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ABSTRACT

Data heterogeneity poses a fundamental challenge in federated learning (FL),
especially when clients differ not only in distribution but also in the reliability
of their predictions across individual examples. While personalized FL (PFL)
aims to address this, we observe that many PFL methods fail to outperform two
necessary baselines, local training and centralized training. This suggests that
meaningful personalization only emerges in a narrow regime, where global models
are insufficient, but collaboration across clients still holds value. Our empirical
findings point to two key ingredients for success in this regime: adaptivity in
collaboration and fine-grained trust, at the level of individual examples. We show
that these properties can be achieved within federated semi-supervised learning,
where clients exchange predictions over a shared unlabeled dataset. This enables
each client to align with public consensus when it is helpful, and disregard it when
it is not, without sharing model parameters or raw data. As a concrete realization
of this idea, we develop FEDMOSAIC, a personalized co-training method where
clients reweight their loss and their contribution to pseudo-labels based on per-
example agreement and confidence. FEDMOSAIC outperforms strong FL. and PFL
baselines across a range of non-IID settings, and we prove convergence under
standard smoothness, bounded-variance, and drift assumptions. In contrast to many
of these baselines, it also outperforms local and centralized training. These results
clarify when federated personalization can be effective, and how fine-grained,

trust-aware collaboration enables it.

1 INTRODUCTION

Federated learning (FL) enables collaborative machine
learning across distributed data sources without di-
rect data sharing. Classical methods such as FedAvg
(McMabhan et al., 2017), aim to train a single global
model across all clients. This approach can succeed
when data distributions are sufficiently similar, but
collapses under strong distributional shifts. In highly
heterogeneous settings, the promise of collaboration
breaks down: models trained jointly may perform
worse than models trained independently.

Personalized Federated Learning (PFL) addresses this
challenge by shifting the goal. Rather than optimiz-
ing a shared global model, the goal is to use collabo-
ration to improve each client’s personalized model.
For example, Tab. 1 shows that in heterogeneous
regimes both FL and even centralized training per-
form worse than local training,i.e., clients learning
independently without any communication. This un-
derlines the requirement for PFL, but also highlights
an often-overlooked baseline: when no method outper-

Table 1: Average test Accuracy on Do-
mainNet and Office-10 dataset (details in
sec.4). Most personalized FL methods fail
to surpass local training baseline. FEDMoO-
SAIC exceeds both core baselines through
adaptive, example-level collaboration. Color
Map: baselines, worse than baselines, worse
than local training, better than baselines.

Method DomainNet  Office
Centralized 66.24 (0.4)  40.92 (0.6)
3 FedAvg 31.00 (0.8)  37.25 (0.8)
= FedProx 55.23 (0.1)  58.39 (0.3)
Per-FedAvg 72.48 (0.4) 71.92 (0.5)
= pFedMe 75.21 (0.5) 74.83 (0.7)
& APFL 80.59 (0.3)  80.91(0.1)
FedPHP 78.25 (0.6)  76.36 (0.4)
Local Training 84.64 (0.1) 86.79 (0.4)

FEDMOSAIC 87.44 (0.02) 89.06 (0.01)

forms local training, collaboration is not just ineffective—it is detrimental. Yet many PFL methods
fail to beat this baseline (cf. Tab. 1), casting doubt on their utility.



Under review as a conference paper at ICLR 2026

This widespread failure to measure true collaborative gain arises because “personalization” is often
treated as a vague remedy for heterogeneity without a clear underlying principle. We argue that
progress requires a new foundation. Personalization shouldn’t be a default modification to an existing
FL algorithm; it should emerge from a principled understanding of what each client needs and how
collaboration can help. A meaningful PFL solution must adapt the degree and nature of collaboration
based on client context. It must also account for heterogeneity not just between clients, but at the
level of individual examples. Clients may align on some concepts (e.g., identifying cats) and diverge
on others (e.g., identifying specific dog breeds), and collaboration should reflect this granularity.

In formal terms, PFL aims to minimize the sum of local risks across m clients with heterogeneous

data distribution D; and personalized models hq, ..., hy,:
h mir}ll E(z,y)NDz [‘C (hz (x), y)]
)

In this setting, local model may outperform global or centralized models, making strong local and
centralized baselines éssential. The key trade-off between the massive data access of a centralized
model versus the specialization of a local one, is the central tension PFL must navigate in an adaptive
and data-specific way.

While federated learning can adapt by weighing parameters according to similarity (Huang et al.,
2021; Zhang et al., 2021), data-specific collaborations require a shift in mechanism. Rather than
aggregating model parameters, we propose to use federated semi-supervised learning (Bistritz et al.,
2020; Abourayya et al., 2025) where clients share predictions on a public dataset. Collaboration is
achieved by enforcing consensus between clients. We propose to adapt this consensus mechanism so
that clients can contribute only on examples where they have expertise and can selectively trust others
based on their demonstrated competence. Two clients familiar with cats can confidently collaborate
on a new cat photo, while a client that has only seen cars should not influence the labeling of cat
images. This form of selective, example-level trust is fundamentally difficult to achieve through
parameter averaging alone.

In this work, we demonstrate this principle in practice. We propose a personalized Federated Co-
Training approach (FEDMOSAIC) that enables adaptive, fine-grained collaboration through two key
mechanisms: a dynamic weighting strategy allowing clients to balance global and local signals in each
communication round, and an expertise-aware consensus mechanism that weights peer contributions
by their competence on different data regions. Both mechanisms operate on predictions over a public
dataset, enabling personalization that is responsive to the data’s true structure.

While FEDMOSAIC achieves state-of-the-art empirical performance across benchmarks, its main
contribution is conceptual. It redefines personalization as a question of collaborative structure, not
just algorithm design. Our results show that principled, example-level collaboration can unlock the
full potential of personalized federated learning.

2 RELATED WORK

Federated Learning (FL) aims to train models collaboratively across decentralized clients without
compromising data privacy. However, heterogeneous data distributions across clients (non-IID set-
tings) present a persistent challenge that degrades performance. Approaches addressing heterogeneity
broadly fall into two categories: traditional FL and personalized FL (PFL) methods. We review these
groups in relation to our method, FEDMOSAIC.

Traditional Federated Learning: Traditional federated learning methods typically learn a single
global model. FEDAVG (McMahan et al., 2017) averages local models but struggles under non-1ID
data due to client drift. Subsequent methods attempt to correct this: SCAFFOLD (Karimireddy et al.,
2020) uses control variates to correct the local updates, FedProx (Li et al., 2020) adds a proximal term
to each client’s loss function to stabilize training, and FedDyn (Acar et al., 2021) introduces dynamic
regularization. Others use representation alignment, such as MOON (Li et al., 2021a), which applies
a contrastive loss to align local and global features. These methods implicitly assume a global model
can suffice, which may fail under strong heterogeneity. Moreover, parameter sharing can pose privacy
risks (Zhu et al., 2019; Abourayya et al., 2025).
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Personalized Federated learning (PFL): Personalized Federated learning methods tailor models
to individual clients, addressing non-IID challenges through different strategies.

