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a b s t r a c t 

In monocular structured light system, the iterative reconstruction method makes the measurement time- 

consuming, and the measurement accuracy is often hindered by the fact that the first-order radial distortion 

is included only. Compared with the conventional projector model, a new projector model, including both radial 

and tangential distortion, is proposed in this paper, which is described with the pinhole model according to the 

light direction. Furthermore, the iterative method is replaced by solving a quartic polynomial problem directly 

based on the proposed projector model. Experimental results show that the measurement accuracy and the ef- 

ficiency are improved obviously. The standard deviation of the proposed method is 0.037mm, which is about a 

third of 0.113mm of the iterative method. The time consumed by the proposed method is 3.3% of that by the 

iterative method when one hundred thousand points are reconstructed. 

© 2017 Published by Elsevier Ltd. 
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. Introduction 

Structured light system is a three dimensional measurement system

ith high accuracy, simple equipment and satisfactory speed, which

enerally consists of one or more cameras and a projector [1,2] . It has

een widely used in industrial precision inspection, three dimensional

ody scanning, heritage conservation, and so on [3–6] . The keys to a

tructured light system are system calibration, structured light encod-

ng, and reconstruction. Many researchers contributed to these fields

nd made remarkable achievements. 

As the most important problem, system calibration had been focused

n the last decades [7–11] . Zhang solved the camera calibration accu-

ately by observing a planar pattern [7] , whose method had already

een widely used in structured light system. Zhang and Huang treated

he projector as an inverse camera [8] , thus making the calibration of

 projector the same as that of a camera. Then, Li et al. improved the

rojector calibration by reducing the phase error and interpolating the

igital Mirror Device (DMD) images [9] . To deal with the distortion,

uang et al. presented an error surface compensation method [10] ,

hich minimized mapping error caused by camera and projector dis-

ortion. Recently, Liu et al. proposed a projector calibration method by

aking use of photodiodes to directly detect the light emitted from a

rojector [11] , and a polynomial distortion representation is employed

o reduce the error of traditional projector model. Structured light en-

oding is another essential problem. Sinusoidal grating encoding and
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hase shifting algorithm are the most advanced and effective meth-

ds [12] , by now they had already been utilized in most commercial

tructured light systems. An advanced topic of encoding is to reduce the

umber patterns for real-time measurement [13–15] . For example, Tru-

iak et al. proposed a hybrid single shot algorithm [14] for a composite

tructured light system, in which empirical mode decomposition was

mployed, aided by the principal components analysis, and He et al.

educed measurement error caused by spectrum overlapping [15] in

 composite structured light system based on fringe parameter calcu-

ation. The final problem is reconstruction. Theoretically, reconstruc-

ion can be achieved directly based on optical triangle principle in the

inear system model. However, there are two primary problems that

ake reconstruction more difficult, the phase error and the lens distor-

ion. Numerous effective methods were proposed to reduce the phase

rror. Zhang and Yau improved the traditional look up table generation

ethod [16] for the phase error by analyzing the captured fringe im-

ge of a flat board. Then, Liu et al. studied the gamma effect and devel-

ped a mathematical model [17] for predicting the effects of non-unitary

amma. Furthermore, Yatabe et al. proposed a post-processing method

18] for compensating general fringe distortion based on the inverse

ap estimation, which made the fringe patterns accurate enough. Lens

istortion were also considered by many scholars [19–22] , especially the

rst-order radial distortion. Valkenburg solved the reconstruction with

terative method [19] when including first-order radial distortion, which

lso gave a general description of reconstruction equations. Huang and

an simplified the iterative method [20] by undistorting the camera im-

ges firstly, and then solved the reconstruction with the first order radial

istortion of projector. Ma et al. extended the reconstruction equations

http://dx.doi.org/10.1016/j.optlaseng.2017.08.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/optlaseng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.optlaseng.2017.08.013&domain=pdf
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o appropriate for complex distortion models [21] , and corrected the

rror pixel by pixel based on iterative method. To make the measure-

ent efficient, Li et al. eliminated the projector distortion by projecting

istorted fringe patterns [22] , which were generated according to the

rojector model. However, the solution to analytic reconstruction equa-

ions is always iterative and time-consuming, and the specific distortion

odel is also related to the measurement accuracy and efficiency. In a

ord, the lens distortion restricts the precision of structured light system

nd an appropriate non-iterative method is expected. 

A non-iterative method is proposed in this paper to solve the lens

istortion efficiently. This method is based on a projector model, which

pplies the pinhole model to the projector description according to the

ight direction. In this projector model, the measuring object is consid-

red as the image plane, while the Digital Mirror Device (DMD) reflects

ight to it. Corresponding to this model, lens distortion description equa-

ions are reorganized, and the reconstruction is simplified to a problem

f solving a polynomial. As the iteration is inevitable when the polyno-

ial order exceeds four, the reconstruction is described by two polyno-

ials of three order and four order, whose coefficients are obtained by

urve fitting algorithm. The experimental results prove the validity of

he proposed non-iterative method. 

The rest of this paper is organized as follows: Section 2 describes the

asic nonlinear model of structured light system. Section 3 discusses the

roposed method, together with the ideas to it. In Section 4 , experiments

re implemented to verify the proposed method. Finally, Section 5 con-

ludes this work. 

. Structured light system model 

A monocular structured light system consists of a camera and a pro-

ector. The camera is described by a pinhole model, which is represented

y intrinsic and extrinsic parameters, together with nonlinear compen-

ation items to represent lens distortion [20] . The projector is generally

onsidered as an inverse camera and it can capture DMD images [8] ,

hus the camera model can be applied appropriately to the projector. 

