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Abstract—We review a recent construction of Clifford prolate
spheroidal wave functions (CPSWFs) – a multidimensional multi-
channel generalization of one-dimensional PSWFs. We introduce
new properties of the corresponding eigenvalues such as decay
and spectral accumulation.

I. INTRODUCTION

The first version of higher dimensional prolate spheroidal
wave functions has been studied in [1]. The mentioned prolates
have been defined as ψn,k(r, θ) = Rn,k(r)Hk(θ) where
the Rn,k(r) and Hk(θ) are radial functions and spherical
harmonics, respectively. A modified version of the radial part,
φn,k(r) =

√
rRn,k(r) is the eigenfunction of the following

differential operator

Mc(u)(t) = (1− t2)
d2u

dt
− 2t

du

dt
+ (

1
4 −N2

t2
− c2t2)u = 0.

(1)
The operator has a singularity at the origin, causing instabil-
ities. The prolates are also the eigenfunctions of the Fourier
transformation truncated to the unit disc, i.e.,

Fc(ψn,k)(x) =

∫
B(1)

eic⟨x,y⟩ψn,k(y) dy. (2)

In recent years there have been some attempts to improve
the numerical computation of the prolates [2], [3]. There are
also some other versions of the higher dimensional prolates
that have been developed in the Clifford analysis [4], [5].
In [6] new Clifford-type prolate spheroidal wave functions
(CPSWFs) have been developed with different properties. Here
we present some new properties for CPSWFs.

II. CLIFFORD ANALYSIS

Let {e1, . . . , em} be the standard basis for m-dimensional
euclidean space Rm. We declare the non-commutative multi-
plication in the Clifford algebra Rm by the rules

e2j = −1 j = 1, · · · ,m
eiej = −ejei i ̸= j.

A canonical base for Rm is obtained by considering for any
ordered set A = {j1, j2, · · · , jh} ⊂ {1, · · · ,m} = M, the
element eA = ej1ej2 · · · ejh . For example, each λ ∈ R2, may
be written as λ = λ0+λ1e1+λ2e2+λ12e1e2, where λi ∈ R.

The conjugation λ of λ =
∑

A λAeA ∈ Rm is given by λ =∑
A λAeA where ej = −ej and αβ = βα for all α, β ∈ Rm.

Similarly Cm can be obtained if λA ∈ C. The Euclidean space
Rm is embedded in the Clifford algebra Rm by identifying
the point x = (x1, · · · , xm) ∈ Rm with the 1-vector x =∑m

j=1 ejxj . The product of two 1-vectors splits up into a scalar
part and a 2-vector (also called bivector): xy = −⟨x, y⟩+x∧y
where ⟨x, y⟩ =

∑m
j=1 xjyj and x ∧ y =

∑
i<j eiej(xiyj −

xjyi). Note also that if x is a 1-vector, then x2 = −⟨x, x⟩ =
−|x|2.

Definition 1. Let f : Rm → Rm be defined and continuously
differentiable in an open region Ω of Rm. The Dirac operator
∂x is defined on such functions by

∂xf =

m∑
j=1

ej∂xj
f.

We also allow the Dirac operator to act of the right in the
sense that f∂x =

∑m
j=1 ∂xj

fej . f is said to be left (resp.
right) monogenic on Ω if ∂xf = 0 (resp. f∂x = 0) on Ω. If
f is left-and right monogenic, we say f is monogenic.

Definition 2. A left (resp. right) monogenic homogeneous
polynomial Pk of degree k (k ≥ 0) in Rm is called a left
(resp. right) solid inner spherical monogenic of order k. The
set of all left (resp. right) solid inner spherical monogenics of
order k will be denoted by M+

l (k), respectively M+
r (k).

