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ABSTRACT

The evaluation of natural language processing (NLP) systems is crucial for advanc-
ing the field, but current benchmarking approaches often assume that all systems
have scores available for all tasks, which is not always practical. In reality, several
factors such as the cost of running baseline, private systems, computational lim-
itations, or incomplete data may prevent some systems from being evaluated on
entire tasks. This paper formalize an existing problem in NLP research: bench-
marking when some systems scores are missing on the task, and proposes a novel
approach to address it. Our method utilizes a compatible partial ranking approach
to impute missing data, which is then aggregated using the Borda count method. It
includes two refinements designed specifically for scenarios where either task-level
or instance-level scores are available. We also introduce an extended benchmark,
which contains over 131 million scores, an order of magnitude larger than existing
benchmarks. We validate our methods and demonstrate their effectiveness in ad-
dressing the challenge of missing system evaluation on an entire task. This work
highlights the need for more comprehensive benchmarking approaches that can
handle real-world scenarios where not all systems are evaluated on the entire task.

1 INTRODUCTION

Benchmarking and system evaluation are critical processes for assessing the performance of AI
systems, providing a standardized means of comparing various models and techniques while keeping
track of technological advancements (Ruder, 2021; Dehghani et al., 2021; Post, 2018). However,
evaluating general-purpose systems, such as foundation models used for generative tasks (Lehman
et al., 2023; Koco et al., 2023b; OpenAI, 2023; Brown et al., 2020; Raffel et al., 2020), presents
unique challenges. A single task, metric, or dataset may not be sufficient to effectively gauge their
capabilities (Herbrich et al., 2006; Novikova et al., 2018; Sedoc & Ungar, 2020). Therefore, it is
crucial to develop tools that can benchmark these systems on a multitude of tasks (Aribandi et al.,
2021), enabling a comprehensive assessment of their overall performance (Peyrard et al., 2021).

In recent years, the field of natural language processing (NLP) has made significant strides, with
frequent emergence of new models (Lehman et al., 2023; Koco et al., 2023a; Brown et al., 2020;
OpenAI, 2023; Raffel et al., 2020; Liu et al., 2019; Fan et al., 2021) and techniques (Bommasani
et al., 2021; Hupkes et al., 2022). To evaluate the performance of these systems across various
tasks, datasets, and metrics (Colombo et al., 2022c) have been created. However, with the increasing
complexity of these benchmarks, missing scores has become a significant challenge. Missing data
can arise from a variety of sources, such as benchmarks that are too large or time-consuming to run
(e.g., BigBench has recently introduced MiniBench for these reasons (Srivastava et al., 2022)), high
costs associated with reproducing experiments (e.g., see Table 3 in Artetxe et al. (2022)), incomplete
datasets (see Table 5 in Reid & Artetxe (2022)), data collection errors, data cleaning procedures,
data privacy concerns (particularly in-house datasets (Guibon et al., 2021)), and specialized expertise
required to process niche datasets (Peng et al., 2019). In recent work, two main approaches have been
followed to deal with missing scores, which are discarding data (Pfeiffer et al., 2022) or ignoring
certain tasks (see Table 10 in Lin et al. (2022) and Table 5 in Martin et al. (2020)) or evaluations.
However, these approaches are unsatisfactory as they can lead to biased and unreliable evaluations.
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In this work, we aim to address the challenge of benchmarking NLP systems when one or several
systems cannot be evaluated on a specific task. We propose the development of effective methods for
aggregating metrics that can handle missing data and enable a comprehensive assessment of system
performance. Our approach will ensure the reliability and validity of NLP system evaluations and
contribute to the creation of benchmarks that can be used to compare and evaluate NLP systems
effectively. Specifically, our contributions are listed below.

1. Introducing a new problem with a direct impact on NLP research: benchmarking when there
are missing system evaluations for an entire task, which has practical implications (Pfeiffer et al.,
2022; Lin et al., 2022; Martin et al., 2020; Guibon et al., 2021; Peng et al., 2019).
2. A novel method for benchmarking NLP systems with missing system scores. We present a
novel method that effectively tackles the issue of missing system evaluations for entire tasks. Our
work includes a novel combinatorial approach for imputing missing data in partial rankings. It allows
using standard rank aggregation algorithms such as Borda and offers two refinements tailored to the
availability of either task-level or instance-level scores of the systems across different tasks.
3. An extended benchmark for a comprehensive and accurate evaluation of NLP systems:
previous works on score aggregation relied on a benchmark of 250K scores (Colombo et al., 2022b;
Peyrard et al., 2021), and did not release the system’s input, output, and ground truth texts. In our
work, we collected their scores and extended the benchmark by adding over 131M scores.
4. Extensive validation of benchmarking methods: Results show that our method effectively
handles missing scores and is more robust than existing methods, affecting final conclusions.

2 PROBLEM FORMULATION AND STATE OF THE ART

2.1 GENERAL CONSIDERATIONS

Comparing systems with benchmarks.
Benchmarking aims to determine the ranking
of systems based on their scores to identify
the best-performing systems. In this process,
each system is evaluated on individual tests
within a larger set and assigned a score ac-
cording to a specific metric. Depending on
the available information, two approaches are
typically employed. When only task-level in-
formation is available (i.e., the system scores
on each task), a task-level aggregation is
utilized to obtain the final ranking. On the
other hand, when instance-level information
is available, i.e., the system scores on each in-
stance of each task test set, an instance-level
aggregation method is used to obtain the fi-
nal system ranking. The mean aggregation
has been adopted to consolidate information
at both the instance and task levels.
Benchmarking in the presence of missing
data. As benchmarks and models continue to
grow in size and complexity, the occurrence
of missing system performance of entire tasks
becomes increasingly common. This is par-
ticularly true in situations where one or more
systems cannot be evaluated on a specific task
due to factors such as the high cost of run-
ning the model or the extensive computational
requirements of the benchmarks (Gehrmann
et al., 2022a; 2021; 2022b). Fig. 1 illustrates
the general framework (i.e., with instance and
system level).
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Figure 1: Framework for benchmarking NLP
systems with two information granularity:
instance-level (red above) and task-level (purple
below). The final goal of benchmarking is to pro-
duce a ranking (green bottom). The instance-level
aggregation allows for the derivation of task-level
information, which is used to synthesize system
performance via the final ranking (in green). X
indicates the presence of missing values.
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2.2 PROBLEM FORMULATION

This discussion will use notation similar to that in the previously mentioned work (Colombo et al.,
2022b). In essence, we are dealing with a scenario where N systems are being compared based
on their performance on T different tasks. Each task t ∈ {1, . . . , T} has a specific metric mt

associated with it and has been evaluated on k test instances with k ∈ {1, . . . ,Kt}, where Kt is
the test size of task t. The score of each system on each instance of each test set is represented by
the real number sn,t,k ∈ R. The final goal of benchmarking is to output a ranking of each system
according to some objective criterion. We denote by SN the symmetric group on N elements. With
this objective in mind aggregating instance and task level information is equivalent to computing
a permutation σ ∈ SN corresponding to the final ranking of the N systems. In this formalism,
system i is the σi-th best system according to the considered aggregation. Equivalently, ordering
π = (π1 � π2 � . . . � πN ) denotes that πi is better than system πi+1 for all i. Let us first define the
different granularity of benchmarking depending on whether we have access to instance scores.

Aggregating with Missing Task Level Information. Given a set of scores (sn,t, 1 ≤ n ≤ Nt, 1 ≤
t ≤ T ) where Nt is the number of systems for which we have access to the score on task t, find a
proper aggregation procedure.

Thus the problem of task-level information aggregation boils down to finding fT :

fT : SN1
× · · · × SNT︸ ︷︷ ︸
T times

−→ SN . (1)

where SNt
= (sn,t, 1 ≤ n ≤ Nt) is the set of scores achieved by each system evaluated on the task t.

Note that only Nt systems are evaluated on task t.

In many cases, we not only have access to task-level performance but also individual instance-level
scores. As a result, the challenge lies in effectively aggregating information at the instance level.

