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Abstract

Following OpenAl'’s introduction of the “thinking with images” concept,
recent efforts have explored stimulating the use of visual information in
the reasoning process to enhance model performance in perception and
reasoning tasks. However, to the best of our knowledge, no open-source
work currently offers a feature set as rich as proprietary models (OpenAl
03 [30]), which can perform diverse image manipulations and simultane-
ously enhance logical reasoning capabilities through code.

In this paper, we make a preliminary attempt in this direction by intro-
ducing Thyme (Think Beyond Images), a novel paradigm for enabling
multimodal large language models to transcend existing “think with im-
ages” approaches by autonomously generating and executing diverse image
processing and computational operations via executable code (Figure 2).
This approach not only facilitates a rich, on-the-fly set of image manipula-
tions (e.g., cropping, rotation, contrast enhancement), but also allows for
mathematical computations, all while maintaining high autonomy in decid-
ing when and how to apply these operations. We activate this capability
through a two-stage training strategy: an initial Supervised Fine-Tuning
(SFT) on a curated dataset of 500K samples to teach code generation, fol-
lowed by a Reinforcement Learning (RL) phase to refine decision-making.
For the RL stage, we manually collect and design high-resolution question-
answer pairs to increase the learning difficulty, and we propose GRPO-ATS
(Group Relative Policy Optimization with Adaptive Temperature Sampling),
an algorithm that applies distinct temperatures to text and code generation
to balance reasoning exploration with code execution precision. We con-
duct extensive experimental analysis and ablation studies. As shown in
Figure 1, comprehensive evaluations on nearly 20 benchmarks show that
Thyme yields significant and consistent performance gains, particularly in
challenging high-resolution perception and complex reasoning tasks.

1 Introduction

Recent years have witnessed considerable interest in enabling multimodal large language
models (MLLMs) [2, 42, 38, 50, 40, 4, 10] to "think with images"—that is, to incorporate
visual inputs as part of their reasoning process. Existing approaches to realize this capability
generally fall into two categories. One category involves thinking with generated images
methods [5, 56, 46], in which the model first generates an image to guide subsequent
reasoning. This approach offers significant advantages in scenarios requiring imagination
or auxiliary visual cues, such as drawing auxiliary lines to solve mathematical problems.
However, generated images often suffer from quality limitations that hinder the preservation
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Figure 1: Benchmark performance of Thyme. The comprehensive set of image manipula-
tion capabilities enables Thyme to achieve significant improvements over the baseline in
perception tasks. By leveraging its ability to convert complex mathematical reasoning into
executable code, it consistently outperforms baselines in mathematical reasoning bench-
marks. Furthermore, the observed gains across a wide range of general benchmarks further
validate the effectiveness of our training approach.

of fine-grained original details, thus constraining improvements in core visual perception
tasks. Moreover, the substantial computational cost associated with image generation results
in considerable inference latency, which undermines real-time applicability. The other
category focuses on thinking with cropping, in which the model is trained to select relevant
image regions (e.g., by outputting bounding boxes [37, 59, 14, 34, 59, 67, 42]), which are
then cropped and processed externally. While this strategy enhances perception accuracy
and mitigates hallucination, its functionality remains relatively limited. Specifically, it can
only perform cropping through bounding box outputs, falling short of the multifunctionality
demonstrated by OpenAl’s O3 [30], which supports a broader range of operations such as
rotation, contrast enhancement, and even coding.

To overcome these challenges, we propose a novel paradigm called Think Beyond Images
(Thyme), illustrated in Figure 2, guided by four core principles:

¢ Rich Functionality: Enables the model to support a wide range of common image opera-
tions such as cropping, scaling, rotating, and contrast enhancement, as well as complex
mathematical computations.

o High Autonomy: Thyme exhibits high autonomy, capable of deciding whether to perform
image operations, determining what operations to apply, and executing the functions by
dynamically generating code — all without human intervention for specific tasks.

o Efficient End-to-End Training: We utilize an end-to-end supervised finetuning + re-
inforcement learning (SFT+RL) to minimize training costs and rapidly unlock diverse
model capabilities. Notably, the SFT stage requires only 200 GPU hours to activate all the
functionalities mentioned above, while the RL stage further strengthens these abilities.

o Significant and Stable Performance Gains: We evaluate nearly 20 benchmarks span-
ning three major categories: perception, reasoning, and general tasks. Under the
Thyme paradigm, the model achieves consistent and substantial performance improve-
ments across all these task categories.

To realize this vision, our technical roadmap comprises the following key components:

¢ SFT Data Construction: Leveraging over 4 million raw data sources, we curate a high-
quality SFT dataset of approximately 500K samples encompassing diverse scenarios: (a)
image operations and computations requiring no coding; (b) cropping of complex or
high-resolution images; (c) correction of images rotated by large angles; (d) enhancement
of low-contrast images; (e) tasks involving complex code-based computations to boost
understanding; and (f) multi-turn interactive scenarios, such as iterative magnification.

o SFT Training Strategy: To accommodate the diversity of functionality, we implement spe-
cific training schemes. Specifically, outputs and environment feedback from the sandbox
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Figure 2: Overall pipeline of the Thyme, illustrating the interaction between the model and
the sandbox for iterative reasoning and code execution. Key processes such as reasoning,
code generation, sandbox execution, and result feedback are highlighted.

are masked during loss computation to prevent gradient contamination; only the model’s
last-round response in multi-turn dialogues is used for loss calculation; and annealing
techniques are applied on long-tail complex computation samples to thoroughly activate
the model’s Thyme capabilities.

o RL Data Construction. Our RL dataset primarily consists of two parts. The first part
involves filtering open-source data, which contains a mixture of perception and reasoning
tasks. However, the image resolution and complexity in public datasets are limited.
Therefore, we manually collect and annotate 10,000 high-resolution and perceptually
challenging complex perception images. These images are carefully curated for high
resolution and complexity, focusing on enhancing the model’s perceptual capabilities and
addressing more difficult tasks.

o RL Algorithm Design. During the reinforcement learning phase, we observe that using a
high sampling temperature for code generation leads to low code usability—sampling any
invalid characters or spaces when generating variable names will cause the entire code
snippet to fail execution. To mitigate this, we propose GRPO with Adaptive Temperature
Sampling (GRPO-ATS ), which applies different temperatures for text and code generation.
Specifically, a temperature of 1.0 encourages exploration during text generation, while a
temperature of 0.0 minimizes randomness during code generation, thereby ensuring code
validity and reducing runtime errors.

¢ Sandbox Design. We develop a secure sandbox environment capable of executing model-
generated code within strict time limits and returning results. This environment minimizes
the model’s code burden by automatically handling formatting, variable definitions, and
boundary conditions related to image operations, significantly improving code usability
without altering its semantic intent.

Thyme effectively fulfills our vision by combining high autonomy with rich functionality. It
can assess the complexity of a given problem and determine whether tool usage is necessary.
When required, it autonomously defines and invokes tools through code, even performing
multiple operations such as cropping, zooming, and rotating in a single execution. More-
over, the SFT training phase requires only about 200 GPU hours to activate the model’s
fundamental abilities to perform various image manipulations and computations, reflecting
favorable computational efficiency. We conduct comprehensive evaluations of Thyme across
more than 20 multimodal benchmarks. Experimental results in Figure 1 demonstrate that
Thyme exhibits significant and consistent advantages in fundamental perception, complex
reasoning, and computation tasks.

2 Preliminary and Overall Pipeline

As shown in Figure 2, the overall pipeline mainly consists of two components: the model
and the sandbox. Given a user input, the model first generates a reasoning process, which



110
111

112
113
114
115
116
17
118
119
120

121
122
123
124
125
126

127
128
129

130

131
132

133

134
135
136
137
138
139
140
141
142
143
144
145

code

( y c
N 4 e al - 2
| @L Data Pool | sampine [ *“MLLM J o [ [2)_sandbox J fiacd [ MLLM J fitering Cold-Start
Dataset
_—
| -m Prompt Pool :{.}:;\Ge":m;ec;z::wns O Discard non-executable codes ¢ Discard low -quality
n execution results.

(

Figure 3: SFT Data Construction Pipeline. First, samples are taken from an existing dataset
and prompts are constructed based on the target functions (such as cropping, rotating,
etc.). The model generates a thinking process and corresponding code based on the prompt.
The code is then executed in a sandbox environment to filter out samples that fail to run
properly. The remaining samples are reviewed by an additional MLLM to verify whether the
code execution results align with the thinking process and effectively answer the question,
eliminating invalid code samples. Finally, manual review is conducted to remove low-quality
samples, ensuring the quality of the cold-start dataset.

includes analyzing the problem and deciding, based on the type and difficulty of the problem,
whether to generate code.

If no code generation is required, this implies the problem is simple, or that through
previous dialogue rounds, relevant code operations have already successfully solved the
problem. In such cases, the answer is returned directly. If code generation is needed,
the model autonomously produces the code. Our training data covers several types of
image operations such as cropping, zooming, rotation, contrast enhancement, and computations.
The model may implement one or a combination of these functions in the generated code,
for example performing cropping, zooming, and contrast enhancement simultaneously.
The input parameters of these operations, such as the contrast enhancement factor, crop
coordinates, and zoom ratio, are all decided by the model itself with no external constraints.

The generated code is then executed within an external sandbox, whose main function is
to securely handle the input code and return execution results. Inside the sandbox, we
utilize Python’s built-in modules such as ast, autopep8, etc., to perform code formatting,
correct input-output variable properties, and fix code input parameters. This is done without
affecting the code functionality but to avoid errors caused by trivial code details, thereby
reducing the model’s code burden and improving code usability.

Finally, the code execution results are returned to the model for the next dialogue round,
and the model conducts reasoning based on these results to continue the interaction. We
demonstrate the construction process and considerations for the sandbox section in Section A.

3 Thyme-SFT Cold Start

In this section, we introduce the data construction, data composition, and training strategies
employed for the cold start of Thyme.

3.1 Training Data Construction Pipeline

This subsection details the construction of the training datasets, which are organized into
three task categories reflecting increasing complexity. The first category includes tasks
suitable for direct answer generation without the need for code. The second category
comprises tasks that require image-based operations, such as cropping, rotation, contrast
enhancement, as well as mathematical computations. Finally, the third category consists of
tasks that extend over multiple interaction rounds—for instance, cases where initial image
manipulations fail or require refinement, and complex problems that involve multi-turn
reasoning and calculations. All original prompts are sourced from a variety of open datasets,
including LLaVA-OV-Image [17], MM-RLHF [62], SMR [61], V* [47], MM-Eureka [27],
arXivQA [19], and Retool [8], ensuring broad coverage and diversity. The overall data
construction pipeline is shown in Figure 3 and data samples are shown in Figure 4. We defer
the detailed data taxonomy and construction methodology to Appendix B.
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Figure 4: Visualization of SFT Data instances. The left side presents a sample of data
related to image processing operations, while the right side showcases a sample of data
related to complex computations.

