SCALABLE AND PRIVACY-ENHANCED GRAPH GENERA-
TIVE MODEL FOR GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

As the field of Graph Neural Networks (GNN) continues to grow, it experiences a
corresponding increase in the need for large, real-world datasets to train and test
new GNN models on challenging, realistic problems. Unfortunately, such graph
datasets are often generated from online, highly privacy-restricted ecosystems,
which makes research and development on these datasets hard, if not impossible.
This greatly reduces the amount of benchmark graphs available to researchers,
causing the field to rely only on a handful of publicly-available datasets. To address
this dilemma, we introduce a novel graph generative model, Computation Graph
Transformer (CGT) that can learn and reproduce the distribution of real-world
graphs in a privacy-enhanced way. Our proposed model (1) generates effective
benchmark graphs on which GNNs show similar task performance as on the source
graphs, (2) scales to process large-scale real-world graphs, (3) guarantees privacy
for end-users. Extensive experiments across a vast body of graph generative models
show that only our model can successfully generate privacy-controlled, synthetic
substitutes of large-scale real-world graphs that can be effectively used to evaluate
GNN models.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling| [2016a; |Chami et al.| 2022)) are machine learning
models that learn the dependences in graphs via message passing between nodes. Various GNN
models have been widely applied on a variety of industrial domains such as misinformation detec-
tion (Benamira et al.,[2019), financial fraud detection (Wang et al.,|2019a)), traffic prediction (Zhao
et al.;2019), and social recommendation (Ying et al., 2018)). However, datasets from these industrial
tasks are overwhelmingly proprietary and privacy-restricted and thus almost always unavailable for
researchers to study or evaluate new GNN architectures. This state-of-affairs means that in many
cases, GNN models cannot be trained or evaluated on graphs that are appropriate for the actual tasks
that they need to execute. This scarcity of real-world benchmark graphs also leaves GNN researchers
with only a handful of public datasets, which could potentially cause new GNN architectures to
optimize performance only on these public datasets rather than generalizing (Palowitch et al.l 2022).

In this paper, we introduce a novel graph generative model to overcome the unavailability of critical
real-world graph datasets. While there is already a vast body of work on graph generation (You
et al., 2018} |Liao et al.l 2019; Simonovsky & Komodakis), 2018} |Grover et al.l [2019), including
differentially-private generation (Qin et al.|[2017; |Proserpio et al.,[2012), we found that no one study
has addressed all aspects of the modern GNN problem setting, such as handling large-scale graphs
and node attributes/labels. We thus propose a novel, modern graph generation problem definition:

Problem Definition 1. Let A, X, and Y denote adjacency, node attribute, and node label matrices;
given an original graph G = (A, X)), generate a synthetic graph G' = (A', X', V') satisfying:

* Benchmark effectiveness: performance rankings among m GNN models on G' should be similar
to the rankings among the same m GNN models on G.

¢ Scalability: computation complexity of graph generation should be linearly proportional to the size
of the original graph O(|G|) (e.g., number of nodes or edges).

* Privacy guarantee: any syntactic privacy notions are given to end users (e.g., k-anonymity).

To address this problem statement, we introduce the Computation Graph Transformer (CGT) as the
core of a graph generation approach with two novel components. First, CGT operates on minibatches
rather than the whole graph, avoiding scalability issues encountered with nearly all existing graph
generative models. Note that each minibatch is in fact a GNN computation graph (Hamilton et al.|
2017) having its own adjacency and feature submatrices, and the set of all minibatches comprises a
graph minibatch distribution that can be learned by an appropriate generative model.

Second, instead of attempting to learn the joint distribution of adjacency matrices and feature matrices,
we derive a novel duplicate encoding scheme that transforms a (A, X') adjacency and feature matrix
pair into a single, dense feature matrix that is isomorphic to the original pair. In this way we are able
to reduce the task of learning graph distributions to learning feature vector sequence distributions,
which we approach with a novel Transformer architecture (Vaswani et al.,2017)). This reduction is
the key innovation allowing CGT to be an effective generator of realistic datasets for GNN research.
In addition, after the reduction process, our model can be easily extended to provide k-anonymity or
differential privacy guarantees on node attributes and edge distributions.

To show the effectiveness of CGT, we design three experiments that examine its scalability, its
benchmark effectiveness as a substitute generator of source graphs, and its privacy-performance
trade-off. Specifically, to examine this benchmark aspect, we perturb various aspects of the GNN
models and datasets, and check that these perturbations bring the same empirical effect on GNN
performance on both the original and generated graphs. In total, our contributions are: 1) we propose
a novel graph generation problem featuring three requirements in state-of-the-art graph learning
settings; 2) we reframe the problem of learning a distribution of a whole graph into learning the
distribution of minibatches that are consumed by GNN models; 3) we propose the Computation Graph
Transformer, an architecture that casts the problem of computation graph generation as conditional
sequence modeling; and finally 4) we show that the test performance of 9 GNN models in 14 different
task scenarios is consistent across 7 real-world graphs and their corresponding synthetic graphs.

2 RELATED WORK

Traditional graph generative models extract common patterns among real-world graphs (e.g.
nodes/edge/triangle counts, degree distribution, graph diameter, clustering coefficient) (Chakrabarti
& Faloutsos| 2006) and generate synthetic graphs following a few heuristic rules (Erdds et al., |1960;
Leskovec et al.,2010; |Leskovec & Faloutsos}, 2007; |Albert & Barabasi, 2002). However, they cannot
generate unseen patterns on synthetic graphs (You et al., 2018). More importantly, most of them
generate only graph structures, sometimes with low-dimensional boolean node attributes (Eswaran
et al., 2018). General-purpose deep graph generative models exploit GAN (Goodfellow et al.,
2014), VAE (Kingma & Welling, 2013)), and RNN (Zaremba et al., [2014)) to learn graph distribu-
tions (Guo & Zhao, |2020). Most of them focus on learning graph structures (You et al., 2018} Liao
et al., |2019; |[Simonovsky & Komodakis) |2018; |Grover et al., 2019)), thus their evaluation metrics
are graph statistics such as orbit counts, degree coefficients, and clustering coefficients which do
not consider quality of generated node attributes and labels. Molecule graph generative models
are actively studied for generating promising candidate molecules using VAE (Jin et al., 2018),
GAN (De Cao & Kipfl, 2018)), RNN (Popova et al.,[2019), and recently invertible flow models (Shi
et al.,|2020; [Luo et al.,[2021). However, most of their architectures are specialized to small-scaled
molecule graphs (e.g., 38 nodes per graph in the ZINC datasets) with low-dimensional attribute space
(e.g., 9 boolean node attributes indicating atom types) and distinct molecule-related information (e.g.,
SMILES representation or chemical structures such as bonds and rings) (Suhail et al.| [2021}).

3 FROM GRAPH GENERATION TO SEQUENCE GENERATION

To develop a scalable and privacy-enhanced benchmark graph generative model for GNNs, we first
look into how GNNss process a given graph G. With n nodes and d-dimensional node attribute vectors,
G is commonly given as a triad of adjacency matrix A € R™*", node attribute matrix X € R™*¢, and
node label matrix) € R™. In this section, we illustrate how to convert the whole-graph generation
problem into a discrete-valued sequence generation problem.

2

r ABECDFH : ABECDFH

A 1|1 A A 1(1 A
Iy B 1)1 B vy B 1)1 B
B)" ‘E @ 1|1 E B)- ‘E E 1|1 E
ANIN 8 < ANIN B <
CDFH - CDFH ¢ -
H H H H
D H—G BCD GH
& . < BCDGH {NEIE B
7 B B[[1]1 B B c
c/‘\@’I E/ é)_,‘\n < c é)-f'\b D 11 D
A 11 : /N I\ @
GH g G - GH @ G
H H
DGHH

- D 20e D p[[1]1 D

D D G 11
A #Hll B ¢ 9 SEEEHEY G
N AN 8 f

H X
Y
(a) Input graph (b) Computation graphs of node A, B, and D (c) C ion graphs ded
sampled from input graph by duplicate scheme

Figure 1: 2-layered computation graphs with s = 2 neighbor samples: (a) input graph; (b) original encoding
scheme results in differently-shaped adjacency (blue) and attribute (yellow) matrices per computation graph; (c)
duplicate encoding scheme outputs the same adjacency matrix and identically-shaped attribute matrices.

3.1 COMPUTATION GRAPHS IN MINIBATCH-BASED GNN TRAINING

To compute embeddings of node v, L-layered GNNs extract the node’s L-hop egonet G,,, namely the
computation graph. Specifically, as with the global graph, G, is composed of a sub-adjacency matrix
A, € R" X" 3 sub-feature matrix X,, € R™**? and node v’s label Y, € R, where each of n,, rows
correspond to nodes sampled into the computation graph. Minibatch-based GNN training samples
one computation graph per each node in minibatch and runs GNN models on those computation
graphs which are much smaller than the whole graph. Based on this observation, our problem reduces
to: given a set of computation graphs {G,, = (Ay, Xy, Vo) : v € G} sampled from an original graph,
we generate a set of computation graphs {G., = (A.,, X;,),)}. This reframing shares intuition with
mini-batch stochastic gradient descent that the distribution of randomly chosen subsets approximates
the distribution of the original set (Bottoul 2010).

3.2 ENCODING SCHEME FOR COMPUTATION GRAPHS

In this work, we sample a fixed-size set of neighbors to generate computation graphs instead of using
the full neighborhood, as proposed by GraphSage (Hamilton et al.,|2017), a technique also widely
adopted in popular GNN libraries (Fey & Lenssen, [2019; [Ferludin et al.| 2022 [Wang et al.,[2019b)) to
fix the minibatch computational footprint. To train a L-layered GNN model with a user-specified
neighbor sampling number s, a computation graph is generated for each node in a top-down manner
(I : L — 1): A target node v is located at the L-th layer; the target node samples s neighbors, and the
sampled s nodes are located at the (L — 1)-th layer; each node samples s neighbors, and the sampled
52 nodes are located at the (L — 2)-th layer; repeat until the 1-st layer. When the neighborhood is
smaller than s, we sample all existing neighbors of the node.

Generating a computation graph is similar to generating a balanced s-nary tree structure. For example,
a balanced binary tree-shaped computation graph is generated for node A in Figure[T[b) with neighbor
sampling number s = 2. However, in practice, computation graphs are almost always unbalanced
s-nary trees due to one of two cases: (1) lack of neighbors, and (2) neighbor sharing. In Figure[T[b),
B’s computation graph is an unbalanced tree because node C' has no neighbors (case 1). In D’s
computation graph, nodes D and G share node H as neighbors, creating a cycle in the computation
graph (case 2). These two cases result in variably-shaped of adjacency and node attribute matrices of
computation graphs shown as blue and yellow boxes in Figure[T] (b).

3.3 DUPLICATE ENCODING SCHEME FOR COMPUTATION GRAPHS

We introduce a duplicate encoding scheme for computation graphs that is conceptually simple but
brings a significant consequence: it fixes the adjacency matrix for all computation graphs, allowing us
to model it as a constant. To circumvent case 1 from the previous paragraph, the duplicate encoding
scheme defines a null node with zero attribute vector (node *—’ in Figure[T|c)) and samples it as
a padding neighbor for any node with less than s neighbors. To circumvent case 2, the duplicate

. Variable-shape Fixed-shape
Original graph computation graphs computation graphs

Computati | = I I licati g 9
Normal GNN flow phsampln P G = A Xs.35) De"fcﬁ.':f;" (Zm,)%,‘, ya) || @ce)%:,;Vz)
Benchmark graph G=(AXY)

generation flow for GNNs G = (Ao Xa32) — % G
6= (aXuy) (Ace. X2, y2) || Ao o y0)

Quantization

Computation (5'3,y'3) | De-quantization
Graph
Transformer (.)
(S1,71)
Original Generated Fixed-shape
cluster id sequences cluster id sequences computation graphs

Figure 2: Overview of our benchmark graph generation framework: (1) We sample a set of computation
graphs of variable shapes from the original graph, then (2) duplicate-encode them to fix adjacency matrices
to a constant. (3) Duplicate-encoded feature matrices are quantized into cluster id sequences and fed into our
Computation Graph Transformer. (4) Generated cluster id sequences are de-quantized back into duplicate-
encoded feature matrices and fed into GNN models with the constant adjacency matrix.

encoding scheme copies shared neighbors and provides each copy to parent nodes (node H in node
D’s computation graph is copied in Figure [[c)). Each node attribute vector is also copied and
added to the feature matrix. As shown in Figure[T|c), the duplicate encoding scheme ensures that all
computation graphs have an identical adjacency matrix (presenting a balanced s-nary tree) and an
identical shape of feature matrices. Note that in order to fix the adjacency matrix, we need to fix the
order of nodes in adjacency and attribute matrices (e.g., breadth-first ordering in Figure[T}c)).

