ≥ ktask(τ) has a winning ticket. This observation directly moti-
vates a practical PEFT method SliceFine, that trains one small slice at a time and moves it across
positions to accumulate task-aligned directions. A slice is a row or column mask of rank r ap-
plied to W (ℓ) ∈ Rdℓ×dℓ−1 . At step t, only entries in the active mask Mℓ(t) are trainable and
we apply an increment U

(ℓ)
t supported on Mℓ(t), W (ℓ) ← W (ℓ) + Mℓ(t) ⊙ U

(ℓ)
t , leav-

ing all non–masked entries fixed at their pretrained values (plus any past increments when they
were previously active). After every N steps in Figure 1, we move the mask to a new posi-
tion, i.e., Mℓ(t + N) ∈ Mℓ where Mℓ is the set of admissible row/column slices of rank r; in
practice we use a simple cyclic sweep (left–to–right for row, top–to–bottom for column), though

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

random or coverage–aware choices are also possible (Appendix K). Over K distinct positions
{Mℓ,i}Ki=1, the accumulated update equals ∆W (ℓ) =

∑K
i=1 Mℓ,i ⊙ U

(ℓ)
i , and the linearized effect

is fθ0+∆θ(x) ≈ fθ0(x) +
∑K

i=1 JMℓ,i
(x) vec(U

(ℓ)
i), i.e., block–coordinate descent over Jacobian

blocks. Empirically, we apply SliceFine to all linear layers or to selected layers (e.g., nn.Linear in
PyTorch) to obtain a global winning ticket, as detailed in Table 4.

SliceFine has three design knobs: rank r, slice selection, and switching interval N . Rank controls
capacity; by Corollary 2.6, taking r≥ktask(τ) ensures the active slice intersects the task subspace,
yielding a nonzero restricted gradient and a guaranteed decrease (Lemma D.1). We estimate ktask(τ)
once from frozen features on a small calibration set; empirically, very small rank (often r=1) is
sufficient for efficient fine-tuning.

For slice selection, spectral balance implies robustness to position: any row or column slice of rank
r behaves similarly. We therefore initialize the mask at the first (index-0) position and perform
a deterministic sweep across positions, which simplifies implementation and makes the training
dynamics easy to track. We also verify that purely random mask placements perform comparably
(Appendix K). The interval N trades off per–slice adaptation and coverage: small N explores more
positions but can slow early convergence; large N adapts deeper on each slice but delays coverage.

Our ablation E.2 shows a broad, task–dependent sweet spot (e.g., N ≈ 100–500 for STS–B/QNLI
(Wang et al., 2018) and N ≈ 500–1500 for MRPC/SST–2 (Wang et al., 2018)), consistent with
the theory that each visited slice contributes additional task–aligned directions until the combined
span matches the task dimension. Computationally, per–layer cost scales as O(dℓ × r) (row) or
O(dℓ−1 × r) (column) with zero auxiliary parameters, and optimizer state is maintained only for
active entries, yielding favorable memory and throughput characteristics (Details in Section 4). The
implementation details are presented in the Appendix L.

4 EXPERIMENTS

In this section, we conduct experiments across a diverse set of downstream tasks spanning text, im-
age, and video, thereby covering commonsense reasoning, mathematical reasoning, natural language
understanding, image classification, and video action recognition. This broad evaluation design al-
lows us to examine whether the theoretical guarantees of the Winner Slice Hypothesis translate into
consistent practical gains across modalities. We report results for six variants that differ only in
slice rank and orientation: SliceFine-1R, SliceFine-1C, SliceFine-1RC, SliceFine-5R, SliceFine-5C,
SliceFine-5RC. Here “1R/5R” denotes a row slice of rank r ∈ {1, 5}; “1C/5C” denotes a column
slice of the same rank; and “1RC/5RC” alternates row and column slices with the same total rank per
switch. Additionally, Table 4 reports performance across slice ranks r ∈ {1, 2, 4, 8, 32, 64, 128} (see
Appendix E.3 for details) and Figure 3(a) shows increasing higher rank tends to gradually overfit.
Across all tables, the best result is highlighted in blue and the second best in orange. The complete
experimental setup is described in detail in the appendices. Appendix G provides dataset descrip-
tions, Appendix F lists all baseline PEFT methods, Appendix I outlines hyperparameter choices and
training protocols, and Appendix H details the backbone models used in each modality.

Main Results. On commonsense and mathematical reasoning with LLaMA-3B, SliceFine (Table 1)
matches or surpasses strong PEFT baselines—including LoRA, AdaLoRA, and RoCoFT—while
using fewer trainable parameters. For example, SliceFine-5RC attains the highest average score
(82.13%) in math reasoning, outperforming AdaLoRA by +1.07 points while requiring signifi-
cantly fewer trainable parameters. Even rank one column or row slice consistently surpasses lighter
baselines such as BitFit and Prefix Tuning.

On visual downstream tasks (Table 2), SliceFine matches or outperforms strong low-rank baselines
such as VeRA and AdaLoRA, while updating only 0.08M–0.41M parameters. For instance, on
VTAB-1K image classification using ViT-Base-Patch16-224, SliceFine-5R reaches 88.85% av-
erage accuracy, surpassing LoRA (88.08%) and AdaLoRA (87.96%). On video recognition us-
ing VideoMAE-base, SliceFine-5RC achieves 73.09%, outperforming HRA (72.53%) and MiSS
(72.99%), highlighting that slice winners generalize beyond static perception to spatio-temporal
modeling.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Commonsense Reasoning Math Reasoning
LLM Method #TTPs BoolQ PIQA SIQA H.Sw. W.Gra. ARCe ARCc OBQA Avg. M.Ar. G.8K A.S. Se.Eq S.MP Avg.

L
L

aM
A

-3
8
B

Prefix 38.09 70.85 81.91 78.66 79.98 75.11 74.40 59.88 73.08 74.23 87.29 71.66 84.24 82.93 54.20 76.06
AdaLoRA 33.05 71.05 82.11 82.27 91.76 79.31 79.17 61.91 77.14 77.71 91.57 79.68 89.22 83.97 63.51 81.41
VeRA 15.05 69.32 81.20 80.39 91.15 79.47 78.26 62.02 76.73 77.32 92.16 78.36 88.91 84.48 61.71 81.07
LoRA 13.77 71.25 82.01 79.47 91.96 80.29 79.83 62.22 77.55 78.12 91.47 78.15 84.99 84.96 62.02 80.32
RoCoFT 6.90 72.47 82.62 80.79 91.67 79.78 79.17 62.22 79.37 78.51 91.38 80.49 88.51 83.46 63.13 81.55
HRA 6.25 72.27 82.82 80.29 91.97 79.37 79.07 62.52 79.27 78.44 92.18 80.29 89.42 83.36 62.83 81.62

SliceFine-1R 2.18 70.88 81.16 79.12 90.19 78.04 78.58 61.95 78.73 77.33 91.65 79.85 88.36 84.83 62.55 81.45
SliceFine-1C 2.18 70.94 81.08 78.95 90.98 78.00 77.56 61.14 77.70 77.04 91.44 78.80 87.21 82.72 61.73 80.38
SliceFine-1RC 2.18 71.02 82.46 81.26 92.61 80.28 79.80 61.93 79.18 78.66 92.12 80.11 89.77 82.18 63.55 81.55
SliceFine-5R 6.89 71.96 82.40 81.20 92.58 80.23 79.77 62.88 78.92 78.74 92.15 81.05 89.70 84.11 63.50 82.08
SliceFine-5C 6.89 72.49 82.86 80.97 91.97 79.71 79.82 62.47 78.40 78.73 92.11 80.52 89.11 83.55 63.08 81.72
SliceFine-5RC 6.89 72.01 82.45 81.25 92.64 80.27 79.82 62.92 78.97 78.79 92.10 81.10 89.75 84.16 63.53 82.13

Table 1: Commonsense and math reasoning with LLaMA-3B. SliceFine (shaded) rivals or surpasses
baselines such as LoRA and AdaLoRA while using far fewer trainable parameters (#TTPs).

Image Video

PEFT Caltech Flowers Pets Camel. Euro. Retino. KITTI Avg #TTPs UCF101 Kinetics HMDB Avg #TTPs

Full 89.92 97.41 85.87 81.65 88.12 73.62 77.93 84.93 85.83 92.30 55.23 65.79 74.99 86.65
VeRA 91.53 99.19 91.04 86.45 92.97 74.25 77.92 87.62 0.240 92.28 57.21 66.77 72.09 0.242
BitFit 90.58 98.93 91.06 86.73 93.07 74.39 79.26 87.72 0.101 92.38 57.31 66.87 72.19 0.104
DiffFit 90.26 99.24 91.73 86.79 92.53 74.46 81.01 88.00 0.148 92.80 57.73 67.29 72.61 0.150
SHiRA 88.72 99.14 89.64 81.85 91.93 74.28 80.57 86.59 0.667 91.82 57.75 63.31 70.96 0.668
LayerNorm 89.79 99.13 91.41 86.29 92.88 74.82 78.16 87.50 3.041 92.16 57.09 66.65 71.97 3.867
MiSS 89.83 99.18 91.48 86.74 91.59 73.21 85.64 88.24 0.667 93.18 58.11 67.67 72.99 0.668
Propulsion 91.55 99.25 91.44 86.23 94.77 72.36 80.27 87.96 0.165 93.47 57.40 66.96 72.61 0.166
LoHA 92.13 99.28 91.07 85.84 93.38 73.25 80.83 87.97 1.667 93.63 57.56 67.12 72.77 1.669
DoRA 91.86 99.27 91.08 85.88 91.42 75.28 80.46 87.89 0.834 92.84 57.77 67.33 72.65 0.836
Bone 92.14 99.23 91.05 86.28 92.83 73.71 80.91 88.02 0.414 93.82 57.75 67.31 72.96 0.415
RoCoFT 92.56 99.31 91.19 87.84 93.54 74.27 79.63 88.33 0.415 93.14 58.07 67.63 72.95 0.417
HRA 92.16 99.32 91.36 86.74 93.82 74.87 78.18 88.06 0.491 92.72 57.65 67.21 72.53 0.493
LoRA 92.03 99.18 90.92 87.73 92.65 74.23 80.42 88.08 0.833 93.88 57.81 67.37 73.02 0.835
Ada-LoRA 91.62 99.24 91.18 87.54 92.37 73.84 79.94 87.96 2.011 94.43 57.66 67.22 73.04 2.027

SliceFine-1R 91.64 99.12 91.26 86.88 93.83 74.18 80.11 88.15 0.084 93.14 57.16 66.29 72.20 0.087
SliceFine-1C 91.78 99.72 91.12 86.63 94.24 74.10 79.73 88.19 0.084 93.35 57.72 66.31 72.46 0.087
SliceFine-1RC 91.74 99.19 91.51 86.41 94.70 74.46 79.12 88.17 0.084 93.36 57.10 67.30 72.59 0.087
SliceFine-5R 92.75 99.73 91.64 87.72 94.70 75.28 80.11 88.85 0.415 94.54 57.16 67.49 73.06 0.417
SliceFine-5C 92.64 99.64 91.15 87.78 94.42 75.14 80.39 88.74 0.415 94.53 57.68 67.44 73.22 0.417
SliceFine-5RC 92.28 99.53 91.71 87.58 94.89 75.20 80.89 88.83 0.415 94.17 57.69 67.40 73.09 0.417

Table 2: Performance comparison on VTAB-1K image and video benchmarks. SliceFine achieves
competitive or superior performance to SOTA PEFT baselines with significantly fewer parameters.

Figure 3: Empirical evidence for the robustness of slice selection strategies across tasks. (a) Rank
vs. Accuracy: Increasing the slice rank improves accuracy up to a point, after which validation
accuracy declines, indicating gradual overfitting. (b) Position vs. Accuracy: accuracy remains
stable across slice positions, within ±1% of the anchor accuracy. (c) Wanda category ablations:
accuracy is insensitive to whether slices are chosen from most important, less important, mixed, or
random weights. (d) LTH comparison: even “bad” slices perform comparably to the “best” slices,
supporting the winner-slice property—pretrained networks contain many capable subnetworks.