Meta-learning and Regularization-Based Methods optimize a shared initialization or constrain
local updates. E.g., Per-FedAvg (Fallah et al., 2020) learns a shared initialization, while Ditto (Li
et al., 2021b) regularizes local updates toward a global reference. PFedMe (T Dinh et al., 2020)
applies bi-level optimization to decouple personalization from global learning. Personalized Aggre-
gation strategies dynamically aggregate models based on client similarity or adaptive weighting.
APFL (Deng et al., 2020) introduces an adaptive mixture of global and local models, allowing
clients to interpolate between shared and personalized parameters based on their data distribution.
FedAMP (Huang et al., 2021) uses attention to weight client contributions based on similarity. Other
methods select collaborators (e.g., FedFomo (Zhang et al., 2021), FedPHP (Li et al., 2021d)) or
apply layer-wise attention (FedALA (Zhang et al., 2023c)). Model Splitting Architectures partition
models into shared and personalized components. FedPer (Arivazhagan et al., 2019)eeps shared base
layers and personalizes top layers. FedRep shares a backbone but personalizes the head.(Collins
et al., 2021) shares a backbone but personalizes the head. FedBN (Li et al., 2021c) personalizes
batch normalization layers to tackle feature shift. Other recent methods such as FedAS (Yang et al.,
2024), GPFL (Zhang et al., 2023b), and FedBABU (Oh et al., 2021) disentangle or freeze specific
parts of the model to balance generalization and personalization. PFedHN (Shamsian et al., 2021)
uses a hypernetwork that generates personalized model parameters conditioned on client identity.
Knowledge Distillation Approaches transfer knowledge from global or peer models to personal-
ized local models. FedProto (Tan et al., 2022) aligns class-wise feature prototypes across clients,
FedPAC (Xu et al., 2023) uses contrastive learning to distill knowledge into personalized models,
and FedKD (Wu et al., 2022) reduces communication cost by distilling knowledge from a teacher
ensemble to lightweight client models. FedMatch (Chen et al., 2021) uses consistency regularization
to unlabeled and noisy data, FedDF (Lin et al., 2020) aggregates predictions via ensemble distillation,
and FedNoisy (Liang et al., 2023) focuses on robust aggregation in the presence of noisy labels
or adversarial participants. PerFed-CKT (Cho et al., 2021) enhances personalization by clustering
clients with similar data distributions and facilitating knowledge transfer through logits instead of
model parameters. Jeong & Kountouris (2023) proposes a fully decentralized PFL framework where
clients share distilled knowledge with neighboring clients, enabling personalization without a central
server.FedD2S (Atapour et al., 2024) introduces a data-free federated knowledge distillation approach
that employs a deep-to-shallow layer-dropping mechanism.

Despite this progress, existing PFL. methods often share several limitations: (i) Static collaboration:
Most PFL methods rely on fixed rules (e.g., aggregation weights or model splits), lacking adaptivity
to client-specific or example-level variation. (ii) Privacy risks: Sharing model parameters, gradients,
or even soft labels may expose sensitive information. (iii) Limited generality: Many methods are
tailored to specific heterogeneity types (e.g., label skew in case of FedMix, or feature shift in case of
FedBN). (iv) Communication / computational overhead: Some require complex multi-model training
or costly synchronization. To overcome these limitations, we argue that PFL methods should use
some form of dynamic modulation and per-example trust weighting.

3 PERSONALIZED FEDERATED CO-TRAINING: ADAPTIVE AND
EXPERT-AWARE COLLABORATION

We now introduce Personalized Federated Co-Training (FEDMOSAIC), a concrete realization of the
principle that effective personalization arises from adaptive, data-specific collaboration. Our method
builds upon the framework of federated co-training (Abourayya et al., 2025), a privacy-preserving
paradigm where clients collaborate by sharing hard predictions on a shared, unlabeled public dataset,
U (we analyze the impact of this dataset’s size and distribution in sec.4). This process creates a
consensus pseudo-labeled dataset, which clients use to augment their local training.

While this approach avoids sharing sensitive model parameters and soft labels, it introduces two
critical challenges for personalization:

1. When to trust the global signal? A client’s local data may conflict with the global
consensus. Blindly trusting pseudo-labels can harm a model that is already well-specialized.
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2. Whose predictions to trust? Clients possess varying levels of expertise across the data
space. A naive consensus that treats all clients equally will be corrupted by noisy or
misaligned predictions.

FEDMOSAIC addresses these challenges directly with two core mechanisms: (1) dynamic loss
weighting, which allows each client to adaptively decide when to trust the global signal, and (2)
confidence-based aggregation, which intelligently decides whose predictions to trust.

Dynamic Loss Weighting: Deciding When to Trust: To allow clients to autonomously balance
global collaboration with local specialization, we introduce a dynamic weight A, into the local
objective. At each round ¢, client ¢ minimizes the combined loss:

where D; is the client’s private data and P; is the pseudo-labeled public dataset.The weight !
modulates the influence of the global signal.Our choice of the function for computing A\‘was driven
by the need for a smooth, bounded, and interpretable mechanism. We define it as:

A = exp _ﬁ (hi_1, Pt)'* L (hi_y, Dy)
Z L (hi—hDi)

This exponential form satisfies several desirable properties. It ensures positivity (A} > 0) , avoids
discontinuities, and smoothly adjusts the client’s trust based on the relative performance of its model
on global versus local data. The behavior is highly intuitive:

e Conflict (Lglobal > Liocar ): If the consensus pseudo-labels are harmful, the global loss term
increases, causing A! — 0 and prompting the client to rely on its local data.

* Alignment (Lgiobat = Liocal ) : If the consensus is helpful and aligns with local data, Al
achieving a balance between personalization and collaboration.

¢ Enhancement (Eglobal < Liocal ): If the consensus provides a cleaner signal than the noisy
local data, \! > 1, encouraging the client to trust the collaborative signal more heavily.

Confidence-Based Aggregation: Deciding Whose to Trust: To address the varying expertise
of clients, we replace the standard uniform aggregation of predictions with a confidence-based
consensus. Instead of just sharing hard labels, each client ¢ also communicates a confidence vector
E} € (0,00)IV, where E}[j] quantifies its estimated expertise on its prediction for example z; €
U.The server then computes a weighted score matrix S; by aggregating the one-hot predictions L
from each client, weighted by their corresponding expertise:

Sy = Zdiag (E})-Lj e RIVIxC

i=1
The final consensus pseudo-label for each example is determined by the highest aggregate score:
Lt[j]:argnel%st[jac]a Vj€{17,|U|}

This mechanism allows clients who are more confident or reliable about specific data regions to have
a greater influence on the consensus, effectively reducing the impact of noise from non-expert clients.
We explore two practical instantiations for the confidence scores E: a class-frequency-based heuristic
and an uncertainty-based score derived from the model’s predictive entropy. The full procedure is
detailed in Algorithm 1.