Because our duplicate encoding scheme fixes the adjacency structure over all computation graphs, our
problem reduces to learning the distribution of (duplicate-encoded) feature matrices of computation

graphs, formalized as: given a set of feature matrix-label pairs {(X,,V,) : v € G} of duplicate-
encoded computation graphs, we generate a set of feature matrix-label pairs {(X), V!)}.

3.4 QUANTIZATION

To learn distributions of feature matrices of computation graphs, we first quantize feature vectors into
discrete bins; specifically, we cluster feature vectors in the original graph using k-means and map
each feature vector to its (discrete) cluster id. Quantization is motivated by 1) privacy benefits and
2) ease of modeling. By mapping different feature vectors (which are clustered together) into the
same cluster id, we can guarantee k-anonymity among them (more details in Section[#.2). Ultimately,
quantization further reduces our problem to learning distributions over sequences of discrete values,
namely the sequences of cluster ids of feature vectors in each computation graph. Such a problem
is naturally addressed by Transformers, state-of-the-art sequence generative models (Vaswani et al.,
2017). In Section@ we introduce the Computational Graph Transformer (CGT), a novel architecture
which (at inference time) generates a new sequence of cluster ids, which are then de-quantized as the
mean feature vector of the cluster.

3.5 END-TO-END FRAMEWORK FOR A BENCHMARK GRAPH GENERATION PROBLEM

Figure [2] summarizes the entire process of mapping a graph generation problem into a discrete
sequence generation problem. In the training phase, we 1) sample a set of computation graphs
from the input graph, 2) encode each computation graph using the duplicate encoding scheme to fix
adjacency matrices, 3) quantize feature vectors to cluster ids they belong to, and finally 4) hand over
a set of (sequence of cluster ids, node label) pairs to our new Transformer architecture to learn their
distribution. In the generation phase, we follow the same process in the opposite direction: 1) the
trained Transformer outputs a set of (sequence of cluster ids, node label) pairs, 2) we de-quantize
cluster ids back into the feature vector space by replacing them with the mean feature vector of
the cluster, 3) we regenerate a computation graph from each sequence of feature vectors with the
adjacency matrix fixed by the duplicate encoding scheme, and finally 4) we feed the set of generated
computation graphs into the GNN model we want to train or evaluate.

(a) Input computation graph (b) Computation Graph Transformer (CGT) (c) Cost-efficient version

3; 3 @ 3
z A | [n 2 2; 2 Context 2 > 2 2
Divide into shorter
sequences composed \ /
Label Position aPan
Ya P3 P2 P1
K <
&) ------1 s

embeddmg Ya P3 P2 P2 P1 P1 P1 P1 embedding
Input

sequen(e

Node C’s
direct
ancestors

Query
< embedding

I\

Figure 3: Computation Graph Transformer (CGT): (a,b) Given a sequence flattened from the input computa-
tion graph, CGT generates context in the forward direction. e(s¢), qt(), and hil) denote the token, query, and
context embedding of ¢-th token at the [-th layer; p;(;) and ys, denote the position embeddings of ¢-th token and
label embedding of the whole sequence, respectively. (c) The cost-efficient version of CGT divides the input

sequence into shorter ones composed only of direct ancestor nodes.
4 MODEL

We present the Computation Graph Transformer (CGT) that casts computation graph generation as
conditional sequence modeling with minimal modification to the Transformer architecture. Then we
check our model satisfies the privacy and scalability requirements from Problem Definition [T}

4.1 COMPUTATION GRAPH TRANSFORMER

In this work, we extend a two-stream self-attention mechanism, XLNet (Yang et al.,[2019), which
modifies the Transformer architecture (Vaswani et al., [2017) with a causal self-attention mask to
enable auto-regressive generation. Given a sequence s = [sq, - - - , s7], the M-layered Transformer
maximizes the likelihood under the forward auto-regressive factorization as follows:

() T
ex S e(s
mgxxlogpg E logpg(s¢|s<;) 2:1 p(p ((1; 1) (Tt)) /
t=1 Z 1z, €2D(qg " (S1:0-1) Te(s'))

where token embedding e(s;) maps discrete input id s, to a randomly initialized trainable vector,

and query embedding qéL) (s1.4—1) encodes information until (¢ — 1)-th token in the sequence. More

details on the Transformer architecture can be found in the Appendix [A-8] Here we describe how we
modify XLNet to model our computation graph effectively.

Position embeddings: In the original architecture, each token receives a position embedding to let
the Transformer recognize the token’s position in the sequence. In our model, however, sequences
are flattened computation graphs (e.g., input computation graph in Figure[3{(a) is flattened into input
sequence in Figure [3[b)). To encode the original computation graph structure, we provide different
position embeddings to different layers in the computation graph, while nodes at the same layer share
the same position embedding. When [(¢) denotes the layer number where ¢-th token (node) is located
at the original computation graph, position embedding p;(;) indexed by the layer number is assigned
to t-th token. In Figure[3[b), node C, D, F and H located at the 1-st layer in the computation graph
have the same position embedding p;.

Attention Masks: In the orlglnal architecture, query and context embeddings, q) and ht , attend

to all context embeddings h1 e 1) before . In the computation graph, each node is sampled based
on its parent node (which is sampled based on its own parent nodes) and is not directly affected
by its sibling nodes. To encode this relationship more effectively, we mask all nodes except direct
ancestor nodes in the computation graph, i.e., the root node and any nodes between the root node and
the leaf node. In Figure [3[b), node C’s context/query embeddings attend only to direct ancestors,
nodes A and B. Note that the number of unmasked tokens are fixed to L in our architecture because
there are always L — 1 direct ancestors in L-layered computation graphs. Based on this observation,
we provide cost-efficient version of CGT that has shorter sequence length and preserves XLNet’s
auto-regressive masking as shown in Figure[3{c).

Label conditioning: Distributions of neighboring nodes are not only affected by each node’s
feature information but also by its label. It is well-known that GNNs improve over MLP performance
by adding convolutional operations that augment each node’s features with neighboring node features.
This improvement is commonly attributed to nodes whose feature vectors are noisy (outliers among
nodes with the same label) but that are connected with "good" neighbors (whose features are well-
aligned with the label). In this case, without label information, we cannot learn whether a node has
feature-wise homogeneous neighbors or feature-wise heterogeneous neighbors but with the same
labels. In our Transformer model, query embeddings qt(o) are initialized with label embeddings v,
that encode the label of the root node s;.

4.2 THEORETICAL ANALYSIS

First, our framework can be easily extended to provide k-anonymity for node attributes and edge
distributions by using k-means clustering with the minimum cluster size k& (Bradley et al., 2000)
during the quantization phase. Note that we define edge distributions as neighboring node distributions
of each node. The full proofs for the following claims can be found in Appendix [A.T]

Claim 1 (k-anonymity for node attributes and edge distributions). In the generated computation
graphs, each node attribute and edge distribution appear at least k times, respectively.

Next, we can provide differential privacy (DP) for node attributes and edge distributions by exploiting
DP k-means clustering (Chang et al., 2021)) during the quantization phase and DP stochastic gradient
descent (DP-SGD) (Song et al., |2013) to train the Transformer. Unfortunately, however, DP-SGD
for transformer is not well developed yet practically. So we can not guarantee the rigid DP for edge
distributions in practice (experimental results in Section and more analysis in Appendix [A.T).
Thus, here, we claim DP only for node attributes.

Claim 2 ((¢, 0)-Differential Privacy for node attributes). With probability at least 1— 0, our generative
model A gives e-differential privacy for any graph G, any neighboring graph G_,, without any node
v € G, and any new computation graph G., generated from our model as follows:

—€ PT[A(g) - gCQ] €
C O PIAG) =0

Finally, we show that CGT satisfies the scalability requirement in Problem Definition

Claim 3 (Scalability). When we aim to generate L-layered computation graphs with neighbor
sampling number s on a graph with n nodes, computational complexity of CGT training is O(s*'n),
and the cost-efficient version is O(L?stn).

5 EXPERIMENTS

We aim to show that (1) CGT scales to learn distributions of large-scale real-world graphs; (2) CGT
generates synthetic graphs on which GNNs perform similarly to the original graphs; (3) synthetic
graphs generated by CGT are sufficiently private; and (4) CGT preserves distributions of graph
statistics defined on the original set of computation graphs.

5.1 EXPERIMENTAL SETTING

We evaluate on seven public datasets — three citation networks (Cora, Citeseer, and Pubmed) (Sen
et al., 2008)), two co-purchase graphs (Amazon Computer and Amazon Photo) (Shchur et al., 2018)),
and two co-authorship graph (MS CS and MS Physic) (Shchur et al., [2018). To measure GNN
performance similarity, we run popular GNN architectures on a pair of original and synthetic
graphs, then measure Pearson and Spearman correlations (Myers et al.,|2013) between the resultant
performance metrics on each type of graph.

5.2 SCALABILITY

To the best of our knowledge, no other generic graph generative model was designed to output a triad
of the adjacency matrix, node attribute matrix, and node labels. We extend two VAE-based graph
generative models, GVAE (Kipf & Wellingl 2016b) and Graphite (Grover et al.,[2019) to generate

Table 1: GNN performance on original and generated graphs in three different scenarios with three
variations. # NE denotes number of noise edges and « denotes the PPR coefficient used for distribution shift.

Aggregation with noise (Citeseer)

with noise (Amazon Photo) [

Distribution shift (MS Physic)

#NE | model [Original Generated | #NE [model [Original Generated | o [model [Original Generated
GCN 0.73+0.004 0.59+0.024 GSage 0.75+0.009 0.53+0.028 GSage 0.93+0.002 0.84+0.008
0 SGC 0.73+0.002 0.58+0.029 AS-GCN 0.14+0.016 0.12+0.020 iid SGC 0.92+0.001 0.84+0.007
GIN 0.71+0.009 0.57+0.028 FastGCN 0.92+0.004 0.87+0.002 GAT 0.93+0.002 0.82+0.011
GAT 0.71+0.003 0.57+0.029 PASS 0.85+0.011 0.54+0.049 PPNP 0.93+0.005 0.84+0.007
GCN 0.5740.005 0.46+0.013 GSage 0.40+0.012 0.36+0.009 GSage 0.83+0.033 0.76+0.019
2 SGC 0.57+0.005 0.47+0.019 AS-GCN 0.12+0.014 0.11+0.027 0.01 SGC 0.84+0.004 0.74+0.015
GIN 0.54+0.020 0.44+0.015 FastGCN 0.87+0.005 0.81+0.010 3 GAT 0.87+0.007 0.78+0.009
GAT 0.57+0.014 0.44+0.010 PASS 0.73+0.018 0.59+0.011 PPNP 0.84+0.007 0.74+0.009
GCN 0.5140.027 0.41+0.003 GSage 0.26+0.009 0.20+0.014 GSage 0.84+0.012 0.68+0.023
4 SGC 0.52+40.009 0.414+0.005 AS-GCN 0.1040.025 0.13+0.054 03 SGC 0.814+0.009 0.70+0.009
GIN 0.48+0.023 0.414+0.007 FastGCN 0.6740.003 0.62+0.006 - GAT 0.85+0.011 0.7240.019
GAT 0.49+0.012 0.40+0.009 PASS 0.64+0.017 0.50+0.017 PPNP 0.8140.012 0.70+0.009

Pearson / Spearman 0.991/0.964 0.958/0.916 0.925/0.815

Table 2: Benchmark effectiveness on node classification. Pearson and Spearman scores measure the correlation
in ranking of GNN models on original and generated graphs; a score of 1 denotes perfect correlation.

