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Abstract

We propose the efficient and accurate hierarchical ICIA
fitting method for 3D Morphable Models (3DMMs). The
conventional ICIA fitting method for 3DMMs requires a
long computation time because the 3D face model contains
a large number of vertices and it also requires to compute
the Hessian matrix using the visible vertices every iteration.
For the efficient fitting, we use the hierarchical fitting that
use a set of multi-resolution 3D face model and the Gaus-
sian image pyramid. For more accurate fitting, we use a
two-stage parameter update that only update the rigid and
the texture parameters and then update all parameters af-
ter the initial convergence. We present several experiment
results to prove that our proposed method shows better per-
formance than previous works.

1. Introduction
Recently, many researchers have been interested in the

human face analysis such as face detection, face recogni-
tion and facial expression recognition. To conduct research
in these topics, we need to perform the face modeling and
fitting method of the model to the input image. There are
two kinds of face modelings: the 2D face modeling and the
3D face modeling.
In the 2D-based face modeling, there are many ap-

proaches such as the active contour models (ACMs), the ac-
tive shape models (ASMs), and the active appearance mod-
els (AAMs). ACMs are only used to extract the facial con-
tour of frontal-view faces and the performance crucially de-
pends on the weight for which manually parameters tuning
may be inevitable in many applications [9, 10]. In ASMs,
the linear characteristics of ASMs limit their application to
them small range of shape variations [14, 4]. AAMs con-
tain the shape and the texture models. AAMs have the
efficient fitting methods such as the inverse compositional

simultaneous update (ICSU) [6] and the inverse composi-
tional project out (ICPO) [11]. They do not fulfill the two
requirements such as the stability and the operating speed
at the same time. The above 2D-based face modeling and
their fitting method have still the limitations that the face
modeling are not robust to the pose and illumination varia-
tions and the fitting methods are unstable and inaccurate for
representing the input facial images.
To reduce these limitations, many researchers have pro-

posed the 3D face models whose shape or texture can be
controlled by a compact set of parameters [2, 5, 8]. For
example, the 3DMMs uses the most detailed 3D shape con-
sisting of thousands of vertices and the linear texture. In
the 3DMMs, there are two famous fitting methods such as
a stochastic Newton optimization (SNO) [3] and an inverse
compositional image alignment (ICIA) [12]. While more
accurate, the SNO requires a huge amount of computation
time because it is necessary to recompute the Jacobian and
the Hessian matrices of the warping function at the pixel
coordinate every iteration. On the other hand, the ICIA is a
time-efficient method because the Jacobian and the Hessian
matrices are pre-computed once for all iterations. Despite
of this merits, the ICIA took about 30 seconds [12].
To reduce the computation time of the conventional ICIA

fitting method, we proposed the efficient and accurate hi-
erarchical ICIA fitting method. It requires a set of multi-
resolution 3D face models and the Gaussian image pyramid
of the input face image and fitting has been performed hi-
erarchically from the low resolution fitting to the high res-
olution fitting. We take the two-stage parameter update for
obtaining the more accurate performance that the rigid and
the texture parameters are updated at the first stage and all
parameters are updated after the initial convergence.
This paper is organized as follows: Section 2 describes

the existing ICIA fitting method for the 3DMMs. Section 3
describes the multi-resolution 3D face models, a Gaussian
image pyramid, and the proposed hierarchical ICIA fitting
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method. Section 4 describes the experimental results that
evaluate the performance of the proposed hierarchical ICIA
fitting method in terms of the histogram of shape errors, the
average fitting error, the convergence rate, and the conver-
gence time. Finally, Section 5 draws a conclusion.

2. 3D ICIA Fitting Method
The fitting method performs the matching of the 3DMM

to a 2D face image and seeks the parameters of the 3DMM
that express the model texture as close to the input image
as possible. In the 3DMMs, the fitting methods aim to
find the model parameters α, ρ, and β that explain shape
parameters, rigid parameters, and texture parameters of an
input face image by a Maximum a Posteriori (MAP) esti-
mator which maximizes p(α,ρ,β|Iinput). Applying the
Bayes rule, the posterior probability can be represented as:
p(α,ρ,β|Iinput) ∼ p(Iinput|α,ρ,β) · p(α) · p(ρ) · p(β),
where p(Iinput | α,ρ,β) is the likelihood, and p(α), p(ρ),
and p(β) are the prior probabilities of the shape, rigid, and
texture parameter, respectively. The prior probabilities of
p(α) and p(β) are given by the process of the building 3D
face model by PCA, and the prior probability of p(ρ) is as-
sumed to be a Gaussian distribution.
In the 3D ICIA fitting method, the cost function EI is an

iteratively minimized log-likelihood that is the sum of the
squares of the difference between the model texture and the
image texture defined in the reference frame u = (u, v) as

