

WHOM TO TRUST? ADAPTIVE COLLABORATION IN PERSONALIZED FEDERATED LEARNING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Data heterogeneity poses a fundamental challenge in federated learning (FL),
 012 especially when clients differ not only in distribution but also in the reliability
 013 of their predictions across individual examples. While personalized FL (PFL)
 014 aims to address this, we observe that many PFL methods fail to outperform two
 015 necessary baselines, local training and centralized training. This suggests that
 016 meaningful personalization only emerges in a narrow regime, where global models
 017 are insufficient, but collaboration across clients still holds value. Our empirical
 018 findings point to two key ingredients for success in this regime: adaptivity in
 019 collaboration and fine-grained trust, at the level of individual examples. We show
 020 that these properties can be achieved within federated semi-supervised learning,
 021 where clients exchange predictions over a shared unlabeled dataset. This enables
 022 each client to align with public consensus when it is helpful, and disregard it when
 023 it is not, without sharing model parameters or raw data. As a concrete realization
 024 of this idea, we develop FEDMOSAIC, a personalized co-training method where
 025 clients reweight their loss and their contribution to pseudo-labels based on per-
 026 example agreement and confidence. FEDMOSAIC outperforms strong FL and PFL
 027 baselines across a range of non-IID settings, and we prove convergence under
 028 standard smoothness, bounded-variance, and drift assumptions. In contrast to many
 029 of these baselines, it also outperforms local and centralized training. These results
 030 clarify when federated personalization can be effective, and how fine-grained,
 031 trust-aware collaboration enables it.

1 INTRODUCTION

034 Federated learning (FL) enables collaborative machine
 035 learning across distributed data sources without direct
 036 data sharing. Classical methods such as FedAvg
 037 ([McMahan et al., 2017](#)), aim to train a single global
 038 model across all clients. This approach can succeed
 039 when data distributions are sufficiently similar, but
 040 collapses under strong distributional shifts. In highly
 041 heterogeneous settings, the promise of collaboration
 042 breaks down: models trained jointly may perform
 043 worse than models trained independently.

044 Personalized Federated Learning (PFL) addresses this
 045 challenge by shifting the goal. Rather than optimizing
 046 a shared global model, the goal is to use collaboration
 047 to improve each client’s personalized model.
 048 For example, Tab. 1 shows that in heterogeneous
 049 regimes both FL and even centralized training per-
 050 form worse than local training, i.e., clients learning
 051 independently without any communication. This un-
 052 derlines the requirement for PFL, but also highlights
 053 an often-overlooked baseline: when no method outper-
 054 forms local training, collaboration is not just ineffective—it is detrimental. Yet many PFL methods
 055 fail to beat this baseline (cf. Tab. 1), casting doubt on their utility.

Table 1: **Average test Accuracy on DomainNet and Office-10 dataset** (details in sec.4). Most personalized FL methods fail to surpass local training baseline. FEDMOSAIC exceeds both core baselines through adaptive, example-level collaboration. Color Map: **baselines**, **worse than baselines**, **worse than local training**, **better than baselines**.

Method	DomainNet	Office
Centralized	66.24 (0.4)	40.92 (0.6)
FL	31.00 (0.8)	37.25 (0.8)
	55.23 (0.1)	58.39 (0.3)
Per-FedAvg	72.48 (0.4)	71.92 (0.5)
pFedMe	75.21 (0.5)	74.83 (0.7)
APFL	80.59 (0.3)	80.91 (0.1)
FedPHP	78.25 (0.6)	76.36 (0.4)
Local Training	84.64 (0.1)	86.79 (0.4)
FEDMOSAIC	87.44 (0.02)	89.06 (0.01)

054 This widespread failure to measure true collaborative gain arises because "personalization" is often
 055 treated as a vague remedy for heterogeneity without a clear underlying principle. We argue that
 056 progress requires a new foundation. Personalization shouldn't be a default modification to an existing
 057 FL algorithm; it should emerge from a principled understanding of what each client needs and how
 058 collaboration can help. A meaningful PFL solution must adapt the degree and nature of collaboration
 059 based on client context. It must also account for heterogeneity not just between clients, but at the
 060 level of individual examples. Clients may align on some concepts (e.g., identifying cats) and diverge
 061 on others (e.g., identifying specific dog breeds), and collaboration should reflect this granularity.

062 In formal terms, PFL aims to minimize the sum of local risks across m clients with heterogeneous
 063 data distribution \mathcal{D}_i and personalized models h_1, \dots, h_m :

$$065 \min_{h_1, \dots, h_m} \sum_{i=1}^m \mathbb{E}_{(x,y) \sim \mathcal{D}_i} [\mathcal{L}(h_i(x), y)] .$$

066 In this setting, local model may outperform global or centralized models, making strong local and
 067 centralized baselines essential. The key trade-off between the massive data access of a centralized
 068 model versus the specialization of a local one, is the central tension PFL must navigate in an adaptive
 069 and data-specific way.

070 While federated learning can adapt by weighing parameters according to similarity (Huang et al.,
 071 2021; Zhang et al., 2021), data-specific collaborations require a shift in mechanism. Rather than
 072 aggregating model parameters, we propose to use federated semi-supervised learning (Bistritz et al.,
 073 2020; Abourayya et al., 2025) where clients share predictions on a public dataset. Collaboration is
 074 achieved by enforcing consensus between clients. We propose to adapt this consensus mechanism so
 075 that clients can contribute only on examples where they have expertise and can selectively trust others
 076 based on their demonstrated competence. Two clients familiar with cats can confidently collaborate
 077 on a new cat photo, while a client that has only seen cars should not influence the labeling of cat
 078 images. This form of selective, example-level trust is fundamentally difficult to achieve through
 079 parameter averaging alone.

080 In this work, we demonstrate this principle in practice. We propose a personalized Federated Co-
 081 Training approach (FEDMOSAIC) that enables adaptive, fine-grained collaboration through two key
 082 mechanisms: a dynamic weighting strategy allowing clients to balance global and local signals in each
 083 communication round, and an expertise-aware consensus mechanism that weights peer contributions
 084 by their competence on different data regions. Both mechanisms operate on predictions over a public
 085 dataset, enabling personalization that is responsive to the data's true structure.

086 While FEDMOSAIC achieves state-of-the-art empirical performance across benchmarks, its main
 087 contribution is conceptual. It redefines personalization as a question of collaborative structure, not
 088 just algorithm design. Our results show that principled, example-level collaboration can unlock the
 089 full potential of personalized federated learning.

092 2 RELATED WORK

093 Federated Learning (FL) aims to train models collaboratively across decentralized clients without
 094 compromising data privacy. However, heterogeneous data distributions across clients (non-IID set-
 095 tings) present a persistent challenge that degrades performance. Approaches addressing heterogeneity
 096 broadly fall into two categories: traditional FL and personalized FL (PFL) methods. We review these
 097 groups in relation to our method, FEDMOSAIC.

098 **Traditional Federated Learning:** Traditional federated learning methods typically learn a single
 099 global model. FEDAVG (McMahan et al., 2017) averages local models but struggles under non-IID
 100 data due to client drift. Subsequent methods attempt to correct this: SCAFFOLD (Karimireddy et al.,
 101 2020) uses control variates to correct the local updates, FedProx (Li et al., 2020) adds a proximal term
 102 to each client's loss function to stabilize training, and FedDyn (Acar et al., 2021) introduces dynamic
 103 regularization. Others use representation alignment, such as MOON (Li et al., 2021a), which applies
 104 a contrastive loss to align local and global features. These methods implicitly assume a global model
 105 can suffice, which may fail under strong heterogeneity. Moreover, parameter sharing can pose privacy
 106 risks (Zhu et al., 2019; Abourayya et al., 2025).

108 **Personalized Federated learning (PFL):** Personalized Federated learning methods tailor models
 109 to individual clients, addressing non-IID challenges through different strategies.
 110

111 **Meta-learning and Regularization-Based Methods** optimize a shared initialization or constrain
 112 local updates. E.g., Per-FedAvg (Fallah et al., 2020) learns a shared initialization, while Ditto (Li
 113 et al., 2021b) regularizes local updates toward a global reference. PFedMe (T Dinh et al., 2020)
 114 applies bi-level optimization to decouple personalization from global learning. **Personalized Aggre-**
 115 **gation strategies** dynamically aggregate models based on client similarity or adaptive weighting.
 116 APFL (Deng et al., 2020) introduces an adaptive mixture of global and local models, allowing
 117 clients to interpolate between shared and personalized parameters based on their data distribution.
 118 FedAMP (Huang et al., 2021) uses attention to weight client contributions based on similarity. Other
 119 methods select collaborators (e.g., FedFomo (Zhang et al., 2021), FedPHP (Li et al., 2021d)) or
 120 apply layer-wise attention (FedALA (Zhang et al., 2023c)). **Model Splitting Architectures** partition
 121 models into shared and personalized components. FedPer (Arivazhagan et al., 2019) keeps shared base
 122 layers and personalizes top layers. FedRep shares a backbone but personalizes the head. (Collins
 123 et al., 2021) shares a backbone but personalizes the head. FedBN (Li et al., 2021c) personalizes
 124 batch normalization layers to tackle feature shift. Other recent methods such as FedAS (Yang et al.,
 125 2024), GPFL (Zhang et al., 2023b), and FedBABU (Oh et al., 2021) disentangle or freeze specific
 126 parts of the model to balance generalization and personalization. PFedHN (Shamsian et al., 2021)
 127 uses a hypernetwork that generates personalized model parameters conditioned on client identity.
 128 **Knowledge Distillation Approaches** transfer knowledge from global or peer models to personal-
 129 ized local models. FedProto (Tan et al., 2022) aligns class-wise feature prototypes across clients,
 130 FedPAC (Xu et al., 2023) uses contrastive learning to distill knowledge into personalized models,
 131 and FedKD (Wu et al., 2022) reduces communication cost by distilling knowledge from a teacher
 132 ensemble to lightweight client models. FedMatch (Chen et al., 2021) uses consistency regularization
 133 to unlabeled and noisy data, FedDF (Lin et al., 2020) aggregates predictions via ensemble distillation,
 134 and FedNoisy (Liang et al., 2023) focuses on robust aggregation in the presence of noisy labels
 135 or adversarial participants. PerFed-CKT (Cho et al., 2021) enhances personalization by clustering
 136 clients with similar data distributions and facilitating knowledge transfer through logits instead of
 137 model parameters. Jeong & Kountouris (2023) proposes a fully decentralized PFL framework where
 138 clients share distilled knowledge with neighboring clients, enabling personalization without a central
 139 server. FedD2S (Atapour et al., 2024) introduces a data-free federated knowledge distillation approach
 140 that employs a deep-to-shallow layer-dropping mechanism.
 141

