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ABSTRACT

Deep neural networks often exhibit overconfidence despite their high accuracy.
Such miscalibration limits reliability in safety-critical domains where trustwor-
thiness are crucial. Post-hoc calibration methods offer a practical solution where
popular approaches like Temperature Scaling (TS) apply a single corrective param-
eter to all samples, failing to address the sample-dependent nature of miscalibration.
While more advanced methods attempt to adapt to sample difficulty, they often
rely on complex and indirectly learned proxies. In this work, we first identify
the logit margin as a direct, simple, and principled indicator of sample hard-
ness. We provide substantial empirical and theoretical evidence that it serves
as a more effective indicator of sample hardness than existing proxies. Mean-
while, we identify a fundamental flaw in current methods that optimizing Negative
Log-Likelihood (NLL) can paradoxically degrade calibration. To resolve this, we
introduce Charbonnier–SoftECE, a novel and theoretically guaranteed objective
that directly minimizes calibration error. Building on these insights, we propose
Sample Margin-Aware Recalibration of Temperature (SMART), a lightweight post-
hoc method that learns a minimalistic sample-wise mapping from the logit margin
to an optimal temperature, guided by our calibration-centric objective. Extensive
experiments show state-of-the-art performance for calibration across diverse archi-
tectures and datasets with a minimal inference-time data consumption. The code is
available at: https://anonymous.4open.science/r/SMART-8B11.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across diverse domains, yet their deploy-
ment in safety-critical applications such as autonomous driving Feng et al. (2019) and medical
diagnosis Chen et al. (2018) demands more than just high predictive accuracy. These high-stakes
scenarios require models to provide reliable uncertainty estimates that accurately reflect the true
likelihood of prediction correctness, i.e., calibration Guo et al. (2017). A well-calibrated model
ensures informed decision-making and appropriate deferral to human experts when uncertainty is high.
However, current models commonly suffer from severe miscalibration Guo et al. (2017), primarily
overconfidence Guo et al. (2017); Wei et al. (2022); Luo et al. (2025), where models assign high
confidence scores to predictions that are frequently incorrect. The real-world consequences of such
overconfident behavior can be catastrophic, such as wrong diagnostic decisions with high confidence.

To address miscalibration, the research community has developed two primary streams of solutions.
Train-time calibration methods integrate calibration directly into the learning process via specialized
data Wang et al. (2023); Hendrycks et al. (2020), training framework Tao et al. (2023), regulariza-
tions Müller et al. (2019); Pereyra et al. (2017), and designed loss objectives Mukhoti et al. (2020);
Tao et al. (2023). However, these methods hardly apply to trained models. In contrast, post-hoc
calibration methods Zadrozny & Elkan (2002; 2001) operate easily on large pretrained models. Due
to its simplicity and effectiveness, Temperature Scaling (TS) Guo et al. (2017) has become the most
widespread post-hoc method that learns a single scaling value on the validation set.However, this
one-size-fits-all approach is inherently problematic, as miscalibration is not uniform across samples.
To address this, several methods have been proposed to learn separate temperatures per class Frenkel
& Goldberger (2021) or semantic-aware groupings through clustering Yang et al. (2024). To facilitete
more fine-grained temperature scaling, sample-adaptive methods propose to operate on distinctive
sample-wise information Ding et al. (2021); Tomani et al. (2022).
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Figure 1: Relationship between min perturbation of FGSM Goodfellow et al. (2015) and logit margin
on CIFAR-10, with reliability diagrams for various margin groups from left to right.

Xiong et al. (2024) calibrate predictions based on sample proximity, assigning larger temperatures to
less proximate samples; Yang et al. (2024) apply larger temperatures to groups that are harder to
distinguish (e.g., birds and airplanes sharing the same background in CIFAR-10); and Ding et al.
(2021) exploit feature-space sparsity to adaptively guide temperature. Despite their methodological
differences, these approaches share the same underlying motivation: sample hardness drives cali-
bration. However, they rely on indirectly learned proxies of difficulty. In contrast, we propose a
direct and simple measure—the logit margin, defined as the gap between the largest and second-
largest logits. Empirical results (Figure 1b–d) show that larger-margin samples are systematically
easier and more under-confident, even when their confidence levels are identical. Moreover, the
strong correlation between the margin and the minimum perturbation required to reach the decision
boundary under attack (Figure 1a) highlights the margin’s reliability as a hardness indicator. Finally,
our theoretical analysis in Appendix A.1 demonstrates that the optimal temperature for any target
confidence is tightly bounded by the margin, underscoring its effectiveness as a principled signal of
sample difficulty for post-hoc calibration.

Another limitation inherent in current scaling-based methods is that they focus on optimizing the NLL
loss, which theoretically does not guarantee a reduction in the calibration errors. In fact, as we prove
in Appendix A.3, certain scenarios can lead to a paradoxical outcome where NLL decreases while
ECE simultaneously increases, thereby defeating the primary goal of calibration. To address this
fundamental misalignment, we adopt a novel scaling objective function, Charbonnier–SoftECE. This
new objective directly targets the calibration error. As also established by our theoretical analysis
in Appendix A.2, optimizing with Charbonnier–SoftECE provably resolves the issue inherent in
the NLL loss, ensuring that the optimization process aligns directly with the goal of improving
calibration.

Building on these validated insights, we introduce Sample Margin-Aware Recalibration of
Temperature (SMART), a lightweight post-hoc calibration method that aims to learn a direct and
minimalistic mapping from logit margins to temperatures: T (·) : R+ → R+. Using Charbon-
nier–SoftECE as its learning objective, SMART is theoretically guaranteed to yield superior calibra-
tion. Experiments on various benchmarks and architectures validate the state-of-the-art effectiveness
and efficiency of SMART, even with a minimal validation set.

Contributions Our work is theory-driven and makes three key contributions: we first provide formal
and empirical analysis showing that logit margin is a principled hardness indicator that tightly bounds
the feasible temperature range, outperforming existing proxies with minimal computation; second,
we prove a fundamental mismatch between NLL optimization and calibration quality, and resolve
it through a novel Charbonnier–SoftECE objective that provably upper-bounds smooth calibration
error; finally, building on these theoretical insights, we develop SMART, a lightweight margin-aware
temperature mapping that achieves state-of-the-art calibration on CNNs and ViTs across long-tail and
out-of-distribution datasets, remaining effective with as few as 50 validation samples.

2 RELATED WORK

Post-hoc Methods Post-hoc calibration methods use hold-out validation data to learn calibration
maps without modifying trained classifiers. Non-parametric approaches include Histogram Binning
(HB) (Zadrozny & Elkan, 2001), its Bayesian extension BBQ (Naeini et al., 2015), and Spline
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calibration (Gupta et al., 2021), though these often require more validation data and may alter pre-
diction rankings. Parametric methods adjust outputs through predefined functional forms, including
Temperature Scaling (TS) (Guo et al., 2017), enhanced variants PTS (Tomani et al., 2022) and CTS
(Frenkel & Goldberger, 2021), Dirichlet Scaling (Kull et al., 2019) for multiclass calibration, Group
Calibration (Yang et al., 2024), ProCal (Xiong et al., 2024) for proximity-based adjustments, and Fea-
ture Clipping (FC) (Tao et al., 2025). Ensemble-based post-hoc methods include data-augmentation
ensembles (Conde et al., 2023) and Ensemble-based Temperature Scaling (ETS) (Zhang et al., 2020),
though these demand significant computational resources. Conversely, our approach achieves superior
calibration through more efficient means.

Training Methods Training-based calibration methods modify the learning process during model
training to improve calibration, typically incurring higher computational costs. These include
Brier Loss (Brier, 1950), MMCE (Kumar et al., 2018) with trainable calibration measures, Label
Smoothing (Szegedy et al., 2016) that regularizes through softened target distributions, and Focal Loss
variants (Mukhoti et al., 2020; Tao et al., 2023) addressing calibration through reweighting strategies.
Ensemble-based training approaches include Deep ensembles (Lakshminarayanan et al., 2017)
and dropout-based methods (Gal & Ghahramani, 2016) that leverage stochasticity as approximate
Bayesian inference.

3 METHODOLOGY

We first present preliminaries in Section 3.1, then establish margin as a principled hardness indi-
cator in Section 3.2. We identify fundamental limitations of NLL-based calibration objectives in
Section 3.3, introduce our Charbonnier-SmoothSoftECE objective in Section 3.4, and present the
SMART framework in Section 3.5.

3.1 PRELIMINARIES

A classification model is calibrated if its predictive confidence matches its actual accuracy. For
classifier fθ, input x with true label y, and predicted class ŷ, perfect calibration requires P(y = ŷ |
pθ(ŷ | x) = p) = p for all confidence values p ∈ [0, 1].

Expected Calibration Error (ECE). For classification model fθ producing logits zi ∈ RK , the
predictive probability for class k is pθ(yi = k | xi) = exp(zi,k)∑K

j=1 exp(zi,j)
. To quantify calibration error,

we partition samples into B bins based on predicted confidence, compute average accuracy âb and
confidence p̂b within each bin b, and measure their difference:

ECE =
B∑
b=1

|Ib|
N

∣∣p̂b − âb∣∣, (1)

where Ib is the set of indices in bin b and N is the total number of samples.