Aggregation with noise Sampling with noise Sampling number Distribution shift
Dataset Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman
Cora 0.934 0.950 0.943 0.894 0.967 0.814 0.867 0.833
Citeseer 0.991 0.964 0.955 0.977 0.973 0.904 0.812 0.799
Pubmed 0.818 0.791 0.900 0.867 0.989 0.824 0.830 0.794
Amazon Computer 0.825 0.778 0.885 0.916 0.975 0.890 0.906 0.860
Amazon Photo 0.918 0.893 0.958 0.916 0.961 0.931 0.771 0.847
MS CS 0.916 0.922 0.974 0.956 0.986 0.901 0.792 0.751
MS Physic 0.661 0.685 0.956 0.951 0.947 0.901 0.925 0.815

node attributes and labels in addition to adjacency matrices from their latent variables. We also
choose three molecule graph generative models, GraphAF (Shi et al.| 2020), GraphDF (Luo et al.|
2021)), and GraphEBM (Suhail et al.,|2021)), that do not rely on any molecule-specific traits (e.g.,
SMILES representation). GraphAF, GraphDF, and Graphite meet out-of-memory errors on even the
smallest dataset, Cora (Table[Sin Appendix [A.2)). This is not surprising, given they were originally
designed for small-size molecule graphs. The remaining baselines (GVAE and GraphEBM), however,
fail to learn any meaningful node attribute/label distributions from the original graphs. For instance,
the predicted distribution sometimes collapses to generating the the same node feature/labels across
all nodes, which is obviously not the most effective benchmark (100% accuracy for all GNN models).
We show their results and our analysis in the Appendix [A.2] Only our method can successfully
generate benchmark graphs across all datasets with meaningful node attribute/label distributions

(Tables[T]and [2).

5.3 BENCHMARK EFFECTIVENESS

To examine the benchmark effectiveness of our generative model, we design 4 different scenarios
where the performance of different GNN architectures varies widely. In each scenario, we provide 3
variations to graphs and run 4 GNN models on each variation. For each scenario-variation, we report
Pearson and Spearman correlations of the GNN performance metrics on the original graph against
those on the generated graph. Due to the space limitation, we present detailed GNN accuracies only
on a few datasets/scenarios in Table[I] Results on other datasets can be found in Appendix [A.3] Note
that Table [2] presents the correlation coefficients across all datasets and scenarios. Descriptions of
each GNN model can be found in the Appendix

SCENARIO 1: noisy edges on aggregation strategies. We choose four different GNN models
with different aggregation strategies: GCN (Kipf & Welling} 2016a) with mean aggregator, GIN (Xu
et al.,2018) with sum aggregator, SGC (Wu et al.| [2019)) with linear aggregator, and GAT (Velickovic
et al.,[2017)) with attention aggregator. Then we modify the graph by adding different numbers of
noisy edges (randomly connected with any node in the graph) to each node and check how the GNN
performance changes. In Table[I] first three columns show the result in the Citeseer dataset. When
more noisy edges are added, the accuracy across all GNN models drops in the original graphs. These
trends can be nearly exactly captured in GNN performance on the generated graphs (both Pearson
and Spearman correlation rates are up to 0.964). This shows that the synthetic graphs generated by
our method successfully capture the noisy edge distributions introduced in the original graphs.

SCENARIO 2: noisy edges on neighbor sampling. We choose four different GNN models with
different neighbor sampling strategies: GraphSage (abbreviated as GSage in Table [T) (Hamilton
et al.,[2017) with random sampling, FastGCN (Chen et al., 2018)) with heuristic layer-wise sampling,
AS-GCN (Huang et al.l [2018]) with trainable layer-wise sampling, and PASS (Yoon et al., |2021)
with trainable node-wise sampling. We then add noisy edges as described in the ENV 1 and check
how the different sampling policies deal with noisy neighbors. In Table [l FastGCN shows highest
accuracies across different number of nosiy edges, followed by PASS, GraphSage, and AS-GCN on
the original graphs on the Amazon Photo dataset; and this trend is well-preserved on the generated
graphs, showing 0.958 Pearson correlation.

. . Table 3: Benchmark effectiveness and GNN per-
SCENARIO 3: different sampling numbers on ¢,,mance on link prediction.

neighbor sampling. We choose the same four

GNN models with different neighbor sampling

X ! Dataset Pearson Spearman Pearson Spearman
strategies as in EV2. Then we change the num- ™~ Cora 0.781 0741
. Ci 0.808 0.824
ber of sampled neighbor nodes and check how the oo 0705 0470 074 0754
GNN performance is affected. As shown in Table[2] AmazonC | 0652 0.5%
trends among original graphs — more neighbors : :
are sampled, GNN performance generally increases —_ Dataset Predictor | Model Original | Generated
: GCN 0.69+0.007 0.65+0.026
—are successfully captured in the generated graphs Dot SGC 07010003 | 0.67+0022
with 0.991 and 0.931 Pearson and Spearman cor- GIN 0.83+0.008 | 0.65+0.010
. . Citesser GAT 0.75+0.005 0.68+0.021
relations, respectively, across all datasets. You can GON 035840.005 1 05950.010
1 1 1 1 SGC 0.58+0.008 0.59+0.023
find the detailed GNN accuracies in Appendix [A.3] MLP ps 05840008 | 0.59+0.023
GAT 0.61+0.005 0.62+0.009

SCENARIO 4: distribution shift. (Zhu et al.

2021)) proposed a biased training set sampler to examine each GNN model’s robustness to distribution
shift between the training/test time. The biased sampler picks a few seed nodes and finds nearby
nodes using the Personalized PageRank vectors (Page et al.,[1999) mp, = (I — (1 —) A)~! with
decaying coefficient «, then uses them to compose a biased training set. We choose the same GNN
models, GCN (Kipf & Welling, 2016a)), SGC (Wu et al.;|2019), GAT (Velickovi¢ et al.| 2017), and
PPNP (Klicpera et al., 2018)), as the original paper (Zhu et al., 2021)) chose for their baselines. We
vary « and check how each GNN models deal with the biased training set. In the last three columns in
Table[] the performance of GNN models drops as « increases, and the generated graphs successfully
capture these trends.

Link prediction. As nodes are the minimum unit in graphs that compose edges or subgraphs, we
can generate subgraphs for edges by merging computation graphs of their component nodes. Here
we show link prediction results on original graphs are also preserved successfully on our generated
graphs. We run GCN, SGC, GIN, and GAT on graphs, followed by Dot product or MLP to predict
link probabilities. Table[3]shows Pearson and Spearman correlations across 8 different combinations
of link prediction models (4 GNN models x 2 predictors) on each dataset and across the whole
datasets. The lower table shows the detailed link prediction accuracies on the Citeseer dataset. Our
model generates graphs that substitute original graphs successfully, preserving the ranking of GNN
link prediction performance with 0.754 Spearman correlation across the datasets.

Table 4: Privacy-Performance trade-off in graph generation on the Cora dataset

.. . K-anonymity DP kmean (6 = 0.01) DPSGD (6 = 0.1)
Original No privacy 6 9
k = 100 k = 500 k = 1000 e=1 e=10 e =25 e =10 e=10
Pearson

Spearman 1.000 0.935 0.947 0.812 0.018 0.869 0.805 0.807 0.116 0.959

1.000 ‘ 0.934 ‘ 0.916 0.862 0.030 ‘ 0.874 0.844 0.804 ‘ 0.112 0.890

5.4 PRIVACY

We examine the performance-privacy trade-off across different privacy guarantees. For k-anonymity,
we use the k-means clustering algorithm (Bradley et al.,|2000) varying the minimum cluster size k.
For Differential Privacy (DP) for node attributes, we use DP k-means (Chang et al.| 2021} varying the
privacy cost € while setting § = 0.01. As expected, in Table[d] higher k£ and smaller e (i.e., stronger
privacy) hinder the generative model’s ability to learn the exact distributions of the original graphs,

® Cora Citeseer Pubmed C Photo

10710 100 1R 100 10°

#computation graphs
Py 10° 100 107 108
#computation graphs
10 10° 10" 10° 107
#computation graphs
#computation graphs
1070 10° 100 107 10°

o 100 00 300 400 o 100 200 300 400 o 100 00 300 400 o 100 200 300 400
Original #zero vectors Generated #zero vectors Original #duplicate vectors Generated #duplicate vectors.

(a) # zero vectors on each computation graph (b) # redundant vectors on each computation graph

Figure 4: CGT preserves distributions of graph statistics in generated graphs for each dataset: Duplicate
encoding infuses graph structure into feature matrices of computation graphs. In each computation graph, # zero
vectors is inversely proportional to edge density, while # redundant vectors is proportional to # cycles.

and the GNN performance gaps between original and generated graphs increase (lower Pearson and
Spearman coefficients). Detailed GNN accuracies could be found in Table [T2]in Appendix [A:4] To
provide DP for edge distributions, we use DP stochastic gradient descent (Song et al.,[2013)) to train
the transformer, varying the privacy cost € while setting § = 0.1. In Table[4] even with astronomically
low privacy cost (¢ = 105), the performance of our generative model degrades significantly. When
we set € = 10° (which is impractical), we can finally see a reasonable performance. This shows the
limited performance of DP SGD on the transformer architecture.

5.5 GRAPH STATISTICS

Given a source graph, our method generates a set of computation graphs without any node ids. In
other words, attackers cannot merge the generated computation graphs to restore the original graph
and re-identify node information. Thus, instead of traditional graph statistics such as orbit counts
or clustering coefficients that rely on the global view of graphs, we define new graph statistics for
computation graphs that are encoded by the duplicate scheme. Duplicate scheme fixes adjacency
matrices across all computation graphs by infusing structural information (originally encoded in
adjacency matrices) into feature matrices. Number of zero vectors (corresponding to null nodes
that are padded when a node has fewer neighbors than a sampling neighbor number) is inversely
proportional to edge density in a computation graph. Number of duplicate feature vectors (which are
duplicated when nodes share neighbors) is proportional to number (#) of cycles in a computation
graph, indicating how densely nodes are connected in the computation graph. In Figured we present
distributions of a) number of zero vectors and b) number of redundant vectors each computation
graph has on each dataset. Five different datasets show distinct distributions on these two statistics,
and distributions of both statistics are well preserved in generated graphs. For instance, in Figure @(a)]
green lines (Pubmed) are lower than purple and red lines (Amazon Computer and Amazon Photo) at
the beginning and become higher in both plots. In Figure #(b)] purple lines (Amazon Computer) are
slightly higher than red lines (Amazon Photo) until z = 300, then become lower in both plots. In the
same figure, blue, yellow, and green lines (Cora, Citeseer, and Pubmed) decrease sharply compared to
purple and red lines (Amazon Computer and Amazon Photo) in both plots. This shows our generative
model preserves graph structures encoded in feature matrices successfully.

6 CONCLUSION

We propose a new graph generation problem to enable generating benchmark graphs for GNNs that
follow distributions of (possibly proprietary) source graphs with three requirements: 1) benchmark
effectiveness, 2) privacy guarantee, and 3) scalability. With a novel graph encoding scheme, we
reframe a large-scale graph generation problem into a medium-length sequence generation problem
and apply the strong generation power of the Transformer architecture to the graph domain.

Limitation of the study: This paper shows that clustering-based solutions can achieve k-anonymity
privacy guarantees. We stress, however, that implementing a real-world system with strong privacy
guarantees will need to consider many other aspects beyond the scope of this paper. We leave as future
work the study of whether we can combine stronger privacy guarantees with those of k-anonymity to
enhance privacy protection.

REFERENCES

Réka Albert and Albert-Laszl6 Barabasi. Statistical mechanics of complex networks. Reviews of
modern physics, 74(1):47, 2002.

Adrien Benamira, Benjamin Devillers, Etienne Lesot, Ayush K Ray, Manal Saadi, and Fragkiskos D
Malliaros. Semi-supervised learning and graph neural networks for fake news detection. In
2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pp. 568-569. IEEE, 2019.

Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’ 2010, pp. 177-186. Springer, 2010.

Paul S Bradley, Kristin P Bennett, and Ayhan Demiriz. Constrained k-means clustering. Microsoft
Research, Redmond, 20(0):0, 2000.

Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators, and algorithms.
ACM computing surveys (CSUR), 38(1):2—es, 2006.

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher RA©, and Kevin Murphy. Machine
learning on graphs: A model and comprehensive taxonomy. Journal of Machine Learning Research,
23(89):1-64, 2022. URL http://jmlr.org/papers/v23/20-852.html.

Alisa Chang, Badih Ghazi, Ravi Kumar, and Pasin Manurangsi. Locally private k-means in one
round. In International Conference on Machine Learning, pp. 1441-1451. PMLR, 2021.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Paul Erd6s, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 5(1):17-60, 1960.