3.2 Training Strategy

Our system prompt and user prompt are presented in Table 2 and Table 3, respectively. In the
system prompt, we explicitly define the task format, the expected output code style, and the
format for sandbox environment execution results, ensuring the model clearly understands
the task requirements. Meanwhile, the user prompt includes the image path and image size,
facilitating proper image loading and preventing out-of-bounds operations. It also specifies
the required output format.

We formalize the training process of Thyme to facilitate a clearer understanding of the
employed training techniques. Given an image I and a question (), the model generates a
sequence of thinking process 7" along with optional code C'. If code is generated, an external
sandbox executes it and returns the execution result S, which may be one or multiple
images, or a computed numeric result. The model iteratively interacts based on the previous
execution results, continuing this procedure until the question is resolved and the final
answer a is produced. Therefore, each training sample can be represented as:

X = {(17 Q)7 ([TOa 007 SO]7 RS [Ttv CL])}
where ¢ denotes the maximum number of interaction rounds for the sample.

During training, we encountered several challenges. First, due to the special nature of two-
round dialogue data, some unexpected patterns emerged: the model tends to generate an
incorrect or insufficient analysis and code in the first round, then corrects it in the second
round, rendering the first round essentially ineffective. The second challenge is the relatively
small quantity of math data compared to image manipulation data; when trained jointly, the
model barely learns to generate computation-related code.

To address these issues, we devise several training-phase strategies:

o Train on the Last Round Only: For samples with two or more rounds, mask out all
content before and including the last <sandbox_output></sandbox_output> tag, such
that the model learns only to generate outputs corresponding to the final round. In other
words, all [T;_1,Cy_1, S;—1] are masked out, and only the logic and results of the last
round are learned.

¢ Sandbox Content Exclusion: Throughout all training stages, we exclude the sandbox
identifier <sandbox_output></sandbox_output> markers and sandbox execution results
from the training targets. Formally, all S;—; . ; are masked out and do not participate in
training, thereby preventing the model from learning to directly predict sandbox outputs.

o Math Data Annealing: To prevent the math data from being overwhelmed by image
operation data, first train on all image-related data, then fine-tune exclusively on math data
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Figure 5: Visualization of RL Data Instances. Thyme RL data focuses on complex scenarios
and high-resolution image interpretation. Human annotators identify challenging objects
within the images, design corresponding questions, and provide answers, along with the
appropriate bounding boxes.

with a lower learning rate. Since math data usually involves multi-turn code with weak
inter-round correlations, all rounds are learned jointly in this phase instead of applying
the last-round-only strategy.

4 Thyme-RL

We present the construction of RL data for Thyme, including the selection of data from public
datasets and the manual creation of complex real-world visual question answering data to
enhance task difficulty. Finally, we introduce the algorithmic and architectural innovations
implemented during the RL phase.

4.1 RL Data Construction and Annotation

Public Data Selection: Similar to the existing study [67], we curate RL data from a diverse
range of prompt sources, including V* [47], arXivQA [19], and ThinkLite-VL [45], targeting
both perception tasks, and reasoning tasks, respectively. Manual verification removes
instances where the questions and images do not match or lack relevance.

Complex Image Data and Question Construction: Publicly available datasets generally
contain images with limited resolution and insufficient perceptual complexity, which sub-
stantially restricts the effectiveness of the Thyme framework in reinforcement learning. To
address this gap, the following pipeline constructs relevant data:

¢ Manually collect 30,000 high-resolution images from the internet, each with either width
or height exceeding 2048 pixels, to ensure sufficient image complexity.

o Employ a team of 15 annotators to label these images. The annotation guidelines appear
in Section D. Specifically, annotators design, for each image, a concrete question targeting
small and challenging-to-recognize objects occupying no more than 5% of the image
resolution, ensuring high recognition difficulty. Users require zooming in on the image to
clearly identify these small objects.

All annotation data undergo at least one round of cross-checking, followed by unified
inspection and acceptance by three multimodal experts to ensure data quality.

4.2 Preliminary of Reinforcement Learning Algorithm

Training Algorithm: We adopt a fully on-policy variant of Group Relative Policy Optimiza-
tion (GRPO) [35] algorithm. For each problem consisting of an image I and a question Q,
the algorithm samples a group of interaction trajectories {71, 7o, . .., 7} from the policy m,
where each trajectory 7; represents a complete multi-round interaction:

7i = {(1,Q); ([Ti,0,Ci0,Si0)s - - Titirai]) }
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The policy is updated by maximizing the following objective:

G |7l

o 2 (s

=1 j=1

jGRPO(Q) = — BDxL [7"0||7TrefD

E(1,Q~D {738 o (11,Q)

11|2|

where |7;] is the total number of tokens generated by the model in trajectory i, specifi-

cally: |7 = S0 Tkl + 3005, "3 |Cik| + las| and A4, ; is the advantage computed from
the final rewards {rq,r9,.. Tg} of the complete trajectories in the same group: A4;; =
r;—mean({r;}& )
std({r:}{2,)
of the current policy 7y from a reference policy 7y, with 8 controlling the strength of the
constraint. The reward r; evaluates the quality of the entire trajectory, including the effec-
tiveness of code generation, sandbox utilization, and the correctness of the final answer q;.
Importantly, during the RL stage, the trajectory length |7;| and the summation over tokens
in the advantage calculation exclude the sandbox-related content S; j, as these are external
observations rather than outputs of the policy model.

for each token j in 7; The term —S8Dxy [ ||mref] penalizes large deviations

4.3 GRPO with Adaptive Temperature Sampling

(2)

Our motivation is that code generation and tex- User Input
tual reasoning require different sampling parame- - N

ters. Code generation tasks—such as image manip- Actor B~

ulation and numerical computation—follow pre- {iteenceany! L 1‘11
dictable logical sequences. These sequences typ- ¢ “ Text @
ically involve loading data, defining parameters, Sandbox Reasoning’
executing operations, and saving results. Such pro- R
cesses require precision rather than exploration. - o )

Empirical evidence shows that high temperature q Generation )
settings significantly reduce code reliability. Even
minor errors, like an unexpected space character
during variable definition, can cause complete code
failure. Therefore, we set the temperature to 0 dur-
ing code generation phases to ensure deterministic
output. For natural language reasoning, however,
we employ a temperature of 1.0. This setting en-
courages broader conceptual exploration and di-
verse expression. As shown in Figure 6, our sys-
tem implements dynamic temperature adjustment.
When the <code> token appears, the temperature
drops to 0. After code generation completes, the system returns to the default temperature
setting for normal text generation. In our experiments, we observe two main benefits :

Figure 6: GRPO-ATS Sampling
Pieline. The model sets the temper-
ature 7 to 0 when generating code
to reduce diversity and ensure accu-
racy; when generating the reasoning
process, the temperature is set to 1
to encourage exploration. Sandbox
outputs do not participate in training
or advantage estimation.

o It improves sample efficiency. During rollouts of RL, many samples become unusable due
to chaotic or erroneous code generation, for example, continuously attempting to generate
code incorrectly and failing until the maximum interaction steps are exhausted. Lowering
the code temperature helps these samples recover and become valid.

o It prevents the model from collapsing into completely avoiding code generation. Since
writing code is more error-prone than natural language reasoning, without adjusting
the sampling parameters, most code produced during training rollouts is invalid. Over
time, this causes the model to become overly conservative and tend to avoid writing code
altogether. Reducing the temperature and thus increasing the usability of generated code
effectively mitigates this issue.

Sampling Optimization: Another major challenge stems from the multi-turn interactive
nature of the task: the maximum number of interaction rounds imposes a strict sampling time
budget, as extended or repetitive dialogues significantly increase computational overhead.
When the model enters a cycle of repetitive errors, it produces redundant outputs across
multiple turns, thereby wasting computational resources on invalid samples. To mitigate
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Table 1: Performance Comparison on the MME-Realworld. Thyme-7B demonstrates sub-
stantial improvements over the Qwen2.5-VL-7B baseline, particularly in more challenging
perception and reasoning domains such as Monitoring and Autonomous Driving, where
the baseline’s performance is weaker.

Perception
Model Monitoring  Autonomous Driving ~ OCR  Diagram and Table ~ Remote Sensing — Overall
Qwen2.5-VL-7B 38.75 22.70 87.00 78.83 45.40 60.94
Thyme-VL-7B 49.27 37.46 88.36 80.86 53.93 67.10
Improvement 1 27.14% 64.99% 1.56% 2.57% 18.80% 10.10%
Reasoning
Model Monitoring ~ Autonomous Driving ~ OCR  Diagram and Table ~ Remote Sensing ~ Overall
Qwen2.5-VL-7B 26.10 24.25 64.80 63.40 - 38.59
Thyme-VL-7B 47.39 32.29 70.60 70.40 - 48.38

Improvement 1 81.57% 33.16% 8.95% 11.04% - 25.37%

this, we implement an early termination mechanism during training. Specifically, we utilize
the Rabin-Karp rolling hash algorithm [16, 15] to count occurrences of all substrings of fixed
length within the model’s output. If any substring repeats so frequently that the cumulative
length of its occurrences exceeds 50% of the total output length, we classify the output as
repetitive. Once this criterion is met, the sampling process for that particular sample is
immediately halted to avoid unnecessary computation. Additionally, during training, we
enforce a manual cap on the maximum allowed number of dialogue turns, denoted as max
iterations. Dialogues that exceed this limit without terminating are truncated to control
context length, thereby improving training efficiency.

4.4 Reward Function Design:

o Formatting Reward: The model’s output is required to conform to a strict structure,
enclosed by <think></think> tags followed by <answer></answer> tags. This encourages
the model to explicitly perform reasoning before producing a final answer, improving the
interpretability.

¢ Result Reward: Since not all targets are strictly numerical or formulaic answers amenable
to rule-based comparison, we first apply a rule-based method to directly compare the
model output with the ground truth answer. If the rule-based matching fails, we then
utilize an auxiliary MLLM, Qwen-2.5-VL-72B, to compare the model-generated output
against the ground truth by assessing semantic equivalence and correctness. This hybrid
reward approach, combining rule-based and model-based evaluation, improves scoring
efficiency and is well-suited for open-ended question answering scenarios.

o Consistency Reward [42, 60]: This component evaluates whether the final answer is
logically derived from the preceding reasoning steps, ensuring coherence between the
thought process and the conclusion.