.1. Camera and projector model 

The pinhole model is described to present an ideal camera without

ens distortion. M c is an arbitrary point in the space with coordinates

 

𝑤 = [ 𝑥 𝑤 , 𝑦 𝑤 , 𝑧 𝑤 ] 𝑇 in the world coordinate system { O W 

; X W 

, Y W 

, Z W 

},

nd 𝑋 

𝑐 = [ 𝑥 𝑐 , 𝑦 𝑐 , 𝑧 𝑐 ] 𝑇 in the camera coordinate system { O C ; X C , Y C , Z C },

s shown in Fig. 1 . 

The relationship between M c and its projection point m on the image

lane { o ; u, v } is expressed as Eq. (1) . 

 

𝑐 

⎡ ⎢ ⎢ ⎣ 
𝑢 𝑐 

𝑣 𝑐 

1 

⎤ ⎥ ⎥ ⎦ = 𝐴 

𝑐 
[
𝑅 

𝑐 𝑇 𝑐 
]
𝑋 

𝑤 (1) 

here [ u c , v c , 1] T is the homogeneous pixel coordinate of m in the image

oordinate system { o ; u, v }. A 

c is the intrinsic parameters matrix of the

amera, [ 𝑅 

𝑐 𝑇 𝑐 ] is the extrinsic parameters matrix that represents the

otation and translation between X 

w and X 

c . A 

c and R 

c are invertible ma-

rices with 3 ×3 elements. T c is a vector with 3 ×1 elements, expressed

s [ 𝑡 𝑐 1 , 𝑡 
𝑐 
2 , 𝑡 

𝑐 
3 ] 
𝑇 . A 

c is expressed as Eq. (2) . 

 

𝑐 = 

⎡ ⎢ ⎢ ⎣ 
𝛼𝑐 𝛾𝑐 𝑢 𝑐 0 
0 𝛽𝑐 𝑣 𝑐 0 
0 0 1 

⎤ ⎥ ⎥ ⎦ (2) 

here [ 𝑢 𝑐 0 , 𝑣 
𝑐 
0 ] 
𝑇 is the principle point, 𝛼c and 𝛽c are the focal lengths

long with the axes of the image plane, 𝛾c is the skew factor, normally

et as zero. 
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On the basis of the pinhole model, lens distortion is included to im-

rove the system accuracy. A typical lens distortion model including

adial and tangential distortion is expressed as polynomials with nor-

alized coordinate [23] . 𝑋 

𝑐 
𝑛 

is the normalized coordinate when lens

istortion is ignored, which is expressed as Eq. (3) . 

 

𝑐 
𝑛 
= [ 𝑥 𝑐 

𝑛 
, 𝑦 𝑐 
𝑛 
] 𝑇 = 

[ 
𝑥 𝑐 

𝑧 𝑐 
, 
𝑦 𝑐 

𝑧 𝑐 

] 𝑇 
(3)

When lens distortion is included, the normalized coordinate 𝑋 

𝑐 
𝑑 

is

xpressed as Eq. (4) , 

 

𝑐 
𝑑 
= 

[ 
𝑥 𝑐 
𝑑 

𝑦 𝑐 
𝑑 

] 
= 𝐿𝐷𝐹 ( 𝑋 

𝑐 
𝑛 
) = (1 + 𝑘 𝑐 1 𝑟 

2 + 𝑘 𝑐 2 𝑟 
4 ) 𝑋 

𝑐 
𝑛 
+ 𝐷 𝑡 + 𝑂[ ( 𝑥 𝑐 

𝑛 
, 𝑦 𝑐 
𝑛 
) 5 ] (4)

here LDF is the lens distortion function, 𝑘 𝑐 1 and 𝑘 𝑐 2 are radial distor-

ion coefficients, D t is the tangential distortion item caused by decen-

ering distortion, r 2 is expressed as 𝑟 2 = ( 𝑥 𝑐 
𝑛 
) 2 + ( 𝑦 𝑐 

𝑛 
) 2 . D t is expressed as

q. (5) [23] . 

 𝑡 = 

[ 
𝑝 𝑐 1 (3 ( 𝑥 

𝑐 
𝑛 
) 2 + ( 𝑦 𝑐 

𝑛 
) 2 ) + 2 𝑝 𝑐 2 𝑥 

𝑐 
𝑛 
𝑦 𝑐 
𝑛 

2 𝑝 𝑐 1 𝑥 
𝑐 
𝑛 
𝑦 𝑐 
𝑛 
+ 𝑝 𝑐 2 ( ( 𝑥 

𝑐 
𝑛 
) 2 + 3 ( 𝑦 𝑐 

𝑛 
) 2 ) 

] 
(5) 

here 𝑝 𝑐 1 and 𝑝 𝑐 2 are tangential distortion coefficients. Therefore, the co-

rdinate transformation process of nonlinear camera model is concluded

s 𝑋 

𝑤 → 𝑋 

𝑐 → 𝑋 

𝑐 
𝑛 
→ 𝑋 

𝑐 
𝑑 
→ ( [ 𝑢 𝑐 , 𝑣 𝑐 ] 𝑇 ) . 

In structured light system, the conventional projector model treats

he projector as an inverse camera [9] , whose emitted encoding patterns

re imagined as the captured images. Thus the projector can capture a

eries of images and be modeled with the pinhole model. The coordinate

ransformation process of nonlinear projector model is specialized as

 

𝑤 → 𝑋 

𝑝 → 𝑋 

𝑝 
𝑛 → 𝑋 

𝑝 

𝑑 
→ ( [ 𝑢 𝑝 , 𝑣 𝑝 ] 𝑇 ) . 