142 Despite this progress, existing PFL methods often share several limitations: (i) *Static collaboration*:
 143 Most PFL methods rely on fixed rules (e.g., aggregation weights or model splits), lacking adaptivity
 144 to client-specific or example-level variation. (ii) *Privacy risks*: Sharing model parameters, gradients,
 145 or even soft labels may expose sensitive information. (iii) *Limited generality*: Many methods are
 146 tailored to specific heterogeneity types (e.g., label skew in case of FedMix, or feature shift in case of
 147 FedBN). (iv) *Communication / computational overhead*: Some require complex multi-model training
 148 or costly synchronization. To overcome these limitations, we argue that PFL methods should use
 149 some form of dynamic modulation and per-example trust weighting.
 150

151 3 PERSONALIZED FEDERATED CO-TRAINING: ADAPTIVE AND 152 EXPERT-AWARE COLLABORATION

153 We now introduce Personalized Federated Co-Training (FEDMOSAIC), a concrete realization of the
 154 principle that effective personalization arises from adaptive, data-specific collaboration. Our method
 155 builds upon the framework of federated co-training (Abouraya et al., 2025), a privacy-preserving
 156 paradigm where clients collaborate by sharing hard predictions on a shared, unlabeled public dataset,
 157 U (we analyze the impact of this dataset’s size and distribution in sec.4). This process creates a
 158 consensus pseudo-labeled dataset, which clients use to augment their local training.
 159

160 While this approach avoids sharing sensitive model parameters and soft labels, it introduces two
 161 critical challenges for personalization:

1. **When to trust the global signal?** A client’s local data may conflict with the global
 162 consensus. Blindly trusting pseudo-labels can harm a model that is already well-specialized.

162 2. **Whose predictions to trust?** Clients possess varying levels of expertise across the data
 163 space. A naive consensus that treats all clients equally will be corrupted by noisy or
 164 misaligned predictions.

165
 166 FEDMOSAIC addresses these challenges directly with two core mechanisms: (1) dynamic loss
 167 weighting, which allows each client to adaptively decide when to trust the global signal, and (2)
 168 confidence-based aggregation, which intelligently decides whose predictions to trust.

169 **Dynamic Loss Weighting: Deciding When to Trust:** To allow clients to autonomously balance
 170 global collaboration with local specialization, we introduce a dynamic weight λ_i^t , into the local
 171 objective. At each round t , client i minimizes the combined loss:

$$\mathcal{L}_i^t(h) = \mathcal{L}(h, D_i) + \lambda_i^t \cdot \mathcal{L}(h, P_t)$$

172
 173 where D_i is the client’s private data and P_t is the pseudo-labeled public dataset. The weight λ_i^t
 174 modulates the influence of the global signal. Our choice of the function for computing λ_i^t was driven
 175 by the need for a smooth, bounded, and interpretable mechanism. We define it as:

$$\lambda_i^t = \exp \left(-\frac{\mathcal{L}(h_{t-1}^i, P_t) - \mathcal{L}(h_{t-1}^i, D_i)}{\mathcal{L}(h_{t-1}^i, D_i)} \right)$$

176
 177 This exponential form satisfies several desirable properties. It ensures positivity ($\lambda_i^t > 0$), avoids
 178 discontinuities, and smoothly adjusts the client’s trust based on the relative performance of its model
 179 on global versus local data. The behavior is highly intuitive:

- 180 • Conflict ($\mathcal{L}_{\text{global}} \gg \mathcal{L}_{\text{local}}$): If the consensus pseudo-labels are harmful, the global loss term
 181 increases, causing $\lambda_i^t \rightarrow 0$ and prompting the client to rely on its local data.
- 182 • Alignment ($\mathcal{L}_{\text{global}} \approx \mathcal{L}_{\text{local}}$): If the consensus is helpful and aligns with local data, $\lambda_i^t \approx 1$
 183 achieving a balance between personalization and collaboration.
- 184 • Enhancement ($\mathcal{L}_{\text{global}} < \mathcal{L}_{\text{local}}$): If the consensus provides a cleaner signal than the noisy
 185 local data, $\lambda_i^t > 1$, encouraging the client to trust the collaborative signal more heavily.

186 **Confidence-Based Aggregation: Deciding Whose to Trust:** To address the varying expertise
 187 of clients, we replace the standard uniform aggregation of predictions with a confidence-based
 188 consensus. Instead of just sharing hard labels, each client i also communicates a confidence vector
 189 $E_t^i \in (0, \infty)^{|U|}$, where $E_t^i[j]$ quantifies its estimated expertise on its prediction for example $x_j \in$
 190 U . The server then computes a weighted score matrix S_t by aggregating the one-hot predictions L_t^i
 191 from each client, weighted by their corresponding expertise:

$$S_t = \sum_{i=1}^m \text{diag}(E_t^i) \cdot L_t^i \in \mathbb{R}^{|U| \times C}$$

192 The final consensus pseudo-label for each example is determined by the highest aggregate score:

$$L_t[j] = \arg \max_{c \in [C]} S_t[j, c], \quad \forall j \in \{1, \dots, |U|\}$$

193 This mechanism allows clients who are more confident or reliable about specific data regions to have
 194 a greater influence on the consensus, effectively reducing the impact of noise from non-expert clients.
 195 We explore two practical instantiations for the confidence scores E_t^i : a class-frequency-based heuristic
 196 and an uncertainty-based score derived from the model’s predictive entropy. The full procedure is
 197 detailed in Algorithm 1.

198 **Communication.** In each communication round (every b local steps), client i sends a one-hot matrix
 199 $L_t^i \in \{0, 1\}^{|U| \times C}$ and expertise vector $E_t^i \in \mathbb{R}^{|U|}$; thus it adds exactly one scalar per public example
 200 compared to federated co-training (Abouraya et al., 2025). Encoding L_t^i by class *indices* (majority
 201 vote depends only on $\arg \max$) uses $\lceil \log_2 C \rceil$ bits per example instead of C bits, and quantizing
 202 expertise to b_E bits gives a per-round uplink budget $B_{\text{FEDMOSAIC}} = |U| (\lceil \log_2 C \rceil + b_E)$ bits. By
 203 contrast, parameter sharing (e.g., FEDAVG) uploads $32P$ bits for a model with P parameters. For
 204 example, as in our Fashion-MNIST experiments with $|U| = 10^4$ and $C = 10$, choosing $b_E = 8$ gives
 205 $B_{\text{FEDMOSAIC}} = 10^4(4 + 8) = 1.2 \times 10^5$ bits (≈ 15 KB) per client and round; parameter sharing instead
 206 communicates $\approx 2.6MB$, so FEDMOSAIC reduces communication by a factor of ≈ 177 .

216 **Algorithm 1:** Federated Co-Training with Adaptivity and Specialization (FEDMOSAIC)

217 **Input:** communication period b , m clients with local datasets D^1, \dots, D^m and learning
218 algorithms $\mathcal{A}^1, \dots, \mathcal{A}^m$, unlabeled public dataset U , total rounds T

219 **Output:** final models h_T^1, \dots, h_T^m

220 1 initialize local models h_0^1, \dots, h_0^m , $P \leftarrow \emptyset$

221 2 **Locally at client i at time t do**

222 3 compute local loss $\ell_{\text{priv}} = \mathcal{L}(h_{t-1}^i, D^i)$

223 4 compute pseudo-label loss $\ell_{\text{pseudo}} = \mathcal{L}(h_{t-1}^i, P)$

224 5 compute adaptive weight $\lambda_t^i = \exp\left(-\frac{\ell_{\text{pseudo}} - \ell_{\text{priv}}}{\ell_{\text{priv}}}\right)$

225 6 compute loss $\ell = \ell_{\text{priv}} + \lambda_t^i \ell_{\text{pseudo}}$

226 7 update $h_t^i \leftarrow \mathcal{A}^i(\ell, h_{t-1}^i)$

227 8 **if** $t \% b = b - 1$ **then**

228 9 construct prediction matrix $L_t^i \in \{0, 1\}^{|U| \times C}$

229 10 construct expertise vector $E_t^i \in (0, \infty)^{|U|}$

230 11 send (L_t^i, E_t^i) to server and receive L_t

231 12 $P \leftarrow (U, L_t)$

232 13 **end**

233 14 **At server at time t do**

234 15 receive $(L_t^1, E_t^1), \dots, (L_t^m, E_t^m)$ from clients

235 16 compute weighted score matrix $S_t = \sum_{i=1}^m \text{diag}(E_t^i) \cdot L_t^i$

236 17 set pseudo-labels $L_t[j] = \arg \max_{c \in [C]} S_t[j, c]$ for all $j \in \{1, \dots, |U|\}$

237 18 send L_t to all clients

244
245 **Convergence under dynamic pseudo-labels:** To provide theoretical support, we analyze the
246 convergence behavior of FEDMOSAIC under standard assumptions in stochastic optimization. Our
247 goal is to characterize the rate at which each client's objective approaches a stationary point, despite
248 the dynamic pseudo-labeling and the heterogeneity of local objectives.

249 We assume standard conditions, including smoothness of the loss functions, bounded gradient
250 variance, and bounded drift of pseudo-labels across rounds. These assumptions reflect the structure
251 of FEDMOSAIC, where local objectives are updated periodically but converge due to the stabilization
252 of pseudo-labels as shown by [Abourayya et al. \(2025\)](#).

