
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND CLICKING:
A STEP TOWARDS GENERALIST GUI GROUNDING VIA
TEXT DRAGGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graphical user interface (GUI) grounding, the process of mapping human instruc-
tions to GUI actions, serves as a fundamental basis to autonomous GUI agents.
While existing grounding models achieve promising performance to simulate the
mouse click action on various click-based benchmarks, another essential mode of
mouse interaction, namely dragging, remains largely underexplored. Yet, dragging
the mouse to select and manipulate textual content represents a prevalent and
important usage in practical GUI scenarios. To narrow this gap, we first introduce
GUI-DRAG, a diverse dataset of 161K text dragging examples synthesized through
a scalable pipeline. To support systematic and robust evaluation, we further con-
struct SCREENDRAG, a benchmark with 5,333 examples spanning three levels
of interface context, together with three dedicated metrics designed for assessing
text dragging capability. Models trained on GUI-DRAG with an efficient contin-
ual training strategy achieve substantial improvements on SCREENDRAG, while
preserving the original click-based performance on ScreenSpot, ScreenSpot-v2,
and OSWorld-G. Our work encourages further research on broader GUI grounding
beyond just clicking and paves way toward a truly generalist GUI grounding model.

1 INTRODUCTION

GUI (Graphical user interface) agents based on (multimodal) large language models (LLMs) that can
autonomously perceive and act in the digital world have great promise to significantly boost human
productivity (Zheng et al., 2024; Qin et al., 2025; OpenAI., 2025). Recent efforts including but are
not limited to architecture designs (Wu et al., 2025b; Jing et al., 2025), memory (Gao et al., 2025;
Yoran et al., 2024) and grounding (Xie et al., 2025; Gou et al., 2025; Tang et al., 2025) have made
significant progress towards this goal. Among these, grounding plays a crucial role by translating the
natural language instructions into the actionable operations within the digital world.

The mouse is the primary tool to ground human intent in the digital world, with mouse clicking
serving as the dominant mode of engagement. To better understand and simulate the mouse click
action, numerous works have focused on both modeling (Lin et al., 2025; Gou et al., 2025; Luo et al.,
2025; Lu et al., 2025; Wu et al., 2025a; Liu et al., 2025b) and benchmark development (Li et al.,
2025; Wu et al., 2024; Nayak et al., 2025). While the click action is fundamental, it captures only
one dimension of mouse interaction. The mouse, by design, supports two complementary modes
of operation: discrete clicks, executed through quick taps, and continuous dragging, performed by
holding down the button and moving the pointer. A generalist grounding model must therefore
encompass the full spectrum of the mouse actions, including dragging. In this study, we identify
text dragging as a critical capability with substantial practical value and try to push the boundary of
existing grounding models with it.

Text dragging is prevalent and important in daily routine, particularly in professional productivity
applications such as Word, PowerPoint, and PDF readers, where manipulation over textual content
is a core part of user workflows. Without text dragging functionality, users must resort to ineffi-
cient character-by-character or word-by-word selection through keyboard shortcuts, resulting in low
productivity. Beyond efficiency considerations, text dragging ensures content consistency during

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Drag          from

Desktop

APP

asdfadfasdfasdfsdfsdfa

asdfadfadf

asdfadfasdfasdfsdfsdfa

asdfadfasdfasdfsdfsdfa

asdfadfasdfasdfsdfsdfa

Document

Drag to select the second sentence.
Instruction:ScreenDrag:

asdfadfasdfasdfsdfsdfa

asdfadfadf

asdfadfasdfasdfsdfsdfa

asdfadfasdfasdfsdfsdfa

asdfadfasdfasdfsdfsdfa

Grounding: Operation:

(xstart,ystart) to (xend,yend)

Figure 1: Illustration of the SCREENDRAG benchmark and the task of text dragging. The left part
shows three levels of interface context within the benchmark (examples in Appendix G) and the right
part shows the process of grounding the text selection by dragging.

cross-application transfers by preserving crucial metadata including font styles, formatting specifi-
cations, and spreadsheet formulas that would otherwise be lost when only raw text is reproduced.
Moreover, many advanced features in productivity software, such as highlighting, annotating, and
commenting, are only accessible after a span of text has been explicitly selected by dragging (an
Adobe Acrobat example is shown in Figure 10). These considerations together underscore the
importance of text dragging for GUI agents and motivate us to study it in this work.

Nevertheless, developing high-quality datasets for text dragging introduces unique methodological
and data curation challenges. Existing data collection approaches are primarily designed for click-
based grounding and rely heavily on HTML markup, which only provides coarse coordinates for
interactive elements. In contrast, text dragging demands precise character-level coordinates that
typically exceed the granularity available through standard HTML structures. While Xie et al.
(2025) proposed to obtain fine-grained coordinates through application-specific scripts, this approach
requires manual creation of source files, limiting its scalability. Furthermore, most screenshots from
existing GUI grounding datasets exhibit insufficient textual density, rendering them inadequate for
constructing meaningful and comprehensive training examples in text-rich scenarios.

To address this gap, we made the following contributions:

• We first carefully analyze and filter screenshots rich in textual content from existing datasets, and
additionally collect 20K public academic paper-style documents. We further design an automated
three-stage pipeline to synthesize text dragging examples directly from screenshots. In total, we
curate 161K diverse and high-quality text dragging instances, which we term GUI-DRAG.

• To support systematic evaluation of text dragging capability, we further construct SCREENDRAG, a
benchmark with 5,333 examples spanning different levels of interface context, along with three novel
metrics to enable rigorous evaluation of text dragging capability.

• Our results on SCREENDRAG reveal a pronounced bias in existing grounding models toward click
actions, including frontier systems such as the OpenAI Computer Use Agent. It underscores the need
for the development of balanced datasets and grounding models that can reliably execute a broader
set of actions, not limited to clicking.

• Our models, trained on Jedi-3B/7B through an efficient continual training strategy, achieve sub-
stantial improvements over the strongest baselines, demonstrating up to 18% absolute improvement
(90% relative improvement) in accurately selecting the exact spans. Importantly, our models also
preserve the base models’ original click-based performance on benchmarks such as ScreenSpot,
ScreenSpot-v2, and OSWorld-G by using only 10% original Jedi data.

2 METHODOLOGY

2.1 PROBLEM FORMULATION

GUI grounding refers to the process of mapping the natural language instruction into the mouse or
keyboard actions. More formally, given the screenshot and the instruction, grounding model output

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the action a, such as “click”, “drag” or “type” with the corresponding parameters. Parameters can
be coordinates (e.g., click(x, y)) or the text to be input (e.g., type(text)). Different from most works
solely targeting the click action where the parameter is a single coordinate (x, y), we instead focus on
studying the text dragging capability where a pair of coordinates are required to ground the instruction
by drag(xstart, ystart, xend, yend).

2.2 DATA CONSTRUCTION

Constructing datasets for text dragging presents several unique challenges that are not adequately
addressed by existing GUI grounding efforts.

First, the development of prior datasets (Gou et al., 2025; Wu et al., 2024; Lu et al., 2024; Yu et al.,
2025) heavily rely on the dual representation property of webpages, which provides correspondences
between HTML and its rendered visual layout. This is effective for synthesizing click-based ground-
ing data (e.g., clicking at a button), as such targets typically correspond to discrete, well-defined
HTML elements. However, it is far less suitable for text dragging tasks, which require finer gran-
ularity. In particular, while dual representations contain bboxes for blocked units like paragraphs,
they lack coordinates for finer spans such as individual sentences or multi-words, which do not
exist as standalone elements. This limitation is critical, as selecting such fine-grained spans is a
common and essential use case for text dragging. Recent work such as OSWorld-G (Xie et al.,
2025) has attempted to overcome this limitation by application-specific scripts (e.g., in Word) to
extract character-level coordinates. While it yields more precise supervision, it requires manually
creating source files for each application, which is labor-intensive and hard to scale. To address
these issues, we propose an automatic pipeline that synthesizes text dragging data directly from

Table 1: Distribution of # text
related tags in the Uground
datasets.

# of text tag count (ratio)

> 200 7 (0.00%)
> 100 60 (0.01%)
> 50 594 (0.06%)
> 30 3991 (0.41%)
> 25 7991 (0.72%)
> 20 14625 (1.51%)

screenshots.