Here the superscript p means the projector coordinate. v p is unknown

o the structured light system [19] . Projecting enough encoding patterns

n different directions will solve this problem easily, but it is not used in

ommercial systems because of time-consuming, increasing phase error

nd so on. Therefore, only u p of a point on the emitter is available. 

.2. Iterative reconstruction method 

Based on the pinhole model and Eq. (1) , there are 

 

𝑐 

[ 
𝑋 

𝑐 
𝑛 

1 

] 
= 

[
𝑅 

𝑐 𝑇 𝑐 
]
𝑋 

𝑤 

 

𝑝 

[ 
𝑋 

𝑝 
𝑛 

1 

] 
= 

[
𝑅 

𝑝 𝑇 𝑝 
]
𝑋 

𝑤 

(6) 

The relationship between 𝑋 

𝑐 
𝑛 

and X 

p is deduced, expressed as Eq. (7) ,

 

𝑐 

[ 
𝑋 

𝑐 
𝑛 

1 

] 
= 

[
𝑅 

𝑐 𝑇 𝑐 
][
𝑅 

𝑝 𝑇 𝑝 
]−1 
𝑋 

𝑝 (7) 

here [ 𝑅 

𝑝 𝑇 𝑝 ] −1 means the transformation from X 

p to X 

w rather

han an actual inverse matrix. There are four unknowns, z c and 𝑋 

𝑝 =
 𝑥 𝑝 , 𝑦 𝑝 , 𝑧 𝑝 ] 𝑇 , while only three linear equations are available in Eq. (7) . 

Considering the constraints provided by encoding patterns, there is

𝑢 𝑝 − 𝑢 
𝑝 

0 
𝛼𝑝 

= 𝐿𝐷𝐹 

(
𝑥 𝑝 

𝑧 𝑝 

)
(8) 

Combining Eq. (7) and Eq. (8) , X 

p and X 

w can be solved theoreti-

ally. In view of the nonlinearity of Eq. (8) , it generally is solved by

terative algorithm, such as a quasi-Newton strategy. It should be men-

ioned that the camera image point is undistorted directly regardless of

he camera distortion models [20] , thus only one non-linear equation,

q. (8) appears in reconstruction to express the projector distortion. 

. Non-iterative reconstruction method 

Although the iterative method is available, it is not always a good so-

ution, especially when complex distortion model is included. Therefore,

t is necessary to develop a non-iterative method for the reconstruction.
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Fig. 1. The pinhole model of an ideal camera. 
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.1. Basic solution 

The non-iterative reconstruction method is also based on the combi-

ation of Eq. (7) and Eq. (8) when only 𝑘 
𝑝 

1 is included. An idea to the

roblem is expressing x p , y p , z p with z c firstly and then eliminating them

n Eq. (8) . Therefore, the reconstruction is solving a cubic equation with

nknown z c . The particular scheme is expressed as follows. 

Based on the invertibility of linear equations, Eq. (7) is replaced by

q. (9) . 

 

 

 

 

𝑥 𝑝 

𝑦 𝑝 

𝑧 𝑝 

⎤ ⎥ ⎥ ⎦ = 𝑀 

⎡ ⎢ ⎢ ⎣ 
𝑧 𝑐 𝑥 𝑐 

𝑛 

𝑧 𝑐 𝑦 𝑐 
𝑛 

𝑧 𝑐 

⎤ ⎥ ⎥ ⎦ + 𝜂 (9)

here 

 = 

⎡ ⎢ ⎢ ⎣ 
𝑚 1 𝑚 2 𝑚 3 
𝑚 4 𝑚 5 𝑚 6 
𝑚 7 𝑚 8 𝑚 9 

⎤ ⎥ ⎥ ⎦ = 𝑅 

𝑝 ( 𝑅 

𝑐 ) −1 

= 

⎡ ⎢ ⎢ ⎣ 
𝜂1 
𝜂2 
𝜂3 

⎤ ⎥ ⎥ ⎦ = 𝑅 

𝑝 ( 𝑅 

𝑐 ) −1 𝑇 𝑐 + 𝑇 𝑝 

(10)

As mentioned above, Eq. (8) is replaced by Eq. (11) when x p , y p , z p 

n Eq. (8) is eliminated. 

 0 = 

{ 

1 + 𝑘 
𝑝 

1 

[ ( 

𝑎 1 𝑧 
𝑐 + 𝜂1 

𝑎 3 𝑧 
𝑐 + 𝜂3 

) 2 
+ 

( 

𝑎 2 𝑧 
𝑐 + 𝜂2 

𝑎 3 𝑧 
𝑐 + 𝜂3 

) 2 
] } 

𝑎 1 𝑧 
𝑐 + 𝜂1 

𝑎 3 𝑧 
𝑐 + 𝜂3 

(11)

here 

 0 = 

𝑢 𝑝 − 𝑢 𝑝 0 
𝛼𝑝 

 1 = ( 𝑚 1 𝑥 
𝑐 
𝑛 
+ 𝑚 2 𝑦 

𝑐 
𝑛 
+ 𝑚 3 ) 

 2 = ( 𝑚 4 𝑥 
𝑐 
𝑛 
+ 𝑚 5 𝑦 

𝑐 
𝑛 
+ 𝑚 6 ) 

 3 = ( 𝑚 7 𝑥 
𝑐 
𝑛 
+ 𝑚 8 𝑦 

𝑐 
𝑛 
+ 𝑚 9 ) 

(12)

It can be seen from Eq. (12) that a 0 , a 1 , a 2 , a 3 are constants deter-
ined by system parameters and image coordinates. Eq. (11) is actu-

lly a cubic equation, and can be solved by available formulas directly,
hich is expressed by Eq. (13) . 

