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Abstract
Out-of-distribution (OOD) generalisation is chal-
lenging because it involves not only learning from
empirical data, but also deciding among various
notions of generalisation, e.g., optimising the
average-case risk, worst-case risk, or interpola-
tions thereof. While this choice should in prin-
ciple be made by the model operator like medi-
cal doctors, this information might not always be
available at training time. The institutional sepa-
ration between machine learners and model oper-
ators leads to arbitrary commitments to specific
generalisation strategies by machine learners due
to these deployment uncertainties. We introduce
the Imprecise Domain Generalisation framework
to mitigate this, featuring an imprecise risk opti-
misation that allows learners to stay imprecise by
optimising against a continuous spectrum of gen-
eralisation strategies during training, and a model
framework that allows operators to specify their
generalisation preference at deployment. Sup-
ported by both theoretical and empirical evidence,
our work showcases the benefits of integrating
imprecision into domain generalisation.

1. Introduction
The capability to generalise knowledge, a hallmark of both
biological and artificial intelligence (AI), has seen remark-
able progress in recent years. Developments in general-
purpose learning algorithms (Vapnik, 1991; Hofmann et al.,
2008; LeCun et al., 2015; Goodfellow et al., 2016), model
architectures (Krizhevsky et al., 2012; Cohen and Welling,
2016; Vaswani et al., 2017), and training infrastructures
(Ratner et al., 2019) have given rise to AI systems such
as generative models (GenAI) and large language models
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(LLM) that surpass human-level generalisation capabilities
in specific domains.

Despite notable achievements, these systems may catas-
trophically fail when operated on out-of-domain (OOD)
data because theoretical guarantees for their generalisation
hinge on the assumption of independent and identically dis-
tributed (IID) training and deployment data, with empirical
risk minimisation (ERM) being the dominant learning al-
gorithm (Vapnik, 1991; 1995). Emerging challenges like
distribution shifts (Quionero-Candela et al., 2009; Beery
et al., 2018; 2020; Koh et al., 2021), adversarial attacks
(Szegedy et al., 2013; Goodfellow et al., 2014), and strate-
gic manipulations (Hardt et al., 2016; Perdomo et al., 2020;
Vo et al., 2023) have prompted researchers to question the
validity of algorithms developed under this assumption. This
gap has fueled interest in OOD generalisation, prompting
the exploration of novel learning algorithms and resulting in
rapid developments in domain adaptation (Wilson and Cook,
2020; Zhao et al., 2022), domain generalisation (Wang et al.,
2021b; Zhou et al., 2023; Shen et al., 2021), and test-time
adaptation (Sun et al., 2020; Wang et al., 2021a; Chen et al.,
2023a), among others.

In IID generalisation, where test loss aligns with training
loss, the learner’s goal of minimising the training loss aligns
with the operator’s expectation of small test loss. Bounded
data uncertainty, within finite data, enables the learner to
assess model generalisation during deployment. Histori-
cally, the IID assumption is accompanied by another critical,
but often overlooked assumption: the overlap between the
learner and the operator, who employs the model in real-
world contexts. Conversely, OOD generalisation still lacks
a precise definition, leading to additional ambiguity termed
“generalisation uncertainty”. Unlike data uncertainty, gener-
alisation uncertainty arises from a lack of knowledge about
deployment environments, whether due to natural shifts
(across hospitals, experimental conditions, and time) or arti-
ficial ones (adversarial attacks, strategic manipulation), and
cannot be mitigated by additional data collection.

Prior research has addressed generalisation uncertainty in-
dependently by introducing various concepts of OOD gen-
eralisation including worst-case generalisation (Arjovsky
et al., 2019; Ben-Tal et al., 2009; Sagawa et al., 2020;
Krueger et al., 2021), average-case generalisation (Blan-
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Figure 1: An illustration of our proposed imprecise learning framework. We allow learners to stay imprecise to avoid
over-commit in light of generalisation uncertainty. Instead, we defer this choice of precise generalisation to the operator.

chard et al., 2011; 2021; Muandet et al., 2013; Zhang et al.,
2021), and their interpolations (Eastwood et al., 2022a).
Learning algorithms like distributional robust optimisation
(DRO) (Rahimian and Mehrotra, 2022), invariant risk min-
imisation (IRM) (Arjovsky et al., 2019), and quantile risk
minimisation (QRM) (Eastwood et al., 2022a) have been
tailored for these OOD generalisation notions. This line
of research relaxes the IID assumption, but still assumes
alignment between the learner’s objective and the operator’s
goal to tackle generalisation uncertainty. Due to the need
for precise concept of generalisation in these scenarios, we
collectively term them “precise generalisation”.

Precise generalisation hinges on the assumption that the
learner’s objective aligns with the operator’s goal, necessi-
tating close collaboration during model development. How-
ever, this approach presents two primary drawbacks. Firstly,
institutional separation between the learner (e.g., machine
learning engineers) and model operators (e.g., doctors) can
make collaboration costly, time-consuming, or even imprac-
tical. Secondly, tailoring the model to a specific operator
may restrict its deployment usability, as the operator’s be-
liefs can change or conflicts may emerge when the model
is operated by a different individual. Consider an example
depicted in Figure 1. Using data obtained from hospitals
across Europe, an engineer is developing a machine learning
model that will be embedded into a medical software that
will be used by the doctors. Here, the engineer confronts
uncertainty regarding where the model will ultimately be de-
ployed—it could be within Europe (IID) or outside it (OOD).
The engineer might anticipate the doctor’s generalisation
strategy during the model’s training phase. For instance, if
the doctor is perceived to be risk-averse, the engineer might
prioritise training a model robust to worst-case scenarios.
However, ideally, it should be the doctor, often equipped
with domain-specific expertise, who decides the generalisa-
tion strategy, drawing upon their in-depth knowledge of the
field, at deployment time. Customising models effectively
to the clinical settings where they operate can significantly
impact healthcare outcomes (Beede et al., 2020).

In this work, we extend the relaxation of the IID assumption
further by loosening the requirement for overlap between

the learner and the operator. Since there is no need of spe-
cific concept of generalisation at training time, we term
this scenario “imprecise generalisation” (see Figure 1). We
operationalise imprecise learning in the context of domain
generalisation (Blanchard et al., 2011; 2021; Muandet et al.,
2013), aiming to answer the question: How to take knowl-
edge acquired from an arbitrary number of related domains
and apply it to previously unseen domains? This concept
comprises two main components: (1) An optimisation pro-
cess enabling learners to remain imprecise during learning,
thus not committing to a specific generalisation notion dur-
ing training, and (2) a model framework allowing operators
to define their preferred generalisation strategy at deploy-
ment. We delve into the formulation and existing work on
OOD generalisation in Section 2. Our primary contribu-
tion, the framework of Imprecise Domain Generalisation, is
detailed in Section 3, along with its optimisation strategy,
termed Imprecise Risk Optimisation (IRO), in Section 4.
Experimental results are presented in Section 5, and we
conclude our paper in Section 6.

All proofs are in the appendix and we open-source our code
at https://github.com/muandet-lab/dgil.

2. Preliminaries
Consider X ⊆ Rd as our instance space and Y as our
target space, where Y ⊆ R is used for regression and
Y = 1, . . . , C for C-class classification. In supervised
learning, the process of learning a function mapping from
X to Y involves the learner specifying their inductive biases.
These inductive biases include: (1) selecting a hypothesis
class H, consisting of functions f : X → Y , (2) defining
a suitable loss function ℓ : Y × Y → R+ based on the
problem, (3) assuming the presence of a joint probability
distribution P over the variables (X,Y ) ∈ X × Y from
which the data are sampled. Most critical to our work are
(4) the assumptions regarding the deployment environment
where the model f is expected to generalise.

2.1. Precise Learning

In the following, we briefly review various generalisation
assumptions commonly adopted in the literature and unify
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them under the setting of precise learning.

IID assumption. Perhaps the most fundamental generali-
sation assumption in supervised learning is that the training
and deployment environments are independent and identi-
cally distributed (IID). Under this assumption, a model that
performs well in training is expected to generalize effec-
tively in deployment. This concept is formalized by finding
the function f ∈ H that minimizes the population risk for
P, known as the Bayes optimal model:

R(f) ≜ EP[Zf ] = E(X,Y )∼P
[
ℓ(f(X), Y )

]
. (1)

For simplicity, we have denoted Z ≜ (X,Y ), Z ≜ X × Y ,
and Zf ≜ ℓ(f(X), Y ) as the random loss associated with
f ∈ H. In practice, since the true distribution P is unknown,
we focus on minimizing an empirical estimate of this risk
based on IID samples (xi, yi)

n
i=1 from P, expressed as:

R̂(f) ≜ 1

n

n∑
i=1

ℓ(f(xi), yi) + η∥f∥2H, f ∈ H, (2)

where the second term is a regularization term to pre-
vent overfitting, following the empirical risk minimization
(ERM) principle (Vapnik, 1991; 1995). This scenario intro-
duces data uncertainty, stemming from the finite nature of
data when approximating Bayes optimal models. The IID
assumption also enjoys favourable guarantees, e.g., as the
sample size n increases, the uniform convergence of R̂(·)
overH ensures that the gap between the empirical and the
population risk becomes negligible with high probability;
see, e.g., Vapnik (1998); Cucker and Smale (2002).

Beyond IID assumptions. The IID assumption is often not
viable in real-world scenarios due to various factors such
as distribution shifts (Quionero-Candela et al., 2009; Beery
et al., 2018; 2020; Koh et al., 2021), sub-population shifts
(Santurkar et al., 2021; Yang et al., 2023), adversarial attacks
(Szegedy et al., 2013; Goodfellow et al., 2014), strategic
manipulation (Hardt et al., 2016; Perdomo et al., 2020; Vo
et al., 2023), and time shifts (Gagnon-Audet et al., 2022).
In response to these challenges, learners must consider gen-
eralisation uncertainty when designing their learning algo-
rithm. This uncertainty is typically represented by a credal
set K(Z) (Walley, 1991), a closed set of potential proba-
bility distributions that reflect the learner’s ignorance, or
partial knowledge about the deployment environments.

For example, in distributionally robust optimisation
(Rahimian and Mehrotra, 2022), the credal set comprises
distributions within an ϵ distance from the empirical dis-
tribution, and the goal is to optimise f for the worst-case
empirical risk within it. Another approach, involves learn-
ing across multiple domains P1, . . . ,Pd, and assumes the
deployment distribution lies within their convex hull (Man-
sour et al., 2012; Krueger et al., 2021; Föll et al., 2023).

In invariant causal prediction (Peters et al., 2016; Heinze-
Deml et al., 2018), hypothetical interventional distributions
associated with a structural causal model (SCM) constitute
the credal set. Learning algorithms here aim to optimize
for worst-case empirical risk (Arjovsky et al., 2019; Ben-
Tal et al., 2009; Sagawa et al., 2020; Krueger et al., 2021),
average-case empirical risk (Blanchard et al., 2011; 2021;
Muandet et al., 2013; Zhang et al., 2021), and interpolations
thereof (Eastwood et al., 2022a). The choice of risk corre-
sponds to selecting a particular distribution within the credal
set, such as the centroid of the convex hull referring to the
average case. Notably, the credal set in the IID case reduces
to a single distribution, K(Z) = {P}.