Smooth Calibration Error (smCE). Beyond binned ECE which suffers from discretization artifacts,
we also consider the smooth calibration error (Blasiok et al., 2023), defined as the worst-case
correlation between the calibration residual and 1-Lipschitz probes of predicted confidence:

smCE(f) := sup
φ∈H

∣∣E[(a(X)− p(X))φ(p(X))
]∣∣ , (2)

where H = {φ : [0, 1] → [−1, 1] | Lip(φ) ≤ 1} is the class of 1-Lipschitz continuous functions,
p(X) denotes the predicted confidence (maximum softmax probability), and a(X) = I{ŷ(X) = y}
is the correctness indicator. This continuous metric avoids binning artifacts and provides theoretical
foundation for our objective design in Section 3.4.

Temperature Scaling. Temperature scaling (TS) (Guo et al., 2017) introduces positive scalar

T to adjust logit distribution before softmax: pθ,T (yi = k | xi) =
exp

(
zi,k/T

)
∑K

j=1 exp
(
zi,j/T

) . Smaller

temperature T < 1 sharpens the distribution, while larger T > 1 flattens it. Vanilla TS finds global
T̂ = argminT>0 LNLL(Dval, fθ, T ) by minimizing NLL on a validation set.

3
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Figure 2: Numerical study of temperature adjustment indicators. The left three panels show joint
distributions of solved temperature T versus candidate indicators across 1,000 sampled logit vectors.
Right: Test ECE (dashed) and NLL (solid) during SMART training on ImageNet ViT-B/32.

3.2 MARGIN AS A PRINCIPLED HARDNESS INDICATOR

Effective post-hoc calibration requires distinguishing between easy and hard samples to apply
appropriate confidence adjustments. While existing methods (Xiong et al., 2024; Yang et al., 2024)
recognize this need, they rely on indirectly learned proxies such as feature-space proximity or
semantic clustering. We propose using the logit margin m = zmax − z2nd as a direct hardness
indicator, where zmax and z2nd are the largest and second-largest logits.

As demonstrated in Figure 1, samples with different margins exhibit systematically different calibra-
tion patterns even when sharing identical predicted confidence levels. Small-margin samples tend
toward overconfidence while large-margin samples become underconfident, and margin correlates
strongly with adversarial robustness (r = 0.87), confirming it captures proximity to decision bound-
aries. We now establish theoretically why margin provides superior temperature control compared to
alternative indicators.

For a given logit vector z ∈ RK and target confidence p̂ ∈ (0, 1), the temperature-confidence
relationship ezmax/T∑K

k=1 e
zk/T = p̂ can be rearranged as

∑
k ̸=M e(zk−zmax)/T = S where S := 1

p̂ − 1 and

M = argmaxk zk. Given only zmax and target p̂ > 1/K, we can construct configurations where all
non-maximum logits equal zmax − δ for varying δ > 0, yielding T = −δ/ log(S/(K − 1)) which
sweeps (0,∞) as δ varies. Thus maximum logit alone provides no bound on feasible temperatures.

In contrast, margin provides tight constraints. For any non-maximum class k, we have zk ≤ z2nd =
zmax −m, leading to bounds e−m/T ≤ S ≤ (K − 1)e−m/T . Solving for T yields: when p̂ > 1/2,
T ∈ [ m

− log(S/(K−1)) ,
m

− logS ] (finite interval); when 1/K < p̂ ≤ 1/2, T ∈ [ m
− log(S/(K−1)) ,+∞)

(finite lower bound). The interval width decreases as m grows, and for binary classification the
bounds coincide to uniquely determine T . Complete derivations appear in Appendix A.1.

Figure 2 (left three panels) validates these results empirically. We sample 1,000 random logit vectors
and numerically solve for temperatures achieving p̂ = 0.8. Margin exhibits clear functional structure
with T tightly constrained, while maximum logit and normalized maximum logit display scattered
patterns spanning orders of magnitude. This establishes margin as the optimal scalar indicator for
temperature-based calibration.

3.3 THE NLL-CALIBRATION MISMATCH

Current post-hoc calibration methods optimize negative log-likelihood (NLL) under the assumption
that minimizing NLL improves calibration. We demonstrate this assumption can fail. Figure 2 (right-
most panel) illustrates the phenomenon through a controlled experiment where we train SMART’s
margin-based temperature network on ImageNet ViT-B/32 using NLL as the training objective. While
NLL decreases monotonically throughout 80 epochs, ECE begins increasing after epoch 30, creating
clear divergence between objectives. By epoch 80, NLL has decreased by 15% while ECE has
increased by 8% relative to epoch 30. This shows that following NLL gradients can actively worsen
calibration despite improving likelihood.

We formalize conditions under which NLL and calibration objectives have opposing gradients.
Consider a margin slice G ⊂ [mmin,mmax] defining sample region A := {x : m(x) ∈ G} where
m(x) = z(1)(x)− z(2)(x) is the margin between top two logits. We study local temperature scaling

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300
Epoch

10 2

10 1

Tr
ai

ni
ng

 L
os

s

SoftECE
SmoothSoftECE

0 50 100 150 200 250 300
Epoch

10 3

10 2

10 1

G
ra

di
en

t 
N

or
m

SoftECE
SmoothSoftECE

Figure 3: Post-hoc calibration on ImageNet ViT-B/16: training loss (left) and gradient norm (right)
over training epochs SoftECE, and Charbonnier-SoftECE (ours).

by factor s applied only to samples in A: Ts(x) = T (x)/s if x ∈ A and Ts(x) = T (x) otherwise.
At baseline s = 1, analyzing how objectives change as s varies reveals their directional preferences.

Define tk := zk/T (scaled logit), qk := etk∑
j e

tj
(predicted probability), ⟨t⟩q :=

∑
k qktk (expected

scaled logit), and rX(X) := P(Y = M(X) | X) (pointwise top-class probability). For NLL
Lnll(hs) and calibration functional C[ψ] = E[(a(X)−ps)ψ(ps)] with smooth probe ψ, the directional
derivatives at s = 1 are:

d

ds
Lnll(hs)

∣∣∣∣
s=1

= E
[
IA(tY − ⟨t⟩q)

]
, (3)

d

ds
C[ψ]

∣∣∣∣
s=1

= E
[
IA p(tM − ⟨t⟩q)

(
ψ′(p)(rX(X)− p)− ψ(p)

)]
, (4)

where IA indicates the margin slice, tM is the scaled logit of the top class, and tY is that of the true
class. The NLL gradient depends only on whether tY exceeds ⟨t⟩q, while the calibration gradient
depends on the calibration gap rX(X)− p weighted by probe sensitivity. These different sensitivities
create potential for directional conflict.

Consider a margin slice A with underconfident region JU having average calibration gap ρU :=
E[rX(X)− p(X) | X ∈ JU ] > 0 and overconfident region JO with gap ρO := E[p(X)− rX(X) |
X ∈ JO] > 0. Let µU , µO denote relative proportions, γmin, γmax be bounds on margin-to-
temperature ratios in A, and ∆G control logit spread. When underconfidence dominates NLL
sensitivity such that ρUγminµU > γmaxρOµO +∆GµA, there exists a sharpening direction where
d
dsLnll|s=1 < 0 (NLL decreases) yet d

ds smCE|s=1 > 0 (calibration worsens). The condition ensures
that while sharpening helps underconfident samples in JU , it harms overconfident samples in JO
more severely, causing net calibration degradation despite NLL improvement. Detailed analysis
appears in Appendix A.3.

This fundamental misalignment explains why NLL-based methods can achieve good likelihood
while maintaining poor calibration. The mismatch occurs when calibration benefits from sharpening
underconfident predictions are outweighed by costs from further sharpening overconfident predictions,
yet NLL gradients favor overall sharpening due to different sensitivity to margin patterns. This
motivates developing objectives that directly target calibration error rather than likelihood.

3.4 CHARBONNIER-SMOOTHED SOFTECE OBJECTIVE

Section 3.3 demonstrated that NLL optimization can conflict with calibration goals. We require a
differentiable objective that directly targets calibration error while remaining statistically efficient
with limited validation data. Current approaches face a bias-variance tradeoff: binned ECE has low
variance but high bias from fixed binning, while point-wise losses have low bias but high variance
from binary correctness indicators.

Following Karandikar et al. (2021), we adopt soft-binned ECE which balances this tradeoff through
kernel smoothing. For sample i with confidence p̂i and bin centers {cb}Bb=1, soft membership weights

5
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wi,b =
exp(−α(p̂i−cb)2)∑
b′ exp(−α(p̂i−cb′ )2)

distribute each sample’s contribution across neighboring bins, creating

smooth gradients. In continuous formulation with Gaussian kernel kλ(t) = e−λt
2

and reference
density ρ(u) on [0, 1], this becomes:

SoftECE(f) := EX
[∫ 1

0

Kλ(p(X), u)|a(X)− u|ρ(u)du
]
, (5)

where Kλ(p, u) = kλ(p−u)∫ 1
0
kλ(p−v)ρ(v)dv

is the normalized kernel, p(X) is predicted confidence, and

a(X) = I{ŷ(X) = y} is the correctness indicator.