Communication. In each communication round (every b local steps), client 7 sends a one-hot matrix
Li € {0,1}VI*C and expertise vector £ € RIUI; thus it adds exactly one scalar per public example
compared to federated co-training (Abourayya et al., 2025). Encoding L¢ by class indices (majority
vote depends only on arg max) uses [log, C| bits per example instead of C bits, and quantizing
expertise to by bits gives a per-round uplink budget Brgpmosaic = |U| ([logy C + bg) bits. By
contrast, parameter sharing (e.g., FEDAVG) uploads 32 P bits for a model with P parameters. For
example, as in our Fashion-MNIST experiments with |U/| = 10* and C' = 10, choosing br = 8 gives
BrepMosaic = 10%(4+8) = 1.2x10° bits (=~ 15 KB) per client and round; parameter sharing instead
communicates ~ 2.6 M B, so FEDMOSAIC reduces communication by a factor of ~ 177.
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Algorithm 1: Federated Co-Training with Adaptivity and Specialization (FEDMOSAIC)

Input: communication period b, m clients with local datasets D!, ..., D™ and learning
algorithms A', ..., A™, unlabeled public dataset U, total rounds T'
Output: final models it ... A7

initialize local models h{, ..., RS, P <+ 0
Locally at client i at time t do
compute local loss iy = L(hi_y, D?)
compute pseudo-label 10ss £psendo = L(hi_;, P)

compute adaptive weight \! = exp (—M>

priv
compute 108s £ = Cpriy + ANilpseudo
update hi < A*(¢,hi_,)
ift % b=1"b—1then
construct prediction matrix L! € {0, 1}‘U| xC

construct expertise vector E} € (0, 00)!V!

send (L, E}) to server and receive L;
P (U, L)
end
At server at time t do

receive (L}, E}), ..., (LY, E™) from clients
compute weighted score matrix S; = Y- | diag(E}) - L}
set pseudo-labels L;[j] = arg max c(c) S¢[j,c] forall j € {1,...,|U|}

send L, to all clients

Convergence under dynamic pseudo-labels: To provide theoretical support, we analyze the
convergence behavior of FEDMOSAIC under standard assumptions in stochastic optimization. Our
goal is to characterize the rate at which each client’s objective approaches a stationary point, despite
the dynamic pseudo-labeling and the heterogeneity of local objectives.

We assume standard conditions, including smoothness of the loss functions, bounded gradient
variance, and bounded drift of pseudo-labels across rounds. These assumptions reflect the structure
of FEDMOSAIC, where local objectives are updated periodically but converge due to the stabilization
of pseudo-labels as shown by Abourayya et al. (2025).

Assumptions 1. The following conditions hold for each client i € [m] at round t:

1. Each loss function L£°°* and ﬁ?lObal’t is L(1 + e)~t-smooth.
2. The gradient estimator g! is unbiased and has bounded variance:

Elgi] = VL(00), Elllgi — VLI(0)]*] < o*.

w

. The global loss has bounded gradients: ||V L& (9)|| < G for all 6 and .

N

. The objective drift is bounded: |C(0) — L1(0)] < 5, V0.

5. The per-sample gradient variance is bounded.:

Euep, [HVM(QJC,Qt) _ Vﬁéocal’tHQ] <7, Epev [Hvef(eﬂc,ﬁt) _ chlobal,tHQ] < 52

Under these conditions, we establish that FEDMOSAIC converges to an approximate stationary point.
Specifically, after 7' communication rounds, the average squared gradient norm decreases at a rate of
O(1/T) plus additive terms accounting for local and global variance and pseudo-label drift.
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Table 2: Average test accuracy (%) under pathological and practical Non-IID Settings for m = 15
clients. Color Map: baselines, worse than both baselines, worse than local training, better than both
baselines.

Method Pathological non-IID Practical non-1ID
Fashion-MNIST | CIFAR-10 | Fashion-MNIST | CIFAR-10
Centralized 99.28 (0.1) 87.90 (0.1) 99.28 (0.03) 87.90 (0.04)
Local training 99.32 (0.02) 88.01 (0.01) 98.23 (0.01) 83.91 (0.2)
FedAvg 76.72 (0.1) 64.42 (0.2) 83.71 (0.2) 70.28 (0.4)
= FedProx 77.88 (0.3) 70.25 (0.2) 84.14 (0.3) 73.35 (0.4)
= | FedCT 78.15 (0.01) 73.91 (0.02) 85.27 (0.01) 74.39 (0.01)
FedBN 78.04 (0.3) 81.35 (0.5) 85.39 (0.3) 80.41 (0.7)
Per-FedAvg 98.63 (0.02) 87.20 (0.01) 97.11 (0.01) 81.37 (0.2)
Ditto 99.37 (0.01) 87.94 (0.01) 98.39 (0.02) 83.89 (0.04)
= | pFedMe 74.80 (0.4) 81.47 (0.3) 80.01 (0.1) 81.61 (0.9)
E APFL 99.26 (0.04) 87.98 (0.01) 97.96 (0.03) 83.81 (0.2)
FedPHP 99.30 (0.01) 87.90 (0.01) 98.40 (0.01) 83.75 (0.03)
PerFed-CKT 99.34 (0.01) 87.95 (0.01) 98.20 (0.01) 83.87 (0.03)
FEDMOSAIC 99.40 (0.01) 88.03 (0.01) 98.43 (0.01) 86.15 (0.01)

Proposition 1 (Convergence of FEDMOSAIC). Let each client’s objective at round t be
nglobal (ot) _ ‘Clecal,t (et) )

7

)C/liocal,t (et)

LH0) = L (0) + NLLE"(0), where N, = exp (—

and L‘?Obal’t may change at each round due to pseudo-label updates. Under Assumptions 1-5, for a
fixed step size 0 < 1 < (2L)~! and min; |D;| = d, after T rounds of FEDMOSAIC, it holds that
T—1 -
1 4L (EQ — E*) T2 €252
E[|VLLO)|?] <« ———L 4 —— 26 .

el

The proof is provided in Appendix A. Abourayya et al. (2025) show that under the assumption of
increasing local accuracy, pseudo-labels stabilize after some round ¢y, so the assumption of a bounded
change in the client objective is realistic. In fact, the global loss term effectively becomes stationary
under these assumptions quickly and the expected drift becomes negligibly small as ¢ increases.
Client-Level Privacy: In each round ¢, client i communicates a hard-label matrix Li € {0, 1}/V1x¢
(one-hot predictions on U) and an expertise vector E} € RIYI (one scalar per u € U). Compared
to Abourayya et al. (2025), which releases only L, the present protocol adds exactly one real value
per unlabeled example. We apply the XOR mechanism to L!. For this, Abourayya et al. (2025)
showed that for on-average replace-one stable learning algorithms the sensitivity s* of L is bounded,
yielding a per-round e,-DP guarantee at the client level. For the expertise scores E; we apply the
Gaussian mechanism (Dwork et al., 2014) with variance o2. Since the expertise scores are in [0, 1]
for class frequencies and in [0, log C] for predictive entropy, the (per-coordinate) sensitivity of EY is
bounded, which yields (¢, §)-DP with

/U]
er = — \V/2In(1.25/6)

where ¢ = 1 for class frequencies and ¢ = log C for predictive entropy. Combined, these two
mechanisms on L} and E} yield (¢, + g, )-DP for FEDMOSAIC in each round.

4 EMPIRICAL EVALUATION

In this section, we evaluate FEDMOSAIC' against a suite of strong baselines in three challenging
heterogeneity scenarios: (1) label skew, (2) feature shift, and (3) a hybrid setting combining both. We
evaluate our method against FL. (FedAvg, FedProx, FedCT, FedBN), state-of-the-art PFL. methods
(Per-FedAvg, Ditto, pFedMe, APFL, FedPHP, PerFed-CKT), and crucial local training and centralized
baselines, which are essential for measuring true collaborative benefit. Centralized training refers



Under review as a conference paper at ICLR 2026

Table 3: Average test accuracy (%) on the Office-10 and DomainNet datasets in feature shift scenarios.
For Office-10: A, C, D, W = Amazon, Caltech, DSLR, WebCam. For DomainNet: C,I, P, Q,R, S =
Clipart, Infograph, Painting, Quickdraw, Real, Sketch. Color Map: see Table 2.

