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Abstract

Diffusion models, known for their generative abil-
ity, have recently been adapted to time series anal-
ysis. Most pioneering works rely on the standard
isotropic diffusion, treating each time step and
the entire frequency spectrum identically. How-
ever, it may not be suitable for time series, which
often have more informative low-frequency com-
ponents. We empirically found that direct applica-
tion of standard diffusion to time series may cause
gradient contradiction during training, due to the
rapid decrease of low-frequency information in
the diffusion process. To this end, we proposed
a novel time series diffusion model, MA-TSD,
which utilizes the moving average, a natural low-
frequency filter, as the forward transition. Its back-
ward process is accelerable like DDIM and can be
further considered a time series super-resolution.
Our experiments on various datasets demonstrated
MA-TSD’s superior performance in time series
forecasting and super-resolution tasks.

1. Introduction

Time series data is widely adopted in the real world. Ex-
tensive examples include electricity consumption in power
systems, stock prices in financial markets, traffic flows in
transportation systems, etc. Over the past decade, remark-
able time series models have been developed with versatile
deep neural networks to perform various time series analy-
ses (Wang et al., 2024).

In recent years, the diffusion model (Ho et al., 2020) has
risen as a shining generative model, showing remarkable per-
formance for image and video synthesis. Such supercity in
modeling complex data distributions also drives the commu-
nity to seek how to adapt it to time series, and thus empower
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time series analysis (Yang et al., 2024). So far, pioneer
works have accommodated the diffusion model for time se-
ries forecasting (Rasul et al., 2021; Shen & Kwok, 2023; Li
et al., 2022), missing value imputation (Tashiro et al., 2021;
Alcaraz & Strodthoff, 2023), uncertainty quantification (Li
et al., 2024) and so on.

Despite the initial success of these works, most of them
still relied on the classical standard isotropic diffusion
model, namely the Denosing Diffusion Probabilistic Model
(DDPM) (Ho et al., 2020). It treats each time step indepen-
dently and applies the same diffusion schedule. In the fre-
quency domain, both low and high-frequency components
are also degraded identically (see Figure 1). However, low-
frequency components are usually more informative than
high-frequency ones in time series analysis (Xu et al., 2024).
We found that decreasing the low-frequency components
identically to the high-frequency ones during the diffusion
process may cause a drastic reduction of the essential time
series information. It may further lead to contradictions
on the gradient directions of DDPM at different diffusion
steps, impeding the training convergence (see Section 3).
Therefore, it’s inappropriate to handle all the frequencies
with the same diffusion process, and the classical design of
the DDPM doesn’t fully fit the inductive bias of time series
data.

To tackle such inequality in the frequency domain of time
series, we utilized moving average operation, a natural low-
pass filter, to build a non-isotropic time series diffusion
model, Moving Average Time Series Diffusion (MA-TSD).
In the forward process, moving averages are set by small-
to-large kernel sizes, gradually coarsening the time series
until zero-frequency components. The corresponding transi-
tion matrices are no longer diagonal like standard diffusion
models. A corresponding dataset-based noise schedule is
provided alongside. Similar to Denosing Diffusion Implicit
Models (DDIM) (Song et al., 2021a), we give an accelerable
backward process with a customized strategy to select back-
ward steps. Naturally, with the coarse-to-fine philosophy,
the backward process of MA-TSD can also be viewed as
time series super-resolution. Empirically, we show on di-
verse datasets that MA-TSD has outstanding performances
over time series forecasting and super-resolution tasks.

Contributions: 1) We empirically disclosed the training
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Figure 1. DDPM versus our proposed moving average diffusion process. Visualization relies on reparameterization, i.e. ; = Ki@xo+[:€:.
Left: Comparison in time domain. Right: Comparison in the frequency domain. For illustration, €; is fixed.

issue when directly applying DDPM to time series data, and
explored the relationship between the gradient similarity at
different diffusion steps and the change of frequency infor-
mation. 2) We accordingly proposed a novel time series
diffusion model with moving average as transition. The
backward process can also be naturally considered as time
series super-resolution. 3) We conducted extensive experi-
ments to demonstrate our salient performances over existing
DDPM-based diffusion models on time series-related tasks
like time series forecasting and time series super-resolution.

2. Background

Given samples from a data distribution ¢(x), diffusion
models are latent variable models in the form of py (x¢) =
| po (zo.7) dx1.7, trying to approximate the unknown
q(xo). The joint distribution is usually modeled as a Marko-
vian chain: p(zo.7) = p(xr) Hthl po(ai—1|xt). The la-
tent variables of the diffusion models lie in the same space
of the original data, i.e. z; € R¥, ¥t € [0,1,---,T)]. In our
context, x is a time series with L time steps.

The trainable parameters 6 are optimized to minimize the
negative variational lower bound of the log-likelihood on
the data distribution ¢(xo):

min £ = Eq(z.q) [log g(z1.7]@0) —logpo(@or)], (1)

where the conditional joint g(x1.7|xo) is the core of diffu-
sion design. The designs of classical DDPM and DDIM will
be introduced to pave the way for our proposed method.

2.1. Denosing diffusion probabilistic model

In DDPM, the forward process degrades an original data
xo by gradually compressing the data and adding Gaussian
noises until 7' € N diffusion steps so that all the structures
of original data are lost, i.e. q(zr|zg) = N(0,I). The

whole process is modeled as a Markovian chain:

T
q(x1.7|T0) = HQ(fEt|$t—1)a 2)
t=1

where the one-step transition is given by: q(x;|xi—1) :=
N (yagmi—1, (1 — ay)I). The coefficient oy € [0, 1]
monotonically decreases with ¢. Through the property of
Gaussian distribution, the transition from x( to x; can be
derived:

q(xe|zo) = N (Varmo, (1 — ay)I) , A3)

with the transition coefficient &; = Hle a;. Through
Bayes rule and the property of Markovian chain, Equa-
tion (2) can be reformulated as:

T

q(z1.rlT0) = g(xT|T0) H q(zi—1|ze, T0),
t=2

“

where the close form of g(x;_1|®:,xp) can be analyt-
ically derived by Bayes rule. With the factorization
of the forward py(x.7) and the backward g(x1.7|x),
the optimization target (Equation (1)) can be simpli-
fied. A large part of the simplified optimization tar-
get is ming Eq (g, 2,) [DxL(q(Ti— 1|2, o) |[po (i —1|2¢))].
Therefore, the backward one-step transition pg (x;—1|x;) is
modeled to approximate the true posterior:

)

where fy(x+,t) is a trainable denosing neural network to
estimate the xy. The loss function can be consequently
simplified as:

Po (Ti—1]@t) = q (T1—1|24, fo(Tt, 1)),

L =Egong(wo),t~1,T] [er (e,t) — zoll3|,  (6)

with ¢; = /o + /1 — age, € ~ N (0, I) via reparame-
terization. This means that the network fy takes in the noisy
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data x; and the current diffusion step ¢, and outputs the
prediction of the clean data . Alternatively, the network
fo can also be optimized to estimate the added noise €;, and
then apply &g = (x; — /1 — arfo(xs,t))/+/ay to obtain
the prediction of clean data. After training, one can simply
generate a synthetic data sample by iteratively denoising a
@1 ~ p(xr) with Equation (5).

