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ABSTRACT

We introduce MDSGen, a novel framework for vision-guided open-domain sound
generation optimized for model parameter size, memory consumption, and infer-
ence speed. This framework incorporates two key innovations: (1) a redundant
video feature removal module that filters out unnecessary visual information, and (2)
a temporal-aware masking strategy that leverages temporal context for enhanced
audio generation accuracy. In contrast to existing resource-heavy Unet-based
models, MDSGen employs denoising masked diffusion transformers, facilitating
efficient generation without reliance on pre-trained diffusion models. Evaluated on
the benchmark VGGSound dataset, our smallest model (5M parameters) achieves
97.9% alignment accuracy, using 172× fewer parameters, 371% less memory, and
offering 36× faster inference than the current 860M-parameter state-of-the-art
model (93.9% accuracy). The larger model (131M parameters) reaches nearly
99% accuracy while requiring 6.5× fewer parameters. These results highlight the
scalability and effectiveness of our approach.

1 INTRODUCTION
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Figure 1: Aligment Score. Comparison with
SOTA audio generation methods on the VG-
GSound test set. The diameter of each circle repre-
sents the memory usage during inference.

Vision-guided audio generation has gained sig-
nificant attention due to its crucial role in Fo-
ley sound synthesis for the video and film pro-
duction industry (Ament, 2014). This paper fo-
cuses on Video-to-Audio (V2A) generation, a
key task not only for adding realistic sound to
silent videos created by emerging text-to-video
models (Blattmann et al., 2023; Khachatryan
et al., 2023; Huang et al., 2024; Ouyang et al.,
2024) but also for enhancing practical applica-
tions in professional video production. Sound
generation is essential for creating immersive ex-
periences and achieving seamless audio-visual
synchronization. However, achieving both se-
mantic alignment and temporal synchronization
in V2A remains a significant challenge. Pre-
vious approaches, such as GAN-based meth-
ods (Chen et al., 2020b) and Transformer-based
autoregressive models (Iashin & Rahtu, 2021),
have struggled with synchronizing audio to content while maintaining relevance. Diff-Foley (Luo
et al., 2023) improved this by employing contrastive learning for video-audio alignment and leverag-
ing diffusion models, achieving impressive sound quality. Other methods like See and Hear (Xing
et al., 2024) and FoleyCrater (Zhang et al., 2024) utilize large pre-trained models for high-quality
audio generation. However, these models rely on hundreds of millions of parameters. In contrast,
our work demonstrates that a much smaller model can deliver high performance (see Fig. 1). Most
existing approaches rely on Unet architectures, which present scalability limitations. Additionally,
current methods often use video features that include redundant information.
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In contrast, we propose MDSGen, a novel framework for open-domain sound synthesis based on a pure
Transformer architecture. MDSGen incorporates a temporal-aware masking scheme and a redundant
feature removal module, enabling it to achieve superior performance while being significantly more
efficient. Further analysis highlights the effectiveness of our approach with compelling evidence of
its advantages. Our contributions are as follows:

• We introduce a simple, lightweight, and efficient framework for open-domain sound genera-
tion using masked diffusion transformers, delivering high performance.

• Our approach implements Temporal-Awareness Masking (TAM), specifically designed for
audio modality, in contrast to spatial-aware masking of the existing work, leading to more
effective learning.

• We identify inefficiencies in the existing approach that fail to remove redundant video
features. Our Reducer module learns to selectively resolve these redundancies, producing
more refined features for improved audio generation.

• We validate our method on the benchmark datasets VGGSound and Flickr-SoundNet,
surpassing state-of-the-art approaches across multiple metrics, with particularly significant
improvements in alignment accuracy and efficiency, specifically in model parameters,
memory consumption, and inference speed.

2 RELATED WORKS

2.1 OPEN-DOMAIN SOUND GENERATION

Auto-regressive Transformer-based Approach. Key works in this area include SpecVQGAN
(Iashin & Rahtu, 2021), which uses a cross-modal Transformer to generate sounds from video tokens
auto-regressively, and Im2Wav (Sheffer & Adi, 2023), which conditions audio token generation on
CLIP features. However, these methods suffer from slow inference speeds due to their sequential
generation process and limited vision-audio alignment, negatively impacting performance.

Diffusion-based Approach. To overcome these limitations, Diff-Foley (Luo et al., 2023) introduced
a two-stage method that enhances semantic and temporal alignment via contrastive pre-training on
aligned video-audio pairs, followed by latent diffusion for improved inference efficiency. Similarly,
See and Hear (Xing et al., 2024) utilizes ImageBind (Girdhar et al., 2023) and AudioLDM (Liu et al.,
2023) for various audio tasks, while FoleyCrafter (Zhang et al., 2024) combines a pre-trained text-
to-audio model with a ControlNet-style module (Zhang et al., 2023) for high-quality, synchronized
Foley generation. Although these diffusion approaches show promise, they often rely on large models
with hundreds of millions of parameters and predominantly utilize U-Net architectures, leaving
the potential of transformer-based architectures largely untapped. Our proposed method leverages
diffusion transformers (Peebles & Xie, 2023) and masking techniques for efficient learning. It also
addresses the issue of redundant video features in Diff-Foley (Luo et al., 2023), which hinders further
improvements in audio generation.

2.2 LATENT MASKED DIFFUSION TRANSFORMERS

The Denoising Diffusion Transformer (DiT) introduced by Peebles & Xie (2023) replaces the
traditional U-Net with a fully transformer-based architecture for latent diffusion, demonstrating
remarkable performance in large-scale image generation on ImageNet. Following this, Gao et al.
(2023) proposed the Masked Diffusion Transformer (MDT), which enhances ImageNet generation
through spatial context-aware masking. Inspired by MDT, Pham et al. (2024) developed X-MDPT,
using cross-view masking to establish correspondence between pose and reference images for
improved person image generation. Additionally, MDT-A2G (Mao et al., 2024) explored masked
diffusion transformers for gesture generation, while QA-MDT (Li et al., 2024) adapted this technique
for music generation. In contrast to these works, we focus on lightweight masked diffusion models
for video-guided audio generation, introducing temporal-aware masking for audio and a design that
removes redundant video features to enhance generation effectiveness.