Dhivya Eswaran, Reihaneh Rabbany, Artur W Dubrawski, and Christos Faloutsos. Social-affiliation
networks: Patterns and the soar model. In Joint European conference on machine learning and
knowledge discovery in databases, pp. 105-121. Springer, 2018.

Oleksandr Ferludin, Arno Eigenwillig, Martin Blais, Dustin Zelle, Jan Pfeifer, Alvaro Sanchez-
Gonzalez, Sibon Li, Sami Abu-El-Haija, Peter Battaglia, Neslihan Bulut, et al. Tf-gnn: Graph
neural networks in tensorflow. arXiv preprint arXiv:2207.03522, 2022.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative generative modeling of graphs.
In International conference on machine learning, pp. 2434-2444. PMLR, 2019.

Xiaojie Guo and Liang Zhao. A systematic survey on deep generative models for graph generation.
arXiv preprint arXiv:2007.06686, 2020.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive sampling towards fast graph
representation learning. Advances in neural information processing systems, 31, 2018.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323-2332.
PMLR, 2018.

10

http://jmlr.org/papers/v23/20-852.html

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016b.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Jure Leskovec and Christos Faloutsos. Scalable modeling of real graphs using kronecker multipli-
cation. In Proceedings of the 24th international conference on Machine learning, pp. 497-504,
2007.

Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani.
Kronecker graphs: an approach to modeling networks. Journal of Machine Learning Research, 11
(2), 2010.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Will Hamilton, David K Duvenaud, Raquel
Urtasun, and Richard Zemel. Efficient graph generation with graph recurrent attention networks.
Advances in Neural Information Processing Systems, 32, 2019.

Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao Xu,
Jingtun Zhang, Yi Liu, et al. Dig: a turnkey library for diving into graph deep learning research.
Journal of Machine Learning Research, 22(240):1-9, 2021.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. Graphdf: A discrete flow model for molecular graph
generation. In International Conference on Machine Learning, pp. 7192-7203. PMLR, 2021.

Jerome L Myers, Arnold D Well, and Robert F Lorch Jr. Research design and statistical analysis.
Routledge, 2013.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi. Graphworld: Fake graphs bring
real insights for gnns. arXiv preprint arXiv:2203.00112, 2022.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating
realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372,2019.

Davide Proserpio, Sharon Goldberg, and Frank McSherry. A workflow for differentially-private graph
synthesis. In Proceedings of the 2012 ACM workshop on Workshop on online social networks, pp.
13-18, 2012.

Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui Ren. Generating synthetic
decentralized social graphs with local differential privacy. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 425-438, 2017.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 29(3):93-93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann. Pitfalls
of graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS 2018,
2018.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. arXiv preprint arXiv:2001.09382,
2020.

Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs using
variational autoencoders. In International conference on artificial neural networks, pp. 412-422.
Springer, 2018.

11

Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differen-
tially private updates. In 2013 IEEE Global Conference on Signal and Information Processing, pp.
245-248. IEEE, 2013.

Mohammed Suhail, Abhay Mittal, Behjat Siddiquie, Chris Broaddus, Jayan Eledath, Gerard Medioni,
and Leonid Sigal. Energy-based learning for scene graph generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13936-13945, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang, Quan Yu, Jun Zhou,
Shuang Yang, and Yuan Qi. A semi-supervised graph attentive network for financial fraud detection.
In 2019 IEEE International Conference on Data Mining (ICDM), pp. 598-607. IEEE, 2019a.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-performant package for
graph neural networks. arXiv preprint arXiv:1909.01315,2019b.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861-6871. PMLR, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
Xlnet: Generalized autoregressive pretraining for language understanding. Advances in neural
information processing systems, 32, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974-983,
2018.

Minji Yoon, Théophile Gervet, Baoxu Shi, Sufeng Niu, Qi He, and Jaewon Yang. Performance-
adaptive sampling strategy towards fast and accurate graph neural networks. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2046-2056, 2021.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In International conference on machine learning,
pp- 5708-5717. PMLR, 2018.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329, 2014.

Ling Zhao, Yujiao Song, Chao Zhang, Yu Liu, Pu Wang, Tao Lin, Min Deng, and Haifeng Li. T-gcn:
A temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent
Transportation Systems, 21(9):3848-3858, 2019.

Qi Zhu, Natalia Ponomareva, Jiawei Han, and Bryan Perozzi. Shift-robust gnns: Overcoming the
limitations of localized graph training data. Advances in Neural Information Processing Systems,
34,2021.

12

A APPENDIX

A.1 PROOF OF PRIVACY CLAIMS

Claim 1 (k-Anonymity for node attributes and edge distributions). In the generated computation
graphs, each node attribute and edge distribution appear at least k times, respectively.

Proof. In the quantization phase, we use the k-means clustering algorithm (Bradley et al.| 2000) with
a minimum cluster size k. Then each node id is replaced with the id of the cluster it belongs to,
reducing the original (n X n) graph into a (m x m) hypergraph where m = n/k is the number of
clusters. Then Computation Graph Transformer learns edge distributions among m hyper nodes (i.e.,
clusters) and generates a new (m x m) hypergraph. In the hypergraph, there are at most m different
node attributes and m different edge distributions. During the de-quantization phase, a (m x m)
hypergraph is mapped back to a (n X n) graph by letting k£ nodes in each cluster follow their cluster’s
node attributes/edge distributions as follows: k nodes in the same cluster will have the same feature
vector that is the average feature vector of original nodes belonging to the cluster. When s denotes
the number of sampled neighbor nodes, each node samples s clusters (with replacement) following
its cluster’s edge distributions among m clusters. When a node samples cluster ¢, it will be connected
to one of nodes in the cluster ¢ randomly. At the end, each node will have s neighbor nodes randomly
sampled from s clusters the node samples with the cluster’s edge distribution, respectively. Likewise,
all k£ nodes belonging to the same cluster will sample neighbors following the same edge distributions.
Thus each node attribute and edge distribution appear at least &k times in a generated graph. |

Claim 2 ((e, 0)-Differential Privacy for node attributes). With probability at least 1 —0, our generative
model A gives e-differential privacy for any graph G, any neighboring graph G_.,, without any node
v € G, and any new computation graph G., generated from our model as follows:

—€ PT[A(g) = gcg] €
‘ S PT[A(g*U) = gcg] S ¢

Proof. G_, denotes neighboring graphs to the original one G, but without a specific node v. During
the quantization phase, we use (¢, d)-differential private k-means clustering algorithm on node
features (Chang et al.,[2021)). Then clustering results are differentially private with regard to each
node features. In the generated graphs, each node feature is decided by the clustering results (i.e., the
average feature vector of nodes belonging to the same cluster). Then, by looking at the generated
node features, one cannot tell whether any individual node feature was included in the original dataset
or not.]

Remark 1 ((e,)-Differential Privacy for edge distributions). In our model, individual nodes’ edge
distributions are learned and generated by the transformer. When we use (¢, ¢)-differential private
stochastic gradient descent (DP-SGD) (Song et al.,|2013)) to train the transformer, the transformer
becomes differentially private in the sense that by looking at the output (generated edge distributions),
one cannot tell whether any individual node’s edge distribution (input to the transformer) was included
in the original dataset or not. If we have DP-SGD that can train transformers successfully with
reasonably small € and &, we can guarantee (¢, §)-differential privacy for edge distribution of any
graph generated by our generative model. However, as we show in Section[5.4} current DP-SGD is
not stable yet for transformer training, leading to very coarse or impractical privacy guarantees.

Claim 3 (Scalability). When we aim to generate L-layered computation graphs with neighbor
sampling number s on a graph with n nodes, computational complexity of CGT training is O(s*'n),
and that of the cost-efficient version is O(L?s™n).

Proof. During k-means, we randomly sample nj; node features to compute the cluster centers.
Then we map each feature vector to the closest cluster center. By sampling nj nodes, we limit
the k-mean computation cost to O(n?). The sequence flattened from each computation graph is
O(1 + s+ --- + s%) and the number of sequences (computation graphs) is O(n). Then the training
time of the transformer is proportional to O(s?#n). In total, the complexity is O(s*/n 4+ n?). As
s?En >> n?, the final computation complexity becomes O(s?£n). In the cost-efficient version,
the length of sequences (composed only of direct ancestor nodes) is reduced to L. However, the

13

Table 5: GNN performance on graphs generated by baseline generative models. Except our method, no
existing graph generative models can generate a set of adjacency matrix, node feature matrix, and node label
matrix that reproduce reasonable GNN performance.

Dataset | Model | Original | GraphAF GraphDF GraphEBM | Graphitt GVAE [Ours

GCN 0.860 0.0.m 0.0.m 1.000 0.0.m 0.200 0.760

Cora SGC 0.850 0.0.m 0.0.m 1.000 0.0.m 0.200 0.750
GIN 0.850 0.0.m 0.0.m 1.000 0.0.m 0.200 0.750

GAT 0.830 0.0.m 0.0.m 1.000 0.0.m 0.380 0.750

GCN 0.730 0.0.m 0.0.m 1.000 0.0.m 0.190 0.590

Citeseer SGC 0.730 0.0.m 0.0.m 1.000 0.0.m 0.180 0.580
GIN 0.710 0.0.m 0.0.m 1.000 0.0.m 0.190 0.570

GAT 0.710 0.0.m 0.0.m 1.000 0.0.m 0.380 0.570

Pearson 1 - - - - -0.062 0.993
Spearman 1 - - - - 0.195 0.975

number of sequences increases to sn because each nodes has one computation graph composed of
s shortened sequences. Then the final computation complexity become O(L%sn).]

A.2 SCALABILITY ISSUES ON BASELINE GENERATIVE MODELS

In Table E], GraphAF (Shi et al.| 2020), GraphDF (Luo et al.| [2021)), and Graphite (Grover et al.|
2019) meet out-of-memory errors on both the Cora and Citeseer datasets. This is because they were
originally designed for small-size molecule graphs. The remaining baselines, GVAE (Kipf & Welling|
2016b) and GraphEBM (Suhail et al.l [2021)) successfully generate graphs, however, fail to learn
any meaningful node attribute/label distributions from the original graphs. Especially, GraphEBM
generates graphs whose distribution collapses to generating the the same node feature/labels across
all nodes, showing 100% accuracy for all GNN models, which is obviously not the most effective
benchmark. Note that none of existing graph generative models is designed for GNN benchmarking
— simultaneous generation of adjacency, node feature, and node label matrices, rather they all focus
only on the generation of adjacency matrices. This result shows the tricky aspects of graph generation
and relations among graph structure, node attributes and labels, and a large room for improvement in
the graph generation field.

A.3 DETAILED GNN PERFORMANCE IN THE BENCHMARK EFFECTIVE EXPERIMENT IN
SECTION[3.3]

Tables [6] [7} Bl and [O] show GNN performance on node classification tasks across the origi-
nal/quantized/generated graphs. Quantized graphs are graphs after the quantization process: each
feature vector is replaced by the mean feature vector of a cluster it belongs to, and adjacency matrices
are a constant encoded by the duplicate encoding scheme. Quantized graphs are input to CGT, and
generated graphs are output from CGT as presented in Figure 2| Likewise, Table|10|shows GNN
performance on link prediction tasks across the original/quantized/generated graphs. As presented
across all five Tables, our proposed generative model CGT successfully generates synthetic substi-
tutes of large-scale real-world graphs that shows similar task performance as on the original graphs.
Table[TT] shows benchmark effective across all 9 GNN models we have used in the experiments on
the original graphs without any variations.

A.4 DETAILED GNN PERFORMANCE IN THE PRIVACY EXPERIMENT IN SECTION[3.4]

Table|12]shows detailed privacy-GNN performance trade-off on the Cora dataset. In K-anonymity,
higher k (i.e., more nodes in the same clusters, thus stronger privacy) hinders the generative model’s
ability to learn the exact distributions of the original graphs, and the GNN performance gaps between
original and generated graphs increase, showing lower Pearson and Spearman coefficients. In DP
kmeans, smaller € (i.e., higher privacy cost) results in lower GNN performance, however, surprisingly,
showing higher Pearson and Spearman coefficients. This is because DP kmeans could remove noises
in graphs (while hiding outliers for privacy) and capture representative distributions on the original
graph more easily. This results show our Claims 1 and 2 on privacy are holding on real-world
experiments. As we discussed in Section[d.2] DP SGD fails to train the transformer, showing low
GNN performance even with astronomically low privacy cost (€ = 10°).