We enhance SoftECE with Charbonnier smoothing to achieve theoretical control over calibration
quality. Replacing the absolute value with Charbonnier function ϕδ(r) =

√
r2 + δ2 yields:

Hλ,δ(f) := EX
[∫ 1

0

Kλ(p(X), u)ϕδ(a(X)− u)ρ(u)du
]
. (6)

The Charbonnier function provides C∞ smoothness while satisfying ϕδ(r) ≥ |r|, ensuring that
minimizing Hλ,δ never weakens calibration control compared to the absolute value formulation.
Our key theoretical contribution establishes that this objective provides an upper bound on smooth
calibration error.
Theorem 3.1 (Charbonnier-SoftECE Upper Bounds smCE). Assume reference density ρ satisfies
0 < ρmin ≤ ρ(u) ≤ ρmax <∞ for all u ∈ [0, 1] with condition number κ := ρmax/ρmin. Then for
all classifiers f and smoothing parameters δ ≥ 0:

smCE(f) ≤ Hλ,δ(f) + 2Bλ, (7)

where Bλ := supp∈[0,1]

∫ 1

0
|p − u|Kλ(p, u)ρ(u)du represents kernel approximation error. For

Gaussian kernels with λ ≥ 1, Bλ ≤ Cκ√
λ

where Cκ := 2κ√
π erf(1)

≈ 1.339κ.

The proof (Appendix A.2) decomposes smCE using mollification: for any 1-Lipschitz probe φ, we
write E[(a − p)φ(p)] as a smooth term controlled by Hλ,δ plus approximation error bounded by
Bλ. The bound splits into a model-dependent termHλ,δ(f) that can be optimized and a design-only
term 2Bλ that tightens as O(1/

√
λ). Thus minimizingHλ,δ directly minimizes an upper bound on

calibration error, resolving the NLL mismatch from Section 3.3.

Figure 3 demonstrates the practical benefits of Charbonnier smoothing. On ImageNet ViT-B/16,
Charbonnier-SoftECE achieves faster training convergence (left panel) while maintaining stable
gradient norms throughout optimization (right panel). Standard SoftECE exhibits oscillations in
later training epochs. The Charbonnier enhancement thus provides both theoretical guarantees and
improved optimization stability.

In practice, we discretize Equation equation 6 usingB = 15 soft bins with Gaussian kernel bandwidth
σ = 0.05 (corresponding to λ = 200) and Charbonnier parameter δ = 10−3. The bandwidth controls
bias-variance tradeoff, the choice of hyperparameters λ and δ exhibits stability across a reasonable
range, as detailed in Appendix I.1.

3.5 THE SMART FRAMEWORK

Building on the theoretical foundations established in Sections 3.2–3.4, we introduce SMART
(Sample Margin-Aware Recalibration of Temperature), which learns a direct mapping from margin to
temperature. The framework combines margin as the input indicator (Section 3.2) with Charbonnier-
SoftECE as the training objective (Section 3.4).

SMART implements a lightweight two-layer MLP that maps logit margin m = zmax − z2nd to
sample-specific temperature T (m): h = ReLU(W1m+ b1) and T (m) = softplus(W2h+ b2) + ϵ,
where the hidden dimension is 16 and ϵ = 10−1 ensures numerical stability. The softplus activation
guarantees positive temperatures. This architecture requires only 49 trainable parameters regardless
of the number of classes K, substantially fewer than existing parametric approaches: vector scaling
requires 2K parameters, matrix scaling K2+K, class-dependent temperature scaling (CTS) (Frenkel
& Goldberger, 2021) requires K, and spline calibration (Gupta et al., 2021) requires 13K. For
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ImageNet with K = 1000, these methods require thousands of parameters while SMART maintains
minimal constant size.

Training minimizes the Charbonnier-SoftECE objectiveHλ,δ from Equation equation 6 on a validation
set using Adam optimizer with initial learning rate 5 × 10−3. For each sample, we compute its
margin, predict temperature via the network, apply temperature scaling to logits, and compute the
soft-binned calibration loss with Charbonnier smoothing. At inference, SMART computes the margin
for each test sample, predicts its temperature through the trained network, and applies temperature
scaling to obtain calibrated predictions. Complete training and inference procedures are detailed in
Algorithm 1 (Appendix D).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on several benchmark datasets, including CIFAR-10, CIFAR-
100 (Krizhevsky & Hinton, 2009), and ImageNet (Deng et al., 2009). To probe robustness under
common corruptions and distribution shifts, we include ImageNet-C (All corruption type averaged,
severity 5) (Hendrycks & Dietterich, 2019), ImageNet-LT (a long-tailed variant with power-law class
imbalance) (Liu et al., 2019), and ImageNet-Sketch (sketch-based OOD variant) (Wang et al., 2019).
All experiments employ a training-time batch size of 1024. CIFAR-10 and CIFAR-100 contain
60,000 images of size 32× 32 pixels, with 10 and 100 classes, respectively, split into 45,000 training,
5,000 for validation and 10,000 test images. For ImageNet related dataset, we use 20% of the original
test set, as the new validation set, with the remainder used as the test set. The testing batch size for all
datasets is set to 128.

Model Architectures. To demonstrate the generality of our calibration methods, we evaluate
across a diverse collection of convolutional and transformer–based networks. For CIFAR-10 and
CIFAR-100, we employ ResNet-50 and ResNet-110 (He et al., 2016), Wide-ResNet (Zagoruyko &
Komodakis, 2016), and DenseNet-121 (Huang et al., 2017), initialized with pretrained weights from
Mukhoti et al. (Mukhoti et al., 2020). Each model is trained for 350 epochs using stochastic gradient
descent with momentum 0.9, weight decay 5× 10−4, and a piecewise-constant learning-rate schedule
(0.1/0.01/0.001 over 150/100/100 epochs). ImageNet and its variants are evaluated on PyTorch’s
pretrained ResNet-50 and DenseNet-121 (Paszke et al., 2019), the transformer designs Swin-B (Liu
et al., 2021), ViT-B/16 and ViT-B/32 (Dosovitskiy et al., 2021), and Wide-ResNet-50. This suite
spans from compact CNNs to large-capacity transformers, allowing us to assess calibration robustness
under varying architectural inductive biases and model complexities. Calibration performance is
primarily evaluated using ECE, with additional metrics including AdaECE and top-1 accuracy. All
experiments are conducted on a NVIDIA 3090 GPU, with results averaged over 5 seeds.

4.2 CALIBRATION PERFORMANCE

We evaluate SMART against leading post-hoc calibration approaches including TS (Guo et al., 2017),
PTS (Tomani et al., 2022), CTS (Frenkel & Goldberger, 2021), and spline-based calibration (Gupta
et al., 2021), Group Calibration (Yang et al., 2024), ProCal (Xiong et al., 2024) , Feature Clipping
(FC) (Tao et al., 2025), as well as uncalibrated (Vanilla) models across both standard settings and
distribution shift scenarios.

Calibration on Standard Datasets SMART consistently outperforms these methods across CI-
FAR10, CIFAR-100, and ImageNet-1K (Table 1), significantly reducing calibration error. The most
notable improvement is seen in CIFAR-100, where SMART excels while Spline, despite its strong
performance on other datasets, struggles. This highlights SMART’s robustness across datasets with
varying complexities. CNNs, which often suffer from overconfidence, are generally well-calibrated
with TS-based methods. However, transformers see limited calibration improvements from TS-based
methods, with SMART outperforming them by a large margin. On larger datasets like ImageNet-1K,
SMART maintains its advantage with consistently lower ECE values. SMART works well on bith
CNN and ViTs where GC and FC failed.
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Table 1: Comparison of Post-Hoc Calibration Methods in ECE (%, ↓, 15 bins) Across Various
Datasets and Models (mean across 5 runs). The best-performing method for each dataset-model
combination is in bold, and our method is highlighted. Full results with std are in App. E.