2
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Figure 2: Overview of the proposed highly-efficient MDSGen framework, utilizing denoising
masked diffusion transformers to efficiently learn video-conditional distributions for audio generation,
replacing traditional Unet-based methods. The fire icon denotes trainable modules, and the locked
icon denotes frozen ones. Green arrows → denote branches used only during training, blue arrows →
are for only inference, and black arrows → are used in both training and inference.

2.3 MASKED DATA IN THE AUDIO MODALITY

Several works have explored masking techniques for audio processing. MaskVAT (Pascual et al.,
2024) introduces a V2A system that integrates a full-band audio codec, masked generative modeling,
and multi-modal features to enhance audio quality, semantic alignment, and temporal synchronization.
SoundStorm (Borsos et al., 2023) employs the non-autoregressive MaskGIT (Chang et al., 2022)
approach for efficient text-to-audio generation. Similarly, VamNet (Garcia et al., 2023) applies
MaskGIT to music generation, while (Bai et al., 2022) uses masking in the pixel space of mel-
spectrograms for non-diffusion-based text-to-audio tasks. These approaches differ fundamentally
from our diffusion-based framework, which applies masking in the latent space with added Gaussian
noise. AudioMAE (Huang et al., 2022) and SpecAugment (Park et al., 2019) share similarities with
our method in employing masking for audio data. However, key distinctions exist: both focus on
masking in the pixel space of clean mel-spectrograms for representation learning in downstream
recognition tasks. In contrast, our approach utilizes masking in the latent space of a VAE within the
diffusion framework, targeting audio generation.

3 METHOD

We aim to develop a simple yet effective framework for vision-guided sound generation using trans-
formers, addressing the limitations of existing approaches that rely on traditional U-Net architectures,
which are less scalable and efficient. Our framework, illustrated in Fig. 2, consists of a novel
Vision Extractor with a learnable Reducer that captures essential information from video input
to generate a concise conditional output for the denoising diffusion process. Next, a Denoising
Diffusion Transformer maps Gaussian noise to sound distributions using extracted visual features.
We also introduce a Masked Temporal-Aware Network (MTANet) for regularization, boosting
performance. Finally, channel selection for mel-spectrograms, which enhances results with image
VAEs, is optional.

3.1 DENOISING DIFFUSION TRANSFORMER

Our method supports both audio- and image-based VAEs. For instance, we describe using an
image VAE (Luo et al., 2023; Chen et al., 2024), and for audio VAEs like AudioLDM, we adjust
the three channels to one. We adopt the DiT backbone introduced by Peebles & Xie (2023) for
denoising diffusion training. Given an audio signal A ∈ RLA of length LA and a silent video
V ∈ RLV ×3×224×224 of length LV , the audio is first transformed into a mel-spectrogram X ∈
R128×512, while the video is encoded into v ∈ RLV ×512 and further reduced to v⃗ ∈ R1×D. The
mel-spectrogram is repeated across 3 channels, forming X′ ∈ R3×128×512, and passed through the
VAE from Stable Diffusion (Rombach et al., 2022; Luo et al., 2023) to obtain a latent embedding
x ∈ R4×16×64. This latent representation is patched and tokenized into image tokens using a patch
size of p = 2 (DiT’s default), resulting in x′ ∈ R256×D, where Lx′ = 256 and D = 768 for

3
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the B-size model. These tokens are then fed into the N = N1 + N2 self-attention layers of the
Transformer to predict the noise ϵ added to the latent x. Conditioned on the video encoding v⃗, the
Transformer model ϕ learns the distribution pϕ(x|v⃗). During training, Gaussian noise ϵ ∈ N (0, I) is
added to the latent x to generate xt at timestep t ∈ [1, T ]. The overall training objective is:

L∑ = Ex,v⃗,ϵ∥ϵ− ϵϕ(xt, v⃗, t)∥2 + λEx,v⃗,ϵ∥ϵ− ϵϕ(Mϕ(xt), v⃗, t)∥2. (1)

Here, λ is the balance factor between the standard denoising diffusion loss (the first term in Eq.
1) and the masking loss (the second term), with λ = 1.0 for optimal performance. The masking
function Mϕ, which includes the MTANet introduced later, applies temporal-aware masking. During
inference, given a silent video, the model starts from Gaussian noise (no audio provided), and the
predicted latent x̂ ∈ R4×16×64 is iteratively denoised and decoded by the VAE decoder to recover
the mel-spectrogram X̂RGB ∈ R3×128×512. Channel selection refines this into X̂ ∈ R128×512, and
the final waveform is reconstructed from the mel-spectrogram using the Griffin-Lim (Griffin & Lim,
1984), or neural HifiGAN vocoder.

3.2 VISION EXTRACTOR

The second key component of our framework is the Vision Extractor with a learnable Reducer
network that aligns video features with audio while condensing temporal information. We leverage
the pre-trained CAVP model from (Luo et al., 2023), which was trained on Audioset using contrastive
loss to extract video features aligned with audio. However, we identified that the CAVP features
contain redundancies that could negatively impact generation quality. Diff-Foley (Luo et al., 2023)
linearly maps original feature dimensions from v ∈ RLV ×512 to v ∈ RLV ×768 and retains this
full dimensionality during the diffusion process via cross-attention, with LV is the video feature
length. Our approach reduces the dimensionality to v⃗ ∈ R1×768, offering more concise and efficient
information for denoising diffusion. Specifically, we project the encoded features LV × 512 through
a multi-layer perceptron (MLP) into the transformer feature space (LV × 768 for the size B-model).
These features are then passed through a reducer module, an 1 × 1 convolutional layer, which
condenses the high-dimensional features into a lightweight form v⃗ ∈ R1×768. This compact repre-
sentation is integrated into the denoising diffusion process through Adaptive LayerNorm (AdaLN)
modulation. Our method minimizes redundant features that could lead to overfitting, as shown in the
train/test alignment accuracy gap Appendix Sec. A.2. Our analysis shows that the LV -frame input
features share over 90% similarity, indicating considerable redundancies.