Beyond these methodological constraints, another challenge lies
in the sources of training data. Many previous efforts (Xu et al.,
2024; Yang et al., 2025) reuse screenshots from earlier datasets
and apply their own processing pipelines for their purposes. How-
ever, existing GUI grounding datasets are primarily designed to
support click-based interactions, with the goal of enabling agents
to trigger icons, links, or navigational elements. As a result, they
contain relatively little textual content and offer limited utility for
constructing meaningful and diverse text-dragging examples. For
instance, in the UGround (Gou et al., 2025) dataset, which crawls
approximately 700K webpages, only about 0.7% of the collected
screenshots contain more than 25 text-related tags (e.g., <p>, <h1>,
<h2>). Although screenshots with sparse textual content may still be applicable for data synthesis,
they fail to capture realistic usage scenarios where text dragging typically occurs in text-dense
environments.

To address this gap, we begin by filtering the UGround dataset to retain only screenshots containing
at least 25 text-related tags, yielding approximately 8k images. Next, we manually review the Jedi
training set and select screenshots that feature document-centric interfaces with substantial textual
content, contributing an additional 2k examples. However, our preliminary exploration reveals that
these two sources alone do not yield satisfactory performance in scenarios involving highly compact
textual content. Therefore, we further collect ∼20k publicly available screenshots of paper-style
documents1 characterized by high text density and well-suited for text dragging scenarios.

To synthesize high-quality training data, we introduce a simple yet effective three-stage pipeline:

Instruction Generation: For each screenshot, we prompt o4-mini (OpenAI, 2025) (henceforth, the
annotation model) to generate instructions and the corresponding target text spans referenced by the
instruction (e.g., the instruction is ‘Drag to select the last sentence’ and the target text span is ‘For
drafting ... as Word.’ in the Figure 2). To ensure broad coverage of different granularities of the text
span, we include five granularities: single sentence/paragraph, multiple sentences/paragraph, and
multi-words span. Here, a “sentence” is defined as a span terminated by appropriate punctuation
(e.g., a period, exclamation mark, or question mark), rather than a line break.

1https://universe.roboflow.com/

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To capture realistic usage patterns where people can use different ways to describe the same text
span, we introduce five complementary categories of instructions: (1) Semantic: describe the span by
meaning or topic (e.g., the paragraph introducing the Libre Office); (2) Positional: specify absolute
or relative layout location (e.g., the second sentence of the first paragraph); (3) Visual: refer to visual
appearance (e.g., the heading with bold text); (4) Lexical: anchor by literal content (e.g., sentence
starting with the word ‘For’); (5) Compositional: combine minimal cues from the four categories
above. We intentionally prioritize positional and lexical categories for the instruction and granularities
of sentence and multi-word level, as they are more aligned with how humans typically perform drag
actions in real applications (e.g., commenting or highlighting in documents). A small-scale human
study supports this design.

Each instruction is phrased in either an explicit form (e.g., “Drag to select. . . ”, “Drag the mouse to
highlight. . . ”) where the drag action is directly specified or an implicit form (e.g., “Copy the range
from. . . ”, “Highlight across. . . ”), requiring the grounding model to infer that a drag action is needed.

Grounding. In this stage, we ground the instruction to pixel-level coordinates. We first apply OCR
to the screenshot to obtain word-level bboxes. Given the OCR output and the target text span, the
annotation model is used to identify the bboxes of the start and end words (i.e., Bstart and Bend)
and retrieve the corresponding start and end coordinates (xstart, ystart), (xend, yend) accordingly.
Empirically, we find that EasyOCR2 performs reliably at the word level for our task. Additional
details on the grounding process and EasyOCR hyperparameter choices are provided in Appendix E.

Filtering. To ensure data quality, we further go through two filtering processes. First, we annotate
each screenshot with the selected start and end coordinates, i.e. the Set-of-Marks (SOM) tech-
nique (Yang et al., 2023). Then, we ask the annotation model to (1) verify that the instruction clearly
corresponds to the intended span and (2) confirm that the annotation tightly enclose the target span.
Second, we conduct manual spot checks on approximately 5% of the dataset to assess instruction
clarity and annotation consistency. After filtering, we retain a final corpus of around 161k high-quality
text dragging training examples, denoted as GUI-DRAG. The details on prompts used in three stages
are provided in Appendix I.

2.3 TRAINING STRATEGY

The current dominant paradigm for training grounding models is collecting millions of examples
and training a base model from scratch (Hong et al., 2024; Gou et al., 2025; Xu et al., 2024; Xie
et al., 2025). While effective, this approach incurs substantial computational cost and time (e.g.,
Jedi-7B Xie et al. (2025) takes 1920 H100 hours). An alternative and more efficient strategy is
continual training, where the model is further trained on a mixture of new data and part of its original
data. It allows the model to acquire new skills while preserving its existing capabilities in an efficient
manner. In our study, we adopt this efficient strategy to maintain the model’s clicking capability
while enhancing its text dragging performance. Specifically, we choose the Jedi-3/7B as our base
model as it achieves competitive performance on various click-based grounding benchmarks while
struggling to perform well on text dragging tasks. We randomly sample 10% of the original Jedi data,
which leads to 750k Jedi training examples. Combined with our own 161k text dragging data, we
train our own model, GUI-DRAG-3/7B, for two epochs. Notably, training GUI-DRAG-7B only takes
around 350 H100 hours, achieving a substantial reduction in computational cost compared to training
from scratch. We will conduct a more detailed analysis of how different amount of Jedi training data
affects the model performance in Section 5. To assess the quality and utility of our text dragging
dataset, we also train models exclusively on our own collected data, referred as Jedi-3B/7B (Drag).
Additional implementation details are provided in Appendix D.

3 SCREENDRAG

In this section, we introduce SCREENDRAG along with three complementary metrics, which together
provide an effective and rigorous evaluation framework. We use X̄ and X̂ to represent the prediction
and ground truth, respectively, where X can be coordinate or bbox.

2https://github.com/JaidedAI/EasyOCR

4

https://github.com/JaidedAI/EasyOCR


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

: Predicted coordinates 1: Ground truth coordinates : Predicted coordinates 2

: Predicted BBoxs: Ground truth BBoxes

1

2

Figure 2: A screenshot with SOM in gray. In the top-left black box, the target text span is the first
sentence, “Like . . . tools.”. Given the ground truth and predicted bboxes (The predicted start and
end coordinates fall within bbox 0 and bbox 20, which we omit here to avoid clutter.), the B-Dist
is 3 according to Equation 1. In the bottom-right box, the target span is the last sentence, “For . . .
Word.”. Here, both predictions (blue and green) yield zero B-Dist, but only the green coordinates
correctly capture the target span. The blue prediction fails because its dpixel does not satisfy the small
threshold, whereas the green one succeed given the text snapping mechanism.

3.1 EVALUATION DATASET

To account for the fact that text dragging is a core part of workflows in productivity applications, we
design our benchmark, SCREENDRAG, over Word, PowerPoint, and PDF readers. Concretely, we
first manually collect and curate 110 multi-page documents across these three applications.

Nevertheless, GUI agents, particularly when equipped with the Model Context Protocol (MCP), can
be deployed across a wide spectrum of usage scenarios by interfacing either directly with specific
applications or with the operating system as a whole. Therefore, the screenshots that the grounding
module receives can differ significantly in both scope and content as well. In certain deployment
settings, the agent may only be provided with a tightly scoped document view (e.g., a single rendered
page within a PDF reader) to support more targeted and efficient processing. In other cases, the agent
is asked to perceive broader contexts by receiving the screenshot of the application window or the full
desktop. To account for this diversity in agent implementation, we design our benchmark to include
three levels of interface context: the document view, the application window, and the full desktop, as
illustrated in Figure 1. This setup allows us to simulate a broad range of real-world use conditions and
systematically evaluate grounding model performance under varying levels of contextual complexity.