Aggregating Missing Instance Level Information. Given a set of scores (sn,t,k, 1 ≤ n ≤ Nt, 1 ≤
t ≤ T, 1 ≤ k ≤ Kt) where similarly as previously Nt is the number of systems for which we have
access to the score on task t, find a proper aggregation procedure.

Thus the problem of instance-level information aggregation boils down to finding f I :

f I : S1N1
× · · · × SK1

N1
× · · · × SkNt

× · · · × S1NT
× · · · SKT

NT︸ ︷︷ ︸
T

∑
t
Kt times

−→ SN . (2)

where SkNi
= (sn,t,k, 1 ≤ n ≤ Ni) is the set of the score achieved by each system evaluated on the

task t for the specific instance k.

Remark 1. In the context of complete ranking, which is also a classical setting for benchmarking
NLP systems and has been addressed in Colombo et al. (2022b), we have Nt = N for all t ∈ [1, T ].

2.3 HANDLING COMPLETE SCORES IN NLP SYSTEM EVALUATION

The literature relies on two main techniques for aggregating score information to benchmark machine
learning systems: mean aggregation and ranking-based aggregation.

Mean aggregation (σµ) is the default choice for practitioners. At the task level σµ is de-

fined as σµ = argsort

(
argsort

[
1
T

∑
1≤t≤T

sn,t for 1 ≤ n ≤ N

])
and at the instance level

σµ = argsort

(
argsort

[
1
T

∑
1≤t≤T

1
Kt

∑
1≤t≤Kt

sn,t,k for 1 ≤ n ≤ N

])
, where argsort(u) is the

permutation that sorts the items in u. However, this approach has its limitations, particularly when
evaluating tasks of different natures or using evaluation scores that are not on the same scale. Indeed
in NLP, metrics can have different ranges (or even be unbounded) and systems are evaluated based on
diverse criteria such as quality, speed, or number of parameters. In such cases, conventional rescaling
or normalization techniques may not sufficiently capture the inherent difficulty of each task.
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Ranking Based Aggregation To address the challenges mentioned, researchers have proposed
ranking-based aggregations (Peyrard et al., 2021; Colombo et al., 2022b). These methods aggregate
rankings instead of scores. In Colombo et al. (2022b), the authors tackle the problem of generating a
ranking by aggregating rankings, utilizing the Borda count method (see Ssec. E.1 for more details on
Borda Count) known for its computational properties (Bartholdi et al., 1989; Dwork et al., 2001; Ali
& Meilă, 2012). Extending the Borda count method is not a straightforward task either. In the next
section, we present our aggregation procedure that can handle missing system scores on a whole task.

3 RANKING WITH MISSING SYSTEM EVALUATION

In this section, we will outline our methodology for ranking multiple systems in multi-task bench-
marks, even if some systems have not been evaluated on one or more tasks. We use the ranking and
ordering notation interchangeably.

3.1 PARTIAL RANKINGS

Mapping Scores to Partial Rankings To address the challenge of benchmarking with missing
system evaluations, we propose a ranking-based approach that focuses on aggregating rankings rather
than directly combining scores. Suppose we have a specific task t with a task-level score denoted as
SNt

, or in the case of instance-level information, a task t and instance k with score Sk
Nt

. In scenarios
where there are missing evaluations at the task-level or instance-level, a partial ranking of systems is
generated. A partial ordering represents an incomplete ranking that includes only a subset of items
from a larger set. We denote the partial ordering of systems as πNt = (π1 � π2 � . . . � πNt) for the
task-level scenario, and as πNt,k = (πk

1 � πk
2 � . . . � πk

Nt
) for the instance-level scenario. Here, πi

represents the i-th best system according to the set SNt
in the task-level scenario, while πk

i represents
the i-th best system according to πk in the instance-level scenario.

Compatible Permutation When working with partial rankings, it is necessary to construct a complete
ranking that respects the order of the evaluated systems, i.e., a linear extension of the partial ranking.
This is accomplished by creating a compatible permutation (Gessel & Zhuang, 2018), which is a
permutation of all systems consistent with the partial ranking. To construct a compatible permutation,
we begin with the partial ranking of the evaluated systems and extend it to include the missing systems
while maintaining the order of the evaluated systems. For example, let’s consider a partial ordering
π1 � π2 based on the evaluation of only these two systems. If there is an additional system that has
not been evaluated, we can construct three compatible permutations: π3 � π1 � π2, π1 � π3 � π2

and π1 � π2 � π3. These permutations ensure that the ordering of the evaluated systems is preserved
while incorporating the missing system into the complete ranking.

Why use a combinatorial approach? imputing missing data using compatible permutations enables
us to leverage the Borda aggregation, inheriting its theoretical and practical advantages. Unlike
classical methods like harmonic Fourier analysis (Kondor & Barbosa, 2010; Kondor & Dempsey,
2012; Clémençon et al., 2011) or multi-resolution analysis (Sibony et al., 2015), our approach works,
providing a distinct combinatorial solution for imputing missing data in partial rankings.

3.2 OUR RANKING PROCEDURES: FROM SCORES TO SYSTEM RANKING

In summary, our method can be described in two steps:

Our ranking procedure in a nutshell

1. Matrix Representation of the rankings (Sssec. 3.2.1). To harness the full potential of the
available information in partial rankings, we efficiently generate all compatible permutations
from the given partial rankings.
2. Final System Ranking from Matrix Representation. To obtain the final ranking of
the systems, we propose a one-level (σl) approach (see Sssec. 3.2.2) for both task-level
and instance-level information and a two-level aggregation approach (σ2l) for instance-level
information (see Sssec. 3.2.3).
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3.2.1 MATRIX REPRESENTATION OF THE RANKINGS

Intuition. The first step in our algorithm is to summarize the available information in all tasks and to
impute the missing information in a consistent manner. To do this, we use a matrix representation Mπ

for each partial ranking π. This matrix decomposes the ranking information in pairwise variables, i.e.,
for every pair of systems i, j there is a variable representing the probability that system i outperforms
system j.

Why using matrix representation? Using pairwise information has many advantages in ranking
problems with missing data since it allows decomposing the total ranking information in N(N −1)/2
different variables. This decomposition has been used in statistical problems on partial and complete
rankings (Fürnkranz & Hüllermeier, 2003; Lu & Boutilier, 2014a;b; Shah et al., 2017), for computing
distances among partial rankings (Fagin et al., 2003), clustering (Ailon, 2010) and classification
(Hüllermeier et al., 2008) among others. However, these problems consider specific forms of missing
data such as top-k rankings (Fagin et al., 2003) or bucket orderings (Achab et al., 2019). Our approach
differs from the aforementioned literature in the fact that we impute the missing data in a consistent
manner in order to be able to deal with arbitrary missing data.

Efficiently building Mπ . Let us consider a partial ranking π and let Mπ ∈ [0, 1]N×N be its matrix
representation. Matrix Mπ

ij denotes the proportion of complete rankings that are compatible with
π and satisfy the condition i � j, where i and j are distinct systems in the task. Formally, we can
distinguish three cases:

1. if system i is directly compared to system j in π. In this case, we set Mπ
i,j = 0 if i �

j else Mπ
i,j = 1

2. if no information is provided for either system i or system j in π, meaning that both systems are
unobserved in the partial ranking. In this case, Mπ

i,j = 0.5, which is the natural choice when no
information is available.

3. if we lack direct information about the comparison between system i and j in π (one system was
evaluated and the was not), we represent this situation by setting the corresponding matrix entry to
the proportion of compatible permutations ranking system i higher than system j among the total
number of compatible permutations (see Ap. E).

A naive algorithm for generating the matrix Mπ from π would have factorial complexity and it
is thus exorbitant in practice for a relatively small number of systems, say N > 10. One of the
contributions of our solution is to reduce the complexity to O(n3) by efficiently computing Mπ

i,j .
The closed-form expressions for Mπ

i,j as well as the proof for uniformity can be found in Ap. E.