14

Table 6: GNN performance on SCENARIO 1: noisy edges on aggregation strategies.

Dataset #NE model Original std Cluster std Generated std pearson spearman
GCN 0.860 0.002 0.830 0.002 0.760 0.005
0 SGC 0.850 0.001 0.820 0.004 0.750 0.002
GIN 0.850 0.004 0.830 0.008 0.750 0.013
GAT 0.830 0.002 0.830 0.002 0.750 0.006
GCN 0.770 0.008 0.750 0.009 0.680 0.014
SGC 0.770 0.008 0.740 0.003 0.680 0.015
Cora 2 GIN 078 0002 | 0730 0003 0670 o009 | 093 0950
GAT 0.680 0.013 0.740 0.002 0.660 0.009
GCN 0.720 0.011 0.690 0.008 0.610 0.015
4 SGC 0.720 0.005 0.690 0.004 0.600 0.007
GIN 0.660 0.019 0.680 0.007 0.590 0.016
GAT 0.600 0.019 0.670 0.008 0.570 0.015
Dataset #NE model Original std Cluster std Generated std pearson spearman
GCN 0.730 0.004 0.680 0.002 0.590 0.024
0 SGC 0.730 0.002 0.670 0.002 0.580 0.029
GIN 0.710 0.009 0.670 0.004 0.570 0.028
GAT 0.710 0.003 0.670 0.004 0.570 0.029
GCN 0.570 0.005 0.560 0.010 0.460 0.013
~ SGC 0.570 0.005 0.570 0.007 0.470 0.019
Citeseer 2 | e 0540 0020 | 0560 0003 0440 o015 | O 0.964
GAT 0.570 0.014 0.550 0.004 0.440 0.01
GCN 0.510 0.027 0.500 0.001 0.410 0.003
4 SGC 0.520 0.009 0.500 0.002 0.410 0.005
GIN 0.480 0.023 0.510 0.008 0.410 0.007
GAT 0.490 0.012 0.510 0.004 0.400 0.009
Dataset #NE model Original std Cluster std Generated std pearson spearman
GCN 0.860 0.001 0.820 0.001 0.780 0.007
0 SGC 0.860 0.000 0.810 0.001 0.780 0.003
GIN 0.830 0.006 0.810 0.001 0.770 0.002
GAT 0.860 0.002 0.820 0.003 0.780 0.005
GCN 0.780 0.004 0.760 0.004 0.680 0.003
SGC 0.760 0.004 0.750 0.006 0.670 0.004
Pubmed 2 | e 079 0012 | 0740 0014 0670 ooo7 | 0818 0.791
GAT 0.710 0.011 0.770 0.003 0.680 0.005
GCN 0.730 0.003 0.710 0.003 0.640 0.007
4 SGC 0.670 0.003 0.700 0.003 0.630 0.009
GIN 0.770 0.011 0.700 0.008 0.600 0.017
GAT 0.650 0.005 0.740 0.001 0.640 0.004
Dataset #NE model Original std Cluster std Generated std pearson spearman
GCN 0.860 0.002 0.840 0.009 0.840 0.001
0 SGC 0.860 0.005 0.810 0.009 0.830 0.007
GIN 0.850 0.002 0.810 0.015 0.800 0.013
GAT 0.840 0.008 0.840 0.011 0.830 0.01
GCN 0.780 0.004 0.760 0.004 0.680 0.003
Amazon 2 SGC 0.760 0.004 0.750 0.006 0.670 0.004 0.825 0778
Computer GIN 0.790 0.012 0.740 0.014 0.670 0.007 . .
GAT 0.710 0.011 0.770 0.003 0.680 0.005
GCN 0.730 0.003 0.710 0.003 0.640 0.007
4 SGC 0.670 0.003 0.700 0.003 0.630 0.009
GIN 0.770 0.011 0.700 0.008 0.600 0.017
GAT 0.650 0.005 0.740 0.001 0.640 0.004
Dataset #NE model Original std Cluster std Generated std pearson spearman
GCN 0.910 0.001 0.890 0.003 0.900 0.005
0 SGC 0.910 0.000 0.890 0.005 0.900 0.006
GIN 0.900 0.003 0.880 0.005 0.900 0.001
GAT 0.900 0.009 0.880 0.010 0.890 0.007
GCN 0.870 0.007 0.870 0.003 0.790 0.007
Amazon 2 SGC 0.870 0.005 0.870 0.008 0.790 0.005 0.918 0.893
Photo GIN 0.870 0.006 0.870 0.004 0.770 0.012 : .
GAT 0.860 0.006 0.860 0.005 0.780 0.003
GCN 0.820 0.019 0.810 0.003 0.740 0.002
4 SGC 0.830 0.001 0.810 0.022 0.730 0.012
GIN 0.840 0.006 0.830 0.009 0.710 0.024
GAT 0.860 0.010 0.820 0.029 0.720 0.01
Dataset #NE model Original std Cluster std Generated std pearson spearman
GCN 0.880 0.004 0.890 0.003 0.830 0.008
0 SGC 0.880 0.003 0.880 0.002 0.830 0.008
GIN 0.870 0.001 0.870 0.004 0.820 0.013
GAT 0.880 0.003 0.890 0.004 0.830 0.006
GCN 0.860 0.005 0.870 0.005 0.760 0.005
SGC 0.860 0.006 0.860 0.004 0.750 0.006
MS C8 2 GIN 0.850 0.010 0.840 0.005 0.720 0.002 0.916 0.922
GAT 0.860 0.007 0.860 0.005 0.750 0.01
GCN 0.840 0.003 0.840 0.004 0.710 0.009
4 SGC 0.840 0.002 0.840 0.002 0.700 0.005
GIN 0.820 0.009 0.790 0.010 0.670 0.011
GAT 0.860 0.011 0.850 0.004 0.700 0.005
Dataset #NE model Original std Cluster std Generated std pearson spearman
GCN 0.930 0.002 0.930 0.002 0.840 0.008
0 SGC 0.920 0.001 0.920 0.001 0.840 0.007
GIN 0.930 0.002 0.920 0.002 0.820 0.011
GAT 0.930 0.005 0.930 0.000 0.840 0.007
GCN 0.910 0.000 0.910 0.001 0.770 0.004
. SGC 0.890 0.002 0.900 0.000 0.760 0.004
MS Physic 2 GIN 0.910 0.009 0.900 0.002 0.750 0.008 0.661 0.685
GAT 0.930 0.003 0.900 0.003 0.770 0.003
GCN 0.880 0.006 0.890 0.002 0.710 0.006
4 SGC 0.860 0.003 0.880 0.002 0.710 0.005
GIN 0.900 0.006 0.880 0.005 0.700 0.007
GAT 0.930 0.002 0.890 0.001 0.720 0.004

15

Table 7: GNN performance on SCENARIO 2: noisy edges on neighbor sampling.

Dataset #NE model Original std Cluster std Generated std pearson spearman
GraphSage 0.740 0.012 0.560 0.008 0.490 0.011
0 AS-GCN 0.130 0.014 0.110 0.013 0.130 0.013
FastGCN 0.440 0.006 0.390 0.005 0.370 0.006
PASS 0.790 0.011 0.620 0.008 0.560 0.029
GraphSage 0.360 0.012 0.300 0.014 0.270 0.004
AS-GCN 0.130 0.013 0.110 0.010 0.130 0.016
Cora 2 FastGCN 0320 0010 | 0200 0007 0.280 ooog | 09 0-894
PASS 0.630 0.021 0.520 0.023 0.440 0.034
GraphSage 0.130 0.005 0.150 0.007 0.170 0.015
4 AS-GCN 0.180 0.057 0.130 0.008 0.130 0.008
FastGCN 0.540 0.013 0.610 0.020 0.570 0.01
PASS 0.560 0.008 0.520 0.003 0.400 0.016
Dataset #NE model Original std Cluster std Generated std pearson spearman
GraphSage 0.660 0.005 0.510 0.014 0.430 0.007
0 AS-GCN 0.100 0.006 0.100 0.019 0.090 0.006
FastGCN 0.380 0.011 0.330 0.009 0.300 0.001
PASS 0.680 0.008 0.530 0.012 0.440 0.006
GraphSage 0.250 0.003 0.310 0.005 0.280 0.005
~ AS-GCN 0.090 0.006 0.080 0.006 0.090 0.01
Citeseer 2| FastGCN 0240 0007 | 0260 0008 0230 0003 | 0955 0.977
PASS 0.540 0.008 0.460 0.010 0.410 0.014
GraphSage 0.190 0.008 0.240 0.005 0.250 0.012
4 AS-GCN 0.110 0.012 0.100 0.021 0.100 0.004
FastGCN 0.210 0.004 0.210 0.006 0.200 0.014
PASS 0.480 0.021 0.460 0.002 0.400 0.015
Dataset #NE model Original std Cluster std Generated std pearson spearman
GraphSage 0.780 0.005 0.680 0.002 0.630 0.004
0 AS-GCN 0.260 0.009 0.230 0.026 0.240 0.007
FastGCN 0.470 0.003 0.450 0.003 0.430 0.003
PASS 0.850 0.007 0.730 0.001 0.680 0.007
GraphSage 0.409 0.002 0.467 0.012 0.431 0.004
AS-GCN 0.308 0.072 0.419 0.053 0.287 0.051
Pubmed 2 | FastGCN 0731 0008 | 0727 0008 0.628 ooog | 088 0916
PASS 0.812 0.007 0.697 0.000 0.587 0.008
GraphSage 0.310 0.001 0.320 0.003 0.320 0.003
4 AS-GCN 0.310 0.031 0.330 0.035 0.360 0.021
FastGCN 0.660 0.002 0.650 0.002 0.550 0.012
PASS 0.790 0.001 0.690 0.006 0.430 0.005
Dataset #NE model Original std Cluster std Generated std pearson spearman
GraphSage 0.630 0.027 0.520 0.022 0.460 0.012
0 AS-GCN 0.130 0.065 0.130 0.081 0.060 0.028
FastGCN 0.860 0.005 0.820 0.006 0.810 0.005
PASS 0.720 0.014 0.590 0.004 0.540 0.009
GraphSage 0.260 0.001 0.200 0.012 0.140 0.002
Amazon 2 AS-GCN 0.190 0.063 0.040 0.002 0.050 0.012 0.958 0916
Computer FastGCN 0.750 0.005 0.710 0.001 0.640 0.004) .
PASS 0.620 0.011 0.530 0.006 0.220 0.033
GraphSage 0.120 0.004 0.100 0.007 0.070 0.004
4 AS-GCN 0.090 0.045 0.050 0.018 0.100 0.037
FastGCN 0.650 0.004 0.620 0.001 0.570 0.006
PASS 0.540 0.024 0.470 0.014 0.120 0.019
Dataset #NE model Original std Cluster std Generated std pearson spearman
GraphSage 0.750 0.009 0.670 0.017 0.530 0.028
0 AS-GCN 0.140 0.016 0.080 0.025 0.120 0.02
FastGCN 0.920 0.004 0.900 0.003 0.870 0.002
PASS 0.850 0.011 0.780 0.006 0.540 0.049
GraphSage 0.400 0.012 0.370 0.007 0.360 0.009
Amazon 2 AS-GCN 0.120 0.014 0.140 0.041 0.110 0.027 0.958 0916
Photo FastGCN 0.870 0.005 0.880 0.003 0.810 0.01) :
PASS 0.730 0.018 0.640 0.029 0.590 0.011
GraphSage 0.260 0.009 0.200 0.016 0.200 0.014
4 AS-GCN 0.100 0.025 0.130 0.037 0.130 0.054
FastGCN 0.670 0.003 0.670 0.006 0.620 0.006
PASS 0.640 0.017 0.600 0.005 0.500 0.017
Dataset #NE model Original std Cluster std Generated std pearson spearman
GraphSage 0.750 0.003 0.680 0.005 0.520 0.007
0 AS-GCN 0.090 0.027 0.070 0.035 0.070 0.016
FastGCN 0.920 0.001 0.910 0.001 0.820 0.001
PASS 0.870 0.007 0.810 0.008 0.640 0.015
GraphSage 0.320 0.002 0.350 0.003 0.240 0.080
AS-GCN 0.040 0.028 0.050 0.022 0.050 0.036
MS ¢S 2 FastGCN 0.910 0.002 0.910 0.001 0.820 0.002 0.974 0.956
PASS 0.810 0.005 0.750 0.003 0.660 0.004
GraphSage 0.200 0.008 0.230 0.008 0.120 0.018
4 AS-GCN 0.070 0.033 0.050 0.027 0.040 0.038
FastGCN 0.900 0.005 0.890 0.003 0.610 0.007
PASS 0.790 0.013 0.730 0.005 0.500 0.011
Dataset #NE model Original std Cluster std Generated std pearson spearman
GraphSage 0.850 0.005 0.790 0.003 0.590 0.009
0 AS-GCN 0.240 0.051 0.190 0.042 0.240 0.052
FastGCN 0.950 0.001 0.940 0.001 0.820 0.004
PASS 0.920 0.000 0.860 0.003 0.670 0.006
GraphSage 0.490 0.001 0.500 0.003 0.420 0.005
. AS-GCN 0.160 0.022 0.210 0.032 0.130 0.055
MS Physic 2 FastGCN 0.940 0.004 0.930 0.005 0.800 0.009 0.956 0.951
PASS 0.900 0.009 0.840 0.008 0.690 0.012
GraphSage 0.300 0.003 0.330 0.005 0.280 0.002
4 AS-GCN 0.340 0.005 0.090 0.052 0.080 0.039
FastGCN 0.930 0.002 0.920 0.003 0.780 0.001
PASS 0.890 0.001 0.830 0.005 0.610 0.004

16

Table 8: GNN performance on SCENARIO 3: different sampling numbers on neighbor sampling.