For each manually captured screenshot, we first annotate individual words based on the OCR results.
Human annotators are then instructed to randomly select text spans at different granularities by
using different categories of instructions and label the corresponding ground truth start and end
bounding boxes (B̂start, B̂end) using the screenshot with SOM. From these annotations, we derive
the drag coordinates, (x̂start, ŷstart) and (x̂end, ŷend), which are subsequently used to re-annotate
the screenshot for another round of filtering process. In addition, we further use LLMs to classify
each example as either text-sparse or text-dense (example in Appendix F). Text-sparse cases refer to
the target span that is relatively isolated and therefore easier to select. By contrast, text-dense cases
indicate that the target span is tightly surrounded by other selectable text, making precise dragging
more challenging and placing higher demands on pixel-level accuracy. We also use LLMs to rephrase
20% of the instructions from explicit to implicit form to further diversify the benchmark. Detailed
statistics including the resolution distribution for the benchmark are provided in Appendix B.

3.2 EVALUATION METRICS

Drag Trigger Rate (DTR): This metric measures the proportion of cases where the model can
successfully outputs correct drag action given the instructions. Note that models with different action

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

space have different definition for the drag action. For example, OpenAI CUA has a complete drag
action: drag(xstart, ystart, xend, yend), while Jedi and Qwen models need at least two actions which
first output click(xstart, ystart) or move to(xstart, ystart) before executing drag to(xend, yend). Our
metric will account for such differences during evaluation.

Bbox Dist (B-Dist): This is a metric defined at the bbox level. Specifically, we first map the
predicted start and end coordinates to bboxes obtained from OCR using two criteria: (1) if a predicted
coordinate lies inside a bbox, we directly assign it to that box; (2) if a predicted coordinate does
not fall within any bbox, we assign it to the box with the closest horizontal distance. Based on the
mapped (B̄start, B̄end), we compute the bbox-level distance as:

B-Dist = 1
2

(∣∣(B̄start)− (B̂start)
∣∣+ ∣∣(B̄end)− (B̂end)

∣∣) . (1)

where |·| denotes the index difference at the bbox level. During implementation, we find that OCR
systems often parse bboxes in an arbitrary order (for example, bbox 10 and bbox 11 in Figure 2). To
address this issue, we design a simple algorithm that automatically reorder the bboxes based on their
spatial relationship, ensuring the effectiveness of calculating index differences.

Success Rate (SR): While B-Dist captures misalignment at the bbox level, it remains a coarse
measure and does not guarantee that the predicted span precisely selects the ground truth span (e.g.
the predicted points in blue at Figure 2). To impose a stricter requirement, we introduce the SR
metric, which evaluates whether the predicted span exactly matches the ground truth. In particular,
when B-Dist = 0, we further assess the Euclidean distance between the predicted coordinates and the
ground truth coordinates by computing:

dpixel = max
{∥∥ (x̄start, ȳstart)− (x̂start, ŷstart)

∥∥
2
,
∥∥ (x̄end, ȳend)− (x̂end, ŷend)

∥∥
2

}
. (2)

To ensure that the predicted coordinates are sufficiently close to the ground truth endpoints at the
pixel level, it should satisfy dpixel < ϕ where ϕ is a manually defined threshold.

However, an exception arises when either B̂start or B̂end lies at the beginning or end of a line. In
these cases, predicted coordinates may fall slightly outside the ground truth span along the dragging
direction but still yield a correct selection. This behavior is attributed to a common design feature
in modern operating systems, known as text snapping (Miura & Saisho, 2014; Apple Inc., 2025;
Microsoft, 2025), where selections will automatically extend to the nearest valid boundary once the
pointer overshoots (e.g. the green prediction in Figure 2 can correctly select the target span given text
snapping mechanism). To account for this effect, we integrate the snapping behavior into our SR
metric to ensure the validity. Therefore, the SR can be formalized as:

SR =

{
1, if B-Dist = 0 ∧

(
dpixel < ϕ ∨ text snapping

)
,

0, otherwise.
(3)

Taken together, these three novel metrics offer a set of comprehensive approaches to effectively and
reliably measure the grounding model’s text dragging capability.

4 EXPERIMENTS

4.1 SETUP

Baselines: We evaluate a range of frontier closed-source and open-source models that are widely used
in GUI-related tasks. For closed-source models, we include OpenAI Computer Use Agent (CUA)
(OpenAI., 2025) and Claude CUA (Anthropic., 2024). For each, we consider two configurations: the
default setting, and a variant in which the system prompt explicitly indicates that drag actions are
required (i.e., w/ hint). For open-source models, we focus on Qwen2.5-VL-3B/7B/32B (Bai et al.,
2025), Jedi-3B/7B (Xie et al., 2025), and UI-TARS-1.5-7B (Qin et al., 2025). Although many other
open-source grounding models exist, we restrict our evaluation to these for two reasons. First, most
grounding models are trained exclusively for click-based interactions and thus cannot be meaningfully
assessed on text dragging tasks. Second, while some models claim to support a broader action space
beyond clicking, our preliminary experiments show that they consistently fail to produce valid drag
actions, yielding a DTR of zero. Consequently, we omit them from further evaluation.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Performance on SCREENDRAG with breakdown on text-sparse, text-dense settings. The best
and second-best results under each metric are bolded and underlined. ∗ indicates that the model has
a standalone complete drag action.

Experimental Setting DTR↑ Text-Sparse Text-Dense Avg. (Total)

B-Dist↓ SR↑ B-Dist↓ SR↑ B-Dist↓ SR↑

Open-Source

Qwen2.5-VL-3B 5.0% 44.5 3.2% 43.8 0.0% 44.3 2.26%
Qwen2.5-VL-7B 5.0% 27.7 3.35% 30.8 1.16% 28.7 2.64%
Qwen2.5-VL-32B 55.8% 23.5 5.84% 27.1 1.65% 24.4 5.09%
Jedi-3B 94.1% 12.1 19.0% 17.2 8.53% 13.4 16.3%
Jedi-7B 77.5% 14.3 12.1% 18.3 4.99% 15.4 10.3%
UI-TARS-1.5-7B∗ 84.6% 13.0 23.6% 19.5 9.36% 14.7 20.0%

Closed-Source

OpenAI CUA∗ 85.7% 9.70 21.4% 12.98 8.13% 10.1 16.0%
Claude CUA∗ 47.4% 10.44 17.0% 8.92 12.59% 10.5 18.1%
OpenAI CUA (w/ hint)∗ 91.7% 8.68 18.0% 12.83 6.74% 9.15 16.1%
Claude CUA (w/ hint)∗ 96.9% 8.63 16.9% 10.74 11.39% 9.73 16.6%

Ours

Jedi-3B (Drag) 100.0% 7.9 39.7% 9.2 20.1% 8.2 34.7%
Jedi-7B (Drag) 100.0% 7.4 36.1% 8.8 16.6% 7.7 31.2%
GUI-DRAG-3B 100.0% 6.9 43.6% 7.2 22.9% 7.0 38.1%
GUI-DRAG-7B 100.0% 6.2 38.1% 6.7 19.8% 6.4 33.1%

Evaluation: We evaluate models using the three metrics introduced in Section 3, each designed
to capture different aspects of text dragging performance. For the B-Dist and SR metrics, we only
consider cases where the model can accurately output the drag action. For the SR metric, we set the
threshold ϕ to 3 pixels. This value is empirically determined by manually inspecting 100 examples,
and is found to strike a good balance between reducing false positives and false negatives.

4.2 RESULTS

Main Findings: Across both text-sparse and text-dense settings, our models consistently outperform
all baselines. In particular, GUI-DRAG-3B achieves 43.6% SR on text-sparse and 22.9% SR on
text-dense inputs, representing absolute improvements of 20% and 10% over the best-performing
baselines, respectively. Moreover, our models obtain substantially lower B-Dist on average, indicating
closer alignment with ground truth spans and thus better control and understanding of text-drag
operations. Among open-source baselines, UI-TARS-1.5-7B achieves the highest SR and even
surpasses the closed-source models; however, its relatively high B-Dist suggests systematic failures
in specific scenarios despite overall strong performance. Upon closer examination, we find that it
frequently fails in cases where instructions refer to the text spans at sentence granularity by using
positional cues, particularly under text-dense conditions. This may indicate limited coverage in their
training data. Meanwhile, closed-source models generally outperform other open-source baselines
but the performance drop substantially under the more challenging text-dense setting and largely lag
behind our models trained with GUI-DRAG.

Besides, we find that incorporating the original Jedi data, despite being click-dominant, further
improves drag performance. We hypothesize that this is due to the shared requirement in both tasks
to ground instructions into fine-grained pixel-level coordinates. Hence, the implicit grounding signals
in click data can benefit drag localization as well.