EI(δα, δρ, δβ,α
d,ρd,αt,ρt,βt, I) =

=
X

Ω(αd ,ρd )

∙
t(p−1(p(ui;αd + δα,ρd + δρ);αd,ρd); δβ)

− t−1(I(p(u;αt,ρt));βt)

¸2
, (1)

where the superscripted parameters by d refer to the param-
eters at which the derivatives are computed, the parameters
αt, ρt, and βt are the current shape, rigid, and texture pa-
rameters, respectively. Ω(αd,ρd) is a set of the visible ver-
tices. Here, the first and second terms in the summation are
the model texture that is the result of a texture update with
respect to the parameters δβ composed with a shape pro-
jection update with respect to the parameters δα and δρ,
and the image texture that removes the modes of texture
variations by the inverse texture using the current texture
parameters βt, respectively.
To obtain the updates of the model parameters, we

need to compute the derivatives of the ICIA cost function
with respect to the shape parameters δα, the rigid param-
eters δρ, and the texture parameters δβ at the condition
(0,0,0,αd,ρd,αt,ρt,βt).
The Jacobian matrices of the shape, rigid, and texture

parameters are combined and denoted as J = [Js Jρ Jt].

Then, the increments of the model parameters are computed
by the Gauss-Newton formula as⎛⎝δα

δρ
δβ

⎞⎠ = −H−1 · JT ·E, (2)

whereH is the Hessian matrix that is defined byH = JT ·J.
After obtaining the increments of the model parameters,
they are updated by the following procedures. First, the
shape projection is updated using the increments of the
shape and projection parameters as

pt+1(ui) = p(p
−1(ui;αd+δα,ρd+δρ);αd,ρd);αt,ρt)

(3)
Second, the updated shape parameters αt+1 and the up-
dated projection parameters ρt+1 are obtained from the
Kernel-based selective method [13]. Third, the texture pa-
rameters are updated by the additive manner as βt+1 =
βt + δβ. Table 1 summarizes the overall procedure of the
ICIA fitting method.

Table 1. The overall process of ICIA fitting algorithm.
Procedure ICIA fitting(I, S, T, α0, ρ0, β0)
t = 0.
Set the initial parameters:
αt = α0, ρt = ρ0, βt = β0, Eold =∞.

Iterate:
Warp the current face image I(p(u;αt,ρt)).
Compute the error Et = t(u;0)− t−1(I(p(u;αt,ρt));βt).
Check stop condition:
If( (t > max iter) or (|Eold −Et| < Eth ) ), Stop.
Compute the Jacobian matrix J = [Js Jρ Jt].
Compute the Hessian matrixH = JT · J.
Compute δα, δρ, δβ using Eq. (2).
Update αt+1,ρt+1 using the kernel-based selective method [13].
Update βt+1 = βt + δβ.
Eold = Et.
Set t = t+ 1 and go to Iterate.
End

3. The Proposed Hierarchial ICIA Fitting
Method
Although the ICIA fitting method is time-efficient due

to the pre-computation of the derivatives in the initial step,
it requires a lot of computation time(≈ 30 seconds) for the
3DMM fitting. (1) we handle thousands of vertices in the
3DMMs, (2) we need to select the visible vertices at each it-
eration, and (3) we need to change the derivatives by adding
the new vertices and discarding the the invisible vertices ac-
cordingly and re-compute the derivatives at each iteration.
The time complexity of the computation of the existing

ICIA fitting method isO((Ns+Nt) ·Nvv+Nvv logNvv+



(Ns +Nt)
2 ·Nvv), where Ns, Nt, and Nvv are the dimen-

sion of the shape model, the dimension of the texture model
and the number of the visible vertices, respectively, and the
first terms are due to the update of the shape and texture
parameters, the second term is due to the computation of
the median of absolute deviations (MAD) which is neces-
sary for sorting the residuals to designate the outliers, and
the third term is due to the re-computation of the Hessian
matrix. As shown by, the time complexity of the ICIA fit-
ting algorithm, we need to reduce the number of vertices as
many as possible to reduce the overall fitting time. To meet
this requirement, we propose the hierarchical ICIA fitting
method that uses a set of multi-resolution 3D face model
and the Gaussian image pyramid of the input face image.