 0 ( 𝑎 3 𝑧 𝑐 + 𝜂3 ) 3 = 
{ 
( 𝑎 3 𝑧 𝑐 + 𝜂3 ) 

2 + 𝑘 𝑝 1 
[(
𝑎 1 𝑧 

𝑐 + 𝜂1 
)2 + (𝑎 2 𝑧 𝑐 + 𝜂2 )2 ]} ( 𝑎 1 𝑧 𝑐 + 𝜂1 ) (13)
218 
The meaning of Eq. (13) is depicted in Fig. 2 . The reconstruction

ithout projector distortion is shown in Fig. 2 (a), while the reconstruc-

ion considering 𝑘 
𝑝 

1 is shown in Fig. 2 (b). More specifically, Eq. (6) is

epresented with the line l 0 in Fig. 2 , Eq. (8) is represented with 𝜋k in

ig. 2 (b) or 𝜋0 in Fig. 2 (a), depending on whether the projector distor-

ion is included or not. Therefore, the intersection of l 0 and 𝜋0 / 𝜋k is the

econstructed object P , and Eq. (13) is represented by the dotted line in

ig. 2 (b), commented as “Cubic curve in Eq. (13) ” . 

So far a non-iterative solution to the reconstruction is built and de-

cribed as the following steps: 

1) ( R 

p , R 

c , t c , t p ) → ( M, 𝜂); 

2) ( [ 𝑥 𝑐 
𝑑 
, 𝑦 𝑐 
𝑑 
] 𝑇 , 𝑘 𝑐 1 ) → ( [ 𝑥 𝑐 

𝑛 
, 𝑦 𝑐 
𝑛 
] 𝑇 ) ; 

3) ( [ 𝑥 𝑐 
𝑛 
, 𝑦 𝑐 
𝑛 
] 𝑇 , 𝑀) → ( 𝑎 0 , 𝑎 1 , 𝑎 2 , 𝑎 3 ) ; 

4) ( 𝑎 0 , 𝑎 1 , 𝑎 2 , 𝑎 3 , 𝑘 
𝑝 

1 , 𝜂) → 𝑧 𝑐 ; 

5) ( [ 𝑥 𝑐 
𝑛 
, 𝑦 𝑐 
𝑛 
] 𝑇 , 𝑧 𝑐 ) → ([ 𝑥 𝑤 , 𝑦 𝑤 , 𝑧 𝑤 ]) . 

Although the non-iterative reconstruction method is developed when

 

𝑝 

1 is included, it is still not an adaptive method when more projection

istortion parameters are considered. Different projector distortion pa-

ameters lead to different polynomials, and result in different equations

o be solved. For example, 𝑘 
𝑝 

1 leads to Eq. (11) and results in Eq. (13) to

e solved. When 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , and 𝑝 
𝑝 

2 are included, the solution becomes intri-

ate extremely and even more time-consuming than an iterative method.

n addition, 𝑘 
𝑝 

2 results in quintic equation, which has been proved ana-

ytically unsolvable, thus an iterative method is inevitable. 

.2. Improved solution 

The basic solution described in the last section is not appropriate in

ll cases, but it provides us an excellent idea to deal with the recon-

truction. It is deduced that the reconstruction can be simplified to the

roblem of solving a polynomial. Therefore, an outlet for the reconstruc-

ion is to find a polynomial to approximate Eq. (13) . 

A new projector model is proposed to implement our idea, as shown

n Fig. 3 . The pinhole model of camera is shown in Fig. 3 (a), in which an

bject P maps to a pixel p on image plane along with the light direction.

he conventional projector model based on the pinhole model is shown
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Fig. 2. The reconstruction of the structured light system. (a) the reconstruction without projector distortion; (b) the reconstruction when 𝑘 
𝑝 

1 is included. 

Fig. 3. Pinhole models in the structured light system. (a) the pinhole model of camera; (b) the conventional projector model; (c) the proposed projector model. 
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d  
n Fig. 3 (b). The projector is considered as an inverse camera, the solid

nd dashed arrows indicate the actual and assumed light direction in

inhole model respectively. In this model, the DMD is image plane and

he object projects its structured light patterns onto DMD, along with

he assumed light direction. The proposed projector model is shown in

ig. 3 (c), where the pinhole model is applied to describe the projector

ccording to the actual light direction. Specially, the DMD is considered

s the object in the pinhole model, and it reflects the light to the real

bject, the image plane in Fig. 3 (c), even though it is not an image plane.

n other words, an assumed object P on DMD maps to a point p on real

bject. 

To simplify the reconstruction, the projector distortion description

quations are reorganized corresponding to the proposed projector

odel, which are depicted as Eq. (14) . 