Additional results with detailed breakdowns across interface contexts, task categories, and span
granularities are provided in Appendix H. Notably, we observe that grounding models exhibit distinct
performance trends across interface levels, suggesting that GUI agents may need to adaptively select

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

grounding models depending on the usage scenario and the specific MCP configuration. Taken
together, the findings over SCREENDRAG highlight the limitations of existing grounding models in
handling text dragging and validate the effectiveness of our data collection pipelines.

Biasing Towards Clicking: Surprisingly, we find that baseline models often fail to reliably trigger
the drag action, even when dedicatedly trained for computer use scenarios. For instance, OpenAI
CUA and UI-TARS-1.5-7B only reach a DTR of 85.7% and 84.6%, respectively. To dive deeper, we

Qwen-2.5-VL-7B Jedi-7B UI-TAR-1.5-7B OpenAI CUA OpenAI CUA w/ hint
0

20

40

60

80

100 Explicit Implicit
Drag Click Others

Figure 3: Distribution of actions across explicit and implicit
instructions across 5 models.

further analyze their output action
distributions across implicit and ex-
plicit instructions in Figure 3. The
result shows that models exhibit a
pronounced bias toward click actions;
when the instruction directly requires
a drag operation, models still fre-
quently persist with the click action.
Even with an additional hint in the
system prompt, OpenAI CUA, known
for strong instruction following, still
fails to elicit the correct drag action
perfectly. Such issues become more
severe under the implicit instruction setting, where the models like Qwen-2.5-VL-7B and Jedi-7B
intend to blindly output click actions. This phenomenon raises the questions about whether current
grounding models possess sufficient instruction understanding and underscores a critical limitation
that all models are severely biased towards click actions. It underscores the importance of balancing
training datasets and advancing generalist grounding models that can robustly interpret and perform a
wider spectrum of actions beyond clicking.

5 ANALYSIS

Continual Training: We evaluate the impact of incorporating varying proportions of Jedi data through

54 56 58 60
SR on Click (%)

10

15

20

25

30

35

40

SR
 o

n 
D

ra
g 

(%
)

3B
7B

Data amount
1%
5%
10%
15%

Jedi baselineJedi baseline

Figure 4: Success rate on click-based
benchmarks (x-axis; average score re-
ported) and SCREENDRAG (y-axis) with
different proportion of Jedi data.

a continual training approach on both click and text drag-
ging tasks. For assessing the click performance, we
employ three widely adopted click-based benchmarks
(ScreenSpot-Pro, ScreenSpot-V2, and OSWorld-G) and
report the averaged scores across these three in Figure 4
(detailed breakdowns provided in Appendix C). Overall,
our results suggest that the scaling law does not straight-
forwardly hold under continual training, and the training
dynamics vary across model sizes. For the 7B model,
incorporating higher proportions of Jedi data effectively
preserves click performance, while the 3B model main-
tains robust performance with minor degradation when
utilizing 15% original data. Moreover, more Jedi data will
hinder the acquisition of text dragging capability for the
7B model, which is not observed in the 3B model. To opti-
mize the tradeoff between click and drag task performance
while maintaining computational efficiency, we thus inte-
grate 10% of the Jedi data for training our GUI-DRAG-
3/7B. While these findings demonstrate the efficiency and
the promise of continual training for developing more
generalist grounding models, future work should further
investigate how to perform continual training in a more reliable and systematic manner.

Case Study on OSWorld: To further evaluate whether our model can benefit more challenging
agentic tasks, we carefully analyze the OSWorld benchmark (Xie et al., 2024) and identify three
tasks where two human annotators agree that text dragging is both necessary and more efficient than
alternative approaches to complete the tasks. Details on these tasks are provided in Appendix K. For
GUI-DRAG-7B, we employ o3 (OpenAI, 2024) as the high-level planner to generate instructions,
with GUI-DRAG-7B serving to translate these instructions into low-level actions.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Our results in Table 3 demonstrate that GUI-DRAG-7B successfully completes all three tasks,
showcasing its effective text dragging capabilities. While Claude CUA and OpenAI CUA complete
2 out of 3 tasks, closer examination reveals that they frequently resort to unconventional shortcuts
such as triple-clicking and quadruple-clicking to select sentences and paragraphs. Although these
idiosyncratic techniques prove effective in specific contexts, they rely on domain specific knowledge
that may not generalize to other applications and are less intuitive compared to direct drag actions.
In contrast, our model’s ability to perform natural drag operations represents a more robust and
transferable approach to text selection across diverse GUI environments.

Table 3: Success rate on three examples from OSWorld.

Model OpenAI CUA Claude CUA o3 o3 + GUI-DRAG-7B

SR 2/3 2/3 0/3 3/3

6 RELATED WORK

GUI Grounding. GUI grounding, the task of mapping natural language instructions to executable
GUI operations, is a fundamental capability for LLM-based GUI agents (Nguyen et al., 2024;
Liu et al., 2025a). Early approaches primarily rely on textual representations such as HTML or
accessibility trees, which allow models to select from predefined textual elements (Deng et al., 2023)
or bounding boxes drawn on images (Yang et al., 2023; Zheng et al., 2024; He et al., 2024; Yan
et al., 2023), which, despite effective in constrained setting, suffer from incompleteness, noise, and
computational overhead. To address these issues, recent work has shifted toward vision-only methods,
where MLLMs predict actions directly from screenshots (Cheng et al., 2024; Hong et al., 2024; Gou
et al., 2025; Lin et al., 2024; Yu et al., 2025; Yang et al., 2024; Lu et al., 2024), which is now widely
adopted in recent GUI agents (Qin et al., 2025; Wang et al., 2025; OpenAI., 2025; Anthropic., 2024)
and is even incorporated as a core ability of general-purpose MLLMs (Wang et al., 2024; Bai et al.,
2025). Despite the progress, existing efforts mostly focus on click-based grounding, leaving dragging
as a largely unsolved challenge. Existing models and agents, either exclude it from their action spaces,
or actually fail to perform it reliably, as highlighted by our experiments.

Datasets and Benchmarks. To facilitate progress in GUI grounding research, numerous datasets
(Lin et al., 2024; Gou et al., 2025; Yang et al., 2024; Xu et al., 2024; Zhang et al., 2025) and
benchmarks (Cheng et al., 2024; Nayak et al., 2025; Li et al., 2025) have been developed. Among
benchmarks, ScreenSpot (Cheng et al., 2024) was the first to isolate GUI visual grounding as a
standalone task. ScreenSpot-Pro (Li et al., 2025) and OSWorld-G (Xie et al., 2025) further expand
the evaluation to more challenging tasks such as professional application use. However, dragging
remains largely underexplored. While recent work, UI-Vision (Nayak et al., 2025), accesses the
performance of moving objects by dragging, text dragging scenarios are not studied. With respect to
datasets, only a few works targeting general-purpose GUI agents include drag-related data (Qin et al.,
2025; Wang et al., 2025) and the coverage is relatively limited and not open-sourced. To address these
gaps, our benchmark SCREENDRAG and dataset GUI-DRAG are specifically designed to advance
research on text dragging in GUI environments.

7 CONCLUSION

In this work, we first introduce a scalable pipeline to automatically synthesize text dragging examples
directly from screenshots. Building upon this pipeline, we construct GUI-DRAG, the first dataset
specifically designed to enhance text dragging performance in GUI grounding models. Additionally,
we develop the SCREENDRAG benchmark alongside three novel evaluation metrics that collectively
enable systematic and rigorous evaluation of text dragging capability. Using an efficient continual
training strategy, our model achieves substantial improvements over existing grounding models
while preserving its original click performance. By releasing the complete recipe including datasets,
benchmark and the models, we hope our study serves as a starting point and motivates future research
to investigate broader and generalist GUI grounding beyond just clicking.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work synthesizes GUI-DRAG using publicly available screenshots from prior datasets, including
Jedi (Apache-2.0 license), UGround (CC-BY-NC-SA 4.0 license), and a paper-document dataset from
Universe3 (MIT license). All data are used in strict accordance with their respective licenses. Since
these datasets are publicly released for research purposes, they do not raise additional ethical or legal
concerns. The trained model is developed solely to enhance text dragging within GUI grounding
and is intended for beneficial applications, thereby posing no further ethical risks. In addition, we
construct SCREENDRAG by manually collecting screenshots from public websites, ensuring that the
data are license-compliant and free from usage restrictions.