Intuition. Our simple yet effective reducer design treats the temporal dimension of video (LV = 32)
as feature channels and performs a non-linear projection to a single channel, functioning similarly
to channel attention by weighting important channels and summing them. This acts as a bottleneck
that distills and distributes video temporal information across the 768 dimensions, aligning better
with each audio token, which also has a 768-dimensional space. This approach, combined with the
transformer network, significantly improves alignment accuracy up to approximately 99%.

3.3 AUDIO MASKED TEMPORAL-AWARE NETWORK
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Figure 3: Audio Masking Strategies. Here, the
red square red-square is the learnable mask token.

Thirdly, we introduce a novel technique that ex-
ploits the sound information’s natural character-
istic: the temporal sense. The existing masking,
Spatial-Aware Mask (SAM) proposed by MDT
(Gao et al., 2023) is designed for image data
to learn the spatial context within the image.
But here, in the audio data (represented by mel-
spectrogram with 2D data), the SAM masking
method yields a sub-optimal solution because it
cannot model the exact nature of temporal mean-
ing in the audio data. To overcome this limita-
tion, we propose the Temporal-Aware Mask
(TAM) strategy instead of SAM, which tries to
mask the whole set of tokens along the temporal
dimension. As shown in the ablation section,
this novel masking helps significantly boost performance in all metrics compared to the existing
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method SAM specified for image data as shown in Fig. 3. Interestingly, despite this simple strategy,
it can help the denoising transformer models learn to generate audio much better than random masks
as used in existing MDT designed for image data.

During training, we mask with ηm% of temporal tokens, we feed only the visible tokens to the N1

blocks of the transformer: o1 = EncoderN1(x
′ ⊙ (1 − m)) (m is a mask matrix and ⊙ denotes

element-wise multiplication) and in the MTANet we concatenate the resulting tokens with the
learnable mask tokens M and feed into a single block of predictor (referred to as side-interpolator
in MDT) to achieve the full latent tokens before feeding into the final N2 self-attention blocks of
the transformer: o2 = DecoderN2

(cat(o1,Mϕ(M ∗ x′ ⊙ (m)))). Here we find that different from
the design for ImageNet with N2 = 2 in the default MDT, we use N2 = 4 which gives a better
performance for audio data. After training, the masked modeling branch is discarded, maintaining
only its positional embedding for inference.

3.4 CLASSIFIER-FREE GUIDANCE

We adopt the dynamic Classifier-Free Guidance (CFG) method from previous works on masked
diffusion transformer models (Gao et al., 2023) used in ImageNet. However, unlike image tasks, we
find that in audio generation, the optimal CFG value is between 5 and 6, with a power scale of 0.01.
Notably, Classifier-Guidance (CG) has been shown to significantly boost performance in Diff-Foley
(Luo et al., 2023), where their method relies heavily on CG for optimal results. In contrast, our
approach without CG surpasses Diff-Foley (CFG+CG) across multiple metrics. While incorporating
CG improves our framework in terms of alignment accuracy and KL, it does not enhance other
metrics. Hence, for simplicity, we omit CG in most of our experiments.

3.5 VAE CHOICE FOR MEL-SPECTROGRAM

Our method supports both Audio- and Image-trained VAEs. Ablation finds that audio quality varies
across the RGB output channels of image-trained VAEs. Since the mel-spectrogram is 2D, we
duplicate it into three channels for Stable Diffusion VAE. At the decoding stage, the VAE outputs
three channels: X̂RGB ∈ R3×128×512, with X̂RGB [i, :, :] ∈ R128×512, i ∈ {0, 1, 2} representing the
R, G, and B channels. Diff-Foley (Luo et al., 2023) used the R channel as output, but our empirical
tests consistently show that the G channel performs better. However, when using the audio VAE, i.e.
AudioLDM VAE, channel selection is no longer required.

4 EXPERIMENTS

4.1 DATASET AND EVALUATION METRICS

(i) Dataset. We evaluate our method on the VGGSound dataset (Chen et al., 2020a), using the original
train/test splits with 175k and 15k samples, respectively, and on the Flick-SoundNet dataset Aytar
et al. (2016) with 5k test samples. (ii) Metrics. We first use the same metrics as prior work (Luo
et al., 2023), including FID, IS, KL, and Alignment Accuracy, using their provided scripts for Align.
Acc. and SpecVQGAN code for FID, IS, and KL. Second, we assess general vision-audio alignment
in the Image2Audio task using CIoU and AUC metrics with scripts from (Mo & Morgado, 2022).
Third, we compare efficiency using parameter count, memory usage, and inference speed. Lastly, we
provide the FAD scores and MOS results from human evaluations in the Appendix.

4.2 IMPLEMENTATION DETAILS

All models are trained and tested on a single A100 GPU (80GB) with a batch size of 64 and a learning
rate of 5e-4, using the Adan optimizer (Xie et al., 2024) for faster training. Unlike MDTv2 (Gao
et al., 2023), we skip the macro-style of side interpolator design, as it was ineffective for our task,
and instead use a simple self-attention block at decoder layer 4. Video-audio pairs are truncated to
8.2 seconds before encoding, following (Luo et al., 2023). Our model comes in three main variants:
Tiny (5M), Small (33M), and Base (131M), with the Large (460M) variant showing overfitting. We
primarily focus on the T, S, and B models.
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4.3 MAIN RESULTS

A. VGGSound dataset. Compared to state-of-the-art approaches, our method significantly outper-
forms all competitors’ alignment accuracy while being far more efficient regarding parameters and
inference speed (Tab. 1). Alignment accuracy, a metric introduced by (Luo et al., 2023), assesses
synchronization and audio-visual relevance using a separate classifier trained to predict real audio-
visual pairs. Remarkably, our Transformer-based model, MDSGen-Tiny (5M), trained from scratch,
achieves 97.9% accuracy, surpassing the second-best Diff-Foley (860M), which is 172× larger and
depends on a backbone of Stable Diffusion pre-trained on billion image-text pairs.