Method Office-10 DomainNet
A C D \\4 C I P Q R S
N T L
Local training T“}”i? 3?’1‘37 8\}]4‘]2'5 7‘([)'].;2’7 (J(:)’il 3“8"3)5 ()ﬁ))’iz 7;?”}‘31)3 7[(1]‘12)71 T([(J]‘EB
T e
2 ks | T TR0 8 T T B T s 7
Racr 0 ST G 0 0L o T
G T 0 v e el ol o
S S el e
ciowe | TSI T T g T
Blpreave | 10T A0S OO0 SIOH SRt L ol e T Y
APFL [ o ol R A R S
FedpHP | 1007 OIS LT TR O 00 oot m )
Perfed-CKT | 1120 4050 TL52 (OO 00 LI R T o
FepMosaic |50 21 G000 S130 85007000 Al 0o e s sl e e

to applying the local training algorithm on the pooled data from all clients, as if it were stored in a
single location. Local training refers to each client training a model independently using only its own
local data, without any collaboration.'

Experimental Setup: A core component of our method is the shared, unlabeled public dataset
U. Following standard practice in semi-supervised learning, for each experiment this dataset is a
small, class-balanced sample from the original training set, omitting its labels. This ensures that
U is drawn IID from the global training distribution and is disjoint from every client dataset D;
(UND; = 2); since the D; are non-1ID, U’s distribution differs from each D;. This way, U provides
a comprehensive view of the label space, even when clients’ private data is highly skewed.

We set the size of U to: CIFAR-10—3,000 samples; Fashion-MNIST—2,250 samples;
DomainNet—300 samples; and Office-10—80 samples. A comprehensive ablation study detailing
the impact of the public dataset’s size and distribution as well as an investigation of individual clients’
losses, is provided in the Appendix B.

Label Skew: We first evaluate FEDMOSAIC under label distribution skew, a common protocol
where clients see only subsets of the available classes. We test on two variants: a “pathological”
setting where each of the 15 clients on Fashion-MNIST and CIFAR-10 holds data from only 2 classes,
and a more practical setting where label proportions are drawn from a Dirichlet distribution. These
settings are widely adopted in the literature (T Dinh et al., 2020; Fallah et al., 2020; Zhang et al.,
2023a;d;b). For these experiments, we use the class-frequency-based confidence score, a natural fit
for scenarios dominated by class imbalance.

As shown in Table 2, FEDMOSAIC achieves top performance across all settings. In the pathological
case on CIFAR-10, it scores 0.8803, surpassing all PFL methods and, crucially, the strong local
training baseline (0.8801). This result is significant: it demonstrates that FEDMOSAIC ’s adaptive
collaboration successfully extracts useful signals from peers without being corrupted by their extreme
data skew, achieving a better outcome than local training. Performance trends are similar in the
practical scenario, confirming the method’s robustness to varying degrees of label imbalance.

! Code to reproduce all experimental results: https://anonymous.4open.science/t/FEDMOSAIC/README.md
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Table 4: Average test accuracy (in %) on the DomainNet and Office-10 dataset in hybrid settings for
m = 30 clients on DomainNet and m = 20 on Office-10. Color map: see Table 2.

Method DomainNet | DomainNet (ViT) | Office-10
Centralized 66.24 (0.4 68.25 02 40.92 (.6
Local training 84.64 «. 84.92 .3 86.79 4
FedAvg 31.00 .8 33.28 (0.5 37.25 038
FedProx 55.23 o1 57.18 0.3 58.39 03)
é FedCT 56.38 .01 67.52 002 59.42 ©.02)
FedBN 71.54 «©3) 70.39 (0.4 75.48 (03)
Per-FedAvg 72.48 0.4 73.19 ©03) 71.92 «©s)
Ditto 81.47 ©oon 83.82 .02 80.63 .01
= | pFedMe 75.21 ©s) 76.81 s 74.83 .1
E APFL 80.59 3 83.27 0.5 80.91 .
FedPHP 78.25 (0.6) 77.31 o) 76.36 (0.4
PerFed-CKT 79.24 (0.4 80.16 (0.2 82.49 o)
FEDMosAIC (W) | 87.44 .02 88.52 .2 89.06 (0.01)
FEDMosAIC (U) | 88.36 «.on 87.35 .1y 89.43 (0.03)

Feature Shift: To evaluate robustness to heterogeneous input distributions, we test on feature
shift scenarios using the Office-10 and DomainNet datasets. Here, each domain (e.g., "Webcam,”
”Sketch”) acts as a client, sharing a common label space but having a unique data style. Table 3 shows
that FEDMOSAIC consistently sets the state-of-the-art on all domains. On the complex DomainNet
benchmark, it achieves the highest accuracy across all six domains, outperforming specialized
methods like Ditto and FedBN. This demonstrates that the dynamic weighting and confidence-based
aggregation are not limited to label skew; they effectively manage domain-specific features, allowing
clients to learn from each other while preserving their specialized knowledge.

Hybrid Distribution (Label Skew + Feature Shift): We now consider the most challenging
scenario: a hybrid of label skew and feature shift. To simulate this, we partition each domain in
DomainNet and Office-10 into 5 clients, each assigned only 2 of the 10 classes. This results in 30
highly heterogeneous clients for DomainNet and 20 for Office-10. In this demanding setup, we
evaluate both our confidence mechanisms: the class-frequency heuristic (FEDMOSAIC-W) and the
uncertainty-based score (FEDMoOSAIC-U).

The results in Table 4 confirm the superiority of our approach. With both AlexNet and ViT archi-
tectures, FEDMOSAIC variants significantly outperform all baselines. On Office-10, for instance,
FEDMosAIC-U achieves 0.8943 accuracy, a remarkable improvement over the next best baseline,
Ditto (0.8063). One can note that centralized training is worse than local training due to the highly
heterogeneous setting, meaning that a single golbal model cannot fit all clients effectively.

Interestingly, both the simple class-frequency heuristic and the more complex uncertainty-based score
yield similarly strong results. This suggests that in settings with extreme label skew, class frequency
serves as a powerful and efficient proxy for model expertise.

Taken together, these results validate that FEDMOSAIC’s principled approach to adaptive, expert-
aware collaboration enables it to deliver state-of-the-art performance, consistently outperforming
strong baselines in diverse and realistic non-IID settings.

The Effect of the Unlabeled Dataset: FEDMOSAIC relies heavily on a shared unlabeled dataset
|U]. To understand how sensitive FEDMOSAIC is to the characteristics of this dataset, we conducted
a study on the effect of the size and distribution of this dataset. We simulated varying degrees of skew
by sampling |U| (with a fixed size of 3,000) using a Dirichlet distribution. We tested concentration
parameters o = {1,0.7,0.5,0.3,0.1}, where o« = 1 corresponds to a perfectly IID distribution and
lower values induce increasingly severe skew. As shown in Fig. 1 and Fig. 2, performance degrades
as the public dataset becomes more skewed, especially at low « (e.g., 0.3, 0.1) where some classes
are missing. However, a key finding is that FEDMOSAIC never performs worse than the local baseline.
This highlights the robustness of the adaptive aggregation scheme: when the global signal is unhelpful,
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the dynamic weight A steers clients toward local training, acting as a fail-safe. More details are
provided in App. B.