Integrating the consistency reward alongside formatting and result rewards can cause
unintended behavior: the model might receive a high total reward by maintaining consistency
even when the chosen answer is incorrect. To prevent this, we define the final reward
as follows: Final Reward r = Result Reward x (1 + 0.5 x Consistency Reward) + 0.5 x
Formatting Reward. This formulation ensures that the consistency bonus is considered only
when the model’s answer is correct, avoiding excessive prioritization of consistency at the
expense of answer accuracy.

5 Experiments

Due to space constraints, we relegate the, experimental setup, baselines and evaluation
benchmarks, as well as the ablation studies and case analyses of model outputs to the
appendix C. In the main paper, we focus on demonstrating the performance improvements
brought by Thyme to the model.
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Main Results: Figure 1 and Table 4 presents a comprehensive comparison between Thyme
and other leading multimodal models across a range of benchmarks covering Perception,
Reasoning, and General tasks. In perception tasks, Thyme demonstrates clear advantages
even over larger-scale models such as Qwen2.5-VL 32B, indicating that simply scaling model
size does not effectively address perception challenges. Instead, Thyme’s test-time scaling
strategy proves highly beneficial for perception tasks. Furthermore, by converting complex
computations into executable code through training, Thyme achieves notable improvements
in reasoning abilities. However, in this domain, the benefits of scaling model size are more
pronounced, suggesting that reasoning and logical inference capabilities largely depend on
the inherent knowledge within the model itself. Thyme mainly enhances visual recognition
quality and helps avoid the model independently predicting overly complex computations.
Finally, due to the improvements in both perception and reasoning, Thyme shows significant
gains in many general tasks, particularly with a substantial reduction in hallucination.

Delve deep into perception tasks: Taking MME-Realworld as an example, it includes many
high-resolution perception tasks in real-world scenarios. In Table 5, we show the performance
of Thyme and the baseline on various tasks. It can be seen that on tasks where the baseline
model already performs well, such as OCR, Diagram and Table, achieving accuracy of over
60% and even close to 90%, the improvement from Thyme is limited. However, for more
difficult tasks where Qwen2.5-VL-7B’s perception is relatively poor, such as monitoring and
autonomous driving, Thyme shows an improvement of over 25% in both perception and
reasoning tasks, with the improvement in reasoning tasks being more pronounced.

6 Conclusion and Limitations

We introduce Thyme, a novel paradigm that empowers MLLMs to autonomously generate
and execute code for a wide range of image manipulations and complex computations.
Our approach utilizes a two-stage training strategy, beginning with a comprehensive SFT
phase on a curated 500K-sample dataset to instill foundational coding abilities for tasks like
cropping, rotation, and mathematical calculations. This is followed by a RL phase, where
we employ our proposed GRPO-ATS algorithm to refine the model’s decision-making
and executional precision. GRPO-ATS adaptively uses different sampling temperatures for
text and code generation, which effectively balances creative reasoning with the need for
accurate, executable code. Extensive evaluations across nearly 20 benchmarks demonstrate
that Thyme achieves significant and consistent performance improvements over the baseline,
particularly in challenging high-resolution perception and complex reasoning tasks.

Our work has several limitations that open avenues for future research:

e Model Capability. The performance of Thymeis inherently constrained by the
capabilities of its base model. The current model’s proficiency in precise object
localization and sophisticated code generation is limited. This can occasionally lead
to the generation of incorrect cropping operations or non-standard, unexecutable
code. We believe that leveraging more powerful foundation models (i.e., a stronger
base model) could significantly mitigate these issues, leading to more reliable and
accurate tool use.

e Evaluation Scope. Our evaluation is limited by the nature of existing benchmarks.
The majority of image data in widely-used benchmarks consists of high-quality,
well-oriented images from everyday scenarios. Consequently, there is a lack of
robust numerical evaluation for certain image manipulation capabilities that Thyme
enables, such as correcting for image rotation or enhancing low-contrast images,
as these scenarios are underrepresented. The development of new benchmarks
specifically designed to assess these advanced image processing operations would
be invaluable for a more comprehensive evaluation of models like Thyme.
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A Sandbox Building

Our framework requires a robust sandbox with two essential properties. First, it ensures basic
security and robustness for the operating system, guaranteeing that any image processing
or computational operations executed within the sandbox complete within a reasonable
timeframe or throw appropriate errors. At the same time, it prevents unauthorized system
modifications, such as file deletion or renaming, which could corrupt existing data or runtime
configurations.

We observe that smaller models (e.g., 7B parameters) often struggle to generate flawless code,
frequently encountering minor issues such as formatting problems (improper indentation),
boundary condition errors (cropping boxes exceeding image dimensions), and input/output
handling (omitting input variables or output printing). Therefore, the sandbox design aims
to reduce the model’s coding burden by automatically handling these minor issues when
possible.

To address sandbox security and robustness, we apply the following strategies:

o We define a list of dangerous operations—such as remove, unlink, move, and rename—that
may cause system data or configuration failures. Before execution, the code is scanned for
these operations; if it contains any, execution skips and a warning raises as an error.

o We limit the maximum execution time, empirically set to 10 seconds. Exceeding this limit
results in a timeout error. These measures help ensure code isolates from the local system
and runs safely.

To reduce the model’s code generation burden, we implement the following optimizations:

o We apply Python’s built-in autopep8 for code formatting and indentation alignment.

¢ Using the ast module, we traverse the code to identify variables in tuple formats. If
variable names contain box or coord, we infer they represent cropping parameters; these
parameters adjust to fit within the input image boundaries to avoid execution errors.

o Before execution, we preset local variables such as image_path and import packages
like cv2. After execution, we check for newly created variables indicative of processed
outputs (e.g., those containing ‘processed_path’) to ensure correct execution even if
input/output variables do not explicitly define in the model-generated code.

o Additionally, we observe that when the model outputs multiple code segments, context or
variable dependencies often arise; for example, certain Python packages are imported only
in the first segment, while subsequent segments rely on them directly. To address this,
we record all variables throughout the model’s code execution process and incorporate
historical context in multi-round sandbox invocations.
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B Long-CoT Data Construction

Focusing first on the simplest category, which involves no code generation, the objec-
tive is to train the model to confidently bypass the intermediate coding step and directly
produce accurate final answers for relatively straightforward questions. These samples
derive from LLaVA-OV-Image data, where for each given question and accompanying image,
Qwen2.5-VL-72B assesses whether code generation is necessary. The prompt template guid-
ing Qwen2.5-VL-72B’s decision-making process is illustrated in Table 8. From the entire pool
of samples requiring no tool intervention, we randomly select 100k samples to constitute
this training subset.

Real-World Thyme Data: Moving towards increased complexity, samples requiring code-
based operations undergo rigorous verification and quality control. Initially, all code snippets
pass through our sandbox environment where non-executable codes are discarded to ensure
only valid samples proceed. Subsequently, the execution outputs, alongside the model’s
own analysis and answers, feed back into Qwen2.5-VL-72B to verify whether the intended
goals—such as clearer identification of the target region by cropping or enhanced readability
through rotation—are effectively achieved. The model flags and eliminates any samples
where code does not fulfill those expectations. To further enhance data reliability, two
multimodal experts perform an additional round of meticulous screening, filtering out
ambiguous or borderline cases beyond the model’s discernment. These samples reflect
realistic and complex visual-question answering scenarios drawn from more than 4 million
instances across public datasets, culminating in a refined collection of 50k high-quality,
executable QA pairs.

Manually Constructed Thyme Data: Given that real-world Thyme data often have high
complexity and quality but limited quantity—we complement this by deliberately creating
an additional manually constructed dataset'. This curated data supplements and enriches
the training distribution, helping the model perform robustly across various task types. The
verification and filtering protocols for this synthetic dataset parallel those used for real-world
data, ensuring consistent quality standards.

o Coding Data 1: Cropping — This dataset draws primarily from V*, which features
questions paired with images, corresponding answers, and ground truth bounding box
coordinates for target objects. By applying the prompt outlined in Table 9, the model
is prompted to explain the rationale behind cropping the object and its contribution
to problem-solving. Cropping then proceeds based on the ground truth coordinates
before providing answers. Despite leveraging accurate bounding box information, code
generation quality constraints restrict the final dataset size to 28k samples.

¢ Coding Data 2: Rotation — Addressing the scarcity of rotated image samples in con-
ventional training datasets, we augment the data by randomly rotating images within
the collected pool at angles ranging from 30° to 335°. Applying the prompt template in
Table 10, the model generates appropriate processing code and accompanying analytical
commentary informed by ground truth rotation angles. Notably, we observe the relative
insensitivity of existing MLLMs to rotation angles; that is, without ground truth inputs,
the majority of samples cannot be reoriented correctly. After careful filtering, this yields a
set of 14k high-fidelity samples.

o Coding Data 3: Low-Contrast Enhancement — Derived mainly from OCR data within
LLaVA-OV-Image, this subset targets scenarios in which contrast enhancement reduces the
difficulty of text recognition, thereby aiding the model’s text extraction capabilities. We
repurpose prompts akin to those in Table 9, swapping out cropping directives for contrast
enhancement instructions. Qwen2.5-VL-72B generates explanations of the enhancement’s
purpose, corresponding code, and final visual results. The curated dataset contains
approximately 10k high-quality training examples.

'"Most real-world data features high-resolution images or complex problems where additional
image processing significantly improves perceptual effectiveness. In contrast, manually constructed
data often contains smaller resolution images (e.g., V*), where using prompts from Table 8 might
cause the model to simply output answers, necessitating specialized construction procedures.
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¢ Coding Data 4: Computational Code — To not only support image manipulation but
also foster enhanced logical reasoning through mathematical computation, we construct
a specialized math-centric dataset. Its principal source is MM-Eureka and Retool. Initial
long-chain-of-thought solutions are generated by Gemini 2.5 Pro, which are then trans-
formed by GPT-4o into executable code segments.” This process results in 15k samples
focused on computational reasoning via code.

Multi-Round Conversation: Except for the Computational Code data, all the aforementioned
datasets involve only a single round of code generation and execution. Our experiments
reveal that models trained solely on single-turn interactions lack error-correction capabilities.
Specifically, even if the model incorrectly crops a sub-region, it proceeds to generate an
answer based on the flawed crop without attempting to re-crop or further adjust the targeted
area. To address this limitation, we manually construct multi-round conversational datasets
aimed at teaching the model to leverage historical code execution outcomes for deeper
analysis and error rectification. This multi-round data is categorized into two types:

o Further Enhancement: The model refines or augments previous results based on feedback.
We sample data from V* and utilize the prompt shown in Table 9, but initially provide a
larger bounding box that fully contains the ground truth cropping box. Based on the code
execution results from this first round, the model generates further analysis and code to
crop precisely to the ground truth bounding box.

o Error Correction: The model detects and fixes mistakes identified in earlier steps. Similarly,
we provide an incorrect bounding box in the first step. In the second step, the model
generates the corrected bounding box with an explanation on why the cropping region
needs adjustment.