3.2.2 SYSTEM RANKING FROM MATRIX REPRESENTATION: A ONE LEVEL APPROACH (σl)

Intuition. At this stage, we have demonstrated the construction of a matrix Mπ for a given partial
ranking. However, in benchmarking scenarios, systems are typically evaluated on multiple tasks (in
the case of task-level evaluation) or on multiple instances and tasks (in the case of instance-level
evaluation). Consequently, it becomes necessary to combine multiple partial rankings. In this section,
we will describe our approach for performing the one-level aggregation to address this requirement.

Combining Multiple Partial Rankings for Benchmarking. To combine the different matrices
into a single matrix M we sum over all the tasks (in the case of task-level information) or instances
and tasks (in the case of instance-level information). Formally, this is achieved by performing the
following operation to obtain the combined matrix M I =

∑
t∈[1,T ]

∑
k∈[1,Kt]

Mπrt,k , where Mπrt,k

represents the partial ranking induced on task t and instance k. Similarly, for the task level we define
MT =

∑
t∈[1,T ]

Mπrt where Mπrt represents the partial ranking induced on task t.

Obtaining the final system ranking In the final step, our goal is to obtain the final system ranking
σl based on the matrix M I or MT . To achieve this, we use the Borda Count method, which involves
computing the column-wise sum of the matrix and return the permutation that sorts the scores in
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increasing order. This step aligns with the approach proposed in Colombo et al. (2022b). Formally:

σl = argsort

(
argsort

[∑
i

Mi,0, · · · ,
∑
i

Mi,N

])
. (3)

Here, M represents the matrix MT for task-level information, and M I for instance-level information.

3.2.3 SYSTEM RANKING FROM MATRIX REPRESENTATION: A TWO-LEVEL APPROACH (σ2l)

Intuition. In the case of instance-level information, we also present a two-step procedure that draws
inspiration from the widely adopted two-step mean aggregation approach.

Procedure. In the first step, we apply the task-level aggregation approach to generate individual
rankings for each task t, resulting in T different permutations. In the second step, we aggregate these
multiple rankings using the Borda aggregation method. Formally σ2l can be computed as:

1. For each task t, compute M t =
∑

k∈[1,Kt]

Mπrt,k

2. For each task t, compute σ2l,t = argsort

(
argsort

[∑
i

M t
i,0, · · · ,

∑
i

M t
i,N

])
.

3. Compute the Borda count aggregation σ2l of [σ2l,1, · · · , σ2l,t, · · · , σ2l,T ].(Colombo et al., 2022a)

3.3 CONFIDENCE INTERVALS FOR σl

When evaluating systems with missing data, it is crucial to measure the uncertainty of partial rankings.
In the previous section, we discussed combining partial rankings into a complete ranking. In this
section, we analyze the confidence of our data regarding pairwise comparisons of system performance.

Under any ranking model such as Mallows Model (Fligner & Verducci, 1986) or Plackett-Luce
(Plackett, 1975), Mπ

ij are random variables of known expected value. What we compute in the
previous section is the empirical value of it, M̂π

ij that approximates the true value Mπ
ij . Here,

we want to know how close these two quantities are. Formally, we are looking for a confidence
interval of level δ, that is the value for cij around M̂π

ij that contains Mπ
ij with high probability,

P (|M̂π
ij −Mπ

ij | ≥ cij) ≤ 1 − δ. Noting that 0 ≤ Mπ
ij ≤ 1, we can use the Hoeffding inequality

(Hoeffding, 1994) to compute the value of the confidence interval:

cij =

√
− log δ

2zij
, (4)

where zij is the number of times the systems have been compared.

Intuition: to determine the significance of the difference in performance between system i and j,
we can compare Mij to 0.5. Thus, i performs better than j iff Mπ

ij > .5. If the difference between
Mij and 0.5 is small, the performance difference between the two systems may not be statistically
significant, indicating that we cannot determine which system performs better than the other.

The confidence interval developed above says that the true parameter Mπ
ij is included in the interval

[M̂π
ij − cij , M̂

π
ij + cij ] with high probability. It follows that if 0.5 is not in this interval then we can

say that one of the systems is better than the other with a high probability. Similar approaches have
been proposed to find complete rankings and best-ranked systems with high probability (Busa-Fekete
et al., 2014; Szörényi et al., 2015).

3.4 BASELINE METHODS

To date, there is no established method for benchmarking NLP systems in the presence of missing
data. To compare our proposed algorithm to existing methods, we consider a baseline approach that
ignores missing data and relies on mean aggregation. This approach has been used in previous studies
(Pfeiffer et al., 2022; Lin et al., 2022; Martin et al., 2020; Guibon et al., 2021; Peng et al., 2019), and
we will refer to it as σµ in our experiments.
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(a) GLUE (b) SGLUE (c) XTREME

Figure 2: Task-Level Robustness Experiment. We compare the
robustness of our method σl with the mean aggregation method
σµ by measuring the Kendall τ correlation coefficient between
their respective rankings after removing a proportion η of scores
and by considering the whole scores.

(a) Scaling.

Figure 3: Synthetic experiment.
Robustness for missing data (η)
and different scaling corruptions
(λ).

4 SYNTHETIC EXPERIMENTS

4.1 DATA GENERATION

The analysis of a toy experiment involves synthetic scores generated from N = 20 systems, T = 20
tasks, and K = 20 instances. Each system’s performance is modeled by a Gumbel random variable
Gn with a center at φ × n and a scale of β = 1, where φ is a dispersion parameter between 0 and
1. The scores of each system, s (n, t, k), are independent and identically distributed samples of Gn

centered at φ× n with a scale of β = 1. Furthermore, the scores from different systems are sampled
independently. Since the difference between Gn+1 and Gn follows a logistic distribution with a
mean of φ and a scale of 1, the probability that system n+ 1 performs better than system n is at least
0.5, i.e., P (Gn+1 −Gn > 0) ≥ 0.5. Thus, the ranking of systems for all k and t is a realization
of the true ranking [1, · · · , N ], with a noise term controlled by the dispersion parameter φ. The
extreme scenarios are φ = 0 and φ = 1, where φ = 0 means that all scores s (n, t, k) have the same
distribution and φ = 1 results in a strong consensus and a clear system ranking. Unless specifically
mentioned, each experiment is repeated 100 times for every data point.

4.2 ROBUSTNESS TO SCALING

In order to conduct a more detailed comparison of the ranking, we introduce a corruption in the scores
of a specific task by rescaling them with a positive factor of λ. For this experiment, the corrupted
tasks are randomly chosen. Although this corruption does not have any impact on our ranking process
(since the ranking induced by a task-instance pair remains unchanged), it progressively disrupts
the mean aggregation procedure as the value of λ increases (see Fig. 3 for detailed results). This
experiment further validates the use of rankings in NLP benchmarking, as these metrics involve
different natures of measurements (e.g., BLEU score vs. number of parameters or speed) and can
have bounded or unbounded scales.

4.3 PAIRWISE CONFIDENCE ANALYSIS

To determine the number of system comparisons required to
achieve a desired confidence level of δ, we use Eq. 4. Fig. 4
presents the results for two confidence levels (δ). The graph illus-
trates the number of system pairs for which 0.5 is not within the
confidence interval, plotted against the number of comparisons
for different values of m and φ. As expected, when the rankings
are more concentrated (i.e., when φ is closer to 1), fewer system
comparisons are needed to achieve a high number of valid system
comparisons. In real-world benchmarks, test sets usually contain
more than 500 pairs.
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Figure 4: Confidence analysis.

5 EMPIRICAL EXPERIMENTS

In this section, we benchmark our methods on real rankings. We introduce a dataset with over 100
million scores, surpassing previous datasets by several orders of magnitude (see Ssec. 5.1 and Ap. C).
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(a) Dial. PC (b) Flickr (c) COCO (d) TAC09 (e) SummEval

Figure 5: Instance-Level Robustness Experiment. We evaluate the robustness of our proposed
aggregation methods, namely σ2l, σl, and the mean aggregation method σµ, by randomly removing a
proportion η of all instances on a specific task for a specific system.