 

𝑝 
𝑛 = 

[ 
𝑥 
𝑝 
𝑛 

𝑦 
𝑝 
𝑛 

] 
= 𝐿𝐷𝐹 ( 𝑋 

𝑝 

𝑑 
) = (1 + 𝑘 

𝑝 

1 𝑟 
2 
𝑑 
+ 𝑘 

𝑝 

2 𝑟 
4 
𝑑 
) 𝑋 

𝑝 

𝑑 
+ 𝐷 𝑡 + 𝑂[ ( 𝑥 𝑝 

𝑑 
, 𝑦 
𝑝 

𝑑 
) 5 ] 

 𝑡 = 

[ 

𝑝 
𝑝 

1 (3 ( 𝑥 
𝑝 

𝑑 
) 2 + ( 𝑦 𝑝 

𝑑 
) 2 ) + 2 𝑝 𝑝 2 𝑥 

𝑝 

𝑑 
𝑦 
𝑝 

𝑑 

2 𝑝 𝑝 1 𝑥 
𝑝 

𝑑 
𝑦 
𝑝 

𝑑 
+ 𝑝 

𝑝 

2 ( ( 𝑥 
𝑝 

𝑑 
) 2 + 3 ( 𝑦 𝑝 

𝑑 
) 2 ) 

] (14) 

here 𝐿𝐷𝐹 is the lens distortion function of the proposed projector
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odel, 𝑟 2 
𝑑 
= ( 𝑥 𝑝 

𝑑 
) 2 + ( 𝑦 𝑝 

𝑑 
) 2 , 𝑋 

𝑝 
𝑛 is the normalized distorted coordinate

hen the proposed projector distortion parameters ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) are in-

luded, whose meaning is the same as the normalized undistorted co-

rdinate in Eq. (3) . 𝑋 

𝑝 

𝑑 
is the normalized undistorted coordinate when

 𝑘 
𝑝 

1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) are included, whose meaning is the same as the normalized

istorted coordinate in Eq. (4) . It is obvious that the proposed projector

odel in Fig. 3 (c) is the inverse of the model in Fig. 3 (b), thus the 𝑋 

𝑝 
𝑛 

n Fig. 3 (c) is the 𝑋 

𝑝 

𝑑 
in Fig. 3 (b) and vice versa. It should be mentioned

hat ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) is generally unequal to ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) . Actually, the

wo groups of distortion parameters, ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) and ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) for-

ulize two processes of projector coordinate transformation, 𝑋 

𝑝 

𝑑 
→ 𝑋 

𝑝 
𝑛 

nd 𝑋 

𝑝 
𝑛 → 𝑋 

𝑝 

𝑑 
. When the proposed projector model is applied, the cali-

ration is implemented by the linear least squares method to obtain the

roposed projector distortion parameters. 

Apart from the new projector model, phase constraint provided by

ncoding patterns is essential to the improved solution. The reconstruc-

ion is expressed as (( [ 𝑥 𝑐 
𝑑 
, 𝑦 𝑐 
𝑑 
] 𝑇 → [ 𝑥 𝑐 

𝑛 
, 𝑦 𝑐 
𝑛 
] 𝑇 ) , 𝜙) → ([ 𝑥 𝑤 , 𝑦 𝑤 , 𝑧 𝑤 ]) when the

rojector distortion is ignored, where the phase 𝜙 is expressed by the

ash-dotted line on the projector image plane, as shown in Fig. 2 (a). In

nother perspective, when the projector distortion is included, 𝜙 is the

ash-dotted curve on the projector image plane as shown in Fig. 2 (b),
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Fig. 4. The matching of corresponding points based on the epipolar constraint when the projector distortion is included. 
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c  
xpressed as 𝑥 
𝑝 
𝑛 . Furthermore, 𝜙 is also a dashed straight line on the pro-

ector image plane, but expressed as 𝑥 
𝑝 

𝑑 
. Therefore, the reconstruction

an be considered as the intersection of l 0 and 𝜋k in Fig. 2 (b), it can also

e considered as the process to find the matching position along with

he straight phase line. 

The improved solution is now available to the reconstruction. Based

n the phase constraint, 𝜙 and 𝑥 
𝑝 

𝑑 
are calculated directly. It is known

hat the matching position is located at the phase line, 𝜙 or 𝑥 
𝑝 

𝑑 
. Setting

 

𝑝 

𝑑 
as a known constant c and eliminating it in Eq. (14) , equations with

 

𝑝 

𝑑 
unknown are expressed as Eq. (15) . 

 

𝑝 
𝑛 = (1 + 𝑘 

𝑝 

1 ( 𝑐 
2 + ( 𝑦 𝑝 

𝑑 
) 2 ) + 𝑘 

𝑝 

2 ( 𝑐 
2 + ( 𝑦 𝑝 

𝑑 
) 2 ) 2 ) 𝑐 + 𝑝 

𝑝 

1 (3 𝑐 
2 + ( 𝑦 𝑝 

𝑑 
) 2 ) + 2 𝑝 𝑝 2 𝑐𝑦 

𝑝 

𝑑 

 

𝑝 
𝑛 = (1 + 𝑘 

𝑝 

1 ( 𝑐 
2 + ( 𝑦 𝑝 

𝑑 
) 2 ) + 𝑘 

𝑝 

2 ( 𝑐 
2 + ( 𝑦 𝑝 

𝑑 
) 2 ) 2 ) 𝑦 𝑝 

𝑑 
+ 2 𝑝 𝑝 1 𝑐𝑦 

𝑝 

𝑑 
+ 𝑝 

𝑝 

2 ( 𝑐 
2 + 3 ( 𝑦 𝑝 

𝑑 
) 2 ) 

(15)

It is obvious that Eq. (15) is expressed as two polynomials, and

 𝑥 
𝑝 
𝑛 , 𝑦 

𝑝 
𝑛 ] 𝑇 is the matching position to be solved. As 𝑦 

𝑝 

𝑑 
is unknown, un-

ortunately, Eq. (15) can not be solved directly, so an additional con-

traint is required. In this paper, the epipolar constraint [24] is applied,

hich is the straight line on projector image plane corresponding to any

 𝑥 𝑐 
𝑛 
, 𝑦 𝑐 
𝑛 
] 𝑇 . An epipolar pair is shown in Fig. 4 . For a point p c in camera

mage plane, the epipolar pair is l c and l p . Moreover, p p is always located

t l p . Assuming l p is expressed as Eq. (16) , the parameters ( A, B, C ) of

q. (16) are deduced with [ 𝑥 𝑐 
𝑛 
, 𝑦 𝑐 
𝑛 
] 𝑇 and [ 𝑅 

𝑐 𝑇 𝑐 ] . 