2.2. Denosing diffusion implicit model

Based on DDPM, DDIM generalized the foward process
to be non-Markovian and derived a new backward process.
First, DDIM bypasses the DDPM design of g(x:|x:—1),
and directly considers the conditional joint ¢(x1.7|xo) in
the form of Equation (4), where g(a;—_1|x¢, o) is specially
designed to ensure that for all ¢, the transition q(x¢|xo)
always matches Equation (3). In other words, the marginal
is satisfied, [ q(@¢—1|x¢, To)q(@i|0)dws = g(T1—1|20).

Since the conditional joint ¢(x1.7|x) is defined as the same
form as DDPM'’s, the optimization target of DDIM can be
identically factorized, and the backward one-step transition
is also chosen as Equation (5). In this way, DDIM shares
the identical loss function of DDPM.

For backward process, DDIM offers an accelerable infer-
ence option. Specifically, given an ascending subset of
[1,---,T], denoted as {t;}7,Vt; € [0,T] with 7 < T,
DDIM allows the following sampling scheme:

Tty = vV @tri71f9(mtwti)+
L, — v &tq:fa(mtivti)
N

where {n;, } are hyperparameters. DDIM can generate rea-
sonable synthetic data within 50 steps for images. Besides,
when 7;, = 0, also known as deterministic sampling, such
scheme is considered as the numerical solution of a proba-
bility flow ordinary differential equation (ODE)(Song et al.,
2021b).

1- O,y — 777521‘ : + N, €

2.3. Conditional diffusion for time series forecasting

Time series forecasting can be viewed as a conditional gen-
eration task. Given a look-back window ¢ € R with H
time steps, we are aimed to predict the next L steps, i.e. the
target window x. In other words, we are interested in the
conditional distribution ¢(zg|c). To include the guidance of
the look-back window into the diffusion model, we can add
the condition at each transition(Shen & Kwok, 2023):

T

p(xorle) = p(xr) [ [ po(@i-1lze, ). (7)
t=1

Accordingly, the condition c is handled as another feature
input to the denosing network, fy(x,t,¢) ~ xy. Other

types of time series analysis tasks can also be modeled in
this way, for example super-resolution (conditional on low-
resolution time series).

3. Empirical Findings on Applying DDPM to
Time Series

In this section, we discovered a training issue when directly
applying DDPM on time series (see Appendix A for de-
tailed settings). As depicted in the left of Figure 2, the
training process of DDPM on a typical time series dataset,
Electricity, experienced large variations, even in the
beginning stage. As we introduced above, the DDPM is op-
timized to denoise the corrupted time series at all diffusion
steps (see Equation (6)), but we observed that the direc-
tions of model gradients at different diffusion steps could be
contradicted during training. When we specifically probed
the 100" training step (see the left down of Figure 2), the
gradients of about the first 25% diffusion steps show greater
similarity, while they could be opposite with the rest 75%
diffusion steps, and vice versa. Since each data sample is
corrupted to varying degrees during DDPM training, the
averaged gradient of each mini-batch can accordingly show
considerable variation with polarized per-sample gradients.
Consequently, it may lead to the unstable optimization of
DDPM on time series.

To further analyze the reason for this phenomenon, we first
explored the change of the frequency information during the
whole diffusion process (see the right up of Figure 2). We
computed the spectral energy ratio between low-frequency
components and high-frequency ones of the time series at
each diffusion step. During the whole diffusion process,
low-frequency energy was dominant at the early stage, and
then steeply decreased until a turning point after which
the corrupted time series barely had salient low-frequency
information, i.e., they became almost noises. If we compare
this energy ratio change with the gradient similarity with
different diffusion steps (see the right of Figure 2). We found
that the shift of gradient directions is highly aligned with the
turning point of energy ratios. It implies that when DDPM is
directly applied on time series, low-frequency information
decays so steeply that there is a large discrepancy in the
model’s perception of the input data, with a few steps in the
early diffusion being informative, whereas, in the middle
and late diffusion, they are nearly noises. Therefore, to
prevent the drastic decline of the energy ratio, we expect
a time series diffusion model to have a gradual diffusion
process that can keep more low-frequency information.

In the following sections, we will introduce our method.
Based on the moving average, a natural low-pass filter, it
keeps more essential time series information during diffu-
sion, alleviates the gradient contradiction during training,
and thus obtains a less fluctuate training process (see the
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Figure 2. Gradient analysis on Electricity dataset. Left up: Training loss curves of DDPM and ours. Left down: Cosine similarity
matrices of gradients w.r.t. the denosing network with different diffusion steps (total diffusion steps 7" = 1000). Right up: Energy ratio at
different diffusion steps between the low-frequency components and the high-frequency ones. Right down: Cosine similarity matrices

with different 7" at 100" training step.
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Figure 3. Our proposed MA-TSD. Dashed lines denote the forward
process, while solid lines represent the backward process.

left of Figure 2).

4. Moving Average Time Series Diffusion

In this section, we present our proposed MA-TSD, depicted
by Figure 3. Time series will first be normalized to be zero-
mean and unit-variance. Then, we utilize moving average to
build the diffusion model. Finally, the generated time series
will be denormalized for downstream tasks.

4.1. Instance normalization

Since moving average operation doesn’t modify the zero-
frequency component of a time series, the final p(xr) will
no longer be a easy-to-sample standard Gaussian distribu-
tion if we directly construct moving average diffusion on x.
Therefore, we apply instance normalization to each target
time series sample xy € RZL, and obtain the normalized
2o € R¥ with zero mean and unit variance, specifically:

o — pu(x0)
0= ) (®)

where 4(-), o(-) denotes the functions obtaining the mean
and standard deviation of a time series, respectively. There-
fore, we will build on the diffusion framework on the nor-
malized time series. The denormalization strategies will be
investigated in Section 4.4.

4.2. Non-isotropic forward process

We now consider the following transition process for normal-
ized time series, ¢(z¢|2zg) := N (zt; Kz, 631) , which
can also be reparameterized to:

zi = Kzo + Prer, €, ~ N(0,1) 9

with the transition matrix K, € RE*L | and the noise sched-
ule B; € R. In the standard DDPM, the transition matrix is
diagonal with identical entries, K; = diag(/a;), and the
noise schedule is set accordingly to maintain the variance,

B = I— &

Transition matrix. In our design, we expect to utilize
moving average to build our non-isotropic transition. First,
let us consider non-overlapping moving average filters. The
kernel sizes {k;} are naturally chosen as all the factors of
the length of our target time series, given by:

Here, we sort the {k;}7 in ascending order, and use the
index 7 instead of ¢ to tell from diffusion step indices for
now.

The corresponding moving average kernels are denoted as
{K;}7, and for each kernel, it convolves the normalized
time series, i.e. K i * Zg. Such convolution can be unrolled
and reformulated as matrix multiplication for generality,
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namely K, xzo = K;zo, with K; = Unroll(Ki) €
R(E/k)XL We can further interpolate K ; along the time
step axis to make it square to keep the shape of Kz un-
changed during transitions, and thus the transition matrix
for i moving average kernel is given as:

K = Interp (Unroll(Ki)) € RLXL, (11

Though the moving average transition matrices are defined
well, we find that such transition could have large jumps
between adjacent kernel sizes, since the factors of the time
series length can be non-consecutive integers. To extend
such design to the continuous case (i.e. arbitrary diffusion
steps), we can further interpolate on { K} along side the
diffusion steps to have unlimited 7-step transition matrices
{K. )

{K}{ = Interp ({K}}7), (12)

where K; is no longer a diagonal matrix like DDPM. A sim-
ple example of how we obtain the moving average transition
is included in Appendix B.1.