5.1 A COMPREHENSIVE COLLECTION OF NLP SYSTEM SCORES

Our dataset builds upon the one used in Colombo et al. (2022b) and includes two types of datasets:
those with task-level information and those with instance-level information.

Datasets with Task Level Information Our datasets are based on GLUE (Wang et al., 2018), SGLUE
(Wang et al., 2019), and XTREME (Hu et al., 2020), which include tasks of varying natures such as
accuracy, F1-score, and mean square errors. In addition, we collected data from the GEM Benchmark
(Gehrmann et al., 2021), which was an ideal use case for our methods as it encompasses missing
data by design (as shown in Table 3 of Gehrmann et al. (2021)) and includes evaluations of various
natures such as lexical similarity, semantic equivalence, faithfulness evaluation, diversity, and system
characterization (i.e., size of the vocabulary).

Datasets with Instance Level Information We did not use the data from Peyrard et al. (2021) for
the datasets with instance-level information because they did not provide the sentence and reference
test required to add more evaluation metrics or more systems. Therefore, we collected all the data
from scratch and extended the dataset in two ways. Firstly, we collected data from five distinct tasks
- dialogue (Mehri & Eskenazi, 2020), image description (Young et al., 2014), summary evaluation
(Dang et al., 2008; Owczarzak & Dang, 2011; Bhandari et al., 2020; Fabbri et al., 2021), data-to-text
(Gardent et al., 2017; Zhou & Lampouras, 2020), and translation (Ranasinghe et al., 2021). For the
translation part, we added datasets from WMT15 (Stanojević et al., 2015), WMT16 (Bojar et al.,
2016), WMT17 (Bojar et al., 2017), WMT18 (rej Bojar et al., 2018), WMT19 (Barrault et al., 2019),
WMT20 (Loïc et al., 2020), and WMT21 (Farhad et al., 2021) in several languages such as en, ru,
ts, and others. Secondly, we expanded the set of used metrics from 10 to 17, including Rouge (Lin,
2004), JS (Lin et al., 2006), Bleu (Papineni et al., 2002), Chrfpp (Popović, 2017), BERTScore (Zhang
et al., 2019a), MoverScore (Zhao et al., 2019), Baryscore (Colombo et al., 2021b), DepthScore
(Staerman et al., 2021), Infolm (Colombo et al., 2021a), CharErrorRate (Morris et al., 2004a),
ExtendedEditDistance (Stanchev et al., 2019), MatchErrorRate, TranslationEditRate (Snover et al.,
2006), WordErrorRate (Ali & Renals, 2018), WordInfoLost (Morris et al., 2004b), Bleurt (Sellam
et al., 2020), and Comet (Rei et al., 2022; 2020). Overall, our benchmark grew from 250K scores to
over 131 M score. This extensive data work is one of the core contributions of this paper, and we
believe it will be valuable for future research.

5.2 TASK-LEVEL BENCHMARKING IN REAL-WORLD SCENARIOS

In this section, we explore aggregating missing data with task-level information. First, we test the
robustness of our proposed method (σl) against the mean aggregation method (σµ) and then we
quantify the difference between the two output rankings. σl is more robust than σµ. To compare the
effectiveness of aggregation methods in handling missing values on real data, we randomly remove a
proportion η of the task-level data and measure robustness by computing the Kendall τ between the
rankings of the systems obtained by considering the scores with and without missing values. From
Fig. 2, we observe two extreme cases: when no systems are removed (i.e., η = 0), the aggregation
methods output the same value as the one obtained with the full ranking and τ = 1. At the other
extreme, when all missing values are removed (i.e., η = 1), a total absence of correlation can be
observed. Overall, we find that σl achieves a higher correlation, with a large improvement of more
than 10 points compared to other methods These results demonstrate that, on average, the rankings
remain more stable when using our proposed method.

σl outputs a different ranking than σµ. We evaluated the correlation between different rankings
obtained in the robustness experiment depicted in Fig. 2. Specifically, we compared the rankings
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produced by σl and σµ by computing the averaged τ between the produced rankings when varying the
proportion of missing ranking. Results in Tab. 1 show a weak correlation between the two rankings,
indicating that they produce different rankings. This weak correlation is further supported by the

results presented in Tab. 2, which mea-
sures the percentage of times that the top
1 and top 3 rankings differ when consid-
ering the 2k rankings generated in the
robustness experiment. These results
demonstrate that in addition to being
more robust, our ranking procedure pro-
duces different conclusions when bench-
marking systems in the presence of miss-
ing tasks.

τσl↔σµ

GLUE 0.17 ±0.24

SGLUE 0.33 ±0.27

XTREM 0.26 ±0.26

GEM 0.36 ±0.36

Table 1: Agreement mea-
sured by Kendall τ corre-
lation.

Dataset top 1 top 3
GEM 0.52 0.25

SGLUE 0.20 0.15
GLUE 0.10 0.07

XTREM 0.19 0.09

Table 2: Percentage of times
the top 1 and top 3 systems are
the same between σl and σµ.

5.3 INSTANCE-LEVEL BENCHMARKING IN REAL-WORLD SCENARIOS

In this section, we evaluate the robustness of σ2l, σl, and the baseline σµ.

σ2l and σl are more robust than σµ. Similarly to the previous robustness experiment, we randomly
remove a proportion η of scores by discarding all instances of a specific task. The goal of this missing
value sampling is to simulate how missing scores may occur when certain systems are not evaluated
on specific tasks. For each method, Fig. 5 reports the τ correlation coefficient between the ranking
obtained with missing values and the ranking obtained with complete scores.

Both σ2l and σl produce highly cor-
related rankings, while being differ-
ent from σµ. We conducted a replica-
tion of the agreement analysis presented
in Ssec. 5.2 and present the findings in
Tab. 3 and Tab. 4. Our results align

Corr.
τσ2l↔σl 0.80 ±0.22

τσl↔σµ 0.20 ±0.28

τσµ↔σ2l 0.19 ±0.28

Table 3: Agreement.

Top 1 Top 3
σ2l vs σl 0.67 0.36
σl vs σµ 0.21 0.09
σµ vs σ2l 0.19 0.09

Table 4: Top 1 and 3 analysis.
with those of our previous experiments, demonstrating that both of our ranking-based procedures
(σ2l and σl) are more robust in the presence of missing data and yield different rankings than σµ.

5.4 STATISTICAL ANALYSIS

Confidence interval for practitioners. The confidence interval is valuable for
informing additional comparisons between systems i and j. A
narrow interval indicates a reliable comparison, while a wider
interval suggests more uncertainty and the need for additional
comparisons across tasks. For example, in Fig. 6, we report
the results of applying σl on WMT en-de with a confidence
level of δ = 0.1. Green value in position i < j illustrate
that system 0.5 6∈ [M̂π

ij − cij , M̂
π
ij + cij ] and i � j with high

probability. The scale of green displays the distance between
0.5 and the CI, so the greener the more i � j. The results reveal
distinct blocks where top systems (i.e., 9,1,16,15) significantly
outperform others with high confidence. Near the diagonal, the
elements indicate relatively closer performance of the systems.
These findings demonstrate that the confidence interval analysis
provides insights into the relative performance of systems.

Figure 6: Confidence interval analy-
sis on WMT en-de for a corruption
level of η = 0.2 and a confidence
level δ = 0.01. The final ranking
can be seen on the x-axis: left to
right is best to worst

6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

Our study sheds light on the limitations of the conventional mean-aggregation approach, particularly
when dealing with missing data. To address this issue, we propose a novel statistical perspective and
aggregation procedures that are both robust and grounded in social choice theory. We introduce two
alternative methods: the one-level aggregation method (σl) stands out as the most robust approach.
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Alnur Ali and Marina Meilă. Experiments with kemeny ranking: What works when? Mathematical
Social Sciences, 64(1):28–40, 2012.

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Huaixiu Steven Zheng, Sanket Vaibhav Mehta,
Honglei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo Ni, et al. Ext5: Towards extreme multi-task
scaling for transfer learning. arXiv preprint arXiv:2111.10952, 2021.