𝑥 𝑝 
𝑛 
+ 𝐵𝑦 𝑝 

𝑛 
+ 𝐶 = 0 (16)

Let us rewrite Eq. (15) to a compact form, Eq. (17) . 

 

𝑝 
𝑛 = 𝑓 1 ( 𝑦 

𝑝 

𝑑 
) 

 

𝑝 
𝑛 = 𝑓 2 ( 𝑦 

𝑝 

𝑑 
) (17)

here f 1 and f 2 are polynomials with unknown 𝑦 
𝑝 

𝑑 
. Combining

q. (16) and Eq. (17) , [ 𝑥 𝑝 𝑛 , 𝑦 
𝑝 
𝑛 ] 𝑇 is eliminated and a polynomial with

nly 𝑦 
𝑝 

𝑑 
unknown is obtained, expressed as Eq. (18) . The reconstruc-

ion is implemented after acquiring the matching position [ 𝑥 𝑝 
𝑑 
, 𝑦 
𝑝 

𝑑 
] 𝑇 by

olving Eq. (18) directly. 

 𝑓 1 ( 𝑦 
𝑝 

𝑑 
) + 𝐵 𝑓 2 ( 𝑦 

𝑝 

𝑑 
) + 𝐶 = 0 (18)

The reconstruction is described as the following steps: 

1) ( [ 𝑥 𝑝 
𝑑 
, 𝑦 
𝑝 

𝑑 
] 𝑇 , [ 𝑥 𝑝 𝑛 , 𝑦 

𝑝 
𝑛 ] 𝑇 ) → ( 𝑘 𝑝 1 , 𝑘 

𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) ; 
2) ( [ 𝑥 𝑐 

𝑑 
, 𝑦 𝑐 
𝑑 
] 𝑇 ) → 𝜙 → ( 𝑥 𝑝 

𝑑 
= 𝑐) ; 

3) ( [ 𝑥 𝑐 
𝑛 
, 𝑦 𝑐 
𝑛 
] 𝑇 , [ 𝑅 

𝑐 , 𝑇 𝑐 ]) → ( 𝐴, 𝐵, 𝐶) ; 
4) (( 𝑘 𝑝 1 , 𝑘 

𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) , 𝑐) → ( 𝑓 1 , 𝑓 2 ) ; 
5) (( 𝐴, 𝐵, 𝐶) , ( 𝑓 1 , 𝑓 2 )) → 𝑦 

𝑝 

𝑑 
; 

6) ( [ 𝑥 𝑐 
𝑑 
, 𝑦 𝑐 
𝑑 
] 𝑇 , [ 𝑥 𝑝 

𝑑 
, 𝑦 
𝑝 

𝑑 
] 𝑇 ) → ([ 𝑥 𝑤 , 𝑦 𝑤 , 𝑧 𝑤 ]) . 

However, it is still not an ideal method for the reconstruction as iter-

tion is inevitable when 𝑘 
𝑝 

2 is included and Eq. (18) is quintic. Moreover,

he estimation of ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) introduces accumulated error, which re-

uces the reconstruction accuracy. Taking Eq. (15) into consideration
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gain, it actually expresses the projector distortion with polynomials.

herefore, Eq. (17) reveals the essence that f 1 and f 2 describe the rela-

ion between [ 𝑥 𝑝 
𝑑 
, 𝑦 
𝑝 

𝑑 
] 𝑇 and [ 𝑥 𝑝 𝑛 , 𝑦 

𝑝 
𝑛 ] 𝑇 , which is appropriated by the poly-

omials, as illustrated in Fig. 4 . The dotted curves of distorted projector

n Fig. 4 are described by Eq. (17) . l p is the corresponding epipolar of

 c described by Eq. (16) . Therefore, the reconstruction is simplified by

pproximating f 1 and f 2 with specific polynomials, rather than Eq. (15) .

As depicted in Eq. (15) , f 1 is a quartic function, while f 2 is quintic.

 further analysis to Fig. 4 also manifests that f 1 is always one order

ower than f 2 , which is intelligible because 𝑥 
𝑝 

𝑑 
is constant, while 𝑦 

𝑝 

𝑑 
is

nknown. If the order of f 1 or f 2 is given, the corresponding polynomials

an be fitted with the least squares method. To avoid the iteration, f 1 
s fitted with a cubic polynomial and f 2 is with quartic, expressed as

q. (19) . 