As shown in Tab. 1, Diff-Foley struggles without a pre-trained backbone, with a significant drop to
FID 16.98 and IS 24.91. In contrast, our smallest model, MDSGen-T (5M), trained from scratch,
achieves FID 14.18 and IS 37.51, emphasizing the overfitting issues of heavy U-Net-based models
compared to our lightweight Transformers. Our larger model, MDSGen-B (131M), achieves state-of-
the-art alignment accuracy (≈ 99%) and an IS of 57.12 at 800k steps, though longer training leads to
overfitting and declines in other metrics.

Table 1: Benchmark on VGGSound test. Generation quality comparison of different approaches. †
gets from (Luo et al., 2023), ‡ denotes without pre-trained SDv1.4. * denotes results with pre-trained
SDv1.4, we reproduce it using the public checkpoint.

Method FAD↓ FID↓ IS↑ KL↓ Align. Acc.↑ Time↓ (s) #Params↓ Cost↓
SpecVQGAN (Iashin & Rahtu, 2021)† - 9.70 30.80 7.03 49.19 5.47 308M 61×

Im2Wav (Sheffer & Adi, 2023) † - 11.44 39.30 5.20 67.40 6.41 448M 90×
Diff-Foley (Luo et al., 2023) †‡ - 16.98 24.91 6.05 92.61 0.38 860M 172×
Diff-Foley (Luo et al., 2023) * 4.71 10.55 56.67 6.49 93.92 0.36 860M 172×

See and Hear (Xing et al., 2024) 5.55 21.35 19.23 6.94 58.14 18.25 1099M 220×
FoleyCrafter (Zhang et al., 2024) 2.45 12.07 42.06 5.67 83.54 2.96 1252M 250×

MDSGen-T (Ours) 500k - 14.18 37.51 6.25 97.91 0.01 5M 1.0×
MDSGen-S (Ours) 500k - 12.92 44.38 6.29 98.32 0.02 33M 6.6×
MDSGen-B (Ours) 500k 2.16 11.19 52.77 6.27 98.55 0.05 131M 26.2×
MDSGen-B (Ours) 800k - 12.29 57.12 6.43 91.62 0.05 131M 26.2×

Table 2: Benchmark on Flick-SoundNet test.
Comparison of different approaches. ‘Bold’ and
“underline” denote the best and second-best, re-
spectively.

Method CIoU↑ AUC↑
Diff-Foley (Luo et al., 2023) 81.02 55.19

See and Hear (Xing et al., 2024) 81.20 55.45
FoleyCrafter (Zhang et al., 2024) 81.78 55.57

MDSGen-B (Ours) 500k 82.01 55.51

Ground Truth 83.94 63.60

B. Flickr SoundNet dataset. We use the mod-
els trained on VGGSound to test on Sound-
Net dataset to evaluate its generalization. First,
through quantitative metrics in the sound source
localization task with Flickr-SoundNet (Aytar
et al., 2016) test set. Second, qualitatively com-
pare the generated audio across different meth-
ods. As shown in Tab. 2, our method out-
performs other methods on the CIoU metric
(82.01%) closer to the ground truth (83.94%),
while the AUC remains comparable (around
55.5%). It shows that our generated audio provided better-aligned features with the visual information
to localize the sound source. Diff-Foley performs worst, indicating that it is more overfitting. We
provide their visualizations in the Appendix.

5 ABLATION STUDY

We attribute the strong performance of our models to three key factors. First, the Transformer
backbone enables more effective learning of the audio modality compared to existing Unet-based
diffusion methods (Diff-Foley, See and Hear, FoleyCrafter). Second, our innovative Reducer module
mitigates potential redundancies in the video input. Third, the temporal masking model acts as a
robust regularizer, further enhancing the Transformer’s performance. A detailed analysis of these
components is provided in the following sections.

5.1 ALIGNMENT ACCURACY: A CONFIDENCE SCORE PERSPECTIVE

We assess the enhancement of alignment accuracy in our method by analyzing confidence scores
from the VGGSound test set, using the output of the sigmoid function from the trained classifier

6
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Figure 4: Confidence Scores. Compared to FoleyCrafter (left) and Diff-Foley (middle), our method
(right) produces many more audio samples with higher confidence that align with their corresponding
videos on the VGGSound test set (∼ 15k samples).

that predicts audio-video alignment. As illustrated in Fig. 4, FoleyCrafter (acc=83.54%) produces
many low-confidence samples, indicating misalignment. In contrast, Diff-Foley (93.9%) achieves
a higher proportion of high-confidence scores. Remarkably, our method reaches an accuracy of
98.6%, significantly increasing the number of high-confidence samples and demonstrating superior
audio-video alignment compared to other approaches.

5.2 FEATURE DIMENSIONALITY REDUCTION AND REDUNDANT FEATURES IN CAVP

Table 3: Dimension Reduction. Compare the
original CAVP and Ours’s features.

Video Feat. Cond. Dim. FID IS KL Align. Acc.
Original CAVP 32× 768 13.55 50.12 6.38 96.18

Reduced (Ours) 1× 768 11.19 52.77 6.27 98.55

Unlike Diff-Foley, which uses a U-Net-based
Stable Diffusion model and incorporates all 32
video frame features for cross-attention, we
found that reducing video features from 32 chan-
nels to a single channel significantly improves
audio generation performance across all metrics
(Tab. 3). Diff-Foley’s CAVP encodes video features at 32× 512, aligning with the audio’s 32-channel
representation (also 32× 512) for latent-level alignment via contrastive learning. However, in the
second stage, a mismatch arises as the VAE reduces audio dimensions to 4× 16× 64 while video
expands to 32 × 768, leading to redundancy and inefficiencies. Reducing video dimensionality
to 1 × 768 representation acts as a bottleneck, simplifying learning and enhancing alignment, as
supported by our results in the Appendix.