Effect of unlabeled data distribution

0.90 Cehtraliked CIFAR-10 Class Distribution for Different a Values
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Figure 2: Class distribution of U under different

Figure 1: Average test accuracy of FEDMOSAIC  yalyes of alpha.
on CIFAR-10 under different distribution of U.

5 DISCUSSION AND CONCLUSION

Personalized Federated Learning (PFL) aims to address data heterogeneity by tailoring models to
client-specific distributions. Yet, as we have demonstrated, many existing approaches fall short of
their promise, often failing to outperform even local training or centralized baselines. This raises
fundamental concerns about the core premise of collaboration in personalized federated learning.

We argue that meaningful personalization in federated learning requires more than per-client modeling:
it must involve adaptive, data-specific collaboration. In particular, effective PFL methods should
support example-level decision-making, allowing clients to modulate the degree and direction of
collaboration based on local context and per-sample reliability. Without this level of adaptivity,
personalization risks becoming a superficial modification of global training.

FEDMOSAIC is one concrete instantiation of this principle. It enables example-level collaboration
through dynamic loss weighting and confidence-based aggregation over a shared unlabeled dataset.
Unlike prior methods that personalize only at the client level, FEDMOSAIC allows each client to
adapt both how much and whom to trust, based on the alignment between public and private data.

Empirical results across a diverse set of non-IID scenarios support the effectiveness of this approach.
In the hybrid scenario, which combines label skew and feature shift, FEDMOSAIC outperforms all
competitors and baselines by a wide margin. In the feature shift scenarios, it again surpasses all
methods across most domains, often with substantial gains. In the label skew setting, FEDMOSAIC
consistently achieves the best performance for the pathological non-IID scenario, though with very
narrow margins, in particular with respect to local training. In the practical non-IID scenario with
milder heterogeneity, centralized training performs best, as expected. Yet, traditional federated
learning methods fall short, being outperformed by several PFL approaches, including FEDMOSAIC.

These results illustrate both the strengths and limitations of personalized FL. One limitation is that,
particularly in the label skew setting, the advantage over strong local baselines can be modest. Such
scenarios, especially the pathological non-IID one, raise the question of whether collaboration is truly
justified, and whether evaluation setups that favor strong local baselines but show weak global benefit
are well-posed. We therefore emphasize the need for more meaningful benchmarks: scenarios where
collaboration has a clear potential upside, and where the evaluation criteria capture the practical
value of federated interaction, not just statistical differences. That said, FEDMOSAIC demonstrates
that adaptive and data-aware collaboration is both feasible and effective. Across our experiments,
it outperforms both local and centralized baselines in most settings, supporting its robustness and
practical utility.

While FEDMOSAIC represents a principled and practically validated advance in personalized feder-
ated learning, it also opens new directions for future work. A key limitation is the assumption of a
public unlabeled dataset. Although such datasets exist in many domains, e.g., healthcare, vision, and
language, it remains an open question how to extend this paradigm when such data are limited or un-
available. Developing mechanisms for privacy-preserving dataset synthesis, or leveraging foundation
models for public data distillation, could further broaden the applicability of our framework.
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A PROOF OF THEOREM

In the following, we proof Proposition 1. For convenience, we restate the assumptions and proposition.

Assumptions 1. The following conditions hold for each client i € [m] at round t:

1. Each loss function L% and L&' is L(1 4 )~ -smooth.
2. The gradient estimator g is unbiased and has bounded variance:

Elgi] = VLi(6), Elllgi — VLI(0)]*] < 0.

w

. The global loss has bounded gradients: ||V LE°"*"(9)|| < G for all 6 and t.

N

. The objective drift is bounded:
1L 0) = Li(0) <6, .

5. The per-sample gradient variance is bounded.:

E.ep, |:HV9[(9717’ ) — Vﬂéocal’tH1 <3

1-

With these assumptions, FEDMOSAIC converges to a stationary point.

Qr
[\

Erev l:HV9£(9, x, gt) _ V,C?lObal’t

Proposition 1 (Convergence of FEDMOSAIC). Let each client’s objective at round t be

ﬁlglobal (et) _ E:;O(:al,t(et)
£¥ocal,t(0t) ?

7

LL(0) = L£2(0) + ML (0), where A = exp (—

and E%lObal’t may change at each round due to pseudo-label updates. Under Assumptions 1-5, for a
fixed step size 0 < 1 < (2L)~! and min; |D;| = d, after T rounds of FEDMOSAIC, it holds that
T-1 -
1 AL (LY —L7) &2 e%5?
E[|VLHO) | < ——— L + ~ 260 .

N

Proof. Since £1°°*! and E%lObal’t are L(1+ e)~'-smooth, and since during optimization steps A} < e
is fixed, the Lipschitz constant of L! is

Ll+e) "+ ML +e) ' <L(l+e) t+el(l+e) =L .
Thus, the standard descent lemma (Bottou et al., 2018) gives:
E[L;(0:41)] < EIL{(00)] — nE[V.LE(0)]%] + LTHQE[IIQHIQ]-
To bound E[||g¢||?], expand
Elllgi|I*) = Elllg; — VLi(0:) + VLIO)|?] < 20% + 2E[[VL(6:)]],
and substitute into the descent inequality to obtain
E[L}(0:+1)] < E[L5(0:)] — nE[IVLE(0:)]1%] + Ln* (0 + E[[VLI(6:)[I]) -
Rearranging terms yields
E[L}(0r41)] < E[L5(00)] — n(1 — LE[[|VL;(0:)]°] + Ln*o™.

This step requires 7 < (2L)~! < L~ to ensure that the coefficient (1 — L) is positive. We now
account for the fact that the function changes between rounds, i.e.,

E[L5 (6141)] < E[LH(0141)] + 6,
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which gives
E[Li(0:41)] < E[Li(60)] — n(1 — Ln)E[[VLE)]?] + Li*o® + 6.
Summing from ¢ = 0 to 7' — 1 and rearranging yields

T-1
1 LY —rr Ln*o? 0
7 2 ElIVLiO)*) <

t=0

(1—LynT 1—-Ln 1-1Ly
Denoting the minimum loss as L7, i.e., V¢, Ef > L7 yields the formal result
T-1
1 L0 — C* Ln*c? 1)
= Y E[IVLIO)|?) < :

Since ((1 — Ln)n)~*%, Ln?/(1 — Ln), and (1 — Ln)~! have a maximum at (2L)~! for n < (2L)~1,
we can upper bound this by

T—1 .o
;§MWQWMSMW?*H+Z+%.
Since g! = g.°“"" + A g?"***"", we decompose o2 in round ¢ at client i as 25 + 2()\!)?52, and
further bound
Ezep, [Hvef(e,x,gt) _ vﬁiocal,t 2]
Tgiobal <

E.cu {HV@E(G’ T, gt) _ Vﬁfl"balvt

]

+ sup(A\f)?
pp(:) 0]

<252 n 2e252
since sup; ;(\!)? = e? and using Assumption 5. With this, we obtain obtain