253 **Assumptions 1.** *The following conditions hold for each client $i \in [m]$ at round t :*

254 1. *Each loss function $\mathcal{L}_i^{\text{local}}$ and $\mathcal{L}_i^{\text{global}, t}$ is $L(1 + e)^{-1}$ -smooth.*

255 2. *The gradient estimator g_i^t is unbiased and has bounded variance:*

$$\mathbb{E}[g_i^t] = \nabla \mathcal{L}_i^t(\theta_t), \quad \mathbb{E}[\|g_i^t - \nabla \mathcal{L}_i^t(\theta_t)\|^2] \leq \sigma^2.$$

256 3. *The global loss has bounded gradients: $\|\nabla \mathcal{L}_i^{\text{global}, t}(\theta)\| \leq G$ for all θ and t .*

257 4. *The objective drift is bounded: $|\mathcal{L}_i^{t+1}(\theta) - \mathcal{L}_i^t(\theta)| \leq \delta, \quad \forall \theta$.*

258 5. *The per-sample gradient variance is bounded:*

$$\mathbb{E}_{x \in D_i} \left[\left\| \nabla_{\theta} \ell(\theta, x, \hat{y}^t) - \nabla \mathcal{L}_i^{\text{local}, t} \right\|^2 \right] \leq \bar{\sigma}^2, \quad \mathbb{E}_{x \in U} \left[\left\| \nabla_{\theta} \ell(\theta, x, \hat{y}^t) - \nabla \mathcal{L}_i^{\text{global}, t} \right\|^2 \right] \leq \tilde{\sigma}^2$$

260
261 Under these conditions, we establish that FEDMOSAIC converges to an approximate stationary point.
262 Specifically, after T communication rounds, the average squared gradient norm decreases at a rate of
263 $\mathcal{O}(1/T)$ plus additive terms accounting for local and global variance and pseudo-label drift.

270 Table 2: Average test accuracy (%) under pathological and practical Non-IID Settings for $m = 15$
 271 clients. Color Map: **baselines**, **worse than both baselines**, **worse than local training**, **better than both**
 272 **baselines**.

	Method	Pathological non-IID		Practical non-IID	
		Fashion-MNIST	CIFAR-10	Fashion-MNIST	CIFAR-10
274	Centralized	99.28 (0.1)	87.90 (0.1)	99.28 (0.03)	87.90 (0.04)
275	Local training	99.32 (0.02)	88.01 (0.01)	98.23 (0.01)	83.91 (0.2)
276	FL	FedAvg	76.72 (0.1)	64.42 (0.2)	83.71 (0.2)
277		FedProx	77.88 (0.3)	70.25 (0.2)	84.14 (0.3)
278		FedCT	78.15 (0.01)	73.91 (0.02)	85.27 (0.01)
279		FedBN	78.04 (0.3)	81.35 (0.5)	85.39 (0.3)
280	PFL	Per-FedAvg	98.63 (0.02)	87.20 (0.01)	97.11 (0.01)
281		Ditto	99.37 (0.01)	87.94 (0.01)	98.39 (0.02)
282		pFedMe	74.80 (0.4)	81.47 (0.3)	80.01 (0.1)
283		APFL	99.26 (0.04)	87.98 (0.01)	97.96 (0.03)
284		FedPHP	99.30 (0.01)	87.90 (0.01)	98.40 (0.01)
285		PerFed-CKT	99.34 (0.01)	87.95 (0.01)	98.20 (0.01)
286		FEDMOSAIC	99.40 (0.01)	88.03 (0.01)	98.43 (0.01)
287					86.15 (0.01)

288 **Proposition 1** (Convergence of FEDMOSAIC). *Let each client’s objective at round t be*

$$290 \quad \mathcal{L}_i^t(\theta) = \mathcal{L}_i^{\text{local}}(\theta) + \lambda_i^t \mathcal{L}_i^{\text{global},t}(\theta), \text{ where } \lambda_i^t = \exp\left(-\frac{\mathcal{L}_i^{\text{global}}(\theta_t) - \mathcal{L}_i^{\text{local},t}(\theta_t)}{\mathcal{L}_i^{\text{local},t}(\theta_t)}\right),$$

292 and $\mathcal{L}_i^{\text{global},t}$ may change at each round due to pseudo-label updates. Under Assumptions 1-5, for a
 293 fixed step size $0 < \eta \leq (2L)^{-1}$ and $\min_i |D_i| = d$, after T rounds of FEDMOSAIC, it holds that
 294

$$295 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \mathcal{L}_i^t(\theta_t)\|^2] \leq \frac{4L(\mathcal{L}_i^0 - \mathcal{L}_i^*)}{T} + \frac{\bar{\sigma}^2}{2Ld} + \frac{e^2 \tilde{\sigma}^2}{2L|U|} + 2\delta.$$

298 The proof is provided in Appendix A. [Abouraya et al. \(2025\)](#) show that under the assumption of
 299 increasing local accuracy, pseudo-labels stabilize after some round t_0 , so the assumption of a bounded
 300 change in the client objective is realistic. In fact, the global loss term effectively becomes stationary
 301 under these assumptions quickly and the expected drift becomes negligibly small as t increases.

303 **Client-Level Privacy:** In each round t , client i communicates a hard-label matrix $L_t^i \in \{0, 1\}^{|U| \times C}$
 304 (one-hot predictions on U) and an *expertise* vector $E_t^i \in \mathbb{R}^{|U|}$ (one scalar per $u \in U$). Compared
 305 to [Abouraya et al. \(2025\)](#), which releases only L_t^i , the present protocol adds exactly one real value
 306 per unlabeled example. We apply the XOR mechanism to L_t^i . For this, [Abouraya et al. \(2025\)](#)
 307 showed that for on-average replace-one stable learning algorithms the sensitivity s^* of L_t^i is bounded,
 308 yielding a per-round ε_L -DP guarantee at the client level. For the expertise scores E_t^i we apply the
 309 Gaussian mechanism ([Dwork et al., 2014](#)) with variance σ^2 . Since the expertise scores are in $[0, 1]$
 310 for class frequencies and in $[0, \log C]$ for predictive entropy, the (per-coordinate) sensitivity of E_t^i is
 311 bounded, which yields (ε_E, δ) -DP with

$$312 \quad \varepsilon_E = \frac{c\sqrt{|U|}}{\sigma} \sqrt{2 \ln(1.25/\delta)},$$

313 where $c = 1$ for class frequencies and $c = \log C$ for predictive entropy. Combined, these two
 314 mechanisms on L_t^i and E_t^i yield $(\varepsilon_L + \varepsilon_E, \delta)$ -DP for FEDMOSAIC in each round.

318 4 EMPIRICAL EVALUATION

320 In this section, we evaluate FEDMOSAIC¹ against a suite of strong baselines in three challenging
 321 heterogeneity scenarios: (1) label skew, (2) feature shift, and (3) a hybrid setting combining both. We
 322 evaluate our method against FL (FedAvg, FedProx, FedCT, FedBN), state-of-the-art PFL methods
 323 (Per-FedAvg, Ditto, pFedMe, APFL, FedPHP, PerFed-CKT), and crucial local training and centralized
 324 baselines, which are essential for measuring true collaborative benefit. Centralized training refers

324 Table 3: Average test accuracy (%) on the Office-10 and DomainNet datasets in feature shift scenarios.
325 For Office-10: A, C, D, W = Amazon, Caltech, DSLR, WebCam. For DomainNet: C, I, P, Q, R, S =
326 Clipart, Infograph, Painting, Quickdraw, Real, Sketch. Color Map: see Table 2.

	Method	Office-10			DomainNet						
		A	C	D	W	C	I	P	Q	R	
	Centralized	74.03 (0.1)	58.24 (0.2)	79.12 (0.2)	78.52 (0.01)	70.53 (0.4)	30.59 (0.3)	61.87 (0.2)	71.50 (0.1)	70.17 (0.4)	64.62 (0.3)
	Local training	71.36 (0.02)	38.67 (0.3)	81.25 (0.1)	76.27 (0.2)	65.31 (0.5)	38.25 (0.7)	66.52 (0.3)	78.43 (0.3)	71.04 (0.2)	70.53 (0.6)
FL	FedAvg	71.88 (0.1)	48.44 (0.1)	40.63 (0.2)	54.24 (0.6)	55.71 (0.2)	28.42 (0.5)	40.25 (0.3)	52.64 (0.2)	54.15 (0.1)	56.12 (0.2)
	FedProx	73.44 (0.2)	52.00 (0.2)	68.75 (0.4)	79.66 (0.4)	59.41 (0.2)	35.74 (0.4)	48.82 (0.4)	55.37 (0.1)	56.82 (0.5)	59.17 (0.2)
	FedCT	73.96 (0.1)	57.21 (0.2)	68.73 (0.01)	70.31 (0.02)	61.53 (0.3)	35.19 (0.01)	64.73 (0.03)	60.82 (0.01)	71.85 (0.02)	69.25 (0.01)
	FedBN	75.39 (0.01)	58.13 (0.01)	78.54 (0.2)	78.23 (0.8)	69.45 (0.3)	38.01 (0.1)	68.12 (0.2)	79.21 (0.2)	76.20 (0.1)	69.23 (0.1)
PFL	Per-FedAvg	73.04 (0.1)	51.81 (0.5)	69.22 (0.3)	77.58 (0.01)	68.42 (0.01)	36.21 (0.2)	60.49 (0.2)	72.63 (0.1)	70.84 (0.3)	68.16 (0.3)
	Ditto	75.30 (0.01)	57.91 (0.3)	78.39 (0.02)	78.39 (0.1)	70.97 (0.01)	39.13 (0.01)	67.31 (0.02)	80.33 (0.03)	77.35 (0.01)	73.14 (0.03)
	pFedMe	70.83 (0.3)	49.78 (0.1)	75.00 (0.03)	64.41 (0.01)	67.21 (0.1)	37.42 (0.3)	65.17 (0.2)	75.24 (0.2)	74.19 (0.1)	68.93 (0.3)
	APFL	71.30 (0.01)	39.05 (0.06)	50.85 (0.2)	69.63 (0.1)	68.73 (0.1)	38.05 (0.3)	67.39 (0.3)	79.14 (0.01)	77.42 (0.1)	71.85 (0.2)
	FedPHP	70.63 (0.5)	40.13 (0.04)	51.78 (0.01)	72.74 (0.02)	65.29 (0.4)	36.32 (0.3)	66.01 (0.5)	77.03 (0.2)	75.28 (0.6)	70.11 (0.1)
	PerFed-CKT	71.26 (0.1)	46.80 (0.3)	74.22 (0.2)	73.50 (0.02)	67.49 (0.2)	37.41 (0.1)	62.83 (0.5)	72.45 (0.1)	65.39 (0.2)	62.59 (0.1)
	FEDMOSAIC	80.21 (0.01)	60.00 (0.02)	81.25 (0.02)	83.05 (0.1)	71.36 (0.1)	41.59 (0.2)	69.38 (0.4)	84.27 (0.1)	79.25 (0.3)	75.03 (0.2)

347
348 to applying the local training algorithm on the pooled data from all clients, as if it were stored in a
349 single location. Local training refers to each client training a model independently using only its own
350 local data, without any collaboration.¹
351

352
353 **Experimental Setup:** A core component of our method is the shared, unlabeled public dataset
354 U . Following standard practice in semi-supervised learning, for each experiment this dataset is a
355 small, class-balanced sample from the original training set, omitting its labels. This ensures that
356 U is drawn IID from the global training distribution and is disjoint from every client dataset D_i
357 ($U \cap D_i = \emptyset$); since the D_i are non-IID, U ’s distribution differs from each D_i . This way, U provides
358 a comprehensive view of the label space, even when clients’ private data is highly skewed.