Is any slice a winner? Empirically, we investigate the Universal Winning–Slice Hypothesis through
three complementary experiments, all of which suggest that slice selection is largely insensi-
tive—supporting the winner-slice property. As shown in Figure 3(b), performance remains stable
across slice positions. Using a fixed slice rank of 5, we evaluate accuracy when training slices at
different positions of the weight matrix. Accuracy remains within ±1% of the anchor across all po-
sitions, indicating that row and column slices contribute comparably to the task-relevant subspace.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Methods Space Time #TTPs #APs
FT O(dℓ × dℓ−1) O(dℓ × dℓ−1) dℓ · dℓ−1 0
(IA)3 (Liu et al., 2022) O(dk + dv + dff) O(dk + dv + dff) dk + dv + dff dk + dv + dff
Prompt (Lester et al., 2021) O(dℓ × lp) O(dℓ × lp) lp · dℓ lp · dℓ
Prefix (Li & Liang, 2021) O(L× dℓ × lp) O(L× dℓ × lp) L · lp · dℓ L · lp · dℓ
LoRA (Hu et al., 2021) O((dℓ + dℓ−1)× r) O((dℓ + dℓ−1)× r) 2 · dℓ · r 2 · dℓ · r
LoRA-FA (Zhang et al., 2023a) O((dℓ + dℓ−1)× r) O((dℓ + dℓ−1)× r) d · r 2 · d · r
AdaLoRA (Zhang et al., 2023b) O((dℓ + dℓ−1 + r)× r) O((dℓ + dℓ−1 + r)× r) 2 · d · r + r2 2 · d · r + r2

LoHA (Hyeon-Woo et al., 2021) O(2r × (dℓ + dℓ−1)) O(2r × (dℓ + dℓ−1)) 4 · dℓ · r 4 · dℓ · r
Propulsion (Kowsher et al., 2024b) O(d) O(d) d d
SliceFine (row) O(dℓ × r) O(dℓ × r) r · dℓ 0
SliceFine (column) O(dℓ−1 × r) O(dℓ−1 × r) r · dℓ−1 0

Table 3: Comparison of space and time complexity, total trainable parameters (#TTPs), and addi-
tional parameters (#APs) introduced by different PEFT methods for a single layer W (ℓ) ∈ Rdℓ×dℓ−1 .
We denote dk, dv, and dff as the dimensions of the three learned vectors in IA3, and lp as the prompt
length in prompt tuning and prefix tuning. For LoRA-type methods, r denotes the rank. SliceFine
achieves O(dℓ × r) or O(dℓ−1 × r) complexity with no additional parameters, in contrast to other
methods that incur higher asymptotic costs or parameter overhead.

In Figure 3(c), we adopt the Wanda pruning heuristic (Sun et al., 2023b) to rank weights by im-
portance. Given a weight matrix W ∈ Rdℓ×dℓ−1 and activations X ∈ Rs×dℓ−1 from a sequence
of length s, Wanda defines the importance of entry (i, j) as Sij = |Wij | · ∥X·j∥2, where ∥X·j∥2
is the ℓ2 norm of the j-th input feature across the batch. To score a slice, we aggregate over its
entries:Sslice =

∑
(i,j)∈slice Sij . We then select slices from the most important, least important,

mixed, or random categories. Figure 3(c) shows that all categories yield nearly identical accuracy,
confirming that slice winners emerge regardless of weight importance.

Finally, Figure 3(d) compares “good” and “bad” slices using the Lottery Ticket Hypothesis frame-
work following Frankle & Carbin (2019). Standard LTH seeks a sparse binary mask M ∈ {0, 1}d
such that the pruned subnetwork θ ⊙M matches the accuracy of the full model: L(fθ⊙M (x), y) ≈
L(fθ(x), y). We extract both “winning” and “losing” subnetworks and use their masks to define
slices. Surprisingly, even slices derived from “bad” subnetworks perform comparably to those from
“good” ones, further reinforcing that pretrained networks contain many capable subnetworks and
that every slice can be a winner.

Figure 4: Comparison of PEFT methods on (a) PEFT model size, (b) peak memory, (c) throughput,
and (d) total training time across ViT, VideoMAE, RoBERTa, and multiple datasets.

Efficiency Analysis. In this section we discuss the efficiency of SliceFine. All methods are trained
under identical conditions: 10 epochs, batch size 64, fixed sequence lengths, BF16 precision, and
the same learning schedules. Reported runtime is the wall-clock time for a full training run, aver-
aged over three seeds, and throughput is measured in iterations per second on identical hardware
(NVIDIA A100 80GB). Table 3 summarizes asymptotic costs. Slice training scales as O(dℓ × r)
(row) or O(dℓ−1 × r) (column) and introduces no additional parameters (#APs = 0). In contrast,
LoRA-style and adapter-style baselines incur 2r(dℓ + dℓ−1) or higher parameter overhead, signifi-
cantly increasing both space and time complexity.

Figure 4 presents empirical results across ViT, VideoMAE, and RoBERTa backbones on four VTAB-
1K datasets. Figure 4(a) shows that slices yield compact model sizes, reducing storage by 3–5%
compared to LoRA and AdaLoRA. Figure 4(b) demonstrates reduced peak memory usage: slices
consistently use 2–4GB less memory (≈ 18% savings on average) compared to HRA and AdaLoRA,
enabling training under stricter GPU memory budgets. Figure 4(c) reports throughput, where slices

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

achieve the fastest iteration rates, averaging 2.05 iterations/s versus 1.78 for LoRA and 1.62 for
HRA, representing a 15–25% speedup. Finally, Figure 4(d) shows total wall-clock training time:
slice training completes 10 epochs in 1.05 minutes on average, compared to 1.83 minutes for HRA
and 2.12 minutes for LayerNorm tuning, corresponding to a 42–50% reduction.

Overall: (i) SliceFine supports the UWSH means any slice with sufficient rank acts as a local winner,
so training slice suffices for PEFT without adding adapters; (ii) empirically, a rank–1 slice already
delivers competitive performance; and (iii) SliceFine matches or exceeds baseline accuracy while
using far fewer trainable parameters, and thus training faster, and consuming less memory. The
more detailed results are provided in Appendix J. In addition, we present detailed ablation studies in
Appendix E, including the effect of slice rank (E.1) and the switching interval (E.2).

5 RELATED WORK

Lottery Ticket Hypothesis. LTH (Frankle & Carbin, 2019) says a large dense network contains
sparse subnetworks (“winning tickets”) that, after pruning and retraining, can match the full model.
Later work tested this on modern architectures (Burkholz, 2022) and surveyed the evidence (Liu
et al., 2024a). Pruning methods to find these subnetworks were studied in Zhou et al. (2019). The
strong LTH (Ramanujan et al., 2020) shows that some untrained sparse subnetworks already perform
well, with further analysis and CNN results in Pensia et al. (2020); da Cunha et al. (2022). In
pretrained models, similar findings appear: BERT has winning-ticket subnetworks (Chen et al.,
2020; Yu et al., 2021); pruning before fine-tuning can find them (Wu et al., 2022); and ImageNet-
pretrained CNNs also contain sparse subnetworks that keep downstream accuracy (Chen et al., 2021;
Iofinova et al., 2022).

PEFT. PEFT adapts large models by updating a small subset of parameters while freezing most
of the backbone. Prior work spans prompt-based approaches that optimize soft prompts or pre-
fixes (Lester et al., 2021; Li & Liang, 2021), adapter layers inserted into residual blocks (Houlsby
et al., 2019), and weight-space updates such as LoRA (Hu et al., 2021), BitFit and LayerNorm tun-
ing (Zaken et al., 2021; Zhao et al., 2023), and multiplicative gating like IA3 (Liu et al., 2022).
Numerous refinements improve placement, rank, and overhead: AdaLoRA adapts rank during train-
ing (Zhang et al., 2023b), LoRA-FA and VeRA reduce parameter and optimizer cost (Zhang et al.,
2023a; Kopiczko et al., 2023), and other variants explore alternative factorizations or injection points
(Hyeon-Woo et al., 2021; Edalati et al., 2022; Bałazy et al., 2024). Beyond LoRA, DoRA stabilizes
updates via weight decomposition (Liu et al., 2024b), READ augments with residual adapters (Wang
et al., 2024), LoRA+ and KronA target better efficiency (Hayou et al., 2024; Edalati et al., 2022),
and Q-PEFT conditions adaptation on task queries (Peng et al., 2024). Orthogonal lines combine
PEFT with sparsity: structured and unstructured pruning (e.g., SparseGPT, Wanda, LLM-Pruner)
remove redundancy with limited loss (Frantar & Alistarh, 2023; Sun et al., 2023a; Ma et al., 2023),
and domain adaptation strategies help avoid overfitting (Gururangan et al., 2020). Closer to sub-
network training, RoCoFT trains a fixed subset of rows/columns and reports strong results, but the
chosen subnetwork remains static over training (Kowsher et al., 2024a).

In contrast to methods that add auxiliary parameters (adapters, prompts, low-rank factors) or remove
weights via pruning, SliceFine updates a set of slices across layers of the original network—without
adding parameters—and can move the active slice during training, yielding block–coordinate adap-
tation motivated by spectral balance and high task energy in the pretrained backbone.

6 CONCLUSION

This work proposes the Universal Winning–Slice Hypothesis (UWSH): in pretrained networks sat-
isfying spectral balance and high task energy, every sufficiently wide slice of a weight matrix acts
as a local winning ticket, and a small set of slices across layers forms a global winning ticket.
Building on this view, SliceFine fine-tunes only a small, moving slice per layer—adding no new pa-
rameters—while matching strong PEFT baselines in accuracy and improving efficiency in memory,
speed, and model size. Experiments across text, image, and video tasks show competitive perfor-
mance compared to SOTA PEFT methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alan Ansell, Ivan Vulić, Hannah Sterz, Anna Korhonen, and Edoardo M Ponti. Scaling sparse
fine-tuning to large language models. arXiv preprint arXiv:2401.16405, 2024.

Yue Bai, Huan Wang, Zhiqiang Tao, Kunpeng Li, and Yun Fu. Dual lottery ticket hypothesis. arXiv
preprint arXiv:2203.04248, 2022.

Klaudia Bałazy, Mohammadreza Banaei, Karl Aberer, and Jacek Tabor. Lora-xs: Low-rank adapta-
tion with extremely small number of parameters. arXiv preprint arXiv:2405.17604, 2024.

Kartikeya Bhardwaj, Nilesh Prasad Pandey, Sweta Priyadarshi, Viswanath Ganapathy, Rafael
Esteves, Shreya Kadambi, Shubhankar Borse, Paul Whatmough, Risheek Garrepalli, Mart
Van Baalen, et al. Rapid switching and multi-adapter fusion via sparse high rank adapters. arXiv
preprint arXiv:2407.16712, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pp. 7432–7439, 2020.

Rebekka Burkholz. The strong lottery ticket hypothesis with non-ReLU networks. arXiv preprint
arXiv:2202.12369, 2022.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, and
Zhangyang Wang. The lottery tickets hypothesis for supervised and self-supervised pre-training
in computer vision models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 16306–16316, 2021.

Xuefei Chen, Ming Ding, Yuchen Zhou, Hongxia Yang, Jie Tang, and Jie Zhou. The lottery ticket
hypothesis for pre-trained bert networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 reasoning chal-
lenge. arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https://arxiv. org/abs/2110.14168, 2021.

Arthur da Cunha, Andreas Loukas, and Stratis Demetriou. The strong lottery ticket hypothesis for
convolutional neural networks. arXiv preprint arXiv:2204.04861, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. KronA: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations (ICLR), 2019.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
one-shot. arXiv preprint arXiv:2301.00774, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463, 2020.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (ACL),
pp. 8342–8360, 2020.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. LoRA+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren Etzioni, and Nate Kushman. Learning to
solve arithmetic word problems with verb categorization. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing, pp. 523–533, 2014.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. arXiv preprint arXiv:2304.01933, 2023.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. FedPara: Low-Rank hadamard product for
communication-efficient federated learning. arXiv preprint arXiv:2108.06098, 2021.

Eugenia Iofinova, Alexandra Peste, Mark Kurtz, and Dan Alistarh. How well do sparse imagenet
models transfer? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 12266–12276, 2022.

Jiale Kang and Qingyu Yin. Balancing lora performance and efficiency with simple shard sharing.
arXiv preprint arXiv:2409.15371, 2024.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish Sabharwal, Oren Etzioni, and Siena Dumas
Ang. Parsing algebraic word problems into equations. Transactions of the Association for Com-
putational Linguistics, 3:585–597, 2015.

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random matrix
adaptation. arXiv preprint arXiv:2310.11454, 2023.

Md Kowsher, Tara Esmaeilbeig, Chun-Nam Yu, Chen Chen, Mojtaba Soltanalian, and Niloofar
Yousefi. Rocoft: Efficient finetuning of large language models with row-column updates. arXiv
preprint arXiv:2410.10075, 2024a.

Md Kowsher, Nusrat Jahan Prottasha, and Prakash Bhat. Propulsion: Steering LLM with tiny fine-
tuning. arXiv preprint arXiv:2409.10927, 2024b.

Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a
large video database for human motion recognition. In 2011 International conference on computer
vision, pp. 2556–2563. IEEE, 2011.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bohan Liu, Zijie Zhang, Peixiong He, Zhensen Wang, Yang Xiao, Ruimeng Ye, Yang Zhou, Wei-
Shinn Ku, and Bo Hui. A survey of lottery ticket hypothesis. arXiv preprint arXiv:2403.04861,
2024a.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-
Ting Cheng, and Min-Hung Chen. DoRA: Weight-decomposed low-rank adaptation. arXiv
preprint arXiv:2402.09353, 2024b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Xinyin Ma, Gongfan Zhang, and Xinchao Zhu. LLM-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? arXiv preprint arXiv:2103.07191, 2021.