2.2. Previous Work

Limitation of precise learning. A majority of previous
work in both IID and OOD generalisation falls into the
precise learning setting. A fundamental requirement is for
the learner to commit to a specific notion of generalisation.
This involves precisely selecting a particular distribution
P ∈ K(Z) during training and performing statistical learn-
ing to develop the model f . Although widely used, this
might not always be optimal in modern machine learning
settings, especially when there is a clear institutional sep-
aration between those who build and those who operate
the model (cf. Section 3). This separation presents two
significant challenges. First, it assumes that the learners
either fully understand the specific generalisation needs
of the operators, or that the operators have comprehen-
sive access to the datasets and a thorough understanding
of statistical inference, effectively making them the learners.
Second, the choice of generalisation strategy is inherently
subjective, involving normative decisions by the operators.
For instance, a risk-averse operator might lean towards a
worst-case empirical risk optimiser, while an operator with
in-depth knowledge of the deployment environment might
prefer an average-case empirical risk optimiser.

Domain generalisation strategies. The core of domain
generalisation is the invariance principle (Muandet et al.,
2013; Arjovsky, 2019), which asserts that certain properties
remain constant across different environments and thus are
expected to generalise to unseen settings. This principle is
reflected in approaches focusing on feature representation
(Muandet et al., 2013; Ghifary et al., 2015; Arjovsky et al.,
2019), causal mechanism (Peters et al., 2016; Rojas-Carulla
et al., 2018; Heinze-Deml and Meinshausen, 2021), and risk
functional (Krueger et al., 2021), all aimed at identifying
and leveraging these invariant properties. While necessary,
this principle faces two challenges: it abstracts away the in-
herent heterogeneity across environments (Heckman, 2001),
which might give rise to non-invariant yet generalisable
properties (Eastwood et al., 2023; Nastl and Hardt, 2024).
Furthermore, identifying and utilising invariant properties
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faces practical difficulties due to their need for large sample
sizes (Rosenfeld et al., 2021; Kamath et al., 2021).

Addressing these challenges, recent work suggests combin-
ing domain-invariant with domain-specific properties (Liu
et al., 2021a; Mahajan et al., 2021). While these approaches
have been shown to improve in-domain generalisation per-
formance, how domain-specific properties affect OOD gen-
eralisation in unseen environments remains unclear. To over-
come this, it is popular to utilise various forms of test-time
adaptation via auxiliary tasks (Sun et al., 2020; Wang et al.,
2021a; Chen et al., 2023a). However, Liu et al. (2021b) has
shown that this strategy can improve the pre-trained model
only when the auxiliary loss aligns with the main loss. This
suggests that a certain degree of precision in aligning losses
is essential for effective domain generalisation.

Generalisation uncertainty representation. As opposed
to the credal set K(Z), some authors have instead adopted a
second-order probability (aka meta distributions) as a belief
over the “true” or “ideal” probabilities P(Z) (Blanchard
et al., 2011; 2021; Muandet et al., 2013; Eastwood et al.,
2022a). However, Walley (1991, Sec. 5.10) pointed out that
if probability distributions entail behavioural dispositions, it
is necessary that the credal set must collapse to a singleton to
avoid incoherent behaviour. Paradoxically, this implies that
assuming the existence of meta-distributions is equivalent
to making the IID assumption in the first place, emphasising
that one must clearly differentiate generalisation uncertainty
from data uncertainty.

Learning under imprecision. Machine learning inherently
grapples with imprecision due to its inductive nature. One
common approach to mitigate this is to create precision at
various stages of model development. Techniques like data
up/downsampling (He and Garcia, 2009) and fusion (Chau
et al., 2021a;b) address issues of granularity and missing
data by drawing information from a precise empirical dis-
tribution. During algorithm selection, approaches like the
Bayesian paradigm, ensembling, and AutoML (He et al.,
2021) are used to handle potential model misspecification
by selecting a precise model from a set of alternatives. Fur-
thermore, model deployment requires a precise definition
of generalisation, such as optimising for average-case or
worst-case risks, to be determined before training.

When the introduced precision is not warranted, imprecise
probabilists advocate for learning along with imprecision.
For instance, Walley’s Imprecise Dirichlet Model effec-
tively handles incomplete and missing data (Utkin et al.,
2021). Dempster-Shafer Theory (Shafer, 1992) enables
the fusion of multiple information sources, considering
all available evidence. Credal learners, including credal
decision trees (Abellan and Masegosa, 2010), credal net-
works (Cozman, 2000), and imprecise Bayesian neural net-
works (Caprio et al., 2023), propagate imprecision to pre-

diction, resulting in models that capture the full range of
possible outcomes. Central to these methods is the concept
of a set of permissible solutions. This approach leads to
indeterminate yet credible models, particularly in domains
where uncertainty is prevalent. Our research aligns with this
line of work, focusing on developing domain generalisation
strategies that acknowledge and adapt to imprecision. By
embracing imprecision, we aim to create models that offer a
range of permissible solutions, empowering model operators
to make informed choices at test time. The use of a credal
set to model epistemic uncertainty has been concurrently
explored by Caprio et al. (2024) to derive generalization
bounds under credal uncertainty.

3. Imprecise Domain Generalisation
In this work, we advocate for an imprecise learning, where
learners do not commit to any particular P ∈ K(Z) at train-
ing time, but express their uncertainty through a credal set
K(Z), where we discuss our choice in Section 3.2. We oper-
ationalise this idea in the context of domain generalisation
(DG) problems. To this end, consider data coming from d
distinct domains, each with its own distribution P1, . . . ,Pd,
and corresponding risk profiles (R1, . . . ,Rd) ≜ R. The
learner’s objective is to select an optimal hypothesis from
H considering both the risk profiles and K(Z), based on a
certain optimality criterion defined below. While we mainly
focus on multi-domain environments, this framework is
also relevant and adaptable to single-domain scenarios (see
Appendix C for further discussion).

Credal set and partial preference. A crucial distinc-
tion between precise and imprecise learning lies in their
approach to learner’s preferences (Chau et al., 2022a;b).
Precise learners commit to a specific distribution P ∈ K(Z)
during training, creating a complete1 and transitive prefer-
ence order ⪰ based on empirical risk inH. That is, for any
f, g ∈ H, f ⪰ g if and only if R̂(f) ≤ R̂(g). Conversely,
imprecise learning based on the credal set K(Z) results in a
partial order overH (Giron and Rios, 1980; Walley, 1991):

Lemma 3.1. The binary relation ⪰ represented by K(Z)
is such that for f, g ∈ H, f ⪰ g, if and only if EP[Zf ] ≤
EP[Zg] for every P ∈ K(Z).

This leads to an incomplete preference ordering. Lemma 3.1
highlights the challenge of learning with imprecision, imply-
ing that unless the learners are willing to exert their judge-
ment over the distributions in K(Z), as was previously done
in precise learning, it is no longer possible to unanimously
identify the “best” hypothesis inH from the observed data
alone. In the following, we describe how the learners can
implement imprecise learning at training time such that the
operators can make prediction efficiently at test time.

1For every f, g ∈ H, either f ⪰ g, g ⪰ f , or both hold.
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3.1. Aggregation Functions and Optimality Criteria

To facilitate learning, we need a certain notion of optimality
taking into account K(Z). We formalise this by considering
an aggregated learning algorithm P : R 7→ h∗ that takes a
risk profile and returns a hypothesis h∗ ∈ H. In particular,
we focus on a specific type of aggregation function called
an aggregated risk minimizers:

P : R 7→ argmin
θ∈Θ

ρλ[R](hθ), λ ∈ Λ, (3)

where ρλ : Ld
2(H)→ L2(H) is a risk aggregation function

indexed by λ ∈ Λ, which yields the non-negative real-
valued statistical functional ρλ[R] : H → R+. Here, we
assume that our model classH is parametrized by a parame-
ter space Θ ⊆ Rp, e.g., a weight vector in a neural network.
We call Λ a choice space which arises exclusively due to
the imprecision of the learning problem (cf. Lemma 3.1)
and serves merely as an index set. In practice, we only have
access to the empirical risks (R̂1, . . . , R̂d) ≜ R̂ which we
can substitute directly into (3). In Section 3.2, we consider
Conditional Value-at-Risk (CVaR) as a concrete example
of the risk aggregator ρλ. Our formulation (3) is not only
pertinent to financial risk measures but has also gained trac-
tion for creating interpretable, risk-aware machine learning
algorithms (Williamson and Menon, 2019).

For each λ ∈ Λ, we denote the Bayes optimal models by
h∗
λ ∈ argminθ∈Θ ρλ[R](hθ) and the associated parameter

by θ∗λ. Unfortunately, for continuous choice space, it is
unrealistic for the learner to find the Bayes optimal models
inH simultaneously for all λ ∈ Λ. For this reason, we gen-
eralise the notion of Pareto optimality (Pareto, 1897) from
multi-objective optimisation to its continuous counterpart
and propose an alternative optimality criterion with respect
to all λ ∈ Λ : C-Pareto optimality.

Definition 3.2 (C-Pareto optimality). The hypothesis hθ

dominates hθ′ , denoted by hθ ▷ hθ′ , if ρλ[R](hθ) ≤
ρλ[R](hθ′) for all λ ∈ Λ and ρλ̃[R](hθ) < ρλ̃[R](hθ′)

for some λ̃ ∈ Λ. Then, hθ is C-Pareto optimal if there exists
no hθ′ such that hθ′ ▷ hθ.

When λ takes values on a finite set Λ with m elements, i.e.,
Λ = {λ1, . . . , λm}, Definition 3.2 coincides with the Pareto
optimality in standard multi-objective optimization (MOO);
see, e.g., Sener and Koltun (2018); Lin et al. (2019); Zhang
and Golovin (2020); Ma et al. (2020) and references therein.
Chen et al. (2023b) have recently studies trade-offs between
ERM and existing OOD objectives using MOO.

It is not hard to show that, like ⪰ introduced in Lemma 3.1,
▷ can be incomplete and that any Bayes optimal models h∗

λ

are also C-Pareto optimal. Intuitively, instead of obtaining
the Bayes optimal model for all λ ∈ Λ, the learner can
at best find the non-dominating models, i.e., the models

upon which an improvement is only possible at a cost of
deterioration of another non-dominating model.

Next, we introduce the notion of C-Pareto stationary used
to check if a model is C-Pareto optimal.

Definition 3.3 (C-Pareto stationary). Suppose ρλ[R](hθ)
is a smooth function of hθ and define the local gradient at
h⋄ as vλ := ∇ρλ[R](h⋄). The point h⋄ is called C-Pareto
stationary if and only if there exists a probability density q
such that

∫
vλ dq(λ) = 0.

3.2. Conditional Value-at-Risk (CVaR)

In theory, all aggregation functions ρλ[R] can be expressed
as a type of weighted average of R, as detailed in Proposi-
tion B.1. A high level of generality could be achieved by
formulating K(Z) as the convex hull of P1, . . . ,Pd. This
corresponds to treating the choice parameter λ ∈ Rd as all
possible averaging weight, thus defining ρλ[R] = λ⊤R.
However, this approach has its serious drawbacks, since λ
might be difficult for the operators to interpret, potentially
leading to irrational decisions. For instance, operators may
inappropriately assign more weight to domains that are eas-
ier to train, resulting in atypical “risk-seeking” behaviour.