Such multi-round data effectively instructs the model to revise its prior image manipulation
errors and further enhance the quality of its operations.

C Extended Experiments

C.1 Experimental Setting

Hyperparameters: Our training procedure is divided into three main stages. The first stage
is Thyme-SFT, which begins with training on image manipulation-related data, followed by
annealing on mathematical code-related data. The learning rates for these two phases are
setto 1 x 107° and 1 x 1079, respectively, while all other hyperparameters remain consistent.
The batch size is set to 128, and a total of 3 epochs are trained. The checkpoint from the
final epoch of this stage is used to initialize the subsequent phase. The warmup ratio is
configured to 0.05. The reinforcement learning stage utilizes a learning rate of 5 x 107, with
training conducted for 1 epoch. The KL divergence coefficient is set to 0.001, the batch size
is 256, the number of rollouts is 4, and the repetition penalty is configured to 1.05. We select
Qwen 2.5 VL 7B as the backbone [2]. All training is conducted on 32 NVIDIA H800 GPUs,
requiring approximately 224 GPU hours in total. The annealing stage consumes around 8
GPU hours, whereas the reinforcement learning stage demands over 1200 GPU hours.

C.2 Benchmarks and baselines

Benchmarks and metrics: We mainly select three categories of benchmarks. The first
category focuses on perception tasks because Thyme’s image operations mainly aim to
enhance perception ability. These benchmarks include the MME-RealWorld [64] series,
HR Bench [44], V* [47], RealWorld QA [48], etc. We report results for different splits of
each benchmark. For example, for the MME-RealWorld series, we report perception and

2Al’chough Gemini 2.5 Pro produces detailed and comprehensive solutions, its code tends to be
overly complex and heavily annotated, making it less suitable for model training. Therefore, GPT-40
handles code conversion to produce leaner implementations.
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Table 2: System Prompt for SFT.

You are a helpful assistant.

Solve the following problem step by step, and optionally write Python code for
image manipulation to enhance your reasoning process. The Python code will be
executed by an external sandbox, and the processed image or result (wrapped in
<sandbox_output></sandbox_output>) can be returned to aid your reasoning and
help you arrive at the final answer.

Reasoning & Image Manipulation (Optional but Encouraged):

e You have the capability to write executable Python code to perform image manip-
ulations (e.g., cropping to a Region of Interest (ROI), resizing, rotation, adjusting
contrast) or perform calculation for better reasoning.

e The code will be executed in a secure sandbox, and its output will be provided back
to you for further analysis.

e All Python code snippets must be wrapped as follows:

<code>
* T “python
# your code.

</code>

o At the end of the code, print the path of the processed image (processed_path) or
the result for further processing in a sandbox environment.

Table 3: User Prompt for SFT.

<image>

User’s Question: [User Question]
User Image Path: [Image Path]
User Image Size: [Image Size]

Output Format (strict adherence required):

<think>Your detailed reasoning process, including any code, should go
here.</think>

<answer>Your final answer to the user’s question goes here.</answer>

reasoning accuracy separately. For HR Bench, we report Fine-grained Single-instance Per-
ception (FSP) and Fine-grained Cross-instance Perception (FCP) separately. For V* [47], we
report recognition and spatial relationship reasoning performance. The second category is
reasoning tasks since Thyme not only manipulates images but also can transform complex
computations into code, thus its reasoning ability is also strengthened. Therefore, we select
MathVision [43], MathVista [25], MathVerse [57], LogicVista [49], WeMath [32], and Visu-
Logic [53] to verify the model’s reasoning ability. The third category consists of more general
tasks, which primarily verify whether the model gains some performance improvement
in general tasks as perception and reasoning abilities increase. These benchmarks include
Hallucination bench [21], MMStar [3], MMVet Hard [55], OCR Bench [22], Chart QA [26],
and BLINK [12].
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Table 4: Performance Comparison on Perception, Reasoning, and General Tasks. For all
open-source models, the best performance for each metric is bolded, and the second best is

underlined. font indicates improvement over the baseline Qwen 2.5-VL 7B.
. Thyme-VL Qwen2.5-VL InternVL3 Qwen2.5-VL
Benchmark Split 7B 7B 8B 3B GPT-40
Perception
FSp 91.0 85.2 78.8 87.5 66.8
HRbench-4K FCP 63.0 52.2 61.3 59.3 63.3
Overall 77.0 68.8 70.0 73.4 65.0
FSp 86.5 78.8 78.8 82.3 60.8
HRbench-8K FCP 57.5 51.8 59.8 58.5 58.5
Overall 72.0 65.3 69.3 70.4 59.6
Perception 67.1 60.6 63.5 63.8 64.9
MME-Real Reasoning 48.4 38.6 449 40.4 47.3
Overall 64.8 58.3 61.3 61.0 62.8
Perception 70.5 68.0 65.5 68.0 63.6
MME-Real-CN Reasoning 52.1 45.6 50.0 44 .4 51.3
Overall 64.6 60.8 60.5 60.5 59.7
Perception 59.1 48.8 51.0 50.6 54.4
MME-Real-Lite =~ Reasoning 49.1 37.7 44.8 39.3 48.3
Overall 55.2 441 48.6 46.2 52.0
Attribute 83.5 78.2 67.8 77.4 72.2
\% Spatial 80.3 73.6 73.7 86.8 60.5
Overall 82.2 76.4 70.2 81.2 67.5
RealWorld QA Overall 70.2 68.2 70.0 70.2 | 755
Reasoning
MathVision Mini 27.6 27.0 26.3 35.2 36.5
MathVista Mini 70.0 68.2 70.4 72.2 63.4
MathVerse Vision Only 39.1 35.2 29.2 40.0 35.3
LogicVista Overall 49.0 39.8 45.6 54.4 53.2
WeMath Overall 39.3 34.3 31.7 47.1 442
VisuLogic Overall 23.4 20.0 249 25.8 26.7
General

aAcc 71.0 65.6 65.9 71.2 65.2
Hallucination fAcc 483 38.8 413 50.6 448
qAcc 47.7 40.4 40.7 49.2 40.7
Overall 55.6 48.3 49.3 57.0 50.2
MMStar Overall 65.9 64.7 68.5 69.1 65.7
MMVet Hard Overall 58.3 52.9 55.1 48.4 58.3
OCR Bench Overall 86.3 88.4 88.1 85.5 809.0
Human 80.0 72.5 77.0 76.9 795
Chart QA Augment 92.2 94.9 94.9 82.6 91.9
Overall 86.1 83.7 85.9 81.1 85.7
BLINK Val 56.1 56.4 55.5 63.6 | 633

Baselines: We take Qwen-2.5-VL-7B [1] as the primary baseline. Additionally, we compare

the performance of Thyme-7B with other MLLMs such as InternVL3-8B [

], as well as

larger-scale models including Qwen-2.5-VL-32B and the closed-source model GPT-4o0 [28].
To ensure a fair comparison, we employ VLMEvalKit [7] as the evaluation pipeline.

C.3 Evaluation Results

Main Results: Table 4 presents a comprehensive comparison between Thyme and other
leading multimodal models across a range of benchmarks covering Perception, Reasoning, and
General tasks. In perception tasks, Thyme demonstrates clear advantages even over larger-
scale models such as Qwen2.5-VL 32B, indicating that simply scaling model size does not
effectively address perception challenges. Instead, Thyme’s test-time scaling strategy proves
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Table 5: Performance Comparison on the MME-Realworld. Thyme-7B demonstrates sub-
stantial improvements over the Qwen2.5-VL-7B baseline, particularly in more challenging
perception and reasoning domains such as Monitoring and Autonomous Driving, where
the baseline’s performance is weaker.

Perception
Model Monitoring  Autonomous Driving ~ OCR  Diagram and Table ~ Remote Sensing — Overall
Qwen2.5-VL-7B 38.75 22.70 87.00 78.83 45.40 60.94
Thyme-VL-7B 49.27 37.46 88.36 80.86 53.93 67.10
Improvement 27.14% 64.99% 1.56% 2.57% 18.80% 10.10%
Reasoning
Model Monitoring ~ Autonomous Driving ~ OCR  Diagram and Table ~ Remote Sensing ~ Overall
Qwen2.5-VL-7B 26.10 24.25 64.80 63.40 - 38.59
Thyme-VL-7B 47.39 32.29 70.60 70.40 - 48.38

Improvement 1 81.57% 33.16% 8.95% 11.04% - 25.37%

highly beneficial for perception tasks. Furthermore, by converting complex computations
into executable code through training, Thyme achieves notable improvements in reasoning
abilities. However, in this domain, the benefits of scaling model size are more pronounced,
suggesting that reasoning and logical inference capabilities largely depend on the inherent
knowledge within the model itself. Thyme mainly enhances visual recognition quality and
helps avoid the model independently predicting overly complex computations. Finally, due
to the improvements in both perception and reasoning, Thyme shows significant gains in
many general tasks, particularly with a substantial reduction in hallucination.

Delve deep into perception tasks: Taking MME-Realworld as an example, it includes many
high-resolution perception tasks in real-world scenarios. In Table 5, we show the performance
of Thyme and the baseline on various tasks. It can be seen that on tasks where the baseline
model already performs well, such as OCR, Diagram and Table, achieving accuracy of over
60% and even close to 90%, the improvement from Thyme is limited. However, for more
difficult tasks where Qwen2.5-VL-7B’s perception is relatively poor, such as monitoring and
autonomous driving, Thyme shows an improvement of over 25% in both perception and
reasoning tasks, with the improvement in reasoning tasks being more pronounced.

C.4 Ablation and Analysis
C.4.1 The Impact of Training Strategies on the SFT Process

In this subsection, we conduct detailed ablations on different strategies during the SFT phase.
The specific results appear in Table 6. Below we introduce and compare these strategies.

¢ Naive SFT: This approach directly uses all data for SFT without incorporating any of
our training strategies. Direct SFT does not yield significant performance gains, and the
model’s output format is quite chaotic. During inference, it tends to predict the content
of the sandbox on its own, and the code blocks and sandbox outputs are sometimes
overwritten by the model’s own predictions.

¢ Mask Sandbox: In the SFT stage, we mask sandbox labels and outputs. This requires the
model only to learn how to write code and how to perform further reasoning based on
the returned results, leading to a significant enhancement in performance.

o Only Last Round: This strategy masks information from previous rounds. For tasks
involving multi-round code execution, the model only needs to learn the output of the
final round. This effectively prevents the model from learning strange patterns, such as a
tendency to produce a suboptimal piece of code in the first round and then correct it in
subsequent rounds.