Zhiyuan Peng, Xuyang Wu, Qifan Wang, Sravanthi Rajanala, and Yi Fang. Q-PEFT: Query-
dependent parameter efficient fine-tuning for text reranking with large language models. In
Proceedings of the 47th International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2024.

Ankit Pensia, Varun Jog, and Po-Ling Loh. Optimal lottery tickets via subsetSum: logarithmic over-
parameterization is sufficient. Advances in Neural Information Processing Systems, 33:2599–
2610, 2020.

Nusrat Jahan Prottasha, Upama Roy Chowdhury, Shetu Mohanto, Tasfia Nuzhat, Abdullah As Sami,
Md Shamol Ali, Md Shohanur Islam Sobuj, Hafijur Raman, Md Kowsher, and Ozlem Ozmen
Garibay. Peft a2z: Parameter-efficient fine-tuning survey for large language and vision models.
arXiv preprint arXiv:2504.14117, 2025.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Raste-
gari. What’s hidden in a randomly weighted neural network? Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11893–11902, 2020.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. WinoGrande: An ad-
versarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. SocialIQA: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023a.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. In Workshop on Efficient Systems for Foundation Models ICML, 2023b.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. Advances in neural information process-
ing systems, 35:10078–10093, 2022.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Sid Wang, John Nguyen, Ke Li, and Carole-Jean Wu. Read: Recurrent adaptation of large trans-
formers. In International Conference on Learning Representations, 2024.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi
Tomizuka, Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based
image representation and processing for computer vision. arXiv preprint arXiv:2006.03677, 2020.

Jiarun Wu, Qingliang Chen, Zeguan Xiao, Yuliang Gu, and Mengsi Sun. Pruning adatperfusion with
lottery ticket hypothesis. In Findings of the Association for Computational Linguistics: NAACL
2022, pp. 1632–1646, 2022.

Taiqiang Wu, Jiahao Wang, Zhe Zhao, and Ngai Wong. Mixture-of-subspaces in low-rank adapta-
tion. arXiv preprint arXiv:2406.11909, 2024.

Haoran You, Zhihan Lu, Zijian Zhou, Yonggan Fu, and Yingyan Lin. Early-bird gcns: Graph-
network co-optimization towards more efficient gcn training and inference via drawing early-bird
lottery tickets. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp.
8910–8918, 2022.

Tianle Yu, Zixuan Li, Yiming Wang, Yisen Wang, Peng Xu, Zhewei Wang, and Bin Xu. When bert
plays the lottery, all tickets are winning. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Shen Yuan, Haotian Liu, and Hongteng Xu. Bridging the gap between low-rank and orthogonal
adaptation via householder reflection adaptation. Advances in Neural Information Processing
Systems, 37:113484–113518, 2024.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. arXiv preprint arXiv:2106.10199, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Guangtao Zeng, Peiyuan Zhang, and Wei Lu. One network, many masks: Towards more parameter-
efficient transfer learning. arXiv preprint arXiv:2305.17682, 2023.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A
large-scale study of representation learning with the visual task adaptation benchmark. arXiv
preprint arXiv:1910.04867, 2019.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh Inter-
national Conference on Learning Representations, 2023b.

Bingchen Zhao, Haoqin Tu, Chen Wei, Jieru Mei, and Cihang Xie. Tuning layernorm in attention:
Towards efficient multi-modal llm finetuning. arXiv preprint arXiv:2312.11420, 2023.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Proving the lottery ticket hypothesis:
Pruning is all you need. In International Conference on Learning Representations (ICLR), 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Andrew Zisserman, Joao Carreira, Karen Simonyan, Will Kay, Brian Zhang, Chloe Hillier, Sudheen-
dra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, et al. The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 6, 2017.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Winner Slices in Pretrained Networks 3

3 SliceFine: Slice as Efficient Fine-tuning 5

4 Experiments 6

5 Related Work 9

6 Conclusion 9

A Proof of Theorem Universal Winning Ticket 16

B PCA Decomposition of the Representation/Linearized NTK Kernel) 16

C Rank, NTK, and PCA 18

C.1 PCA cumulative explained variance (CEV) Analysis . 18

C.2 Prediction shift via Kullback–Leibler divergence . 19

C.3 Layer-wise representation change via centered kernel alignment (CKA) 20

D Backbone Dependence 20

D.1 Backbone pruning . 22

D.2 Slice re-initialization . 23

E Ablation Study 24

E.1 Rank vs Winner . 24

E.2 Slice Update Interval . 24

E.3 What is the optimal slice rank r? . 25

E.4 Slice position: static vs. dynamic . 26

F Baselines 27

G Dataset Details 28

H Models 28

I Hyperparameter 29

J Detailed Results 29

K Random Mask 30

L Implementation Details 32

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (GPT) solely for minor writing assistance, such as grammar check-
ing, language polishing, and improving readability. No content generation, ideation, experimental
design, or analysis was performed by the LLM. All research contributions, technical content, and
results presented in this paper are entirely the work of the authors.

A PROOF OF THEOREM UNIVERSAL WINNING TICKET

Proof of Theorem 2.4. Let L(θ) = 1
n

∑n
i=1 ℓ(fθ(xi), yi) denote the empirical downstream loss on

dataset D = {(xi, yi)}ni=1, with pretrained initialization θ0. For any slice M ⊆ W (ℓ), define the
restricted gradient

gM = ∇ML(θ) = ∂L(θ)
∂(M⊙W (ℓ))

= 1
n

n∑
i=1

JM (xi)
⊤∇f ℓ(fθ(xi), yi), (1)

where JM (x) = ∂fθ(x)
∂(M⊙W (ℓ))

∈ Rk×|M | is the slice Jacobian and ∇f ℓ(·, yi) ∈ Rk is the gradient
with respect to logits. By assumption there exists at least one i with∇f ℓ(fθ0(xi), yi) ̸= 0, and by the
projection condition each JM (x) has nontrivial overlap with the ktask-dimensional task subspace.
Hence gM ̸= 0 for all nonempty M .

Assume slice-restricted Lipschitz smoothness: there exists LM > 0 such that

L(θ0 +M ⊙∆) ≤ L(θ0) + g⊤Mvec(∆) + LM

2 ∥vec(∆)∥22 (2)

for all ∆ with ∥∆∥2 ≤ ρ. Choosing ∆ = −αgM yields

L(θ0 − αM ⊙ gM) ≤ L(θ0)− α∥gM∥22 + LM

2 α2∥gM∥22, (3)

which is minimized at α⋆ = 1/LM . Thus for any α ∈ (0, 2/LM) we obtain strict decrease

L(θ0 − αM ⊙ gM) ≤ L(θ0)− ∥gM∥2
2

2LM
< L(θ0). (4)

Therefore every slice admits a loss-decreasing update.

Next, let {M1, . . . ,Mm} be slices chosen such that their Jacobians span the task subspace:

dim span{JM1
(x), . . . , JMm

(x)} = ktask. (5)

By the spectral balance assumption such a finite m ≤ ktask exists. Define the combined Jacobian

Jcombined(x) = [JM1(x) | · · · | JMm(x)]. (6)

In the linearized (NTK) regime,

fθ0+∆θ(x) ≈ fθ0(x) + J(x)∆θ, (7)

and restriction to updates supported on {Mi} suffices to realize any perturbation in the ktask sub-
space. Since losses such as cross-entropy are convex in the logits, it follows that for any ϵ > 0 there
exist slice updates {Ui} such that

L
(
θ0 +

m∑
i=1

Mi ⊙ Ui

)
≤ ϵ. (8)

Hence the union of finitely many slices constitutes a global winning ticket.

B PCA DECOMPOSITION OF THE REPRESENTATION/LINEARIZED NTK
KERNEL)

Proof of Lemma 2.5. Let H̃ ∈ Rn×d for the centered feature matrix. Since centering removes the
mean in each feature coordinate, we have rank(H̃) =: r ≤ min{n − 1, d}. Consider the thin
singular value decomposition (SVD)

H̃ = USV ⊤,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Layer 1

(b) Layer 5

(c) Layer 11

Figure 5: PCA/NTK agreement across layers. Each row shows (i) the centered representation
kernel K = H̃H̃⊤, (ii) the reconstruction PP⊤ with P = H̃V , (iii) the absolute difference |K −
PP⊤|, and (iv) cumulative explained variance from PCA on Σ versus eigenvalues from K. Results
are shown for RoBERTa-base layers 1, 5, and 11. Spectra and CEV curves overlap, confirming
Lemma 2.5 across depth.

where U ∈ Rn×r and V ∈ Rd×r have orthonormal columns (U⊤U = V ⊤V = Ir), and S =
diag(s1, . . . , sr) ∈ Rr×r with singular values s1 ≥ · · · ≥ sr > 0.

The empirical covariance of the centered features is

Σ =
1

n− 1
H̃⊤H̃ =

1

n− 1
V S2V ⊤.

Thus V diagonalizes Σ and its positive eigenvalues are

λi =
s2i

n− 1
, i = 1, . . . , r,

so that Λ = diag(λ1, . . . , λr) = 1
n−1S

2 gives the eigendecomposition Σ = V ΛV ⊤ stated in the
lemma.

Define P := H̃V . Using the SVD, P = (USV ⊤)V = US, hence P ∈ Rn×r has orthogonal
columns and PP⊤ = (US)(US)⊤ = US2U⊤. On the other hand, the centered feature Gram
matrix (a.k.a. linearized representation kernel)

K = H̃H̃⊤ = (USV ⊤)(V SU⊤) = US2U⊤.

Therefore K = PP⊤ exactly, which is the desired decomposition.

The eigen-decomposition of K follows immediately: because K = US2U⊤ with U orthonormal,
the nonzero eigenvalues of K are the diagonal entries of S2, namely s2i , i = 1, . . . , r. Using the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

relation s2i = (n− 1)λi derived above, the nonzero spectrum of K is µi := (n− 1)λi, i = 1, . . . , r.
Equivalently, K and Σ share the same nonzero eigenvectors in their respective spaces (U in Rn and
V in Rd) and have spectra that differ by the scalar factor (n− 1). This scaling also implies equality
of explained-variance ratios. Indeed,∑k

i=1 λi∑r
j=1 λj

=

∑k
i=1

1
n−1s

2
i∑r

j=1
1

n−1s
2
j

=

∑k
i=1 s

2
i∑r

j=1 s
2
j

=

∑k
i=1 µi∑r
j=1 µj

,

since µi = s2i . Hence PCA explained-variance ratios computed from the feature covariance Σ
coincide exactly with those computed from the Gram kernel K.

For completeness, one can also see the spectral correspondence without SVD, using the algebraic
fact that AB and BA have the same nonzero eigenvalues (including multiplicities). Taking A = H̃
and B = 1

n−1H̃
⊤, the products AB = 1

n−1H̃H̃⊤ and BA = 1
n−1H̃

⊤H̃ share their nonzero
spectra; this gives again that the positive eigenvalues of K equal (n−1) times those of Σ and yields
the same variance-ratio identity.

Finally, in the context of linearized training around θ0, when the readout is linear in the repre-
sentation H̃ or the network is considered in the (first-order) tangent regime, the kernel governing
function-space updates reduces to the representation kernel K = H̃H̃⊤; the lemma thus character-
izes its spectrum through the PCA of H̃ , completing the proof.

Empirically, Figure 5 validates the PCA/NTK correspondence on RoBERTa-base using n=8 exam-
ples at layers 1, 5, and 11. For each layer we compute the centered representation kernel K = H̃H̃⊤

(“True NTK” panels), the PCA basis V from Σ = 1
n−1H̃

⊤H̃ , and the reconstruction PP⊤ with
P = H̃V (middle-left panels). The absolute difference maps |K − PP⊤| (middle-right) are uni-
formly small, confirming the exact decomposition K = PP⊤ up to numerical error. The rightmost
plots compare cumulative explained variance derived from the eigenvalues of Σ (“True PCA”) ver-
sus those induced by K (“PCA from NTK”); the curves overlap across depth, showing that PCA
variance ratios in feature space match those of the representation kernel. Together, these results
support Lemma 2.5 empirically across multiple layers.
Remark B.1 (Relation to the NTK). The identity K = H̃H̃⊤ = PP⊤ describes the (centered)
representation kernel. It coincides with the empirical NTK Kθ0(x, x

′) = ⟨∇θfθ0(x),∇θfθ0(x
′)⟩

when the parameter subset with respect to which the NTK is computed corresponds to a linear
readout over fixed features (e.g., last-layer weights with upstream layers frozen). For general multi-
layer adaptations, the full NTK requires Jacobians w.r.t. all trainable parameters and does not reduce
to a pure feature Gram matrix.

C RANK, NTK, AND PCA

This section quantifies how domain familiarity affects the slice rank needed for good adaptation.
The main idea is simple: when the frozen backbone already organizes features along task-relevant
directions, a small slice rank is enough; when the task is unfamiliar, a larger rank is needed. We make
this precise using PCA on hidden features and the linearized NTK view: a steep PCA spectrum (high
cumulative explained variance, CEV) indicates that the task subspace is low-dimensional and small
slices should suffice; a flat spectrum indicates the opposite.