To select an appropriate aggregation function (equivalent
to formulating an appropriate credal set) that is both in-
terpretable and aligned with typical behaviour such as risk
aversion, we opt for ρλ from the class of risk measures. This
corresponds to formulating credal set as distributions that
are mixtures of P1, . . .Pd with weights determined by the
aggregation function. Notably, we choose the Conditional
Value-at-Risk (CVaR):

Definition 3.4 (Conditional Value-at-Risk (Rockafellar and
Uryasev, 2002)). Let R = (R1, . . . ,Rd) represent our risk
profile, and FR(r) = 1

d

∑d
i=1 I[Ri ≤ r] as the cumulative

distribution function (CDF) for R. Define rλ = minr{r |
FR(r) ≥ λ} as the λ-level quantile. Then, the Conditional
Value-at-Risk for R at level λ is given by:

d∑
i=1

(
ηλI[Ri = rλ] +

(1− ηλ)I[Ri ≥ rλ]∑d
i=1I[Ri ≥ rλ]

)
Ri (4)

where ηλ = (FR(rλ)− λ)(1− λ)−1, indicating the discon-
tinuity level of the CDF at λ.

CVaR effectively enables operators to express their level of
risk aversion through λ, which in turn influences the selec-
tion of riskier domains for optimization. Additionally, this
approach provides a means to transition smoothly between
two prevalent notions of generalisation (Robey et al., 2022;
Eastwood et al., 2022a; Li et al., 2023), namely optimising
average risks (λ = 0) and worst-case risks (λ = 1). Further-
more, CVaR belongs to a class of coherent risk measures,
which possess desirable properties (Artzner et al., 1999) and
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have been studied in the robust optimisation literature; see,
e.g., Ben-Tal et al. (2010).

3.3. Augmented Hypothesis

To further institutionalize the separation of statistical
decision-making, i.e., choosing appropriate notion of gener-
alisation (performed by the operator) from statistical learn-
ing (performed by the learner), we propose to shift the prob-
lem view to an imprecise setting where the learner does not
assume a priori which λ ∈ Λ is relevant to the operator, but
instead designs a model that allows the operator to choose
their own λ at deployment time.2

To this end, we extend the hypothesis space to an augmented
hypothesis spaceHΛ of functions of both x and λ, and pro-
pose to learn an augmented hypothesis h̄ξ : X × Λ → Y
parametrized by a parameter ξ ∈ Ξ ⊆ Rq. In contrast with
hθ ∈ H which is fixed across λ ∈ Λ, an augmented hy-
pothesis h̄ξ ∈ HΛ describes a range of possible hypothesis
h̄ξ(·, λ) for each λ ∈ Λ, such that the user can choose the
one that best fits their needs. By abuse of notation, we con-
sider ρλ[R](h̄ξ(·, λ)) as a point-wise aggregated risk for
the augmented hypothesis h̄ξ ∈ HΛ. The subtle difference
here is that we evaluate the objective at h̄ξ(·, λ) for the same
λ used in ρλ. While the idea of augmented hypothesis with
loss-conditional learning has previously been considered
(Brault et al., 2019; Dosovitskiy and Djolonga, 2020), exist-
ing work still fall into the setting of precise learning, as we
describe subsequently in Section 4.

The function h∗ : (x, λ) 7→ h∗
λ(x) that maps onto a Bayes

optimal model for each λ ∈ Λ is an example of such aug-
mented hypothesis. However, we may again prefer to con-
sider a more amenable optimality criterion that seeks op-
timality jointly across Λ. To this end, we extend Defini-
tion 3.2 to an augmented hypothesis.

Definition 3.5 (C-Pareto optimal augmented hypothesis).
The augmented hypothesis h̄ξ dominates h̄ξ′ , denoted h̄ξ ▷
h̄ξ′ , if ρλ[R]

(
h̄ξ(·, λ)

)
≤ ρλ[R]

(
h̄ξ′(·, λ)

)
for all λ ∈ Λ

and ρλ̃[R]
(
h̄ξ(·, λ̃)

)
< ρλ̃[R]

(
h̄ξ′(·, λ̃)

)
for some λ̃ ∈ Λ.

Then h̄ξ is C-Pareto optimal if there exists no h̄ξ′ such that
h̄ξ′ ▷ h̄ξ.

We can again verify that a function h∗ : (x, λ) 7→ h∗
λ(x)

that maps onto a Bayes optimal model for each λ is in fact
C-Pareto optimal. The following result shows that, under the
assumption of existence of a Bayes optimal model, C-Pareto
optimality is in fact equivalent to Bayes optimality.

Proposition 3.6. Suppose there exists h∗ ∈ HΛ such that
h∗(·, λ) is Bayes optimal for all λ ∈ Λ. Then an augmented

2While we focus primarily on the learning aspect and assume
throughout that the operator knows how to specify λ, we acknowl-
edge the challenge of eliciting operators’ preferences at test time;
see Appendix F.2 for further discussion on test-time elicitation.

hypothesis g∗ ∈ HΛ is C-Pareto optimal if and only if
g∗(·, λ) is a Bayes optimal model for all λ ∈ Λ.

Proposition 3.6 illustrates that all C-Pareto optimal aug-
mented hypotheses can simultaneously learn all the Bayes
optimal models. While this provides a strong guarantee,
finding a C-Pareto optimal solution may still in practice be
challenging and, when possible, one will prefer optimising
against a scalar objective.

Let ∆(Λ) be the space of probability density functions over
Λ. In our imprecise learning setting, a learner can scalarise
the objective by choosing a distribution Q ∈ ∆(Λ), and
taking an expectation over all objectives. This substitutes the
learning problem over all of Λ with the scalarised objective

JQ(h̄ξ) = Eλ∼Q

[
ρλ[R](h̄ξ(·, λ))

]
, (5)

where the choice of distribution Q corresponds to a choice
of scalarisation from the learner. The following proposition
shows that all choices of Q lead to Bayes optimal models
on their support.

Proposition 3.7. Let Q ∈ ∆(Λ). If g∗ ∈ HΛ

solves the scalarised optimisation problem, i.e., g∗ ∈
argming∈HΛ

JQ(g), then g∗(·, λ) is a Bayes optimal model
for all λ ∈ Λ such that Q(λ) > 0.

A similar result has previously been shown in Dosovitskiy
and Djolonga (2020, Proposition 1) under the continuity
and infinite model capacity assumptions. This result implies
in particular that for any choice of distribution Q with full
support, the scalarised objective can in theory yields a Bayes
optimal model for every λ ∈ Λ.

4. Imprecise Risk Optimisation
Unfortunately, Proposition 3.7 does not inform specific
choices of Q for the learner, leaving them in a state of
ignorance. Under this scenario, the most popular narrative
in the literature is to leave the choice of Q to the operators
or to adopt non-informative priors such as Jeffreys prior
and uniform priors (Brault et al., 2019; Dosovitskiy and
Djolonga, 2020). However, both approaches would defeat
the purpose of this work as they render the learning problem
precise again (see the discussions in Section 2). In partic-
ular, it has been argued that complete or partial ignorance
cannot be fully represented by a single precise probability
(Walley, 1991, Sec. 5.5). For example, uniform distribution
is not an appropriate way of representing ignorance because
it coincides with a precise judgement of uniform belief.

C-Pareto improvement. To overcome this challenge, we
adopt the concept of C-Pareto improvement which allows
us to develope a learning algorithm that respects not only
the limitation of evidence and resource, but also the com-
plete ignorance of the learner. Specifically, we focus on the
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gradient-based method:

ξt ← ξt−1 − η · ∇ξJQt
(h̄ξ), Qt ∈ ∆(Λ). (6)

We say that the update (6) makes a C-Pareto improvement
if h̄ξt dominates h̄ξt−1 according to the aggregation ρλ[R].
The central concept involves the adaptive selection of Qt at
each step, ensuring that the parameter update remains con-
sistently non-dominant. This approach bears resemblance
to the multiple-gradient descent algorithm (MGDA) utilised
in multi-objective optimisation (Désidéri, 2012). The subse-
quent result demonstrates the specific selection of Qt that
results in C-Pareto improvement.

Theorem 4.1. For λ ∈ Λ, suppose ξ 7→ ρλ[R](h̄ξ(·, λ)) is
locally continuously differentiable in a neighbourhood of ξ.
Define

Q∗
t ∈ argmin

Q∈∆(Λ)

∥∥∇ξt−1
JQ(ξt−1)

∥∥
2

(7)

and vt(ξt) = ∇ξtJQ∗
t
(ξt). Then the update ξt ← ξt−1 −

η · vt(ξt) for an appropriate choice of η > 0 always makes
C-Pareto improvement.

4.1. Practical Algorithm with Theoretical Justification

In practice, we have access to data from d distinct domains.
The empirical risk for the augmented hypothesis h̄ξ ∈ HΛ

for the ith domain can be computed for each λ ∈ Λ as

R̂i(h̄ξ(·, λ)) =
1

n

n∑
j=1

ℓ(h̄ξ(x
(i)
j , λ), y

(i)
j ), (8)

where (x
(i)
j , y

(i)
j ) ∼ Pi. In principle, the choice of λ

determines how to aggregate the risk profile. However,
in practice once λ is known, only then the correspond-
ing h̄ξ(·, λ) ∈ HΛ can be used to compute the empirical
risk profile. For a particular objective ρλ[R̂](h̄ξ(·, λ)), we
can compute the corresponding empirical risk profile as
R̂(h̄ξ(·, λ)) = {R̂i(h̄ξ(·, λ)), . . . , R̂d(h̄ξ(·, λ))}. If Q is
known to the learner, they can sample {λj}mj=1 ∼ Q and
compute the corresponding empirical risk profiles for each
λj . However, for an imprecise learner, the right choice of
distribution Q is unknown a priori. Therefore, we defer
the computation of the empirical risk profile until the corre-
sponding λ is known. That is, given a candidate distribution
Q ∈ ∆(Λ) we compute the risk profile and aggregate it
with {λj}mj=1 ∼ Q. We can then estimate Q∗

t with Q̂t using
Monte Carlo estimate of (7), i.e.,

Q̂t = argmin
Q∈∆(Λ)

∥∥∥∥∥∥ 1

m

m∑
j=1

∇ρλj
[R̂](h̄ξ(·, λj))

∥∥∥∥∥∥
2

, (9)

where {λj}mj=1 ∼ Q. The direction of C-Pareto improve-
ment is obtained by v̂t(ξt) = ∇ξtJQ̂t

(ξt). Algorithm 1
summarises the proposed algorithm.

Algorithm 1 Imprecise Risk Optimisation (IRO)

1: Input: Data from d distinct domains {x(d)
i , y

(d)
i }ni=1 ∼

Pd(X,Y ), a loss function ℓ : Y × Y → R+, a proba-
bility space ∆(Λ), a (augmented) hypothesis classHΛ,
risk aggregator ρλ : Ld(H)→ L(H), number of Monte
Carlo samples m.

2: Initialise the parameter ξ ∈ Ξ.
3: repeat
4: Estimate Q∗

t with Q̂t by solving (9) by comput-
ing Q̂t = argmin

Q∈∆(Λ)

∥ 1
m

∑m
j=1∇ρλj

[R̂](h̄ξ(·, λj))∥2

where λ1, . . . , λm ∼ Q.
5: Compute v̂t(ξ) = 1

m′

∑m′

k=1∇ρλk
[R̂](h̄ξ(·, λk))

where λ1, . . . , λm′ ∼ Q̂t.
6: Update ξ = ξ − ηv̂t(ξ).
7: until ∥v̂t(ξ)∥2 > ϵ

Proposition 4.2. Let Q ∈ ∆(Λ) and let λop ∈ Λ such
that Q(λop) > 0. Assume that ρλ is a linear, idempotent
aggregation operator and that the loss ℓ is upper bounded
by M ≥ 0. Let n ≥ 1 be the number of samples we observe
from each environment, assumed equal across environments.
Then, there exists q ∈ (0, 1) such that if

ĝ ∈ argmin
ḡ∈HΛ

1

m

m∑
i=1

ρλi
[R̂](ḡ(·, λi)) (10)

where λ1, . . . , λm ∼ Q, then for any δ > qm, the following
inequality holds with probability 1− δ:∣∣ρλop [R](ĝ(·, λop))− ρλop [R](h∗(·, λop))

∣∣
≤ 2M

(√
log(6/ηδ)

2n
+

√
log(6/ηδ)

2m(1− q)(1− qm)

)
,

(11)

where ηδ = (δ − qm)/(1− qm).