Dataset Model Vanilla TS PTS CTS Spline GC ProCal FC SMART
2017 2022 2021 2021 2024 2024 2025 ours

CIFAR-10 ResNet-50 4.34 1.38 1.10 0.83 1.52 1.37 4.17 1.66 0.76
Wide-ResNet 3.24 0.93 0.90 0.81 1.74 0.89 2.81 1.12 0.43

CIFAR-100 ResNet-50 17.53 5.61 1.96 3.67 3.48 5.70 9.71 2.91 1.37
Wide-ResNet 15.34 4.50 1.96 3.01 3.76 4.55 9.44 4.49 1.80

ImageNet-1K

ResNet-50 3.65 2.17 0.95 2.17 0.62 2.44 1.08 1.71 0.52
DenseNet-121 2.53 1.85 1.02 1.86 0.81 2.20 1.52 1.35 0.57
Wide-ResNet 5.43 2.89 1.14 3.27 0.66 3.66 1.57 1.62 0.52

Swin-B 5.05 3.91 1.05 1.53 0.88 4.95 1.00 5.05 0.46
ViT-B-16 5.62 3.60 1.23 4.65 0.91 4.39 0.97 5.65 0.48
ViT-B-32 6.39 3.93 1.27 2.12 0.81 4.67 0.88 6.39 0.71

ImageNet-C

ResNet-50 13.82 1.97 1.12 1.69 5.61 2.69 5.79 2.51 0.62
DenseNet-121 12.57 1.58 1.19 1.44 5.18 2.01 9.88 9.44 0.63

Swin-B 12.03 5.82 1.53 3.05 2.58 6.92 2.53 5.18 1.23
ViT-B-16 8.28 5.24 1.27 2.76 1.71 5.95 1.96 5.37 1.06
ViT-B-32 7.69 5.10 1.07 2.97 1.43 6.40 1.55 5.50 0.96

ImageNet-LT

ResNet-50 3.63 2.01 0.99 2.17 0.56 2.20 1.12 1.80 0.56
DenseNet-121 2.50 1.80 1.20 1.88 0.79 2.05 1.79 1.76 0.81
Wide-ResNet 5.40 2.99 1.21 2.87 0.81 3.59 1.28 1.68 0.53

Swin-B 4.69 3.98 1.21 1.50 0.79 4.79 0.95 4.82 0.58
ViT-B-16 5.58 3.73 1.14 1.43 0.66 4.34 0.77 5.72 0.56
ViT-B-32 6.28 3.98 1.35 2.12 0.72 4.76 0.83 6.26 0.60

ImageNet-S

ResNet-50 22.32 2.06 1.69 1.48 9.76 1.99 9.52 12.58 0.92
DenseNet-121 20.13 1.67 1.93 1.16 9.20 1.77 12.93 22.67 0.59

Swin-B 24.61 6.50 1.53 3.62 8.66 6.92 8.05 1.70 1.26
ViT-B-16 16.57 5.75 1.33 2.84 5.70 6.36 5.67 1.93 0.98
ViT-B-32 14.22 4.99 1.67 3.25 4.07 6.23 4.44 1.56 0.87

Va
nill

a TS PT
S

CTS
Sp

line
SM

ART
0.0

2.0

4.0

Ad
aE

CE

Va
nill

a TS PT
S

CTS
Sp

line
SM

ART
0.0

5.0

10.0

15.0

Va
nill

a TS PT
S

CTS
Sp

line
SM

ART
0.0

1.0

2.0

3.0

Va
nill

a TS PT
S

CTS
Sp

line
SM

ART
0.0

2.0

4.0

6.0

Va
nill

a TS PT
S

CTS
Sp

line
SM

ART
0.0

5.0

10.0

Va
nill

a TS PT
S

CTS
Sp

line
SM

ART
0.0

2.5

5.0

7.5

Figure 4: Comparison of calibration methods using AdaECE↓ across various datasets and
models. From left to right: CIFAR-10 (ResNet-50), CIFAR-100 (ResNet-50), ImageNet (ResNet-50),
ImageNet (ViT-B-16), ImageNet-C (ResNet-50), and ImageNet-C (ViT-B-16). Results are averaged.

Robustness under Class Imbalance and Distribution Shift Across long-tailed (ImageNet-LT) and
corrupted scenarios (ImageNet-Sketch, ImageNet-C), SMART’s sample-wise temperature adaptation
consistently outperforms global and class-wise scalers. Uniform approaches such as TS struggle
to accommodate underrepresented classes or severe input degradations, leading to pronounced
calibration drift. Spline, FC and ProCal failed on Imagenet-S with CNNs where SMART still
performs robustly.

Calibration Performance on AdaECE We also evaluate SMART using Adaptive Expected Cali-
bration Error (AdaECE) to provide a comprehensive view of its performance, shown in Figure 4, with
additional results available in Appendix F. SMART demonstrates superior performance on AdaECE
compared to traditional calibration methods across diverse settings. AdaECE addresses limitations of
standard ECE by accounting for uneven confidence distributions, providing a more reliable measure
of calibration quality. SMART consistently achieves the lowest AdaECE values and variance across
CNN and ViT architectures and datasets (CIFAR and ImageNet variants), demonstrating its robustness

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

to dataset shifts and model architectures. Notably, SMART outperforms more complex methods like
Spline calibration and CTS in calibration error and variance while requiring fewer parameters.

By leveraging instance-level temperature through logit margins, SMART yields stable calibration
gains across diverse distribution shifts. Its lightweight per-sample inference preserves efficiency while
delivering robustness that neither fixed nor ensemble temperature schemes can match. In contrast,
Spline collapses on particularly challenging shifts such as ImageNet-S and ImageNet-C — whereas
our method consistently sustains the lowest and most stable calibration error even under these adverse
conditions.

4.3 COMPARISON WITH TRAINING-TIME CALIBRATION METHODS

We evaluate SMART alongside training-time calibration techniques in Table 2, including Brier
Loss (Brier, 1950), Maximum Mean Calibration Error (MMCE) (Kumar et al., 2018), Label Smooth-
ing (LS-0.05) (Szegedy et al., 2016), and Focal Loss variants (FLSD-53 and FL-3) (Mukhoti et al.,
2020). This shows that combining SMART with these methods consistently enhances calibration
performance across various models and datasets, further validating SMART’s effectiveness alongside
training-time approaches. Moreover, as seen in Table 1, SMART alone, as a post-hoc calibration
method, already outperforms these train-time techniques with minimal computational overhead, while
train-time methods require significantly more resources.

Table 2: Comparison of Train-time Calibration Methods Using ECE(↓, %, 15 bins) Across
Various Datasets and Models. The best-performing method for each dataset-model combination is
in bold, and our method (SMART) is highlighted. Results are averaged over 5 runs.

Dataset Model NLL Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours

CIFAR10

ResNet-50 4.34 0.75 1.81 0.96 4.57 0.53 2.97 0.51 1.56 0.42 1.47 0.43
ResNet-110 4.41 0.44 2.56 0.60 5.07 0.38 2.09 0.28 1.87 0.45 1.54 0.54

DenseNet-121 4.51 0.53 1.52 0.31 5.10 0.66 1.89 0.51 1.23 0.62 1.31 1.02
Wide-ResNet 3.24 0.30 1.25 0.38 3.30 0.34 4.25 0.36 1.58 0.39 1.68 0.54

CIFAR100

ResNet-50 17.53 0.99 6.54 1.01 15.31 0.86 7.81 1.50 4.49 1.26 5.16 0.56
ResNet-110 19.06 0.98 7.87 0.87 19.13 1.42 11.03 1.01 8.54 0.85 8.65 0.73

DenseNet-121 20.99 1.86 5.22 0.59 19.10 1.34 12.87 1.02 3.70 0.91 4.14 0.98
Wide-ResNet 15.34 1.38 4.35 1.00 13.17 0.98 4.88 1.24 3.02 0.79 2.14 1.12

4.4 SCALABILITY WITH VALIDATION DATA

2 4 8 16 32 64 128 256 512
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Figure 5: ECE(↓, %, 15 bins) versus
validation sample size. Comparison
of calibration methods on ImageNet
(ViT-B/32), averaged over five runs.

Scalability with Validation Data SMART demonstrates
superior ability to leverage increasing validation sample sizes
compared to competing calibration methods, shown in Figure
5. While all approaches struggle with minimal validation
data, SMART exhibits continuous performance improvement
throughout the entire range of sample sizes tested, ultimately
achieving the lowest calibration error. In contrast, the alter-
native methods display more limited utilization of additional
validation samples. TS reaches a performance plateau at mod-
erate sample sizes and fails to improve further, while PTS
exhibits concerning instability in the mid-range sample sizes,
implicitly reflecting the NLL mismatch. GC demonstrates
the most problematic behavior, with significant performance
spikes that indicate poor robustness to varying validation set
sizes. The consistent improvement trajectory of SMART man-
ifests the margin provides a robust signal that enables more
effective temperature estimation as additional validation samples become available. This superior
sample utilization capability makes SMART particularly valuable in practical applications where
validation data availability may vary.
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4.5 ABLATION STUDIES

Choice of Calibration Objective We compare how various calibration objective influence
SMART’s calibration performance (Table 3). While all tested objectives enable significant im-
provements over vanilla, they exhibit distinct behavior patterns across architectures. NLL and label
smoothing losses, despite their prevalence in classification tasks, demonstrate suboptimal calibration
performance due to their indirect relationship with confidence estimation objectives. MSE and Brier
score offer more reliable improvements by directly penalizing squared confidence errors, yet their
effectiveness fluctuates between CNN and transformer architectures. Charbonnier-SoftECE emerges
as the superior choice by directly optimizing the calibration metric itself, achieving both the lowest
average error and the smallest variance across diverse model architectures, making it the most stable
choice for SMART’s temperature mapping.