REPRODUCIBILITY STATEMENT

We provide details on the composition of the training data, the training pipeline and process, as
well as the construction of the benchmark and the definition of evaluation metrics in Section 2 and
Section 3. We also describe the design choices behind the baseline models and implementation
details of the results in Section 4 and Section 5. All related materials, including code and data, will
be open-sourced upon acceptance.

REFERENCES

Anthropic. Claude computer use (beta), 2024. URL https://docs.anthropic.com/en/
docs/agents-and-tools/computer-use.

Apple Inc. Nslayoutmanager class reference. https://developer.apple.com/
documentation/appkit/nslayoutmanager, 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiy-
ong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. arXiv preprint
arXiv:2401.10935, 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. In Thirty-seventh Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2023.

Xinzge Gao, Chuanrui Hu, Bin Chen, and Teng Li. Chain-of-memory: Enhancing gui agents for
cross-application navigation. arXiv preprint arXiv:2506.18158, 2025.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun,
and Yu Su. Navigating the digital world as humans do: Universal visual grounding for GUI
agents. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=kxnoqaisCT.

Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan,
and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models.
arXiv preprint arXiv:2401.13919, 2024.

Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14281–14290, 2024.

Hongyi Jing, Jiafu Chen, Chen Rao, Ziqiang Dang, Jiajie Teng, Tianyi Chu, Juncheng Mo, Shuo Fang,
Huaizhong Lin, Rui Lv, et al. Sparkui-parser: Enhancing gui perception with robust grounding
and parsing. arXiv preprint arXiv:2509.04908, 2025.
3https://universe.roboflow.com/

10

https://docs.anthropic.com/en/docs/agents-and-tools/computer-use
https://docs.anthropic.com/en/docs/agents-and-tools/computer-use
https://developer.apple.com/documentation/appkit/nslayoutmanager
https://developer.apple.com/documentation/appkit/nslayoutmanager
https://openreview.net/forum?id=kxnoqaisCT


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and
Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use.
arXiv preprint arXiv:2504.07981, 2025.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Zechen Bai, Weixian Lei, Lijuan Wang,
and Mike Zheng Shou. Showui: One vision-language-action model for generalist gui agent. In
NeurIPS 2024 Workshop on Open-World Agents, volume 1, 2024.

Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Stan Weixian
Lei, Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui
visual agent. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp.
19498–19508, 2025.

Guangyi Liu, Pengxiang Zhao, Liang Liu, Yaxuan Guo, Han Xiao, Weifeng Lin, Yuxiang Chai,
Yue Han, Shuai Ren, Hao Wang, et al. Llm-powered gui agents in phone automation: Surveying
progress and prospects. arXiv preprint arXiv:2504.19838, 2025a.

Yuhang Liu, Pengxiang Li, Congkai Xie, Xavier Hu, Xiaotian Han, Shengyu Zhang, Hongxia Yang,
and Fei Wu. Infigui-r1: Advancing multimodal gui agents from reactive actors to deliberative
reasoners. arXiv preprint arXiv:2504.14239, 2025b.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based
gui agent. arXiv preprint arXiv:2408.00203, 2024.

Zhengxi Lu, Yuxiang Chai, Yaxuan Guo, Xi Yin, Liang Liu, Hao Wang, Han Xiao, Shuai Ren,
Guanjing Xiong, and Hongsheng Li. Ui-r1: Enhancing efficient action prediction of gui agents by
reinforcement learning. arXiv preprint arXiv:2503.21620, 2025.

Run Luo, Lu Wang, Wanwei He, and Xiaobo Xia. Gui-r1: A generalist r1-style vision-language
action model for gui agents. arXiv preprint arXiv:2504.10458, 2025.

Microsoft. Idwritetextlayout::hittestpoint method. https://
learn.microsoft.com/en-us/windows/win32/api/dwrite/
nf-dwrite-idwritetextlayout-hittestpoint, 2025.

Motoki Miura and Kenji Saisho. A text selection technique using word snapping. In Procedia
Computer Science, volume 35, pp. 1644–1651, 2014. doi: 10.1016/j.procs.2014.08.257.

Shravan Nayak, Xiangru Jian, Kevin Qinghong Lin, Juan A Rodriguez, Montek Kalsi, Rabiul Awal,
Nicolas Chapados, M Tamer Özsu, Aishwarya Agrawal, David Vazquez, et al. Ui-vision: A desktop-
centric gui benchmark for visual perception and interaction. arXiv preprint arXiv:2503.15661,
2025.

Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda
Wu, Ryan Aponte, Yu Xia, et al. Gui agents: A survey. arXiv preprint arXiv:2412.13501, 2024.

OpenAI. o3 and o4-mini system card, 2024. URL https://cdn.openai.com/pdf/
2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.
pdf.

OpenAI. Introducing OpenAI o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, April 2025. URL https://openai.com/index/
introducing-o3-and-o4-mini/. Updated June 10, 2025.

OpenAI. Operator system card., 2025. URL https://cdn.openai.com/operator_
system_card.pdf.

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao
Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native
agents. arXiv preprint arXiv:2501.12326, 2025.

Fei Tang, Zhangxuan Gu, Zhengxi Lu, Xuyang Liu, Shuheng Shen, Changhua Meng, Wen Wang,
Wenqi Zhang, Yongliang Shen, Weiming Lu, et al. Gui-g 2: Gaussian reward modeling for gui
grounding. arXiv preprint arXiv:2507.15846, 2025.

11

https://learn.microsoft.com/en-us/windows/win32/api/dwrite/nf-dwrite-idwritetextlayout-hittestpoint
https://learn.microsoft.com/en-us/windows/win32/api/dwrite/nf-dwrite-idwritetextlayout-hittestpoint
https://learn.microsoft.com/en-us/windows/win32/api/dwrite/nf-dwrite-idwritetextlayout-hittestpoint
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://cdn.openai.com/operator_system_card.pdf
https://cdn.openai.com/operator_system_card.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haoming Wang, Haoyang Zou, Huatong Song, Jiazhan Feng, Junjie Fang, Junting Lu, Longxiang
Liu, Qinyu Luo, Shihao Liang, Shijue Huang, et al. Ui-tars-2 technical report: Advancing gui
agent with multi-turn reinforcement learning. arXiv preprint arXiv:2509.02544, 2025.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

Hang Wu, Hongkai Chen, Yujun Cai, Chang Liu, Qingwen Ye, Ming-Hsuan Yang, and Yiwei Wang.
Dimo-gui: Advancing test-time scaling in gui grounding via modality-aware visual reasoning.
arXiv preprint arXiv:2507.00008, 2025a.

Qianhui Wu, Kanzhi Cheng, Rui Yang, Chaoyun Zhang, Jianwei Yang, Huiqiang Jiang, Jian Mu,
Baolin Peng, Bo Qiao, Reuben Tan, et al. Gui-actor: Coordinate-free visual grounding for gui
agents. arXiv preprint arXiv:2506.03143, 2025b.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen
Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui
agents. arXiv preprint arXiv:2410.23218, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents
for open-ended tasks in real computer environments. Advances in Neural Information Processing
Systems, 37:52040–52094, 2024.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu,
Xinyuan Wang, Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface
decomposition and synthesis. arXiv preprint arXiv:2505.13227, 2025.

Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu,
and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv
preprint arXiv:2412.04454, 2024.

An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu
Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for
zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-mark
prompting unleashes extraordinary visual grounding in gpt-4v. arXiv preprint arXiv:2310.11441,
2023.

Jianwei Yang, Reuben Tan, Qianhui Wu, Ruijie Zheng, Baolin Peng, Yongyuan Liang, Yu Gu,
Mu Cai, Seonghyeon Ye, Joel Jang, et al. Magma: A foundation model for multimodal ai agents.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 14203–14214,
2025.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui:
Visual grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024.

Ori Yoran, Samuel Joseph Amouyal, Chaitanya Malaviya, Ben Bogin, Ofir Press, and Jonathan
Berant. Assistantbench: Can web agents solve realistic and time-consuming tasks? arXiv preprint
arXiv:2407.15711, 2024.