 

𝑝 
𝑛 = 𝑏 0 + 𝑏 1 ( 𝑦 

𝑝 

𝑑 
) + 𝑏 2 ( 𝑦 

𝑝 

𝑑 
) 2 + 𝑏 3 ( 𝑦 

𝑝 

𝑑 
) 3 

 

𝑝 
𝑛 = 𝑑 0 + 𝑑 1 ( 𝑦 

𝑝 

𝑑 
) + 𝑑 2 ( 𝑦 

𝑝 

𝑑 
) 2 + 𝑑 3 ( 𝑦 

𝑝 

𝑑 
) 3 + 𝑑 4 ( 𝑦 

𝑝 

𝑑 
) 4 (19) 

here ( b 0 , b 1 , b 2 , b 3 ) and ( d 0 , d 1 , d 2 , d 3 , d 4 ) are coefficients to be fitted.

enerally, there are always hundreds of points for a specific 𝑥 
𝑝 

𝑑 
so that

q. (19) can always be fitted correctly. Combining Eq. (19) and Eq. (16) ,

he corresponding 𝑦 
𝑝 

𝑑 
can be solved by Eq. (20) . 

 0 + 𝑒 1 ( 𝑦 
𝑝 

𝑑 
) + 𝑒 2 ( 𝑦 

𝑝 

𝑑 
) 2 + 𝑒 3 ( 𝑦 

𝑝 

𝑑 
) 3 + 𝑒 4 ( 𝑦 

𝑝 

𝑑 
) 4 = 0 (20)

here 

 0 = 𝐴 𝑏 0 + 𝐵 𝑑 0 + 𝐶 

 1 = 𝐴 𝑏 1 + 𝐵 𝑑 1 
 2 = 𝐴 𝑏 2 + 𝐵 𝑑 2 
 3 = 𝐴 𝑏 3 + 𝐵 𝑑 3 
 4 = 𝐵 𝑑 4 

(21) 

The reconstruction is implemented by now with the polynomial in

q. (20) . Iteration and unnecessary accumulated error are avoided in

he reconstruction. The pipeline is described as the following steps: 

1) ( [ 𝑥 𝑐 
𝑑 
, 𝑦 𝑐 
𝑑 
] 𝑇 ) → 𝜙 → ( 𝑥 𝑝 

𝑑 
= 𝑐) ; 

2) ( 𝑦 𝑝 
𝑑 
, [ 𝑥 𝑝 𝑛 , 𝑦 

𝑝 
𝑛 ] 𝑇 ) → (( 𝑏 0 , 𝑏 1 , ... ) , ( 𝑑 0 , 𝑑 1 , ... )) ; 

3) ( [ 𝑥 𝑐 
𝑛 
, 𝑦 𝑐 
𝑛 
] 𝑇 , [ 𝑅 

𝑐 , 𝑇 𝑐 ]) → ( 𝐴, 𝐵, 𝐶) ; 
4) (( b 0 , b 1 , ...), ( d 0 , d 1 , ...), ( A, B, C )) → ( e 0 , e 1 , ...); 

5) ( 𝑒 0 , 𝑒 1 , ... ) → 𝑦 
𝑝 

𝑑 
; 

6) ( [ 𝑥 𝑐 
𝑑 
, 𝑦 𝑐 
𝑑 
] 𝑇 , [ 𝑥 𝑝 

𝑑 
, 𝑦 
𝑝 

𝑑 
] 𝑇 ) → ([ 𝑥 𝑤 , 𝑦 𝑤 , 𝑧 𝑤 ]) . 

In fact, there is still a minor problem in Eq. (20) that it always gives

our primitive solutions, but only one of them is correct. A pair of com-

lex roots and a pair of real roots can be found for Eq. (20) , the correct

olution can be picked out easily from the pair of real roots when re-

tricted by the valid field (the resolution of DMD images). 

. Experimental results 

To verify the proposed method, a calibration board with 64 circle

enters, shown in Fig. 5 , is measured by the monocular structured light
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Fig. 5. Calibration board with 64 circle centers. 

Table 1 

The error comparison of the iterative method and the proposed method. (unit: mm ). 

Error estimation with circle pair distances Error estimation with circle centers 

Standard deviation 80% marking line Standard deviation 

The iterative method ( 𝑘 𝑝 1 ) 0.1129 0.1419 0.5769 

The proposed method ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) Polynomial order : 4 0.0373 0.0507 0.1479 

( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) Polynomial order : 5 0.0374 0.0512 0.1474 

( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑘 
𝑝 

3 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) Polynomial order : 7 0.0374 0.0501 0.1511 
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T  
ystem we constructed, which is equipped with a projector, BENQ GP1,

orking at 896 ∗ 896, and a camera, MV-VD 120SC, shooting at a total

f 1280 ∗ 960 pixels. The circle centers are numbered from 1 to 64 ( “cir-

le center number ” in Fig. 5 ), and the distance between circle centers

 “horizontal/vertical circle pair ” distance in Fig. 5 ) is 30 mm with the

rror of ± 0.005 mm. 

The circle centers on the calibration board are measured by the iter-

tive method and the proposed non-iterative method respectively. The

easurement error of circle pair distance is shown in Fig. 6 , and the

istance from circle centers to the fitting plane of calibration board is

hown in Fig. 7 . 

The measurement error of the iterative method is shown in Fig. 6 (a)

nd that of the proposed method is shown in Fig. 6 (b) on the same

cale. It is obvious that the error in Fig. 6 (b) is less than the error in

ig. 6 (a). Some estimation parameters, including standard deviation and

0% marking line are calculated to make the comparison concrete, as

epicted in Table 1 . The 80% marking line is a positive threshold higher

han 80% circle pair absolute distances while lower than 20% circle pair

bsolute distances. The error of the iterative method is about three times

igher than that of the proposed method, regardless of both the standard

erivation and the 80% marking line. 