Mikel Artetxe and Holger Schwenk. Massively multilingual sentence embeddings for zero-shot
cross-lingual transfer and beyond. Transactions of the Association for Computational Linguistics,
7:597–610, 2019.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama. On the cross-lingual transferability of monolin-
gual representations. arXiv preprint arXiv:1910.11856, 2019.

Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri, Olatz Perez-de Viñaspre, and Aitor Soroa. Does
corpus quality really matter for low-resource languages? In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 7383–7390, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. URL https://
aclanthology.org/2022.emnlp-main.499.
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Yvette Graham, Barry Haddow, Shujian Huang,
Matthias Huck, Philipp Koehn, Qun Liu, Varvara Logacheva, et al. Findings of the 2017 conference
on machine translation (wmt17). Association for Computational Linguistics, 2017.

10

http://proceedings.mlr.press/v98/achab19a.html
http://proceedings.mlr.press/v98/achab19a.html
https://aclanthology.org/2022.emnlp-main.499
https://aclanthology.org/2022.emnlp-main.499
http://www.jstor.org/view/10505164/di983988/98p0059i/0
http://www.jstor.org/view/10505164/di983988/98p0059i/0


Under review as a conference paper at ICLR 2023

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Róbert Busa-Fekete, Eyke Hüllermeier, and Balázs Szörényi. Preference-Based Rank Elicitation using
Statistical Models: The Case of Mallows. In Proceedings of the 31th International Conference on
Machine Learning, (ICML), pp. 1071–1079, 2014. URL http://jmlr.org/proceedings/
papers/v32/busa-fekete14.html.

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-2017 task
1: Semantic textual similarity-multilingual and cross-lingual focused evaluation. arXiv preprint
arXiv:1708.00055, 2017.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski, Vitaly Nikolaev,
and Jennimaria Palomaki. Tydi qa: A benchmark for information-seeking question answering in
typologically diverse languages. Transactions of the Association for Computational Linguistics, 8:
454–470, 2020.

Stéphan Clémençon, Romaric Gaudel, and Jérémie Jakubowicz. Clustering rankings in the fourier
domain. In Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2011, Athens, Greece, September 5-9, 2011. Proceedings, Part I 11, pp. 343–358.
Springer, 2011.

Pierre Colombo, Chloe Clave, and Pablo Piantanida. Infolm: A new metric to evaluate summarization
& data2text generation. arXiv preprint arXiv:2112.01589, 2021a.

Pierre Colombo, Guillaume Staerman, Chloe Clavel, and Pablo Piantanida. Automatic text evaluation
through the lens of wasserstein barycenters. arXiv preprint arXiv:2108.12463, 2021b.

Pierre Colombo, Nathan Noiry, Ekhine Irurozki, and Stéphan Clémençon. What
are the best systems? new perspectives on NLP benchmarking. In NeurIPS,
2022a. URL http://papers.nips.cc/paper_files/paper/2022/hash/
ac4920f4085b5662133dd751493946a6-Abstract-Conference.html.

Pierre Colombo, Nathan Noiry, Ekhine Irurozki, and Stephan CLEMENCON. What are the best
systems? new perspectives on NLP benchmarking. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022b.
URL https://openreview.net/forum?id=kvtVrzQPvgb.

Pierre Colombo, Maxime Peyrard, Nathan Noiry, Robert West, and Pablo Piantanida. The glass
ceiling of automatic evaluation in natural language generation. arXiv preprint arXiv:2208.14585,
2022c.

Alexis Conneau, Guillaume Lample, Ruty Rinott, Adina Williams, Samuel R Bowman, Holger
Schwenk, and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. arXiv
preprint arXiv:1809.05053, 2018.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Workshop, pp. 177–190. Springer, 2005.

Hoa Trang Dang, Karolina Owczarzak, et al. Overview of the tac 2008 update summarization task.
In TAC, 2008.

Marie-Catherine De Marneffe, Mandy Simons, and Judith Tonhauser. The commitmentbank: In-
vestigating projection in naturally occurring discourse. In proceedings of Sinn und Bedeutung,
volume 23, pp. 107–124, 2019.

11

http://jmlr.org/proceedings/papers/v32/busa-fekete14.html
http://jmlr.org/proceedings/papers/v32/busa-fekete14.html
http://papers.nips.cc/paper_files/paper/2022/hash/ac4920f4085b5662133dd751493946a6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/ac4920f4085b5662133dd751493946a6-Abstract-Conference.html
https://openreview.net/forum?id=kvtVrzQPvgb


Under review as a conference paper at ICLR 2023

Mostafa Dehghani, Yi Tay, Alexey A Gritsenko, Zhe Zhao, Neil Houlsby, Fernando Diaz, Donald
Metzler, and Oriol Vinyals. The benchmark lottery. arXiv preprint arXiv:2107.07002, 2021.

William B Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop on Paraphrasing (IWP2005), 2005.

Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank aggregation methods for
the web. In Proceedings of the 10th international conference on World Wide Web, pp. 613–622,
2001.
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Chaudhary Vishrav, Marta R Costa-jussa, España-Bonet Cristina, Fan Angela, Federmann Christian,
et al. Findings of the 2021 conference on machine translation (wmt21). In Proceedings of the Sixth
Conference on Machine Translation, pp. 1–88. Association for Computational Linguistics, 2021.

Michael A Fligner and Joseph S Verducci. Distance based ranking models. Journal of the Royal
Statistical Society, 48(3):359–369, 1986.

Johannes Fürnkranz and Eyke Hüllermeier. Pairwise preference learning and ranking. pp. 145–156,
2003.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-Beltrachini. The webnlg
challenge: Generating text from rdf data. In Proceedings of the 10th International Conference on
Natural Language Generation, pp. 124–133, 2017.

Sebastian Gehrmann, Tosin Adewumi, Karmanya Aggarwal, Pawan Sasanka Ammanamanchi, Aremu
Anuoluwapo, Antoine Bosselut, Khyathi Raghavi Chandu, Miruna Clinciu, Dipanjan Das, Kaus-
tubh D Dhole, et al. The gem benchmark: Natural language generation, its evaluation and metrics.
arXiv preprint arXiv:2102.01672, 2021.

Sebastian Gehrmann, Abhik Bhattacharjee, Abinaya Mahendiran, Alex Wang, Alexandros Papangelis,
Aman Madaan, Angelina McMillan-Major, Anna Shvets, Ashish Upadhyay, Bingsheng Yao, et al.
Gemv2: Multilingual nlg benchmarking in a single line of code. arXiv preprint arXiv:2206.11249,
2022a.

Sebastian Gehrmann, Elizabeth Clark, and Thibault Sellam. Repairing the cracked foundation: A
survey of obstacles in evaluation practices for generated text. arXiv preprint arXiv:2202.06935,
2022b.

Ira M Gessel and Yan Zhuang. Shuffle-compatible permutation statistics. Advances in Mathematics,
332:85–141, 2018.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal rec-
ognizing textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual
entailment and paraphrasing, pp. 1–9, 2007.

Gaël Guibon, Matthieu Labeau, Hélène Flamein, Luce Lefeuvre, and Chloé Clavel. Few-shot
emotion recognition in conversation with sequential prototypical networks. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6858–6870,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.549. URL https://aclanthology.org/
2021.emnlp-main.549.

12

https://aclanthology.org/2021.emnlp-main.549
https://aclanthology.org/2021.emnlp-main.549


Under review as a conference paper at ICLR 2023

Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: A bayesian skill rating system. In
B. Schölkopf, J. Platt, and T. Hoffman (eds.), Advances in Neural Information Processing Sys-
tems, volume 19. MIT Press, 2006. URL https://proceedings.neurips.cc/paper_
files/paper/2006/file/f44ee263952e65b3610b8ba51229d1f9-Paper.pdf.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. The collected
works of Wassily Hoeffding, pp. 409–426, 1994.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Graham Neubig, Orhan Firat, and Melvin Johnson.
Xtreme: A massively multilingual multi-task benchmark for evaluating cross-lingual generalisation.
In International Conference on Machine Learning, pp. 4411–4421. PMLR, 2020.