3.1. Multi-Resolution 3D Face Models
The multi-resolution 3D face models are constructed by

sub-sampling the model shape S that is formed by the mean
shape and the shape basis vectors, formed by the mean tex-
ture and the texture basis vectors. The model shape Slevle−3
and the model texture Tlevle−3 at the level-3 are just the
model shape S and the model textureT, respectively. Next,
the shape and the texture at the level-3 are sum-sampled at
the 2:1 sampling rate to construct the model shape Slevel−2
and the model texture Tlevel−2. Finally, the model shape
and the model texture at the layer-2 are sub-sampled at the
2:1 sampling rate to construct the model shape Slevel−1 and
the model textureTlevel−1. Table 2 summarized the overall
procedure of constructing the proposed multi-resolution 3D
face models.

Table 2. The overall procedure of constructing the multi-resolution
3D face models.
(1) Construct the level-3 3D face model using PCA.
(2) Construct the level-2 3D face model:
(a) Subsample the mean face of the level-3 face model by 2.
(b) Subsample the basis vectors of face model
using the indices that are obtained in the above mean face
subsampling.

(3) Construct the level-1 3D face model:
(a) Subsample the mean face of the level-2 face model by 2.
(b) Subsample the basis vectors of face model
using the indices that are obtained in the above mean face
subsampling.

3.2. Gaussian Image Pyramid
We also generate the Gaussian image pyramid, which

is a hierarchy of the low-pass filtered versions of the input
face image such that the successive level corresponds to the
lower frequency image. Figure 1 shows the example of the
Gaussian image pyramid of an input face image, where Fig-
ure 1-(a) is the original face image (level-3), Figure 1-(b)
is the sub-sampled image with a half of the number of pix-

els at the level-3, and Figure 1-(c) is the sub-sampled image
with a half of the number of pixels at the level-2.

(a) Level-3 (b) Level-2 (c) Level-1

Figure 1. A Gaussian image pyramid of the input face image.

3.3. Hierarchical ICIA Fitting Method

After generating the multi-resolution 3D face models
and the Gaussian image pyramid of the input face image,
we apply the proposed hierarchical ICIA fitting method.
At the initialization, the ICIA fitting method requires the
correspondences between some of the model vertices and
the input face image manually [12]. But the proposed fit-
ting method tries an automatic initialization by aligning the
pre-designated eye’s positions in the face model and the de-
tected eye’s positions by the revised modified census trans-
form (RMCT)-based face detector [7].
Table 3 shows the overall procedure of the proposed hi-

erarchical ICIA fitting method: (1) we generate the Gaus-
sian image pyramid Ilevel−1, Ilevel−2, and Ilevel−3 from
the input face image, (2) we detect the face and eyes us-
ing the RMCT-based face detector. (3) we set the initial
shape and texture parameters as α0 = 0 and β0 = 0, and
rigid parameter ρ are initialized by using the pre-designated
eye positions of the face model and the detected eye po-
sitions, (4) we perform the first layer ICIA fitting process
using the face image Ilevel−1, the shape model Slevle−1,
the texture model Tlevel−1, and the model parameters α0,
ρ0, and β0, (5) we set the model parameters obtained from
the first layer ICIA fitting results as the initial parameters
for the second layer ICIA fitting, where the superscript ∗
implies the parameter value after the ICIA fitting, (6) we
perform the second layer ICIA fitting process using the
face image Ilevel−2, the shape model Slevel−2, the tex-
ture model Tlevel−2, (7) we set the model parameters ob-
tained from the second layer ICIA fitting results as the ini-
tial model parameters for the third layer ICIA fitting, (8) we
perform the third layer ICIA fitting process using the face
image Ilevel−3, the shape model Slevel−3, the texture model
Tlevel−3, and (9) we obtain the synthesized face image
using the obtained model parameters α∗level−3, ρ∗level−3,
and β∗level−3 as S = S0 +

Pi=Ns

i=1 α∗level−3,i · Si and
T = T0 +

Pi=Nt

i=1 β∗level−3,i ·Ti.



Table 3. The overall procedure of the hierarchical ICIA fitting
method.
Procedure Hierarchical ICIA fitting(I)
(1) Generate the GIP from the input image I:
Ilevel−1, Ilevel−2, Ilevel−3.

(2) Detect face and eyes using the face detector.
(3) Set the initial parameters for the first layer ICIA fitting:
α0 = 0, β0 = 0, ρ = Face− detector.