Wenwen Yu, Zhibo Yang, Jianqiang Wan, Sibo Song, Jun Tang, Wenqing Cheng, Yuliang Liu, and
Xiang Bai. Omniparser v2: Structured-points-of-thought for unified visual text parsing and its
generality to multimodal large language models. arXiv preprint arXiv:2502.16161, 2025.

Miaosen Zhang, Ziqiang Xu, Jialiang Zhu, Qi Dai, Kai Qiu, Yifan Yang, Chong Luo, Tianyi Chen,
Justin Wagle, Tim Franklin, et al. Phi-ground tech report: Advancing perception in gui grounding.
arXiv preprint arXiv:2507.23779, 2025.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web
agent, if grounded. arXiv preprint arXiv:2401.01614, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Beyond Click: A Step Towards Generalist Grounding Models

Table of Contents for Appendix.

A LLM Usage Statement 14

B Benchmark Statistics 14

C Click-Based Benchmark Results 15

D Training Details 15

E Details on the Grounding Process 15

F Text-Sparse and Text-Dense Examples 16

G Interface Context Examples 17

H Granularity Breakdown 19

H.1 Granularity Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

H.2 Category Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

H.3 Interface Context Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

I Prompts 22

I.1 Prompts for Instruction Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 22

I.2 Prompts for Grounding Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

I.3 Prompts for Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

J Adobe Acrobat PDF Reader Example 28

K OSWorld Examples with Text Selection 28

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM USAGE STATEMENT

LLMs are mainly used in places below. First, our data collection pipeline is powered by LLMs.
Second, human annotators are allowed to use LLMs to speed up the annotation process. Third, we
use LLMs to classify the examples into text-sparse and text-dense. Fourth, we use LLMs to rephrase
20% of the instructions from explicit format to implicit format to further diversify the benchmark.
Fifth, we use LLMs to refine word choices and polish the writing.

B BENCHMARK STATISTICS

We include the statistics of the benchmark in Table B and the overall screenshot resolution in Figure 5.
Among the 5,333 examples, 3,998 belong to the text-sparse subset and 1,335 belong to the text-dense
subset.

Table 4: Detailed statistics for three types of file in the benchmark.
Metric pdf pptx docx

Format
explicit 1436 1296 1172
implicit 489 467 473

Granularity
sentence 901 731 1011
multi-words 455 860 331
multi-sentence 320 145 130
paragraph 237 22 172
multi-paragraph 12 5 1

Category
positional 752 684 658
semantic 347 301 313
lexical 293 289 283
visual 267 246 144
compositional 266 243 247

Small (35.0%)
705 x 526 - 1360 x 993

Medium (44.4%)
1359 x 995 - 1920 x 1080

Large (20.7%)
1839 x 1289 - 2559 x 1599

Resolutions

Figure 5: Resolution size analysis of the benchmark.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C CLICK-BASED BENCHMARK RESULTS

To ensure reliable reproduction, we rerun the results for Jedi models independently using the officially
released checkpoints. The results, summarized in Table 5, report the Success Rate (SR), defined as
the proportion of predictions whose predicted coordinate lies within the ground truth bbox.

Table 5: Performance on OSWorld-G, ScreenSpot Pro, ScreenSpot-v2.

Model OSWorld-G ScreenSpot-Pro ScreenSpot-v2

Jedi-3B 0.47 0.32 0.87
Jedi-3B (GUI-DRAG + 1% Jedi data) 0.45 0.32 0.87
Jedi-3B (GUI-DRAG + 5% Jedi data) 0.45 0.31 0.87
Jedi-3B (GUI-DRAG + 10% Jedi data) 0.46 0.32 0.88
Jedi-3B (GUI-DRAG + 15% Jedi data) 0.45 0.32 0.87

Jedi-7B 0.55 0.33 0.91
Jedi-7B (GUI-DRAG + 1% Jedi data) 0.51 0.29 0.90
Jedi-7B (GUI-DRAG + 5% Jedi data) 0.51 0.31 0.90
Jedi-7B (GUI-DRAG + 10% Jedi data) 0.53 0.32 0.89
Jedi-7B (GUI-DRAG + 15% Jedi data) 0.54 0.32 0.90

D TRAINING DETAILS

We put the detailed training hyperparameters in Table 6.

Table 6: Training hyperparameters for training.
Hyperparameter Value

max pixels 2116800
min pixels 3116
per device train batch size 4
gradient accumulation steps 2
learning rate 1.0e-5
num train epochs 2.0
lr scheduler type cosine
warmup ratio 0.1
bf16 True

E DETAILS ON THE GROUNDING PROCESS

After getting the B̂start and B̂end, we can subsequently conduct ground truth drag coordinates
(x̂start, ŷstart, x̂end, ŷend). Specifically, we use the middle point of the left edge of B̂start and the
middle point of the right edge of B̂end as the start and end coordinates.

For the EasyOCR hyperparameters used, we disable paragraph grouping to keep word-level boxes
and tune thresholds as listed in Table 7 to improve word localization for drag spans.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: EasyOCR hyperparameters.
Hyperparameter Value

paragraph False
text threshold 0.7
width ths 0.1
bbox min size 1
min size 5

F TEXT-SPARSE AND TEXT-DENSE EXAMPLES

We put the text-dense and text-sparse examples in Figure 6. Both target text spans are at the sentence
granularity.

Figure 6: Target text span that belongs to text-sparse category is marked in blue, while the one that
belongs to text-dense category is marked in red.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

G INTERFACE CONTEXT EXAMPLES

We put three examples of the same file in different interface context in Figure 7, Figure 8, and Figure 9.
Each corresponds to the document view, application window, and desktop view, respectively.

Figure 7: Document view example.

Figure 8: Application window example.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 9: Desktop view example.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

H GRANULARITY BREAKDOWN

We put the performance with breakdowns in different granularities, categories and different levels of
interface context in Appendix H.1, Appendix H.2, and Appendix H.3.

H.1 GRANULARITY BREAKDOWN

Performance breakdown across different granularities in Table 8.

Table 8: Performance on SCREENDRAG with breakdown on different granularities.

Model Multi-paragraph Multi-sentence Multi-words Paragraph Sentence

B-Dist↓ SR↑ B-Dist↓ SR↑ B-Dist↓ SR↑ B-Dist↓ SR↑ B-Dist↓ SR↑

Open-Source

Qwen2.5-VL-3B 58.00 0.00% 81.50 0.00% 25.16 7.14% 50.16 0.00% 44.01 0.76%
Qwen2.5-VL-7B 66.67 0.00% 31.43 0.00% 27.26 6.82% 38.64 0.00% 25.88 2.63%
Qwen2.5-VL-32B 25.75 8.33% 41.14 3.92% 17.06 5.94% 34.93 8.66% 23.16 4.23%
Jedi-3B 27.97 16.67% 18.91 19.55% 7.54 17.83% 24.40 22.99% 13.71 13.65%
Jedi-7B 35.44 23.53% 21.50 16.63% 8.80 8.64% 27.94 16.86% 15.80 8.64%
UI-TARS-1.5-7B 13.06 17.65% 16.63 27.40% 8.00 20.78% 18.89 35.92% 17.80 15.29%

Closed-Source

OpenAI CUA 26.97 23.53% 12.21 24.90% 7.61 18.98% 17.12 26.04% 10.66 14.63%
Claude CUA 19.55 0.00% 18.30 21.74% 7.45 11.15% 20.91 29.19% 8.53 17.28%
OpenAI CUA (w/ hint) 18.85 23.53% 13.48 21.61% 6.21 17.38% 15.04 26.05% 10.31 13.41%
Claude CUA (w/ hint) 31.64 5.56% 14.14 21.83% 6.91 11.67% 17.87 31.95% 7.91 15.09%

Ours

Jedi-3B (Drag) 20.14 44.44% 9.87 30.67% 6.89 39.81% 13.89 44.54% 6.52 28.67%
Jedi-7B (Drag) 12.89 33.33% 10.56 32.27% 6.09 36.21% 14.32 38.52% 6.98 26.64%
GUI-DRAG-3B 21.64 33.33% 9.83 43.53% 6.87 44.23% 9.64 50.81% 5.86 31.18%
GUI-DRAG-7B 12.03 44.44% 9.24 38.15% 6.08 37.30% 8.11 50.35% 5.56 26.33%

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

H.2 CATEGORY BREAKDOWN

Performance breakdown across different instruction categories in Table 9.