This proposition shows that even when the learner does not
know the operator’s true preference λop, the operator excess
risk on the solution of the empirical scalarised IRO problem
ĝ is bounded with high probability in O(n−1/2 +m−1/2),
provided Q has full support. This means in particular that,
provided an unlimited budget on the number of samples (the
λis) that can be drawn from Q, the operator excess risk has
a bound that matches standard learning rates for ERM.

The constant q ∈ (0, 1) depends on the choice of distribution
Q and the operator’s true preference λop. If Q has a high
density around λop, then q can be chosen closer to zero.
Conversely, if Q has a lower density around λop, the values
of q will be closer to one, requiring a larger number of
samples λ1, . . . , λm to achieve a comparable bound.
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Figure 2: Experiments comparing imprecise learning (IL) with various precise learners with precise hypothesis (PL-f ) and
with augmented hypothesis (PL-h̄). 1 standard deviation is included and experiments are repeated 5 times.

5. Experiments
Our framework features a learner, who trains the model,
and an operator, who employs it, with their preferences de-
noted as λlr and λop. Due to the institutional separation, the
operator’s preferred generalisation strategy cannot be com-
municated to the learner. We assess our Imprecise Learning
(IL) framework, allowing learners to train an augmented
hypothesis h̄ using our IRO algorithm (see Algorithm 1),
enabling operators to provide λop at deployment. This con-
trasts with Precise Learners (PL-f ) who commit to a fixed
generalisation (λlr) during training, producing a precise hy-
pothesis f : X → Y , and PL-h̄, who create an augmented
hypothesis but with a pre-determined prior over λlr.

We evaluate using the objective ρλop [R], comparing IL,
PL-f with fixed (0 or 1) or uniform λlr, and PL-h̄ with prior
of λlr as Beta distributions (5,5), (5,1), and (1,1). The strat-
egy aligning with Beta(1, 1) corresponds to the approach in
Brault et al. (2019), thus is termed INF-TASK-h̄. We bench-
mark against an ideal scenario where λlr equals λop and also
calculate the maximum regret, i.e., for any model h̄ (or f ),
max-regret(h̄) ≜ supλop∈Λ ρλop [R](h̄)− ρλop [R](h̄∗

λop
), to

gauge the models’ deviation from optimality across all λop.

Synthetic data: Following Eastwood et al. (2022b), we
construct a simulated experiment to compare learners. We
consider a linear model for each domain d: Yd = θdX + ϵ
with X ∼ N (1, 0.5) and ϵ ∼ N (0, 0.1). We simulate dif-
ferent domains by drawing θd with probability p = 0.5 from
Uniform distributions U(1,1.1) and U(−1.1,−1). This allows
data to exhibit multi-modality, thus creating a discontinuous
risk profile which becomes harder for a single augmented
hypothesis to capture. We consider 250 train and 250 test
domains with 100 samples from each domain.

CMNIST dataset. We also experiment on the CMNIST
dataset (Arjovski, 2021), which is a modified version of the
MNIST dataset. The task is to classify digits {0, 1, 2, 3, 4}
and {5, 6, 7, 8, 9} into negative and positive classes, re-
spectively. A color is introduced as an additional domain-
specific predictive feature that varies across domains, e.g.,

Table 1: Reporting the maximum regret averaged over 5
repetitions for each experiment with one standard error in-
cluded. Top: Comparing IL with PL-f (Synthetic). Middle:
Comparing IL with PL-h̄ (Synthetic). Bottom: Comparing
IL with PL-f and PL-h̄ (Bike Rentals).

PL-f (U(0, 1)) PL-f (λlr = 0) PL-f (λlr = 1) IL (ours)

1.971 ± (0.0098) 6.177 ± (0.0617) 2.010 ± (0.0564) 0.867 ± (0.0058)

PL-h̄ (Beta(5,5)) PL-h̄ (Beta(5,1)) INF-TASK-h̄ IL (ours)
1.79 ± (0.12) 1.57 ± (0.03) 0.935 ± (0.04) 0.56 ± (0.00)

PL-f(λlr = 0) PL-f(λlr = 1) INF-TASK-h̄ IL (ours)
4.81± 0.27 0.66 ± 0.01 0.72 ± 0.13 0.42 ± 0.08

P(Y = 1 | color = red) = 0.9 for domains in which the true
label is highly correlated with the color feature. As a result,
the mechanism by which color influences the label changes
across domains, but the shape has a stable mechanism across
domains (see Figure 4a). We sample 10 training environ-
ments from a long-tailed Beta(0.9, 1) distribution, resulting
in over-represented (majority) and under-represented (mi-
nority) subgroups (see Figure 4b). Note that we do not make
the IID assumption over environments since we evaluate all
subgroups at test time. We further discuss the dataset and
experiment setup in Appendix E.

Real-world data: Following Rothenhäusler et al. (2021)
and Subbaswamy et al. (2019), we use the UCI Bike Sharing
dataset (Fanaee-T and Gama, 2014) to predict the number
of hourly bike rentals R from various weather-related fea-
tures. Here, R is transformed from count to continuous
with normalization. The data contains 17, 379 observations
with temporal information such as season and year. The
data is partitioned by season (1-4) and year (1-2) to create 8
different domains. Domains from the first year are used for
training and the subsequent year as test domains.

5.1. Insights from Experiments

Comparing IL with PL-f . Our initial experiment on
synthetic data contrasts Imprecise Learning (IL) with Pre-
cise Learners (PL-f ) across different λlr settings, including
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average-case (λlr = 0) and worst-case (λlr = 1) scenarios.
Results, shown in Figure 2a, indicate that PL-f models
achieve the lowest aggregated risk compared to other learn-
ers when λlr = λop. However, when λlr ̸= λop, PL-f then
deviates from this ideal scenario, which is expected since
PL-f models are finely tuned to their specific λlr. Con-
versely, IL achieves aggregated risks that remain close to
the ideal scenario across the spectrum of λop, matching
or exceeding the worst-case PL-f in risk-averse settings
(λop > 0.6) and surpassing both average-case and worst-
case PL-f as λop increases. Notably, IL achieved the lowest
maximum regret (see Table 1), underscoring the advantage
of imprecise learning in handling generalization uncertainty.

Comparing IL with PL-h̄. In our second experiment us-
ing synthetic data, we evaluate IL’s augmented hypothesis
trained using imprecise risk optimisation (IRO) against pre-
cise learners (PL-h̄) employing various optimization strate-
gies influenced by their subjective beliefs about λop. Results
in Figure 2b indicate IL’s performance is close to the ideal
baseline across most λop values, except at higher risk levels
where INF-TASK and PL-h̄ trained under Beta(5,1) ex-
cel. This outcome aligns with expectations, as INF-TASK
uniformly aggregates objectives, favoring higher-risk sce-
narios, similar to Beta(5,1)’s weighting towards higher λ.
Despite this, IL outperforms these methods across other
λ and achieves the lowest maximum regret (see Table 1),
demonstrating the efficacy of the proposed method.

Comparing DG algorithms on CMNIST. In Table 2, we
compare IL to other DG methods on three representative
domains from minority and majority subgroups (see Fig-
ure 4). The domains e ∈ {0.0, 1.0} demonstrate opposite
mechanisms, i.e., in domain e = 0.0, the color red is fully
predictive of the negative class, whereas for e = 1.0, it is
fully predictive of the positive class. In domain e = 0.5,
color is uncorrelated with the target. We can see that IL
can learn relevant features in context with appropriate λ and
generalises in all scenarios. By setting λ = 0, the model
operator can be less risk averse and generalise better to
domains from the majority subgroup, as noted in the perfor-
mance of IL for e = 0.0. With λ→ 1, the model operator
can be risk averse and generalise better to the minority sub-
group and is also reflected in the performance of IL for
e ∈ {0.5, 1.0}. Furthermore, with λ→ 1, it performs simi-
larly to the invariant learners. We discuss the results on all
test domains in Table 3 in Appendix E.

Real-world experiment. Figure 2c demonstrates similar
comparisons between IL and various PL-f and PL-h̄ mod-
els as in previous experiments. Notably, IL surpassed the
ideal scenario at higher risk levels. This can be attributed
to the fact that CVAR as an objective discards data from
lower-risk environments (see Section 3.2), thus the optimi-
sation has lower statistical efficiency as risk level increases.

Table 2: Accuracy and maximal regret of different domain
generalisation algorithms on the CMNIST test environments
from P(Y = 1 | color = red) = e with e ∈ {0.0, 0.5, 1.0},
respectively. The hypothetical best invariant and Bayes
classifier are listed in bold. Domain-wise best acc & regret
are highlighted in green. Bayes classifier is defined w.r.t.
the IID learner trained for a particular environment

Objective Algorithm e = 0.0 e = 0.5 e = 1.0 Regret

Average ERM 96.1 59.2 28.3 72.7

Worst GrpDRO 54.1 64.5 75.5 46.9
SD 52.1 63.7 73.3 47.9

Invariance

IGA 71.8 65.2 50.3 49.7
IRM 72.0 69.7 67.7 32.3
VREx 72.7 69.5 68.5 31.5
EQRM 67.8 69.1 72.1 32.2
Oracle 73.5 27.9

PL-h̄ Inf-Task 96.0 63.1 68.3 31.7
IL (Ours) IRO 95.8 69.5 70.3 29.7
Bayes ERM (IID) 100.0 75.0 100.0

Augmented hypothesis mitigates this downside because it is
smooth in the λ parameter by design, thus can “borrow” in-
formation from nearby risk regions. At last, IL consistently
achieved the lowest maximum regret as shown in Table 1.

6. Conclusion
In out-of-distribution (OOD) generalisation, a clear institu-
tional separation between machine learners and model oper-
ators creates generalisation uncertainty that prevents consen-
sus on a specific generalisation approach during training. To
overcome this, we presented imprecise domain generalisa-
tion. Our approach incorporates imprecise risk optimisation,
allowing learners to maintain imprecision during training,
coupled with a model framework that lets operators specify
their generalisation strategy at deployment. Both theoreti-
cal analysis and experimental evaluations demonstrate the
effectiveness of our proposed framework.

Our work faces two main limitations. First, it assumes
that model operators are aware of their level of risk aver-
sion. In practice, they may however struggle to precisely
articulate their preferences. Consequently, this necessitates
preference elicitation at test time, which may result in a
probability distribution over λ rather than a single value.
Second, imprecise learning is more computationally inten-
sive compared to precise counterparts as it involves optimis-
ing for a continuum of objectives. In our future work, we
aim to broaden the scope of imprecise learning by imple-
menting methods to elicit user preferences more effectively,
improving computational efficiency, and exploring alterna-
tive aggregation functions. This approach would empower
operators to weigh various criteria such as fairness, privacy,
and algorithmic performance effectively.
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A. Proofs
This section provides the detailed proofs of our main results presented in the paper.