Table 4: Redundant Features.
Cosine similarity between the
frame’s features.

Input Similarity (CAVP)
Video 0.9087
Image 0.9233

Analysis of the CAVP features in Diff-Foley shows significant redun-
dancy, with cosine similarity averaging 0.9087 for real videos and
0.9233 for identical frames (Tab. 4). These high similarity scores
suggest that the feature vectors from multiple frames largely over-
lap, limiting the model’s ability to learn distinctive characteristics
essential for effective audio synthesis. This issue worsens when Diff-
Foley expands features to a 32× 768 dimension, diluting key traits
for latent diffusion modeling. In contrast, our approach employs a Reducer module to consolidate the
32 video frame features into a 768-dimensional representation, effectively reducing redundancy and
enhancing focus on salient features, which improves alignment accuracy and overall performance in
audio generation tasks.

5.3 DOES NEURAL VOCODER HELPS?

We conducted experiments by training a separate neural vocoder to convert mel-spectrograms back to
waveforms. Using the publicly available HiFi-GAN code from GitHub, we trained the vocoder from
scratch on the VGGSound dataset, achieving good convergence within three days. As shown in Tab.
5, our method achieves an FAD score of 4.3788 with the simple Griffin-Lim algorithm, outperforming
both See-and-Hear (5.5547) and Diff-Foley (6.0810). When enhanced with the HiFi-GAN neural
vocoder, our method further improves the FAD score to 2.1610, achieving state-of-the-art performance
on this metric. This result not only highlights the superiority of our approach but also demonstrates
its robustness when evaluated beyond the metrics reported in Tab. 1.
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Table 5: FAD on VGGSound test set. Our method MDSGen-B using the simple Griffin-Lim
outperforms the two methods and is state-of-the-art when equipped with a vocoder HifiGAN.

Method See-and-hear FoleyCrafter Diff-Foley Diff-Foley MDSGen-B MDSGen-B
(neural vocoder) (neural vocoder) (Griffin-Lim) (neural vocoder) (Griffin-Lim) (neural vocoder)

FAD↓ 5.5547 2.4554 6.0810 4.7168 4.3788 2.1610

5.4 SUBJECTIVE HUMAN EVALUATION TESTS

We conducted a human evaluation by generating 50 audio samples based on 50 videos for each
method. Five participants were asked to evaluate each method. Participants were instructed to watch
the videos and listen to the corresponding audio, rating each on a scale from 1 to 5 based on the
following criteria: 1) Audio Quality (AQ): How good is the sound quality? and 2) Audio-Video
Content Alignment (AV): How well does the sound match the video content? The mean opinion scores
(MOS) for each metric (ranging from 1 to 5) are presented in Tab. 6. The results from our human
evaluation demonstrate that the waveforms generated by our model outperform those of competing
methods, receiving higher scores across the evaluation criteria. Participants consistently rated the
audio quality and alignment with the video content more favorably for our generated waveforms,
indicating superior perceptual performance.

Table 6: Human Evaluation (MOS). Our method MDSGen-B equipped with a vocoder HifiGAN.
AQ: Audio Quality, AV: Audio-visual content relevance.

Method See-and-hear FoleyCrafter Diff-Foley MDSGen-B (Ours) Ground Truth
MOS-AQ↑ 2.68±0.25 3.21±0.23 3.29±0.24 3.66±0.23 4.74 ±0.12
MOS-AV↑ 2.95±0.20 3.44±0.26 3.56±0.23 3.76±0.21 4.62±0.23

5.5 MASKING DIFFUSION STRATEGIES

We explore various audio-masking methods in diffusion transformers (Fig. 3) and compare them
to traditional image-based techniques like SAM used with ImageNet (Gao et al., 2023). Our find-
ings reveal that audio data behaves differently from images (SAM), with incorporating temporal
awareness (TAM) into the masking task significantly boosting performance across all metrics (Tab.
7), including a 4-point IS score increase from 48.66 to 52.77. Using DiT without masking leads
to suboptimal results across all metrics, highlighting the critical role of masking in model learning.
TAM outperforms FAM, as masking in the temporal dimension typically yields better performance

Table 7: Masking Strategy for Audio Generation. Comparison of different ways to train diffusion
transformer-based models. Masking on temporal audio gives the best performance.

Masking Method Mask Temporal FID↓ IS↑ KL↓ Align. Acc.↑ (%)
DiT (Peebles & Xie, 2023) × × 14.55 46.11 6.51 97.12

Random, SAM (Gao et al., 2023) ✓ × 12.44 48.66 6.30 98.15
Frequency, FAM ✓ × 12.79 46.33 6.41 97.58

Temporal, TAM (Ours) ✓ ✓ 11.19 52.77 6.27 98.55

in audio generation. This is likely due to the stronger impact of temporal structure on coherence,
perceptual quality, and the dependencies within audio sequences.

5.6 LEARNED WEIGHTS OF REDUCER

We analyzed how our models allocate attention across video frames by visualizing their learned
magnitude weights (Fig. 5). The upper figure shows that our model applies varying attention
levels, with larger models exhibiting higher weights and more distinct differences. After softmax
normalization (bottom figure), consistent trends are observed for various channels, though not all,
with model B focusing more on channels 1, 2, and 32. These findings demonstrate that the Reducer
effectively captures key features, selectively updating weights to prioritize relevant ones for audio
generation.
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Figure 5: Learned Weights of Reducer. Comparison of our three models.

5.7 SCALABILITY

We evaluate the scalability of MDSGen, the first to explore ViT-based masked diffusion models for
vision-guided audio generation. Results in Tab. 8 show that increasing the model size from T to B
improves all metrics. However, further scaling to the L model leads to a performance drop, indicating
potential overfitting at larger sizes.