1 AL (LY —L7) &2 %52

T—1
t s ———— 4 —
;MHVQ(@OH ] < T azd oL

el

O

Theory and Generalization bound Our current analysis focuses on convergence, as is typical
in most analyses for deep learning. We agree that generalization bounds are desirable, but often
vacuous for deep learning (Petzka et al., 2021). We therefore clarify the theoretical assumptions
and guarantees as follows. First, the bounded objective drift assumption is motivated by the pseudo-
label stabilization property in federated co-training: prior work shows that, after a finite number of
rounds, the consensus labels on the public dataset converge, and in our setting we observe the same
behavior empirically. once local models have stabilized, the pseudo-label drift across rounds becomes
negligible. Second, beyond the convergence result, we outline a VC-style client-level generalization
bound in the spirit of APFL by viewing each client’s empirical objective as defined on a combined
sample of size
M; = n; + A}N,

consisting of n; local labeled examples and \;-weighted pseudo-labeled public examples. Decom-
posing the excess local risk

Ri(hi™) — Ry (hi*")
into an optimization error plus two generalization gaps, and controlling the latter via standard
uniform-convergence (VC) bounds on this combined sample, yields a generalization term

®;(ny, N,9) = —_—
M“J)0< e )

which makes explicit how both local labeled data and pseudo-labeled public data contribute to each
client’s generalization. Finally, in the convergence analysis we introduce g; as a stochastic gradient
estimator computed on a mini-batch from D; U P,, while Algorithm 1 keeps the local update abstract
as the optimizer A;(¢, h; ;—1); in all experiments, A; is instantiated as a grad.
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B ADDITIONAL EMPIRICAL EVALUATION

Robustness under Misleading Global Knowledge To further evaluate FEDMOSAIC’s adaptivity,
we conducted an experiment designed to test its behavior when the global consensus signal is actively
misleading for a particular client. We constructed a scenario using CIFAR-10 dataset with 5 clients,
where client 0 was assigned flipped labels so effectively training on corrupted data. This setup results
in the global pseudo labels being systematically misaligned with this client’s local distribution. As
expected the client’s local model suffers a significantly higher loss when trained using the global
pseudo labels compared to its own data, leading to a near zero value of A. This confirms the intended
behavior of FEDMOSAIC: when the global signal is detrimental, the client autonomously reduces
its reliance on it, effectively opting out of harmful collaboration. Fig.3 illustrates this behavior by
showing the divergence between global and local loss for the corrupted client (client 0) in comparison
to a non-corrupted one (client 1). Fig. 4 shows the evolution of the adaptive weight \ across
communication rounds for all 5 clients.

Local vs Global Loss Across Communication Rounds Adaptive Weight A Across Communication Rounds

WM“‘? &) —e— A-Client 0
8 W Dl 4+ 0.5 -m- \-Client 1
< 4 A-Client 2
6 r —e— Local Loss - Client 0 (Flipped) % 0.4 - Client 3
& " -a- Global Loss - Client 0 (Flipped) ; 0.3 - E“Ej”
3 4 —— Local Loss - Client 1 v Q’w
Global Loss - Client 1 > 0.2 Vs
)
2 Q0.1
I 3 A
0 < 0.0
D @R L L AN L oS R A O S O R S P

Communication Rounds Communication Rounds

Figure 4: Adaptive weight A across communica-
tion rounds on CIFAR-10.

Figure 3: Local Vs Global loss across communi-
cation rounds on CIFAR-10.

Personaliztion vs. Local training In Low-collaboration Regimes While FEDMOSAIC consis-
tently archives the highest accuracy across both pathological and practical label skew settings (Table2,
the margin between its performance and that of local training is notably small. This observation
raises a critical insight. In such scenarios, where each client’s local distribution is highly disjoint and
local alignment provides limited benefit, personalization through collaboration may be unnecessary
or even detrimental. Indeed, FEDMOSAIC’s adaptive mechanism reflects this reality. The per-client
weighting strategy reduces reliance on the global information when it does not align with local data.
This is evident in Fig.5 and Fig.6, which show that the global loss remains consistently higher than
the local loss for many clients, leading to near zero value of the adaptive weight A as seen in Fig.7. In
such cases, FEDMOSAIC defaults to local training behavior, effectively opting out of collaboration
when it offers no advantage. This reinforces the methods’ robustness as it personalizes only when
beneficial, and falls back to local training when collaboration yields little or a negative return. To
ensure numerical stability in the computation of the adaptive coefficient

_E%lObal(Qt) _ C;ocal,t(et)
[/l'ocal,t (Gt)

?

A = exp

)

, we add a small constant € to the denominator to prevent division by zero.

Local Loss per Client Global Loss per Client

A
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Figure 5: Local loss across communication
rounds on Fashion-MNIST for the first 6 clients.
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Figure 6: Global loss across communication
rounds on Fashion-MINST for the first 6 clients.
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Figure 7: Adaptive weight A\ across communication rounds on Fashion-MINST for the first 6 clients.

The Effect of the Unlabeled Dataset : As mensioned in sec.4,FEDMOSAIC relies heavily on a
shared, unlabeled public dataset |U|. To understand how sensitive FEDMOSAIC is to this dataset’s
characteristics, we conducted a study on CIFAR-10 dataset focusing on two critical questions: First,
how does the amount of available data affect performance? Second, does it matter whether the class
distribution is balanced (IID) or heavily skewed?

IMPACT OF PUBLIC DATASET SIZE : We evaluated the performance of FEDMOSAIC using
different sizes of the public unlabeled dataset, with |U| set to 3000,2000,1000,500 and 250. For
this experiment, the public dataset was always sampled in an IID fashion to ensure all classes were
present. The results, summarized in Fig.8, show that the performance of FEDMOSAIC is remarkably
stable. Even as the size of the public dataset is reduced by over 90% ( from 3000 to 250 samples), the
drop in final test accuracy is minimal. This finding suggests that the collaboration mechanism does
not require a large volume of public unlabeled data. As long as a small class-representative set of
examples is available, clients can effectively share knowledge and build high-quality personalized
models.

Effect of unlabeled data size

0.
Centralized
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Local Training

Per-FedAvg

Acc

0.75
FedProx

FedAvg

0.70

500 1000 1500 2000 2500 3000

Unlabeled data size |U|

Figure 8: Test accuracy (ACC) of FEDMOSAIC under different unlabeled dataset size |U]|

IMPACT OF PUBLIC DATASET DISTRIBUTION : Next, we studied the effect of the public unlabeled
dataset distribution. We simulated varying degrees of distribution skew by sampling |U| (with a fixed
size of 3,000) using a Dirichlet distribution. We tested different values of the concentration parameter
a=1,0.7,0.5,0.3,0.1, where o = 1 corresponds to a perfectly IID distribution and lower values
induce increasingly severe skew.

As shown in Fig.9 and Fig.10, we observe a degradition in performance as the public dataset become
more skewed. The most significant drop occurs at very low « values (e.g.,0.3,0.1 ), where some
classes are absent from U. In such cases, the global consensus offers no useful information for clients
whose private data contains the missing classes.
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However, the most crucial finding is that the performance of FEDMOSAIC never drops below the
local training baseline. This demonstrates the robustness of the adaptive aggregation scheme. When
the global signal becomes irrelevant or misleading, the dynamic loss weight A automatically steers
clients to disregard it, effectively defaulting to local training. This acts as a critical fail-safe, ensuring
that collaboration is never actively detrimental, even when the public data is of poor quality.