Dieuwke Hupkes, Mario Giulianelli, Verna Dankers, Mikel Artetxe, Yanai Elazar, Tiago Pimentel,
Christos Christodoulopoulos, Karim Lasri, Naomi Saphra, Arabella Sinclair, et al. State-of-the-art
generalisation research in nlp: a taxonomy and review. arXiv preprint arXiv:2210.03050, 2022.

Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus Brinker. Label ranking by learning
pairwise preferences. Artificial Intelligence, 172:1897–1916, 2008.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Looking
beyond the surface: A challenge set for reading comprehension over multiple sentences. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 252–262,
2018.

Donald E Knuth. Permutations, matrices and generalized young tableaux. Pacific Journal of
Mathematics, 34:709–727, 1970.

Jan Koco, Igor Cichecki, Oliwier Kaszyca, Mateusz Kochanek, Dominika Szydo, Joanna Baran, Julita
Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil Kanclerz, Anna Koco, Bartomiej Koptyra,
Wiktoria Mieleszczenko-Kowszewicz, Piotr Mikowski, Marcin Oleksy, Maciej Piasecki, ukasz
Radliski, Konrad Wojtasik, Stanisaw Woniak, and Przemysaw Kazienko. Chatgpt: Jack of all
trades, master of none, 2023a.

Jan Koco, Igor Cichecki, Oliwier Kaszyca, Mateusz Kochanek, Dominika Szydo, Joanna Baran, Julita
Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil Kanclerz, Anna Koco, Bartomiej Koptyra,
Wiktoria Mieleszczenko-Kowszewicz, Piotr Mikowski, Marcin Oleksy, Maciej Piasecki, ukasz
Radliski, Konrad Wojtasik, Stanisaw Woniak, and Przemysaw Kazienko. Chatgpt: Jack of all
trades, master of none, 2023b.

R Kondor and M Barbosa. Ranking with kernels in fourier space. 2010.

Risi Kondor and Walter Dempsey. Multiresolution analysis on the symmetric group. Advances in
Neural Information Processing Systems, 25, 2012.

Eric Lehman, Evan Hernandez, Diwakar Mahajan, Jonas Wulff, Micah J. Smith, Zachary Ziegler,
Daniel Nadler, Peter Szolovits, Alistair Johnson, and Emily Alsentzer. Do we still need clinical
language models?, 2023.

Hector Levesque, Ernest Davis, and Leora Morgenstern. The winograd schema challenge. In
Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning,
2012.
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A EXTENDED RELATED WORK AND OTHER BASELINES METHODS

A.1 MORE ON MISSING DATA IN NLP.

Another approach to handling missing data in benchmarks would be to create new datasets, however,
it can be a sluggish, costly, and expertise-demanding process (see footnote 5 in Lin et al. (2021)).
Moreover, there are situations where collection becomes infeasible, such as when working with
private datasets, calling for the need to develop tools that can rank systems with missing scores.

A.2 WHY NOT DIRECTLY IMPUTING DATA IN THE SCORE?

Directly imputing values as scores is not the current practice in NLP. In fact, this approach would be
inadequate due to potential variations in metric scale and difficulty, leading to a failure in accurately
capturing task difficulty (as mentioned above and in Dolan & Brockett (2005)). To illustrate this to
we present some experiments.

(a) WMT 2018 en-ru (b) WMT 2019 zh-en

Figure 7: Imputation methods are not robust to scaling. To further compare the ranking, we
corrupt the scores of a given task by re-scaling them by a factor λ. Whereas it does not affect our
ranking procedure (every ranking induced by a task-instance pair remains the same), it increasingly
perturbs the mean aggregation and other imputation procedures as λ increases. ˜σmed corresponds to
the median imputation and σ̃µ corresponds to the mean imputation.

(a) WMT 2018 en-ru (b) WMT 2019 zh-en

Figure 8: Additional Instance-Level Robustness Experiment (see Figure 13). We evaluate the
robustness of our proposed aggregation methods, namely σ2l, σl, and the mean aggregation method
σµ, by randomly removing a proportion η of all instances on a specific task for a specific system.

A.3 OTHER IDEAS OF FUTURE WORK

In the future, we would like to explore several refinements of the method:

19



Under review as a conference paper at ICLR 2023

• Impact of the inter-task correlation. The task correlation can impact the choice of the
best system. In the future, we would like to study the impact of the choice of the ranking
procedure in depth.

• Impact of misleading evaluation. Evaluation in NLP can be noisy due to the variety
in language and lack of metric robustness Al Sharou et al. (2021); Rodríguez-Cantelar
et al. (2023). Future work will include the consideration of this factor when choosing the
aggregation method.

• Comparison with the ANOVA method St et al. (1989). Although this is slightly outside
the scope of the paper, we would like to compare our confidence interval with the one
obtained with the ANOVA method.

A.4 MORE ON THE TECHNICAL CONTRIBUTION OF THE ALGORITHM.

Our technical contribution boils down to extending the Borda aggregation to the case of missing data
(aka incomplete rankings). In the ranking literature, two types of approaches can be identified to
deal with partial rankings: Relying on top-k rankings. In this case, all the systems are evaluated but
only those that are ranked in the first k positions are provided. There are many methods to aggregate
and all in this setting, for example, Ailon (2010). This is different from our scenario where some
systems cannot be evaluated on particular tasks. Relying on incomplete rankings. In this case, only k
systems are evaluated on a specific task. This fits our scenario. Rank aggregation/statistical analysis
in the case of k=2 is called pairwise ranking and is well handled by the literature (Knuth, 1970;
Lu & Boutilier, 2014a; Plackett, 1975; Popović, 2017; Zhang et al., 2018). These approaches are
limited and only use pairwise comparisons which can lead to paradoxes when ranking more systems.
In this paper, we introduce an aggregation procedure for arbitrary values of k. Our main technical
contribution is to extend the Borda aggregation to incomplete rankings. To the best of our knowledge,
this is the only paper dealing with aggregation -not specifically Borda- of incomplete rankings.

A.5 EXTENDED LIMITATIONS AND PERSPECTIVE FOR FUTURE WORKS

The initial limitation we pinpoint is the task’s reliance on the noise model applied to the data, which
affects the outcomes. In an extreme scenario where a system lacks all measures, our method might
not consistently rank it. Additional edge cases could be investigated, such as a system being poor
in only one task with missing data, leading to potentially misleading ranking. To address this, we
introduced the confidence interval in Section 3.3, supported by results in Section 5.4, to effectively
recognize such challenging scenarios. It’s important to highlight that these edge cases can impact all
ranking procedures involving missing data.

Another limitation pertains to our ranking procedure’s lack of consideration for user preferences
regarding tasks. For instance, a user might emphasize certain tasks, such as A, D, and H, with task
A carrying greater importance than the others. A natural approach to address this issue involves
adopting a weighted variation of the Borda count or drawing inspiration from Dwork et al. (2001).
Although this avenue remains unexplored within our current work, it holds promise as a captivating
direction for future investigations.

B ETHICAL STATEMENT & LIMITATION OF OUR WORK

It is important to consider the potential ethical implications and limitations of our work. One ethical
concern is the potential bias in the reranking process, as the selection of the "best" hypothesis may
favor certain perspectives or reinforce existing biases present in the training data. Care should be
taken to ensure fairness and mitigate any potential bias before applying our methods.