The 64 reconstructed circle centers are coplanar, thus the distances

rom the reconstructed circle centers to the fitting plane are considered

s the measurement error, which are shown in Fig. 7 . The error of the

terative method and the proposed method are plotted in Fig. 7 (a) and

ig. 7 (b) respectively, and trend lines are fitted with polynomials to

eveal the residual error. The standard deviations of Fig. 7 are also cal-

ulated and listed in Table 1 . It can be seen from Fig. 7 and Table 1 that
221 
he standard deviation of the iterative method is about four times higher

han that of the proposed method. The trend lines in Fig. 7 also indi-

ate that the lens distortion is not corrected completely by the iterative

ethod, but almost corrected completely by the proposed method. 

More experiments are conducted to further verify the proposed

ethod. The circle centers are reconstructed with the proposed method

n different conditions and the measurement error is shown in Fig. 8 .

he error shown in Fig. 8 (a) and Fig. 8 (b) is the same as that in Fig. 6 (b)

nd Fig. 7 (b), which is estimated by using the reconstructed circle cen-

ers when ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) is included and a quartic polynomial is fitted in

econstruction. In comparison to the Fig. 8 (a) and Fig. 8 (b), the error

hown in Fig. 8 (c) and Fig. 8 (d) is estimated when a quintic polynomial

s fitted, while the error shown in Fig. 8 (e) and Fig. 8 (f) is estimated

hen ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑘 
𝑝 

3 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) is included and a seven order polynomial is fit-

ed. Here 𝑘 
𝑝 

3 is the third-order radial distortion of the projector, an item

f Eq. (14) , which is expressed as 𝑘 
𝑝 

3 𝑟 
6 
𝑑 
. The standard deviation and 80%

arking line of Fig. 8 are also listed in Table 1 . It can be seen from

ig. 8 and Table 1 that the measurement error of the proposed method

s almost the same, and a higher order polynomial or additional distor-

ion parameters does not improve the performance significantly. There-

ore, a quartic polynomial is appropriate for the proposed method and

 𝑘 
𝑝 

1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) is sufficient for the projector distortion. 

Above all, the proposed method improves the performance of the

onocular structured light system obviously, which corrects the pro-

ector’s lens distortion dramatically by introducing the tangential dis-

ortion and avoids the iteration by constructing a quartic polynomial.

he experimental results also demonstrate that a quartic polynomial is
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Fig. 6. Error estimation with circle pair distances. (a) the iterative method. (b) the proposed method. 
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ppropriate and the tangential distortion is necessary for the structured

ight system. 

Some objects are measured to verify the efficiency of the proposed

ethod, including a boy sculpture and a pair of hands. The measurement

esults with the proposed method are rendered and shown in Fig. 9 . It is

bvious that the proposed method reserves most details of the sculpture

nd the hands, and loses almost no points except for the shading area. 

The boy sculpture in Fig. 9 is rendered with 102,249 points. As an

xample to compare the efficiency of two methods, the boy sculpture is
222 
lso reconstructed by the iterative method on the same computer. The

onsumed time are 14.637 seconds and 445.959 seconds when recon-

tructed by the proposed method and the iterative method respectively.

t can be deduced that the proposed method consumes 3.28% of the time

sed by the iterative method. In addition, the hands in Fig. 9 , rendered

ith 81,509 points, are also reconstructed with the above methods, and

he corresponding consumed times are 11.784 seconds and 352.468 sec-

nds. Therefore, the proposed method consumes 3.34% of the time used

y the iterative method. In conclusion, the experimental results demon-
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Fig. 7. Error estimation with circle centers. (a) the iterative method; (b) the proposed method. 
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trate that the proposed method is of good efficiency, and it consumes

.3% of the time consumed by the iterative method when one hundred

housand points are reconstructed. 

. Conclusions 

Reconstruction is one of the most important problems of the struc-

ured light system. In most cases, iterative method is applied in recon-

truction with only first-order radial distortion included, which is not

ccurate enough and time-consuming. In consideration of these disad-

antages, a non-iterative and accurate method is proposed in this pa-

er to implement the reconstruction. The proposed method describes
223 
he projector with the pinhole model according to the light direction,

nd then simplifies the reconstruction to a problem of solving a quar-

ic polynomial. There are two important distinctions in the proposed

ethod. Firstly, they analyze the projector model in a completely dif-

erent way. Secondly, compared to the iterative method, the proposed

ethod takes the tangential distortion of the projector into considera-

ion to improve the measurement accuracy, and avoids the iteration by

onstructing a quartic polynomial. The experimental results show that

he measurement accuracy and the efficiency are improved obviously.

owever, as more than one pattern are usually used in the structured

ight system to achieve satisfied measurement accuracy, it is essential to

mprove the encoding method to make the structured light system real-
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Fig. 8. Error estimation of the proposed method in different conditions. (a) and (b) error estimation when ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) is included and a quartic polynomial is fitted; (c) and (d) error 

estimation when ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) is included and a quintic polynomial is fitted; (e) and (f) error estimation when ( 𝑘 𝑝 1 , 𝑘 
𝑝 

2 , 𝑘 
𝑝 

3 , 𝑝 
𝑝 

1 , 𝑝 
𝑝 

2 ) is included and a seven order polynomial is fitted. 

Fig. 9. The rendered reconstruction results of real objects. 
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ime. If an accurate and universal single shot fringe projection method

s developed, real-time reconstruction could be expected with the recon-

truction method proposed in this paper. 
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