A.1. Proof of Proposition 3.6

Proof.
(⇐)

We can easily verify that if g∗(·, λ) is Bayes optimal for all λ ∈ Λ, then it is C-Pareto optimal.

(⇒)

Suppose g∗ ∈ HΛ is C-Pareto optimal. We have

g∗ C-Pareto optimal⇎ ∃h ∈ HΛ, h ▷ g∗

⇔ ∀h ∈ HΛ,¬(h ▷ g∗)

⇔ ∀h ∈ HΛ,
[
∃λ ∈ Λ, ρλ[R](h(·, λ)) > ρλ[R](g∗(·, λ))

]
∨
[
∀λ̃ ∈ Λ, ρλ̃[R](h(·, λ̃)) ≥ ρλ̃[R](g∗(·, λ̃))

]
.

This implies in particular that[
∃λ ∈ Λ, ρλ[R](h∗(·, λ)) > ρλ[R](g∗(·, λ))

]
∨
[
∀λ̃ ∈ Λ, ρλ̃[R](h∗(·, λ̃)) ≥ ρλ̃[R](g∗(·, λ̃))

]
.

Since h∗(·, λ) is Bayes optimal for all λ ∈ Λ, the first statement cannot be true. Therefore, the second statement must hold
and we have

g∗ C-Pareto optimal⇒ ∀λ̃ ∈ Λ, ρλ̃[R](h∗(·, λ̃)) ≥ ρλ̃[R](g∗(·, λ̃))
⇒ ∀λ̃ ∈ Λ, ρλ̃[R](h∗(·, λ̃)) = ρλ̃[R](g

∗(·, λ̃)) (h∗(·, λ) Bayes optimal)

⇒ ∀λ̃ ∈ Λ, g∗(·, λ̃) Bayes optimal .

This concludes the proof.

A.2. Proof of Proposition 3.7

Proof. Since h∗(·, λ) is a Bayes optimal model for all λ ∈ Λ, we have

ρλ[R](g∗(·, λ))− ρλ[R](h∗(·, λ)) ≥ 0, ∀λ ∈ Λ

⇒ Eλ∼Q[ρλ[R](g∗(·, λ))− ρλ[R](h∗(·, λ))] ≥ 0.

But by definition of g∗ we also have

JQ(g
∗) ≤ JQ(h

∗)⇒ Eλ∼Q[ρλ[R](g∗(·, λ))− ρλ[R](h∗(·, λ))] ≤ 0.

Therefore, ∫
Λ

[
ρλ[R](g∗(·, λ))− ρλ[R](h∗(·, λ))

]
Q(λ) dλ = 0.

Since the integrand is positive, it implies that for all λ ∈ Λ such that Q(λ) > 0, ρλ[R](g∗(·, λ)) = ρλ[R](h∗(·, λ)) which
concludes the proof.

A.3. Proof of Theorem 4.1 and C-Pareto Improvement

When the choice of scalarisation, i.e., Q improves some objectives at the cost of degrading other objectives, it induces a
preference. Therefore, the problem becomes multi-objective again as there will be a trade-off among these objectives. The
imprecise choice of scalarization will be the distribution Q∗ such that it improves at least one of the objectives without
degrading any other objective, i.e., it ensures C-Pareto improvement. Formally,
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Proposition A.1. Suppose a learning algorithm P learns an augmented hypothesis g ∈ HΛ using aggregated objective
JQ(g) (ref. Eq 5). Then, the learner does not induce an additional preference overHΛ if it makes Pareto improvement.

Proof. Consider a learner P which learns an augmented hypothesis g ∈ HΛ which aggregates the objectives ρλ[R](g(·, λ))
for all λ ∈ Λ with respect to Q to obtain the aggregated objective Eλ∼Q[ρλ[R](g(·, λ))]. Assume that G = {gi}ni=0 denotes
the sequence of models that the learner obtains at every update while minimizing the aggregated objective. We know that
∀i, j such that i < j and gi, gj ∈ G

Eλ∼Q[ρλ[R](gi(·, λ))] > Eλ∼Q[ρλ[R](gj(·, λ))]

which defines a preference on G ⊂ HΛ with aggregated objective as the utility function uQ(g) := −Eλ∼Q[ρλ[R](g(·, λ))].
This additional preference relation agrees with the original binary preference relation (⪰) onHΛ which defines dominance
and C-Pareto optimality if there does not exist gi, gj ∈ G such that i < j, gi ⪰̸ gj and gj ⪰̸ gi with uQ(gi) > Q(gj). This
implies that aggregated objective uQ must be such that for all gi, gj ∈ G and i < j, gj ⪰ gi. That is, uQ should make
C-Pareto improvement to not induce any additional preference.

Therefore, we propose an alternate characterization of C-Pareto optimality based on the concept of C-Pareto improvement
with the idea of local gradients.

Proposition A.2. An augmented hypothesis h̄ξ is C-Pareto optimal if and only if there exists no w ∈ Ξ such that for an
ϵ > 0, ρλ[R](h̄ξ−ϵw(·, λ)) ≤ ρλ[R](h̄ξ(·, λ)) for all λ ∈ Λ and ρλ̃[R](h̄ξ−ϵw(·, λ)) < ρλ̃[R](h̄ξ(·, λ)) for some λ̃ ∈ Λ.

Proof. We prove the forward direction using contradiction. Assume h is C-Pareto optimal and there exists w ∈ Ξ such that
for an ϵ > 0, ρλ[R](hξ−ϵw(·, λ)) ≤ ρλ[R](hξ(·, λ)) for all λ ∈ Λ and ρλ̃[R](hξ−ϵw(·, λ)) < ρλ̃[R](hξ(·, λ)) for some
λ̃ ∈ Λ. Then hξ−ϵw strictly dominates hξ according to our definition of C-Pareto optimality for augmented hypothesis Def
?? which contradicts that hξ is C-Pareto optimal. We prove the reverse direction using the contraposition. Assume hξ is not
C-Pareto optimal. Then there exists hξ′ that strictly dominates hξ, i.e., ρλ[R](hξ′(·, λ)) ≤ ρλ[R](hξ(·, λ)) for all λ ∈ Λ

and ρλ̃[R](hξ′(·, λ)) < ρλ̃[R](hξ(·, λ)) for some λ̃ ∈ Λ. Then there exists w = ξ − ξ′ and ϵ = 1 such that hξ−ϵw strictly
dominates hξ.

Proposition A.2 shows that for C-Pareto optimality there must not be any direction w ∈ Ξ for Pareto improvement. The
non-existence of a direction for Pareto improvement is an if and only-if condition for C-Pareto optimality.

Proposition A.3. In an ϵ-neighbourhood of ξ let ρξ[R](hξ(·, λ)) be a smooth function of ξ and the local gradient is defined
as vλ(hξ) := ∇ξρλ[R](hξ(·, λ)). If hξ is not pareto optimal then there exists a local pareto improvement direction −w ∈ Ξ

such that for all λ ∈ Λ w⊤vλ(hξ) ≥ 0 and for some λ̃ ∈ Λ w⊤vλ̃(hξ) > 0.

Proof. From Proposition A.2, when hξ is not Pareto optimal, there exists a w ∈ Ξ such that for an ϵ > 0, hξ−ϵw ≻ hξ.
Then for all λ ∈ Λ,

ρλ[R](hξ−ϵw) ≤ ρλ[R](hξ)

ρλ[R](hξ)− ϵw⊤vλ(hξ) + ϵ2R ≤ ρλ[R](hξ)

−ϵw⊤vλ(hξ) + ϵ2R ≤ 0 (R : Remainder Higher order terms)

ϵR ≤ w⊤vλ(hξ)

Since ρλ[R](hξ−ϵw) ≤ ρλ[R](hξ), then w⊤vλ(hξ) ≥ 0 as ϵ → 0 otherwise a contradiction would arise for sufficiently
small ϵ. Similarly for an λ̃ ∈ Λ, since ρλ̃[R](hξ−ϵw) < ρλ̃[R](hξ), then w⊤vλ̃(hξ) > 0.

Proposition A.3 extends the argument from Proposition A.2 that when hξ is not C-Pareto optimal, a direction for Pareto
improvement must exist. Remark explains that a local Pareto improvement direction must align with the gradient of all
objectives. Since the direction opposite to the local gradient of an objective shows us the direction of the improvement for
the objective, then the direction opposite to local Pareto improvement w ∈ Ξ must align with the local gradient if −w ∈ Ξ
improves the corresponding objective. Note that the local gradient of aggregated objective (5) is

∇ξJQ(ξ) := Eλ∼Q[vλ(hξ)] (12)
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Where vλ(hξ) := ∇ξρλ[R](hξ(·, λ)) denotes the local gradient of ρλ[R](hξ(·, λ)). Then the choice of Q such that
∇ξJQ(ξ) is the the direction of local Pareto improvement is given by

Proposition A.4. For λ ∈ Λ, suppose ξ 7→ ρλ[R](h̄ξ(·, λ)) is locally continuously differentiable in a neighbourhood of ξ.
Define

Q∗
t ∈ argmin

Q∈∆(Λ)

∥∥∇ξt−1
JQ(ξt−1)

∥∥
2

(13)

and vt(ξt) = ∇ξtJQ∗
t
(ξt). Then the update ξt ← ξt−1 − η · vt(ξt) for an appropriate choice of η > 0 always makes

C-Pareto improvement. i.e., −vt(ξt) for all objectives ρλ[R](hβ(·, λ)), λ ∈ Λ such that vt(ξt)T vλ(hξ) ≥ ||vt(ξt)||22.

Proof. We start by assuming that a given Q∗
t exists then the update ξt ← ξt−1 − η · vt(ξt) performs local C-Pareto

improvement. First we show that ∀λ ∈ Λ the vt(ξt)
T vλ(hξ) ≥ ||vt(ξt)||22. For any distribution Q ∈ ∆(Λ), v =

Eλ∼Q[vλ(hξ)]− vt(ξt). We can say that ∀ϵ ∈ [0, 1] vt(ξt) + ϵv is essentially

vt(ξt) + ϵv = vt(ξt) + ϵ(Eλ∼Q[vλ(hξ)]− vt(ξt))

= (1− ϵ)vt(ξt) + ϵEλ∼Q[vλ(hξ)]

= Eλ∼ϵQ+(1−ϵ)Q∗
t
[vλ(hξ)]

Where ϵQ+ (1− ϵ)Q∗
t is some other valid probability distribution. Therefore the norm of vt(ξt) + ϵv must be larger than

or equal to the minimum norm obtained from Equation (13).

(vt(ξt) + ϵv)T (vt(ξt) + ϵv) ≥ vt(ξt)
T vt(ξt)

2ϵvt(ξt)
T v + ϵ2vT v ≥ 0

ϵ ≥ −2vt(ξt)
T v

vT v

Since the above statement must be true for all ϵ ∈ (0, 1]. For ϵ = 0 equality must hold that vt(ξt)T vt(ξt) = vt(ξt)
T vt(ξt).

Therefore, the lower bound from above must be less than or equal to 0.