Table 8: Scalability. We ablate four variants Tiny (T), Small (S), Base (B), and Large (L).

Model Config. FID↓ IS↑ KL↓ Align. Acc.↑ #Params #Layers Dim. #Heads
MDSGen-T 13.93 39.24 6.17 97.9 5M 12 192 3
MDSGen-S 12.92 44.38 6.29 98.3 33M 12 384 6
MDSGen-B 11.19 52.77 6.27 98.6 131M 12 768 12
MDSGen-L 12.68 49.53 6.56 97.9 461M 24 1024 16

5.8 SAMPLING TOOLS

Table 9: CFG and CG. We examine the effect
of classifier-free guidance and classifier guidance.
Results are shown with model MDSGen-B. Gray
indicates the default.

Setup FID↓ IS↑ KL↓ Align. Acc.↑
No Guidance 16.50 23.54 6.85 84.1

CFG 11.19 52.77 6.27 98.6
CFG + CG 11.25 51.48 6.24 98.8

Sampling Method. We employ DPM-Solver
(Lu et al., 2022) with 25 steps for sampling dur-
ing inference. We find that increasing from 25 to
50 steps with dynamic classifier-free guidance
(Gao et al., 2023) can slightly improve the per-
formance. We used CFG = 5 and power scaling
α = 0.01 for the optimal setting. Classifier-
Guidance (CG). We found that combining CFG
and CG slightly improves alignment accuracy
and KL, consistent with (Luo et al., 2023), but has no impact on other metrics (Tab. 9), which
differs from their findings. A thorough investigation of network architecture and additional datasets is
needed to assess the complementary effects of CFG and CG, which is beyond the scope of our work.

5.9 COMPARE THE EFFICIENCY

Table 10: Efficiency Comparison. Our approach is simple
and highly efficient across all metrics, with superior align-
ment accuracy compared to existing methods.

Method Time↓ Mem. Use↓ #Params↓ Align. Acc.↑
Im2Wav (Sheffer & Adi, 2023) 6.41s 1684M 448M 67.4
See and Hear (Xing et al., 2024) 18.25s 14466M 1280M 58.1
FoleyCrafter (Zhang et al., 2024) 2.96s 12908M 1252M 83.5

Diff-Foley (Luo et al., 2023) 0.36s 5228M 860M 93.9

MDSGen-T (Ours) 0.01s 1406M 5M 97.9
MDSGen-S (Ours) 0.02s 1508M 33M 98.3
MDSGen-B (Ours) 0.05s 2132M 131M 98.6

We evaluated inference time, parame-
ter count, and memory usage on a sin-
gle A100 GPU (80GB) with batch size
1. Tab. 10 shows our method is signif-
icantly faster, uses fewer parameters,
and consumes less memory than exist-
ing methods. Specifically, Diff-Foley
(860M) achieves 93.9% alignment ac-
curacy with a 0.36s inference time,
while our MDSGen-T (5M) reaches
97.9% in just 0.01s, 36× faster and 371% more memory efficient. Our larger model MDSGen-B
(131M) improves accuracy to 98.6%, still 7.2× faster and 245% more memory efficient than Diff-
Foley. Compared to FoleyCrafter and See and Hear, MDSGen-T is 296× and 1825× faster, respec-
tively, while being 10× more memory efficient. We provide additional details on training efficiency
in the Appendix, further emphasizing the remarkable efficiency of our approach.
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Figure 6: Waveform and Mel-Spectrogram Comparison. Sample is taken from the test set
of the VGGSound dataset. Our model generates sound more closely aligned with the ground
truth than existing methods. The video of a woman playing drum by hand, demo file “0NIE-
eDk92M 000029.wav” is available in the supplementary material.

5.10 VISUALIZATIONS

We visualize different approaches using test video samples from the VGGSound dataset. As shown
in Fig. 6, our method generates mel-spectrograms that closely match the ground truth (right figure),
with even clearer distinctions observable in the waveform (left figure). Additional demo samples,
along with WAV files for convenient listening and their visualizations, are included in the Appendix
and supplementary material.

6 CONCLUSIONS

This work presents a novel, scalable, and highly efficient framework for video-guided audio generation.
Leveraging Diffusion Transformers, we introduced an innovative masking strategy that enhances
the model’s ability to capture temporal dynamics in audio, leading to significant performance gains.
To address redundant video features, we introduced a Reducer module to eliminate unnecessary
information. Extensive experiments and detailed analyses demonstrate that our model achieves fast
training and inference times, uses minimal parameters, and delivers superior performance across
multiple metrics, setting a new benchmark in the field.

7 LIMITATIONS AND FUTURE WORKS

Our method offers fast inference, efficient parameter usage, and low memory consumption, while
achieving top performance in alignment accuracy and IS score. However, there are some limitations.
First, like other diffusion models, it requires multiple sampling steps during generation. Second,
while the VGGSound dataset is suitable for this study, its size may not fully leverage the potential of
our approach. Third, the current design is constrained to a fixed video length of 8.2 seconds. In the
future, we aim to incorporate recent advancements in single-step diffusion techniques to address this
limitation. Additionally, although video collection from online sources is becoming more feasible, it
remains time-consuming and storage-intensive, which may be challenging for individual researchers.
We plan to explore the potential of 1D VAEs for further improvement and to address the fixed-length
constraint in future work.
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A APPENDIX

A.1 REDUCER DETAILS

We show the simple design of our Reducer that can help to obtain global information while retaining
local information:

• Input: Video feature V ∈ R32×512

• Output: feature vector v ∈ R1×768

Fig. 7 illustrates the details of the proposed Reducer architecture with two layers: the fully connected
layer captures the local information of the video, and the second layer (1x1 conv) extracts the
global information. Specifically, after the initial layer with fully connected weights, each dimension
component (position) from 1 to 768 in the output vector u1 contains the whole vector v1 (local
information of video). Consequently, in the next layer, each component of the final vector v ∈ R1×768

captures both local and global information from the original 32x512 video information. This ensures
that the final vector provides comprehensive information for the subsequent audio generation process.
This lightweight vector significantly reduces the burden of the DiT process.
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Figure 7: Reducer Architecture. It includes a linear layer Linear(512,768) and a 1x1 conv layer
Conv1d(32,1) that helps to retain local information while reducing dimension.
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A.2 OVERFITTING PHENOMENON WITH REDUNDANT FEATURES

We observe that the model becomes quickly overfitted if using redundant features in Fig. 8. By
contrast, our Reducer helps to mitigate such redundant features and we can see that the test accuracy
remains quite a close gap with train accuracy from 100k steps to 500k steps.
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Figure 8: Overfitting with Redundant Features. We see that the redundant features show a bigger
gap of overfitting where the test and train accuracy gap becomes larger.