359 We set the size of U to: CIFAR-10—3,000 samples; Fashion-MNIST—2,250 samples;
360 DomainNet—300 samples; and Office-10—80 samples. A comprehensive ablation study detailing
361 the impact of the public dataset’s size and distribution as well as an investigation of individual clients’
362 losses, is provided in the Appendix B.

363
364 **Label Skew:** We first evaluate FEDMOSAIC under label distribution skew, a common protocol
365 where clients see only subsets of the available classes. We test on two variants: a ”pathological”
366 setting where each of the 15 clients on Fashion-MNIST and CIFAR-10 holds data from only 2 classes,
367 and a more practical setting where label proportions are drawn from a Dirichlet distribution. These
368 settings are widely adopted in the literature (T Dinh et al., 2020; Fallah et al., 2020; Zhang et al.,
369 2023a;d;b). For these experiments, we use the class-frequency-based confidence score, a natural fit
370 for scenarios dominated by class imbalance.

371 As shown in Table 2, FEDMOSAIC achieves top performance across all settings. In the pathological
372 case on CIFAR-10, it scores 0.8803, surpassing all PFL methods and, crucially, the strong local
373 training baseline (0.8801). This result is significant: it demonstrates that FEDMOSAIC ’s adaptive
374 collaboration successfully extracts useful signals from peers without being corrupted by their extreme
375 data skew, achieving a better outcome than local training. Performance trends are similar in the
376 practical scenario, confirming the method’s robustness to varying degrees of label imbalance.

377
378 ¹Code to reproduce all experimental results: <https://anonymous.4open.science/r/FEDMOSAIC/README.md>

378 Table 4: Average test accuracy (in %) on the DomainNet and Office-10 dataset in hybrid settings for
 379 $m = 30$ clients on DomainNet and $m = 20$ on Office-10. Color map: see Table 2.

	Method	DomainNet	DomainNet (ViT)	Office-10	
381 382 383	Centralized Local training	66.24 (0.4) 84.64 (0.1)	68.25 (0.2) 84.92 (0.3)	40.92 (0.6) 86.79 (0.4)	
	384 385 386 387 FL	FedAvg FedProx FedCT FedBN	31.00 (0.8) 55.23 (0.1) 56.38 (0.01) 71.54 (0.3)	33.28 (0.5) 57.18 (0.3) 67.52 (0.02) 70.39 (0.4)	37.25 (0.8) 58.39 (0.3) 59.42 (0.02) 75.48 (0.3)
388 389 390 391 392 393	394 PFL	Per-FedAvg Ditto pFedMe APFL FedPHP PerFed-CKT	72.48 (0.4) 81.47 (0.01) 75.21 (0.5) 80.59 (0.3) 78.25 (0.6) 79.24 (0.4)	73.19 (0.3) 83.82 (0.02) 76.81 (0.8) 83.27 (0.5) 77.31 (0.7) 80.16 (0.2)	71.92 (0.5) 80.63 (0.01) 74.83 (0.7) 80.91 (0.1) 76.36 (0.4) 82.49 (0.1)
		FEDMOSAIC (W) FEDMOSAIC (U)	87.44 (0.02) 88.36 (0.01)	88.52 (0.2) 87.35 (0.1)	89.06 (0.01) 89.43 (0.03)

397 **Feature Shift:** To evaluate robustness to heterogeneous input distributions, we test on feature
 398 shift scenarios using the Office-10 and DomainNet datasets. Here, each domain (e.g., "Webcam,"
 399 "Sketch") acts as a client, sharing a common label space but having a unique data style. Table 3 shows
 400 that FEDMOSAIC consistently sets the state-of-the-art on all domains. On the complex DomainNet
 401 benchmark, it achieves the highest accuracy across all six domains, outperforming specialized
 402 methods like Ditto and FedBN. This demonstrates that the dynamic weighting and confidence-based
 403 aggregation are not limited to label skew; they effectively manage domain-specific features, allowing
 404 clients to learn from each other while preserving their specialized knowledge.

405 **Hybrid Distribution (Label Skew + Feature Shift):** We now consider the most challenging
 406 scenario: a hybrid of label skew and feature shift. To simulate this, we partition each domain in
 407 DomainNet and Office-10 into 5 clients, each assigned only 2 of the 10 classes. This results in 30
 408 highly heterogeneous clients for DomainNet and 20 for Office-10. In this demanding setup, we
 409 evaluate both our confidence mechanisms: the class-frequency heuristic (FEDMOSAIC-W) and the
 410 uncertainty-based score (FEDMOSAIC-U).

411 The results in Table 4 confirm the superiority of our approach. With both AlexNet and ViT archi-
 412 tectures, FEDMOSAIC variants significantly outperform all baselines. On Office-10, for instance,
 413 FEDMOSAIC-U achieves 0.8943 accuracy, a remarkable improvement over the next best baseline,
 414 Ditto (0.8063). One can note that centralized training is worse than local training due to the highly
 415 heterogeneous setting, meaning that a single global model cannot fit all clients effectively.

416 Interestingly, both the simple class-frequency heuristic and the more complex uncertainty-based score
 417 yield similarly strong results. This suggests that in settings with extreme label skew, class frequency
 418 serves as a powerful and efficient proxy for model expertise.

419 Taken together, these results validate that FEDMOSAIC's principled approach to adaptive, expert-
 420 aware collaboration enables it to deliver state-of-the-art performance, consistently outperforming
 421 strong baselines in diverse and realistic non-IID settings.

422 **The Effect of the Unlabeled Dataset:** FEDMOSAIC relies heavily on a shared unlabeled dataset
 423 $|U|$. To understand how sensitive FEDMOSAIC is to the characteristics of this dataset, we conducted
 424 a study on the effect of the size and distribution of this dataset. We simulated varying degrees of skew
 425 by sampling $|U|$ (with a fixed size of 3,000) using a Dirichlet distribution. We tested concentration
 426 parameters $\alpha = \{1, 0.7, 0.5, 0.3, 0.1\}$, where $\alpha = 1$ corresponds to a perfectly IID distribution and
 427 lower values induce increasingly severe skew. As shown in Fig. 1 and Fig. 2, performance degrades
 428 as the public dataset becomes more skewed, especially at low α (e.g., 0.3, 0.1) where some classes
 429 are missing. However, a key finding is that FEDMOSAIC never performs worse than the local baseline.
 430 This highlights the robustness of the adaptive aggregation scheme: when the global signal is unhelpful,
 431

432 the dynamic weight λ steers clients toward local training, acting as a fail-safe. More details are
 433 provided in App. B.
 434

435
 436 Figure 1: Average test accuracy of FEDMOSAIC
 437 on CIFAR-10 under different distribution of U .
 438
 439

440 5 DISCUSSION AND CONCLUSION

441 Personalized Federated Learning (PFL) aims to address data heterogeneity by tailoring models to
 442 client-specific distributions. Yet, as we have demonstrated, many existing approaches fall short of
 443 their promise, often failing to outperform even local training or centralized baselines. This raises
 444 fundamental concerns about the core premise of collaboration in personalized federated learning.

445 We argue that meaningful personalization in federated learning requires more than per-client modeling:
 446 it must involve adaptive, data-specific collaboration. In particular, effective PFL methods should
 447 support example-level decision-making, allowing clients to modulate the degree and direction of
 448 collaboration based on local context and per-sample reliability. Without this level of adaptivity,
 449 personalization risks becoming a superficial modification of global training.

450 FEDMOSAIC is one concrete instantiation of this principle. It enables example-level collaboration
 451 through dynamic loss weighting and confidence-based aggregation over a shared unlabeled dataset.
 452 Unlike prior methods that personalize only at the client level, FEDMOSAIC allows each client to
 453 adapt both how much and whom to trust, based on the alignment between public and private data.

454 Empirical results across a diverse set of non-IID scenarios support the effectiveness of this approach.
 455 In the hybrid scenario, which combines label skew and feature shift, FEDMOSAIC outperforms all
 456 competitors and baselines by a wide margin. In the feature shift scenarios, it again surpasses all
 457 methods across most domains, often with substantial gains. In the label skew setting, FEDMOSAIC
 458 consistently achieves the best performance for the pathological non-IID scenario, though with very
 459 narrow margins, in particular with respect to local training. In the practical non-IID scenario with
 460 milder heterogeneity, centralized training performs best, as expected. Yet, traditional federated
 461 learning methods fall short, being outperformed by several PFL approaches, including FEDMOSAIC.

462 These results illustrate both the strengths and limitations of personalized FL. One limitation is that,
 463 particularly in the label skew setting, the advantage over strong local baselines can be modest. Such
 464 scenarios, especially the pathological non-IID one, raise the question of whether collaboration is truly
 465 justified, and whether evaluation setups that favor strong local baselines but show weak global benefit
 466 are well-posed. We therefore emphasize the need for more meaningful benchmarks: scenarios where
 467 collaboration has a clear potential upside, and where the evaluation criteria capture the practical
 468 value of federated interaction, not just statistical differences. That said, FEDMOSAIC demonstrates
 469 that adaptive and data-aware collaboration is both feasible and effective. Across our experiments,
 470 it outperforms both local and centralized baselines in most settings, supporting its robustness and
 471 practical utility.