(4) Perform the first layer ICIA fitting:
ICIA fitting(Ilevel−1,Slevel−1,Tlevel−1,α0,ρ0,β0).

(5) Set the initial parameters for the second layer ICIA fitting:
α0 = α∗level−1, ρ0 = ρ∗level−1, β

0 = β∗level−1
(6) Perform the second layer ICIA fitting:
ICIA fitting(Ilevel−2,Slevel−2,Tlevel−2,α0,ρ0,β0).

(7) Set the initial parameters for the third layer ICIA fitting:
α0 = α∗level−2, ρ0 = ρ∗level−2, β

0 = β∗level−2
(8) Perform the third layer ICIA fitting:
ICIA fitting(Ilevel−3,Slevel−3,Tlevel−3,α0,ρ0,β0).

(9) Obtain the 3D synthesized face using the fitted parameters.
S = S0 +

Pi=Ns
i=1 α∗level−3,i · Si.

T = T0 +
Pi=Nt

i=1 β∗level−3,i ·Ti.

4. Experimental Results
We have performed several experiments that showed the

validity of the proposed hierarchical fitting method. We de-
fine some performance measures to evaluate the fitting per-
formance such as the normalized correlation and the root
mean squared error (RMSE). First, we define the normal-
ized correlation as

C =
αT · α̃
kαk · kα̃k , (4)

where α and α̃ are the ground truth model parameters and
the recovered model parameters after the 3DMM fitting, re-
spectively. Second, we define the root mean squared error
(RMSE) as the average distance between the ground truth
shape (or texture) and the fitted shape (or texture).
We used the BJUT-3D Face Database [1]. And all ex-

periments are performed with the initial parameters α0 =
0, ρ0 = ρFace−Detector, and β

0 = 0, where Face −
Detector means that the parameter values are obtained
from the results of detecting the face and the eyes.
All experiments have been conducted on the desktop PC

that consists of a Pentium IV CPU with a clock speed of
3GHZ, a 4GB RAM, Window XP professional x64 Edition,
and C++ and OpenCV development tools.

4.1. Comparison of the Fitting Performance Using
Different Types of Image Pyramids

First, we compared the fitting performance with respect
to two different types of image pyramid constructions: the
sub-sampling image pyramid (SIP) and the Gaussian im-
age pyramid (GIP) when the proposed hierarchical ICIA fit-

ting method was used with the two-stage parameter updates
(TSPU).
Table 4 compares the fitting performance of two differ-

ent types of image pyramids: SIP and GIP. From this table,
we know that the fitting performance of using GIP outper-
forms that of using SIP in all performance measures such as
Cshp, Ctex, RMSEshp, and RMSEtex where the normal-
ized correlation of shape, normalized correlation of texture,
RMSE of the shape, and RMSE of the texture.

Table 4. Comparison of the fitting performance between SIP and
GIP.

Cshp Ctex RMSEshp RMSEtex

SIP 0.5623 0.9682 4.0623 3.0681
GIP 0.8200 0.9934 2.1677 1.6054

Figure 2 shows a histogram of the shape errors between
the ground truths and the fitted shapes using SIP and GIP. It
shows that GIP has the smaller mean and the smaller stan-
dard deviation of the shape errors than SIP.
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Figure 2. A histogram of the shape errors using SIP and GIP.

4.2. Comparison of the Fitting Performance Using
Different Types of Parameter Updates

Second, we compared the fitting performance with re-
spect to two different types of parameter updates: the
single-stage parameter update (SSPU) and the two-stage pa-
rameter update (TSPU), where the former updates all model
parameters in all layer ICIA fittings and the latter updates
the rigid and texture parameters in the first layer ICIA fit-
ting and then updates all model parameters in the second
and third layer ICIA fitting when the proposed hierarchical
ICIA fitting method was used with the GIP construction.
Table 5 compares the fitting performance of two different

types of parameter updates: SSPU and TSPU. From this ta-
ble, we know that the fitting performance of using the TSPU
outperforms that of using the TSPU in all performance mea-
sures such as Cshp, Ctex, RMSEshp, and RMSEtex.
Figure 3 shows a histogram of the shape errors between

the ground truths and the fitted shapes using SSPU and



Table 5. Comparison of the fitting performance between the SSPU
and the TSPU.