C DATASET DESCRIPTION

C.1 TASK LEVEL INFORMATION

We provide additional details on the data collection for Task Level Information.
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We gathered data from four benchmark studies, namely GLUE (General Language Understanding
Evaluation) (Wang et al., 2018), SGLUE (SuperGLUE) (Wang et al., 2019)1, XTREME (Hu et al.,
2020) and GEM. In the GLUE dataset, there were a total of 105 systems evaluated across nine
different tasks: CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, and WNLI (Warstadt et al.,
2019; Socher et al., 2013; Dolan & Brockett, 2005; Cer et al., 2017; Rajpurkar et al., 2016; Williams
et al., 2017b; Dagan et al., 2005; Giampiccolo et al., 2007; Bentivogli et al., 2009; Levesque et al.,
2012). The SGLUE dataset consisted of 24 systems evaluated on 10 different tasks: BoolQ, CB,
COPA, MultiRC, ReCoRD, RTE, WiC, WSC, AX-b, and AX-g (Clark et al., 2019; De Marneffe
et al., 2019; Roemmele et al., 2011; Khashabi et al., 2018; Zhang et al., 2018; Levesque et al.,
2012; Pilehvar & Camacho-Collados, 2018). The XTREME benchmark comprised 15 systems and
included tasks such as sentence classification (XNLI and PAXS-X), structured prediction (Universal
Dependencies v2.5 and Wikiann), sentence retrieval (BUCC and Tatoeba), and question answering
(XQuAD, MLQA, TyDiQA-GoldP) (Conneau et al., 2018; Williams et al., 2017a; Yang et al., 2019;
Zhang et al., 2019b; Nivre et al., 2018; Rahimi et al., 2019; Pan et al., 2017; Zweigenbaum et al.,
2018; 2017; Artetxe & Schwenk, 2019; Artetxe et al., 2019; Rajpurkar et al., 2016; Lewis et al., 2019;
Clark et al., 2020).

Each benchmark employed a variety of metrics with different scales, including accuracy, f1, and
correlation. Additionally, the GEM benchmark involved 22 systems evaluated using diverse metrics
such as prediction length, vocabulary size, entropy, Rouge, NIST, Bleu’, Meteor’, Bleurt, Nubia, and
Bertscore.

C.2 INSTANCE LEVEL INFORMATION

In this particular setting, our primary focus is on evaluating the performance of natural language
generation (NLG) systems, as these scores are among the easiest to collect. We concentrate on five
different tasks: summary evaluation, image description, dialogue, and translation. For summary
evaluation, we utilize the TAC08 (Dang et al., 2008), TAC10, TAC11 (Owczarzak & Dang, 2011),
RSUM (Bhandari et al., 2020), and SEVAL (Fabbri et al., 2021) datasets. Regarding sentence-based
image description, we rely on the FLICKR dataset (Young et al., 2014). For dialogue, we make
use of the PersonaChat (PC) and TopicalChat (TC) datasets (Mehri & Eskenazi, 2020). For the
translation part, we added datasets from WMT15 (Stanojević et al., 2015), WMT16 (Bojar et al.,
2016), WMT17 (Bojar et al., 2017), WMT18 (rej Bojar et al., 2018), WMT19 (Barrault et al., 2019),
WMT20 (Loïc et al., 2020), and WMT21 (Farhad et al., 2021) in several languages such as en, ru, ts,
and others. For all datasets except MLQE, we consider automatic metrics based on S3 (both variant
pyr/resp) (Peyrard et al., 2017), ROUGE (Lin, 2004) (including five of its variants (Ng & Abrecht,
2015)), JS [1-2] (Lin et al., 2006), Chrfpp (Popović, 2017), BLEU, BERTScore (Zhang et al., 2019a),
and MoverScore (Zhao et al., 2019). For the MLQE dataset, we solely consider several versions of
BERTScore, MoverScore, and ContrastScore. Additionally, we incorporate human evaluation, which
is specific to each dataset.

C.3 DATA STATISTICS

To give to the reader a better sense of the richness of our benchmark, we report in Fig. 9 the statistics
on our dataset. We demonstrate a diverse distribution of system counts across various datasets,
ranging from a minimum of 2 systems to a maximum of 60 systems. Regarding the total number
of sentences (instances) and the average number per system, as depicted in Fig. 10 and Fig. 11, the
smaller datasets consist of several hundred sentences in total, while the larger datasets encompass up
to several hundred thousand sentences in total.

D ADDITIONAL REAL-DATA EXPERIMENTS

In this dedicated section, we aim to provide curious readers with a deeper understanding of the
capabilities of our methods by presenting additional figures and experimental results. Through these

1Results can be accessed at https://super.gluebenchmark.com/
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supplementary materials, we intend to shed more light on the effectiveness and potential of our
approaches, enabling readers to gain valuable insights into our methods.

D.1 EXAMPLE OF RANKING WITH MISSING DATA ON XTREM

In this section, we aim to illustrate the distinction between different rankings obtained using σl

and σµ on XTREM dataset for a specific noise realization. Using Tab. 5, we obtain the following
rankings:

• σl gives the following ranking : M0 > M3 > M2 > M1 > M7 > M5 > M4 > M8 >
M9

• σµ gives the following ranking : M7 > M4 > M0 > M6 > M9 > M2 = M3 > M1 >
M8 > M5.

We can see that the two methods disagree on the best systems in this case. However, as can be seen in
our experiments, the ranking-based method is more robust.

Model Classification Structured Prediction Question Answering Sentence Retrieval

M0 90.3 X 76.3 93.7
M1 90.1 X 75.0 X
M2 89.3 75.5 75.2 92.4
M3 89.0 76.7 73.4 93.3
M4 88.3 X X X
M5 X X X X
M6 87.9 75.6 X 91.9
M7 X X X 92.6
M8 X 75.4 X X
M9 88.2 74.6 X 89.0

Table 5: XTREM dataset with 10 systems and 18 missing values (η = 0.45)

D.2 ADDITIONAL ROBUSTNESS EXPERIMENT ON TASK LEVEL DATASETS

In this section, we report additional experiments on the task level robustness.

Figure 12: GEM
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D.3 ADDITIONAL ROBUSTNESS EXPERIMENT ON INSTANCE LEVEL DATASETS

In this section, we report additional experiments on the instance level robustness.

(a) Dialogue PC (b) Dialogue TC (c) Flickr (d) COCO (e) SummEval

(f) TAC 08 (g) TAC 09 (h) TAC 11 (i) WebNLG2017 (j) WebNLG2020 en

(k) WebNLG2020 ru (l) WMT20 cs-en (m) WMT20 pl-en (n) WMT21 en-de (o) WMT21 en-ru

(p) WMT21
challengeset de-en

(q) WMT21
challengeset en-de

(r) WMT21
challengeset zh-en

(s) WMT21 florestest
bn-hi

(t) WMT21 florestest
hi-bn

(u) WMT21 florestest
xh-zu

(v) WMT21 florestest
zu-xh

(w) WMT21 cs-en (x) WMT21 en-cs (y) WMT21 de-fr
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(z) WMT21 en-ha (aa) WMT21 en-is (ab) WMT21 fr-de (ac) WMT21 ha-en (ad) WMT21 is-en

(ae) WMT21 ja-en (af) WMT21 ru-en (ag) WMT21 zh-en (ah) WMT21 tedtalks
en-de

(ai) WMT21 tedtalks
en-ru

(aj) WMT21 tedtalks
zh-en

Figure 13: Instance-Level Robustness Experiment. We evaluate the robustness of our proposed
aggregation methods, namely σ2l, σl, and the mean aggregation method σµ, by randomly removing a
proportion η of all instances on a specific task for a specific system. Each experiment is repeated 100
times for each proportion.

D.4 ADDITIONAL CONFIDENCE ANALYSIS ON TASK LEVEL

In this section, we present additional experiments conducted on four instance-level datasets. We
computed confidence intervals for the instance-level, similar to the approach used in Section Ssec. 5.4.
Consistent with the main findings in the paper, our observations reveal that closer performance among
systems is indicated near the diagonal and we can clearly observe group of systems. This analysis of
confidence intervals provides valuable insights into the relative performance of different systems.
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(ak) TAC08 (al) WMT21 en-de

(am) WMT21 en-ha (an) WMT21 en-zh

Figure 14: Confidence intervals for various instance level datasets with η = 0.2 and δ = 0.01

E ON THE RANKINGS

This section gathers technical considerations on the ranking methods used in our algorithm.