472 While FEDMOSAIC represents a principled and practically validated advance in personalized federated
 473 learning, it also opens new directions for future work. A key limitation is the assumption of a
 474 public unlabeled dataset. Although such datasets exist in many domains, e.g., healthcare, vision, and
 475 language, it remains an open question how to extend this paradigm when such data are limited or un-
 476 available. Developing mechanisms for privacy-preserving dataset synthesis, or leveraging foundation
 477 models for public data distillation, could further broaden the applicability of our framework.

445 Figure 2: Class distribution of U under different
 446 values of alpha.
 447

486 REFERENCES
487

488 Amr Abourayya, Jens Kleesiek, Kanishka Rao, Erman Ayday, Bharat Rao, Geoff Webb, and Michael
489 Kamp. Little is enough: Boosting privacy by sharing only hard labels in federated semi-supervised
490 learning. *Proceedings of the AAAI Conference on Artificial Intelligence*, 2025.

491 Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina, Paul N Whatmough,
492 and Venkatesh Saligrama. Federated learning based on dynamic regularization. *arXiv preprint*
493 *arXiv:2111.04263*, 2021.

494 Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Feder-
495 ated learning with personalization layers. *arXiv preprint arXiv:1912.00818*, 2019.

496 Kawa Atapour, S Jamal Seyedmohammadi, Jamshid Abouei, Arash Mohammadi, and Konstantinos N
497 Plataniotis. Fedd2s: Personalized data-free federated knowledge distillation. *arXiv preprint*
498 *arXiv:2402.10846*, 2024.

499 Ilai Bistritz, Ariana Mann, and Nicholas Bambos. Distributed distillation for on-device learning.
500 *Advances in Neural Information Processing Systems*, 33:22593–22604, 2020.

501 Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
502 learning. *SIAM Review*, 60(2):223–311, 2018.

503 Ann Cavoukian et al. Privacy by design: The 7 foundational principles. *Information and privacy*
504 *commissioner of Ontario, Canada*, 5(2009):12, 2009.

505 Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan, and Xueqi Cheng. Fedmatch: Federated
506 learning over heterogeneous question answering data. In *Proceedings of the 30th ACM international*
507 *conference on information & knowledge management*, pp. 181–190, 2021.

508 Yae Jee Cho, Jianyu Wang, Tarun Chiruvolu, and Gauri Joshi. Personalized federated learning for
509 heterogeneous clients with clustered knowledge transfer. *arXiv preprint arXiv:2109.08119*, 2021.

510 Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared represen-
511 tations for personalized federated learning. In *International conference on machine learning*, pp.
512 2089–2099. PMLR, 2021.

513 Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive personalized federated
514 learning. *arXiv preprint arXiv:2003.13461*, 2020.

515 Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. *Foundations*
516 *and trends® in theoretical computer science*, 9(3–4):211–407, 2014.

517 Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized federated learning with
518 theoretical guarantees: A model-agnostic meta-learning approach. *Advances in neural information*
519 *processing systems*, 33:3557–3568, 2020.

520 Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong Zhang.
521 Personalized cross-silo federated learning on non-iid data. In *Proceedings of the AAAI conference*
522 *on artificial intelligence*, volume 35, pp. 7865–7873, 2021.

523 Eunjeong Jeong and Marios Kountouris. Personalized decentralized federated learning with knowl-
524 edge distillation. In *ICC 2023-IEEE International Conference on Communications*, pp. 1982–1987.
525 IEEE, 2023.

526 Donglin Jiang, Chen Shan, and Zhihui Zhang. Federated learning algorithm based on knowledge
527 distillation. In *2020 International conference on artificial intelligence and computer engineering*
528 (*ICAICE*), pp. 163–167. IEEE, 2020.

529 Michael Kamp. *Black-Box Parallelization for Machine Learning*. PhD thesis, Rheinische Friedrich-
530 Wilhelms-Universität Bonn, Universitäts-und Landesbibliothek Bonn, 2019.

531 Michael Kamp, Sebastian Bothe, Mario Boley, and Michael Mock. Communication-efficient dis-
532 tributed online learning with kernels. In *ECMLPKDD*, pp. 805–819. Springer, 2016.

540 Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
 541 Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
 542 *International conference on machine learning*, pp. 5132–5143. PMLR, 2020.

543

544 Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In *Proceedings of*
 545 *the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10713–10722, 2021a.

546 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 547 Federated optimization in heterogeneous networks. *Proceedings of Machine learning and systems*,
 548 2:429–450, 2020.

549

550 Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
 551 learning through personalization. In *International conference on machine learning*, pp. 6357–6368.
 552 PMLR, 2021b.

553 Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. Fedbn: Federated learning
 554 on non-iid features via local batch normalization. *arXiv preprint arXiv:2102.07623*, 2021c.

555

556 Xin-Chun Li, De-Chuan Zhan, Yunfeng Shao, Bingshuai Li, and Shaoming Song. Fedphp: Federated
 557 personalization with inherited private models. In *Joint European Conference on Machine Learning*
 558 and *Knowledge Discovery in Databases*, pp. 587–602. Springer, 2021d.

559

560 Siqi Liang, Jintao Huang, Junyuan Hong, Dun Zeng, Jiayu Zhou, and Zenglin Xu. Fednoisy:
 561 Federated noisy label learning benchmark. *arXiv preprint arXiv:2306.11650*, 2023.

562

563 Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
 564 fusion in federated learning. *Advances in neural information processing systems*, 33:2351–2363,
 2020.

565

566 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 567 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence*
 568 and *statistics*, pp. 1273–1282. PMLR, 2017.

569

570 Osman Mian, David Kaltenpoth, Michael Kamp, and Jilles Vreeken. Nothing but regrets — privacy-
 571 preserving federated causal discovery. In *Proceedings of The 26th International Conference on*
 572 *Artificial Intelligence and Statistics*, volume 206, pp. 8263–8278. PMLR, 2023.

573

574 Jaehoon Oh, Sangmook Kim, and Se-Young Yun. Fedbabu: Towards enhanced representation for
 575 federated image classification. *arXiv preprint arXiv:2106.06042*, 2021.

576

577 Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley. Relative
 578 flatness and generalization. *Advances in neural information processing systems*, 34:18420–18432,
 2021.

579

580 Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik. Personalized federated learning using
 581 hypernetworks. In *International conference on machine learning*, pp. 9489–9502. PMLR, 2021.

582

583 Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau envelopes.
 584 *Advances in neural information processing systems*, 33:21394–21405, 2020.

585

586 Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengqi Zhang. Fedproto:
 587 Federated prototype learning across heterogeneous clients. In *Proceedings of the AAAI conference*
 588 on *artificial intelligence*, volume 36, pp. 8432–8440, 2022.

589

590 Chuhuan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. Communication-efficient
 591 federated learning via knowledge distillation. *Nature communications*, 13(1):2032, 2022.

592

593 Jian Xu, Xinyi Tong, and Shao-Lun Huang. Personalized federated learning with feature alignment
 594 and classifier collaboration. *arXiv preprint arXiv:2306.11867*, 2023.

595

596 Xiyuan Yang, Wenke Huang, and Mang Ye. Fedas: Bridging inconsistency in personalized federated
 597 learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 598 pp. 11986–11995, 2024.

594 Jianqing Zhang, Yang Hua, Jian Cao, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing
595 Guan. Eliminating domain bias for federated learning in representation space. In *NeurIPS*, 2023a.
596

597 Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, Jian Cao, and Haibing
598 Guan. Gpfl: Simultaneously learning global and personalized feature information for personalized
599 federated learning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
600 pp. 5041–5051, 2023b.

601 Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
602 Fedala: Adaptive local aggregation for personalized federated learning. In *Proceedings of the
603 AAAI conference on artificial intelligence*, volume 37, pp. 11237–11244, 2023c.

604 Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
605 Fedcp: Separating feature information for personalized federated learning via conditional policy.
606 In *Proceedings of the 29th ACM SIGKDD conference on knowledge discovery and data mining*,
607 pp. 3249–3261, 2023d.

608 Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M Alvarez. Personalized
609 federated learning with first order model optimization. In *International Conference on Learning
610 Representations*, 2021.

611

612 Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. *Advances in neural information
613 processing systems*, 32, 2019.

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 **A PROOF OF THEOREM**
649

650 In the following, we proof Proposition 1. For convenience, we restate the assumptions and proposition.
651

652 **Assumptions 1.** *The following conditions hold for each client $i \in [m]$ at round t :*
653

654 1. *Each loss function $\mathcal{L}_i^{\text{local}}$ and $\mathcal{L}_i^{\text{global},t}$ is $L(1+e)^{-1}$ -smooth.*
655

656 2. *The gradient estimator g_i^t is unbiased and has bounded variance:*
657

658
$$\mathbb{E}[g_i^t] = \nabla \mathcal{L}_i^t(\theta_t), \quad \mathbb{E}[\|g_i^t - \nabla \mathcal{L}_i^t(\theta_t)\|^2] \leq \sigma^2.$$

659

660 3. *The global loss has bounded gradients: $\|\nabla \mathcal{L}_i^{\text{global},t}(\theta)\| \leq G$ for all θ and t .*
661

662 4. *The objective drift is bounded:*
663

664
$$|\mathcal{L}_i^{t+1}(\theta) - \mathcal{L}_i^t(\theta)| \leq \delta, \quad \forall \theta.$$

665

666 5. *The per-sample gradient variance is bounded:*
667

668
$$\mathbb{E}_{x \in D_i} \left[\left\| \nabla_{\theta} \ell(\theta, x, \hat{y}^t) - \nabla \mathcal{L}_i^{\text{local},t} \right\|^2 \right] \leq \bar{\sigma}^2$$

669
$$\mathbb{E}_{x \in U} \left[\left\| \nabla_{\theta} \ell(\theta, x, \hat{y}^t) - \nabla \mathcal{L}_i^{\text{global},t} \right\|^2 \right] \leq \tilde{\sigma}^2$$

670 With these assumptions, FEDMOSAIC converges to a stationary point.
671

672 **Proposition 1** (Convergence of FEDMOSAIC). *Let each client's objective at round t be*
673

674
$$\mathcal{L}_i^t(\theta) = \mathcal{L}_i^{\text{local}}(\theta) + \lambda_i^t \mathcal{L}_i^{\text{global},t}(\theta), \text{ where } \lambda_i^t = \exp \left(-\frac{\mathcal{L}_i^{\text{global}}(\theta_t) - \mathcal{L}_i^{\text{local},t}(\theta_t)}{\mathcal{L}_i^{\text{local},t}(\theta_t)} \right),$$