Noise schedule. For the noise schedule, we follow the vari-
ance preserving principle in (Ho et al., 2020; Song et al.,
2021b). The noise schedules of the standard diffusion can
be analytically designed to keep variances according to the
transition coefficient \/ay, i.e. B¢ = /1 — a4, while the
decrease of time series variance caused by moving average
varies by datasets. Therefore, we provide a dataset-based
noise schedule to complement our forward process. Specifi-
cally, we can first compute the averaged decrease ratio v,
over the whole time series dataset:

J(Ktwo)] -

13
(20 (13)

Ve = Eagng(@o) [

Then, we accordingly set 3; = /1 — ~Z as our noise sched-
ule to compensate for variance decrease. At the last diffu-
sion step, the kernel size of the moving average equals to the
time series length, and the corresponding vy = 0, 8 = 1,
which ensures ¢(z7|2zo) = N(0, I). It should be noted that
though we conduct the diffusion model on the normalized
time series, it makes no difference to compute {;}, {5:}
over the normalized or original time series, The proof can
be found in the Appendix B.3.

Conditional joint distribution. Similar to DDIM, we
directly define the following family of joint distribu-
. T

tion: ¢(z1.7|20) := q(27|20) [[,_5 ¢(2¢t—1|2+, 20), where
q(zr|z0) = N (273 K120, B2I), and for t > 2:

Q(zt71|zt>z0) =

B — i (14)
N Kt_lz()‘i’\/i(thtzO)an?I :

B

The mean is chosen in order to guarantee that the mod-
elling of the joint matches the marginal for all ¢, i.e.
[ a(zi-1|z¢, z0)q(z¢|2z0)dze = q(z1-1|z0). In other
words, the choice of Equation (14) ensures g(z¢|zg) =
N (zt; Kz, BEI) for all t. The proof of such choice is
included in Appendix B.3.

4.3. Accelerable backward process

Analogous to DDIM, we now define the backward process
on the normalized time series as follows: pg(z:—1|2¢) =
q (z¢—1|2t, fo(zt,t,¢)), where the denosing network
fo(z1,t, €) tries to predict the clean normalized time se-
ries. For generality, we include the possible condition c as
input of the denoising network for the conditional gener-
ation task, like time series forecasting. For unconditional
tasks, we can simply set ¢ = @.

For the normalized time series, we modeled ¢(z1.7|z¢) and
po(zi—1|z¢) the same as DDIM, so it’s natural to derive
the similar optimization target as Equation (6) but in the
normalized space:

Lz = Ezo,cwq(zo,c),tw[l,T] Hf9 (Ztvta C) - ZO”é ) (15)

After training, we can also accelerate the backward process
as we introduced in Section 2.2, given as:

2t = Kti71f0(ztwti’ C)—|—

B — i (16)

3 (Zti _Ktife (zti7ti7c))+nti€7
t;

where {t;}7 is an ascending sub-sequence of [1,---,T].
The detailed proof that the accelerated backward process
doesn’t essentially change the training objective can be
found in the (Song et al., 2021a).

Acceleration strategy. Though the backward process can
be fastened by selecting a subset of total diffusion steps, how
this subset is chosen may cause performance differences.
Here, we offer a reasonable sampling strategy based on our
moving average forward process. Specifically, we recall
that the diffusion transition matrices { K'; } are obtained by
interpolating the original moving average transition matrices
{K}. We consider shortening the backward process by
finding those diffusion steps whose transition matrices are
the closest to the original { K}. For the i original matrix
K;, we search by:

tr :argmtinHKt—K;H%, st. K, € {KT. (17)

Therefore, we can collect n diffusion steps {t}}7, corre-
sponding to the original non-overlapping moving average
kernels, as our accelerated backward steps. We call such
a strategy as factor-only backward since the selected back-
ward steps are only related to the factors of the length of
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the time series. When n, = 0,Vt € [1,---,T], the back-
ward process can also be viewed as a numerical solution to
an ODE with Euler discretization. Further, if the function
Interp(-) in Equation (12) interpolates evenly between
K/ K ,,¥i > 2, the factor-only backward essentially
solves that ODE with larger steps. Refer to Appendix B.3
for details.

Backward as super-resolution. As the forward pro-
cess is designed as gradually coarsening the time series,
the backward process can be spontaneously utilized for
super-resolution. Here, we don’t have to include the low-
resolution time series as the condition input into MA-TSD,
since the framework itself demonstrates the multi-resolution

property.

To be specific, let us consider a coarse time series whose
downscale rate is one of the factors of the original time
series length. Utilizing the moving average transition ma-
trix, we denote such coarse time series as ¢; = K gwo and
denote the normalized one as z;. The super-resolution scale
we expected is then exactly k;. With Equation (17), we can
locate such scale in the diffusion process, and accordingly
choose a subset of total diffusion steps as [1, - - - ,¢¥]. Then,
we can start with 24+ = 2;, and iteratively apply Equa-
tion (16) to obtain a super-resolution result of z;. Therefore,
the backward process of MA-TSD can be viewed as super-
resolution.

Compared with the diffusion-based models which take low-
resolution inputs as conditions, the time complexity is de-
creased from O(nM) to O(M), where n is the number of
scales and O (M) is the complexity of training.

4.4. Denormalization

Given the denoised 2z from Equation (16), we need to
denormalize it to generate the final time series x, i.e. &y =
Zo - 0 + j1. In this section, the choice of [, ¢ is considered
different, depending on the downstream application of MA-
TSD.

Time series synthesis. For the unconditional generation,
we usually expect unlimited time series synthesis. There-
fore, we can simply sample from the empirical distribu-
tion of time series means and standard deviations, i ~
Gemp(1(20)), 6 ~ Gemp(o(20)). Given a time series dataset,
we can easily obtain the empirical distributions and denor-
malize them.

Time series forecasting. For time series forecasting, the
mean and standard deviation of the target window is vital
for the prediction accuracy (Kim et al., 2021; Qin et al.,
2024). It’s improper to randomly sample from the empir-
ical distribution to conduct denormalization. We consider
to utilize the look-back window c to produce the fi, 6 for
the target window. To prevent training a separate statistics

prediction network for i, &, we optimize both the denosing
model fy and the statistics prediction model with parameters
w, g = {9, g2}, in a hybrid manner. In the appendix, Fig-
ure 7 shows how these two networks work together for time
series forecasting. Specifically, we modify the loss function
on the normalized data (Equation (15)) into a hybrid case:

ﬁhybrid = )\z['z + )\p,ﬁ,u, + )\O'»Ccra (18)

where we denote £, = Egq(z0) [||gﬁ (c) — u(mo)Hg} ,

and L, = Egjwg(zo) [Hgg (c) — O’(:.E())H;] The coeffi-
cients Az, A,, A, are hyperparameters. We interpret that
L, aims to learn the shape of the target time series, while
L, and L, are set for the statistics. Therefore, we can set
i = gt(e),6 = gZ(c), to denormalize 2 in the context
of time series forecasting. Besides, when the coefficients
Az, Ay, Ag are set properly, we can prove that the hybrid loss
(Equation (18)) is essentially the upper bound of the loss of
conditional diffusion models without instance normalization.
The detailed proof can be found in Appendix B.3.