¢ Without Code Comment: We also investigate the impact of the presence of comments in
the code on the model’s performance. In this line of experiments, we remove all comments
from the code in the SFT data for training, but we find the results are not satisfactory. We
speculate the reason is that while comments do not play a role during code execution, the
process of writing comments implies an understanding of the code, making the model
more logical when it writes code.
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Table 6: Impact of Different SFT Strategies. Directly mixing all SFT datasets for training
does not yield optimal results. Instead, targeted strategies are necessary, such as masking
sandbox content in the SFT data, training multi-turn interactive tasks using only the final
turn, and employing annealing training on small batches of math calculation data to teach
the model corresponding coding behaviors effectively.

Training Data Benchmark Hallucination MME-Realworld-Lite v* HRBench 8K MathVista RealWorld QA
& Split Overall Perception  Reasoning — Owverall Overall mini Overall
- Qwen 2.5 VL 7B 48.29 48.75 37.73 76.40 65.50 68.20 68.20
Ours
Naive SFT 42.20 43.97 36.00 72.72 69.75 67.60 65.62
All + Mask Sandbox 50.20 50.10 42.90 78.50 65.34 68.70 69.01
+ Only Last Round 52.88 50.47 45.46 78.53 65.12 68.40 69.67
+ wo Code Comment 51.43 49.13 4427 77.48 64.90 66.70 68.32
Math Data Annealing 53.74 51.75 45.40 79.58 65.12 68.70 69.80

Table 7: Investigation of Different Reward Design Strategies. An ablation study is per-
formed on various reward components, which are added to a baseline reward focused on
outcome and format. The study examines the effects of incorporating a Consistency re-
ward (evaluating alignment between the reasoning and the final answer), a Process reward
(scoring the quality of the thinking process), and a Code reward (based on the success-
ful execution of generated code). Observations show that adding a Consistency reward
leads to consistent performance improvements. In contrast, the Process and Code rewards
do not yield a positive gain, with the Process reward even having a negative impact on
performance.

Training Data Benchmark Hallucination MME-Realworld-Lite v* HRBench 8K MathVista RealWorld QA Av

Split Overall Perception  Reasoning ~ Owverall Overall mini Overall 8
Baselines
- Qwen 2.5 VL 7B 48.29 48.75 37.73 76.40 65.50 68.20 68.20 59.01
Thyme-SFT Data  Thyme-SFT 53.74 51.75 45.40 79.58 65.12 68.70 69.80 62.01
Reward Design

Outcome+Format 58.20 53.70 45.60 80.10 70.75 67.40 69.41 63.59
Thyme-RL Data + Consistency 56.66 58.25 49.06 81.76 72.25 69.70 72.06 65.68
+ Process Reward 55.63 52.95 44.60 80.10 72.25 67.50 67.32 62.91
+ Code Reward 52.18 56.80 49.86 8272 70.87 69.10 70.28 64.54

¢ Math Data Annealing: Since our volume of code data for mathematical calculations is
relatively small, when it is mixed with the full dataset for training, the model is rarely
observed to write computation-related code during the inference phase. The primary
goal of the SFT stage is to enable the model to learn this behavior. Therefore, although
annealing this portion of the data does not show significant performance gains compared
to the "Only Last Round" strategy, it more effectively introduces the behavior of using
code to perform complex calculations.

C.4.2 The Influence of RL Reward Design on the RL Process

In this subsection, we explore a variety of reward design strategies, summarize the challenges
encountered, and share insights with the aim of informing future work, as shown in Table 7.
Besides format rewards and outcome rewards, the main additional reward functions include:

o Consistency reward: We provide Qwen2.5-VL-72B with the last 500 characters of
the thinking process (usually a summary) and the answer content, asking it to
assess the consistency between the reasoning and the final answer.

o Code reward: This reward is the proportion of model-generated code that runs
successfully, calculated by dividing the number of successfully executed codes by
the total number of codes written. This reward encourages the model to write more
code and ensure its correctness.

¢ Process reward: The entire thinking process is fed into Qwen2.5-VL-72B, which
assigns a score based on the text quality and reasoning logic.

All additional rewards apply only when the model’s answer is correct. This prevents the
model from biasing toward generating code or maintaining consistency at the expense of
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Figure 7: Key Metrics During the RL Training Phase. The plots illustrate the dynamic
changes in average response length, accuracy reward, and consistency reward over the
training steps.

solving the problem correctly and providing accurate answers. In other words,

Reward r = Result Reward x (1 + 0.5 x ) + 0.5 x Formatting Reward.

As we can see from Table 7, the consistency reward brings consistent performance im-
provements, which aligns with observations from existing work. Scoring the quality of the
reasoning process increases the computational overhead for the reward but, conversely, has a
negative impact on performance. This is largely because the process score is highly subjective
and easy to "hack". Similarly, during training, we observe that the code reward does, to
some extent, encourage the model to write more code to help answer the question. However,
this code is not always essential for the problem—for instance, cropping an uncomplicated
graph, performing a very simple addition with code, or even generating a code block that
contains only comments. Consequently, it does not yield a positive gain in performance.

C.4.3 Analysis of the RL Learning Process

Figure 7 illustrates the dynamics of several critical metrics during the RL process, from
which we derive the following observations and findings.

First, the average response length shows a rapid initial decrease before gradually converging.
This phenomenon stems from the SFT phase, which introduces a large volume of synthetically
generated image operation data to teach the model code generation for problem-solving.
However, the images in this dataset are often not complex, rendering many of the coding
operations non-essential. During the RL phase, the model quickly discerns that for a majority
of tasks, a direct textual response is more efficient than a code-based analysis. Consequently,
there is a swift reduction in the generation of unnecessary code. Second, the result reward
exhibits a generally upward trend, which aligns with our expectations for a successful
learning process. A more noteworthy observation pertains to the consistency reward. In the
initial training stages, the average result reward is approximately 0.5, whereas the average
consistency reward is only 0.15. This disparity indicates that a significant number of initially
correct answers lack coherent reasoning, highlighting the critical role of the consistency
reward. By incorporating this reward, the model is incentivized to align its reasoning with
its final output. As training progresses, the result reward converges to approximately 0.7,
while the consistency reward increases to nearly 0.35. This demonstrates that the inclusion
of the consistency reward substantially mitigates the problem of contradictions between the
model’s reasoning and its answers.

C.5 Case studies
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C.5.1 Cropping & Zooming
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Question: What street is indicated by the sign on the pole near the cen-
ter bottom of the image? Options: A. MACHIGAN B. MACHLGUN C.
MICHIGUN D. MICHIGAN

Please select the correct answer from the options above.

Model Responses: <think>

The task involves identifying the street name indicated by the sign lo-
cated near the center bottom of the image. The sign appears small and
somewhat distant, making it challenging to read clearly without zooming
in. Cropping and zooming in on this specific region will enhance the
visibility of the text on the sign, allowing for accurate identification of
the street name. The sign is positioned near the lower part of the image,
slightly to the right of the center. By cropping this area, we can focus on
the sign and improve its readability. The coordinates for cropping can be
estimated based on the sign’s position relative to the entire image. Here
is the Python code to crop and zoom in on the relevant section:

import os
import random
from PIL import Image

# Load the image
image_path = "hr_bench_4k/179.jpg"
image = Image.open(image_path)

# Define the cropping coordinates (x1, yl1, x2, y2)
# These coordinates are estimated based on the sign's
position in the image

E x1, y1, x2, y2 = 15560, 2650, 1850, 2750

# Crop the image
cropped_image = image.crop((x1l, yl, x2, y2))

# Apply a zoom factor (optional, depending on the
required level of detail)

zoom_factor = 2

zoomed_image = cropped_image.resize((cropped_image.width
* zoom_factor, cropped_image.height * zoom_factor))

# Save the processed image with a random suffix
random_suffix = random.randint (1000, 9999)
processed_filename = £"179_{random_suffix}.jpg"
processed_path = "/mnt/data/temp_processed_images/" +
processed_filename

zoomed_image . save (processed_path)

# Print the path of the saved cropped image
print (processed_path)

<sandbox_output> <subimage_sign> </sandbox_output>

Upon examining the cropped and zoomed-in image, the sign clearly reads
N MICHIGAN AV 100 E: This confirms that the street indicated by the
sign is Michigan Avenue. </think>

<answer> D. MICHIGAN </answer>

Figure 8: Cropping & Zooming Case 1. Thyme first evaluates the size and distance of the
sign, determining that cropping and zooming in on the corresponding area would improve
visibility. It then proceeds to write code to crop and enlarge the region containing the sign.
Thyme accurately locates the sign’s position, successfully crops and zooms in on the area,
and correctly answers the question.
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Question: What is the phone number listed on the building in the fore-
ground? Options: A. 206 441 5000 B. 206 451 5000 C. 206 444 5000 D. 206
441 4000

Please select the correct answer from the options above.

Model Responses: <think>

The task involves identifying the phone number listed on a building in
the foreground of the image. The number appears to be written vertically
on a sign attached to a tall building. To accurately read the digits, it is
necessary to zoom in on this specific area of the image. The sign is located
on the left side of the building, near the center of the lower part of the
image. Cropping and zooming in on this region will enhance the clarity
of the text, making it easier to discern the correct digits. The coordinates
for cropping are estimated based on the position of the sign relative to
the entire image. The cropped area should focus on the vertical text on
the building, which is approximately in the middle-left section of the
image. This targeted cropping will isolate the relevant part of the image,
improving readability. Here is the Python code to crop and zoom into the
specified area:

import cv2
import os
import random

# Load the image
image_path = "hr_bench_4k/224.jpg"
image = cv2.imread(image_path)

1

# Define the cropping coordinates (x1, y1, x2, y2)
x1, y1, x2, y2 = 1750, 1950, 1850, 2600

# Crop the image
cropped_image = imagel[yl:y2, x1:x2]
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# Apply zoom (resize the cropped image to enhance
details)

zoom_factor = 2

zoomed_image = cv2.resize(cropped_image, None,
fx=zoom_factor, fy=zoom_factor,
interpolation=cv2.INTER_CUBIC)

# Save the processed image with a random suffix
random_suffix = random.randint (1000, 9999)
processed_filename = £"224_{random_suffix}.jpg"
processed_path = "/mnt/data/temp_processed_images/" +
processed_filename

cv2.imwrite(processed_path, zoomed_image)

# Print the path of the saved cropped image
print (processed_path)

<sandbox_output> <subimage_phone_number> </sandbox_output>
Upon examining the cropped and zoomed-in image, the phone number
listed on the building is clearly visible. The digits are arranged vertically,
and they read 206 441 5000 This matches option A. The other options do
not correspond to the digits shown on the building’s sign. </think>
<answer> A. 206 441 5000 </answer>

Figure 9: Cropping & Zooming Case 2. Thyme accurately locates the phone number’s
position, successfully crops and zooms in on the area, and correctly answers the question.
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Question: What is the number of awning-tricycles in the image? Options:
A.78 B.72 C. 43 D. 63 E. The image does not feature the awning-tricycles
Please select the correct answer from the options above.