For the proof, the reader is referred to [7].
The Rm-valued inner product of the functions f, g : Rm →

Rm is given by ⟨f, g⟩ =
∫
Rm

f(x)g(x) dx, where dx is

Lebesgue measure on Rm. The associated norm is given
by ∥f∥2 = [⟨f, f⟩]0. The unitary right Clifford-module of
Clifford algebra-valued measurable functions on Rm for which
∥f∥2 <∞ is a right Hilbert Clifford-module which we denote
by L2(Rm,Cm). The multi-dimensional Fourier transform F
is given by

Ff(ξ) = 1

(2π)m/2

∫
Rm

exp(−i⟨x, ξ⟩)f(x)dV (x) (3)

for f ∈ L1(Rm,Cm) and may be extended unitarily to
L2(Rm,Cm).



Proof. For the proof see [7].

Theorem 1. (Rodrigues’ Formula) The Clifford Gegenbauer
polynomials (CGPs) Cα

n (Pk)(x) are defined by

Cα
n (Yk)(x) = (1− |x|2)−α∂nx ((1− |x|2)α+nYk(x)) (4)

where Yk(x) monogenic homogenous polynomial given in
Definition 2. The CGPs also satisfies in the following Clifford
differential equation

(1− |x|2)−α∂x((1− |x|2)α+1∂xC
α
n,m(Yk)(x))

= C(α, n,m, k)Cα
n,m(Yk)(x),

where

C(α, n,m, k) ={
n(2α+ n+m+ 2k) if n is even,
(2α+ n+ 1)(n+m+ 2k − 1) if n is odd.

Proof. For the proof see [7].

From ( [7] p. 294) we have that

Cα
2n,m(Yk)(x) = An,αP

(α,k+m
2 −1)

n (2|x|2 − 1)Yk(x), (5)

where An,α = (−1)n22n(α + n+ 1)n(n)!, and P (α,β)
n is the

Jacobi polynomial. The odd version is also given in [7]. Let
f(x) = Cα

2N,m(Y j
k )(x) = Pα

N,k,m(|x|2)Y j
k (x), to obtain

(1− s2)Q′′
N (s) + [(k +

m

2
− 1− α)

− s(k +
m

2
+ α+ 1)]Q′

N (s) = −C(α, 2N,m, k)
4

QN (s),

(6)

in which QN (s) = αPα
N,k,m(2|x|2 − 1) where α is any

constant number. We can see the equation (6) is a Sturm-
Liouville differential equation. In fact, (6) is a Jacobi differ-
ential equation.

III. COMPUTATIONS OF THE CPSWFS

Definition 3. Let c ≥ 0 and α > −1. The Clifford operator Lc

acting on C2(B(1),Rm) ⊂ L2(B(1), (1 − |x|2)α) is defined
as follows

Lcf(x) = ∂x((1− |x|2)∂xf(x)) + 4π2c2|x|2f(x). (7)

We call the eigenfunctions of (7) CPSWFs, ψk,c
n,m(x).

Theorem 2. Let n = 2N . The CPSWFs also are of two parts,
i.e., ψk,c,i

2N,m(x) = P k,c
N,m(|x|2)Y i

k (x). Similarly for n = 2N+1,
we have that ψk,c,i

2N+1,m(x) = Qk,c
N,m(|x|2)xY i

k (x).

For the proof see [6].

Lemma 3. By considering |x|2 = s+1
2 we can see that

(1− s2)
d2

ds2
P̃ k,c
N,m(s) + [(k +

m

2
− 1)− s(k +

m

2
+ 1)]

d

ds
P̃ k,c
N,m(s)− π2c2

s+ 1

2
P̃ k,c
N,m(s) = −

χk,c
2N,m

4
P̃ k,c
N,m(s), (8)

where P̃ k,c
N,m(s) = P k,c

N,m(2|x|2−1) becomes a Sturm-Liouville
differential equation after multiplying y(s) = (1 + s)k+

m
2 −1.

Proof. For the proof see [6].