Dataset #SN model Original std Cluster std Generated std pearson spearman
GraphSage 0.750 0.013 0.560 0.028 0.500 0.011
0 AS-GCN 0.120 0.001 0.120 0.011 0.110 0.005
FastGCN 0.450 0.008 0.390 0.006 0.380 0.003
PASS 0.800 0.007 0.600 0.008 0.540 0.003
GraphSage 0.830 0.007 0.740 0.008 0.690 0.018
~ AS-GCN 0.130 0.009 0.130 0.013 0.130 0.014
Cora 2 FastGCN 0750 0008 | 0660 001l 0.660 ooor | 097 0814
PASS 0.840 0.004 0.740 0.012 0.680 0.011
GraphSage 0.850 0.001 0.810 0.004 0.600 0.005
4 AS-GCN 0.130 0.022 0.140 0.029 0.150 0.046
FastGCN 0.870 0.004 0.820 0.007 0.640 0.008
PASS 0.820 0.009 0.790 0.000 0.520 0.026
Dataset #SN model Original std Cluster std Generated std pearson spearman
GraphSage 0.680 0.014 0.500 0.011 0.440 0.016
0 AS-GCN 0.110 0.013 0.090 0.005 0.100 0.006
FastGCN 0.370 0.011 0.330 0.003 0.330 0.015
PASS 0.700 0.005 0.530 0.014 0.460 0.006
GraphSage 0.710 0.004 0.610 0.006 0.560 0.003
. AS-GCN 0.110 0.012 0.110 0.010 0.090 0.004
Citeseer 2 | FastGCN 0670 0008 | 0600 0005 oss ooo1 | 0972 0.904
PASS 0.710 0.003 0.610 0.007 0.560 0.007
GraphSage 0.730 0.006 0.650 0.009 0.600 0.01
4 AS-GCN 0.110 0.004 0.120 0.001 0.100 0.012
FastGCN 0.770 0.003 0.700 0.004 0.680 0.001
PASS 0.730 0.002 0.650 0.004 0.580 0.009
Dataset #SN model Original std Cluster std Generated std pearson spearman
GraphSage 0.780 0.003 0.680 0.005 0.600 0.004
1 AS-GCN 0.250 0.002 0.260 0.009 0.260 0.011
FastGCN 0.480 0.002 0.460 0.004 0.440 0.003
PASS 0.860 0.002 0.720 0.004 0.660 0.003
GraphSage 0.830 0.003 0.780 0.005 0.710 0.001
AS-GCN 0.240 0.012 0.240 0.015 0.250 0.013
Pubmed 3 | FastGON 0750 0004 | 0710 0.001 0660 0006 | 0% 0-824
PASS 0.880 0.002 0.780 0.003 0.710 0.008
GraphSage 0.850 0.001 0.800 0.001 0.740 0.002
5 AS-GCN 0.260 0.021 0.260 0.007 0.240 0.02
FastGCN 0.860 0.002 0.800 0.003 0.740 0.002
PASS 0.870 0.002 0.790 0.004 0.730 0.004
Dataset #SN model Original std Cluster std Generated std pearson spearman
GraphSage 0.670 0.010 0.550 0.008 0.450 0.01
1 AS-GCN 0.090 0.006 0.060 0.028 0.040 0.005
FastGCN 0.780 0.004 0.740 0.007 0.700 0.006
PASS 0.750 0.000 0.620 0.018 0.530 0.02
GraphSage 0.790 0.003 0.700 0.015 0.600 0.015
Amazon 3 AS-GCN 0.110 0.025 0.040 0.014 0.120 0.06 0.975 0.890
Computer FastGCN 0.870 0.001 0.840 0.006 0.800 0.011 . .
PASS 0.810 0.015 0.760 0.023 0.640 0.009
GraphSage 0.770 0.008 0.720 0.004 0.680 0.005
5 AS-GCN 0.120 0.085 0.100 0.057 0.030 0.007
FastGCN 0.850 0.003 0.830 0.000 0.790 0.01
PASS 0.830 0.002 0.730 0.011 0.680 0.022
Dataset #SN model Original std Cluster std Generated std pearson spearman
GraphSage 0.740 0.016 0.660 0.003 0.500 0.014
1 AS-GCN 0.110 0.037 0.090 0.030 0.090 0.04
FastGCN 0.830 0.005 0.810 0.005 0.750 0.009
PASS 0.850 0.011 0.730 0.026 0.520 0.01
GraphSage 0.840 0.006 0.810 0.007 0.740 0.007
Amazon 3 AS-GCN 0.140 0.026 0.140 0.019 0.130 0.038 0.961 0.931
Photo FastGCN 0.930 0.005 0.910 0.002 0.890 0.002 . .
PASS 0.910 0.002 0.870 0.002 0.750 0.017
GraphSage 0.910 0.010 0.890 0.002 0.780 0.009
5 AS-GCN 0.860 0.021 0.850 0.021 0.790 0.031
FastGCN 0.110 0.005 0.050 0.001 0.110 0.021
PASS 0.930 0.002 0.900 0.011 0.850 0.005
Dataset #SN model Original std Cluster std Generated std pearson spearman
GraphSage 0.740 0.008 0.650 0.004 0.530 0.006
1 AS-GCN 0.070 0.050 0.060 0.025 0.080 0.023
FastGCN 0.920 0.001 0.920 0.000 0.840 0.003
PASS 0.870 0.005 0.770 0.005 0.690 0.004
GraphSage 0.840 0.004 0.820 0.004 0.680 0.008
AS-GCN 0.090 0.051 0.090 0.035 0.070 0.018
MS Cs 3 FastGCN 0.930 0.001 0.920 0.002 0.810 0.01 0.986 0.901
PASS 0.900 0.004 0.870 0.003 0.680 0.013
GraphSage 0.870 0.003 0.850 0.003 0.750 0.011
5 AS-GCN 0.060 0.044 0.040 0.002 0.110 0.037
FastGCN 0.930 0.001 0.920 0.000 0.810 0.01
PASS 0.910 0.001 0.880 0.001 0.710 0.014
Dataset #SN model Original std Cluster std Generated std pearson spearman
GraphSage 0.850 0.001 0.780 0.004 0.590 0.003
1 AS-GCN 0.240 0.125 0.260 0.139 0.140 0.021
FastGCN 0.950 0.001 0.940 0.001 0.840 0.002
PASS 0.920 0.003 0.850 0.004 0.650 0.004
GraphSage 0.940 0.002 0.900 0.001 0.720 0.006
. AS-GCN 0.910 0.001 0.880 0.002 0.730 0.022
MS Physic 3 FastGCN 0.390 0.025 0.210 0.033 0.230 0.034 0.947 0.901
PASS 0.950 0.003 0.940 0.002 0.820 0.009
GraphSage 0.950 0.005 0.910 0.003 0.740 0.001
5 AS-GCN 0.930 0.001 0.900 0.001 0.760 0.001
FastGCN 0.090 0.036 0.150 0.048 0.260 0.033
PASS 0.960 0.002 0.940 0.003 0.830 0.020

17

Table 9: GNN performance on SCENARIO 4: distribution shift.

Dataset « model Original std Cluster std Generated std pearson spearman
GraphSage 0.830 0.010 0.820 0.003 0.760 0.024
id SGC 0.860 0.001 0.810 0.004 0.810 0.023
GAT 0.840 0.007 0.800 0.005 0.760 0.014
PPNP 0.840 0.007 0.800 0.008 0.810 0.016
GraphSage 0.790 0.007 0.780 0.010 0.650 0.011
SGC 0.820 0.003 0.780 0.002 0.710 0.001
Cora 001 Gar 078 0007 | 0760 0005 0680 ooos | 0367 0832
PPNP 0.780 0.005 0.760 0.004 0.730 0.001
GraphSage 0.730 0.010 0.730 0.003 0.660 0.012
03 SGC 0.790 0.003 0.720 0.002 0.700 0.01
- GAT 0.760 0.003 0.700 0.019 0.650 0.016
PPNP 0.770 0.008 0.730 0.006 0.680 0.017
Dataset a model Original std Cluster std Generated std pearson spearman
GraphSage 0.690 0.005 0.640 0.003 0.570 0.021
iid SGC 0.710 0.004 0.650 0.001 0.590 0.017
GAT 0.680 0.016 0.650 0.003 0.580 0.011
PPNP 0.690 0.002 0.630 0.002 0.610 0.007
GraphSage 0.590 0.009 0.550 0.012 0.510 0.018
~ SGC 0.640 0.002 0.580 0.003 0.560 0.014
Citeseer | 001 | G \p 0610 0005 | 055 0003 0510 oox | 0312 0.799
PPNP 0.610 0.010 0.550 0.010 0.540 0.02
GraphSage 0.610 0.006 0.580 0.002 0.500 0.02
0.3 SGC 0.660 0.003 0.560 0.002 0.530 0.012
- GAT 0.650 0.007 0.560 0.005 0.510 0.003
PPNP 0.630 0.001 0.550 0.005 0.550 0.012
Dataset a model Original std Cluster std Generated std pearson spearman
GraphSage 0.840 0.002 0.810 0.002 0.720 0.009
iid SGC 0.860 0.001 0.820 0.000 0.730 0.005
GAT 0.840 0.005 0.810 0.002 0.720 0.014
PPNP 0.820 0.002 0.800 0.002 0.730 0.004
GraphSage 0.810 0.007 0.750 0.008 0.660 0.01
SGC 0.800 0.002 0.760 0.004 0.680 0.007
Pubmed | 001 | Gy 079 0005 | 0760 0005 0660 oo | O08%0 0.794
PPNP 0.770 0.004 0.760 0.006 0.680 0.008
GraphSage 0.770 0.007 0.720 0.005 0.620 0.014
03 SGC 0.770 0.003 0.730 0.000 0.660 0.003
- GAT 0.750 0.014 0.700 0.002 0.630 0.008
PPNP 0.740 0.009 0.730 0.004 0.660 0.001
Dataset « model Original std Cluster std Generated std pearson spearman
GraphSage 0.850 0.009 0.800 0.012 0.790 0.008
iid SGC 0.870 0.004 0.790 0.004 0.800 0.003
GAT 0.840 0.003 0.790 0.008 0.800 0.012
PPNP 0.840 0.003 0.800 0.005 0.810 0.003
GraphSage 0.790 0.013 0.740 0.010 0.750 0.003
Amazon SGC 0.800 0.003 0.750 0.006 0.740 0.003
Computer 0.01 GAT 0.770 0.028 0.750 0.005 0.750 0.006 0.906 0.860
PPNP 0.770 0.015 0.750 0.003 0.760 0.007
GraphSage 0.750 0.020 0.710 0.015 0.690 0.019
03 SGC 0.760 0.004 0.710 0.005 0.710 0.006
- GAT 0.760 0.003 0.720 0.010 0.700 0.006
PPNP 0.740 0.004 0.710 0.009 0.710 0.021
Dataset « model Original std Cluster std Generated std pearson spearman
GraphSage 0.890 0.001 0.890 0.002 0.910 0.003
iid SGC 0.890 0.005 0.890 0.002 0911 0.007
GAT 0.880 0.002 0.870 0.008 0.910 0.003
PPNP 0.880 0.002 0.900 0.002 0.910 0.006
GraphSage 0.880 0.014 0.850 0.016 0.850 0.012
Amazon SGC 0.880 0.008 0.860 0.006 0.840 0.015
Photo 0.01 GAT 0.860 0.011 0.850 0.002 0.830 0.007 0.771 0.847
PPNP 0.860 0.009 0.860 0.003 0.850 0.019
GraphSage 0.830 0.011 0.860 0.018 0.830 0.009
03 SGC 0.850 0.013 0.820 0.002 0.790 0.017
- GAT 0.840 0.015 0.850 0.027 0.820 0.006
PPNP 0.860 0.015 0.860 0.007 0.850 0.02
Dataset « model Original std Cluster std Generated std pearson spearman
GraphSage 0.870 0.004 0.880 0.001 0.850 0.011
iid SGC 0.870 0.006 0.880 0.002 0.850 0.012
GAT 0.869 0.001 0.860 0.003 0.830 0.007
PPNP 0.870 0.006 0.880 0.002 0.840 0.008
GraphSage 0.800 0.003 0.820 0.012 0.790 0.006
SGC 0.880 0.002 0.860 0.002 0.830 0.003
MSs C8 0.01 GAT 0.850 0.004 0.840 0.006 0.800 0.01 0.792 0.751
PPNP 0.840 0.003 0.860 0.001 0.830 0.003
GraphSage 0.820 0.008 0.850 0.007 0.800 0.005
03 SGC 0.870 0.002 0.850 0.001 0.840 0.003
- GAT 0.850 0.008 0.840 0.003 0.810 0.006
PPNP 0.840 0.001 0.850 0.003 0.830 0.005
Dataset « model Original std Cluster std Generated std pearson spearman
GraphSage 0.930 0.002 0.930 0.002 0.840 0.008
iid SGC 0.920 0.001 0.920 0.001 0.840 0.007
GAT 0.930 0.002 0.920 0.002 0.820 0.011
PPNP 0.930 0.005 0.930 0.000 0.840 0.007
GraphSage 0.830 0.033 0.850 0.004 0.760 0.019
. SGC 0.840 0.004 0.820 0.005 0.740 0.015
MS Physic 0.01 GAT 0.870 0.007 0.840 0.011 0.780 0.009 0.925 0815
PPNP 0.840 0.007 0.830 0.006 0.740 0.009
GraphSage 0.840 0.012 0.840 0.009 0.680 0.023
03 SGC 0.810 0.009 0.820 0.003 0.700 0.009
- GAT 0.850 0.011 0.840 0.002 0.720 0.019
PPNP 0.810 0.012 0.830 0.004 0.700 0.009