Time series super-resolution. For super-resolution, since
the coarse time series a; obtained by moving average
shares the same mean of the target time series, we can use
i = p(x;). On the other hand, though the standard devia-
tions are not shared, we can utilize the dataset-based noise
schedule to re-scale o(x;) as: & = o (x;)/7:: where ;- is
the decrease ratio of the standard deviation at the diffusion
step ¢t mentioned before.

5. Experiments

In this section, we mainly focus on two important time series
analysis tasks, forecasting and super-resolution. The stan-
dard time series synthesis task is included in Appendix C.1.
An ablation study of our framework design is also included.

5.1. Time series forecasting

Datasets. We consider six real-world datasets with di-
verse temporal dynamics, commonly used by the commu-
nity (Wang et al., 2024), namely Electricity, ETTh2,
ETTm2, exchange, traffic, weather.

Evaluation metrics. We assess time series forecasting us-
ing MSE (Mean Squared Error) for deterministic accuracy
and CRPS (Continuous Ranked Probability Score) for prob-
abilistic accuracy.

Benchmarks. We compare our proposed MA-TSD with
other diffusion-based time series forecasting models, includ-
ing CSDI (Tashiro et al., 2021), SSSD (Alcaraz & Strodthoff,
2023), D3VAE (Li et al., 2022), TMDM (Li et al., 2024)
and mr-diff (Shen et al., 2024). Details about the implemen-
tation and comparison to non-diffusion models are included
in the Appendix C.2.
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Table 1. Average MSEs over prediction lengths L = {96, 192, 336, 720}. The best is bold and the second best is underlined.

METHOD ELECTRICITY ETTH2 ETTM2 EXCHANGE TRAFFIC WEATHER RANK
CSDI 0.4581 0.2571 2.1230 1.2557 0.4991 0.1938 3.50
SSSD 1.0257 0.7201 0.8936 2.9004 1.9662 0.6905 5.17

D3VAE 0.8450 1.3961 3.3449 2.1086 6.3583 1.5461 5.67

TMDM 0.4071 0.2508 0.1789 0.7885 0.1805 0.2209 2.83

MR-DIFF 0.5287 0.2172 0.1700 0.4801 0.2471 0.2078 2.67

MA-TSD 0.3404 0.2121 0.1241 0.3718 0.1660 0.2074 1.17

Table 2. Average CRPSs over prediction lengths L = {96,192, 336, 720}. The best is bold and the second best is underlined.

METHOD ELECTRICITY ETTH2 ETTMZ2 EXCHANGE TRAFFIC WEATHER RANK
CSDI 0.1939 0.1638 0.4720 0.3028 0.1883 0.1261 3.33
SSSD 0.3216 0.3108 0.3565 0.6743 0.4579 0.3129 5.17

D3VAE 0.3111 0.4173 0.6497 0.5380 0.8314 0.4497 5.67

TMDM 0.1881 0.1591 0.1253 0.2959 0.1076 0.1380 2.00

MR-DIFF 0.2357 0.1647 0.1293 0.2117 0.1453 0.1506 3.17

MA-TSD 0.1747 0.1567 0.1135 0.2178 0.1156 0.1501 1.67

Results. As depicted in Table 1 and Table 2, the proposed
MA-TSD generally outperforms the benchmark time series
diffusion models, achieving the best or the second best posi-
tion on 6/6 and 5/6 datasets, respectively. The improvement
on the weather dataset is marginal, possibly because it is
recorded in a higher resolution (Table 6). Both informa-
tive high-frequency components and stochastic noises are
revealed, which could be simultaneously suppressed by the
moving average process, and thus lead to the difficulty to
accurately forecast. Refer to Appendix C.2 for visualization
and Table 7 for the full results on each prediction length.

5.2. Time series super-resolution

Datasets. We consider three high-resolution real-world
datasets with 5-minute resolution, MFRED, Wind, Solar.
For each dataset, we test the models for the following 3
tasks, i.e. Smin-to-15min (3 x), Smin-to-30min (6 x), and
Smin-to-60min (12x).

Evaluation metrics. We assess time series super-resolution
by Consistency and Context-FID. The former one measures
MSE between the low-resolution inputs and the down-scaled
super-resolution outputs (Saharia et al., 2022), while the
latter one examines the quality of the super-resolution results
compared to the real high-resolution time series (Jeha et al.,
2022).

Benchmarks. We compare ours with two diffusion models
directly conditioned on low-resolution inputs. One is trained
under DDPM framework (Saharia et al., 2022), and the other
is trained by flow matching with a variance-preserving path
(Lipman et al., 2023), which we denote as FM-VP. The

benchmark models are re-trained for each super-resolution
scale, since the condition inputs change. Details about the
implementation are all included in the Appendix C.3.

Results. Table 3 records the results of time series super-
resolution. The proposed MA-TSD generally exceeds the
conditional DDPM and FM-VP in terms of both consistency
and quality. Despite the slight inferiority in Context-FID on
the Solar dataset at the large scale, ours still outperformed
the FM-VP model significantly in terms of consistency. No-
tably, MA-TSD performs SR naturally through its backward
process instead of retraining individually on each scale. Be-
sides, our SR backward starts in the middle of the whole
process, resulting in even fewer backward steps compared
to benchmarks (Figure 12). Therefore, we believe that our
method provides a better trade-off of computational over-
heads, SR quality, and consistency to the low-resolution
input. Refer to Appendix C.3 for more visualization.

5.3. Ablation study

In this section, we evaluate the effectiveness of impor-
tant components and designs of MA-TSD through unlim-
ited time series synthesis on the mentioned MFRED, Wind,
Solar datasets.

Key modules. Two key different designs from the standard
time series diffusion model are the moving average diffusion
schedule and the instance normalization in our proposed
MA-TSD. We compared the possible design with/without
these two components, as shown in Table 4. Without MA
and IN, namely directly applying DDIM on time series data,
exhibited the worst performance. Equipped with either IN or
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Table 3. Comparison on time series super-resolution. The best is bold and the second best is underlined.