A.3 REDUCER CHOICES

We conducted an ablation study on the choice of the Reducer using three approaches: 1) Naive average
pooling, 2) Attention pooling, and 3) Learnable weights. For this study, we used the MDSGen-B
model trained for 300k steps. The results, shown in Tab. 11, indicate that all pooling methods achieve
competitive performance with comparable alignment accuracy (Align. Acc). However, Learnable
Weights yield the highest inception score (IS) at 7 points and slightly outperform in terms of FID.
Meanwhile, Attention Pooling achieves the best KL metric. We hypothesize that Attention Pooling

Table 11: Reducer Vector Pooling Choice. Model MDSGen-B is trained for 300k steps

Pooling Method FID↓ IS ↑ KL ↓ Align. Acc.↑
Naive Average Pooling 12.5594 39.41122 6.1750 0.9848

Attention Pooling 12.2704 39.0696 6.0819 0.9847
Learnable Weight (default) 12.1534 46.3301 6.3066 0.9858

performs better on the KL metric because its adaptive weights focus on the most relevant features in
the input, enabling a more precise reconstruction of the latent distribution and, consequently, better
KL divergence minimization. On the other hand, the Learnable Weights method performs best on
the inception score because it directly optimizes the contribution of each dimension, tailoring the
representation for the final task. This flexibility allows the model to capture both global and local
information more effectively, leading to improved perceptual quality as reflected in the IS metric.

Learnable weights can indeed be considered a form of adaptive weighting since the weights are
optimized during training and dynamically adjusted based on the data and task requirements. The
distinction lies in the mechanism:

• Attention pooling calculates adaptive weights based on the input features themselves (using
attention scores). This is data-dependent and can adapt to specific patterns in the input at
each forward pass.

• Learnable weights, on the other hand, are parameterized and optimized during training,
making them adaptable over time but not directly dependent on the input features in real
time.

So while both methods involve adaptivity, attention pooling adapts dynamically per input, whereas
learnable weights are statically optimized across the dataset. Naive average pooling is less effective
compared to attention pooling and learnable weights because it assigns equal importance to all input
features, regardless of their relevance to the task. This uniform weighting lacks the ability to focus on
critical features or filter out irrelevant ones, which can dilute the quality of the pooled representation.
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A.4 CHOICE OF DECODER LAYERS

We compared the number of decoder layers and showed that N2 = 4 gives better results on multiple
metrics compared to N2 = 2 as in the below table:

Table 12: Choice of decoder layer. Model MDSGen-B is trained for 300k steps

Decoder FID↓ IS ↑ KL ↓ Align. Acc.↑
N2 = 2 12.4602 47.9981 6.4344 0.9823

N2 = 4 (default) 12.1534 46.3301 6.3066 0.9858

A.5 TRAINING COST

We leveraged the pre-trained VAE encoder and decoder from Stable Diffusion (Rombach et al., 2022),
keeping them frozen during training and inference, similar to Diff-Foley. Our training utilized a
single A100 GPU (80GB) with a batch size 64. The B-model (131M) is projected to take 4 days for
500k iterations, while the S-model (33M) and T-model (5M) are expected to finish in 3.3 and 2.8
days, respectively.

In comparison, the second-best method, the Diff-Foley approach (860M model) required 8 A100
GPUs with a batch size of 1760, completing 24.4k steps in 60 hours (2.5 days) (Luo et al., 2023). If
scaled to a single A100 GPU, Diff-Foley would need at least 20 days more than a fifth of the time
of our method, demonstrating the superior efficiency and significantly lower training costs of our
approach (see Tab. 13).

Table 13: Training Comparison. Estimated for a single A100 GPU training. Our approach is simple
and highly efficient compared to the second-best method Diff-Foley which used the heavy backbone
of Stable Diffusion with 860M.

Method #Training cost↓ Align. Acc.↑
Diff-Foley (860M) (Luo et al., 2023) 20 days 93.9

MDSGen-T, 5M (Ours) 2.8 days 97.9
MDSGen-S, 33M (Ours) 3.3 days 98.3

MDSGen-B, 131M (Ours) 4.1 days 98.6

A.6 MORE SETUPS

We apply classifier-free guidance during training by randomly setting v⃗ to zero with a 10% probability.
Models are trained for 500k steps to ensure optimal convergence. The exponential moving average of
the model weight is set to 0.9999, otherwise, settings are the same as default DiT (Peebles & Xie,
2023). No video augmentation is used; instead, we pre-extract and save lightweight video features
for faster training. We also use a ratio of ηm = 0.3 by default for masking the temporal set of tokens.
Our code will be made publicly available.

For experiments involving classifier guidance, we utilized the classifier trained by Diff-Foley, adjust-
ing the optimal CG value to 2.0, compared to 50 in their framework. To evaluate alignment accuracy,
we used their trained classifier to assess our generated audio. We also reproduced Diff-Foley’s
performance using their published checkpoint, with results closely matching their reported metrics.

The slight variation may stem from differences in the VGGSound test set, as we download videos
from several months to one year after their experiments, during which some original YouTube links
may have been removed, causing potential mismatches.