Table 3: Different Calibration Objective. ECE (%, ↓, 15 bins) on ImageNet averaged over 5 runs.

Architecture Method NLL LS MSE Brier SoftECE Charbonnier-SoftECE

ResNet-50
(Top-1 = 0.761)

TS 2.04 14.33 3.69 2.31 3.16 2.12
PTS 1.04 1.87 1.89 1.88 1.88 0.94
SMART 0.93 1.09 1.39 1.38 0.65 0.52

ViT-B/16
(Top-1 = 0.810)

TS 3.73 6.05 5.58 3.11 3.10 3.08
PTS 5.69 3.22 2.40 2.57 1.15 0.77
SMART 3.62 3.11 0.84 0.80 0.89 0.48

Table 4: Comparison on alternative on-the-shelf indicator on ImageNet-1K.

Model Entropy Conf. All Logits Logitmax Logitmax - Logits Margin (ours)

ResNet-50 0.87 0.97 0.87 0.91 0.85 0.58
DenseNet-121 0.62 0.89 0.79 0.80 0.84 0.56
Wide-ResNet 1.00 1.22 0.92 0.57 0.63 0.52
Swin-B 0.62 0.81 0.89 0.78 0.87 0.63
ViT-B/16 0.90 0.75 0.97 0.91 1.20 0.72

Choice of Indicators We evaluated six candidate uncertainty signals as inputs to our temperature
network on ImageNet-1K (Table 4): predictive entropy, predicted confidence, full logit vectors,
maximum logit, mean-normalized logit deviation, and our proposed margin. The margin consis-
tently achieves the lowest calibration error across all tested architectures, outperforming alternative
indicators by substantial margins. While full logit vectors contain rich information, they introduce
excessive noise that degrades performance in limited-data scenarios. Simpler scalar measures like
maximum logit or predicted confidence fail to adequately capture the competitive dynamics between
top classes that drive miscalibration. The margin’s superior performance stems from its ability to
distill prediction uncertainty into a minimal yet complete representation that directly reflects decision
boundary proximity, enabling robust calibration across diverse model architectures.

5 CONCLUSION AND LIMITATION

We introduced SMART, a lightweight recalibration method leveraging the logit margin as a principled
calibration indicator for precise temp adjustment. By capturing sample hardness through this indica-
tive signal, SMART achieves SOTA calibration performance with minimal parameters compared
to existing methods. Our Charbonnier-Smoothed SoftECE objective enables stable optimization as
validation data scales. Extensive experiments confirm SMART’s robustness across diverse architec-
tures, datasets, and challenging distribution shifts, consistently outperforming current post-hoc and
even training-based methods. Future work could explore integrating SMART with other uncertainty
quantification methods or investigate other hardness indicator to further improve calibration and
robustness in safety-critical applications.

Limitation While SMART demonstrates excellent performance across tested scenarios, its effec-
tiveness may vary slightly for extremely specialized domains with highly skewed class distributions.
Additionally, though our method requires minimal validation data, performance could degrade in
zero-shot scenarios where no domain-specific calibration samples are available.
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A THEORETICAL PROOFS

A.1 TEMPERATURE–CONFIDENCE RELATION AND MARGIN BOUNDS

Problem and observation. To reach a target top-class confidence p̂ ∈ (0, 1), how constrained is T ?
Empirically, fixing only zM leaves T ill-determined; using the Margin m yields tight bounds. We
now prove this, step by step.

Target confidence equation. Requiring pϕ,max = p̂ is equivalent to

ezM/T∑K
j=1 e

zj/T
= p̂ ⇐⇒

∑
j ̸=M

e(zj−zM )/T =
1

p̂
− 1 := S. (8)

Because p̂ is the maximum softmax probability, p̂ ≥ 1/K, hence S ≤ K−1; moreover S > 0 since
p̂ < 1. Thus S ∈ (0,K−1], and if we assume a strict top-1 margin m > 0 (no top-2 ties) then
p̂ > 1/K and S ∈ (0,K−1).

Unboundedness if only zM is known. Assume zj − zM = −δ for all j ̸=M with δ > 0. Then∑
j ̸=M

e(zj−zM )/T =
∑
j ̸=M

e−δ/T = (K − 1) e−δ/T = S, (9)

⇒ T = − δ

log
(

S
K−1

) . (10)

When S < K−1 (equivalently p̂ > 1/K), log(S/(K−1)) < 0, so as δ ∈ (0,∞) varies, equation 10
sweeps T ∈ (0,∞). Thus

Fixing zM alone leaves the feasible T unbounded: (0,∞).

m-boundedness. Let µ ∈ argmaxj ̸=M zj denote a runner-up index and define the (nonnegative)
margin m := zM − zµ. For any j /∈ {M,µ},

zj − zM ≤ zµ − zM = −m =⇒ e(zj−zM )/T ≤ e−m/T .

Since e(zµ−zM )/T = e−m/T , we have∑
j ̸=M

e(zj−zM )/T = e−m/T +
∑

j /∈{M,µ}

e(zj−zM )/T

≥ e−m/T , (11)∑
j ̸=M

e(zj−zM )/T ≤ e−m/T + (K − 2) e−m/T = (K − 1) e−m/T . (12)

Combining equation 8, equation 11, and equation 12 yields

e−m/T ≤ S ≤ (K − 1) e−m/T , S = 1
p̂ − 1 ∈ (0,K−1]. (13)

Equivalently,
− log

(
S

K−1

)
≥ m

T
≥ − logS. (14)

Solving equation 14 for T > 0 gives the m-bounded feasible set:
T ∈

[ m

− log
(
S/(K − 1)

) , m

− logS

]
, if 0 < S < 1 (p̂ > 1/2),

T ∈
[ m

− log
(
S/(K − 1)

) , ∞)
, if 1 ≤ S < K − 1 (1/K < p̂ ≤ 1/2),

feasible iff m = 0, if S = K − 1 (p̂ = 1/K).

Interpretation. Knowing the Margin m pins down T tightly. When the target confidence is above
1/2, the feasible T is a finite interval whose width shrinks as m grows. For lower target confidences
(p̂ ≤ 1/2), one still gets a nontrivial lower bound on T ; a finite upper bound appears exactly when
S < 1 (i.e., p̂ > 1/2). In particular, for K = 2 the bounds coincide and T = m

− log S is uniquely
determined.

14
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A.2 CHARBONNIER–SOFTECE UPPER-BOUNDS SMCE

Setup and goal. Let p(x) ∈ [0, 1] denote the predicted probability of correctness (top-class
confidence) and a(x) := ⊮{ŷ(x) = y} ∈ {0, 1} the correctness indicator. We measure calibration
via the smooth calibration error (smCE), the worst-case correlation between the residual a(X)−p(X)
and any 1-Lipschitz probe of the prediction p(X) (cf. forecasting(Kakade & Foster (2008)) and the
ML calibration view of Blasiok et al. (2023)):

smCE(f) := sup
φ∈H

∣∣∣ E[(a(X)− p(X))φ
(
p(X)

)] ∣∣∣,
H :=

{
φ : [0, 1]→ [−1, 1] s.t. Lip(φ) ≤ 1

}
.

We study the Charbonnier–SoftECE objective (a smoothed, Huberized absolute calibration error):

Hλ,δ(f) := EX
[∫ 1

0

Kλ

(
p(X), u

)
ϕδ
(
a(X)− u

)
ρ(u) du

]
, ϕδ(r) :=

√
r2 + δ2,

where ρ is a reference density on [0, 1] and

Kλ(p, u) =
kλ(p− u)∫ 1

0
kλ(p− v) ρ(v) dv

, kλ(t) := e−λt
2

, λ > 0, (15)

so that
∫ 1

0
Kλ(p, u) ρ(u) du = 1 for every p ∈ [0, 1]. Assume boundedness and bounded-away-

from-zero of ρ: there exist constants 0 < ρmin ≤ ρ(u) ≤ ρmax < ∞ for all u ∈ [0, 1], and write
κ := ρmax/ρmin.

Main result.
Theorem A.1 (Charbonnier–SoftECE upper-bounds smCE). Under the assumptions above, for all
classifiers f and all δ ≥ 0,

smCE(f) ≤ Hλ,δ(f) + 2Bλ, Bλ := sup
p∈[0,1]

∫ 1

0

|p− u|Kλ(p, u) ρ(u) du. (16)

Moreover, for the Gaussian kernel kλ(t) = e−λt
2

,

Bλ ≤ min

{
1,

2κ√
π
· 1√

λ erf(
√
λ)

}
, (17)

and in particular for λ ≥ 1,

Bλ ≤
Cκ√
λ
, Cκ :=

2κ√
π erf(1)

≈ 1.339κ. (18)

Proof. For brevity write p := p(X) and a := a(X). Fix any φ ∈ H with ∥φ∥∞ ≤ 1. Introduce the
(normalized) kernel smoothing operator

(Tλφ)(p) :=

∫ 1

0

Kλ(p, u)φ(u) ρ(u) du.

Decomposition.