Table 9: Performance on SCREENDRAG with breakdown on different categories.

Model Compositional Lexical Positional Semantic Visual

B-Dist↓ SR↑ B-Dist↓ SR↑ B-Dist↓ SR↑ B-Dist↓ SR↑ B-Dist↓ SR↑

Open-Source

Qwen2.5-VL-3B 28.57 9.09% 43.62 0.00% 49.45 2.01% 42.71 2.63% 12.20 0.00%
Qwen2.5-VL-7B 10.72 0.00% 69.58 3.85% 27.42 2.50% 16.23 0.00% 33.39 10.53%
Qwen2.5-VL-32B 21.35 5.32% 23.59 3.74% 25.46 5.23% 25.47 4.65% 23.32 6.41%
Jedi-3B 10.53 14.88% 7.20 14.69% 17.76 16.07% 13.62 17.80% 10.52 18.95%
Jedi-7B 15.33 9.14% 9.13 5.96% 20.35 9.95% 13.91 15.45% 9.46 10.48%
UI-TARS-1.5-7B 10.85 18.43% 10.86 13.84% 19.42 18.23% 13.98 25.81% 9.55 27.10%

Closed-Source

OpenAI CUA 8.22 16.64% 8.78 15.35% 12.70 16.36% 8.94 22.55% 10.45 22.39%
Claude CUA 10.04 11.80% 9.18 14.97% 10.16 17.49% 12.34 20.23% 8.91 13.41%
OpenAI CUA (w/ hint) 9.13 16.21% 8.67 13.23% 11.27 15.46% 8.70 20.48% 8.42 19.17%
Claude CUA (w/ hint) 7.77 14.05% 10.51 13.87% 8.19 17.14% 11.61 18.97% 8.59 13.60%

Ours

Jedi-3B (Drag) 6.32 31.85% 6.18 30.12% 8.75 32.90% 6.08 36.88% 9.45 40.25%
Jedi-7B (Drag) 6.65 29.10% 6.49 27.40% 9.19 30.18% 6.40 34.13% 7.81 37.60%
GUI-DRAG-3B 5.21 36.38% 5.13 32.95% 7.78 37.34% 5.47 42.04% 11.08 44.14%
GUI-DRAG-7B 6.00 31.88% 4.31 27.86% 6.79 32.38% 6.24 37.88% 8.24 36.23%

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

H.3 INTERFACE CONTEXT BREAKDOWN

Performance breakdown across different levels of interface contexts in Table 10.

Table 10: Performance on SCREENDRAG with breakdown on different interfaces context.

Model Document APP Desktop

B-Dist↓ SR↑ B-Dist↓ SR↑ B-Dist↓ SR↑

Open-Source

Qwen2.5-VL-3B 13.45 10.26% 45.00 0.63% 60.49 1.47%
Qwen2.5-VL-7B 20.71 3.04% 39.56 0.00% 173.14 0.00%
Qwen2.5-VL-32B 8.26 5.58% 20.87 5.59% 43.62 3.96%
Jedi-3B 9.80 16.05% 13.95 13.68% 17.19 19.83%
Jedi-7B 10.58 10.08% 15.20 10.84% 21.11 9.89%
UI-TARS-1.5-7B 11.10 18.56% 15.04 20.52% 18.98 21.25%

Closed-Source

OpenAI CUA 7.29 19.93% 10.79 17.18% 14.36 16.81%
Claude CUA 6.02 15.84% 10.91 17.88% 15.18 14.61%
OpenAI CUA (w/ hint) 6.85 17.48% 9.85 16.73% 13.43 15.19%
Claude CUA (w/ hint) 6.65 15.36% 8.92 17.72% 12.43 15.07%

Ours

Jedi-3B (Drag) 4.85 32.80% 7.62 37.25% 10.12 32.85%
Jedi-7B (Drag) 5.15 30.13% 7.88 35.00% 10.61 28.16%
GUI-DRAG-3B 4.07 36.56% 7.75 39.55% 9.57 38.55%
GUI-DRAG-7B 3.16 35.67% 7.22 34.28% 9.20 28.47%

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I PROMPTS

We include three types of prompts used in our pipeline in Appendix I.1, Appendix I.2, and Ap-
pendix I.3.

I.1 PROMPTS FOR INSTRUCTION GENERATION

You are given a screenshot input. Your task is to generate natural
language referring expressions that specify different target
text spans contained within the screenshot where users
typically perform mouse drag actions for selection. Focus
exclusively on selectable text content and ignore non-text
elements, non-selectable areas, or elements that users don’t
commonly select in daily usage (e.g., placeholders within input
fields, clickable UI elements such as toolbar icons or buttons).

Below are the five categories of referring expressions with their
corresponding definitions and examples.

\#\# Semantic

Definition: describe the target text span based on its meaning,
intent, or topical content.

Drag to select the paragraph discussing how to download models.
Using drag to highlight the paragraphs that infer the causes of

failure.
Highlight the sentence about Kobe Bryant’s career by dragging.
Drag the mouse to select consecutive words referring to the weight

of the MacBook Pro.
highlight across the list items showing the D.O.B. of the

characters in the movie "The Lord of the Rings".

\#\# Positional

Definition: refer to selecting text or elements based on their
spatial or structural location within the document. This
includes absolute positioning (using ordinal numbers or
directional indicators like "third paragraph "last sentence
"top of page") and relative positioning (location relative to
other elements like "text below Figure 1 "words left of the
login button").

Drag to select the second last paragraph at the bottom of the page.
Highlight the last three lines by using drag in the code blocks.
Highlight the content of the sentence immediately below the chart

title.
Select the exact text span showing the words on the left side of

the login button.
Select and copy the third sentence of the first paragraph.
Select all rows from row 1 to row 10 (inclusive) in the spreadsheet

(include the row headers).
Select first sentence in the top-right corner of the page by

dragging.
Drag the second sentence of the 2nd paragraph.
Drag the last sentence of the last paragraph.
Drag to select the 4th and 5th sentences of the first paragraph.

\#\# Visual

Definition: refer to distinctive visual features of the text, such
as style, font color, size, emphasis, or highlighting.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Drag to highlight the paragraph written in bold italics.
Select all the paragraphs highlighted in yellow.
Copy the sentence in red font.
dragging to select the words with the largest font size on the

screen.
Select all the words within the grey block by dragging.

\#\# Lexical

Definition: refer to the text by referencing its literal or quoted
content, including the starting words, key phrases, or exact
match.

Select the range of the sentence ending with ’before submission is
due’.

Drag to highlight the paragraph that begins with "To get started
with Python...".

Highlight and copy the sentence containing the phrase "AI is
transforming industries".

Highlight across the words that say ’Monday, Tuesday, and so on’.
Select the text span starting with "This photo" and ending with

"happy" by dragging.
Select to copy the content starting with character ’c’ and ending

with character ’e’.

\#\# Compositional

Definition: refer to the composition of the four categories
mentioned above. You can randomly select and combine the
features of the four categories above to generate a referring
expression.

Drag to highlight the paragraph written in bold italics, discussing
the usage of the model.

Select to copy the paragraphs which are highlighted in yellow and
positioned at the top of the page.

Copy the sentence in red font, starting with the word ’AI’.
Drag the mouse to select the second last blue text span.

**Task Requirements**

Generate referring expressions for each of the five categories
(semantic, positional, visual, lexical, and compositional)
sequentially. For each category, you must:

1. You should first reason about easibility of generating a
suitable referring expression for that category. It is normal
for some categories to have no suitable expressions for certain
screenshots. For example, not all screenshot contain salient
visual features. To ensure high-quality generation, you could
just set the availability to false if generating expressions
under such category is unsuitable.

2. If feasible, then you should continute yhe step 3 to help with
generating the referring expression. If not, you can leave
empty to the left fields and don’t need to continue.

3. If the category is about visual feature, you have to identify
the most salient features under this category from the
screenshot. For other categories, you should try to focus on
areas which are text-dense. For example, it would be great to
have target text span locating in a paragraph, etc. After that,
you should both generate a referring expression and the target
text span indicated by the referring expression. For target

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

text span, never omit the details of the full text span even if
the span is very long. This is because the post-process will
need the full content fo the target text span.