At the beginning, we warm-start RoBERTa-base on MRPC for 100 steps (batch size 64, BF16) to
bias its features toward paraphrase semantics without fully adapting the model. We then fine-tune
with SliceFine at ranks r ∈ {1, 3, 5, 7} on six GLUE tasks, and report three diagnostics that map
directly to the analysis.

C.1 PCA CUMULATIVE EXPLAINED VARIANCE (CEV) ANALYSIS

For layer ℓ, let the centered features be H̃ℓ ∈ Rn×dℓ , the covariance Σℓ = 1
n−1H̃

⊤
ℓ H̃ℓ, and eigen-

values λ1 ≥ · · · ≥ λrℓ > 0. The CEV after k components is

CEVℓ(k) =

∑k
i=1 λi∑rℓ
j=1 λj

,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

which summarizes how concentrated the feature spectrum is.

Figure 6: PCA cumulative explained variance (CEV) for eight GLUE tasks. Tasks such as MRPC
and QQP reach over 85% variance with few components, indicating a compact task subspace after
MRPC warm-start. Tasks such as SST-2 and CoLA accumulate variance more slowly, suggesting
higher intrinsic dimensionality and a need for larger slice ranks.

Interpretation of Figure 6. MRPC and QQP cross 85% variance with only a few principal compo-
nents, consistent with a low-dimensional task subspace when the backbone is biased toward para-
phrase semantics (As warm-start with MRPC dataset). In contrast, SST-2 and CoLA require more
components, pointing to higher intrinsic dimensionality. This matches the rank rule-of-thumb: a
steep spectrum suggests that a small slice rank is enough; a flatter spectrum suggests that a larger
rank is needed.

C.2 PREDICTION SHIFT VIA KULLBACK–LEIBLER DIVERGENCE

Let θb be the warm-started backbone and θr the model after SliceFine with rank r. For a k-class
problem with logits zθ(x) ∈ Rk and probabilities pθ(y | x) = softmax(zθ(x)), define the dataset-
averaged divergence

KLD(θr ∥ θb) =
1

n

n∑
i=1

k∑
c=1

pθr (c | xi) log
pθr (c | xi)

pθb(c | xi)
.

Small KL means the fine-tuned model stays close to the backbone’s predictions (a “lazy” update);
large KL means stronger shifts.

Figure 7: Accuracy (bars), base accuracy (hatched bars), and KL divergence to the warm-started
backbone (lines) across six GLUE tasks (MRPC, QQP, MNLI, QNLI, SST-2, CoLA) for different
slice ranks. Tasks close to MRPC (MRPC, QQP) saturate at very low rank and show small KL; tasks
with flatter CEV (SST-2, CoLA) benefit from higher ranks and show larger KL.

Interpretation of Figure 7. MRPC and QQP achieve high accuracy with r = 1 and display low KL,
consistent with high task energy already present in the backbone. SST-2 and CoLA gain from larger
ranks and show higher KL, indicating that more task-relevant directions must be engaged to move
predictions away from the warm-start.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.3 LAYER-WISE REPRESENTATION CHANGE VIA CENTERED KERNEL ALIGNMENT (CKA)

For layer ℓ, let H(ℓ)
b , H

(ℓ)
r ∈ Rn×dℓ be hidden states from θb and θr; center by H̃ := H − 1

n11
⊤H .

Linear CKA is

CKA
(
H

(ℓ)
b , H(ℓ)

r

)
=

∥∥∥H̃(ℓ)⊤
b H̃

(ℓ)
r

∥∥∥2
F∥∥∥H̃(ℓ)⊤

b H̃
(ℓ)
b

∥∥∥
F

∥∥∥H̃(ℓ)⊤
r H̃

(ℓ)
r

∥∥∥
F

.

Higher CKA means the representations stay closer to the backbone.

Figure 8: Layer-wise CKA between pre- and post-fine-tuning representations for ranks 1, 3, 5, and
7 across MRPC, QQP, MNLI, QNLI, SST-2, and CoLA. Larger CKA indicates smaller feature drift.
MRPC/QQP remain close to the backbone even at higher ranks; SST-2/CoLA show larger drift in
upper layers as rank increases.

Interpretation of Figure 8. For MRPC and QQP, CKA remains high in final layer even at larger
ranks, consistent with a lazy regime: only modest adjustments are needed. For SST-2 and CoLA,
CKA decreases as rank grows—especially in upper layers—showing that these tasks require broader
subspace updates. CKA is a representation-level proxy; the kernel–PCA link that motivates this
interpretation is given in Lemma 2.5.

In summary, warming on MRPC increases CEV for semantically similar tasks, so low ranks work
well and changes remain small (low KL, high CKA). For tasks with flatter CEV, larger ranks are
needed, with larger prediction shifts and representation changes. These trends are exactly what the
PCA/NTK view predicts: when the backbone concentrates task energy in a few directions, small
slices suffice; when it does not, larger slices are required.

D BACKBONE DEPENDENCE

A slice can only reduce loss if its updates move the model along task-relevant directions already
encoded by the pretrained backbone. Formally, the loss gradient at the output is propagated back
through the frozen features, and the effect of a slice update is controlled by two factors: (i) the
task energy present in the backbone representations (how much of the feature variance lies in the
subspace that separates the labels), and (ii) the overlap between the slice Jacobian and that task
subspace. If the pretrained network retains high principal energy on the task (large PCA cumulative
explained variance), then all slices—by spectral balance—have nontrivial projection onto that sub-
space, yielding a nonzero restricted gradient and guaranteed decrease. Conversely, if we ablate the
backbone (e.g., heavy pruning or strong domain shift), the representation kernel loses energy, the
accessible task dimension shrinks, and the slice gradient collapses unless we increase the slice rank.

Lemma D.1 (Backbone energy & alignment condition for local winners). Let θ0 be a pretrained
network and, at layer ℓ, let Φℓ = [ϕℓ(x1), . . . , ϕℓ(xn)] have singular values {σj}. Let Uktask

be the

top ktask left singular vectors and assume the task-energy ratio E :=
∑ktask

j=1 σ2
j∑

j σ2
j

> 0. For a slice

mask M in layer ℓ, define the feature-space slice Jacobian Jϕ
M (x) = ∂ϕℓ(x)

∂(M⊙W (ℓ))
∈ Rdℓ×|M | and

set
γmin(M) := σmin

(
U⊤
ktask

Jϕ
M (x)

)
, β(M) :=

∥∥(I − PUktask
) Jϕ

M (x)
∥∥
2
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Assume spectral balance: there exist constants γ > 0 and c ∈ [0, 1) such that γmin(M) ≥ γ

and β(M) ≤ c γ for all admissible slices M . Let L be convex in the logits and let J (ℓ)
out =

∂fθ0
∂ϕℓ

.

Define the feature-space gradient gϕ = (J
(ℓ)
out)

⊤∇fL and decompose gϕ = gϕ,task + gϕ,⊥ with
gϕ,task := PUktask

gϕ and gϕ,⊥ := (I − PUktask
)gϕ. Assume the gradient alignment condition: for

some ρ ∈ [0, 1),
∥gϕ,⊥∥ ≤ ρ ∥gϕ,task∥, ∥gϕ,task∥ > 0.

Assume further that L is L-smooth along the slice coordinates (equivalently, λmax(HM) ≤ L <∞
with HM := ∇2

ML(θ0)). Then∥∥∇ML(θ0)
∥∥ =

∥∥(Jϕ
M (x))⊤gϕ

∥∥ ≥ (1− cρ) γ ∥gϕ,task∥ > 0,

and the slice-only update U⋆ = −λmax(HM)−1∇ML(θ0) satisfies

L
(
θ0 +M ⊙ U⋆

)
≤ L(θ0) −

(1− cρ)2 γ 2 ∥gϕ,task∥2

2λmax(HM)
.

Proof. We can Write P := PUktask
= Uktask

U⊤
ktask

, an orthogonal projector (P 2 = P , P⊤ =

P), and recall that ∥A∥2 = σmax(A) and σmin(A) = inf∥z∥2=1 ∥Az∥2. The feature–space slice
Jacobian is Jϕ

M (x) ∈ Rdℓ×|M | and the feature gradient is gϕ = (J
(ℓ)
out)

⊤∇fL ∈ Rdℓ . By the chain
rule through ϕℓ,

∇ML(θ0) =
(

∂ϕℓ(x)
∂(M⊙W (ℓ))

)⊤
∂L

∂ϕℓ(x)
= (Jϕ

M)⊤gϕ. (9)

Decompose gϕ via the projector P as gϕ = gϕ,task + gϕ,⊥ with gϕ,task := Pgϕ and gϕ,⊥ :=
(I−P)gϕ, which are orthogonal since P is orthogonal. Using equation 9 and the triangle inequality,

∥∇ML(θ0)∥2 = ∥(Jϕ
M)⊤gϕ,task + (Jϕ

M)⊤gϕ,⊥∥2 ≥ ∥(Jϕ
M)⊤gϕ,task∥2 − ∥(Jϕ

M)⊤gϕ,⊥∥2. (10)

For the first term, note that gϕ,task = Uktask
U⊤
ktask

gϕ. Let A := (Jϕ
M)⊤Uktask

∈ R|M |×ktask and
z := U⊤

ktask
gϕ ∈ Rktask . Then

∥(Jϕ
M)⊤gϕ,task∥2 = ∥Az∥2 ≥ σmin(A) ∥z∥2 = σmin

(
(Jϕ

M)⊤Uktask

)
∥U⊤

ktask
gϕ∥2,

where the inequality uses the singular–value bound ∥Az∥2 ≥ σmin(A)∥z∥2. Because Uktask

has orthonormal columns, ∥U⊤
ktask

gϕ∥2 = ∥Pgϕ∥2 = ∥gϕ,task∥2. By definition γmin(M) :=

σmin(U
⊤
ktask

Jϕ
M) = σmin((J

ϕ
M)⊤Uktask

). Hence

∥(Jϕ
M)⊤gϕ,task∥2 ≥ γmin(M) ∥gϕ,task∥2 ≥ γ ∥gϕ,task∥2, (11)

using the spectral–balance lower bound γmin(M) ≥ γ > 0.

For the second term, use the operator–norm bound and the identity ∥A⊤∥2 = ∥A∥2:

∥(Jϕ
M)⊤gϕ,⊥∥2 = ∥(Jϕ

M)⊤(I −P)gϕ∥2 ≤ ∥(Jϕ
M)⊤(I −P)∥2 ∥gϕ,⊥∥2 = ∥(I −P)Jϕ

M∥2 ∥gϕ,⊥∥2.

By definition β(M) := ∥(I − P)Jϕ
M∥2 and by spectral balance β(M) ≤ c γ with c ∈ [0, 1). The

alignment assumption gives ∥gϕ,⊥∥2 ≤ ρ ∥gϕ,task∥2 with ρ ∈ [0, 1). Therefore

∥(Jϕ
M)⊤gϕ,⊥∥2 ≤ c γ ρ ∥gϕ,task∥2. (12)

Combining equation 10, equation 11, and equation 12 yields

∥∇ML(θ0)∥2 ≥
(
1− cρ

)
γ ∥gϕ,task∥2.

Since ρ < 1, c < 1, γ > 0, and ∥gϕ,task∥2 > 0 by assumption, the right-hand side is strictly
positive, establishing the claimed nonzero restricted gradient.

To obtain a quantitative decrease, assume L is L-smooth along the slice coordinates, i.e. for any
U ∈ R|M |,

L(θ0 +M ⊙ U) ≤ L(θ0) + ⟨∇ML(θ0), U⟩+ L
2 ∥U∥

2
2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Choose the steepest–descent step U⋆ := −L−1∇ML(θ0) (equivalently, −λmax(HM)−1∇ML(θ0)
when L = λmax(HM)). Then

L(θ0 +M ⊙ U⋆) ≤ L(θ0)−
1

2L
∥∇ML(θ0)∥22 ≤ L(θ0)−

(1− cρ)2 γ 2 ∥gϕ,task∥22
2L

,

where the last inequality substitutes the lower bound on ∥∇ML(θ0)∥2 derived above. Taking L =
λmax(HM) gives the stated decrement, completing the proof.

Figure 9: Effect of pruning the frozen backbone on slice fine-tuning. A fraction p ∈ [0, 1] of non-
slice pretrained weights is set to zero by global magnitude pruning (bias and LayerNorm parameters
are kept); the slice remains trainable and the rest of the backbone stays frozen. Accuracy drops
monotonically as p increases—mild for p≤0.2–0.3, steep for p≥0.6, and worst at p=1.0 when the
backbone is fully ablated. This confirms that slices rely on the pretrained scaffold: pruning reduces
representation energy (lower PCA CEV / NTK mass), shrinking the slice’s effective task overlap
and requiring larger ranks to compensate.

To validate backbone dependence empirically, we design two controlled tests that isolate the role of
the frozen backbone while keeping training schedules (epochs, batch size, sequence length, BF16)
fixed.