−2vt(ξt)T v
vT v

≤ 0

vt(ξt)
T v ≥ 0

Replacing v by Eλ∼Q[vλ(hξ)]− vt(ξt) then gives us that

vt(ξt)
T (Eλ∼Q[vλ(hξ)]− vt(ξt)) ≥ 0

vt(ξt)
TEλ∼Q[vλ(hξ)] ≥ vt(ξt)

T vt(ξt)

Thus we obtain that ∀λ ∈ Λ the vλ(hξ)
T vt(ξt) ≥ ||vt(ξt)||22 by setting Q to be dirac delta function at λ. Therefore from

Proposition A.3 we can say that hξt−1−ηvt(ξt) ≻ hξt−1
. This makes w ∈ Ξ the common direction for local C-Pareto

improvement.

Analogous to the definition 3.3 we define C-Pareto stationarity for augmented hypothesis as

Definition A.5. Let ρλ[R](h̄(·, λ)) be a smooth function of augmented hypothesis h̄ and vλ(h̄ξ) := ∇ρλ[R](h̄ξ(·, λ)) be
the local gradient then the augmented hypothesis is said to be C-Pareto Stationary if and only if there exists a probability
density q such that

∫
vλ(h̄ξ) dq(λ) = 0.

Intuitively, C-Pareto Stationarity corresponds to local C-Pareto Optimality. For a single objective, C-Pareto stationarity is
equivalent to the first-order derivative being zero. Therefore, If an augmented hypothesis h is C-Pareto optimal, it is C-Pareto
stationary. This means that C-Pareto stationarity is a necessary condition for C-Pareto optimality. From Proposition A.2 we
know that for a C-Pareto optimal point, no direction for Pareto improvement must exist, which implies that no direction for
local Pareto improvement must also not exist. From theorem 4.1 we know that a local direction for pareto improvement
is vt(ξt) =

∫
vλ(hξ)dQ

∗
t (λ) where Q∗

t = argminQ∈∆(Λ) ||Eλ∼Q[vλ(hξ)]||. Given that no direction for local C-Pareto
improvement must exist implies that vt(ξt) = 0. This means that there exists a distribution Q such that

∫
vλ(hξ)dQ(λ) = 0.

This illustrates that C-Pareto stationarity is a necessary condition for C-Pareto optimality which intuitively illustrates that
local C-Pareto optimality is necessary for C-Pareto optimality.
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A.4. Proof of Proposition 4.2

A.4.1. USEFUL RESULTS

Proposition A.6. Let X be a random variable taking values in X and let f : X → R+ and g : X → R+ be non-negative
functions. Define Z = (f(X), g(X)) and suppose that it admits a continuous density pZ with respect to the Lebesgue
measure on R2.

Let α, β > 0 such that pZ(α, β) > 0 and let Z1, . . . , Zn be independent copies of Z. Then there exists r ≥ 1 and a random
subsampling operator π such that π([n]) ∈ 2{1,...,n}, |π([n])| ∼ Binomial(n, 1/r), and for any index i ∈ π([n])

E[Zi] = (α, β), (14)

where the expectation is taken against both the variable and the index.

Proof. The proof consists in showing that the assumptions made are sufficient to construct a rejection sampling procedure
where the proposal density is the density of Z and the target density is a uniform centered over (α, β).

Since pZ(α, β) > 0 and pZ is continuous, there exists an open neighbourhood of (α, β) where pZ is strictly positive.
Therefore, there exists η > 0 such that if we define the closed rectangle

Aα = [α− η/2, α+ η/2]

Aβ = [β − η/2, β + η/2]

A = Aα ×Aβ ,

then pZ(x, x
′) > 0 for any (x, x′) ∈ A and admits a positive lower bound on A. Further, we can define the uniform random

variable U ∼ Uniform(A) with probability density

pU (x, x
′) =

1

η2
, ∀(x, x′) ∈ A.

Then, by upper boundedness of pU over A and lower-boundedness of pZ over A, there exists r ≥ 1 such that for any
(x, x′) ∈ A,

pU (x, x
′)

pZ(x, x′)
≤ r.

As a result, we can formally construct a rejection sampling procedure to sample from U using samples from Z with
acceptance rate 1/r. It is important to note this is only a formal construction to show the existence of an appropriate
subsampling procedure. In practice, we may not be able to evaluate pZ and therefore may be unable to effectively implement
the procedure.

Algorithm 2 Algorithmic definition of the random subsampling operator π

1: Input: pU , pZ , r, Z1, . . . , Zn

2: Initialise subsampled = {}
3: for i ∈ {1, . . . , n} do
4: Let Ui ∼ Uniform([0, 1])
5: if Ui ≤ pU (Zi)/rpZ(Zi) then
6: Append i to subsampled
7: end if
8: end for
9: Return subsampled

Algorithm 2 outlines an algorithmic definition of a random subsampling operator π : 2[n] → 2[n] based on rejection
sampling. We emphasise the random nature of the operator π as Z1, . . . , Zn are treated throughout as random variables. By
property of rejection sampling, the number of accepted samples |π([n])| or |subsampled| follows a Binomial distribution
with n trials and probability of success 1/r. Finally, we have by construction that for any i ∈ π([n])

E[Zi] = E[Uniform(A)] = (α, β)

which concludes the proof.
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A.4.2. PROOF OF THE MAIN RESULT

We begin by introducing notations which will be used in this proof. Suppose we observe n ∈ N of IID observations from
each environment, i.e., we observe (x

(i)
1 , y

(i)
1 ), . . . , (x

(i)
n , y

(i)
n ) ∼ Pi for every i ∈ {1, . . . , d}. Furthermore, let Q ∈ ∆(Λ)

be the scalarisation density the learner chooses and let λ1, . . . , λm ∼ Q be independent samples from this distribution.

For each environment i ∈ {1, . . . , d}, we define an empirical risk

R̂i(f) =
1

n

n∑
j=1

ℓ(y
(i)
j , f(x

(i)
j )), f ∈ H,

which we concatenate into an empirical risk profile R̂ = (R̂1, . . . , R̂d). We can easily verify that for any i ∈ {1, . . . , d},
E[R̂i] = Ri where the expectation is taken against Pi, thus E[R̂] = R. Therefore, if we take the empirical aggregated risk
to be ρλ[R̂] for λ ∈ Λ and assume that ρλ : Ld

2(H)→ L2(H) is a linear risk aggregation function, it follows that

E
[
ρλ[R̂]

]
= ρλ

[
E[R̂]

]
= ρλ[R].

Finally, define the empirical scalarised risk using the values λ1, . . . , λm sampled above, for g ∈ HΛ as

ĴQ(g) =
1

m

m∑
i=1

ρλi
[R̂](g(·, λi)).

In what follows, we will always assume there exists a function ĥ ∈ HΛ such that for any λ ∈ Λ, ĥ(·, λ) is a minimiser of
the empirical aggregated risk ρλ[R̂], i.e.,

ĥ(·, λ) ∈ argmin
f∈H

ρλ[R̂](f) , ∀λ ∈ Λ,

and that the empirical scalarised risk also admits a minimiser which we denote ĝ ∈ HΛ, i.e.,

ĝ ∈ argmin
g∈HΛ

ĴQ(g).

The following lemma shows that when such minimisers exists, then ĝ(·, λi) is automatically a minimiser of the empirical
aggregated risk ρλi

[R̂].

Lemma A.7. Suppose there exists ĥ, ĝ defined as above. Then ĝ(·, λi) minimises ρλi
[R̂] for all i ∈ {1, . . . ,m}.

Proof. Let ĥ ∈ HΛ such that ĥ(·, λ) ∈ argmin
f∈H

ρλ[R̂](f) for any λ ∈ Λ. Then, we have

ρλ[R̂](ĝ(·, λ)) ≥ ρλ[R̂](ĥ(·, λ)) , ∀λ ∈ Λ

⇒ ρλi [R̂](ĝ(·, λi)) ≥ ρλi [R̂](ĥ(·, λi)) , ∀i ∈ {1, . . . ,m}

⇒ ĴQ(ĝ) ≥ ĴQ(ĥ)

⇒ ĴQ(ĝ) = ĴQ(ĥ) (ĝ ∈ argmin ĴQ)

⇒ 1

m

m∑
i=1

ρλi
[R̂](ĝ(·, λi))− ρλi

[R̂](ĥ(·, λi)) = 0

⇒ ρλi
[R̂](ĝ(·, λi)) = ρλi

[R̂](ĥ(·, λi)) , ∀i ∈ {1, . . . ,m} (sum of positives)

⇒ ĝ(·, λi) ∈ argmin
f∈H

ρλi
[R̂](f) , ∀i ∈ {1, . . . ,m}.

This concludes the proof.
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Finally, before we turn to the main result, recall that we assume there exists h∗ ∈ HΛ such that h∗(·, λ) ∈ H is a Bayes
optimal model for any λ ∈ Λ, i.e., h∗(·, λ) ∈ argmin

f∈H
ρλ[R](f). For any λ ∈ Λ, we denote the resulting Bayes risk as

ρλ[R]⋆ = ρλ[R](h∗(·, λ)).

Let λop ∈ Λ be the choice of λ which reflects the operator’s preference, but is unknown to the learner. The following result
provides a bound on the excess risk at λop when using ĝ as a hypothesis.

Proposition A.8. Let Q ∈ ∆(Λ) and let λop ∈ Λ such that Q(λop) > 0. Suppose that ρλ is a linear, idempotent aggregation
operator and that the loss ℓ is upper bounded by M ≥ 0. Then there exists q ∈ (0, 1) such that for any δ > qm, the
following inequality holds with probability 1− δ:

∣∣ρλop [R](ĝ(·, λop))− ρλop [R]⋆
∣∣ ≤ 2M

(√
log(2/ηδ)

2n
+

√
log(2/ηδ)

2m(1− q)(1− qm)

)
,

where ηδ = (δ − qm)/(1− qm).

Proof. The proof consists in (1) constructing a subsequence from λ1, . . . , λm such that the empirical scalarised risks
converge to appropriate limits, (2) using these subsequences to apply concentration inequalities to the excess risk when the
subsequence exists and (3) combining the results together in the general case.

(1) – Constructing an appropriate subsampling procedure

Let λ be a random variable with probability density function Q over Λ. It induces a real-valued distribution over the risks
ρλ[R̂](ĝ(·, λ)) and ρλ[R̂](ĥ(·, λ)). We assume that

(
ρλ[R̂](ĝ(·, λ)), ρλ[R̂](ĥ(·, λ))

)
admits a continuous density with

respect to the Lebesgue measure in R2 we denote p. Further, define

αop = ρλop [R̂](ĝ(·, λop))

βop = ρλop [R̂](ĥ(·, λop)).

Since Q(λop) > 0, we have p(αop, βop) > 0. Then by Proposition A.6, given λ1, . . . , λm ∼ Q(λ) IID, there exists r ≥ 1
and a random subsampling π([m]) ∈ 2[m] such that for any index i ∈ π([m]) we have

E
[(

ρλi [R̂](ĝ(·, λi)), ρλi [R̂](ĥ(·, λi))
)]

= (αop, βop).

In particular, let p = |π([m])| ∼ Binomial(m, 1/r) denote the number of subsampled elements and assume without
loss of generality these are the first p ones. Then, conditionally on p ≥ 1, we have that 1

p

∑p
i=1 ρλi

[R̂](ĝ(·, λi)) and
1
p

∑p
i=1 ρλi [R̂](ĥ(·, λi)) are respectively unbiased estimators of αop = ρλop [R̂](ĝ(·, λop)) and βop = ρλop [R̂](ĥ(·, λop)).