*Requirements when generating the target text span*:

The extracted text must include all punctuation marks and special
characters exactly as they appear in the screenshot. Even if
the text span in the screenshot contain certain style or font,
you only need to generate the pure text.

Extract the complete text span including all punctuation marks
(periods, commas, quotation marks, etc.) exactly as shown. Also
follow the left-to-right then top-to-bottom order, which is
exactly the same order for human reading. Always remember to
add the correct puncuation marks at the end if the target text
span is about sentence(s) or paragraphs.

Essentially, this is asking you to do the OCR correctly.

The target text span can be these granularities:
- Single or multiple paragraphs
- Single or multiple sentences
- Multiple consecutive words (single words typically don’t require

dragging)

Note that the sentence should be ended with a punctuation mark like
period, exclaimation mark or question mark. Comma should not be
treated as the end of the sentence.

*Requirements when generating the referring expression*:

Generate expressions that are clear and specific enough while not
too wordy, that only the target text span you extracted can
match.

When generating compositional referring expressions, combine only
the minimum necessary features from different categories to
uniquely identify the target text span.

Use either the explicit or implicit approach to generate the
referring expression. More specifically:

\#\# Expressing Dragging Actions: Explicit vs. Implicit Approaches

Ensure users understand that a mouse drag action is required by
using both explicit and implicit approaches across different
expressions:

**Explicit Approaches** directly mention the dragging action:
- "Drag to select/highlight..."
- "Using drag to highlight..."
- "Drag the mouse to select..."
- "Select by dragging..."

**Implicit Approaches** convey the dragging requirement without
mentioning "drag" or "dragging":

- Action-based: "Copy the sentence... "Highlight the two
paragraph... "Select to copy..."

- Range-based: "Select the range from... "Highlight across...
"Select all content between..."

- Span-based: "Select the text span... "Highlight the section
extending from..."

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

- Multi-element: "Select all rows from X to Y "Highlight the
multi-line text..."

\#\# Overall Guidelines

- Distribute expressions across both explicit and implicit
approaches

- Ensure diversity of expressions across all categories
- For positional expressions, generate at least 3 expressions using

relative positioning
- Each expression must clearly indicate that dragging is necessary.

Expression should be unambuguious in terms of that 1) only the
extracted target text span can match and all others within the
screenshot cannot. 2) users are clear enough that they have to
use drag to finish the goal.

- When generating the combination of referring expression and
target text span (extracted from the screenshot via OCR), you
should be as diverse as possible, i.e., you should find
different target text spans from the screenshot. Thus, there
shouldn’t be duplication between the extracted target text span
across different categories or even within one category.

If generating a referring expression that meets all requirements
feels challenging, infeasible, or impossible for a category,
return False for that category’s availability.

- Last but not least, never omit any details of the target text
span. You should output the full content of it.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

I.2 PROMPTS FOR GROUNDING ANNOTATION

You are an annotation assistant that grounds drag instructions to
pixel coordinates.

Your input contains two components:
1. The target text span that must be selected via dragging. The

text span preserves all punctuation and line breaks exactly as
they appear in the screenshot.

2. The OCR parse of the screenshot represented as a JSON array of
word-level entries. Each entry has the fields:
- "id": an integer identifier that uniquely indexes the word in
reading order.
- "text": the word content exactly as recognized by OCR.
- "bbox": the word bounding box given as [x\_min, y\_min,
x\_max, y\_max] in pixels.
- "confidence": the OCR confidence score between 0 and 1.

Task: determine which OCR word corresponds to the first token and
which corresponds to the last token of the target text span.

Guidelines:
- Treat the OCR results as ordered by reading direction

(left-to-right, then top-to-bottom). Use this order to resolve
ties when multiple boxes contain the same text.

- Match the target span case-sensitively and include all
punctuation, numbers, and special characters.

- Allow for minor OCR artifacts such as split words or stray
spaces. If the span covers multiple consecutive OCR words,
choose the id of the first word and the id of the last word in
that contiguous sequence.

- Reject matches that require reordering or skipping words. The
matching words must appear consecutively in the OCR stream.

- If the span appears multiple times, choose the occurrence whose
surrounding context best matches the target text. Prefer the
first perfect match when contexts are indistinguishable.

Reasoning procedure:
1. Normalize whitespace in both the target span and OCR tokens for

comparison while keeping punctuation intact.
2. Scan the OCR sequence to locate candidate positions whose

concatenated text matches the full span exactly.
3. Once a match is confirmed, record the id of the first word and

the id of the last word in that sequence.
4. If no exact match is found, return that the span is not grounded

and explain the issue.

Output format:
- Provide a short explanation of how the span was matched,

mentioning any preprocessing that was required.
- Output a JSON object with the following keys:

{
"status": "grounded" | "not_grounded",
"start_id": <integer or null>,
"end_id": <integer or null>,
"notes": <concise justification>

}
- When "status" is "grounded", both ids must be integers and

"notes" should summarize the matched text.
- When "status" is "not_grounded", set both ids to null and

describe the failure condition in "notes".

Ensure the response is strictly valid JSON without additional
commentary outside the JSON block.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

I.3 PROMPTS FOR FILTERING

You are an annotation validator who examines whether the annotated
bounding boxes and referring expression jointly describe the
same target text span.

You receive:
1. An annotated screenshot that contains either (a) one green

bounding box and one red bounding box or (b) a single green
bounding box.

2. A referring expression that describes the text span the user
intends to drag-select.

Validation procedure:
- First reason carefully about the intended target text span

implied by the referring expression. Explicitly restate the
full span in plain text, including all punctuation required for
a complete sentence when applicable.

- Verify that the referring expression itself is clear and
unambiguous. If it cannot uniquely identify a span in the
screenshot, mark the annotation as invalid.

- Simulate the drag selection:
* When two boxes are provided, start the drag from the midpoint
of the left edge of the green box and end at the midpoint of
the right edge of the red box.

* When only one box is provided, start and end the drag at the
midpoints of the left and right edges of the green box,
respectively.

- Compare the simulated drag span against the target text span
inferred from the expression. The annotation is valid only if
the simulated drag covers exactly the intended text (no missing
or extra content).

Decision:
- If the annotation is valid and the expression is clear, output

‘is_valid: true‘.
- Otherwise output ‘is_valid: false‘ and briefly explain the

mismatch or ambiguity.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

J ADOBE ACROBAT PDF READER EXAMPLE

Figure 10 shows an example of the Adobe Acrobat PDF Reader. There are a number of crucial
features in the PDF Reader such as commenting, highlighting, that are only available after dragging
the mouse to select the text.

Figure 10: Adobe Acrobat PDF Reader Example

K OSWORLD EXAMPLES WITH TEXT SELECTION

After carefully examining the OSWorld examples, we find four examples that are related to text
selection and list their task ids and instructions as follows:

• 72b810ef-4156-4d09-8f08-a0cf57e7cefe

• I am peer-reviewing my friend’s course outline. I think the last paragraph is redundant so I
want to add strike-through on words in the last paragraph. Can you do this for me?

• 0810415c-bde4-4443-9047-d5f70165a697

• Make the line spacing of first two paragraph into double line spacing

• b21acd93-60fd-4127-8a43-2f5178f4a830

• I have been practicing professional writing lately. Now I am writing essay which requires
one paragraph each for introduction, body and conclusion with single-space for introduction,
double-space for body then one-and-a-half-space for conclusion. The font size of this essay
is 12. Could you help me on this?

Since we find that the planner model, i.e., o3, cannot properly trigger the drag action, we additionally
add the instruction “You are encouraged to use the drag action to select the text whenever it is
available” to original default the system prompt.

28


	Introduction
	Methodology
	Problem Formulation
	Data Construction
	Training Strategy

	ScreenDrag
	Evaluation Dataset
	Evaluation Metrics

	Experiments
	Setup
	Results

	Analysis
	Related Work
	Conclusion
	LLM Usage Statement
	Benchmark Statistics
	Click-Based Benchmark Results
	Training Details
	Details on the Grounding Process
	Text-Sparse and Text-Dense Examples
	Interface Context Examples
	Granularity Breakdown
	Granularity Breakdown
	Category Breakdown
	Interface Context Breakdown

	Prompts
	Prompts for Instruction Generation
	Prompts for Grounding Annotation
	Prompts for Filtering

	Adobe Acrobat PDF Reader Example
	OSWorld Examples with Text Selection