Model Responses: <think>

To determine the number of awning-tricycles in the image, we need to
carefully examine the entire scene. The awning-tricycles are likely small
objects that might be difficult to spot due to their size relative to the overall
image. Cropping and zooming in on specific regions where awning-
tricycles might be present can help identify them more accurately. The
awning-tricycles appear to be located near the lower part of the image,
close to the road and possibly parked or moving along the street. By
cropping and zooming in on this area, we can focus on the relevant
details and count the awning-tricycles more precisely. Let me proceed
with cropping and zooming in on the lower part of the image where
awning-tricycles are likely to be found:

import os
import random
from PIL import Image

# Load the image
image_path = "MME-RealWorld/10993.jpg"
image = Image.open(image_path)

# Define the coordinates for cropping (based on the
inferred region)

x1, y1, x2, y2 = 0, 1000, 1000, 1500 # Adjust these
coordinates based on the image content

# Crop the image
cropped_image = image.crop((x1l, y1, x2, y2))

# Apply zoom (resizing the cropped image for better
visibility)

zoom_factor = 2

zoomed_image = cropped_image.resize((cropped_image.width
* zoom_factor, cropped_image.height * zoom_factor))

# Save the processed image with a random suffix
random_suffix = random.randint (1000, 9999)
processed_filename = £"10993_{random_suffix}.jpg"
processed_path = "/mnt/data/temp_processed_images/" +
processed_filename

zoomed_image.save (processed_path)

# Print the path of the saved cropped image
print (processed_path)

<sandbox_output> <subimage_tricycle> </sandbox_output>

Upon analyzing the cropped and zoomed-in image, it becomes clear that
there are no awning-tricycles visible in the scene. The focus of the image
is on a road with vehicles and buildings, and no such objects can be
identified. Therefore, option E is correct as the image does not feature
awning-tricycles. </think>

<answer> E. The image does not feature the awning-tricycles </answer>

Figure 10: Cropping & Zooming Case 3. Thyme first analyzes the size of the awning-tricycles
and the image, concluding that enlarging the area most likely to contain awning-tricycles
could help determine the answer to the question. It then crops and zooms in on the lower-left
corner of the image for closer inspection, ultimately concluding that there are no awning-
tricycles in the picture.
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790 C.5.2 Rotation & Contrast Enhancement

Question: Please write out the expression of the formula in the image
using LaTeX format.
Model Responses: <think> The text in the image appears to be slanted
and difficult to read in its current orientation. To improve clarity, rotating
the image by a specific angle will help align the text properly and make it
easier to interpret. Let me proceed with the rotation to enhance readabil-
ity.

import cv2

import numpy as np

import os

# Load the image
image_path = "OCR_55251.png"
image = cv2.imread(image_path)

# Define the rotation angle (in degrees)
angle = 172 # The angle is derived from the filename
suffix

# Get the image dimensions
height, width = image.shape[:2]

# Calculate the rotation matrix
rotation_matrix = cv2.getRotationMatrix2D((width / 2,
height / 2), angle, 1)

# Perform the rotation
rotated_image = cv2.warpAffine(image, rotation_matrix,
(width, height))

# Save the rotated image with a random suffix

random_suffix = np.random.randint (100000, 999999)
processed_path =
f"/mnt/data/temp_processed_images/0CR_55251_{random_suffix}.png
cv2.imwrite(processed_path, rotated_image)

# Print the saved image path
print (processed_path)

<sandbox_output> <subimage_OCR> </sandbox_output> After rotat-
ing the image, the text becomes more legible. The formula in the image
is a decimal number with a bar over the last digit, which typically indi-
cates a repeating decimal. The number is 0.642857, with the last digit, 7,
being repeated indefinitely. This can be represented in LaTeX format as
\0.\overline642857\. The bar over the digits 642857 signifies that these
digits repeat continuously. This notation is commonly used to represent
repeating decimals in mathematical expressions. </think>

<answer>

0.642857

</answer>

Figure 11: Rotation Case. Thyme realizes that the input image is not properly oriented, so it
performs a rotation operation with Python code to adjust the angle of the input image. Then,
it correctly identifies the expression in the image and represents the result with LaTeX code.
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Question: What is written in the image? Please try to answer the question
with short words or phrases if possible.

Model Responses: <think>

The image appears to have low contrast, which may lead to poor text
extraction in OCR. The text communitiesis somewhat faint and blends
into the background, making it challenging for OCR systems to accurately
recognize the characters. Enhancing the contrast will make the text stand
out more clearly from the background, improving readability and OCR
performance. To address this, we can use Python with the PIL library to
enhance the contrast of the image. Here is the code to do so:

import os
import random
from PIL import Image, ImageEnhance

# Load the image
image_path = "OCRBench/150.jpg"
img = Image.open(image_path)

# Enhance the contrast

v
c ornrm Unl*/ es enhancer = ImageEnhance.Contrast (img)

-7 enhanced_img = enhancer.enhance (2.0) # Increase

.. ' contrast by a factor of 2
communrtres

# Save the enhanced image with a random suffix
random_suffix = random.randint (1000, 9999)

filename, ext =

os.path.splitext(os.path.basename (image_path))
processed_filename = f"{filename}_{random_suffix}{extl}"
processed_path =
os.path.join("/mnt/data/temp_processed_images/",
processed_filename)

enhanced_img.save(processed_path)

# Print the path of the saved enhanced image
print (processed_path)

<sandbox_output> <subimage_ocr> </sandbox_output>

Upon examining the original image, the text communitiesis faint and
blends into the background. After applying the contrast enhancement,
the text becomes significantly more legible. The enhanced image clearly
shows the word ¢ommunities,éonfirming that the enhancement process
successfully improved the visibility of the text. </think>

<answer> communities </answer>

Figure 12: Contrast Enhancement Case. Thyme accurately locates the phone number’s
position, successfully crops and zooms in on the area, and correctly answers the question.

27



791

C.5.3 Complex Calculations
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Question: A chef aboard a luxury liner wants to cook a goose. The time ¢ in hours to cook a goose at
180°C depends on the mass of the goose m in kilograms according to the formula

b
t=am

where a and b are constants. The table below gives the times observed to cook a goose at 180°C.

Mass, m (kg) | Time, ¢ (h)
3.00 2.75
6.00 3.75

Using the data in the table, determine both a and b to two decimal places.
Model Responses: <think>
To find the constants a and b in the equation t = am®, we need to use the given data points from the
table. The data points are: 1. m; = 3.00kg, t1 = 2.75h 2. ma = 6.00kg, t2 = 3.75h
We can set up two equations based on these data points: 1. 2.75 = a(3.00)° 2. 3.75 = a(6.00)°
We can solve this system of equations for a and b. Let’s denote = a and y = b. Then the equations
become: 1. 2.75 = z(3.00)Y 2. 3.75 = x(6.00)?
Dividing the second equation by the first equation eliminates x:
3.75  2(6.00)Y (6,00)y o

2.75  x(3.00)v ~ \ 3.00

So,
gu_ 375 _ 15
2.75 11

Taking the logarithm base 2 of both sides:

=1lo E
Yy = log, 11

Using Python to compute this value:

import math

# Calculate y = log2(15/11)
y_val = math.log2(15/11)
print(y_val)
<sandbox_output> 0.44745897697122117 </sandbox_output>
So, y =~ 0.45. Now substitute y = 0.45 back into one of the original equations to find x. Using the first

equation:
0.45. 2.75
Using Python to compute this value:

import math

# Calculate x = 2.75 / (3.00%%0.45)
x_val = 2.75 / (3.00%0.45)
print (x_val)

<sandbox_output> 1.6773671336980667 < /sandbox_output>
So, r ~ 1.68.

Therefore, the constants are a ~ 1.68 and b ~ 0.45. </think>
<answer> 1.68, 0.45 </answer>

Figure 13: Complex Calculations Case. After deducing the mathematical expressions for x
and y, Thyme writes code to perform the calculations, obtaining the accurate results.
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792 C.6 Bad Cases

793 C.6.1 Complex Problems Without Coding
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Question: Which machinery has the highest occupancy rate, according
to the ‘Occupancy Rate” diagram? Options: A. Exavators B. Graders C.
Cranes D. Telehandlers E. The image does not feature the number. Please
select the correct answer from the options above.

Model Responses: <think> The task is to identify which machinery has
the highest occupancy rate based on the ‘Occupancy Rate’ diagram. The
relevant section of the image is the bar chart labeled Machinery Rentals
- Occupancy Rate.This chart displays the occupancy rates for different
types of machinery, with percentages shown for each type. The bar chart
clearly shows that Telehandlers have the highest occupancy rate at 72.2%,
followed by Excavators at 78.8%, Bulldozers at 64.8%, Graders at 74.0%,
and Cranes at 64.8%. Therefore, option D, Telehandlers, is the correct
choice. </think>

<answer> D. Telehandlers </answer>

Figure 14: Failure Case 1. In this case, the image resolution is high, but Thyme does not
perform the necessary crop to focus on the most relevant area and instead answers directly.

794 C.6.2 Unuseful Coding

Question: Please directly answer the question and provide the final value,
e.g., 1,2.5,300. Question: Solve for the unknown a. Please try to answer
the question with short words or phrases if possible.

Model Responses: <think> To solve for the unknown side ‘a’ in the given
right triangle, we can use trigonometric relationships. The triangle has a
hypotenuse of length 9, one leg ‘b’ opposite the 60° angle, and the other
leg ‘a’ adjacent to the 60° angle. We need to find the length of ‘a’. Using
the cosine function, which relates the adjacent side to the hypotenuse in
a right triangle: cos(60°) = a / hypotenuse We know that cos(60°) = 0.5.
So, substituting the known values: 0.5 = a / 9 To find ‘a’, we multiply both
sides of the equation by 9: a = 0.5 * 9 Now, let’s calculate the value of ‘a”:

# Calculate the value of 'a'
a_value = 0.5 x 9
print (a_value)

<sandbox_output> 4.5 </sandbox_output>
Therefore, the length of side ‘a’ is 4.5. </think>
<answer> 4.5 </answer>

Figure 15: Failure Case 2. The case requires only trivial calculations, yet Thyme opts to write
code, adding unnecessary overhead. Furthermore, Thyme confuses variable a with variable
b, mistaking the value of b for the value of a, which leads to an incorrect result.

795 C.6.3 Inaccurate Cropping
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Question: What is the model number of the train shown in the image?
Options: A. 4005 B. 1002 C. 3001 D. 2001 Please select the correct answer
from the options above.