D.1 BACKBONE PRUNING

Figure 9 progressively prunes a fraction p of non-slice weights to zero before fine-tuning (slice
trainable; biases/LayerNorm kept). Across SST-2, QNLI, STS-B, and MRPC, performance degrades
smoothly with p. For modest pruning the drop is small, but heavy pruning causes large losses,
and removing the backbone entirely (p=1) yields the worst performance. This pattern matches the
PCA/NTK view: pruning alters the centered feature matrix H̃ , decreasing the principal energy of
the representation kernel K = H̃H̃⊤ and shrinking the accessible task subspace, so a fixed-rank
slice captures less of what matters.

Figure 10: Slice initialization sensitivity on SST-2, QNLI, STS-B, and MRPC. For ranks r ∈
{1, 5, 10, 20}, we compare pretrained slices (solid) to newly initialized slices (dashed; zero/X-
avier/Kaiming/LeCun), while the backbone remains frozen at pretrained values. Curves converge to
similar performance after a short warm-up, indicating that final accuracy is driven by the backbone’s
features and the slice’s task overlap, not by the slice’s initial values.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.2 SLICE RE-INITIALIZATION

Figure 10 compares pretrained vs. randomly reinitialized slices for ranks r ∈ {1, 5, 10, 20}. After
a brief warm-up, both settings reach nearly the same accuracy on all four tasks. This behavior is
consistent with the linearized view: with the backbone frozen, the slice acts through its Jacobian
block, so optimization is locally quadratic in the slice parameters and converges to a similar solution
regardless of the slice’s starting point (provided the backbone retains high task energy). In contrast,
reinitializing and freezing the backbone (while training only the slice) severely hurts performance,
reinforcing that slices succeed because they ride on a strong pretrained scaffold.

Overall, we see, (i) Strong backbones are essential: degrading them reduces PCA CEV / NTK mass
and harms slice effectiveness. (ii) Slice initialization is largely irrelevant; the backbone’s features
determine the attainable accuracy. (iii) These trends align with the bounds in Lemma D.1 and
the PCA/NTK equivalence (Lemma 2.5): when backbone task energy is high, even small ranks
work; when it is low (e.g., after pruning), larger ranks are needed. (iv) Thus, reinitializing the
slice has little effect on final performance, whereas reinitializing or degrading the backbone has a
large effect—explaining why randomly initialized adapter-style PEFT modules work well when the
backbone is strong.

Corollary D.2 (Effect of degrading the backbone). Let p ∈ [0, 1] denote the pruning fraction ap-
plied to the frozen backbone (slice remains trainable). Let σj(p) be the singular values of Φℓ after
pruning, and define the task-energy ratio

E(p) :=

∑ktask

j=1 σj(p)
2∑

j σj(p)2
.

For a slice mask M of rank r, define the overlap

γ(r)
p (M) := σmin

(
Uktask

(p)⊤Jϕ
M (x)

)
,

where Uktask
(p) spans the top task subspace of the pruned backbone at layer ℓ. Assume the align-

ment and smoothness conditions of Lemma D.1 with constants c, ρ < 1 and Lp = λmax(HM).

(i) Vanishing guarantee. If E(p) = 0 or γ(1)
p (M) = 0, then the lower bound in Lemma D.1 becomes

vacuous: ∥∥∇ML(θ0)
∥∥ ̸≥ (1− cρ) γ(1)

p (M) ∥gϕ,task(p)∥ = 0,

so there is no guaranteed descent for rank-1 slices. (The gradient may still be nonzero due to the
orthogonal component, but the lemma no longer certifies progress.)

(ii) Diminishing improvement. If E(p) > 0 and γ
(r)
p (M) > 0, Lemma D.1 yields

δmin(p, r) ≥
(1− cρ)2

2Lp

(
γ(r)
p (M)

)2 ∥gϕ,task(p)∥2 ∝ E(p)
(
γ(r)
p (M)

)2
/Lp.

Hence, as pruning increases (p ↑), both E(p) and typically γ(r)
p (M) decrease, shrinking the certified

gain δmin(p, r).

(iii) Minimal rank under pruning. Define the minimal rank

r⋆(p, τ) := min
{
r :

r∑
j=1

λj(p)
/∑

j

λj(p) ≥ τ
}
,

with {λj(p)} the PCA eigenvalues of the pruned representation (Lemma 2.5). Under spectral bal-
ance, there exists γ0 > 0 such that r ≥ r⋆(p, τ) implies γ

(r)
p (M) ≥ γ0 for admissible slices

M . Consequently, r⋆(p, τ) is nondecreasing in p and gives a sufficient rank to recover a positive,
p-robust guarantee:

δmin(p, r
⋆) ≥ (1− cρ)2γ2

0

2Lp
∥gϕ,task(p)∥2 > 0.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof sketch. Apply Lemma D.1 with Uktask
(p) and Jϕ

M evaluated on the pruned backbone. If
E(p) = 0 then gϕ,task(p) = 0; if γ(1)

p (M) = 0 then Uktask
(p)⊤Jϕ

M is rank-deficient for rank-1
slices. Either case collapses the lower bound. When both are positive, the decrease bound scales
like E(p) · (γ(r)

p (M))2/Lp. By Lemma 2.5, E(p) is the PCA CEV of the pruned features; pruning
reduces it, and the spectral-balance argument implies that the minimal rank needed to obtain overlap
bounded away from zero grows with p, yielding the monotonicity of r⋆(p, τ).
Corollary D.3 (Adapters as local winners). Let fθ0 be a pretrained backbone and insert an adapter
with parameters A at layer ℓ (e.g., parallel linear y = Wϕ+BAϕ or residual bottleneck hA(ϕ) =
ϕ+B σ(Aϕ)). Assume we operate in the linearized regime around (θ0, A0), so

fθ0,A(x) ≈ fθ0(x) + JA(x) vec(A) , JA(x) :=
[∂f
∂A

]
θ0,A0

.

Let Uktask
span the task subspace at layer ℓ, and define the feature–space adapter Jacobian

Jϕ
A(x) :=

[∂ϕℓ(x)
∂A

]
θ0,A0

. If the backbone has positive task energy E > 0 (nontrivial CEV;
Lemma 2.5), satisfies spectral balance, and the adapter has nontrivial overlap

γA := σmin

(
U⊤
ktask

Jϕ
A(x)

)
> 0,

then under the alignment (ρ < 1) and smoothness (L <∞) conditions of Lemma D.1, the restricted
gradient on the adapter obeys∥∥∇AL(θ0)

∥∥ ≥ (1− cρ) γA ∥gϕ,task∥ > 0,

and the one–step L-smooth decrease bound holds:

L
(
θ0, A− 1

L∇AL
)
≤ L(θ0, A) − (1−cρ)2

2L γ2
A ∥gϕ,task∥2.

Hence small adapters act as local winners provided the pretrained backbone supplies sufficient task
energy and the adapter’s Jacobian overlaps the task subspace.

E ABLATION STUDY

E.1 RANK VS WINNER

Figure 3(a) analyzes the effect of slice rank on downstream performance. As the rank increases,
accuracy initially improves because larger slices capture more task-relevant directions within the
representation subspace. However, beyond a certain point, adding additional parameters yields di-
minishing returns: accuracy plateaus or slightly declines due to redundancy and potential overfitting.
This pattern highlights that only a small fraction of the full parameter space is necessary to capture
the intrinsic task dimension ktask.

Importantly, when the slice rank equals the full layer dimension, slice training reduces to standard
full fine-tuning. The ablation therefore illustrates a smooth trade-off between efficiency and accu-
racy: small ranks already achieve strong performance (supporting the local winner property), while
larger ranks approximate full fine-tuning but at greater computational cost.

E.2 SLICE UPDATE INTERVAL

Figure 11 analyzes the effect of varying the interval N at which the active slice is switched during
training. We consider a spectrum of update frequencies, ranging from very frequent switching (every
50 steps) to very infrequent switching (every 2000 steps), across four representative GLUE tasks:
SST-2, MRPC, QNLI, and STS-B.

We observe three consistent patterns. First, when slices are switched too frequently (e.g., every 50
steps), the model exhibits lower accuracy across all datasets. This degradation occurs because each
slice has insufficient time to adapt its parameters before being replaced. The optimization dynamics
become unstable: gradients partially adapt one slice, then abruptly shift to another, preventing any
slice from accumulating task-relevant signal. As a result, rapid switching reduces the effective
learning capacity of the model.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Figure 11: Accuracy curves for SST-2, MRPC, QNLI, and STS-B under different slice update
intervals. Each curve corresponds to a policy where the active slice is changed every N training
steps (e.g., “Change every 50 steps”). The results show that varying the slice update interval leads to
similar performance trends across tasks, indicating that the spectral balance property allows slices
to adapt effectively regardless of update frequency.

Second, when slices are switched too late (e.g., at 2000 steps), the performance is comparable to
other schedules but does not always achieve the best accuracy. Here, a single slice has ample time
to adapt, but since all updates are concentrated on one subspace for a long period, the optimization
may overfit or fail to leverage complementary directions from other slices. This leads to slightly
reduced generalization compared to moderate switching intervals.

Third, we find that intermediate switching intervals yield the strongest results, with the optimal value
depending on the dataset. For instance, SST-2 achieves its peak accuracy when switching every 1500
steps (rank-1 slice), MRPC benefits most from switching every 500 steps, STS-B reaches its best
accuracy at 100 steps, while QNLI shows stable performance for intervals between 500 and 2000.
These variations reflect differences in task complexity and the effective task subspace dimension
ktask: tasks with simpler label structures require less adaptation time per slice, while more complex
tasks benefit from longer adaptation before switching.

E.3 WHAT IS THE OPTIMAL SLICE RANK r?

Figure 3(a) and Table 4 vary the slice rank r ∈ {1, 2, 4, 8, 32, 64, 128} while keeping the training
recipe fixed and report accuracy for different trained weight subsets. The curves show a consistent
shape across tasks: accuracy rises quickly at small ranks, then saturates, and in a few cases dips
slightly at very high ranks.

Accuracy improves sharply when moving from tiny capacity to moderate capacity because increas-
ing r enlarges the portion of the task-relevant subspace that a slice can capture. On SST-2, training
{Wq,Wk,Wv,Wo,Wi} climbs from 92.63 (r=1) to 94.72 at r=8; on MRPC the same subset peaks
at 88.39 for r=8; on QQP the best score 89.89 is already reached at r=4 with {Wq,Wk,Wv,Wo};
on QNLI performance continues to inch upward to 92.43 at r=64. These plateaus indicate that once
the slice rank matches the task’s effective dimension in the trained layer, additional directions add
little new information.

By following corollary 2.6, if we increase r, the slice’s Jacobian gains access to more principal direc-
tions of the representation kernel (PCA/NTK view). When r ≳ ktask, the added directions mainly
lie in low-variance residual space; by spectral balance, many of these directions are redundant across
slices. Hence gains taper off even though the parameter count grows.

A mild decline at very large ranks appears in several rows (e.g., SST-2 beyond r=8 for the full
{Wq,Wk,Wv,Wo,Wi} subset). This is consistent with redundancy increasing curvature and opti-
mization noise, and with limited-data regimes where extra degrees of freedom fit nuisance variation
rather than signal. In short, after the task subspace is covered, larger r can slightly hurt conditioning
and generalization without expanding useful capacity.

Which weights are included matters more than pushing r very high. Expanding the trained subset to
cover both attention and feed-forward projections yields larger gains than increasing rank on a nar-
row subset. For instance, on SST-2, {Wq,Wk,Wv,Wo,Wi} at r=8 (94.72) outperforms {Wq,Wk}

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Weight Type Rank r

1 2 4 8 32 64 128

SST-2
Wv 88.30 88.62 89.18 90.57 90.34 90.22 90.18

Wq,Wk 88.72 90.15 91.20 91.57 91.52 91.85 91.88
Wq,Wk,Wv 89.83 90.35 92.72 92.83 92.74 93.02 93.71

Wq,Wk,Wv,Wo 90.29 90.65 92.35 93.67 94.06 93.48 92.23
Wq,Wk,Wv,Wo,Wi 92.63 92.67 92.67 94.72 93.98 93.26 92.44

QQP
Wv 83.62 84.90 86.10 85.90 85.70 85.60 85.55

Wq,Wk 84.47 86.94 89.73 89.05 88.65 88.83 88.17
Wq,Wk,Wv 86.08 86.70 89.62 89.23 88.95 88.81 88.72

Wq,Wk,Wv,Wo 87.26 86.94 89.89 89.41 89.28 89.14 89.01
Wq,Wk,Wv,Wo,Wi 88.35 88.79 89.80 89.35 89.15 88.98 88.90

QNLI
Wv 87.55 88.34 88.83 90.72 91.05 90.94 90.69

Wq,Wk 87.90 89.42 90.36 91.12 91.42 91.21 91.06
Wq,Wk,Wv 88.42 89.70 90.92 91.66 91.88 91.73 91.50

Wq,Wk,Wv,Wo 88.76 89.95 91.20 91.88 91.95 91.81 91.42
Wq,Wk,Wv,Wo,Wi 89.33 90.42 91.70 92.10 92.43 91.78 91.55

MRPC
Wv 84.60 85.42 86.21 86.34 86.65 86.10 86.90

Wq,Wk 84.98 85.88 86.75 87.65 87.72 87.51 85.30
Wq,Wk,Wv 85.20 86.12 87.05 87.14 87.29 87.62 86.40

Wq,Wk,Wv,Wo 86.61 87.45 87.32 88.05 88.18 87.95 86.65
Wq,Wk,Wv,Wo,Wi 87.23 87.70 87.82 88.39 88.22 87.68 86.62

Table 4: Accuracy (%) across slice ranks r for different trained weight subsets on four GLUE tasks.
Wq , Wk, Wv , and Wo denote the query, key, value, and output projections in self-attention; Wi is
the MLP (intermediate) projection. The notation Wv indicates that SliceFine is applied only to the
value matrices across all layers (similarly for other subsets). Best per row is highlighted in blue and
second best in orange.

even at r=128 (91.88). The reason is span: adding Wo and Wi exposes complementary directions
of the task subspace, increasing the effective rank seen by the output even when r is modest.