18

Table 10: GNN performance on link prediction.

Dataset predictor model Original std Cluster std Generated std pearson spearman
GCN 0.720 0.010 0.770 0.009 0.680 0.012
Dot SGC 0.710 0.025 0.760 0.005 0.660 0.016
GIN 0.820 0.015 0.760 0.016 0.650 0.022
GAT 0.810 0.002 0.810 0.007 0.730 0.015
Cora GCN 0540 0005 | 0620 0012 0510 0.01 0781 0741
MLP SGC 0.530 0.016 0.590 0.042 0.510 0.006
GIN 0.530 0.012 0.690 0.016 0.630 0.017
GAT 0.550 0.003 0.660 0.013 0.610 0.034
Dataset predictor model Original std Cluster std Generated std pearson spearman
GCN 0.690 0.007 0.740 0.009 0.650 0.026
Dot SGC 0.700 0.003 0.730 0.013 0.670 0.022
GIN 0.830 0.008 0.720 0.003 0.650 0.01
s GAT 0.750 0.005 0.780 0.012 0.680 0.021
Citescer GCN 0580 0005 | 0650 0012 0590 0.01 0-808 0824
MLP SGC 0.580 0.008 0.640 0.025 0.590 0.023
GIN 0.570 0.011 0.720 0.012 0.610 0.024
GAT 0.610 0.005 0.680 0.001 0.620 0.009
Dataset predictor model Original std Cluster std Generated std pearson spearman
GCN 0.800 0.018 0.810 0.005 0.670 0.019
Dot SGC 0.790 0.002 0.780 0.006 0.660 0.004
GIN 0.800 0.008 0.760 0.008 0.650 0.009
GAT 0.860 0.003 0.850 0.007 0.720 0.008
Pubmed GON 0760 0003 | 0770 0012 T i a 0420
MLP SGC 0.770 0.006 0.770 0.006 0.610 0.008
GIN 0.750 0.004 0.790 0.014 0.660 0.004
GAT 0.750 0.004 0.850 0.019 0.660 0.011
Dataset predictor model Original std Cluster std Generated std pearson spearman
GCN 0.790 0.010 0.850 0.026 0.810 0.008
Dot SGC 0.760 0.005 0.770 0.030 0.730 0.025
GIN 0.800 0.013 0.880 0.004 0.830 0.005
Amazon GAT 0.750 0.057 0.840 0.014 0.560 0.08 0.652 0.559
Computer GCN 0.810 0.005 0.890 0.005 0.830 0.012 ! :
MLP SGC 0.800 0.000 0.850 0.020 0.730 0.021
GIN 0.800 0.003 0.890 0.010 0.810 0.01
GAT 0.860 0.005 0.910 0.005 0.800 0.005
Dataset predictor model Original std Cluster std Generated std pearson spearman
GCN 0.890 0.011 0.920 0.005 0.860 0.016
Dot SGC 0.810 0.014 0.840 0.015 0.780 0.011
GIN 0.810 0.007 0.910 0.006 0.880 0.002
Amazon GAT 0.530 0.023 0.740 0.151 0.660 0.134 0.887 0443
Photo GCN 0.870 0.006 0.930 0.006 0.890 0.001 : T
MLP SGC 0.840 0.010 0.900 0.012 0.810 0.015
GIN 0.850 0.006 0.930 0.002 0.870 0.004
GAT 0.910 0.007 0.930 0.004 0.850 0.007

19

Table 11: Benchmark effectiveness across 9 GNN models without any graph variations

Dataset GNN model [Original Generated [Pearson Spearman
GCN 0.860 0.760
SGC 0.850 0.750
GIN 0.850 0.750
GAT 0.830 0.750
Cora GraphSage 0.750 0.500 0.939 0.868
AS-GCN 0.120 0.110
FastGCN 0.450 0.380
PASS 0.800 0.540
PPNP 0.840 0.810
Dataset GNN model Original Generated Pearson Spearman
GCN 0.730 0.590
SGC 0.730 0.580
GIN 0.710 0.570
GAT 0.710 0.570
Citeseer GraphSage 0.680 0.440 0.948 0.743
AS-GCN 0.110 0.100
FastGCN 0.370 0.330
PASS 0.700 0.460
PPNP 0.690 0.610
Dataset GNN model Original Generated Pearson Spearman
GCN 0.860 0.780
SGC 0.860 0.780
GIN 0.830 0.770
GAT 0.860 0.780
Pubmed GraphSage 0.780 0.600 0.962 0.868
AS-GCN 0.250 0.260
FastGCN 0.480 0.440
PASS 0.860 0.660
PPNP 0.820 0.730
Dataset GNN model Original Generated Pearson Spearman
GCN 0.860 0.840
SGC 0.860 0.830
GIN 0.850 0.800
Amazon GAT 0.840 0.830
Computer GraphSage 0.670 0.450 0.952 0.920
AS-GCN 0.090 0.040
FastGCN 0.780 0.700
PASS 0.750 0.530
PPNP 0.840 0.810
Dataset GNN model Original Generated Pearson Spearman
GCN 0.910 0.900
SGC 0.910 0.900
GIN 0.900 0.900
GAT 0.900 0.890
Amazon Photo GraphSage 0.740 0.500 0.899 0.786
AS-GCN 0.110 0.090
FastGCN 0.830 0.750
PASS 0.850 0.520
PPNP 0.880 0.910
Dataset GNN model Original Generated Pearson Spearman
GCN 0.880 0.830
SGC 0.880 0.830
GIN 0.870 0.820
GAT 0.880 0.830
MS CS GraphSage 0.740 0.530 0.964 0.784
AS-GCN 0.070 0.080
FastGCN 0.920 0.840
PASS 0.870 0.690
PPNP 0.870 0.840
Dataset GNN model Original Generated Pearson Spearman
GCN 0.930 0.840
SGC 0.920 0.840
GIN 0.930 0.820
GAT 0.930 0.840
MS Physic GraphSage 0.850 0.590 0.947 0.776
AS-GCN 0.240 0.140
FastGCN 0.950 0.840
PASS 0.920 0.650
PPNP 0.930 0.840

A.5 ADDITIONAL GRAPH STATISTICS

Figure [5] shows distributions of graph statistics on computation graphs sampled from the origi-
nal/quantized/generated graphs. Quantized graphs are graphs after the quantization process: each
feature vector is replaced by the mean feature vector of a cluster it belongs to, and adjacency matrices
are a constant encoded by the duplicate encoding scheme. Quantized graphs are input to CGT, and
generated graphs are output from CGT as presented in Figure 2] While converting from original
graphs to quantized graphs, CGT trades off some of the graph statistics information for k-anonymity

20

Table 12: Privacy-Performance trade-off in graph generation on the Cora dataset

4NE ‘ model Original No privacy ‘ K-anonymity DP kmean (6 = 0.01) DP S(‘%D 6 = 0.1)9
k = 100 k = 500 k = 1000 e=1 e =10 e =25 e =10 e =10
GCN 0.860 0.760 0.750 0.520 0.120 0.530 0.570 0.650 0.130 0.640
0 SGC 0.850 0.750 0.740 0.490 0.120 0.510 0.590 0.620 0.150 0.620
GIN 0.850 0.750 0.760 0.510 0.110 0.520 0.570 0.650 0.140 0.640
GAT 0.830 0.750 0.740 0.520 0.080 0.440 0.560 0.640 0.140 0.610
GCN 0.770 0.680 0.570 0.380 0.110 0.500 0.400 0.450 0.110 0.580
2 SGC 0.770 0.680 0.580 0.360 0.080 0.350 0410 0.450 0.140 0.570
GIN 0.780 0.670 0.590 0.390 0.140 0.390 0.410 0.470 0.140 0.580
GAT 0.680 0.660 0.560 0.380 0.110 0.350 0.390 0.430 0.120 0.530
GCN 0.720 0.610 0.510 0.280 0.090 0.280 0.390 0.430 0.100 0.410
4 SGC 0.720 0.600 0.500 0.280 0.110 0.300 0.410 0.450 0.140 0.410
GIN 0.660 0.590 0.480 0.300 0.160 0.320 0.410 0.460 0.150 0.400
GAT 0.600 0.570 0.470 0.290 0.080 0.250 0.370 0.450 0.140 0.380
Pearson 1.000 0.934 0.916 0.862 0.030 0.874 0.844 0.804 0.112 0.890
Spearman 1.000 0.935 0.947 0.812 0.018 0.869 0.805 0.807 0.116 0.959

privacy benefits. In Figure 5] we can see distributions of graphs statistics have changed slightly
from original graphs to quantized graphs. Then CGT learns distributions of graph statistics on the
quantized graphs and generates synthetic graphs. The variations given by CGT are presented as
differences in distributions between quantized and generated graphs in Figure 5]

A.6 ABLATION STUDY

To show the importance of each component in our Computation Graph Transformer, we run three
ablation studies on our model. Table[T3]shows CGT without label conditioning (conditioning on
the label of the root node of the computation graph), positional embedding trick (giving the same
positional embedding to nodes at the same layers on the computation graph), and masked attention
trick (attended only on direct ancestor nodes on the computation graph), respectively. When we
remove the positional embedding trick, we provide the different positional embeddings to all nodes
in a computation graph, following the original transformer architecture. When we remove attention
masks from our model, the transformer attends all other nodes in the computation graphs to compute
the context embeddings. As shown in Table [I3] removing any component negatively impacts model
performance. This shows not only the importance of label conditioning and our designed positional
embeddings and attention masks, but also tricky aspects of graph generation and relations among
graph structure, node attributes and labels.

A.7 GRAPH NEURAL NETWORKS

We briefly review graph neural networks (GNNs) then describe how neighbor sampling operations
can be applied on GNNss.