E.1 BORDA COUNT ON PERMUTATIONS (IN VECTOR NOTATION)

Remark 2. The Borda count is a ranking system that aggregates a set of permutations σ1, . . . , σL ∈
SN by summing the ranks of each system and then ranking the obtained sums. The procedure is as
follows:

1. Compute sumn :=
L∑

l=1

σl
n for every 1 ≤ n ≤ N ,

2. Output σ := Borda(σ1, . . . , σL) ∈ SN that ranks the sums, sumn

(argsort(argsort(sum1, . . . , sumT ))).

E.2 BORDA COUNT ON PERMUTATIONS IN PAIRWISE MATRIX NOTATION

In Sssec. 3.2.1 we argue that a ranking σ ∈ SN can also be written as a pairwise matrix and in
Sssec. 3.2.2 and Sssec. 3.2.3 we further elaborate on how to write ranking data-set D in pairwise
matrix form MD ∈ [0, 1]N×N . Under this notation, the final aggregated ranking σ for the Borda
count algorithm can be shown to be equivalent to the permutation that sorts the sum of the columns
in MD,

σ = argsort

(
argsort

[∑
i

MD
i,0, · · · ,

∑
i

MD
i,N

])
. (5)
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E.3 GENERATING ALL COMPATIBLE RANKINGS

In this section, we detail the computation of the Mπ
i,j when item i is not evaluated and item j is

evaluated. Let us fix some notation first. For the following, k is the number of observed systems in π,
item i is not evaluated, item j is evaluated and r is the (partial) rank of item j. Under this setting, we
set Mπ

i,j = p(n, k, r), i.e., the proportion of compatible rankings that rank i before j when π has k
items. The closed-form expressions for these quantities are given in Eq. 6. Here we note that t(n, k)
is the total number of rankings of n items compatible with π, Sa

b is the number of shuffles of two
lists of lengths a and b and V a

b denotes the variations of a out of b items, i.e., the number of possible
arrangements of selections of a objects out of b, where the order of the selected objects matters.

p(n, k, r) =

n−k−1∑
i=0

V i
n−k−1 ∗ (i+ 1) ∗ Sr

i+1(n− k − i− 1)! ∗ Sn−k−i−1
k−r−1 /t(n, k)

t(n, k) = (n− k)! ∗ Sk
n−k

Sa
b = (a+ b)!/(a! + b!)

V a
b = a!/(b− a)!

(6)

Remark 3. A naive algorithm for generating the matrix Mπ from σ ∈ SN−rtk would have factorial
complexity and it is thus exorbitant in practice for a relatively small number of systems, say N > 10.
However, our solution has a complexity of O(n3) and can be precomputed once at the beginning of
the benchmarking process to efficiently generate the pairwise matrix Mπ from partial ranking π.

E.4 PROOF OF UNIFORMITY

In this section, we give the intuition and the proof for Eq. 6. This section follows a classic strategy on
Enumerative Combinatorics (Stanley, 1986; Wilf, 1999): if we can define an algorithm to generate
compatible permutations uniformly at random (such as that in Algorithm 2), we can easily adapt it to
count those permutations to yield an efficient counting expression, as we do in Eq. 6.

We start by introducing 2 basic operations of permute and shuffle, along with the number of
possible outcomes of these operations.

Permute a list - permute(l) Given a list of n objects, generate a permutation of these items. There
are n! possible ways of permuting n items. An efficient way for generating random permutations is
the Fisher-Yates-Knuth algorithm (Knuth, 1970).

Shuffle two lists - shuffle(A,B) Given two disjoint lists of distinct elements A,B of lengths a, b
respectively, generate a permutation σ of the two lists of length a+ b in such a way that the relative
order of the items in the lists A and B is respected in σ. This name and idea is based on the popular
way of shuffling two decks of cards (Bayer & Diaconis, 1992). Its easy to see that Algorithm 1
generates every possible shuffling with equal probability. The total number of shuffles of lists A,B is
given in Eq. 6 as Sa

b .

Algorithm 1: Generate a random shuffle of lists A and B

1 for i ∈ [a+ b] do
2 rand← random number in [0, 1];
3 if rand > 0.5 ∨B is empty ∧ A is non empty then
4 σ(i) = pop(A);
5 else
6 σ(i) = pop(B);
7 end
8 end

Counting complete, compatible rankings At this point, we are ready to detail the expression of
p(n, k, r) in Eq. 6, both the intuition and the proof of uniformity. For this, we propose in Algorithm 2
to sample complete, compatible rankings and then adapt this sampling algorithm to a counting
algorithm in Theorem 1.
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Notation We start by fixing the notation. Let β be a partial ranking of length k which includes item
j in rank r, β1 � . . . � βr = j � . . . � βk. Let η be a disjoint set of n − k items that have not
been ranked and which includes the unobserved item i. The goal is to generate (i) a compatible
ranking with β (a ranking σ of all the items in such a way that the relative ordering of the items of β
is maintained) and (ii) which ranks item i before item j. We denote the "s-head" of a list to the items
in the first s positions in that list.

Intuition We are now ready to explain the intuition. Each of the possible compatible permutations
that rank i before j is generated in the following way:

Algorithm 2 generates permutations that rank item j at position s, item i before j and we iterate for
all possible values of s. First, in line line 2 we select s− 1 items randomly from η, where the order
of the items matter (i.e., a variation). Then, we insert item i in a random position of this list, denoted
ηhead in line 3. In line 4 we shuffle these two lists, i.e., ηhead and the r−head of β, βhead, i.e., the
sublist with the items that are ranked before j. The result of the shuffling process is the s+ r-head
of the output permutation σ. We permute the rest of the unobserved items denoting these list ηtail,
in line 6. Finally, we shuffle this list ηtail and the k − r-tail of η in line 7. The result of this shuffle
is the tail of σ. Finally, in line 8 we return the concatenation of σhead, j, σtail, which is clearly a
compatible permutation with β as the relative order of the items in β is maintained in the output.

Algorithm 2: Generate a random ranking among those compatible with β

1 for s ∈ [n] do
2 ηhead ← s− 1 items from η where the order matters ;
3 ηhead ← insert i in ηhead ;
4 σhead ← shuffle(ηhead, βhead) ;
5 ηtail ← η \ ηhead ;
6 ηtail ← permute(ηtail) ;
7 σtail ← shuffle(ηtail, βtail) ;
8 return (σhead � j � σtail) ;
9 end

It is easy to see that Algorithm 2 generates the target permutations uniformly at random. Following a
classic strategy on Enumerative Combinatorics (Stanley, 1986; Wilf, 1999) we use this algorithm as a
proof for p(n, k, r).
Theorem 1. The number of complete permutations of n items compatible with partial ranking β that
rank the unobserved item i before the observed item j is given by the following expression,

p(n, k, r) =

n−k−1∑
i=0

V i
n−k−1 ∗ (i+ 1) ∗ Sr

i+1(n− k − i− 1)! ∗ Sn−k−i−1
k−r−1 /t(n, k).

Proof. It is easy to see that in Algorithm 2 there is a bijection between the permutations in the target
(that is, the permutations compatible with β for which i � j) and each outcome of Algorithm 2.
Clearly, for uniform at random outcomes of the shuffle and permute operations, the outcome of
Algorithm 2 will be random as well. Therefore, the number of possible outcomes of the algorithm
equals the number of permutations in the target.

It follows that each term in p(n, k, r) Each term in the previous expression comes from a different
line in 2:

• Line 2: The number of variations of i items out of n− k − 1 is V i
n−k−1.

• Line 3: There are s+ 1 ways of inserting item i, thus the term (r + 1).

• Line 4: There are Sr
s+1 ways of shuffling ηhead and βhead.

• Line 6: There are (n− k − s− 1)! possible permutations of the items in ηtail.

• Line 7: There are Sn−k−s−1
k−r−1 ways of shuffling the two tails.

• Line 8: Finally, since we compute the proportion by dividing among the total number of
compatible permutations.
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By repeating this process for all s < n− k − 1 the proof is completed.
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Figure 9: Number of systems in each dataset (log scale)
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Figure 10: Number of sentences in each dataset (log scale)
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Figure 11: Average number of sentences per system in each dataset (log scale)
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