A Note on the Byzantine Resilience of FEDMOSAIC Following the argument by (Jiang et al.,
2020), who show that federated semi-supervised learning with soft labels sharing (e.g., FedDistill)
is more Byzantine resilient than FEDAVG due to the bounded nature of the threat vector on the
probability simplex, we argue that FEDMOSAIC exhibits similar ( if not stronger) resilience properties.
Like FedCT (Abourayya et al., 2025), FEDMOSAIC relies on hard label sharing, further constraining
the threat vector to a binary classification decision per example. Moreover, FEDMOSAIC incorporates
confidence-based aggregation, which naturally downweights unreliable predictions. This mechanism
provides an additional layer of robustness by reducing the influence of low confidence ( and potentially
malicious) clients. While a formal analysis remains open, these properties suggest that FEDMOSAIC
may be at least as Byzantine resilient as FedDistill and FedCT. Exploring this direction further is
promising for future work.

Robustness to Client Dropout To assess robustness beyond full participation, we additionally
evaluate a partial-participation setting, where in each communication round only a subset of clients
is sampled. On Fashion-MNIST with 30 clients under the practical non-IID setting, we run FED-
MOSAIC and FedAvg (McMabhan et al., 2017) with client dropout rates of 10%, 20%, and 30% per
round. As shown in Table 5, FEDMOSAIC consistently outperforms FedAvg across all participation
levels and degrades more gracefully as the dropout rate increases.

Table 5: Fashion-MNIST (practical non-IID), average client test accuracy (%) under client dropout
with 30 clients.

Method Dropout 0% Dropout 10% Dropout 20% Dropout 30 %
FedAvg 78.23 73.78 72.61 71.38
FEDMOSAIC 93.12 90.32 89.24 88.41

Effect of the Confidence Mechanism In the main paper, Tables 2 and 3 reported results using the
class frequency-based confidence score, while the uncertainty-based mechanism was only evaluated
in the hybrid setting (Table 4). We additionally applied the uncertainty-based confidence score to the
label-skew experiments and the hybrid benchmark. Overall, FEDMOSAIC with uncertainty-based
confidence (FEDMOSAIC-U) performs comparably to, and in several cases slightly better than, the
class frequency-based variant (FEDMOSAIC-W), confirming that the gains of our method are not
tied to a specific confidence design.
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Table 6: Fashion-MNIST and CIFAR-10 (label-skew), average client test accuracy (%) for both
confidence mechanisms.

Dataset / Setting FEDMOSAIC-W (class freq.) FEDMOSAIC-U (uncertainty)
Fashion-MNIST, practical 98.43 (0.01) 98.62 (0.03)
CIFAR-10, practical 86.15 (0.01) 87.43 (0.05)
Fashion-MNIST, patholog. 99.40 (0.01) 98.38 (0.02)
CIFAR-10, patholog. 88.03 (0.01) 89.02 (0.04)

Table 7: Per-domain client test accuracy (%) for Office-10 and DomainNet under both confidence
mechanisms.

Dataset Domain FEDMOSAIC-W (class freq.) FEDMOSAIC-U (uncertainty)
Office-10 A 80.21 (0.01) 81.18 (0.05)
Office-10 C 60.00 (0.02) 59.95 (0.08)
Office-10 D 81.25 (0.02) 81.20 (0.06)
Office-10 W 83.05 (0.10) 83.50 (0.10)
DomainNet C 71.36 (0.10) 72.30 (0.12)
DomainNet 1 41.59 (0.20) 40.55 (0.18)
DomainNet P 69.38 (0.40) 67.35 (0.25)
DomainNet Q 84.27 (0.10) 85.22 (0.11)
DomainNet R 79.25 (0.30) 78.21 (0.20)
DomainNet S 75.03 (0.20) 74.98 (0.16)

Tiny-ImageNet Label-Skew Results We evaluate all methods on the Tiny-ImageNet dataset (200
classes) using a ResNet-18 backbone under the practical heterogeneous label-skew scenario described
in Sec.4. Specifically, we simulate non-identically distributed label partitions using the Dirichlet
distribution as in Sec. 4, and train all approaches under the same optimization and communication
budgets. The average test accuracies are reported in Table 8.

Table 8: Average test accuracy (%) on Tiny-ImageNet under the practical heterogeneous (label-skew)
setting with a ResNet-18 backbone.

Category Method Tiny-ImageNet (practical label-skew)

Baseline Centralized 42.20 (0.21)
Baseline  Local training 36.75 (0.37)
FL FedAvg 19.80 (0.42)
FL FedProx 19.49 (0.18)
FL FedCT 29.54 (0.53)
FL FedBN 33.17 (0.31)
PFL Per-FedAvg 25.43 (0.27)
PFL Ditto 31.85(0.44)
PFL pFedMe 27.29 (0.15)
PFL APFL 32.34 (0.39)
PFL FedPHP 35.63 (0.24)
PFL PerFed-CKT 34.90 (0.33)
Ours FEDMOSAIC 41.90 (0.07)

Public unlabeled data availability and robustness We now explicitly discuss the assumption of
a shared public unlabeled dataset in the context of federated semi-supervised learning, where this
assumption is standard and non-sensitive public data is used as a communication substrate. In many
application domains such data is readily available (e.g., MIMIC-CXR or CheXpert in healthcare,
ImageNet-21K, LAION-400M, or Openlmages in vision, and C4 or Wikipedia in NLP), and in such
settings clients in FEDMOSAIC never share private data, only predictions over this public dataset.
Section 4 and Appendix B further show that even when the public set is very small or strongly skewed,
FEDMOSAIC still matches or exceeds the local baseline, as the adaptive weighting mechanism
automatically reduces reliance on unreliable global signals.
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Baselines using public data To ensure a fair comparison, in all experiments, we already include
FedCT, a federated semi-supervised method that, like our approach, operates on the same unlabeled
public dataset U. In addition, we now report results for FedMD, which relies on a public labeled
dataset (and thus has strictly more information than FEDMOSAIC) under the same hybrid setting
and training/communication budgets as our method. In this setting, FedMD achieves 57.3% on
DomainNet, 69.4% on DomainNet (ViT), and 63.2% on Office-10, which remains clearly below
FEDMOSAIC (Table 4: 88.36%/87.35%/89.43%).

Scalability, communication, and wall-clock time We base FEDMOSAIC on the federated co-
training paradigm, which has already been shown to scale well with an increasing number of clients,
and our method inherits this scalability since each client only shares predictions and scalar expertise
scores instead of full model parameters. In the communication analysis, we make this precise by
comparing the per-round uplink cost of transmitting one-hot predictions on the public set U and
an expertise vector (which scales with |U| and the number of classes) to the cost of transmitting a
full model of size |0| (e.g., 32-bit parameters) as in standard parameter-sharing FL. As long as |U|
is of the same order or smaller than |¢|, FEDMOSAIC is strictly more communication-efficient; in
the FashionMNIST setup of Sec. 3, this translates into a reduction by roughly a factor of 177x in
per-round communication compared to FedAvg. For wall-clock performance, we follow common FL
practice and measure the time needed to reach a target accuracy. Concretely, we run FashionMNIST
with 15 clients under the same label-skew setting and CNN architecture as in Table 2, using a batch
size of 64, a public unlabeled dataset of size |[U| = 1000, and 10 communication rounds where each
client performs 20 local epochs per round; we stop as soon as the average client test accuracy first
reaches 75%. On a setup with 5 NVIDIA RTX A6000 GPUs, FEDMOSAIC reaches the 75% target
in 28.8 minutes, whereas FedAvg requires 53.6 minutes, confirming that the reduced communication
also translates into faster time-to-target accuracy in practice.