Notations. Let G = (V, £) denote a graph with n nodes v; € V and edges (v;, v;) € £. Denote an
adjacency matrix A = (a(v;,v;)) € R™ ™ and a feature matrix X € R"*? where z; denotes the
d-dimensional feature vector of node v;.

GCN (Kipf & Welling, 2016a). GCN models stack layers of first-order spectral filters followed by a

nonlinear activation functions to learn node embeddings. When hz(-l) denotes the hidden embeddings
of node v; in the [-th layer, the simple and general form of GCNss is as follows:

) _ o LSS O _
h! 7a(%;a(vl,v7)hjw), 1=0,....,L—1 (1)

where a(v;, v;) is set to 1 when there is an edge from v; to v;, otherwise 0. n(i) = 2?21 a(v;, vj) is

. . . (1) o g(1+1) . .
the degree of node v;; «(-) is a nonlinear function; w® e R4 Ixd D is the learnable transformation

)

matrix in the I-th layer with d(¥) denoting the hidden dimension at the I-th layer. hgo is set with the

input node attribute x;

GraphSage (Hamilton et al., 2017). GCNs require the full expansion of neighborhoods across
layers, leading to high computation and memory costs. To circumvent this issue, GraphSage adds
sampling operations to GCNs to regulate the size of neighborhood. We first recast Equation [T] as

21

® Cora Citeseer == Pubmed Y¢ Amazon Computer »>= Amazon Photo

w w n
"
| | £ W
e e e
8 1 8 1 o 1
s s s
PNty PNty 5 W
o o o
E] E] 5
a 107 3 10 3 w
E E E
8 1w 8 1w 8 1w
#® orriwe # - # A e ow
0 100 200 300 400] 100 200 300 400] 100 200 300 400

Generated #zero vectors

] u 10]
< < £ .
a .. a a 10
& 10 ® ®
£ £ 1 £
o o o 12
5§ § §
10"

2 2 2 e
5w 5 5
] 3w 5
2w & W B g w >
: C R : :
o 107 ¥ - 4 o w o 107 . - sty LT
44 + #® . e #* - -+ i

0 s 100 150 200 250 300 350 0 S 100 150 200 250 300 B0 400 0 S0 100 150 200 250 300 350 400

Original #duplicate vectors Quantized #duplicate vectors Generated #duplicate vectors
g P P P

Figure 5: CGT preserves distributions of graph statistics in generated graphs for each dataset: While
converting from original graphs to quantized graphs, CGT loses some of graph statistics information for k-
anonymity privacy benefit. The variations given by CGT are presented as differences in distributions between
quantized and generated graphs

Table 13: Ablation study. Label, Position, and Attention denote ablation of label conditioning, positional
embeddings, and masked attention proposed in Section 4.1, respectively. Pearson scores measure the correlation
in ranking of GNN models on original and generated graphs; a score of 1 denotes perfect correlation.

Dataset | Model [Original [Label Position Attention | Ours

GCN 0860 | 0510 0710 0580 | 0760
Cora SGC 0850 | 0520 0700 0580 | 0750
GIN 0.850 0.510 0.620 0.600 0.750
GAT 0.830 0.520 0.450 0.350 0.750
GCN 0730 | 0450 0670 0530 | 039
Citeseer | SGC 0730 | 0460 0640 0530 | 0580
GIN 0710 | 0450 0520 0530 | 0570
GAT 0710 | 0460 0210 059 | 0570
GCN 0.860 0.680 0.970 0.670 0.780
pubmed | SGC 0860 | 0680 0970 0580 | 0780
GIN 0830 | 0670 099 0670 | 0770
GAT 0860 | 0690 0940 0.120 | 0780
Pearson 1000 | 0718 0.647 0097 | 0988
Spearman 1.000 0.799 0.610 0.149 0.911
follows:
(+1) _ ® —
h; = a0 (E]-NP(]'”)[hj D, 1=0,...,L—1 2)
where we combine the transformation matrix W) into the activation function vy) (-) for conci-
. o . a(v;,v; oy . . .
sion; p(j|i) = w defines the probability of sampling v; given v;. Then we approximate the

expectation by Monte-Carlo sampling as follows:
141 [1
h§+>:aw<l>(g S or), 1=o0,...,L-1 3)
J~p(ili)
where s is the number of sampled neighbors for each node. Now, we can regulate the size of
neighborhood using s, in other words, the computational footprint for each minibatch.

A.7.1 GNN MODELS USED IN THE BENCHMARK EFFECTIVENESS EXPERIMENT IN
SECTION[3.3]

We choose four different GNN models with different aggregation strategies to examine the effect

of noisy edges on the aggregation strategies: GCN (Kipf & Welling} 2016a)) with mean aggregator,

GIN 2018) with sum aggregator, SGC 2019) with linear aggregator, and
GAT (Velickovi€ et all, [2017) with attention aggregator. We choose four different GNN models

with different neighbor sampling strategies to examine the effect of noisy edges and number of

22

sampled neighbor numbers on GNN performance: GraphSage (Hamilton et al.,2017) with random
sampling, FastGCN (Chen et al.,[2018)) with heuristic layer-wise sampling, AS-GCN (Huang et al.,
2018) with trainable layer-wise sampling, and PASS (Yoon et al., 2021} with trainable node-wise
sampling. Finally, we choose four different GNN models to check their robustness to distribution
shifts in training/test time, as the authors of the original paper (Zhu et al.l [2021) chose for their
baselines: GCN (Kipf & Welling, [2016a), SGC (Wu et al.,[2019), GAT (Velickovi¢ et al.,2017)), and
PPNP (Klicpera et al.l 2018).

We implement GCN, SGC, GIN, and GAT from scratch for the SCENARIO 1: noisy edges on
aggregation strategies. For SCENARIOS 2 and 3: noisy edges and different sampling numbers on
neighbor sampling, we use open source implementations of each GNN model, ASGCNﬁ FastGCNEL
and PASS EL uploaded by the original authors. Finally, for SCENARIO 4: distribution shift, we use
GCN, SGC, GAT, and PPNP implemented by (Zhu et al.,[2021) using DGL library

A.8 ARCHITECTURE OF COMPUTATION GRAPH TRANSFORMER

Given a sequence s = [s1, - - , S|, the M-layered transformer maximizes the likelihood under the
forward auto-regressive factorization as follow:

T

3 log ¢ Gre1) Telst)

S, exp(ay” (s1e-1) Te(s)

T
m;%Xlnge(S) = Zlogp6(5t|s<t) =
t=1

where node embedding e(s;) maps discrete input id s; to a randomly initialized trainable vector, and

query embedding qéL) (s1:t—1) encodes information until (¢ — 1)-th token in the sequence. Query

embedding qt(l)

embedding q,gl_l) from the previous layer. Context embedding hEl) is computed from hgl:t_l), context
embeddings of previous ¢ — 1 tokens and ¢-th token from the previous layer. Note that, while the query

embeddings have access only to the previous context embeddings h(11;35_1, the context embeddings

is computed with context embeddings hglt_j% of previous ¢t — 1 tokens and query

attend to all tokens hgl)t The context embedding hgo) is initially encoded by node embeddings e(s;)
and position embedding p;(;) that encodes the location of each token in the sequence. The query
embedding is initialized with a trainable vector and label embeddings v, as shown in Figure[3] This
two streams (query and context) of self-attention layers are stacked M time and predict the next
tokens auto-regressively.

A.9 DIFFERENTIALLY PRIVATE K-MEANS AND SGD ALGORITHMS

Given a set of data points, k-means clustering identifies k points, called cluster centers, by minimize
the sum of distances of the data points from their closest cluster center. However, releasing the set of
cluster centers could potentially leak information about particular users. For instance, if a particular
data point is significantly far from the rest of the points, so the k-means clustering algorithm returns
this single point as a cluster center. Then sensitive information about this single point could be
revealed. To address this, DP k-means clustering algorithm (Chang et al.,[2021) is designed within
the framework of differential privacy. To generate the private core-set, DP k-means partitions the
points into buckets of similar points then replaces each bucket by a single weighted point, while
adding noise to both the counts and averages of points within a bucket.

Training a model is done through access to its parameter gradients, i.e., the gradients of the loss with
respect to each parameter of the model. If this access preserves differential privacy of the training data,
so does the resulting model, per the post-processing property of differential privacy. To achieve this
goal, DP stochastic gradient descent (DP-SGD) (Song et al., | 2013)) modifies the minibatch stochastic
optimization process to make it differentially private.

'https://github.com/huangwb/AS-GCN
Zhttps://github.com/matenure/FastGCN
*https://github.com/linkedin/PASS—GNN
*nttps://github.com/GentlezZhu/Shift-Robust—GNNs

23

https://github.com/huangwb/AS-GCN
https://github.com/matenure/FastGCN
https://github.com/linkedin/PASS-GNN
https://github.com/GentleZhu/Shift-Robust-GNNs

Table 14: Dataset statistics.

Dataset] Nodes Edges Features Labels
Cora 2,485 5,069 1,433 7
Citeseer 2,110 3,668 3,703 6
Pubmed 19,717 44,324 500 3
Amazon Computer 13,381 245,778 767 10
Amazon Photo 7,487 119,043 745 8
MS CS 18,333 81,894 6,805 15
MS Physic 34,493 247,962 8,415 5

We use the open source implementation of DP k-means provided by Google’s differential privac
libraries E} We extend implementations of DP SGD provided by a public differential library Opacusﬁ

A.10 EXPERIMENTAL SETTINGS

All experiments were conducted on the same p3.2xlarge Amazon EC2 instance. We run each
experiment three times and report the mean and standard deviation.

We evaluate on seven public datasets — three citation networks (Cora, Citeseer, and Pubmed) (Sen
et al., 2008)), two co-purchase graphs (Amazon Computer and Amazon Photo) (Shchur et al., 2018)),
and two co-authorship graph (MS CS and MS Physic) (Shchur et al.l 2018). We use all nodes
when training CGT. For GNN training, we split 50%/10%/40% of each dataset into the train-
ing/validation/test sets, respectively. We report their statistics in Table [T4]

For the molecule graph generative models, GraphAF, GraphDF, and GraphEBM, we extend imple-
mentations in a public domain adaptation library DIG (Liu et al.,[2021). We extend implementations
of GVAE Graphiteﬁfrom codes uploaded by the original authors.

For our Computation Graph Transformer model, we use 3-layered transformers for Cora, Citeseer,
Pubmed, and Amazon Computer, 4-layered transformers for Amazon Photo and MS CS, and 5-
layered transformers for MS Physic, considering each graph size. For all experiments to examine
the benchmark effectiveness of our model in Section[5.3] we sample s = 5 neighbors per node. For
graph statistics shown in Section[5.5] we sample s = 20 neighbors per node. Our code is publicly
available E] (anonymized).

Shttps://github.com/google/differential-privacy/tree/main/python/dp
accounting

%https://github.com/pytorch/opacus

"nttps://github.com/tkipf/gae

$https://github.com/ermongroup/graphite

9https://www.dropbox.com/sh/eZukf2djimjs4ud/AAanOoZOoWlON2jILK_JEy3a?
dl=0

24

https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/google/differential-privacy/tree/main/python/dp_accounting
https://github.com/pytorch/opacus
https://github.com/tkipf/gae
https://github.com/ermongroup/graphite
https://www.dropbox.com/sh/e2ukf2djimjs4ud/AACgn0oZ0oWl0N2jILK_JEy3a?dl=0
https://www.dropbox.com/sh/e2ukf2djimjs4ud/AACgn0oZ0oWl0N2jILK_JEy3a?dl=0

	Introduction
	Related Work
	From graph generation to sequence generation
	Computation graphs in minibatch-based GNN training
	Encoding scheme for computation graphs
	Duplicate encoding scheme for computation graphs
	Quantization
	End-to-end framework for a benchmark graph generation problem

	Model
	Computation Graph Transformer
	Theoretical analysis

	Experiments
	Experimental setting
	Scalability
	Benchmark effectiveness
	Privacy
	Graph statistics

	Conclusion
	Appendix
	Proof of Privacy Claims
	Scalability issues on baseline generative models
	Detailed GNN performance in the benchmark effective experiment in Section 5.3
	Detailed GNN performance in the privacy experiment in Section 5.4
	Additional graph statistics
	Ablation study
	Graph Neural Networks
	GNN models used in the benchmark effectiveness experiment in Section 5.3

	Architecture of Computation Graph Transformer
	Differentially Private k-means and SGD algorithms
	Experimental settings