A practical takeaway is that the rank lies in a narrow, task-dependent window. Across the four
GLUE tasks, ranks in the range r ∈ [4, 16] are within a few tenths of the best result, with QQP
preferring r≈4, SST-2 and MRPC preferring r≈8, and QNLI tolerating up to r≈32–64 for small
additional gains. A simple rule is to choose the smallest r whose cumulative explained variance of
the representation kernel exceeds a target threshold (e.g., 90%); this selects the rank where useful
directions are covered while avoiding the redundancy that causes late-stage saturation.

Finally, when the slice rank equals the full layer dimension, slice training is equivalent to full fine-
tuning. The table shows this level of capacity is unnecessary in practice: moderate ranks already
align with the task subspace and deliver near-peak accuracy at a fraction of the trainable parameters.

E.4 SLICE POSITION: STATIC VS. DYNAMIC

We compare two policies for a fixed slice rank and training budget: (i) static—train a single slice at
a fixed position for all steps, and (ii) dynamic—shift the active slice every N steps while freezing
previously updated entries (Fig. 12). Both settings use identical optimizers, batches, and epochs; the
number of trainable parameters and optimizer state at any time are the same.

Figure 12 shows that moving the slice yields consistent gains on both text and vision tasks. On
GLUE, the dynamic policy improves accuracy over the static policy on SST-2 (+1.7), MRPC (+1.3),

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Figure 12: SliceFine with static and dynamic slices. In the static variant, the slice position remains
fixed throughout training. In the dynamic variant, the active slice shifts every N steps, accumulating
task-aligned updates without adding adapter parameters.

STS-B (+0.9), QQP (+0.9), MNLI (+1.1), QNLI (+1.2), and RTE (+1.2), with a small change on
COLA (+0.2), for an average gain of ≈ +1.1 points. On VTAB-1k style image benchmarks and
KITTI, the gains are larger: CALTECH (+2.0), FLOWERS (+0.5), PETS (+0.9), CAMELYON (+2.6),
EUROSAT (+3.1), RETINOPATHY (+1.6), and KITTI (+2.8), averaging ≈ +1.9 points.

Switching positions exposes the optimizer to additional task-aligned directions while keeping the
per-step compute and memory unchanged. This better coverage is most helpful on datasets with
higher intrinsic dimension (e.g., EuroSAT, KITTI, Camelyon). When the task is already nearly satu-
rated (e.g., Flowers), dynamic and static policies perform similarly. These results are consistent with
the global-ticket view: each visited slice contributes new directions; sweeping across positions grad-
ually spans the task subspace, yielding steady improvements without increasing parameter count.

F BASELINES

We compare SliceFine against a broad set of PEFT methods that span the main design choices in the
literature. The goal is to test whether training a small slice can stand beside the strongest alternatives
under a fair, controlled setup.

We include widely used and recent state-of-the-art methods with public code or clear descriptions.
All baselines use the same backbones, data splits, tokenization, precision (BF16), optimizer, batch
size, and training schedule. Capacity-defining hyperparameters (e.g., rank, bottleneck width, prompt
length) are tuned on a small grid under a matched trainable-parameter budget; early stopping is
applied on the same validation splits, and we report the mean over three seeds. This protocol avoids
favoring any single family and makes results comparable across methods.

We group baselines into families as follows. First, adapter-style methods that insert small bot-
tlenecks: Adapters (Houlsby et al., 2019), MAM-Adapter (He et al., 2021), and PROPETL (Zeng
et al., 2023). Prompt/prefix methods optimize continuous prompts while freezing backbone weights:
Prompt Tuning (Lester et al., 2021) and Prefix-Tuning (Li & Liang, 2021). Element-wise updates
include BitFit (Zaken et al., 2021) and LayerNorm tuning (Zhao et al., 2023). We also evaluate (IA)3

(Liu et al., 2022) and Diff-Pruning (Guo et al., 2020).

Second, low-rank adaptation methods: LoRA (Hu et al., 2021) and extensions AdaLoRA (Zhang
et al., 2023b), LoKr (Edalati et al., 2022), LoRAFA (Zhang et al., 2023a), LoRA-XS (Bałazy et al.,
2024), LoHa (Hyeon-Woo et al., 2021), as well as VeRA (Kopiczko et al., 2023), HRA (Yuan et al.,
2024), MiSS (Kang & Yin, 2024), and SHiRA (Bhardwaj et al., 2024).

Finally, recent strong baselines tailored to LLM and vision(-language) settings, including Propulsion
(Kowsher et al., 2024b), RoCoFT (Kowsher et al., 2024a), SFT (Ansell et al., 2024), and mixture-
style adaptation (Wu et al., 2024). Together, these baselines provide a broad and competitive eval-
uation landscape across adapters, prompts/prefixes, bias/LayerNorm tuning, low-rank methods, and
hybrid strategies.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

G DATASET DETAILS

Our evaluation spans diverse datasets to ensure both coverage and robustness. Below we summarize
the key properties and motivations for each group of tasks.

Natural language understanding (GLUE). The GLUE benchmark (Wang et al., 2018) includes
eight tasks: CoLA (linguistic acceptability), SST-2 (sentiment classification), MRPC (paraphrase
detection), STS-B (semantic similarity), QQP (duplicate-question detection), MNLI (natural lan-
guage inference), QNLI (question answering inference), and RTE (entailment). The dataset sizes
range from ∼10K to 400K examples, with metrics including accuracy, F1, and correlation.

Commonsense reasoning. To train Commonsense reasoning, we use a commonsense-170k dataset
from Hu et al. (2023) and then we evaluate on BoolQ (Clark et al., 2019) (boolean question
answering), PIQA (Bisk et al., 2020) (physical commonsense), SIQA (Sap et al., 2019) (social
commonsense), HellaSwag (Zellers et al., 2019) (contextual plausibility), WinoGrande (Sakaguchi
et al., 2021) (coreference disambiguation), ARC-Easy/ARC-Challenge (Clark et al., 2018) (scien-
tific knowledge QA), and OpenBookQA (OBQA) (Mihaylov et al., 2018) (open-domain science
QA). These datasets range from 3K to 400K samples and test a model’s ability to reason beyond
surface-level patterns.

Mathematical reasoning. For training mathematical reasoning, we use a math-10k dataset from
Hu et al. (2023) and then we evaluate on MultiArith (Roy & Roth, 2016), AddSub (Hosseini et al.,
2014), SingleEq (Koncel-Kedziorski et al., 2015), SVAMP (Patel et al., 2021), and GSM8K (Cobbe
et al., 2021). These benchmarks evaluate symbolic manipulation, arithmetic reasoning, and multi-
step problem solving, with dataset sizes ranging from 1K to 8.5K examples.

Image recognition. From VTAB-1K (Zhai et al., 2019), we use Caltech101 (object recognition),
Flowers102 (fine-grained classification), Oxford Pets (species/breed recognition), Camelyon (medi-
cal histopathology), EuroSAT (satellite imagery), Retinopathy (diabetic retinopathy detection), and
KITTI-Dist (autonomous driving). Each dataset contains ∼1K labeled examples for training, mak-
ing them a strong test for low-data transfer learning.

Video recognition. For temporal reasoning, we evaluate on UCF101 (Soomro et al., 2012) (human
action recognition), Kinetics-400 (Zisserman et al., 2017) (large-scale action classification with 400
categories), and HMDB51 (Kuehne et al., 2011) (human motion recognition). These datasets test
models on spatio-temporal understanding and long-range context.

These datasets provide complementary challenges across language, vision, and video domains, en-
suring that our evaluation probes both reasoning capability and generalization ability.

H MODELS

We select representative pretrained backbones across language, vision, and video domains to eval-
uate the proposed slice-based fine-tuning method. Our choice of models follows two principles: (i)
using widely adopted baselines that allow fair comparison with prior PEFT studies, and (ii) including
both medium- and large-scale models to test scalability.

For language modeling and reasoning, we fine-tune medium- to large-scale LLMs, including
LLaMA-3B (Dubey et al., 2024), Gemma-3 12B (Team et al., 2025), and DeepSeek-RI-8B Guo et al.
(2025). These models provide complementary architectural diversity (Meta, Google, and DeepSeek
releases) and represent current practice in instruction tuning and reasoning evaluation.

For natural language understanding (GLUE), we use RoBERTa-base (125M parameters) and
RoBERTa-large (355M parameters) (Liu et al., 2019). These models are standard baselines in PEFT
literature and allow direct comparison with methods such as LoRA, Adapters, RoCoFT, and Prompt
Tuning.

For vision tasks, we adopt ViT-Base-Patch16-224 (Wu et al., 2020), a widely used Vision Trans-
former with 86M parameters. This model is commonly used in VTAB-1K evaluations and provides
a strong backbone for testing PEFT under limited data conditions.

For video tasks, we use VideoMAE-base (Tong et al., 2022), a transformer-based video repre-
sentation model pretrained on large-scale action datasets. VideoMAE is particularly suitable for

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

evaluating parameter-efficient methods on spatio-temporal recognition problems such as UCF101,
Kinetics-400, and HMDB51.

This diversity ensures that our results are not tied to a single architecture or domain, but instead
reflect the general applicability of the Winner Slice Theorem across modalities.

I HYPERPARAMETER

For all experiments, we train with AdamW (β1=0.9, β2=0.999), cosine decay with a linear warmup
of 3% of total steps, gradient clipping at 1.0, BF16 precision, and weight decay 0.01 for text models
and 0.05 for vision/video. For LLMs (LLaMA, DeepSeek, Gemma) on math_10k we use batch size
1 with gradient accumulation 4 (effective batch 4), 1 epoch, max sequence length 1024, learning rate
5×10−5; we then evaluate on all math–reasoning sets without further tuning. For commonsense170k
we use the same batch/accumulation/epochs and sequence length, with learning rate 1×10−4. For all
image datasets we train ViT backbones for 10 epochs with batch size 16, input resolution 224×224,
learning rate 3 × 10−4, and RandAugment kept at default; layer-wise LR decay is not used. For
GLUE we train 4 epochs with batch size 32, max sequence length 256, learning rate 2 × 10−5

(RoBERTa-base/large share the same schedule). For video classification we use batch size 16, 2
epochs, 16 frames at 224 × 224 with sampling stride 4, and learning rate 1 × 10−4. Dropout
and LayerNorm parameters follow the backbone defaults; no additional L2 regularization. For all
downstream tasks, we set the switch interval to N = 500 steps and shift the active slice position
every N steps until the epoch completes or early stopping is triggered.

J DETAILED RESULTS

In this appendix, we provide extended results that complement the main text. These include addi-
tional commonsense and mathematical reasoning benchmarks with larger LLMs, as well as further
breakdowns on GLUE with RoBERTa-large. All SliceFine variants are shown as shaded rows. Best
scores are highlighted in blue, and second best in orange.

Table 5 reports results on commonsense and math reasoning benchmarks using Gemma-3 12B and
DeepSeek-R1-8B. The trends observed in the main text (with LLaMA-3B) remain consistent at
larger scales. Slice-based fine-tuning achieves accuracy comparable to or exceeding strong baselines
such as LoRA, AdaLoRA, RoCoFT, and HRA. In particular, Slice-5RC achieves 83.35% average
accuracy on commonsense reasoning and 83.97% on math reasoning with Gemma-3 12B, outper-
forming AdaLoRA while using substantially fewer trainable parameters. For DeepSeek-R1-8B,
SliceFine variants again consistently surpass low-parameter baselines, highlighting the robustness
of the local winner property across architectures and scales.

In addition, to assess natural language understanding, we fine-tune RoBERTa-base on GLUE (Ta-
ble 7). Across tasks, slice training consistently outperforms classic baselines and matches or exceeds
state-of-the-art PEFT methods. For instance, with RoBERTa-large, Slice-5RC achieves 86.35%
average accuracy, exceeding LoRAFA (85.55%) and matching heavier approaches such as SFT
(85.61%). Remarkably, Slice-1R achieves 84.79%, already surpassing AdaLoRA (84.71%) with
fewer than 0.1M trainable parameters.