Equation (8) may be written as

T̃cP̃
k,c
N,m(s) = (1− s2)

d2

ds2
P̃ k,c
N,m(s) + [(k +

m

2
− 1)

−s(k + m

2
+ 1)]

d

ds
P̃ k,c
N,m(s)− π2c2

s+ 1

2
P̃ k,c
N,m(s). (9)

Since by Sturm Liouville theory P̃ k,c
N,m(s) is normalized in

the weighted space L2([−1, 1], (1+ s)k+
m
2 −1) so P̃ k,c

N,m(s) =∑
n=0 an,k,m P̄

(0,k+m
2 −1)

n (s) as P̄ (0,k+m
2 −1)

n (s) are orthonor-
mal in the same space. So

T̃c(
∑
n=0

an,k,m P̄
(0,k+m

2 −1)
n (s)) =

∑
n=0

an,k,mT̃c(P̄
(0,k+m

2 −1)
n (s)),

where P̄
(0,k+m

2 −1)
n (s) =

√
(2n+k+m

2 )

2k+m
2

P
(0,k+m

2 −1)
n (s). Now

by the use of the following identity for non-normalized Jacobi
polynomials

(2n+ α+ β + 2)(2n+ α+ β + 1)(2n+ α+ β)(s+ 1)P (α,β)
n (s)

= 2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)P
(α,β)
n+1 +

[(2n+ α+ β + 2)(2n+ α+ β + 1)(2n+ α+ β)−
(2n+ α+ β + 1)(α2 − β2)]P (α,β)

n (s)+

2(n+ α)(n+ β)(2n+ α+ β + 2)P
(α,β)
n−1 (s),

and from (6) we have that

T̃c(P̃
k,c
N,m(s)) =

∑
n=0

an,k,mT̃c(P̄
(0,k+m

2 −1)
n (s))

=
∑
n=0

an,k,m[αn,k,mP̄
(0,k+m

2 −1)
n−1 (s) + βn,k,mP̄

(0,k+m
2 −1)

n (s)

+ γn,k,mP̄
(0,k+m

2 −1)
n+1 (s)] =

∑
n=0

[an+1,k,mαn+1,k,m

+ an,k,mβn,k,m + an−1,k,mγn−1,k,m]P̄
(0,k+m

2 −1)
n (s)

= −
χk,c
2N,m

4
P̃ k,c
N,m(s).

Therefore,

an+1,k,mαn+1,k,m + an,k,m(βn,k,m +
χk,c
2N,m

4
)

+ an−1,k,mγn−1,k,m = 0

where

αn+1,k,m =
−π2c2(n+1)(n+k+m

2 )

(2n+k+m
2 +1)

√
(2n+k+m

2 )(2n+k+m
2 +2)

,

βn,k,m = [−n(n+ k + m
2 )

−π2c2

2 (1 +
(k+m

2 −1)2

(2n+k+m
2 −1)(2n+k+m

2 +1) )],

γn−1,k,m =
−π2c2 n (n+k+m

2 −1)

(2n+k+m
2 −1)

√
(2n+k+m

2 −2)(2n+k+m
2 )
.



This recurrence formula holds for all n,N ≥ 0 so the problem
reduces to finding the eigenvectors an,k,m and associated
eigenvalues χk,c

2N,m of the doubly-infinite matrix Me
k,m with

the following entries:

Me
k,m(i, j) =


γi−1,k,m, if i ≥ 1, j = i− 1,
βi,k,m, if i = j ≥ 0,
αi+1,k,m, if i ≥ 0, j = i+ 1,
0 else.

The matrix is symmetric as γi,k,m = αi+1,k,m. The odd
CPSWFs may be computed similarly. So claculation of the
CPSWFs reduces to calculations of its radial parts.

IV. EIGENVALUES OF CPSWFS

Theorem 4. Let the real constants χk,0
n,m, χk,c

n,m, αn,k, βn,k,
γn,k be given by

L0C̄
0
n,m(Y i

k ) = χk,0
n,mC̄

k,0
n,m(Y i

k ),

Lcψ
k,c,i
n,m = χk,c

n,mψ
k,c,i
n,m ,

x2C̄0
n,m(Y i

k ) = αn,k,mC̄
0
n+2,m(Y i

k ) + βn,k,mC̄
0
n,m(Y i

k )

+ γn,k,mC̄
0
n−2,m(Y i

k ).