MFRED WIND SOLAR
SCALE  METHOD
CONSIST. CONTEXT-FID CoONSIST. CONTEXT-FID CONSIST. CONTEXT-FID
MA-TSD 0.0032 0.1047 0.0067 0.2863 0.0106 0.3491
3 DDPM 0.0291 3.1028 0.0382 7.4843 0.0367 1.7197
FM-VP 0.0328 1.3481 0.0636 4.2311 0.0523 0.7950
MA-TSD 0.0037 0.1235 0.0098 1.0241 0.0115 0.6972
6 DDPM 0.0214 3.0740 0.0343 7.9524 0.0260 2.2293
FM-VP 0.0238 1.3381 0.0505 4.4683 0.0361 0.6846
MA-TSD 0.0047 0.4358 0.0136 3.0567 0.0129 1.4135
12 DDPM 0.0157 3.4044 0.0318 9.2504 0.0429 6.2596
FM-VP 0.0156 1.5222 0.0350 4.8737 0.0249 0.8616
Table 4. Context-FIDs of MA-TSDs with different components. random un.iform + factor-only
MA: Moving Average schedule. IN: Instance Normalization ‘ MFRED Wind Solar
MODULES DATASETS ’5] \ o \ 0\
MA IN | MFRED WIND SOLAR 5" \ o \ N \
- 1297093 52.3499  43.6236 S e , =
_ \/ 131704 446908 353704 0.0 T”/jT 1.0 0.0 ;»;T 1.0 0.0 7‘}/57" 1.0
v - 4.9403 21.3606 8.0744
v v 2.6742 16.9026 8.0297

MA, the model obtained considerable improvements, with
MA functioning more significantly than IN, which implies
the importance of MA in our framework design. Combining
both modules achieved the best scores over all three datasets.

Accelerated backward. For a given backward step budget
7 < T = 100, we compare our factor-only backward strat-
egy with 1) randomly selecting subsets from [1,--- 7] and
2) uniformly choosing a subset, i.e. linspace(1,7T,T).
Notably, given a budget 7, uniformly sampling renders a
fixed subset {t;}], resulting in a deterministic result.

As shown in Figure 4, given a fixed ratio 7/7, randomly
selecting the backward steps may cause large variances in
model performances. Uniform sampling did offer a better
result than random sampling, but the marginal gain on the
performance decreases by 7/T'. Compared to both random
and uniform strategies, our factor-only strategy consistently
offers fair and effective results given the same 7 /7" budget,
optimizing the resources while maintaining the quality of the
results. Especially on MFRED and Solar, whose periodical
patterns are more significant, the factor-only accelerating
strategy could even achieve competitive performance with
the full-step backward, indicating that the strategy captures
the key transition steps and can be utilized for fastening
MA-TSD.

Figure 4. Comparison among accelerated backward strategies.

6. Related Works

Diffusion models have been embraced by the time series
analysis community for their advanced probability modeling
ability. (Rasul et al., 2021) first combined autoregressive
modeling of recurrent neural networks and the diffusion
process for time series forecasting. Then (Shen & Kwok,
2023) proposed a non-autoregressive diffusion strategy for
foreasting, improving on both efficiency and accuracy. In
addition, there are also several works (Kollovieh et al., 2024,
Alcaraz & Strodthoff, 2023; Tashiro et al., 2021) that link
time series forecasting and time series imputation, modeling
them with a conditional generation design, proposing unified
frameworks for these two tasks with diffusion models.

Recently, the community began to fuse the unique time
series property into diffusion models. (Fan et al., 2024)
leveraged coarse time series data as guidance during the
diffusion process, and added regularization terms into the
loss function to constrain the backward process is coarse-to-
fine. (Shen et al., 2024) set several diffusion stages, where
the previous diffusion stage generates coarse time series as
condition input for the latter stage to refine. (Liu et al., 2024)
leveraged the historical windows to retrieve the k nearest
samples as references to guide diffusion model to generate
more accurate forecasts. Despite the recent special design
on time series data, they still rely on the DDPM process and
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hardly improve on the typical isotropic design to meet the
characteristics of time series.

Beyond time series diffusion models, some works simi-
larly investigated non-isotropic diffusion models for images.
(Hoogeboom & Salimans, 2023; Rissanen et al., 2023) de-
signed frequency-domain diffusion with Gaussian blurring
as transition. (Daras et al., 2023) tried to generalize the
transition to linear corruptions, and gave examples of blur-
ring and masking while (Bansal et al., 2024) proposed a
diffusion model with arbitrary degradation functions, for
example snowification and animorphosis, but without noise.
However, few of them obtained tremendous improvements,
let alone being further explored by our time series commu-
nity.

Regarding diffusion design, probably the most related work
to ours is (Hoogeboom & Salimans, 2023), which shared
a similar high-level idea of building the degradation pro-
cess with low-pass filters (blurring in theirs, MA in ours).
However, they still tried to fit low-pass filters into the tradi-
tional DDPM’s Markovian process in the frequency domain,
while we reformulated a non-Markovian design with a new
backward process. Besides, our noise schedule is specially
designed to be dataset-based, regarding the variance de-
crease caused by the filters on different time series data.
Please refer to Appendix B.4 for more detailed information.

7. Conclusion

In this paper, we first revealed that direct application of
standard DDPM to time series data may cause gradient con-
tradiction, because of rapid degradation of low-frequency
information. A novel time series diffusion model, MA-TSD,
is accordingly proposed, equipped with moving average for-
ward transitions to keep more low-frequency information.
The backward process can be accelerated in a DDIM style
and further act as super-resolution. The experiments show
that MA-TSD has superior performances over the state-of-
the-art time series diffusion models in terms of forecasting
and super-resolution.

Software and Data

Our codes can be found in https://github.com/
WillWanglll3/Moving—Average-Diffusion.
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A. Details of directly applying DDPM on time series

As an example of illustrating the potential glitch when DDPM is directly applied on time series data, weused Electricity
dataset, a typical time series dataset with complex patterns. We consider L = 400 and the spectral energy ratio e is calculated
as follows:

¢ i|2
o — Zi:l |ug] (19)

Nnyq o’
Zi:Nél.H |up|?

where we denote the real fast Fourier transform (rFFT) of the time series g as ug = [u}), u%, e ,uév ™41 and uf) eCis
the i frequency component. The parameter ( is the split ratio. We set ¢ = round(0.2 - Nnyq) in this example, since the
frequency components are in a relative low level after then (see Figure 5).
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Figure 5. Frequency energy of a data sample in Elect ricity dataset. The x-axis is devided by Nnyq

During training, we fixed the random seed to guarantee the same initialization of models and the order of data samples.
In this simple example, for each epoch, we did 20 times mini-batch training with batch size set as 64, thus in total 2000
training steps.

B. Details of MA-TSD

B.1. Transition matrix example

As depicted in Figure 6, we consider the situation of L = 6 as an naive example to illustrate how we get the square transition
matrix K, with moving average.

B.2. Combination of denosing networks and conditioning networks

The combination of denosing networks and conditioning networks are shown in Figure 7. The Encoder embeds the noisy 2z
and fuse with the position embedding of ¢. In the conditional generation, the condition c is also encoded and fused together.
Then, the Decoder will output the prediction 2, and the conditional decoder will output the &, /i for denormalization, if
needed. During inference, z;_; will be obtained by z; and 2.
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Figure 6. Example at k1 = 2 and k2 = 3. The convolution kernels are first unrolled to a matrix, and then interpolate along side the time
steps to be square. Across the diffusion steps, the transition matrices are also interpolated.