Table 6 provides detailed results on the GLUE benchmark with RoBERTa-large. Metrics follow
standard conventions: CoLA (MCC), SST-2 (accuracy), MRPC/QQP (accuracy/F1), STS-B (Pear-
son/Spearman), and MNLI/QNLI/RTE (accuracy). Here, SliceFine continues to deliver strong re-
sults. Slice-5RC achieves 89.60% average, outperforming AdaLoRA (88.93%) and matching or
surpassing other state-of-the-art methods such as MoSLoRA and PROPETL. Even a single slice
(Slice-1R) achieves 86.94%, already stronger than classical baselines like BitFit (86.67%) and Pre-
fix Tuning (86.11%).

These extended results further reinforce the conclusions of the main paper: (i) slices are consistently
competitive across LLMs of different sizes and models, (ii) performance gains hold across both
commonsense and mathematical reasoning tasks, and (iii) the efficiency–performance trade-off is
favorable, with slices using fewer than 0.5M trainable parameters while rivaling or surpassing state-
of-the-art PEFT methods. This consistency across datasets, backbones, and domains highlights the
universality of the Winner Slice Theorem in practice.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Commonsense Reasoning Math Reasoning
LLM Method #TTPs BoolQ PIQA SIQA H.Sw. W.Gra. ARCe ARCc OBQA Avg. M.Ar. G.8K A.S. Se.Eq S.MP Avg.

G
em

m
a-3

1
2
B

Prefix 57.24 70.60 82.62 80.29 79.89 75.78 76.16 60.70 73.27 74.91 88.87 73.12 84.35 82.46 56.48 77.06
AdaLoRA 52.30 73.93 83.24 81.60 91.62 81.09 81.21 64.72 79.55 79.62 92.11 82.41 89.48 84.84 64.48 82.66
VeRA 25.00 73.32 83.74 80.89 91.67 81.31 80.90 64.17 79.02 79.38 92.72 81.09 90.09 87.13 63.97 83.00
LoRA 21.79 73.12 84.15 81.20 91.81 81.71 81.52 64.69 81.36 79.75 92.01 80.79 89.28 87.87 64.19 82.83
RoCoFT 10.89 73.42 83.84 82.01 91.16 81.45 81.56 64.72 80.56 79.84 91.91 82.38 89.88 87.08 65.53 83.26
HRA 9.29 73.22 83.95 81.80 91.31 81.34 82.38 64.84 80.50 79.81 92.32 81.50 89.68 87.08 65.39 83.19

SliceFine-1R 2.76 72.87 84.20 80.29 90.41 79.79 79.86 63.50 80.94 78.98 91.27 80.04 88.00 83.36 64.17 81.37
SliceFine-1C 2.76 72.32 83.31 81.35 91.61 80.84 80.92 62.34 79.98 79.08 91.48 81.10 89.17 84.49 65.02 82.25
SliceFine-1RC 2.76 72.18 83.67 82.60 91.96 79.10 82.20 62.36 81.25 79.44 92.85 82.39 90.59 87.86 64.05 83.54
SliceFine-5R 10.89 72.92 83.60 82.58 91.99 82.11 82.14 65.31 81.19 80.22 92.94 82.32 90.52 87.80 66.00 83.91
SliceFine-5C 10.89 73.93 84.04 82.62 91.39 81.53 81.60 64.89 80.66 79.95 92.27 81.78 89.93 87.22 65.57 83.35
SliceFine-5RC 10.89 72.96 83.65 82.62 92.05 82.11 82.19 65.35 81.24 80.27 92.93 82.37 90.57 87.85 66.04 83.95

D
eepSeek-8

B

Prefix 38.09 71.15 81.71 78.76 79.78 75.21 74.70 60.09 73.59 74.37 88.81 73.38 84.85 82.64 54.71 76.88
AdaLoRA 33.05 71.66 82.21 79.37 91.65 79.17 79.37 62.12 77.34 77.86 93.56 81.71 89.42 84.58 62.93 82.53
VeRA 15.05 70.14 81.40 80.59 92.44 79.38 78.46 61.91 77.04 77.98 91.39 80.39 89.22 87.19 62.32 82.10
LoRA 13.77 71.76 82.11 79.78 91.76 80.28 79.68 62.32 77.75 78.19 92.09 81.00 87.70 83.46 62.52 81.35
RoCoFT 6.90 72.88 82.72 81.10 91.47 79.68 79.47 62.32 79.58 78.65 93.51 82.64 89.32 84.88 64.45 82.96
HRA 6.25 72.67 82.03 80.90 91.77 79.47 79.39 62.64 80.13 78.58 93.21 82.94 90.79 84.53 64.83 83.27

SliceFine-1R 2.18 71.34 81.24 80.40 90.79 78.00 77.85 61.24 77.85 77.34 92.47 81.13 89.25 82.01 63.03 81.58
SliceFine-1C 2.18 71.28 81.31 80.45 91.99 79.04 77.88 61.05 78.89 77.74 92.71 81.22 88.42 81.14 62.86 81.27
SliceFine-1RC 2.18 71.43 81.62 79.73 92.45 80.09 77.13 62.04 80.14 78.08 93.22 82.54 88.84 82.51 62.88 82.00
SliceFine-5R 6.89 72.37 82.56 81.67 92.38 80.23 80.07 62.99 80.08 79.08 93.14 84.48 90.77 87.44 64.83 84.13
SliceFine-5C 6.89 73.18 82.01 81.13 91.77 79.71 79.55 62.58 79.56 78.69 93.52 82.93 90.18 84.87 64.41 83.18
SliceFine-5RC 6.89 72.41 82.60 81.71 92.43 80.27 80.12 63.02 80.12 79.08 93.20 84.53 90.82 87.49 64.86 84.18

Table 5: Commonsense and math reasoning with Gemma-3-12B and DeepSeek-R1-8B. SliceFine
(shaded) rivals or surpasses baselines such as LoRA and AdaLoRA while using far fewer trainable
parameters (#TTPs). Best results are in blue, second-best in orange.

LM PEFT #TTPs CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

R
oB

E
R

Ta
L

arge

FT 355.3M 65.92 95.03 92.00/94.00 91.98/92.14 91.22/88.27 89.13 92.72 81.12 88.50

AdapterS 19.8M 65.34 95.90 89.58/90.38 92.62/92.14 91.28/87.42 90.51 94.62 85.45 88.66
Prompt-tuning 1.07M 60.97 94.27 73.50/76.13 78.10/78.59 81.09/75.26 68.46 89.36 60.33 76.01
Prefix-tuning 2.03M 59.48 95.64 88.29/89.70 91.04/91.43 88.96/85.65 88.85 93.05 73.80 85.99
(IA)3 1.22M 60.73 94.34 86.05/87.31 92.36/86.11 89.32/85.96 88.40 94.69 81.38 86.06
BitFit 0.22M 67.12 95.77 91.16/91.79 91.81/93.87 89.62/86.49 90.16 94.81 88.01 88.67
LoRA 1.84M 64.20 96.20 87.32/87.96 91.37/91.88 90.53/86.72 90.92 94.90 80.19 87.47
AdaLoRA 2.23M 65.81 94.71 89.21/90.40 91.81/91.88 90.00/86.20 90.08 95.12 77.99 87.56
MAM Adapter 4.20M 66.98 95.36 89.73/92.20 92.73/92.10 90.43/86.53 91.12 94.34 87.09 88.96
PROPETLAdapter 5.40M 65.91 95.78 89.93/91.33 91.96/91.44 90.81/87.35 91.30 94.75 88.14 88.97
PROPETLPrefix 26.8M 62.62 95.93 90.04/91.60 91.11/90.86 89.10/86.44 90.44 94.38 79.97 87.50
PROPETLLoRA 4.19M 61.94 96.21 87.34/89.37 91.48/90.90 91.36/88.43 90.86 94.74 83.13 87.80
MoSLoRA 3.23M 67.65 96.62 89.55/92.66 90.54/91.98 90.39/87.31 90.27 94.78 82.18 88.54
RoCoFT 0.67M 67.55 96.59 89.59/91.51 92.75/92.01 91.19/87.62 91.28 94.79 87.84 89.34

SliceFine-1R 0.22M 65.38 95.09 88.06/90.21 92.01/90.22 91.74/86.72 90.17 94.41 86.27 88.21
SliceFine-1C 0.22M 64.98 95.28 88.42/89.99 91.26/90.95 90.15/85.89 90.73 93.78 86.57 88.00
SliceFine-1RC 0.22M 67.68 95.52 89.91/90.32 91.89/90.59 90.17/85.98 90.72 93.48 87.05 88.48
SliceFine-5R 1.11M 67.23 96.68 90.07/90.37 93.26/92.69 91.11/87.11 91.88 95.57 88.37 89.49
SliceFine-5C 1.11M 67.76 96.33 90.23/89.92 93.22/92.96 91.16/87.89 91.22 95.18 87.48 89.40
SliceFine-5RC 1.11M 67.98 96.63 90.90/90.49 93.89/92.82 91.29/87.13 91.69 94.56 88.20 89.60

Table 6: RoBERTa-large on GLUE. CoLA uses MCC; SST-2 accuracy; MRPC/QQP accuracy/F1;
STS-B Pearson/Spearman; MNLI/QNLI/RTE accuracy. Best in blue, second best in orange. Slice-
Fine rows are shaded.

K RANDOM MASK

We also study an unstructured variant where, instead of training a contiguous row/column slice, a
random mask selects individual weights to update. For a layer W (ℓ) ∈ Rdℓ×dℓ−1 , fix a per–layer
budget mℓ (to match the trainable–parameter count of a structural slice). At iteration t, draw a
binary mask

M
(ℓ)
t ∈ {0, 1}dℓ×dℓ−1 , ∥M (ℓ)

t ∥0 = mℓ,

by sampling mℓ entries uniformly without replacement (equivalently, M (ℓ)
t ∼ Bernoulli(pℓ) with

pℓ = mℓ/(dℓdℓ−1) and conditioning on the exact count). The layer update is restricted to the masked

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

LM PEFT #TTPs CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg.

R
oberta

B
ase

FT 124.6M 59.90 92.64 85.22/87.85 89.98/90.63 90.25/86.59 86.17 90.71 72.70 84.80
AdapterS 7.41M 61.08 93.64 89.82/91.13 89.94/89.78 90.02/87.38 86.71 92.20 73.98 85.97
Prompt tuning 0.61M 49.47 92.14 70.54/81.46 81.97/83.39 83.04/78.22 81.06 79.99 57.90 76.29
Prefix-tuning 0.96M 59.63 93.63 84.20/85.33 88.44/88.51 88.01/84.15 85.36 90.86 54.77 82.08
(IA)3 0.66M 58.42 93.96 83.10/85.18 90.08/90.15 87.85/84.16 84.12 90.66 70.89 83.51
BitFit 0.083M 60.17 91.35 87.34/88.72 90.38/90.34 87.12/83.99 84.48 90.84 78.07 84.91
RoCoFT 0.249M 62.10 93.89 87.89/89.96 90.17/90.27 89.85/86.27 85.31 91.69 76.73 85.83
LoRA 0.89M 60.28 93.02 86.20/88.32 90.60/90.54 89.09/84.97 86.05 92.10 74.62 85.07
AdaLoRA 1.03M 60.00 94.15 86.25/88.44 90.47/90.86 88.82/84.63 86.71 91.16 70.29 84.71
MAM Adapter 1.78M 58.35 93.98 87.23/88.51 91.04/90.60 88.40/82.93 87.02 90.04 72.83 84.63
PROPETL Adapter 1.87M 64.22 93.61 86.72/88.25 90.14/90.65 89.34/85.91 86.41 91.39 75.82 85.68
PROPETL Prefix 10.49M 60.52 93.29 87.09/87.81 90.54/90.19 88.22/85.06 85.79 91.19 63.16 83.90
PROPETL LoRA 1.77M 58.27 94.54 87.04/89.06 90.76/90.19 88.70/85.73 86.94 91.73 66.94 84.54
MoSLoRA 1.67M 60.79 93.73 86.51/87.80 90.45/89.39 89.16/86.12 87.39 90.12 75.13 85.14
LoRA-XS 0.26M 58.46 92.84 87.03/87.62 89.93/89.66 87.03/84.16 84.89 90.01 76.58 84.38
VeRA 0.043M 60.76 94.32 85.94/87.92 89.67/89.16 87.72/85.52 85.90 89.75 75.66 84.76
LoRAFA 0.44M 60.30 93.49 87.94/90.15 90.20/90.78 88.72/85.61 85.66 91.59 76.58 85.55
SFT 0.90M 63.99 94.63 87.61/89.13 89.20/88.97 86.87/84.75 86.75 91.84 77.95 85.61
Diff Pruning 1.24M 62.92 93.47 88.11/89.70 89.64/90.43 88.27/85.73 85.64 91.88 77.82 85.78

SliceFine-1R 0.083M 60.44 92.36 86.11/88.72 89.67/88.23 90.20/85.87 84.41 91.26 75.38 84.79
SliceFine-1C 0.083M 60.07 92.54 86.46/88.50 88.94/88.94 88.64/85.05 85.87 90.66 75.64 84.66
SliceFine-1RC 0.083M 62.56 92.77 87.92/88.83 89.56/88.59 88.66/85.14 85.86 90.37 76.06 85.12
SliceFine-5R 0.415M 62.15 94.87 88.08/88.88 90.89/90.64 89.58/86.26 86.48 92.39 77.91 86.19
SliceFine-5C 0.415M 62.64 94.53 88.23/88.44 90.85/90.91 89.63/87.03 86.33 92.01 77.13 86.16
SliceFine-5RC 0.415M 62.84 94.81 88.89/89.00 91.51/90.77 89.76/86.28 86.77 91.41 77.76 86.35

Table 7: RoBERTa-base on GLUE. CoLA uses MCC; SST-2 accuracy; MRPC/QQP accuracy/F1;
STS-B Pearson/Spearman; MNLI/QNLI/RTE accuracy.