E[(a− p)φ(p)] = E[(a− p) (Tλφ)(p)] + E
[
(a− p) {φ(p)− (Tλφ)(p)}

]
. (19)

Approximation (mollification) error. By Lip(φ) ≤ 1 and the triangle inequality,∣∣φ(p)− (Tλφ)(p)
∣∣ = ∣∣∣∣∫ 1

0

Kλ(p, u) {φ(p)− φ(u)} ρ(u) du
∣∣∣∣ ≤ ∫ 1

0

Kλ(p, u) |p− u| ρ(u) du.

Taking the supremum over p and φ yields

sup
φ∈H

sup
p∈[0,1]

∣∣φ(p)− (Tλφ)(p)
∣∣ ≤ Bλ. (20)

15
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Hence, using |a− p| ≤ 1, ∣∣∣E[(a− p) {φ(p)− (Tλφ)(p)}
]∣∣∣ ≤ Bλ.

Aligned main term. By Fubini/Tonelli (bounded integrands) and normalization
∫
Kλ(p, u)ρ(u) du =

1,

E[(a− p) (Tλφ)(p)] =
∫ 1

0

φ(u)E
[
(a− p)Kλ(p, u)

]
ρ(u) du,

and since |φ(u)| ≤ 1,∣∣E[(a− p) (Tλφ)(p)]∣∣ ≤ ∫ 1

0

∣∣∣E[(a− p)Kλ(p, u)
] ∣∣∣ ρ(u) du. (21)

For each u, using |x+ y| ≤ |x|+ |y| and |a− p| ≤ |a− u|+ |p− u|, together with ϕδ(r) ≥ |r|,∣∣∣E[(a− p)Kλ(p, u)
] ∣∣∣ ≤ E

[
|a− p|Kλ(p, u)

]
≤ E

[
ϕδ(a− u)Kλ(p, u)

]
+ E

[
|p− u|Kλ(p, u)

]
. (22)

Integrating equation 22 against ρ(u) du and applying Fubini,∫ 1

0

∣∣∣E[(a− p)Kλ(p, u)
] ∣∣∣ ρ(u) du ≤ E

[∫ 1

0

Kλ(p, u)ϕδ(a− u) ρ(u) du
]

+ sup
p

∫ 1

0

|p− u|Kλ(p, u) ρ(u) du,

i.e., ∣∣E[(a− p) (Tλφ)(p)]∣∣ ≤ Hλ,δ(f) + Bλ. (23)

Conclusion. Combining equation 20, equation 23 with equation 19 and taking the supremum over
φ ∈ H gives smCE(f) ≤ Hλ,δ(f) + 2Bλ.

Explicit bounds for Bλ. By definition,

Bλ = sup
p∈[0,1]

∫ 1

0
|p− u| kλ(p− u) ρ(u) du∫ 1

0
kλ(p− v) ρ(v) dv

.

Using ρ(u) ≤ ρmax in the numerator and ρ(v) ≥ ρmin in the denominator, and changing variables
t = p− u or t = p− v, we obtain for all p ∈ [0, 1]:

Bλ ≤ κ ·
∫
R |t| e

−λt2 dt∫ p
p−1

e−λt2 dt
.

Since p ∈ [0, 1], the denominator integrates over a length-1 interval contained in [−1, 1]; by symmetry
and unimodality of t 7→ e−λt

2

, the minimum over such intervals is attained at an endpoint, e.g. [0, 1].
Hence

Bλ ≤ κ ·
∫
R |t| e

−λt2 dt∫ 1

0
e−λt2 dt

= κ ·
1
λ√

π

2
√
λ
erf(
√
λ)

=
2κ√
π
· 1√

λ erf(
√
λ)
.

Since |p − u| ≤ 1 and
∫
Kλρ = 1, we also have Bλ ≤ 1. For λ ≥ 1, erf(

√
λ) ≥ erf(1), yielding

equation 18. □

Interpretation and guidance. The guarantee equation 16 decomposes into a model-dependent term
Hλ,δ(f) and a design-only kernel bias Bλ, the average soft-bin radius around p. The Charbonnier
envelope obeys ϕδ(r) ≥ |r|, so replacing |a − u| with ϕδ(a − u) never weakens control of smCE
and yields smooth gradients near r = 0. For Gaussian kernels, Bλ = O(κ/

√
λ) as in equation 18, so

increasing λmonotonically tightens the bound; the capBλ ≤ 1 ensures uniform validity for all λ > 0.
(Discrete soft-binned implementations—via Riemann-sum quadrature of the u-integral—inherit the
same inequality up to a standard design-only quadrature error that vanishes as the grid is refined.)
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A.3 CHARBONNIER–SOFTECE VS. NLL

We compare negative log-likelihood (NLL) with Charbonnier–SoftECE within the SMART family
T (x) = h(m(x)) that scales by the margin m(x) := z(1)(x) − z(2)(x) ∈ R≥0. Throughout,
assume (i) T (x) ∈ [Tmin, Tmax] with 0 < Tmin ≤ Tmax < ∞, (ii) E∥z(X)∥∞ < ∞, and (iii)
P(z(1) = z(2)) = 0 (no top-2 ties a.s.). Write t(x) := z(x)/T (x), q(x) := softmax(t(x)),
M(x) := argmaxk tk(x), p(x) := qM(x)(x) ∈ (0, 1), and Y ⊤(x) := 1{Y (x) = M(x)}. Define
the pointwise top-class probability rX(x) := P

(
Y = M(x) | X = x

)
and the reliability curve

r(p) := E
[
rX(X) | p(X) = p

]
. We measure calibration by the smooth calibration error (smCE)

smCE(f) := sup
φ:[0,1]→[−1,1]

Lip(φ)≤1

∣∣E[(Y ⊤ − p)φ(p)]
∣∣.

Charbonnier–SoftECE and its smCE control. Charbonnier–SoftECE is the objective

Hλ,δ(f) := EX
[∫ 1

0

Kλ

(
p(X), u

)
ϕδ
(
Y ⊤(X)− u

)
ρ(u) du

]
, ϕδ(r) :=

√
r2 + δ2,

with normalized kernel Kλ as in equation 15 and a reference density ρ on [0, 1]. We use (proved in
Sec. A.2) the smCE control

smCE(f) ≤ Hλ,δ(f) + 2Bλ, Bλ = sup
p

∫ 1

0

|p− u|Kλ(p, u) ρ(u) du, (24)

with Bλ = O(κ/
√
λ) for Gaussian kernels.

A SMART-feasible local scaling path. Fix a Borel margin slice G ⊂ R≥0 and A := {x : m(x) ∈
G}. For s > 0, define the local scaling

Ts(x) :=

{
T (x)/s, x ∈ A,
T (x), x /∈ A,

ts(x) :=
z(x)

Ts(x)
=

{
s t(x), x ∈ A,
t(x), x /∈ A,

q(s) := softmax(ts), ps := q
(s)
M .

Because uniform multiplication by s > 0 preserves coordinate ordering, M is unchanged for all
s > 0; (iii) rules out measure-zero ties at the boundary.
Lemma 1 (Directional derivatives under local margin-dependent scaling). Let Lnll(h) :=
E[− log qY (X)]. For any C1 probe ψ : [0, 1] → R with Lip(ψ) ≤ 1 and ∥ψ∥∞ ≤ 1, the Gâteaux
derivatives at s = 1 exist and

d

ds
Lnll(hs)

∣∣∣∣
s=1

= E
[
1A (⟨t⟩q − tY )

]
, (25)

d

ds
E
[
(Y ⊤ − ps)ψ(ps)

]∣∣∣∣
s=1

= E
[
1A p

(
tM − ⟨t⟩q

) (
ψ′(p) (rX − p)− ψ(p)

)]
, (26)

where ⟨t⟩q :=
∑
k qk tk and rX := rX(X).

Proof. On A, ∂sq
(s)
k = q

(s)
k (tk − ⟨t⟩q(s)), hence ∂s(− log q

(s)
Y ) = ⟨t⟩q(s) − tY . Outside A the

derivative vanishes. Dominated convergence applies since
∣∣∂s(− log q

(s)
Y )

∣∣ ≤ 2∥t∥∞ and E∥t∥∞ ≤
E∥z∥∞/Tmin < ∞, yielding equation 25. For Fψ(s) := E[(Y ⊤ − ps)ψ(ps)], with M fixed,
∂sps = ∂sq

(s)
M = q

(s)
M (tM − ⟨t⟩q(s)) = ps(tM − ⟨t⟩q(s)). Thus

∂s
(
(Y ⊤ − ps)ψ(ps)

)
=

(
− ψ(ps) + (Y ⊤ − ps)ψ′(ps)

)
∂sps.

Conditioning onX replaces Y ⊤ by rX(X), whence equation 26 at s = 1 after integration; dominated
convergence holds because p |tM − ⟨t⟩q| ≤ 2∥t∥∞ and |ψ′| ≤ 1, |ψ| ≤ 1.
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Lemma 2 (Margin lower bound for the top-logit advantage). On {M = argmax t},

tM − ⟨t⟩q ≥ (1− p)
(
tM − t(2)

)
= (1− p) m

T
. (27)

Proof. ⟨t⟩q = p tM +
∑
j ̸=M qjtj ≤ p tM + (1− p) t(2); rearrange.