675

676 and $\mathcal{L}_i^{\text{global},t}$ may change at each round due to pseudo-label updates. Under Assumptions 1-5, for a
677 fixed step size $0 < \eta \leq (2L)^{-1}$ and $\min_i |D_i| = d$, after T rounds of FEDMOSAIC, it holds that
678

679
$$\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla \mathcal{L}_i^t(\theta_t)\|^2] \leq \frac{4L(\mathcal{L}_i^0 - \mathcal{L}_i^*)}{T} + \frac{\bar{\sigma}^2}{2Ld} + \frac{e^2 \tilde{\sigma}^2}{2L|U|} + 2\delta.$$

680

681 *Proof.* Since $\mathcal{L}_i^{\text{local}}$ and $\mathcal{L}_i^{\text{global},t}$ are $L(1+e)^{-1}$ -smooth, and since during optimization steps $\lambda_i^t < e$
682 is fixed, the Lipschitz constant of \mathcal{L}_i^t is
683

684
$$L(1+e)^{-1} + \lambda_i^t L(1+e)^{-1} \leq L(1+e)^{-1} + eL(1+e)^{-1} = L.$$

685

686 Thus, the standard descent lemma (Bottou et al., 2018) gives:
687

688
$$\mathbb{E}[\mathcal{L}_i^t(\theta_{t+1})] \leq \mathbb{E}[\mathcal{L}_i^t(\theta_t)] - \eta \mathbb{E}[\|\nabla \mathcal{L}_i^t(\theta_t)\|^2] + \frac{L\eta^2}{2} \mathbb{E}[\|g_i^t\|^2].$$

689

690 To bound $\mathbb{E}[\|g_i^t\|^2]$, expand
691

692
$$\mathbb{E}[\|g_i^t\|^2] = \mathbb{E}[\|g_i^t - \nabla \mathcal{L}_i^t(\theta_t) + \nabla \mathcal{L}_i^t(\theta_t)\|^2] \leq 2\sigma^2 + 2\mathbb{E}[\|\nabla \mathcal{L}_i^t(\theta_t)\|^2],$$

693

694 and substitute into the descent inequality to obtain
695

696
$$\mathbb{E}[\mathcal{L}_i^t(\theta_{t+1})] \leq \mathbb{E}[\mathcal{L}_i^t(\theta_t)] - \eta \mathbb{E}[\|\nabla \mathcal{L}_i^t(\theta_t)\|^2] + L\eta^2 (\sigma^2 + \mathbb{E}[\|\nabla \mathcal{L}_i^t(\theta_t)\|^2]).$$

697

698 Rearranging terms yields
699

700
$$\mathbb{E}[\mathcal{L}_i^t(\theta_{t+1})] \leq \mathbb{E}[\mathcal{L}_i^t(\theta_t)] - \eta(1 - L\eta) \mathbb{E}[\|\nabla \mathcal{L}_i^t(\theta_t)\|^2] + L\eta^2 \sigma^2.$$

701

702 This step requires $\eta \leq (2L)^{-1} < L^{-1}$ to ensure that the coefficient $(1 - L\eta)$ is positive. We now
703 account for the fact that the function changes between rounds, i.e.,
704

705
$$\mathbb{E}[\mathcal{L}_i^{t+1}(\theta_{t+1})] \leq \mathbb{E}[\mathcal{L}_i^t(\theta_{t+1})] + \delta,$$

702 which gives

$$703 \quad \mathbb{E}[\mathcal{L}_i^{t+1}(\theta_{t+1})] \leq \mathbb{E}[\mathcal{L}_i^t(\theta_t)] - \eta(1 - L\eta)\mathbb{E}[\|\nabla\mathcal{L}_i^t(\theta_t)\|^2] + L\eta^2\sigma^2 + \delta.$$

704 Summing from $t = 0$ to $T - 1$ and rearranging yields

$$706 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla\mathcal{L}_i^t(\theta_t)\|^2] \leq \frac{\mathcal{L}_i^0 - \mathcal{L}_i^T}{(1 - L\eta)\eta T} + \frac{L\eta^2\sigma^2}{1 - L\eta} + \frac{\delta}{1 - L\eta}.$$

709 Denoting the minimum loss as \mathcal{L}_i^* , i.e., $\forall t, \mathcal{L}_i^t \geq \mathcal{L}_i^*$ yields the formal result

$$710 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla\mathcal{L}_i^t(\theta_t)\|^2] \leq \frac{\mathcal{L}_i^0 - \mathcal{L}_i^*}{(1 - L\eta)\eta T} + \frac{L\eta^2\sigma^2}{1 - L\eta} + \frac{\delta}{1 - L\eta}.$$

713 Since $((1 - L\eta)\eta)^{-1}, L\eta^2/(1 - L\eta)$, and $(1 - L\eta)^{-1}$ have a maximum at $(2L)^{-1}$ for $\eta \leq (2L)^{-1}$,
714 we can upper bound this by

$$715 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla\mathcal{L}_i^t(\theta_t)\|^2] \leq \frac{4L(\mathcal{L}_i^0 - \mathcal{L}_i^*)}{T} + \frac{\sigma^2}{4L} + 2\delta.$$

718 Since $g_i^t = g_i^{local,t} + \lambda_i^t g_i^{global,t}$, we decompose σ^2 in round t at client i as $2\bar{\sigma}^2 + 2(\lambda_i^t)^2\tilde{\sigma}^2$, and
719 further bound

$$720 \quad \sigma_{global}^2 \leq \frac{\mathbb{E}_{x \in D_i} \left[\left\| \nabla_{\theta} \ell(\theta, x, \hat{y}^t) - \nabla \mathcal{L}_i^{local,t} \right\|^2 \right]}{\min_i |D_i|} \\ 724 \quad + \sup_{i,t} (\lambda_i^t)^2 \frac{\mathbb{E}_{x \in U} \left[\left\| \nabla_{\theta} \ell(\theta, x, \hat{y}^t) - \nabla \mathcal{L}_i^{global,t} \right\|^2 \right]}{|U|} \\ 727 \quad \leq \frac{2\bar{\sigma}^2}{d} + \frac{2e^2\tilde{\sigma}^2}{|U|},$$

729 since $\sup_{i,t} (\lambda_i^t)^2 = e^2$ and using Assumption 5. With this, we obtain obtain

$$731 \quad \frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}[\|\nabla\mathcal{L}_i^t(\theta_t)\|^2] \leq \frac{4L(\mathcal{L}_i^0 - \mathcal{L}_i^*)}{T} + \frac{\bar{\sigma}^2}{2Ld} + \frac{e^2\tilde{\sigma}^2}{2L|U|} + 2\delta.$$

733 \square

735 **Theory and Generalization bound** Our current analysis focuses on convergence, as is typical
736 in most analyses for deep learning. We agree that generalization bounds are desirable, but often
737 vacuous for deep learning (Petzka et al., 2021). We therefore clarify the theoretical assumptions
738 and guarantees as follows. First, the bounded objective drift assumption is motivated by the pseudo-
739 label stabilization property in federated co-training: prior work shows that, after a finite number of
740 rounds, the consensus labels on the public dataset converge, and in our setting we observe the same
741 behavior empirically. once local models have stabilized, the pseudo-label drift across rounds becomes
742 negligible. Second, beyond the convergence result, we outline a VC-style client-level generalization
743 bound in the spirit of APFL by viewing each client’s empirical objective as defined on a combined
744 sample of size

$$744 \quad M_i = n_i + \lambda_i^2 N,$$

745 consisting of n_i local labeled examples and λ_i -weighted pseudo-labeled public examples. Decom-
746 posing the excess local risk

$$747 \quad R_i(h_i^{\text{FM}}) - R_i(h_i^{\text{loc,*}})$$

748 into an optimization error plus two generalization gaps, and controlling the latter via standard
749 uniform-convergence (VC) bounds on this combined sample, yields a generalization term

$$751 \quad \Phi_i(n_i, N, \delta) = \mathcal{O}\left(\sqrt{\frac{d \log M_i}{M_i}}\right),$$

753 which makes explicit how both local labeled data and pseudo-labeled public data contribute to each
754 client’s generalization. Finally, in the convergence analysis we introduce g_t^i as a stochastic gradient
755 estimator computed on a mini-batch from $D_i \cup P_t$, while Algorithm 1 keeps the local update abstract
as the optimizer $A_i(\ell, h_{i,t-1})$; in all experiments, A_i is instantiated as a grad.

756 **B ADDITIONAL EMPIRICAL EVALUATION**
757
758
759

760 **Robustness under Misleading Global Knowledge** To further evaluate FEDMOSAIC’s adaptivity,
761 we conducted an experiment designed to test its behavior when the global consensus signal is actively
762 misleading for a particular client. We constructed a scenario using CIFAR-10 dataset with 5 clients,
763 where client 0 was assigned flipped labels so effectively training on corrupted data. This setup results
764 in the global pseudo labels being systematically misaligned with this client’s local distribution. As
765 expected the client’s local model suffers a significantly higher loss when trained using the global
766 pseudo labels compared to its own data, leading to a near zero value of λ . This confirms the intended
767 behavior of FEDMOSAIC: when the global signal is detrimental, the client autonomously reduces
768 its reliance on it, effectively opting out of harmful collaboration. Fig.3 illustrates this behavior by
769 showing the divergence between global and local loss for the corrupted client (client 0) in comparison
770 to a non-corrupted one (client 1). Fig. 4 shows the evolution of the adaptive weight λ across
771 communication rounds for all 5 clients.