Model Responses: <think>

The task is to identify the model number of the train shown in the image.
The model number appears to be visible on the front of the train, near
the bottom right corner of the train’s front panel. The number is clearly
visible as 2001- To ensure accuracy and confirm this observation, it would
be beneficial to zoom in on this specific area of the image. Cropping the
image around the train’s front panel will help focus on the model number
and eliminate any distractions from the surrounding environment. The
coordinates for cropping can be estimated based on the position of the
train in the image. The relevant area is located towards the lower right
part of the train’s front panel. By cropping this section, we can zoom in
on the model number for a clearer view. Here is the Python code to crop
and zoom in on the relevant area:

import os
import random
from PIL import Image

# Load the image
image_path = "hr_bench_4k/243.jpg"
img = Image.open(image_path)

# Define the cropping coordinates (x1, yl, x2, y2)

# These coordinates are estimated based on the position
of the train's front panel

x1, y1, x2, y2 = 1600, 1900, 1900, 2200

# Crop the image
cropped_img = img.crop((x1l, yl, x2, y2))

# Save the cropped image with a random suffix
random_suffix = random.randint (1000, 9999)

filename, ext =

os.path.splitext(os.path.basename (image_path))
processed_filename = f"{filename}_{random_suffix}{extl}"
processed_path =
os.path.join("/mnt/data/temp_processed_images/",
processed_filename)

cropped_img.save (processed_path)

# Print the path of the saved cropped image
print (processed_path)

<sandbox_output> <subimage_phone_number> </sandbox_output>
The cropped image confirms that the model number of the train is indeed
2001 This matches option D from the given choices. </think>
<answer> D. 2001 </answer>

Figure 16: Failure Case 3. In this case, although Thyme eventually arrives at the correct
answetr, the region it crops during thinking process is irrelevant to the problem.
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D Annotation Requirements

This annotation document aims to ensure each image accurately describes the characteristics
of target objects during the annotation process and provides clear annotation information to
users. The detailed steps and requirements are as follows:

D.1 Task Description
For each high-resolution image, annotators are required to complete the following tasks:

e Question Annotation: Design a specific question for each image. The target of the
question should be small and difficult-to-recognize objects in the image, with the
object occupying no more than 5% of the image resolution. Users need to zoom in
on the image to clearly identify these small objects.

e Answer Annotation: Provide an accurate answer based on the question. The answer
should be directly related to the question and derived from analyzing specific regions
within the image.

e Bounding Box: Draw a bounding box for each annotated target object. The bounding
box coordinates should be (x1, y1, z2, y2), indicating the top-left and bottom-right
corners of the object area. The bounding box should ensure that the cropped region
clearly shows the target object.

o Category: Clearly specify the category of each question, selecting only from the five
categories defined in the question design.

D.2 Annotation Requirements

Object Selection: Select small objects in the image as targets. The area of these small objects
should not exceed 5% of the total image area. Users need to zoom in to clearly identify these
objects.

Bounding Box Design: The accuracy of bounding box coordinates need not be pixel-level
but must ensure that the cropped area clearly displays the object. Please roughly determine
the bounding box position and size according to the object features in the image.

Question Design: Questions should cover multiple aspects, including but not limited to:
e OCR recognition: Identify the text content in a certain location of the image. For
example, "What is written on the sign in the image?"

e Attribute recognition: Identify attributes of specific objects in the image, such as
color or shape. For example, "What is the color of this object?"

e Location recognition: Determine the location of objects within the image. For
example, "Where is this object located in the image?"

o Quantity recognition: Identify the number of objects of the same type in the image.
For example, "How many apples are in the image?"

o Object recognition: Identify the type of object at a specific location in the image.

e Chart understanding: For chart-type images, identify specific data points’ values,
compute maximum or minimum values, or predict trends. For example, "What is
the maximum value in the chart?"

D.3 Annotation Steps

1. Image Review: Open the high-resolution image and carefully examine all elements,
especially small and hard-to-recognize objects.
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2. Object Localization: Identify objects to be annotated, ensuring the object occupies
no more than 5% of the image area. These are usually small objects or details in the
background.

3. Draw Bounding Box: Use annotation tools to draw bounding boxes according to
the shape and position of the target objects, ensuring the boxes fully contain the
objects.

4. Design Questions and Answers: Based on specific image content, propose questions
and provide appropriate answers. Questions should be concise and directly related
to the target objects.

5. Save Annotation Data: Record annotation information (questions, answers, bound-
ing box coordinates) for each image, ensuring all annotations are independent and
meaningful.

E Related Work

Multimodal Large Language Models. Fueled by the advancements in LLMs the field of
MLLMs has seen rapid development in recent years, with model capabilities evolving at a
remarkable pace [11, 65, 54, 18]. Modern MLLMs, such as Qwen2.5-VL [2], GPT-4o [29],
and LLaVA [17], have demonstrated impressive performance in processing high-resolution
images and engaging in complex human-like dialogue. Research has diversified into nu-
merous sub-domains, including extending context length [39], improving computational
efficiency [61, 58], mitigating hallucinations [24, 63], enhancing conversational abilities [52],
and achieving better alignment with human preferences [62]. Concurrently, more sophis-
ticated architectures have emerged. Omni-MLLMs are capable of processing a mix of
modalities like speech, video, and images simultaneously [20, 66, 9], while Unify-MLLMs
can produce interleaved, mixed-modal outputs, such as generating an image with auxiliary
lines to aid in solving a math problem [51, 41]. These works showcase a clear trajectory
towards more integrated and versatile multimodal interaction.

Multimodal Reasoning. Enhancing the reasoning capabilities of MLLMs is a critical fron-
tier. Recently, RL has become a prominent technique in the post-training of MLLMs, leading
to significant gains in vision tasks [23, 36], multimodal reasoning [13, 31, 27], and even
reward modeling itself [60]. Compared to traditional methods like SFT or Direct Preference
Optimization (DPO) [33], RL-based approaches have shown superior generalization and
an ability to induce more complex, long-term reasoning capabilities, as demonstrated by
models like DeepSeek-R1 [6]. However, a significant limitation of many existing efforts is
that they primarily focus on enhancing the textual reasoning chain. The visual input often
serves as a static condition rather than an active component within the reasoning process.
While some paradigms have emerged to “think with images”, they are often limited to a
single function like cropping [67] or generating an auxiliary image [5]. Our work, Thyme,
directly addresses this gap by empowering the model to autonomously generate and execute
code for a diverse range of image manipulations and computations. This allows the model
to treat the image not just as input, but as a dynamic entity that can be actively interrogated
and transformed as an integral part of its reasoning process.
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Table 8: Prompt template for training data generation.

You are an advanced Al assistant tasked with generating training data for a complex image
processing and question-answering task. Your role is to generate an ideal response
containing a detailed thought process and specific executable Python code based on the
user’s question and the assumed condition of the image.

User Input: <image>

User’s Question: user question

User Image Path (just for code reference): user image path
Core Instructions:

Your primary task is to determine whether the image can be used directly to answer the
user’s question or if it requires processing.

1. If the image can be used directly:
- Clearly state that the image is ready to be used without any processing.

- Do not generate any code in this case, just answer the question and include -1 in the
<answer></answer> box.

2. If the image needs processing:

a). Provide a detailed description of the issues with the image that prevent answering the
question, such as incorrect orientation, low contrast, lighting issues, etc.

b). Choose the appropriate category of operation that addresses the identified issues:
- 1. Direction Issues: If the image needs rotation or flipping.

- 2. Lighting and Contrast Issues: If the image’s brightness, contrast, or lighting needs
adjustment, or the contrast between the text and background in the image is low for OCR.

- 3. Scaling and Region of Interest (ROI): If parts of the image need to be cropped or
resized.

- 4. Combined Issues: If more than one category applies, specify the primary issue
category and reflect multi-step processing in the code.

¢). Generate specific, executable Python code to address the identified image issues.
- For example:
- For Direction Issues: Specific angles for rotation (e.g., angle = 90 or angle = -90).
- For Scaling/ROI: Specific coordinates like (x1, y1, x2, y2) for cropping.

- Save the processed image in the temporary folder
(/mnt/data/temp_processed_images/), with the same filename as the User Image Path,
followed by a random suffix.

- Print the saved image path (processed_path) in the last line to allow for further
processing in a sandbox environment.

d) The code snippet must be wrapped with: ~ <code>
“‘python
code snippet
</code>, and should be executable.

e). Output the Tool ID used, if applicable. If you used a tool, return the corresponding tool
ID. For instance, if you used ROI-related code, return <answer>3</answer>.

Output Format (strictly follow):

<think>Your detailed comparative analysis and executable code goes
here</think><answer>Tool ID if you use tool else -1</answer>
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Table 9: Prompt template for visual QA with cropping based on bounding box.

You are an advanced Al assistant tasked with constructing reasoning and code for a visual
QA task. You will receive the user’s question, image, User Image Path, and Ground Truth
Bounding Box Coordinates. The image path and Ground Truth Bounding Box coordinates
should only be used in the code and must not be mentioned in your analysis.

User Input: <image>

User’s Question: user question

User Image Path (just for code reference): user image path
Ground Truth Bounding Box Coordinates: (x1, yi, x2, y2)
Core Instructions:

Your primary task is to provide a reasonable explanation of why cropping the image is
necessary to answer the user’s question based on the provided bounding box coordinates.

Important: Do not mention the provided “Ground Truth Bounding Box” in your analysis.
Treat the bounding box coordinates as something you have inferred based on the content of
the image. You should only reference these coordinates in your executable code, and avoid
explicitly stating them in your analysis or thought process.

a). Provide a detailed description of why cropping is necessary. For example:

- “The task seems to be extracting text from a sign near a door under a balcony. I guess I'll
need to zoom in and crop the region around the sign. The coordinates appear to be near the
center of the lower part of the image above the door. I'll refine this area further for better
readability. Let me get started on that!”

b). Generate simple, executable Python code to crop the image based on the inferred
bounding box coordinates.

- Save the processed image in the temporary folder
(/mnt/data/temp_processed_images/), with the same filename as the User Image Path,
followed by a random suffix.

- Print the saved image path (processed_path) in the last line to allow for further
processing in a sandbox environment.

¢) The code snippet must be wrapped with:
<code>
“‘python
code snippet
</code>, and should be executable.
Output Format (strictly follow):

<think>Your detailed analysis of why cropping is necessary and the
executable code goes here.<think>

<answer>1</answer>
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Table 10: Prompt template for visual QA with image rotation.

You are an advanced Al assistant tasked with constructing reasoning and code for a visual
QA task. You will receive the user’s question, a rotated image, the rotation angle, and the
user Image Path. The image path and rotation angle should only be used in the code and
must not be mentioned in your analysis.