A correct NLL directional upper bound (multi-class). Define the runner-up gap g(x) :=
t(1)(x) − t(2)(x) = m(x)/T (x) ≥ 0 and the non-top spread ∆(x) := t(2)(x) − t(K)(x) ≥ 0.
For any x with predicted index M and confidence p = qM (x),

E[⟨t⟩q − tY | X = x] ≤
(
p− rX(x)

)
g(x) +

(
1− rX(x)

)
∆(x). (28)

In particular, for binary classification (K = 2) one has ∆ ≡ 0 and equation 28 reduces to E[⟨t⟩q−tY |
X] = (p− rX) g (exact).

Derivation of equation 28. With ηk(x) := P(Y=k | X=x),

E[⟨t⟩q − tY | X = x] =
∑
k

(qk − ηk) tk = (p− rX) (tM − t(2)) +
∑
j ̸=M

(qj − ηj) (tj − t(2)).

Since tj− t(2) ≤ 0 and
∑
j ̸=M (ηj− qj)+ ≤

∑
j ̸=M ηj = 1− rX , the last sum is≤ (1− rX) (t(2)−

t(K)) = (1− rX)∆.

Consequences and a mild spread control. On a slice A = {m ∈ G}, assume the empirically
checkable spread control

∆(x) ≤ ∆G < ∞ for all x ∈ A. (29)

Then, combining equation 28 with Lemma 1,

d

ds
Lnll(hs)

∣∣∣∣
s=1

= E
[
1A(⟨t⟩q − tY )

]
≤ E

[
1A (p− rX) g

]
+ ∆G µA, (30)

where µA := P{X ∈ A}. In the binary case ∆ ≡ 0 and equation 30 holds with equality.

Two-slice mismatch under mild, empirically observed heterogeneity. We next give conditions
under which a single SMART-feasible local move reduces NLL yet increases smCE.

Assumptions (empirically checkable). Fix a compact margin slice G ⊂ [mmin,mmax] and set
A := {x : m(x) ∈ G}. Let γmin := infx∈A

m(x)
T (x) and γmax := supx∈A

m(x)
T (x) (finite and positive by

G compact and T ∈ [Tmin, Tmax]). Assume there exist disjoint compact intervals JU, JO ⊂ (p0, 1)
with gap ∆ > 0 and constants ρU, ρO > 0 such that

r(p)− p ≥ ρU for p ∈ JU, r(p)− p ≤ − ρO for p ∈ JO.

Write µU := P{ p ∈ JU, x ∈ A }, µO := P{ p ∈ JO, x ∈ A }, µgap := P{x ∈ A, p /∈ JU ∪ JO },
and assume additionally:

(a) (bounded conditional density of p on A) the conditional distribution of p given X ∈ A has a
density fp|A on (0, 1) with ∥fp|A∥∞ ≤ DG <∞. In particular, for any interval I ⊂ (0, 1),
P{p ∈ I, X ∈ A} ≤ DG |I|.

(b) (slice-bounded advantage) there exists CG <∞ with p(x)
(
tM (x)− ⟨t(x)⟩q(x)

)
≤ CG for

x ∈ A (e.g., it holds with CG := 2 ess supx∈A ∥t(x)∥∞ whenever t is essentially bounded
on A).

(c) the spread control equation 29 holds on A with constant ∆G.
Proposition A.2 (Two-slice mismatch: NLL ↓ but smCE ↑ (multi-class)). Consider the sharpening
direction s ↑ 1 applied on the SMART-feasible set A = {m ∈ G}. If

ρU γmin µU > γmax

(
ρO µO + µgap

)
+ ∆G µA, (31)
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then d
dsLnll(hs)

∣∣
s=1

< 0 (NLL strictly decreases). Moreover, for any c ∈ (0,min{1,∆}) there
exists a 1-Lipschitz probe ψ with ψ ≡ 0 on JU, ψ ≡ −c on JO, and with transitions confined to a
band whose A-mass is at most ε > 0, such that

d

ds
E[(Y ⊤ − ps)ψ(ps)]

∣∣∣∣
s=1

≥ c p
O
(1− pO) γmin µO − (1 + c)CG ε, (32)

where p
O
:= inf JO and pO := supJO. Choosing ε <

c p
O
(1−pO)γmin

(1+c)CG
µO makes the right-hand side

strictly positive. Because on JO one has (r(p) − p)ψ(p) ≥ c ρO while ψ ≡ 0 on JU, the signed
functional at s = 1 obeys

E[(Y ⊤ − p)ψ(p)] = E[(r(p)− p)ψ(p)] ≥ c ρO µO − c ε > 0, (33)

so a positive derivative implies a strict increase of its absolute value. Hence smCE strictly increases
along s ↑ 1.

Proof. By equation 30 and splitting A into the three regions,

d

ds
Lnll(hs)

∣∣∣∣
s=1

≤ E
[
1A∩{p∈JU}(p− rX)g

]
+ E

[
1A∩{p∈JO}(p− rX)g

]
+ E

[
1A∩{p/∈JU∪JO}(p− rX)g

]
+∆G µA.

On A ∩ {p ∈ JU}, g ≥ γmin and E[p − rX | p] = p − r(p) ≤ − ρU, hence the contribution is
≤ − ρUγminµU. On A ∩ {p ∈ JO}, g ≤ γmax and E[p− rX | p] ≥ ρO, giving at most γmaxρOµO.
On the gap region, |p−rX | ≤ 1 and g ≤ γmax, giving at most γmax µgap. This yields strict negativity
under equation 31. For the probe, on JO we have ψ′(p) = 0 and −ψ(p) = c, so by equation 26 and
Lemma 2,

d

ds
E[(Y ⊤ − ps)ψ(ps)]

∣∣∣∣
s=1, p∈JO

≥ c p
O
(1− pO) γmin.

On JU the contribution is 0 since ψ ≡ 0. On the transition band (of A-mass ε), |ψ′| ≤ 1 and |ψ| ≤ c,
hence |ψ′(p)(rX − p)− ψ(p)| ≤ (1 + c) while p(tM − ⟨t⟩q) ≤ CG on A by (b). Thus the transition
contribution is at most (1 + c)CG ε in magnitude, giving equation 32. Finally, equation 33 holds
since ψ depends only on p and E[Y ⊤ − p | p] = r(p) − p. By (a), we can realize the 1-Lipschitz
ψ with linear ramps of total width at most 2c, whence ε ≤ 2DGc; shrinking c if needed makes the
stated choice of ε feasible.

Lemma 3 (Small-s realization for the mismatch). Under Proposition A.2, there exists s↑ > 1
arbitrarily close to 1 with

Lnll(hs↑) < Lnll(h) and smCE(fh
s↑
) > smCE(fh).

Proof. Lnll(hs) is C1 at s = 1 by Lemma 1, with strictly negative derivative; hence Lnll(hs↑) <
Lnll(h) for all s↑ > 1 sufficiently close to 1. For smCE, fix the ψ from Proposition A.2; then
Fψ(s) := E[(Y ⊤ − ps)ψ(ps)] is C1 with Fψ(1) > 0 and F ′

ψ(1) > 0, so |Fψ(s↑)| > |Fψ(1)|
for all s↑ > 1 close enough to 1. Since smCE(fhs) ≥ |Fψ(s)|, it follows that smCE(fh

s↑
) >

smCE(fh).

Takeaway. Along SMART-feasible local scalings of the temperature map T (x) = h(m(x)),
Charbonnier–SoftECE continues to control smCE via equation 24, whereas NLL can be locally
improved (decreased) while smCE deteriorates (increases) under mild, empirically checkable het-
erogeneity of confidence slices (Proposition A.2). The NLL directional formula is exact in binary
classification; in multi-class settings the same conclusion holds under a weak spread control on
non-top logits.
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Algorithm 1 SMART: Sample Margin-Aware Recalibration of Temperature

1: Input: Validation logits and labels {zi, yi}Nval
i=1, temperature network hϕ(·)

2: Compute margins: mi = zi,max − zi,2nd for each i ∈ {1, . . . , Nval}
3: Normalise: m̂i = (mi − µm)/σm where µm = 1

Nval

∑
imi, σm =

√
1
Nval

∑
i(mi − µm)2

4: for epoch = 1, . . . , Nepochs do
5: Predict temperatures: Ti = hϕ(m̂i) for each i
6: Scale logits: z̃i = zi/Ti for each i
7: Compute loss: Li = CharbonnierSoftECE(z̃i, yi) for each i (Equation 6)
8: Update: ϕ← ϕ− η∇ϕ

∑Nval
i=1 Li via SGD

9: end for
10: Return: Trained temperature network hϕ

B THE USE OF LARGE LANGUAGE MODELS

During the preparation of this work, we utilized a Large Language Model (LLM) to assist with
editorial refinement of the manuscript. The model’s application was limited exclusively to improv-
ing textual quality and presentation, not for generating substantive research content. The LLM’s
contributions included:

• Enhancing sentence structure and paragraph organization to improve clarity, brevity, and
scholarly tone.