(2.1) – Bounding the regret when p ≥ 1 is fixed
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Suppose we are in a fixed setting where p ≥ 1. Then we can decompose and upper bound the regret following

ρλop [R](ĝ(·, λop))− ρλop [R]⋆ = ρλop [R](ĝ(·, λop))− ρλop [R̂](ĝ(·, λop))

+ ρλop [R̂](ĝ(·, λop))−
1

p

p∑
i=1

ρλi
[R̂](ĝ(·, λi))

+
1

p

p∑
i=1

ρλi [R̂](ĝ(·, λi))− ρλop [R̂](ĥ(·, λop))

+ ρλop [R̂](ĥ(·, λop))− ρλop [R]⋆

≤ ρλop [R](ĝ(·, λop))− ρλop [R̂](ĝ(·, λop))

+ ρλop [R̂](ĝ(·, λop))−
1

p

p∑
i=1

ρλi
[R̂](ĝ(·, λi))

+
1

p

p∑
i=1

ρλi [R̂](ĥ(·, λi))− ρλop [R̂](ĥ(·, λop)) (Lemma A.7)

+ ρλop [R̂](h∗(·, λop))− ρλop [R]⋆
(
ĥ(·, λop) ∈ argmin ρλop [R̂]

)
≤ 2 sup

f∈H

∣∣∣ρλop [R](f)− ρλop [R̂](f)
∣∣∣

+

∣∣∣∣∣ρλop [R̂](ĝ(·, λop))−
1

p

p∑
i=1

ρλi [R̂](ĝ(·, λi))

∣∣∣∣∣
+

∣∣∣∣∣1p
p∑

i=1

ρλi
[R̂](ĥ(·, λi))− ρλop [R̂](ĥ(·, λop))

∣∣∣∣∣

Let η ∈ (0, 1) fixed. By linearity of ρλ, we have shown that ρλ[R̂](f) is an unbiased estimator of ρλ[R](f). Therefore,
McDiarmid’s inequality gives us that we have with probability at least 1− η/3

∣∣∣ρλop [R](f)− ρλop [R̂](f)
∣∣∣ ≤M

√
log(6/η)

2n
.

If we denote Zλi
= ρλi

[R̂](ĝ(·, λi)) for the p accepted samples from the rejection sampling procedure, then we have by
construction that 1

p

∑p
i=1 Zλi is an unbiased estimator of ρλop [R̂](ĝ(·, λop)). Therefore, we can also apply McDiarmid’s

inequality to obtain that with probability at least 1− η/3∣∣∣∣∣ρλop [R̂](ĝ(·, λop))−
1

p

p∑
i=1

ρλi
[R̂](ĝ(·, λi))

∣∣∣∣∣ ≤M

√
log(6/η)

2p
.

Applying the same reasoning to the last line and combining the bounds together using the union bound we get that with
probability at least 1− η

ρλop [R](ĝ(·, λop))− ρλop [R]⋆ ≤ 2M

√
log(6/η)

2n
+ 2M

√
log(6/η)

2p
.

(2.2) – Integrating the upper bound against p given p ≥ 1
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We now consider the random setting, conditional on p ≥ 1. Recall that the number of accepted samples from the
rejection sampling procedure p follows a Binomial(n, 1/r) distribution. We want to take the expectation of the established
probabilistic upper bound with respect to p given that p ≥ 1. Let q = 1− 1/r denote the rejection rate, then we have for any
k ≥ 1

P(p = k | p ≥ 1) =
1

1− qm

(
m
k

)
(1− q)kqm−k.

This corresponds to a positive Bernoulli distribution (Grab and Savage, 1954), and in particular if we denote Bm,r(k) =
P(Bernoulli(m, 1/r) ≤ k), we have from (Grab and Savage, 1954) Eq. (12) that

E
[
1

p
| p ≥ 1

]
≤ 1

(m+ 1)(1− q)(1− qm)

(
[1−Bm+1,r(1)] +

3

(1− q)(m+ 2)
[1−Bm+2,r(2)]

)
≤ 1

m(1− q)(1− qm)
.

Therefore, it follows that

E

[√
log(6/η)

2p
| p ≥ 1

]
= E

[√
log(6/η)1/p

2
| p ≥ 1

]

≤
√

log(6/η)E[1/p | p ≥ 1]

2
(Jensen)

≤

√
log(6/η)

2m(1− q)(1− qm)
,

and by applying this to the probabilistic upper bound on the excess risk we have obtained earlier, we get that with probability
at least 1− η

ρλop [R](ĝ(·, λop))− ρλop [R]⋆ ≤ 2M

√
log(6/η)

2n
+ 2M

√
log(6/η)

2m(1− q)(1− qm)
.

(3) – Combining things together

Now that we have established a probabilistic upper-bound on the excess risk when at least one sample is accepted by π,
we set out to obtain a general probabilistic bound on the excess risk. Let q = 1− 1/r be the rejection rate of the rejection
sampling procedure and fix δ ∈ (qm, 1).

Take ηδ = (δ − qm)/(1− qm) and εδ = 2M
√

log(6/ηδ)
2n + 2M

√
log(6/ηδ)

2m(1−q)(1−qm) , then we have

P
(
ρλop [R](ĝ(·, λop)

)
− ρλop [R]⋆ > εδ) = P

(
ρλop [R](ĝ(·, λop))− ρλop [R]⋆ > εδ | p = 0

)︸ ︷︷ ︸
≤1

P (p = 0)︸ ︷︷ ︸
=qm

+ P
(
ρλop [R](ĝ(·, λop))− ρλop [R]⋆ > εδ | p ≥ 1

)
P (p ≥ 1)

≤ qm + (1− qm)P
(
ρλop [R](ĝ(·, λop))− ρλop [R]⋆ > εδ | p ≥ 1

)
≤ qm + (1− qm)ηδ

= qm + (1− qm)
δ − qm

1− qm
= δ,

where the last derivations follow from the construction of εδ and ηδ. This shows that for any δ ∈ (qm, 1), the following
inequality holds with probability 1− δ

ρλop [R](ĝ(·, λop))− ρλop [R]⋆ ≤ 2M

√
log(6/ηδ)

2n
+ 2M

√
log(6/ηδ)

2m(1− q)(1− qm)
,
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where ηδ = (δ − qm)/(1− qm). This concludes the proof.

B. Conditional Value-at-Risk (CVaR)
Proposition B.1. Let I = {1, . . . ,m} be an index set and R : I → R+ such that R(i) = R̂i for i ∈ I . Denote C(I) as the
space of real-valued, continuous function on I and C(I)∗ its dual, i.e., {T : C(I)→ R}. Then there is a finite measure µ
on I such that for any T ∈ C(I)∗ and R ∈ C(I), we have

T (R) =
∑
i∈I

Riµi.

Sketch Proof. The key is to notice I is a compact metric space because it is bounded. Furthermore, all functions on discrete
space are automatically continuous. This allows us to directly apply the Riesz-Markov-Kakuani representation theorem.

The proposition implies that no matter how we aggregate a risk profile, it will always correspond to some kind of weighted
average. From the perspective of optimisation, since these weights are always convex (noramlising the weights does not
change the optimisation), it can then be understood that whenever we aggregate the risk profile, we are picking a particular
weighted distribution to perform the standard ERM.

C. Single-Domain Scenario
In a single-domain setting, we envision two possible approaches to imprecise learning. The first approach treats each
training data point as an individual domain, estimating the risk profile through point-wise loss functions, denoted as
R(f) = (ℓ(f(x1), y1), . . . , ℓ(f(xn), yn)). The second approach delineates a credal set by an ϵ-ball around the empirical
distribution of the training data, akin to Distributionally Robust Optimisation (DRO). Subsequently, it extracts a finite
number of extreme points from this credal set, which then represent the risk profile. While the first approach can be directly
implemented within the current framework, the second approach entails a non-trivial extension of the existing setup.

D. Risk Profiles of Simulation
Simulation of Risk Profile: In economic theory, risk aversion explains the inclination to accept a situation with a more
predictable but possibly lower payoff than another situation with a very unpredictable but possibly higher payoff. In OOD
research, the term risk averseness has been conceptually used to describe the operator’s risk perception for the model’s
risk profile (i.e., the distribution of R̂). A risk-averse operator prefers models whose risk is more predictable but possibly
higher than models whose risk is less predictable but possibly lower. Given that the operator at test time have a risk
averseness between ”less risk averse” and ”risk averse” and by having h(x, λ) we can cover this spectrum of the operator’s
risk averseness. Given that we use CVaR, the entire spectrum of an ML Operators potential risk averseness is encoded in
the interval of λ being between 0 and 1. By construction, h(x, λ) can cover the spectrum of ”risk averseness” because it
corresponds to the prediction function we obtain at CV aR(λ). Hence, we verify this hypothesis.

Experiment 1A: Assume a linear model Ye = θeX + ϵ, where X ∼ N (2, 0.2) and ϵ ∼ N (0, 0.1). We simulate different
environments by drawing θ from a Beta distribution Beta(0.1, 0.2). In total, we generate for 250 train and test domains 100
observations each.

Each data line corresponds to a domain in Figure 3a. Hence the domains differ in their slope. Since we take θ from the
bimodal distribution Beta(0.1, 0.2), we observe that the domains form two clusters. The more dominant cluster includes
the domains with smaller θ. Subsequently, we aim to find the optimal θ̂ for all λ ∈ {0.05, . . . , 0.95} by solving the
corresponding CVaR objective. As we can see from this plot, the optimal lines for small values of λ cluster around the
dominant cluster of the environments. We consider the dark blue line (λ=0.05) as the “average case”. When increasing λ,
the lines get closer to the second cluster of domains, which could be considered as the ”worst-case”. Hence, the dark red
line (λ=0.95) could be somewhat considered to be the estimated θ that works well in the worst cases.
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Figure 3: Figure 3a illustrated the data and the ideal learner fλ(θ̂) ∈ H for λ ∈ {0.05, . . . , 0.95}. Figure 3b describes the
landscape of the objective function ρ (CVaR) for the ideal learner. We plot θ̂ as circles.Figure 3c describes the Risk profile
for λ ∈ {0.05, . . . , 0.95} for the ideal learner. Figure 3d describes the Risk profile for λ ∈ {0.05, . . . , 0.95} Imprecise
Learner.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Y

Estimated regression functions h( , x)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Landscape for CVaR ( ) and circles represent 

0.5

0.6

0.7

0.8

0.9

1.0

CV
aR

 v
al

ue

(b)

0.2 0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

De
ns

ity

Risk Profiles wrt  for Ideal Learner

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c)

0.0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

De
ns

ity

Risk Profiles wrt  for IRO

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d)

In Figure 3b, we observe that for higher values of λ, the optimal solutions for θ vary a lot, while for smaller values of λ, the
optimal solutions for θ do not vary significantly. As an interpretation, we can say that it is likely that the problem becomes
harder for small λ. This interpretation is supported by the fact that when we choose λ to be high, we condition on the tail of
the R, thus considering only a subset of the domains (i.e., lesser data for optimization). When looking at the optimal θ̂, they
form a smooth curve across all λ ∈ {0.05, . . . , 0.95}.

Lastly, in Figure 3c, we see how the distribution of the risk changes across all λ. As expected, when choosing higher λ we
consider higher risks from the risk profile R and minimize these parts in the optimization. We observe that for higher values
of λ the risk profile does not transition smoothly contrary to the case of IRO in Figure 3d. We postulate that this is because
an ideal learner essentially throws away the data from low-risk domains when focusing on high-risk domains due to the
formulation of CVaR as an aggregator. However, since IRO learns all the objectives simultaneously it can implicitly address
this issue of a finite number of domains for training in λ corresponding to higher risks. This observation is consistent with
our observation from real-world experiments on UCI bike rentals in Figure 2c.