User Input: <image>

User’s Question: user question

User Image Path (just for code reference): user image path

GT Degree: How many degrees was the image rotated?: rotation angle
Core Instructions:

Your primary task is to provide a reasonable explanation of why rotating the image is
necessary to answer the user’s question based on the provided rotation angle.

a). Provide a detailed description of why rotating the image is necessary. For example:

- “The text in the image appears to be slanted and difficult to read in its current
orientation. I believe rotating the image by a specific angle will help align the text properly
and make it easier to interpret. Let me proceed with the rotation to improve clarity.”

b). Generate simple, executable Python code to rotate the image by the inferred angle.

- Save the processed image in the temporary folder
(/mnt/data/temp_processed_images/), with the same filename as the User Image Path,
followed by a random suffix.

- Print the saved image path (processed_path) in the last line to allow for further
processing in a sandbox environment.

¢) The code snippet must be wrapped with:
<code>
“‘python
code snippet
</code>, and should be executable.

The sum of your rotation angle and the GT Degree must be either 0 or 360; it should never
be 180 or -180. And you do not need to answer the question.

Important: Do not mention the provided “GT Degree” in your analysis. Treat the GT
Degree as something you've inferred based on the content of the image. You should only
reference this angle in your executable code, and avoid explicitly stating it in your analysis,
thought process, and comments in the code.

Output Format (strictly follow):

<think>Your detailed analysis of why rotating the image is necessary and
the executable code goes here.<think>

<answer>1</answer>
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?

Answer: | Yes]

Justification: Please refer to the abstract and Section 1, and the experimental results
in Section 5.

Guidelines:

e The answer NA means that the abstract and introduction do not include the
claims made in the paper.

o The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
A No or NA answer to this question will not be perceived well by the reviewers.

e The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

e It is fine to include aspirational goals as motivation as long as it is clear that
these goals are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the
authors?

Answer: | Yes]
Justification: We discuss limitations of our method and future work in Section 6.
Guidelines:

e The answer NA means that the paper has no limitation while the answer No
means that the paper has limitations, but those are not discussed in the paper.

e The authors are encouraged to create a separate "Limitations" section in their
paper.

e The paper should point out any strong assumptions and how robust the re-
sults are to violations of these assumptions (e.g., independence assumptions,
noiseless settings, model well-specification, asymptotic approximations only
holding locally). The authors should reflect on how these assumptions might
be violated in practice and what the implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical
results often depend on implicit assumptions, which should be articulated.

e The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly
when image resolution is low or images are taken in low lighting. Or a speech-
to-text system might not be used reliably to provide closed captions for online
lectures because it fails to handle technical jargon.

e The authors should discuss the computational efficiency of the proposed algo-
rithms and how they scale with dataset size.

e If applicable, the authors should discuss possible limitations of their approach
to address problems of privacy and fairness.

e While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be that
reviewers discover limitations that aren’t acknowledged in the paper. The
authors should use their best judgment and recognize that individual actions in
favor of transparency play an important role in developing norms that preserve
the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?

Answer: [NA |
Justification: The paper does not include theoretical results.
Guidelines:

e The answer NA means that the paper does not include theoretical results.
o All the theorems, formulas, and proofs in the paper should be numbered and
cross-referenced.

e All assumptions should be clearly stated or referenced in the statement of any
theorems.

e The proofs can either appear in the main paper or the supplemental material,
but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.

e Inversely, any informal proof provided in the core of the paper should be com-
plemented by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data
are provided or not)?

Answer: | Yes]

Justification: We describe the implementation details and experimental settings in
appendix C.

Guidelines:

e The answer NA means that the paper does not include experiments.

o If the paper includes experiments, a No answer to this question will not be
perceived well by the reviewers: Making the paper reproducible is important,
regardless of whether the code and data are provided or not.

e If the contribution is a dataset and/or model, the authors should describe the
steps taken to make their results reproducible or verifiable.

e Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model.
In general. releasing code and data is often one good way to accomplish this,
but reproducibility can also be provided via detailed instructions for how to
replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate
to the research performed.

e While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it
clear how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should
describe the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there
should either be a way to access this model for reproducing the results
or a way to reproduce the model (e.g., with an open-source dataset or
instructions for how to construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?

Answer: | Yes]

Justification: We open-source our code and will also open-source the data after the
review process.

Guidelines:

e The answer NA means that paper does not include experiments requiring code.

o Please see the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

e While we encourage the release of code and data, we understand that this might
not be possible, so “No” is an acceptable answer. Papers cannot be rejected
simply for not including code, unless this is central to the contribution (e.g., for
a new open-source benchmark).

e The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guide-
lines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more
details.

e The authors should provide instructions on data access and preparation, in-
cluding how to access the raw data, preprocessed data, intermediate data, and
generated data, etc.

e The authors should provide scripts to reproduce all experimental results for
the new proposed method and baselines. If only a subset of experiments are
reproducible, they should state which ones are omitted from the script and
why:.

e At submission time, to preserve anonymity, the authors should release
anonymized versions (if applicable).

e Providing as much information as possible in supplemental material (appended
to the paper) is recommended, but including URLs to data and code is permit-
ted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?

Answer: | Yes]

Justification: We describe the implementation details and experimental settings in
appendix C.

Guidelines:

e The answer NA means that the paper does not include experiments.

e The experimental setting should be presented in the core of the paper to a level
of detail that is necessary to appreciate the results and make sense of them.

o The full details can be provided either with the code, in appendix, or as supple-
mental material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?
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1036 Answer:

1037 Justification: The experiments are too computationally expensive.

1038 Guidelines:

1039 e The answer NA means that the paper does not include experiments.

1040 e The authors should answer "Yes" if the results are accompanied by error bars,
1041 confidence intervals, or statistical significance tests, at least for the experiments
1042 that support the main claims of the paper.

1043 e The factors of variability that the error bars are capturing should be clearly
1044 stated (for example, train/test split, initialization, random drawing of some
1045 parameter, or overall run with given experimental conditions).

1046 e The method for calculating the error bars should be explained (closed form
1047 formula, call to a library function, bootstrap, etc.)

1048 o The assumptions made should be given (e.g., Normally distributed errors).
1049 o Itshould be clear whether the error bar is the standard deviation or the standard
1050 error of the mean.

1051 o Itis OK to report 1-sigma error bars, but one should state it. The authors should
1052 preferably report a 2-sigma error bar than state that they have a 96% CI, if the
1053 hypothesis of Normality of errors is not verified.

1054 e For asymmetric distributions, the authors should be careful not to show in
1055 tables or figures symmetric error bars that would yield results that are out of
1056 range (e.g. negative error rates).

1057 o If error bars are reported in tables or plots, The authors should explain in the
1058 text how they were calculated and reference the corresponding figures or tables
1059 in the text.

1060 8. Experiments compute resources

1061 Question: For each experiment, does the paper provide sufficient information on the
1062 computer resources (type of compute workers, memory, time of execution) needed
1063 to reproduce the experiments?

1064 Answer: [Yes]

1065 Justification: We detail the compute resources consumed, in appendix C.1.

1066 Guidelines:

1067 e The answer NA means that the paper does not include experiments.

1068 e The paper should indicate the type of compute workers CPU or GPU, internal
1069 cluster, or cloud provider, including relevant memory and storage.

1070 e The paper should provide the amount of compute required for each of the
1071 individual experimental runs as well as estimate the total compute.

1072 e The paper should disclose whether the full research project required more
1073 compute than the experiments reported in the paper (e.g., preliminary or failed
1074 experiments that didn’t make it into the paper).

1075 9. Code of ethics

1076 Question: Does the research conducted in the paper conform, in every respect, with
1077 the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
1078 Answer: | Yes]

1079 Justification: We have ensured that the paper complies with the guidelines.

1080 Guidelines:

1081 e The answer NA means that the authors have not reviewed the NeurIPS Code
1082 of Ethics.

1083 o If the authors answer No, they should explain the special circumstances that
1084 require a deviation from the Code of Ethics.

1085 e The authors should make sure to preserve anonymity (e.g., if there is a special
1086 consideration due to laws or regulations in their jurisdiction).
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10.

11.

12.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and nega-
tive societal impacts of the work performed?

Answer: [NA ]|
Justification: There is no societal impact of this work.
Guidelines:

e The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no
societal impact or why the paper does not address societal impact.

o Examples of negative societal impacts include potential malicious or unintended
uses (e.g., disinformation, generating fake profiles, surveillance), fairness con-
siderations (e.g., deployment of technologies that could make decisions that
unfairly impact specific groups), privacy considerations, and security consider-
ations.

e The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

e The authors should consider possible harms that could arise when the technol-
ogy is being used as intended and functioning correctly, harms that could arise
when the technology is being used as intended but gives incorrect results, and
harms following from (intentional or unintentional) misuse of the technology.

o If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in ad-
dition to attacks, mechanisms for monitoring misuse, mechanisms to monitor
how a system learns from feedback over time, improving the efficiency and
accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for re-
sponsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?

Answer: [NA |

Justification: This paper poses no such risk since we manually check and filter the
data, and make necessary requirements on possible usage.

Guidelines:

e The answer NA means that the paper poses no such risks.

e Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

e Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

e We recognize that providing effective safeguards is challenging, and many
papers do not require this, but we encourage authors to take this into account
and make a best faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
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14.

15.

Answer: | Yes]

Justification: All the assets we used are properly credited and sourced from open-
source platforms like Github and HuggingFace, under the license of Apache-2.0.

Guidelines:

e The answer NA means that the paper does not use existing assets.

e The authors should cite the original paper that produced the code package or
dataset.

e The authors should state which version of the asset is used and, if possible,
include a URL.

e The name of the license (e.g., CC-BY 4.0) should be included for each asset.

e For scraped data from a particular source (e.g., website), the copyright and
terms of service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in
the package should be provided. For popular datasets, paperswithcode. com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

e For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

e If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?

Answer: [ Yes]
Justification: We provide detailed documentation alongside the released assets.
Guidelines:

e The answer NA means that the paper does not release new assets.

e Researchers should communicate the details of the dataset/code/model as
part of their submissions via structured templates. This includes details about
training, license, limitations, etc.

e The paper should discuss whether and how consent was obtained from people
whose asset is used.

e At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?

Answer: [NA |

Justification: Our paper does not involve crowdsourcing nor research with human
subjects.

Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

o Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

e According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the country
of the data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects
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16.

Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human
subjects.

Guidelines:
e The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

e Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

e We recognize that the procedures for this may vary significantly between insti-
tutions and locations, and we expect authors to adhere to the NeurIPS Code of
Ethics and the guidelines for their institution.

e For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM
is used only for writing, editing, or formatting purposes and does not impact the
core methodology, scientific rigorousness, or originality of the research, declaration
is not required.

Answer: | Yes]

Justification: We describe how we use multimodal-LLMs for data quality control in
appendix B.

Guidelines:

e The answer NA means that the core method development in this research does
not involve LLMs as any important, original, or non-standard components.

e Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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