Cshp Ctex RMSEshp RMSEtex

SSPU 0.5623 0.9682 4.0623 3.0681
TSPU 0.8200 0.9934 2.1677 1.6054

TSPU. It shows that TSPU has the smaller mean and the
smaller standard deviation of the shape errors than SSPU.
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Figure 3. A histogram of the shape errors using SSPU and TSPU.

4.3. Comparison of the Fitting Performance with
Different Types of Fitting Methods

Finally, we compared the fitting performance with re-
spective to two different types of fitting methods: the con-
ventional ICIA fitting method (CICIA)and the proposed hi-
erarchical ICIA fitting method (HICIA) when the GIP is
used to generate the image pyramid and the TSPU is used
for the parameter updates.
Table 6 summarizes the fitting performances of two fit-

ting methods in terms of the average number of iterations
(Niter), the average computation time for the ICIA fitting
(Tfit), the normalized correlation of the fitted shape param-
eters (Cshp), the normalized correlation of the fitted texture
parameters (Ctex), the RMSE of the shape errors (Rshp),
and the RMSE of the texture errors (Rtex). This table indi-
cates that (1) the proposed hierarchical ICIA fitting method
is faster than the conventional ICIA fitting method by a
speed up to 3, (2) the correlations of shape and texture pa-
rameters of using HICIA are much higher than those of us-
ing CICIA, and (3) the RMSEs of the shape and texture
errors of using HICIA are reduced by 3-4 times than those
of using CICIA.

Table 6. Comparison of fitting performance between the CICIA
and the HICIA.

Niter Tfit Cshp Ctex Rshp Rtex

CICIA 71.02 16.3 0.3754 0.8550 6.4540 6.0410
HICIA 57.52 5.7936 0.8200 0.9934 2.1667 1.6054

Figure 4 shows a histogram of the shape errors between

the ground truths and the fitted shapes using CICIA and
HICIA. It shows that HICIA has the smaller mean and the
smaller standard deviation of the shape errors than CICIA.
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Figure 4. A histogram of the shape errors using the CICIA and the
HICIA.

Figure 5 compares the convergence rates of five dif-
ferent fitting methods: TYPE1 (CICIA), TYPE2 (HI-
CIA+SIP+SSPU), TYPE3 (HICIA+SIP+TSPU), TYPE4
(HICIA+GIP+SSPU), and TYPE5 (HICIA+GIP+TSPU).
In this experiment, the input face image is successfully con-
verged when the shape error of the fitting face image is
smaller than a given threshold value and the convergence
rate is defined by the ratio of the number of successfully
converged face images over the total number of face im-
ages. This figure illustrates that the convergence rate of the
proposed hierarchical ICIA fitting method with GIP con-
struction and TSPU update outperforms those of other fit-
ting methods.
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Figure 5. Convergence rates of the different fitting methods.

Figure 6 shows some fitting results of the proposed hier-
archical ICIA fitting method, where the first, second, third,
and fourth columns represent the input face images, the
fitted shapes, the synthesized face images using the fitted
model parameters, and the different views of the synthe-
sized images of four different people, respectively. From
this figure, we know that the proposed hierarchical ICIA fit-
ting method provides good fitting performances, and thus it



can be used for fitting a new subject that is not included in
the training set.

Figure 6. Some fitting results of the proposed hierarchial ICIA fit-
ting method.

5. Conclusion
We proposed an efficient and accurate hierarchical ICIA

fitting method. The proposed fitting method is efficient be-
cause it generates the multi-resolution 3D face models and
constructs the Gaussian image pyramid. Further the fit-
ting is conducted hierarchically from the lower layer to the
higher layer. As a side effect, this also improves the fit-
ting performance because the fitted model parameters at the
lower layer are used as the initial model parameters for the
upper layer fitting.
We also proposed the two-stage parameter update

method that updates the rigid parameter and the texture pa-
rameters only at the first layer fitting, and updated all pa-
rameters at the succeeding upper layer fitting. This update
method reduces the computation time for fitting and im-
proves the stability of fitting because it is very difficult to
discriminate the movement of vertex positions due to the
shape parameter changes and the rigid parameter changes
in the very beginning of fitting.
We performed several experiments that validate the effi-

ciency and accuracy of the proposed hierarchical ICIA fit-
ting algorithm. From the experiment results, (1) it com-
pleted the fitting within about 57 iterations (≈ 5 seconds),
(2) its speed-up ratio is about 3, (3) the performance of the
proposed fitting method outperformed that of the existing
fitting method, (4) the two-stage parameter update showed
better fitting performance than single-stage parameter up-
date in terms of the fitting time and fitting error.
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