Differential privacy We instantiate and empirically evaluate the differential privacy (DP) mech-
anisms described in Sec. 3 to demonstrate that FEDMOSAIC can be made privacy-preserving
without altering its algorithmic structure. These mechanisms add Gaussian noise and apply an
XOR perturbation only to the communicated one-hot predictions and scalar expertise scores, whose
sensitivity is bounded; as covered in Proposition 1, this ensures that the injected noise introduces
only minor stochastic perturbations without changing the convergence rate. In the main experiments
we focus on adaptivity and personalization and therefore keep DP disabled, but we additionally
run a DP-FEDMOSAIC variant in the hybrid setting of Table 4. Concretely, we add Gaussian
noise with standard deviation o = 0.01 and apply the XOR mechanism. Under this configuration,
DP-FEDMOSAIC achieves 86.12 (0.15) on DomainNet and 87.24 (0.14) on Office-10, i.e., only a
small drop (approximately 1-2 percentage points) compared to the non-DP results, confirming that
moderate DP noise has a limited impact on performance in practice.

C DETAILS ON EXPERIMENTS

All experiments are conducted for a sufficient number of communication rounds until convergence,
using three different random seeds. While the standard deviation across the three runs with different
seeds is consistently small, this observation aligns with prior work Zhang et al. (2023d),Zhang et al.
(2023c), Zhang et al. (2023b).

Label Skew Fashion-Minst and CIFAR-10 datasets have been used for label skew experiments. In
Fashion-Minst, we converted the raw grayscale 28 x 28 images into Pytorch tensors and normalized
pixel values to the range [—1, 1] using a mean of 0.5 and standard deviation of 0.5. In CIFAR-10, we
converted RGB 32 x 32 images into Pytorch tensors of shape [3, 32, 32] and normalizes each color
channel independently to the range of [—1, 1], using a mean of 0.5 and standard deviation of 0.5. The
data is partitioned across 15 clients. In a pathological non-IID setting, each client receives data from
only 2 out of 10 classes. In a practical non-IID setting, data is distributed across 15 clients using
a Dirichlet distribution. This creates naturally overlapping, imbalanced label distributions among
clients. Training data distribution of each scenario of CIFAR-10 are showing in Fig.11 and Fig.12.We
have used a small CNN (two convolutional layers followed by two fully connected layers) for that
scenario.
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Figure 11: CIFAR-10 clients data distribution Figure 12: CIFAR-10 clients data distribution
in Pathological non-IID setting in Practical non-IID setting

Feature Shift we used the Office-10 and DomainNet datasets. For both, we adopt AlexNet as a
neural network architecture. Input images are resized to 256 x 256 x 3. Training is performed till
convergence using the corss-entropy loss and Adam optimizer with learning rate of 1072, We use
a batch size of 32 for Office-10 dataset and 64 for DomainNet. For DomainNet, which originally
contains 345 categories, we restrict the label space to the top 10 most frequent classes to reduce
complexity, The selected categories are: bird, feather, headphones, icecream, teapot,
tiger, whale, windmill, wineglass, zebra. For Office-10, each client get one of the 4
domains and For DomainNet dataset, each client get one of the 6 domains. The distribution of each
client training data are showing in Fig.13 and Fig.14.
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Figure 13: DomainNet clients data distribution. Figure 14: Office-10 clients data distribution.

Hybrid Distribution We simulate the hybrid data distribution by combining both label distribution
skew and feature distribution shift. We use the same two datasets as in feature shift experiments:
Office-10 and DomainNet. To introduce label skew, for each domain, we randomly sample 5 clients
and assign to each client only 2 out of 10 total classes. This results in 20 clients for the Office-
Caltech10 dataset (4 domains x 5 clients) and 30 clients for DomainNet (6 domains x 5 clients).
This creates a hybrid non-IID setting where clients differ significantly in both input distribution and
output distribution. We use the same preprocessing and training configurations as the feature shift
experiments. All input images are resized to 256 x 256 x 3 before being fed into AlexNet. Models
are trained using cross-entropy loss and Adam optimizer with learning rate of 10~2. The batch size
is set to 32 for Office-10 and 64 for DomainNet. For DomainNet, we selected the 10 most frequent
as feature shift experiments.To effectively visualize the distribution of local training data across 30
clients, we used a dot matrix plot, which offers a compact and intuitive representation of client-level
variation. The visualization of the Clients distribution of DomainNet and Office-10 datasets are
shown in Fig.15 and Fig.16
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Figure 15: DomainNet clients Hybrid data distri-
bution.

Figure 16: Office-10 clients Hybrid data distri-
bution.

D PRACTICAL IMPACT OF FEDMOSAIC

FEDMOSAIC addresses data heterogeneity in personalized federated learning (PFL) via a fine-
grained collaboration mechanism that lets each client selectively rely on collective expertise, aiming
to improve accuracy and robustness. This is particularly relevant in domains with substantial
variability (e.g., healthcare, finance, recommendation), where traditional federated methods can
struggle. Empirically, FEDMOSAIC often outperforms strong PFL baselines and, in our evaluated
settings, local and centralized training across label skew, feature shift, and hybrid heterogeneity;
where margins are small, it performs comparably. Its design limits disclosure by sharing only hard
predictions on a shared unlabeled dataset, reducing potential privacy leakage relative to parameter
sharing. This follows “share as little as possible” (Mian et al., 2023; Tan et al., 2022) and aligns
with privacy-by-design (Cavoukian et al., 2009). In addition, our differentially private variant (DP-
FEDMOSAIC) illustrates how to obtain formal (&, §)-DP guarantees for the released signals (labels
and expertise), with the privacy accounting provided and empirical calibration left to future work.
Finally, federated co-training is communication-efficient for large models: when parameter counts
vastly exceed |U|, sending hard labels (and one expertise scalar per example) can reduce uplink by
orders of magnitude. Combining this with communication-efficient protocols (Kamp et al., 2016;
Kamp, 2019) has the potential to reduce communication by several orders of magnitude, in particular
for large transformer-based models, such as LLMs.

E NOTATION

Federated Learning Setup

m Number of participating clients

i€ m] Index of a client

D; Private dataset of client ¢

U Shared public unlabeled dataset used for co-training
T Total number of communication rounds

b Communication period (local steps between rounds)
A; Local learning algorithm used by client ¢

Models and Predictions
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Local model of client ¢ at round ¢

Loss of model  on dataset D

Private loss on client 7’s local data

Loss on pseudo-labeled public data P?

One-hot prediction matrix from client ¢ on public data

Confidence (expertise) vector from client ¢ on public data

Weighted score matrix used for consensus aggregation

Consensus pseudo-label for public example x; € U

Adaptive Weighting Mechanism

Adaptive weight controlling trust in global signal for client
7 atround ¢

Total loss used for local model update at round ¢
Optimization and Convergence

Model parameters
Gradient of loss with respect to model parameters
Bounded variance of local gradient estimator

Bounded variance of global gradient estimator (pseudo-label
noise)

Bounded drift in local objectives across rounds

Smoothness constant (Lipschitz constant of the gradient)
Sets and Indexing

Index set of all clients

Index set of all classes

j-th public unlabeled sample

True (unknown) label of public sample
Number of samples in the public dataset U
Number of samples in the local dataset of client ¢
(4, ¢)-th entry of prediction matrix L}

Confidence of client ¢ on public example x;
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