B.3. Proofs and Derivations
B.3.1. DECREASE RATIO 7y CALCULATION

We denote the decrease ratio calculated over the z( as v;:

zo—p (o)
g (Kt MO )

N o (Kiz)] - B o (Ki(zo — p1(0)))
B o (Kixo — pu(zo))] M =
= Emowq(mo) |: 0'(:130 — ILL(.’B(])) :| - Ezo’\‘q(mo) |: O'(.’BQ) :| ty

where the first equal in the second line is because moving average doesn’t change the mean value of x, i.e.
K (xo— p(xo)) = Kixo — (o), and the second equal in the second line is because o(xg + const.) = o(xg).
Therefore, it’s the same to calculate v; over z¢ and x.

B.3.2. THE CHOICE OF ¢(2zt_1|zt, 2z0)

Given the defined ¢(z1.7|z0) = q(zT|z0)H;‘F:2 q(zt—1|z¢,20), the defined q(z:—1|2z¢,20) in Equation (14) and
q(zrlzo0) == N (z21; Krzo, 87I) , we can have q(z;]z0) = N (z4; K20, 57I) for all t. The proof is similar to
that of (Song et al., 2021a), with the transition generalized to K;x

Proof. We can prove the above statement through an induction argument. Assume that for ¢ < T, q(z¢|z9) =
N (z4; Kyzo, BE) stands, and if q(z—1]z0) = N (2115 Ky—120, B2 I) also stands, then we can prove it from ¢t = T
to ¢t = 1 with the initial ¢(z7|20) :== N (zr; K120, 83I).

First, via the marginalization, we have:
q(z¢-1]z0) =/ q(z¢-1]z1, 20)q(2¢|20)dzs. (20)
Tt
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Decoder — 20 J— #t-1 )—— @

Figure 7. The denoising and statistics prediction models for time series forecasting. To include the unconditional generation ¢ = &, we
make the dashed line for illustration. Pos. Emb.=Position Embedder, Cond. Enc.=Condition Encoder, Cond. Dec.=Condition Decoder.

/32 —m2
With the given q(z|z¢) = N(Zt§KtzO7ﬁt21) and ¢(z¢—1|z¢, 20) = N (Kt1zo + %(zt - Ktzo)»ﬁgl)a we

can deduce that ¢(z;_1|20) is also Gaussian, with the mean i, , and the variance X, _,:

2 2
t—1 — "
Py, = K120 + (Kizo — Ki2z0) = K¢_120,
B 1)
ﬁZ, _,'72
Y= (7731 + 87 % I=p;,1
t

Therefore, q(z;_1]20) = N (K_120, 3% ;I) holds and the inductive argument can be processed.

B.3.3. BACKWARD ODE

Let us first consider our backward process without acceleration, given by:

\/5?71 *77%

2t—1 :thlfe(ztauc)—’— B
t

(2t — Ky fo (24,t,¢)) + 1€ (22)

When 7, = 0, we can have:
Bi—1
B

zi1 = K1 fo(ze,t,¢) + (zt — K¢ fo (24,1, ¢)) (23)

After reformulation, we further have:

Zt—1 zZt thl Kt
S =t 24
B B ( Bor B ) folzutc) e

which can be viewed as the numerical solution with Euler method to the following ODE with the discrete step At = 1:

z\ _ 7 K,
d(ﬂt) ffe (zt,t)d< 3, > (25)

Now, we consider the even interpolation between { K'; } where we anchor the original K, and linearly inject m intermediate
matrices between K, and K . Then the collected diffusion step subset {t; }7 are essentially {i(m + 1)}} = {m +
1,2(m +1),--- ,n(m + 1)}. Therefore, backward with {¢}}7 in this situation is basically Euler method with the discrete
step At =m + 1.
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B.3.4. HYBRID OPTIMIZATION
The conditional diffusion loss function without instance normalization over ( can be written by:
2
Em = Emo,c,t [Hh@(i[!t,t, C) - wO”Q] 5 (26)

where we use hg to distinguish from fy and g,, mentioned previously.

Further, we can express the @ into: g = z¢ - 0(xo) + 1(xo), and then parameterize the denosing network accordingly:
h@ ($t7 t, C) = fﬁ(zta t, C) ' Qg(c) + gﬁ(c)

For simplicity, we denote I, = ||ho (x4, t, ¢) — xo||2, and have:

I3 = llhe (x4, 1, ¢) — o3 27)
= || fo(ze,t,¢) - g5 () + gli(e) — 20 - o(xo) — p(o)|13 (28)
< (lfo(ze:t, €) - 92(€) = 20 - o (wo)l|2 + [|gli(€) — pu(wo)||2)* (Triangle inequality)  (29)
= (Ilfo(z1,t,€) - g2(€) — 20 - o(@o) + 20 - g (€) — 20 - 92 () |2 + 1)” (30)
= (lz0 - (95(e) = o(®0)) + 92(€) - (fo(z1,1,€) = 20) |2 + 1) (31
< (1zollso g5 (€) = a(®@o)ll2 + |95 ()2l (fo (2t t €) = 20) |2 + 1) (Triangle inequality) ~ (32)
= (Izollool + () l2lx + 1) (33)
< (||z0||?><j + 1195 (e)|2 + 1) (lz + li + lg) (Cauchy inequality).  (34)

Further, we can scale ||zg|o to the maximum absolute value of the all the zy over the dataset. Then, for g7 (c), it
tries to approximate the real standard deviation, g%(c) &~ o(x), and the maximum o (x) over the whole training
dataset g(x() can be obtained. We can further limit the output of the g7 to the largest o (o). Therefore, we can scale
(HZOHgo + ||QZ(C)H§ + 1) < (Zmax + Omax +1) = A

Therefore, we have:

£a; = ]Emo,c,t [li} (35)
< EBaget (120l + 95(e)5 +1) (12 +12 +12)] (36)
< Eaget A2+ +12)] (37)

We compare the hybrid loss function:

Liybria = ALz + ALy + Ao Lo
= Eapet [[IX=fo(21,t,¢) — 2oll5 + Aullgli(e) — p(@o) 153 + Ao llgZ(€) — o (@0) 3] (38)
= Emo,c,t [)\zl?z + Altli + )\a-lg] .

We can see that if the A\, = A\, = A; = A, then L < Lyyria-

B.4. Differences from Blurring Diffusion Models (Hoogeboom & Salimans, 2023)

From a high-level perspective, BDM and ours shared a similar idea, i.e., building the degradation process with low-pass
filters (blurring in BDM, MA in ours). However, there exist clear distinctions.

Filtering space: We filtered the data in the time space by convolution (matrix multiplication), q(x; | o) = N (K xo, B21)
while BDM blurs the images in the frequency domain and transform back to the pixel domain (using convolution theorem),
ie., q(x; | £o) = N(Va,V  xg,02I), where V', V are Discrete Cosine Transform (DCT) and Inverse DCT (IDCT),
and o, represent the frequency response of Gaussian blurring kernel, a diagonal matrix, whose each entry ai € (0,1] is
a coefficient of i™ frequency component. For low pass filters, V¢, ! decreases by i until (nearly) zero to suppress high
frequency components.