772 Figure 3: Local Vs Global loss across communi-
773 cation rounds on CIFAR-10.

774 Figure 4: Adaptive weight λ across communica-
775 tion rounds on CIFAR-10.

776 **Personalization vs. Local training In Low-collaboration Regimes** While FEDMOSAIC con-
777 sistently archives the highest accuracy across both pathological and practical label skew settings (Table2),
778 the margin between its performance and that of local training is notably small. This observation
779 raises a critical insight. In such scenarios, where each client’s local distribution is highly disjoint and
780 local alignment provides limited benefit, personalization through collaboration may be unnecessary
781 or even detrimental. Indeed, FEDMOSAIC’s adaptive mechanism reflects this reality. The per-client
782 weighting strategy reduces reliance on the global information when it does not align with local data.
783 This is evident in Fig.5 and Fig.6, which show that the global loss remains consistently higher than
784 the local loss for many clients, leading to near zero value of the adaptive weight λ as seen in Fig.7. In
785 such cases, FEDMOSAIC defaults to local training behavior, effectively opting out of collaboration
786 when it offers no advantage. This reinforces the methods’ robustness as it personalizes only when
787 beneficial, and falls back to local training when collaboration yields little or a negative return. To
788 ensure numerical stability in the computation of the adaptive coefficient

$$\lambda_i^t = \exp \left(-\frac{\mathcal{L}_i^{\text{global}}(\theta_t) - \mathcal{L}_i^{\text{local},t}(\theta_t)}{\mathcal{L}_i^{\text{local},t}(\theta_t)} \right),$$

789 , we add a small constant ϵ to the denominator to prevent division by zero.

801 Figure 5: Local loss across communication
802 rounds on Fashion-MNIST for the first 6 clients.

803 Figure 6: Global loss across communica-
804 tion rounds on Fashion-MNIST for the first 6 clients.

Figure 7: Adaptive weight λ across communication rounds on Fashion-MINST for the first 6 clients.

The Effect of the Unlabeled Dataset : As mentioned in sec.4, FEDMOSAIC relies heavily on a shared, unlabeled public dataset $|U|$. To understand how sensitive FEDMOSAIC is to this dataset's characteristics, we conducted a study on CIFAR-10 dataset focusing on two critical questions: First, how does the amount of available data affect performance? Second, does it matter whether the class distribution is balanced (IID) or heavily skewed?

IMPACT OF PUBLIC DATASET SIZE : We evaluated the performance of FEDMOSAIC using different sizes of the public unlabeled dataset, with $|U|$ set to 3000, 2000, 1000, 500 and 250. For this experiment, the public dataset was always sampled in an IID fashion to ensure all classes were present. The results, summarized in Fig.8, show that the performance of FEDMOSAIC is remarkably stable. Even as the size of the public dataset is reduced by over 90% (from 3000 to 250 samples), the drop in final test accuracy is minimal. This finding suggests that the collaboration mechanism does not require a large volume of public unlabeled data. As long as a small class-representative set of examples is available, clients can effectively share knowledge and build high-quality personalized models.

Figure 8: Test accuracy (ACC) of FEDMOSAIC under different unlabeled dataset size $|U|$

IMPACT OF PUBLIC DATASET DISTRIBUTION : Next, we studied the effect of the public unlabeled dataset distribution. We simulated varying degrees of distribution skew by sampling $|U|$ (with a fixed size of 3,000) using a Dirichlet distribution. We tested different values of the concentration parameter $\alpha = 1, 0.7, 0.5, 0.3, 0.1$, where $\alpha = 1$ corresponds to a perfectly IID distribution and lower values induce increasingly severe skew.

As shown in Fig.9 and Fig.10, we observe a degradation in performance as the public dataset become more skewed. The most significant drop occurs at very low α values (e.g., 0.3, 0.1), where some classes are absent from U . In such cases, the global consensus offers no useful information for clients whose private data contains the missing classes.

Figure 9: Test accuracy (ACC) of FEDMOSAIC under different distribution of U .

Figure 10: Class distribution of U under different values of alpha.

However, the most crucial finding is that the performance of FEDMOSAIC never drops below the local training baseline. This demonstrates the robustness of the adaptive aggregation scheme. When the global signal becomes irrelevant or misleading, the dynamic loss weight λ automatically steers clients to disregard it, effectively defaulting to local training. This acts as a critical fail-safe, ensuring that collaboration is never actively detrimental, even when the public data is of poor quality.

A Note on the Byzantine Resilience of FEDMOSAIC Following the argument by (Jiang et al., 2020), who show that federated semi-supervised learning with soft labels sharing (e.g., FedDistill) is more Byzantine resilient than FedAvg due to the bounded nature of the threat vector on the probability simplex, we argue that FEDMOSAIC exhibits similar (if not stronger) resilience properties. Like FedCT (Abouraya et al., 2025), FEDMOSAIC relies on hard label sharing, further constraining the threat vector to a binary classification decision per example. Moreover, FEDMOSAIC incorporates confidence-based aggregation, which naturally downweights unreliable predictions. This mechanism provides an additional layer of robustness by reducing the influence of low confidence (and potentially malicious) clients. While a formal analysis remains open, these properties suggest that FEDMOSAIC may be at least as Byzantine resilient as FedDistill and FedCT. Exploring this direction further is promising for future work.

Robustness to Client Dropout To assess robustness beyond full participation, we additionally evaluate a partial-participation setting, where in each communication round only a subset of clients is sampled. On Fashion-MNIST with 30 clients under the practical non-IID setting, we run FEDMOSAIC and FedAvg (McMahan et al., 2017) with client dropout rates of 10%, 20%, and 30% per round. As shown in Table 5, FEDMOSAIC consistently outperforms FedAvg across all participation levels and degrades more gracefully as the dropout rate increases.

Table 5: Fashion-MNIST (practical non-IID), average client test accuracy (%) under client dropout with 30 clients.

Method	Dropout 0%	Dropout 10%	Dropout 20%	Dropout 30%
FedAvg	78.23	73.78	72.61	71.38
FEDMOSAIC	93.12	90.32	89.24	88.41

Effect of the Confidence Mechanism In the main paper, Tables 2 and 3 reported results using the class frequency-based confidence score, while the uncertainty-based mechanism was only evaluated in the hybrid setting (Table 4). We additionally applied the uncertainty-based confidence score to the label-skew experiments and the hybrid benchmark. Overall, FEDMOSAIC with uncertainty-based confidence (FEDMOSAIC-U) performs comparably to, and in several cases slightly better than, the class frequency-based variant (FEDMOSAIC-W), confirming that the gains of our method are not tied to a specific confidence design.

918
919
920
Table 6: Fashion-MNIST and CIFAR-10 (label-skew), average client test accuracy (%) for both
confidence mechanisms.
921
922
923
924
925

Dataset / Setting	FEDMOSAIC-W (class freq.)	FEDMOSAIC-U (uncertainty)
Fashion-MNIST, practical	98.43 (0.01)	98.62 (0.03)
CIFAR-10, practical	86.15 (0.01)	87.43 (0.05)
Fashion-MNIST, patholog.	99.40 (0.01)	98.38 (0.02)
CIFAR-10, patholog.	88.03 (0.01)	89.02 (0.04)

926
927
928
Table 7: Per-domain client test accuracy (%) for Office-10 and DomainNet under both confidence
mechanisms.
929

Dataset	Domain	FEDMOSAIC-W (class freq.)	FEDMOSAIC-U (uncertainty)
Office-10	A	80.21 (0.01)	81.18 (0.05)
Office-10	C	60.00 (0.02)	59.95 (0.08)
Office-10	D	81.25 (0.02)	81.20 (0.06)
Office-10	W	83.05 (0.10)	83.50 (0.10)
DomainNet	C	71.36 (0.10)	72.30 (0.12)
DomainNet	I	41.59 (0.20)	40.55 (0.18)
DomainNet	P	69.38 (0.40)	67.35 (0.25)
DomainNet	Q	84.27 (0.10)	85.22 (0.11)
DomainNet	R	79.25 (0.30)	78.21 (0.20)
DomainNet	S	75.03 (0.20)	74.98 (0.16)

941
942
943
944
945
946
Tiny-ImageNet Label-Skew Results We evaluate all methods on the Tiny-ImageNet dataset (200
classes) using a ResNet-18 backbone under the practical heterogeneous label-skew scenario described
in Sec.4. Specifically, we simulate non-identically distributed label partitions using the Dirichlet
distribution as in Sec. 4, and train all approaches under the same optimization and communication
budgets. The average test accuracies are reported in Table 8.947
948
Table 8: Average test accuracy (%) on Tiny-ImageNet under the practical heterogeneous (label-skew)
setting with a ResNet-18 backbone.
949

Category	Method	Tiny-ImageNet (practical label-skew)
Baseline	Centralized	42.20 (0.21)
Baseline	Local training	36.75 (0.37)
FL	FedAvg	19.80 (0.42)
FL	FedProx	19.49 (0.18)
FL	FedCT	29.54 (0.53)
FL	FedBN	33.17 (0.31)
PFL	Per-FedAvg	25.43 (0.27)
PFL	Ditto	31.85 (0.44)
PFL	pFedMe	27.29 (0.15)
PFL	APFL	32.34 (0.39)
PFL	FedPHP	35.63 (0.24)
PFL	PerFed-CKT	34.90 (0.33)
Ours	FEDMOSAIC	41.90 (0.07)

963
964
965
966
967
968
969
970
971
Public unlabeled data availability and robustness We now explicitly discuss the assumption of
a shared public unlabeled dataset in the context of federated semi-supervised learning, where this
assumption is standard and non-sensitive public data is used as a communication substrate. In many
application domains such data is readily available (e.g., MIMIC-CXR or CheXpert in healthcare,
ImageNet-21K, LAION-400M, or OpenImages in vision, and C4 or Wikipedia in NLP), and in such
settings clients in FEDMOSAIC never share private data, only predictions over this public dataset.
Section 4 and Appendix B further show that even when the public set is very small or strongly skewed,
FEDMOSAIC still matches or exceeds the local baseline, as the adaptive weighting mechanism
automatically reduces reliance on unreliable global signals.