Then the asymptotic behaviours of χk,c
n,m and ψk,c

n,m are as
follows:

χk,c
n,m = χk,0

n,m − 4π2c2βn,k,m +O(c4). (10)

and

ψk,c,i
n,m = C̄0

n,m(Y i
k )− 4π2c2

(
αn,k,m

χk,0
n,m − χk,0

n+2,m

C̄0
n+2,m(Y i

k )

+
γn,k,m

χk,0
n,m − χk,0

n−2,m

C̄0
n−2,m(Y i

k )

)
+O(c4). (11)

Proof. We assume an asymptotic expansion of the form

ψk,c,i
n,m (x) = C̄0

n,m(Y i
k )(x) + c2f(x) +O(c4). (12)

Since ∥ψk,c,i
n,m ∥2 = ∥C̄0

n,m(Y i
k )∥2 = 1, we have ⟨C0

n(Y
i
k ), f⟩ =

0. Therefore,

χk,c
n,mψ

k,c,i
n,m = LcC̄

0
n,m(Y i

k ) + c2Lcf +O(c4)

= L0C̄n,m(Y i
k ) + 4π2c2|x|2C̄0

n,m(Y i
k ) + c2L0f +O(c4)

= [χk,0
n,m − 4π2c2βn,k]C̄

0
n,m(Y i

k )− 4π2c2[αn,kC̄
0
n+2,m(Y i

k )

+ γn,kC̄
0
n−2,m(Y i

k )] + c2L0f +O(c4). (13)

On the other hand,

χk,c
n,mψ

k,c,i
n,m = χk,c

n,m[C̄0
n,m(Y i

k ) + c2f ] +O(c4). (14)

Subtracting (14) fram (13) gives

(χk,0
n,m − 4π2c2βn,k − χk,c

n,m)C̄0
n,m(Y i

k ) + c2(L0f − χk,c
n,mf)

− 4π2c2[αnkC̄
0
n+2,m(Y i

k ) + γnkC̄
0
n−2,m(Y i

k )] = O(c4).
(15)

Since ⟨L0f, C̄
0
n,m(Y i

k )⟩ = ⟨f, L0C̄
0
n(Y

i
k )⟩ =

χk,0
n,m⟨f, C̄0

n,m(Y i
k )⟩ = 0, taking the inner product of

both sides on (15) against C̄0
n,m(Y i

k ) gives (10).

We now aim to determine the function f in (12). Combining
(10), (12) and (13) gives

L0f = χk,0
n,mf−4π2[αn,k,mC̄

0
n+2,m(Y i

k )+γn,k,mC̄
0
n−2,m(Y i

k )],
(16)

which has solutions of the form

f = C̄0
n,m(Y i

k )A+ 4π2

[
αnk

χk,0
n+2,m − χk,0

n,m

C̄0
n+2,m(Y i

k )

+
γnk

χk,0
n−2,m − χk,0

n

C̄0
n−2,m(Y i

k )

]
, (17)

where A is an arbitrary Clifford constant. Substituting (17)
into (12) gives

ψk,c,i
n,m = C̄0

n,m(Y i
k )(1 +Ac2)

− 4π2c2
(

αn,k

χk,0
n,m − χk,0

n+2,m

C̄0
n+2,m(Y i

k )

+
γn,k

χk,0
n,m − χk,0

n−2,m

C̄0
n−2,m(Y i

k )

)
+O(c4), (18)

However, applying Lc to both sides of (18) and applying (10)
gives

Lcψ
k,c,i
n,m − χk,c

n,mψ
k,c,i
n,m = C̄0

n,m(Y i
k )Ac

2 +O(c4),

from which we conclude that A = 0. Putting A = 0 in (18)
gives (11).

Definition 4. We define Gc : L2(B(1),Cm) → L2(Rm,Cm)
by

Gcf(x) = χB(1)(x)

∫
B(1)

e2πic⟨x,y⟩f(y) dy, (19)

where χB(1) is the characteristic function of the unit ball B(1)
in Rm. The adjoint G∗

c of Gc is given by

G∗
c f(x) = χB(1)(x)

∫
Rm

e−2πic⟨x,y⟩f(y) dy.