LM # TTPs CoLA SST2 MRPC STS-B QQP MNLI QNLI RTE
RobertaBase 12.4M 63.81 94.85 88.66/90.77 90.81/89.85 88.99/87.31 87.44 92.92 79.62
RobertaLarge 35.5M 65.70 96.11 90.72/91.88 91.79/92.48 91.18/86.36 90.58 95.44 88.29

Table 8: GLUE results with unstructured random masks on RoBERTa. Each layer updates a random
10% of weights per matrix (same #TTPs across tasks). Paired scores follow GLUE conventions
(task-specific metrics; e.g., MRPC: F1/Acc, STS-B: Spearman/Pearson). Random selection attains
strong accuracy without structural slices.

entries,
W (ℓ) ←W (ℓ) − ηt

(
M

(ℓ)
t ⊙∇W (ℓ)L(θt)

)
,

and every N steps we resample a fresh mask M
(ℓ)
t+N with the same budget. Over K mask re-

freshes, the accumulated increment equals ∆W (ℓ) =
∑K

i=1 M
(ℓ)
ti ⊙ U

(ℓ)
ti , and the linearized effect

is fθ0+∆θ(x) ≈ fθ0(x) +
∑K

i=1 JM(ℓ)
ti

(x) vec(U
(ℓ)
ti). Under spectral balance, a uniformly sampled

mask has, in expectation, the same average overlap with the task subspace as any other subset of
the same size; consequently, the restricted gradient magnitude concentrates around a fraction of the
dense gradient (approximately scaling with the selection rate), and repeated resampling increases
the span of visited Jacobian directions.

Tables 8 and 9 evaluate this random–mask scheme at fixed budgets. On GLUE with RoBERTa
backbones, selecting 10% of weights per matrix as trainable achieves strong performance across
tasks (e.g., SST-2 94.85 for base, 96.11 for large; QNLI 92.92 / 95.44), comparable to structural
slices of similar #TTPs. On commonsense and mathematical reasoning with LLMs, training only
1% of weights per matrix still yields competitive accuracy across diverse datasets for BLOOMz-7B,
GPT-J-6B, and LLaMA2-7B/13B. These findings align with the local-winner view: when the back-

LLM # TTPs BoolQ PIQA SIQA H.Sw. W.Gra. ARCe ARCc OBQA M.Ar. G.8K A.S. S.eEq S.MP
BLOOMz7B 70.4M 65.44 74.98 73.81 56.01 72.48 73.16 56.62 72.77 79.55 70.73 71.04 71.22 54.59
GPT-J6B 60.3M 66.10 68.23 68.76 45.81 66.81 64.77 46.58 65.09 89.72 72.24 80.32 82.41 56.18
LLaMA27B 71.2M 69.74 79.85 77.61 89.13 76.75 76.23 60.83 77.36 90.08 76.92 85.89 82.23 60.49
LLaMA213B 129.8M 71.08 83.12 79.70 91.59 82.86 84.20 67.25 81.01 91.22 79.61 87.48 87.34 66.57

Table 9: Commonsense and math reasoning with unstructured random masks on LLMs. Only 1% of
weights per matrix are trainable (#TTPs shown). Despite the small budget, random selection yields
competitive accuracy across BLOOMz-7B, GPT-J-6B, and LLaMA2-7B/13B.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

bone retains high task energy, many small subsets—structured or unstructured—can drive effective
adaptation.

Despite similar accuracy at matched #TTPs, unstructured masks are less hardware–efficient. Struc-
tural slices (vertical or horizontal) update contiguous blocks, avoid storing full binary masks, enable
fused GEMM fragments, and keep optimizer state compact and cache–friendly. In contrast, random
masks require maintaining and applying binary selectors, induce scattered memory access, and ex-
pand optimizer state over irregular indices. In our training logs, this manifests as higher wall–clock
time and memory overhead for the same parameter budget. For deployment and large–scale runs,
structural slices therefore remain preferred: they preserve the accuracy of random selection while
being simpler and faster to execute.

L IMPLEMENTATION DETAILS

We instantiate the theoretical recipe (§2.5, Corollary 2.6, Lemma D.1) with a light wrapper
SliceLinear around each selected nn.Linear (Listings 1). For a layer W (ℓ) ∈ Rdℓ×dℓ−1 , a slice
of rank r is a contiguous block of either r rows or r columns . At training step t, a binary mask
Mℓ(t) marks the active block; only those entries have requires_grad=True and receive an incre-
ment U (ℓ)

t supported on Mℓ(t), while all other entries remain frozen at their pretrained values (plus
any increments learned when they were active earlier). The mask moves every N steps accord-
ing to a deterministic sweep (index-0 start, stride r) or a randomized policy, generating a sequence
{Mℓ,i}Ki=1 over K distinct positions. In the linearized view used in the theory, the accumulated
update after visiting K positions acts like block coordinate descent on the Jacobian blocks {JMℓ,i

};
when their span reaches the task dimension (Corollary 2.6), the method attains the global-ticket
behavior predicted by the theory.

Practically, Listing 1 partitions W into (part_A,part_T,part_B) where only part_T (the active
slice) is trainable. For column (column) slices, we split along the input feature axis; for row slices,
along the output axis. The forward pass composes three F.linear calls to reconstruct Wx+b ex-
actly. Because only part_T has requires_grad=True, autograd accumulates gradients and opti-
mizer state only for the active slice.

The next position is an r-stride shift with wrap-around (training pseudocode 1). The interval N
controls the adaptation–coverage trade-off: smaller N increases coverage of {Mℓ,i} (diversity of
JMℓ,i

) but gives each slice fewer consecutive updates; larger N deepens per-slice adaptation but
delays coverage. Our ablations find broad, task-dependent sweet spots (e.g., N ∈ [100, 500] for
STS-B/QNLI and N ∈ [500, 1500] for MRPC/SST-2), consistent with the theory that each visited
slice contributes additional task-aligned directions until the combined span reaches ktask(τ).

Rank r sets capacity. By Corollary 2.6, choose r ≥ ktask(τ) estimated once from frozen features
on a small calibration set; familiar domains (high CEV) often admit r=1, while unfamiliar domains
benefit from modestly larger r. Spectral balance implies robustness to position, so a deterministic
sweep from index-0 is sufficient and easy to track; purely random placements behave comparably
(Appendix K). row, column, or alternating patterns all satisfy the same guarantees as long as the
chosen r meets the rank criterion.

The forward computes the exact Wx+b in three chunks; FLOPs are essentially those of the original
layer, as in most PEFT methods. The savings arise in (i) backward: gradients are formed only for the
active block (cost proportional to the slice), and (ii) optimizer/memory: state scales with the number
of trainable entries (O(dℓr) for row or O(dℓ−1r) for column), with #APs= 0. Mixed precision
(BF16) and per-parameter weight decay can be applied only to trainable entries. We keep biases and
LayerNorm parameters frozen by default; enabling them is straightforward but not required by the
theory.

For row+column(RC) mode, we alternate slice orientation across training blocks: during the first
block of N steps we train a row slice (contiguous rows) of rank rv in each selected layer; during the
next block we train a column slice (contiguous columns) of rank rh, and repeat. Denote the masks
by M

(ℓ)
vert(t) and M

(ℓ)
horiz(t). Within each block we advance the slice position by a stride equal to its

rank (wrap–around), i.e., a cyclic sweep over admissible positions for the current orientation. This
alternation exposes complementary Jacobian blocks—row–oriented and column–oriented—so the

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

accumulated span span{J
M

(ℓ)
vert

, J
M

(ℓ)
horiz

} grows toward the task subspace faster than using a single
orientation, consistent with spectral balance and the global–ticket view. A practical rule is to pick
ranks so that within one or two alternations the combined capacity meets the rank criterion,

rv + rh ≥ ktask(τ),

while keeping the same switching interval N . The per–block costs are O(dℓrv) for row blocks and
O(dℓ−1rh) for column blocks, with zero auxiliary parameters.

Listing 1: API sketch (pytorch-style) for SliceFine
class SliceLinear(nn.Module):

... (ctor as given)
def reinit_from_full(self , W_full: torch.Tensor , position: int):

clamp position
if self.mode == "column":

C = W_full.shape [1]; position = min(position , C - self.rank)
self.part_A = nn.Parameter(W_full[:, :position],

requires_grad=False)
self.part_T = nn.Parameter(W_full[:, position:position+self.

rank], requires_grad=True)
self.part_B = nn.Parameter(W_full[:, position+self.rank:],

requires_grad=False)
self.a_end , self.t_end = position , position + self.rank

else: # row
R = W_full.shape [0]; position = min(position , R - self.rank)
self.part_A = nn.Parameter(W_full [:position , :],

requires_grad=False)
self.part_T = nn.Parameter(W_full[position:position+self.rank

, :], requires_grad=True)
self.part_B = nn.Parameter(W_full[position+self.rank:, :],

requires_grad=False)
def forward(self , x):

if self.mode == "column":
compute three partial linears , then add bias once
y = (F.linear(x[..., :self.a_end], self.part_A) +

F.linear(x[..., self.a_end:self.t_end], self.part_T) +
F.linear(x[..., self.t_end:], self.part_B))

return y + (self.bias if self.bias is not None else 0.0)
else: # row

y = torch.cat([F.linear(x, self.part_A),
F.linear(x, self.part_T),
F.linear(x, self.part_B)], dim=-1)

return y + (self.bias if self.bias is not None else 0.0)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Algorithm 1 SliceFine: PEFT with Dynamic Slices

Require: Pretrained backbone θ0; selected layers L; replace all W (l), l ∈ L with r rank SliceLin-
ear 1 ; switching interval N ; steps T ; loss L

1: Initialize θ ← θ0; for each ℓ ∈ L choose an initial slice mask M (ℓ)(0) (row or column, width r)
2: Initialize slice increments ∆W (ℓ) ← 0 for all ℓ
3: for t = 1, . . . , T do
4: Forward: For each ℓ ∈ L, use

W (ℓ) = W
(ℓ)
0 + M (ℓ)(t)⊙ U (ℓ)(t)

with U (ℓ)(t) supported only on the active slice; compute prediction fθ(xt)
5: Loss/Grad: g ← ∇θL(fθ(xt), yt); restrict to slice coords:

g
(ℓ)
slice = M (ℓ)(t)⊙∇W (ℓ)L

6: Update active slice: U (ℓ)(t+1)← U (ℓ)(t)− η g
(ℓ)
slice ∀ℓ ∈ L

7: if t mod N = 0 then ▷ commit & move slice
8: for ℓ ∈ L do
9: Commit: ∆W (ℓ) ← ∆W (ℓ) +M (ℓ)(t)⊙ U (ℓ)(t+1)

10: Reset slice buffer: U (ℓ)(t+1)← 0

11: Freeze committed weights: W (ℓ)
0 ←W

(ℓ)
0 +M (ℓ)(t)⊙∆W (ℓ)

12: Move slice: choose next mask M (ℓ)(t+1) (cyclic shift or random)
13: end for
14: else
15: Keep masks: M (ℓ)(t+1)←M (ℓ)(t)
16: end if
17: end for
18: Output: Fine-tuned weights W (ℓ)

0 +∆W (ℓ) with committed slice updates

34

	Introduction
	Winner Slices in Pretrained Networks
	SliceFine: Slice as Efficient Fine-tuning
	Experiments
	Related Work
	Conclusion
	Proof of Theorem Universal Winning Ticket
	PCA Decomposition of the Representation/Linearized NTK Kernel)
	Rank, NTK, and PCA
	PCA cumulative explained variance (CEV) Analysis
	Prediction shift via Kullback–Leibler divergence
	Layer-wise representation change via centered kernel alignment (CKA)

	Backbone Dependence
	Backbone pruning
	Slice re-initialization

	Ablation Study
	Rank vs Winner
	Slice Update Interval
	What is the optimal slice rank r?
	Slice position: static vs. dynamic

	Baselines
	Dataset Details
	Models
	Hyperparameter
	Detailed Results
	Random Mask
	Implementation Details