Markovian or not: Since o is diagonal, BDM proposed that for each frequency component, a standard Markovian
DDPM can be constructed. The one-step transition is accordingly defined, i.e. q(u; | us—1) = N(am,lut,h Ut2|t711—)’
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where u; = VT.’I}O is the frequency representation and o ;1 = oy /1. However, dividing ai;—1 could be numerically
unstable in practice. As we mentioned above, o could become to be (nearly) zero for larger i, so dividing cv;_; is unstable
for all diffusion steps. Though some epsilons can be added to ensure stable division, tiny errors in the high frequency
components will still be amplified a lot through the iterative backward process. Chances are that the generated data are
dominated by the improperly amplified high frequency components. Therefore, when it comes to designing a diffusion
process with non-reversible low-pass filters, we believe it’s improper to follow the Markovian assumption and define the
necessary g(a; | ®;—1). Instead, in our framework, faced with similar non-reverible MA, we bypassed the definition of
q(x; | ®1—1), assumed ¢(x1.7 | o) non-Markovian (in the DDIM-style) and then delicately defined q(x;—1 | @+, o) to
satisfy (@ | o) for all t. Thus, whether it’s Markovian or not is another distinct difference from ours and BDM.

Noise schedule: BDM designed a; = a:d;, where d; is the frequency response of blurring kernel and a; € [0, 1] is an
extra scaler decreasing by ¢, and the noise schedule o, = 1 — af. In our framework, the noise schedule 3; is dataset-based,
chosen regarding the variance decrease caused by MA (Equation (13)) on different datasets.

In summary, despite the similar high-level idea, there exist clear differences between BDM and ours. BDM tried to fit in the
standard Markovian DDPM framework, while we reformulated a framework with special adaptation on moving average
filters and time series.

C. Experiment details

We launch our experiments on a single NVIDIA GeForce RTX 4090 24GB GPU.

C.1. Synthesis

We follow the setting of KoVAE (Naiman et al., 2024b) and ImagenTime (Naiman et al., 2024a) on three datasets, ETTh2,
Exchange, and ECG (medical time series)!, i.e. L = 24. KoVAE is a SOTA VAE-based time series generative model while
ImagenTime is a diffuison-based one.

We also include discriminative score (Disc. Score) and predictive score (Pred. Score) as additional metrics for evaluating the
fidelity and usefulness of synthetic time series, as the following table shows.

Table 5. Results on standard time series synthesis

DATASET MODEL Disc. SCORE PRED. SCORE CONTEXT-FID
KOVAE 0.069 0.034 0.258
ETTH2 IMAGENTIME 0.053 0.054 0.118
OURS 0.044 0.026 0.075
KOVAE 0.137 0.038 1.520
ExXCHANGE IMAGENTIME 0.129 0.067 1.112
OURS 0.030 0.027 0.083
KOoVAE 0.459 0.081 1.206
ECG IMAGENTIME 0.400 0.079 1.223
OURS 0.345 0.076 0.979

We can see that compared to the SOTA time series generative models, our method still shows salient improvements in
discriminative score and predictive score, illustrating the capability of generating high-fidelity and useful synthetic time
series samples.

C.2. Forecasting

The length of the look-back window is set as 96, and the target time series length is set as L € {96, 192,336, 720}. Such a
setting is aligned with (Wang et al., 2024). Table 6 recorded the information of the forecasting datasets, Electricity?, ETT?,

'nttps://www.kaggle.com/datasets/devavratatripathy/ecg-dataset
https://archive.ics.uci.edu/ml/datasets/ElectricitylLoadDiagrams20112014
3https ://github.com/zhouhaoyi/ETDataset
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Table 6. Forecasting datasets

Dataset ~ Resolution Time steps Description
Electricity 1 hour 26304 Electricity consumptions
ETTh 1 hour 17420 Oil temperature of power transformers
ETTm 15 min 69680 Oil temperature of power transformers
Exchange 1 day 7588 Panel data of exchange rates
Traffic 1 hour 17544 Traffic loads
Weather 10 min 52695 Meteorological indicators

Exchange4, Traffic® and Weather®.

We set the batch size as 64, the learning rate as 2 x 10~%, the training epoch as 100 with early stopping, and the diffusion
step T' = 100. To include the condition input, the condition encoder and decoder are all Multi-Layer Perceptrons (MLP).
The hyperparameters of hybrid optimization are chosen as A, = A, = A, = 1. The specific network architectures can be
referred to as our source code.

The diffusion models inferred for 100 times to calculate the metrics. For MSE, we averaged over 100 times to have
deterministic forecasts, while for CRPS, we first calculated nine quantiles at {0.1,0.2, - - - , 0.9}, and then approximated
CRPS.

For each target length, benchmarks and our proposed model are trained with 5 different random initialization seeds, and the
full results on each target length are reported in Table 7.

Non-diffusion time series forecasting benchmarks. Although our paper focuses on how to improve the time series
diffusion model, we also believe that it’s necessary to include SOTA non-diffusion time series forecasting methods as
a reference. Therefore, we included Autoformer (Wu et al., 2021), Non-stationary Transformer (Liu et al., 2022), and
PatchTST (Nie et al., 2023) to compare deterministic forecasting performance. We run all models in the same setting
mentioned above, i.e., L = {96, 192,336, 720}, and the averaged MSEs over all L is reported in Table 8.

Regarding overall performance, our model still ranks first among these benchmarks, though it is slightly inferior to ETTh2
and weather compared to PatchTST.

It should be noted that these SOTA architectures are particularly tailored for time series forecasting and well adapted to
the benchmark datasets, while forecasting is one of the downstream applications of our proposed MA-TSD framework.
Therefore, we think there exists great potential to accommodate the SOTA architectures into our MA-TSD framework to
have a better forecasting performance in our future work.

C.3. Super-resolution

For time series super-resolution, we set the length of the time series as L = 576, and also train with the batch size as 64, the
learning rate as 2 x 104, the training epoch as 100 with early stopping, the diffusion step 7" = 100.

The information of the datasets, MFRED (Meinrenken et al., 2020), Wind” and Solar® are listed in Table 9.

Table 9. Super-resolution datasets

Dataset  Resolution Time steps Description

MFRED 5 min 25908 Household electricity load in Manhattan
Wind 5 min 26496 Power generation from Australian wind farms
Solar 5 min 52992 Power generation from Australian PV panels

*https://github.com/laiguokun/multivariate-time-series-data
Shttp://pems.dot.ca.gov

*https://www.bgc-jena.mpg.de/wetter/
"https://zenodo.org/records/4654858

8https ://zenodo.org/records/8219786
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Figure 10. Forecasting samples on L = 336
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Table 7. Forecasting performance measured in MSE and CRPS.