Definition 5. The “space-limiting” operator Q : L2(Rm,Cm)
→ L2(B(1),Cm) is given by

Qf(x) = χB(1)(x)f(x),

and the “bandlimiting” operator Pc : L2(Rm,Cm) → PWc

is given by

Pcf(x) =

∫
B(c)

Ff(ξ)e2πi⟨ξ,x⟩dξ.

Here, PWc is the Paley-Wiener space of functions with ban-
dlimit c, i.e.,

PWc = {f ∈ L2(Rm,Cm) : f̂(ξ) = 0 if |ξ| > c}. (20)

Theorem 5. The CPSWFs ψk,c,i
n,m are eigenfunctions of Gc

and QPc. In other words, Lcψ
k,c,i
n,m (x) = µk,c

n,mψ
k,c,i
n,m (x), and,

QPcψ
k,c,i
n,m (x) = λk,cn,mψ

k,c,i
n,m (x).

Proof. See the [6] for the proof.
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Fig. 1. Behaviour of the eigenvalues λk,c
n,m

Theorem 6. The eigenvalues {µk,c
n,m; n, k ≥ 0} of Gc, enjoy

the following relationship

µk,c
2N,m = µk−1,c

2N+1,m. (21)

and for a fixed k the eigenvalues λk,cn,m of QPc, are non-
degenerate, and

λk,c0,m > λk,c1,m > · · · > λk,cn,m > λk,cn+1,m > · · · .

Proof. See [6] for the proof.

The behaviour of the eigenvalues λk,cn,m is displayed in
Figure 1.

From Theorem 5 we see that

λk,cn,mψ
k,c,i
n,m (x) =

∫
B(1)

Kc(x− y)ψk,c,i
n,m (y)dy = QPcψ

k,c,i
n,m (x)

where Kc(x) = cm
∫

B(1)

e2πic⟨ω,x⟩dω. Then

∞∑
k=0

∞∑
n=0

dk,m∑
i=1

λk,cn,m|ψk,c,i
n,m (x)|2

=

∞∑
k=0

∞∑
n=0

dk,m∑
i=1

λk,cn,m

[
ψk,c,i
n,m (x)ψk,c,i

n,m (x)
]
0

=

[ ∞∑
k=0

∞∑
n=0

dk,m∑
i=1

∫
B(1)

ψk,c,i
n,m (y)Kc(x− y)dy ψk,c,i

n,,m(x)

]
0

= Kc(0) = cm|B(1)|.

On the other hand, if instead of summing over all n, k ≥
0 in the above calculation, we perform a truncated sum by
restricting the values of n and k so that 0 ≤ n ≤ 2N +1 and
0 ≤ k ≤ K, then we have

K∑
k=0

2N+1∑
n=0

dk,m∑
i=1

λk,cn,m|ψk,c,i
n,m (x)|2

=

K∑
k=0

N∑
n=0

λk,c2n,m

∣∣P k,c
n,m(|x|2)

∣∣2|x|2k (k +m− 2)

|Sm−1|(m− 2)

+

K∑
k=0

N∑
n=0

λk,c2n+1,m

∣∣Qk,c
n,m(|x|2)

∣∣2|x|2k+2 (k +m− 2)

|Sm−1|(m− 2)

= G(|x|2), (22)
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Fig. 2. Plotting G(r2) for c = 1, 2

where we have used the reproducing kernel for monogenic
functions, Theorem 3.3 in [8] . In Figures 2, we see numer-
ical computations of the partial sums (22) demonstrating the
convergence of the partial sums to the constant c2|B(1)|.

V. CONCLUSION AND FUTURE WORK

Through consideration of Clifford Gegenbauer polynomi-
als, we developed in this paper a new method for com-
puting multidimensional Clifford-valued PSWF’s, defined as
the eigenfunctions the differential operator Lc involving the
Dirac operator. We then inroduced a relationship between the
eigenvalues of the differential operators Lc and L0. We defined
time and frequency projections Q and Pc as CPSWFs and the
eigenfunctions of QPc. We then developed some properties
for the eigenvalues of the QPc. The spectrum accumulations
property is also introduced.
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