A.7 COMPARING MORE VISUALIZATIONS

Gradcam Visualization of localization on VGGSound and Flickr-SoundNet datasets.
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We used the generated audio to perform the sound source localization on each frame of the video and
image using the pre-trained model of EZ-VSL (Mo & Morgado, 2022). As shown in Fig. 9 and Fig.
11, our method provides a more accurate attention map.

OursDiff-FoleyFoleyCrafterSee and HearImage

(a)

(b)

(c)

(d)

Figure 9: Attention map Flickr-SoundNet dataset. Our best model (MDSGen-B) generated the
sound that contain information that help localize the sound source more accurately compared to
existing approaches.

More generated audio comparison with state-of-the-art approaches on VGGSound test set.

We also provide more samples in the supplementary and their visualizations in Fig. 12, Fig. 13, Fig.
15, Fig. 16, and Fig. 14. As shown in these figures and listened to by authors, our generated audio is
much more reasonable than others. We refer readers to examine the quality of generated audio in the
submitted supplementary materials.

A.8 CHANNEL SELECTION FROM RGB FOR MEL-SPECTROGRAM

We provide additional statistics of various generated audio samples, highlighting the differing
characteristics of the VAE decoder outputs in Fig. 17 and Fig. 18. As shown, although the VAE
encoder input consists of three identical channels, the generated outputs display distinct distributions
across each channel (left figures), even though these differences are imperceptible to the human
eye (right figures). This behavior stems from the fact that the VAE encoder and decoder in Stable
Diffusion (Rombach et al., 2022) are trained exclusively for image data, where the R, G, and B
channels inherently carry different information.

Because this model is applied directly to audio data without adaptation, there is no constraint ensuring
the R, G, and B channels remain identical in the generated audio. Developing a method to adaptively
select or combine these channels when constructing the final Mel-spectrogram could be a promising
avenue for improving the quality of the generated audio.

Table 14: Channel selection for mel-
spectrogram. Gray indicates the default.

Channel FID↓ IS↑ KL↓ Align. Acc.↑ (%)
R (i = 0) 11.40 51.54 6.29 98.51
G (i = 1) 11.19 52.77 6.27 98.55
B (i = 2) 11.23 52.32 6.27 98.56

1
3

∑
r∈{R,G,B} r 11.29 52.27 6.28 98.54

Each R, G, and B channel exhibits distinct char-
acteristics, as noted in previous research (Xu
et al., 2017). In the VAE encoder, we replicate
the gray mel-spectrogram across three identical
channels, but the VAE decoder does not enforce
channel consistency. Our analysis shows that
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Figure 10: Histogram and mel-spectrogram comparison of three channels of VAE output.

the RGB output X̂RGB retains unique statistical
differences across channels (see Fig. 10), influ-
encing their contributions to the final mel-spectrogram and waveform. In contrast to Diff-Foley,
which uses only the R channel (X̂RGB [0, :, :]) for the final mel-spectrogram, we find the G channel
(X̂RGB [1, :, :]) to be optimal (see Tab. 14). Fig. 10 shows that the histograms of the three VAE output
channels display significant differences, with the G and B channels aligning closely with the ground
truth distribution.

Notably, while the resulting mel-spectrograms (right figures) seem visually indistinguishable, the
histograms highlight their differences. This emphasizes the importance of considering each channel’s
statistics in generating the final mel-spectrogram X̂, with more comparisons in the Appendix.

A.9 MASK RATIO ABLATION

Tab. 15 shows that while a higher masking ratio maintains high alignment accuracy, it leads to declines
in other metrics. This occurs because the transformer models prioritize audio token reconstruction
over the primary generation task, resulting in worsened FID, IS, and KL scores.

Table 15: Masking Strategy for Audio Synthesis. Comparison of different ways to train diffusion
transformer-based models. Masking on temporal audio gives the best performance.

Masking Ratio FID↓ IS↑ KL↓ Align. Acc.↑ (%)
70% 12.85 44.42 6.38 97.86
50% 12.39 46.77 6.38 98.43
30% 11.19 52.77 6.27 98.55
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Figure 11: Attention map VGGSound dataset. Our best model (MDSGen-B) generated the sound
that contain information that help localize the sound source more accurately compared to existing
approaches.
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Figure 12: The video of a man playing guitar solo. Our best model (MDSGen-B) generated a sound
that is closer to GT compared to existing approaches. We refer the reader to the listen file provided in
the supplementary for comparison. File “-lPXTBXa0tE 000030.wav”.
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Figure 13: The video of a woman playing drum by hand. Our best model (MDSGen-B) generated
a sound that is closer to GT compared to existing approaches. We refer the reader to the listen file
provided in the supplementary for comparison. File “0NIE-eDk92M 000029.wav”.
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Figure 14: The video of a guy playing drum by tool. Our best model (MDSGen-B) generated a
sound that is closer to GT compared to existing approaches. We refer the reader to the listen file
provided in the supplementary for comparison. File “-Qowmc0P9ic 000034.wav”.
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Figure 15: The video of a dog looks like howling. Our best model (MDSGen-B) generated a
sound closer to GT than existing approaches. We refer the reader to the listen file provided in the
supplementary for comparison. File “2vYkvwD-fkc 000010.wav”.
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Figure 16: The video of a guy playing badminton. Our best model (MDSGen-B) generated a sound
that is closer to GT compared to existing approaches. We refer the reader to the listen file provided in
the supplementary for comparison. File “-miI C3At4Y 000104.wav”.
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Figure 17: RGB distribution for Mel-Spectrogram. We provide more evidential samples that the
output of the VAE in the test set yields different characteristics for three channels even though these
differences are imperceptible to the human eye (right figures). Interestingly, we find that the first
channel (R) always has some different patterns compared to the remained channels (1).
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Figure 18: RGB distribution for Mel-Spectrogram. We provide more evidential samples that the
output of the VAE in the test set yields different characteristics for three channels even though these
differences are imperceptible to the human eye (right figures). Interestingly, we find that the first
channel (R) always has some different patterns compared to the remained channels (2).

23