Dataset I MA-TSD mrdiff TMDM SSSD D3VAE CSDI
MSE CRPS MSE CRPS MSE CRPS MSE CRPS MSE CRPS MSE CRPS
96 0.28810.003 0.15810.001 0.49610.00s 0.22640.004  0.34840.018  0.17510.006  0.97640.043 0.30910.004 0.81610.07s 0.30640.014  0.35810.022  0.168.0.006
Eleclricity 192 0297i0 006 0-16010.002 0-466i0.[)l0 0218&0.002 m M l-OQOiU.Uf§7 0-319i\!.00'1 0-8851(‘.083 03141[) 023 0-4151(‘.()06 O-ISSiU.UUQ
336 0'347i0.008 0-177iﬂ.003 04496i0.00f‘ 0'2241().006 042310 016 0419210.004 l-ogsi(].ﬂ/ﬁ) 04324i0.006 0'808i0.126 0~307i0.021 0'459i0.01l O-lgsi(l.ﬂoﬂ
720 0.430.0018 020440003 0.657T40025 027520006 047820025 0.20320005 1.07210.037 0.33540.004 0.871ioa3s 031840021  0.601s00s2  0.22840011
96 0136i0 002 0-12110.001 0-14910.0113 0-134i0.001 020810 015 0-141i0.(m(i 0-590i(].“39 0-27i0.[)11 1-5771(‘.721 046410 106 0-2121(‘.()33 0-140i(].011
ETTh2 192 0.199:0.007 0.14910002 0.19410.004 0.15510.002  0.24110.010  0.15610.004  0.71210.0814 0.30410.023 1.63510.330 0.461i0.0a2  0.23610.000  0.151+0.002
336 0.229:0009 0.166:0003 023610003 017620002 027720000 017040002  0.79920132  0.331u0.036  1.52240722 041450080  0.26240000  0.165+0.006
720 0.284:0.017  0.191:0.006  0.289+0.005  0.19410.003 0.278:0.006 0.16910.003 0.779:+0.088 0.339+0.027 0.851:0.200 0.330+0.040 0.319+0.040  0.199+0.014
96 0.070:0.002 0.085:0001 0.122:0042 0.10510.015  0.090:0.008  0.089:0.004  0.54910.061 0.26410.017 3.74310637 0.719t0.050  1.609+0.417  0.42710.067
ETTma 192 010510005 010510002 0120010 0.112:0008 014220008 01140004 0.78220070 033220015 2934s0as  0.624s00rr 176310380 04382005
336 0.13610.004 0.12140002 0.19810.013 0.14440.00s 0.187+0.020 0.132.£0.006 1.03840.124  0.39440.020 3.490+0.866 0.671i0.000 2.75140.747 0.55640.113
720 0.18510.003 0.14310002 0.23510.023 0.15740.007  0.297+0.061 0.1664+0.015  1.206+0.085 0.43710.021 3.21241440 0.58540115  2.36940.256  0.46610.021
96  0.098:0006 0.11020001 0.10240005 0.10410003 0.39240006  0.196w0025  2.57240200 0.62020.022 0.67420131 0.29010037  0.17000s3  0.12340.001
Exchange 192 0.18740.005 0.158:0.002 0.25140011  0.17010.003  0.67040.007  0.29710.019  3.67210318  0.77510.040 2.60840850 0.60110113  0.25940.0s0  0.17010.018
336 0333+O 017 0-221+(‘.()(]5 0-456+1‘ 034 0220+0 006 0-929+U 116 0-333+().()11 3-131+(J.(‘88 0-710+\l.()l7 2-851+(‘.4‘]5 0-674+() 063 0-699+(‘.f§1li 0-302+(J.(‘157
720 0869i0 140 0'382iﬂ.037 14111iU.Oﬁf‘ 0~35310.015 116310 270 0'35810.036 2-226i0.l/13 0459210.025 2'301iﬂ.732 058710 143 3'895i3.4(]6 0-6l7iﬂ.313
96  0.166:0.004 0.112:0003 0.269:0.002 0.15310.002  0.20940.010  0.11440.004  1.94310.017 045310002 4.71412358 0.72910.140 027840017 0.14510.006
Traffic 192 0.157+0.003 0.10940.003 0.22840.001  0.136-£0.001 0.17210.010 0.10510.005 1.959+0.006 0.455+0.002 7.353+0602 0.9184+0.049  0.27610.022 0.14340.009
336 0'157i0.005 0'114i0.00’\ 04225iﬂ.011 0'1371().007 016110 010 0~10210.005 1-965i0.015 0445810.003 5'155i2.550 073410 153 0'310i0.03’\ 0-153i(1.ﬂl()
720 018420010 0-128+0.00r  0.2674001  0.155:0005 0.18020010 0.109:0.005 1.99850022 0.465:000s 821240000 0.9440005s 113240620  0.31240.106
96 0-096i(l.001 0-1021(‘.()02 O-IOSiU.[NJ(i 0-109i0.003 010910 011 0-100i0.(m(i 0-511i(].“29 0-265i“.0l(] 1-4471(‘.138 044810 021 0-09510.002 008910 001
Weather 192 014610001 012610002 015240003 0.130x0002 016310017 012010006 06600000 0.30510.015 1.901to324 0.50840.031 0.13810.004 0.109:0.002
336 0.225+0.006 0.16140.005 0.22140.006 0.155+0.002 0.250+0.022 0.14940.007  0.759+0.050 0.33110.015 1.600+0.313 0.457+0.039 0.20410.004 0.13310.001
720 0.362+0.007 0.21140.003 0.35040.004  0.20840.002 0.363+0.032 0.18340.008 0.83340.062 0.35140.016 1.23740.143 0.386+0.023 0.338410.023 0.17310.006
Table 8. Average MSEs over prediction lengths L = {96, 192, 336, 720}.
method Electricity ETTh2 ETTm2 exchange traffic weather rank
Autoformer 0.594 0.218 0.168 0.601 0.267 0.293 3.83
Nonstationary Transformer 0.367 0.230 0.146 0.440 0.229 0.278 2.83
PatchTST 0.412 0.202 0.122 0.500 0.179 0.189 1.83
MA-TSD 0.340 0.212 0.124 0.372 0.166 0.207 1.50

For MFRED and Solar, the original resolution is 10 seconds and 1 minute respectively, we resampled them to 5 minutes for
alignment.

We unify the denoising networks of both our proposed MA-TSD and the DDPM as the DiT(Peebles & Xie, 2023). For
consistency, we calculated as the MSE between the low-resolution inputs and the down-scaled super-resolution outputs.
For Context-FID, we trained Autoencoders for each training dataset individually, obtained the time series embeddings of
super-resolution outputs and the real high-resolution data, and calculated the Fréchet distance over these two embeddings.

The comparison of inference steps on each scale is shown in Figure 12. Here, though we conduct the experiments only on
{3, 6,12} scales, we can theocratically calculate the expected inference steps on other scales according to Equation (17).

Visualization of super-resolution can be found in Figure 13, Figure 14 and Figure 15.

19



A Non-isotropic Time Series Diffusion Model with Moving Average Transitions

electricity etth2 ettm2
10
4 real fest 90%P1 real fest 90%PIL real fest 90%P1
0.0
31 0.5
5] —0.51
0.0
11 1.0 1
07 ~0.5 1
—1.5 1
14
| ~1.04
o] ~20
200 400 600 800 200 400 600 800 0 200 400 600 800
exchange rate traffic weather
2.5 1 4]
real —— fest 90%P1 real —— fest 90%PT 0 —— real fest 90%PT
2.0 4 2] 021
N | 0.0
1.5 4
~0.24
04
1.0 —0.4
0.5 1 -1 064
T T T T -2 T T T — —081- T T T T
200 400 600 800 200 400 600 800 0 200 400 600 800

Figure 11. Forecasting samples on L = 720
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Figure 12. Comparison of inference steps under different super-resolution scales.
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Figure 13. Super-resolution on MFRED dataset
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Figure 14. Super-resolution on Wind dataset
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Figure 15. Super-resolution on Solar dataset
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