E. Experiments on CMNIST
E.1. Dataset Setup

We conduct a large-scale experiment using an extension of the CMNIST dataset (Arjovski, 2021). The CMNIST comprises
data from the MNIST dataset modified to the task of binary classification. For the standard task in CMNIST, the digits (0-4)
and (5-9) have to be classified into two labels 0 and 1. Another feature as color is introduced in the training domain where
digits are colored red or green such that the color is predictive of the true label e.g. domain 0.3 i.e. P (Y = 1 | color =
red) = 0.3 and P (Y = 0 | color = red) = 0.7. Whereas for domain 0.9 it would mean P (Y = 1 | color = red) = 0.9
and P (Y = 0 | color = red) = 0.1. That is the mechanism by which color influences the label changes across domains.
However, shape has a stable mechanism of prediction across domains i.e. P (Y = 0 | shape ∈ {0, 1, . . . , 4}) = 0.75 and
P (Y = 1 | shape ∈ {5, 6, . . . , 9}) = 0.75.

E.2. Experimental Setup and Baselines

We consider a scenario where we sample environments from a long-tail distribution at training time to model data collection
in the real world, such as low-resource languages. We sample 10 training environments from a Beta(0.9,1) distribution exactly
{0.01, 0.02, 0.05, 0.07, 0.09, 0.12, 0.14, 0.58, 0.7, 0.99}. However, we do not assume IID distribution on environments, i.e.
at test time we evaluate all the environments {0.0, 0.1, . . . , 0.9, 1.0}. Each environment is assumed to be influenced by
both color and shape where the mechanism of color’s influence changes but shape affects the target stably. This forces
all the precise learners with a fixed hypothesis, i.e., PL-f to learn the invariant risk minimizer across domains that rely
only on shape as a predictor to generalize to minority domains. We compare performance to baselines (precise learners
with fixed hypothesis PL-f ) based on different assumptions like ERM (average-case risk), GrpDRO (Sagawa et al., 2020),
V-REx (Krueger et al., 2021) (worst-case risk) and IRM (Arjovski, 2021), IGA (Koyama and Yamaguchi, 2020) (Invariant
Predictors), EQRM (Eastwood et al., 2022a) (probable domain generalizer) and SD (Pezeshki et al., 2021) which avoids
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Figure 4: In Figure 4a we describe the features that affect the target. The mechanism by which color affects target changes
across environments. However, shape has a stable mechanism across environments. In Figure 4b we consider a long tail
distribution of environments from which we sample training environments. This is often realistic that many subpopulations
are underrepresented in training data, eg low resource languages for translation tasks.

implicit regularization from Gradient starvation by decoupling features. We also consider Inf-Task which is a baseline
for comparing how an Imprecise Learner (IL) performs against precise learners with an augmented hypothesis (PL-h̄).
Based on the initialization setup for CMNIST described by Eastwood et al. (2022a), all baseline methods perform poorly
without ERM pretraining. Therefore, to ensure a fair comparison, we consider the ERM pretraining for PL-f learners for
the initial 400 steps out of a 600-step training. All other hyper-parameters remain consistent with the established setup.
For the learners with augmented hypotheses, it does not make sense to initialize with ERM because it may predispose the
imprecise learner towards specific outcomes. Therefore, we assess the best-case performance across all learners across types
of initialization. To implement the augmented hypothesis, we append FILM layers (Perez et al., 2018) to MLP architecture
used in Eastwood et al. (2022a).

E.3. Imprecise Learner can learn relevant features in context

Table 3: Maximal regret and test accuracy across all CMNIST test environments.Bold denotes the hypothetical best invariant
and Bayes classifier performance. Highlighted Green denotes the best performance amongst all algorithms for each domain
and best regret. Bayes classifier is defined w.r.t the IID learner trained for a particular environment

Objective Algorithm Test Environments based on P(Y = 1 | color = red) = e Regret0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Average Case ERM 96.1 87.1 78.0 72.1 65.8 59.2 51.8 47.1 39.9 33.6 28.3 72.7

Worse Case GrpDRO 54.1 55.6 58.1 595 61.5 64.5 66.3 69.1 70.5 73.9 75.5 46.9
SD 52.1 54.1 56.6 58.6 59.7 63.7 65.8 67.0 68.5 70.3 73.3 47.9

Invariance

IRM 72.0 72.0 72.0 72.0 72.1 69.7 69.3 69.9 69.2 69.7 67.7 32.3
IGA 71.8 72.0 72.0 72.1 69.8 65.2 62.4 60.5 57.2 57.7 50.3 49.7
EQRM (λ→ 1) 67.8 67.7 68.3 68.8 70.5 69.1 70.3 72.0 72.1 71.4 72.1 32.2
VREx 72.7 71.3 71.8 71.4 71.7 69.5 69.5 70.2 69.5 71.6 68.5 31.5
Oracle 73.5 27.9

PL-h̄ Inf-Task 96.0 86.3 78.6 68.0 62.1 61.3 63.2 65.0 66.6 68.4 68.3 31.7
IL (Ours) IRO 95.8 87.2 78.8 68.9 69.4 69.5 70.8 70.1 70.0 70.4 70.3 29.7
Bayes Classifier ERM (IID) 100.0 90.0 80.0 75.0 75.0 75.0 75.0 75.0 80.0 90.0 100.0

In Table 3 we compare IL to other methods, showing that IL can learn relevant features in context. This also allows us to
guide model operators on selecting appropriate λ. Suppose the user expects data at test time to come from the majority
environments of their training. In that case, they can be less risk averse and use λ = 0 whereas if the user is unsure and
anticipates test environments to look like unlike training, i.e. more minority environments they can choose λ→ 1. This is
also reflected in the performance of IL such that for the majority domains e ∈ {0.0, . . . , 0.4} it performs similar to average
case learner and for relatively less seen i.e. minority domains e ∈ {0.5, . . . , 1.0} it performs similar to the invariant learner.
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F. Limitations of Imprecise Learner
F.1. Computational Complexity

The additional computation costs result from solving (9) compared to solving for a single notion of generalization which
grows by the O(m) where m is the number of estimates needed. Since the convergence rate for Monte Carlo estimates is
O( 1√

m
) the quality of estimates of the gradient improves slowly w.r.t. the number of samples. The generalization to the

user’s choice of risk λop with high probability is also given by O( 1√
n
+ 1√

m
) in Proposition 4.2, where n is the number

of data samples from each environment. In practice, there is room to obtain a better approximation of (9) with possibly
quasi-Monte Carlo sampling methods.

F.2. Challenges in Specifying User Preferences

One of the main challenges in the Imprecise Learning (IL) framework is to specify user preference in terms of risk level i.e.
a choice of λop. In practical scenarios, model operators may encounter challenges in precisely articulating their level of risk
aversion. Additionally, bridging the operator’s concept of generalization to a specific domain with an appropriate risk level
remains ambiguous. In our experiments on modified CMNIST, we address this by allowing the model operator to be more
risk-averse to generalize to minority environments. In contrast, for generalizing to a domain from majority environments
users can be more risk-seeking.

F.3. Generalization with no access to minority environments

In the context of the standard CMNIST setup where the learner has access to no minority environments, CVaR as a risk
measure does not allow to generalize beyond the credal set which can be constructed from the convex combination of
majority environments alone. For standard CMNIST setup training envs are {0.1, 0.2} and test env is {0.9}. This means
that the mechanism by which color affects the target is anti-correlated at test time, such situations can arise in adversarial
settings. Since for λ → 1, CVaR only minimizes the higher risks in a profile to achieve invariance it cannot recover the
invariant mechanism without access to at least one environment from a subgroup. However, we argue that by using additional
assumptions i.e. a different risk measure Imprecise learners can still learn to generalize to novel unseen domains outside of
the credal set. We can extend the risk measure to enforce invariance by using VREx as an additional regularizer.

ρλ[R] := CVaRλ[R] + λVariance(R) (15)

In Table 4, we observe that IL for λ = 1 obtains poor performance on a novel test domain however with an additional risk
measure it obtains a closer performance to ERM on grayscale (Oracle) and outperforms several baselines. Note that with
random initialization IL+VREx significantly outperforms other baselines.

Table 4: CMNIST Test Accuracy. Training Environments are {0.1, 0.2} & Test Environment {0.9}

Objective Algorithm Initialization
Rand. ERM Best Case

PL-f

ERM 27.9 ± 1.5 27.9 ± 1.5 27.9 ± 1.5
IRM 52.5 ± 2.4 69.7 ± 0.9 69.7 ± 0.9
GrpDRO 27.3 ± 0.9 29.0 ± 1.1 29.0 ± 1.1
SD 49.4 ± 1.5 70.3 ± 0.6 70.3 ± 0.6
IGA 50.7 ± 1.4 57.7 ± 3.3 57.7 ± 3.3
V-REx 55.2 ± 4.0 71.6 ± 0.5 71.6 ± 0.5
EQRM 53.4 ± 1.7 71.4 ± 0.4 71.4 ± 0.4

IL IRO 28.4 ± 0.7 27.4 ± 0.1 28.4 ± 0.7
PL-h̄+VREX Inf-Task 68.4 ± 0.1 64.6 ± 0.0 68.4 ± 0.1
IL+VREX IRO 71.4 ± 0.2 65.4 ± 0.1 71.4 ± 0.2
Invariant Pred. Oracle 73.5 ± 0.2

G. Implementation Details
This section provides the details of specific implementations used in our experiments.
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G.1. Augmented Hypothesis

For implementing the augmented hypothesis, we use hypernetworks (Ha et al., 2016) to realize the dependence of h
on model operator’s preference, i.e., λ. In this scenario, the weights of the augmented model are dependent on λ, i.e.,
hξ(x, λ) := fgw(λ)(x) where gw(λ) is the hypernetwork and ξ := {w, gw(λ)}. For neural networks with multiple layers,
we use FILM layers (Perez et al., 2018) to augment the network such that it can be conditioned upon λ.

G.2. Imprecise Risk Optimisation

To operationalise the imprecise risk optimization, we need to minimise (9) with respect to the family of probability
distributions ∆(Λ). Since for our case Λ = [0, 1], we parameterise the family of distributions with Beta(α, β). We sample λ
from Q via uniform sampling from the inverse CDF of Q, which we denote as F−1. We approximate the gradient of F−1

by first-order difference as described in Algorithm 3.

Algorithm 3 Sampling from a Beta Distribution using ICDF with Gradient Computation

1: class ICDFBeta:
2: def forward(u): # Compute ICDF
3: return F−1(α,β)(u)
4: def backward(u): # Compute Gradient
5: δ := 1e− 6

6: ∇θF
−1(α, β)(u) := (F−1(α+δ,β)(u)−F−1(α,β)(u))

δ

7: ∇ϕF
−1(α, β)(u) := (F−1(α,β+δ)(u)−F−1(α,β)(u))

δ
8: return ∇αF

−1(α, β)(u), ∇βF
−1(α, β)(u)

9: Initialize: α, β ← 1.0, 1.0
10: icdfbeta = ICDFBeta(α, β)
11: for epoch = 1 to k do
12: for i = 1 to m do
13: ui ∼ Uniform([0, 1])
14: λi = icdfbeta.forward(ui)
15: end for
16: end for
17: Return Set of samples {λ1, λ2, . . . , λm} and gradients for each epoch
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