972 **Baselines using public data** To ensure a fair comparison, in all experiments, we already include
 973 FedCT, a federated semi-supervised method that, like our approach, operates on the same unlabeled
 974 public dataset U . In addition, we now report results for FedMD, which relies on a public labeled
 975 dataset (and thus has strictly more information than FEDMOSAIC) under the same hybrid setting
 976 and training/communication budgets as our method. In this setting, FedMD achieves 57.3% on
 977 DomainNet, 69.4% on DomainNet (ViT), and 63.2% on Office-10, which remains clearly below
 978 FEDMOSAIC (Table 4: 88.36%/87.35%/89.43%).
 979

980 **Scalability, communication, and wall-clock time** We base FEDMOSAIC on the federated co-
 981 training paradigm, which has already been shown to scale well with an increasing number of clients,
 982 and our method inherits this scalability since each client only shares predictions and scalar expertise
 983 scores instead of full model parameters. In the communication analysis, we make this precise by
 984 comparing the per-round uplink cost of transmitting one-hot predictions on the public set U and
 985 an expertise vector (which scales with $|U|$ and the number of classes) to the cost of transmitting a
 986 full model of size $|\theta|$ (e.g., 32-bit parameters) as in standard parameter-sharing FL. As long as $|U|$
 987 is of the same order or smaller than $|\theta|$, FEDMOSAIC is strictly more communication-efficient; in
 988 the FashionMNIST setup of Sec. 3, this translates into a reduction by roughly a factor of $177 \times$ in
 989 per-round communication compared to FedAvg. For wall-clock performance, we follow common FL
 990 practice and measure the time needed to reach a target accuracy. Concretely, we run FashionMNIST
 991 with 15 clients under the same label-skew setting and CNN architecture as in Table 2, using a batch
 992 size of 64, a public unlabeled dataset of size $|U| = 1000$, and 10 communication rounds where each
 993 client performs 20 local epochs per round; we stop as soon as the average client test accuracy first
 994 reaches 75%. On a setup with 5 NVIDIA RTX A6000 GPUs, FEDMOSAIC reaches the 75% target
 995 in 28.8 minutes, whereas FedAvg requires 53.6 minutes, confirming that the reduced communication
 996 also translates into faster time-to-target accuracy in practice.
 997

998 **Differential privacy** We instantiate and empirically evaluate the differential privacy (DP) mech-
 999 anisms described in Sec. 3 to demonstrate that FEDMOSAIC can be made privacy-preserving
 1000 without altering its algorithmic structure. These mechanisms add Gaussian noise and apply an
 1001 XOR perturbation only to the communicated one-hot predictions and scalar expertise scores, whose
 1002 sensitivity is bounded; as covered in Proposition 1, this ensures that the injected noise introduces
 1003 only minor stochastic perturbations without changing the convergence rate. In the main experiments
 1004 we focus on adaptivity and personalization and therefore keep DP disabled, but we additionally
 1005 run a DP-FEDMOSAIC variant in the hybrid setting of Table 4. Concretely, we add Gaussian
 1006 noise with standard deviation $\sigma = 0.01$ and apply the XOR mechanism. Under this configuration,
 1007 DP-FEDMOSAIC achieves 86.12 (0.15) on DomainNet and 87.24 (0.14) on Office-10, i.e., only a
 1008 small drop (approximately 1–2 percentage points) compared to the non-DP results, confirming that
 1009 moderate DP noise has a limited impact on performance in practice.
 1010

1009 C DETAILS ON EXPERIMENTS

1010 All experiments are conducted for a sufficient number of communication rounds until convergence,
 1011 using three different random seeds. While the standard deviation across the three runs with different
 1012 seeds is consistently small, this observation aligns with prior work [Zhang et al. \(2023d\)](#), [Zhang et al. \(2023c\)](#), [Zhang et al. \(2023b\)](#).
 1013

1014 **Label Skew** Fashion-Minst and CIFAR-10 datasets have been used for label skew experiments. In
 1015 Fashion-Minst, we converted the raw grayscale 28×28 images into Pytorch tensors and normalized
 1016 pixel values to the range $[-1, 1]$ using a mean of 0.5 and standard deviation of 0.5. In CIFAR-10, we
 1017 converted RGB 32×32 images into Pytorch tensors of shape $[3, 32, 32]$ and normalizes each color
 1018 channel independently to the range of $[-1, 1]$, using a mean of 0.5 and standard deviation of 0.5. The
 1019 data is partitioned across 15 clients. In a pathological non-IID setting, each client receives data from
 1020 only 2 out of 10 classes. In a practical non-IID setting, data is distributed across 15 clients using
 1021 a Dirichlet distribution. This creates naturally overlapping, imbalanced label distributions among
 1022 clients. Training data distribution of each scenario of CIFAR-10 are showing in Fig.11 and Fig.12. We
 1023 have used a small CNN (two convolutional layers followed by two fully connected layers) for that
 1024 scenario.
 1025

Figure 11: CIFAR-10 clients data distribution in Pathological non-IID setting

Figure 12: CIFAR-10 clients data distribution in Practical non-IID setting

Feature Shift we used the Office-10 and DomainNet datasets. For both, we adopt AlexNet as a neural network architecture. Input images are resized to $256 \times 256 \times 3$. Training is performed till convergence using the cross-entropy loss and Adam optimizer with learning rate of 10^{-2} . We use a batch size of 32 for Office-10 dataset and 64 for DomainNet. For DomainNet, which originally contains 345 categories, we restrict the label space to the top 10 most frequent classes to reduce complexity. The selected categories are: bird, feather, headphones, icecream, teapot, tiger, whale, windmill, wineglass, zebra. For Office-10, each client get one of the 4 domains and For DomainNet dataset, each client get one of the 6 domains. The distribution of each client training data are showing in Fig.13 and Fig.14.

Figure 13: DomainNet clients data distribution.

Figure 14: Office-10 clients data distribution.

Hybrid Distribution We simulate the hybrid data distribution by combining both label distribution skew and feature distribution shift. We use the same two datasets as in feature shift experiments: Office-10 and DomainNet. To introduce label skew, for each domain, we randomly sample 5 clients and assign to each client only 2 out of 10 total classes. This results in 20 clients for the Office-Caltech10 dataset (4 domains \times 5 clients) and 30 clients for DomainNet (6 domains \times 5 clients). This creates a hybrid non-IID setting where clients differ significantly in both input distribution and output distribution. We use the same preprocessing and training configurations as the feature shift experiments. All input images are resized to $256 \times 256 \times 3$ before being fed into *AlexNet*. Models are trained using cross-entropy loss and Adam optimizer with learning rate of 10^{-2} . The batch size is set to 32 for Office-10 and 64 for DomainNet. For DomainNet, we selected the 10 most frequent as feature shift experiments. To effectively visualize the distribution of local training data across 30 clients, we used a dot matrix plot, which offers a compact and intuitive representation of client-level variation. The visualization of the Clients distribution of DomainNet and Office-10 datasets are shown in Fig.15 and Fig.16

Figure 15: DomainNet clients Hybrid data distribution.

Figure 16: Office-10 clients Hybrid data distribution.

D PRACTICAL IMPACT OF FEDMOSAIC

FEDMOSAIC addresses data heterogeneity in personalized federated learning (PFL) via a fine-grained collaboration mechanism that lets each client selectively rely on collective expertise, aiming to improve accuracy and robustness. This is particularly relevant in domains with substantial variability (e.g., healthcare, finance, recommendation), where traditional federated methods can struggle. Empirically, FEDMOSAIC often outperforms strong PFL baselines and, in our evaluated settings, local and centralized training across label skew, feature shift, and hybrid heterogeneity; where margins are small, it performs comparably. Its design limits disclosure by sharing only hard predictions on a shared unlabeled dataset, reducing potential privacy leakage relative to parameter sharing. This follows “share as little as possible” (Mian et al., 2023; Tan et al., 2022) and aligns with privacy-by-design (Cavoukian et al., 2009). In addition, our differentially private variant (DP-FEDMOSAIC) illustrates how to obtain formal (ϵ, δ) -DP guarantees for the released signals (labels and expertise), with the privacy accounting provided and empirical calibration left to future work. Finally, federated co-training is communication-efficient for large models: when parameter counts vastly exceed $|U|$, sending hard labels (and one expertise scalar per example) can reduce uplink by orders of magnitude. Combining this with communication-efficient protocols (Kamp et al., 2016; Kamp, 2019) has the potential to reduce communication by several orders of magnitude, in particular for large transformer-based models, such as LLMs.

E NOTATION

Federated Learning Setup

1124 m	Number of participating clients
1125 $i \in [m]$	Index of a client
1126 D_i	Private dataset of client i
1128 U	Shared public unlabeled dataset used for co-training
1129 T	Total number of communication rounds
1130 b	Communication period (local steps between rounds)
1132 A_i	Local learning algorithm used by client i

Models and Predictions

1134	h_i^t	Local model of client i at round t
1135	$L(h, D)$	Loss of model h on dataset D
1136	$\ell_{\text{priv}} = L(h_i^{t-1}, D_i)$	Private loss on client i 's local data
1137	$\ell_{\text{pseudo}} = L(h_i^{t-1}, P^t)$	Loss on pseudo-labeled public data P^t
1138	$L_i^t \in \{0, 1\}^{ U \times C}$	One-hot prediction matrix from client i on public data
1139	$E_i^t \in (0, \infty)^{ U }$	Confidence (expertise) vector from client i on public data
1140	$S^t = \sum_{i=1}^m \text{diag}(E_i^t) \cdot L_i^t$	Weighted score matrix used for consensus aggregation
1141	$L^t[j]$	Consensus pseudo-label for public example $x_j \in U$
1142	$\arg \max_{c \in [C]} S^t[j, c]$	
1143		
1144		
1145		
1146		
1147		

Adaptive Weighting Mechanism

1148	λ_i^t	Adaptive weight controlling trust in global signal for client i at round t
1149	$\ell = \ell_{\text{priv}} + \lambda_i^t \cdot \ell_{\text{pseudo}}$	Total loss used for local model update at round t
1150		
1151		
1152		
1153		

Optimization and Convergence

1154	θ	Model parameters
1155	$\nabla L(\theta)$	Gradient of loss with respect to model parameters
1156	σ^2	Bounded variance of local gradient estimator
1157	$\tilde{\sigma}^2$	Bounded variance of global gradient estimator (pseudo-label noise)
1158		
1159		
1160		
1161		
1162	δ	Bounded drift in local objectives across rounds
1163	L	Smoothness constant (Lipschitz constant of the gradient)
1164		

Sets and Indexing

1165	$[m] = \{1, \dots, m\}$	Index set of all clients
1166	$[C] = \{1, \dots, C\}$	Index set of all classes
1167	$x_j \in U$	j -th public unlabeled sample
1168	y_j	True (unknown) label of public sample x_j
1169	$ U $	Number of samples in the public dataset U
1170	$ D_i $	Number of samples in the local dataset of client i
1171	$L_i^t[j, c]$	(j, c) -th entry of prediction matrix L_i^t
1172	$E_i^t[j]$	Confidence of client i on public example x_j
1173		
1174		
1175		
1176		
1177		

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187