• Identifying and correcting errors in grammar, spelling, and punctuation.

• Strengthening coherence and smoothing transitions throughout the text.

C RUNTIME EFFICIENCY

To verify the time efficiency of our method, we compare the inference time with baseline methods.
The result is reported in Table 5. TS optimizes a single scalar temperature via a few gradient steps or
closed-form updates, then applies this same factor to every logit, resulting in a negligible overhead
(2.42 s). SMART yields a small per-sample inference cost and hence a modest total runtime (23.03 s).
Logits are input into PTS’s small neural network for each sample to predict a bespoke temperature,
incurring a larger computational cost than SMART. CTS is the most expensive at more than 1
hour with the highest variance, as it conducts an exhaustive grid search for 5 epochs over a dense
temperature grid (e.g. 0.1 -10) for each of the 1 000 classes, leading to O(C ×G×N) evaluations
(classes × grid points × samples). The spline-based calibrator precomputes a monotonic mapping on
the validation set and then applies a fast piecewise-linear transform at test time, yielding intermediate
overhead. These differences illustrate the trade-off between expressive power and efficiency: TS
is almost instantaneous, SMART adds only a small network-forward cost per sample, PTS trades
per-sample flexibility for moderate cost, and CTS’s brute-force search becomes prohibitive at scale.

Table 5: Average Runtime (s) on ImageNet over 10 runs on a ResNet-50 model.

Method TS Spline PTS CTS SMART

Runtime (s) 2.42± 0.1 28.51± 0.9 1050.44± 37.8 5457.55± 125.5 23.03± 0.41

D THE PROPOSED SMART FRAMEWORK

This section presents the detailed algorithmic implementation of SMART, providing a step-by-step
procedure for applying margin-based temperature scaling with soft-binned ECE optimization.
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E FULL CALIBRATION PERFORMANCE

Full calibration performance for Table 1 is in Table 6.

Table 6: Comparison of Post-Hoc Calibration Methods Using ECE (%, ↓, 15 bins) Across
Various Datasets and Models (mean ± std across 5 seeds). The best-performing method for each
dataset-model combination is in bold, and our method is highlighted.

Dataset Model Vanilla TS PTS CTS Spline GC ProCal FC SMART (ours)

CIFAR-10 ResNet-50 4.34 1.38 ± 0.26 1.10 ± 0.21 0.83 ± 0.15 1.52 ± 0.03 1.37 ± 0.08 4.17 ± 0.12 1.66 ± 0.09 0.76 ± 0.02
Wide-ResNet 3.24 0.93 ± 0.20 0.90 ± 0.19 0.81 ± 0.17 1.74 ± 0.01 0.89 ± 0.06 2.81 ± 0.11 1.12 ± 0.07 0.43 ± 0.05

CIFAR-100 ResNet-50 17.53 5.61 ± 1.39 1.96 ± 0.48 3.67 ± 0.88 3.48 ± 0.00 5.70 ± 0.15 9.71 ± 0.18 2.91 ± 0.12 1.37 ± 0.27
Wide-ResNet 15.34 4.50 ± 0.62 1.96 ± 0.27 3.01 ± 0.42 3.76 ± 0.00 4.55 ± 0.13 9.44 ± 0.16 4.49 ± 0.14 1.80 ± 0.10

ImageNet-1K

ResNet-50 3.65 2.17 ± 0.03 0.95 ± 0.36 2.17 ± 0.78 0.62 ± 0.18 2.44 ± 0.12 1.08 ± 0.14 1.71 ± 0.08 0.52 ± 0.12
DenseNet-121 2.53 1.85 ± 0.04 1.02 ± 0.46 1.86 ± 0.81 0.81 ± 0.35 2.20 ± 0.25 1.52 ± 0.21 1.35 ± 0.29 0.57 ± 0.03
Wide-ResNet 5.43 2.89 ± 0.11 1.14 ± 0.24 3.27 ± 0.69 0.66 ± 0.10 3.66 ± 0.16 1.57 ± 0.10 1.62 ± 0.09 0.52 ± 0.07

Swin-B 5.05 3.91 ± 0.07 1.05 ± 0.05 1.53 ± 0.08 0.88 ± 0.14 4.95 ± 0.17 1.00 ± 0.15 5.05 ± 0.06 0.46 ± 0.03
ViT-B-16 5.62 3.60 ± 0.19 1.23 ± 0.29 4.65 ± 1.02 0.91 ± 0.31 4.39 ± 0.25 0.97 ± 0.30 5.65 ± 0.06 0.48 ± 0.13
ViT-B-32 6.39 3.93 ± 0.02 1.27 ± 0.97 2.12 ± 1.59 0.81 ± 0.12 4.67 ± 0.13 0.88 ± 0.32 6.39 ± 0.06 0.71 ± 0.18

ImageNet-C

ResNet-50 13.82 1.97 ± 0.02 1.12 ± 0.13 1.69 ± 0.20 5.61 ± 0.15 2.69 ± 0.11 5.79 ± 0.19 2.51 ± 0.13 0.62 ± 0.03
DenseNet-121 12.57 1.58 ± 0.00 1.19 ± 0.15 1.44 ± 0.19 5.18 ± 0.13 2.01 ± 0.09 9.88 ± 0.24 9.44 ± 0.31 0.63 ± 0.01

Swin-B 12.03 5.82 ± 0.05 1.53 ± 0.00 3.05 ± 0.01 2.58 ± 0.21 6.92 ± 0.18 2.53 ± 0.12 5.18 ± 0.17 1.23 ± 0.04
ViT-B-16 8.28 5.24 ± 0.01 1.27 ± 0.05 2.76 ± 0.10 1.71 ± 0.22 5.95 ± 0.15 1.96 ± 0.14 5.37 ± 0.20 1.06 ± 0.02
ViT-B-32 7.69 5.10 ± 0.00 1.07 ± 0.08 2.97 ± 0.24 1.43 ± 0.24 6.40 ± 0.16 1.55 ± 0.11 5.50 ± 0.18 0.96 ± 0.01

ImageNet-LT

ResNet-50 3.63 2.01 ± 0.02 0.99 ± 0.32 2.17 ± 0.68 0.56 ± 0.10 2.20 ± 0.17 1.12 ± 0.20 1.80 ± 0.23 0.56 ± 0.04
DenseNet-121 2.50 1.80 ± 0.06 1.20 ± 0.26 1.88 ± 0.41 0.79 ± 0.07 2.05 ± 0.11 1.79 ± 0.09 1.76 ± 0.50 0.81 ± 0.01
Wide-ResNet 5.40 2.99 ± 0.05 1.21 ± 0.77 2.87 ± 1.79 0.81 ± 0.24 3.59 ± 0.18 1.28 ± 0.06 1.68 ± 0.10 0.53 ± 0.02

Swin-B 4.69 3.98 ± 0.12 1.21 ± 0.45 1.50 ± 0.56 0.79 ± 0.17 4.79 ± 0.27 0.95 ± 0.16 4.82 ± 0.10 0.58 ± 0.01
ViT-B-16 5.58 3.73 ± 0.13 1.14 ± 0.47 1.43 ± 0.58 0.66 ± 0.05 4.34 ± 0.14 0.77 ± 0.14 5.72 ± 0.08 0.56 ± 0.14
ViT-B-32 6.28 3.98 ± 0.06 1.35 ± 0.41 2.12 ± 0.63 0.72 ± 0.23 4.76 ± 0.08 0.83 ± 0.12 6.26 ± 0.03 0.60 ± 0.11

ImageNet-S

ResNet-50 22.32 2.06 ± 0.06 1.69 ± 0.27 1.48 ± 0.23 9.76 ± 0.22 1.99 ± 0.16 9.52 ± 0.31 12.58 ± 1.35 0.92 ± 0.09
DenseNet-121 20.13 1.67 ± 0.28 1.93 ± 0.19 1.16 ± 0.11 9.20 ± 0.32 1.77 ± 0.15 12.93 ± 0.23 22.67 ± 1.07 0.59 ± 0.25

Swin-B 24.61 6.50 ± 0.05 1.53 ± 0.19 3.62 ± 0.45 8.66 ± 0.15 6.92 ± 0.35 8.05 ± 0.30 1.70 ± 0.06 1.26 ± 0.05
ViT-B-16 16.57 5.75 ± 0.08 1.33 ± 0.21 2.84 ± 0.43 5.70 ± 0.19 6.36 ± 0.29 5.67 ± 0.38 1.93 ± 0.18 0.98 ± 0.08
ViT-B-32 14.22 4.99 ± 0.15 1.67 ± 0.27 3.25 ± 0.50 4.07 ± 0.21 6.23 ± 0.16 4.44 ± 0.23 1.56 ± 0.09 0.87 ± 0.18

F CALIBRATION PERFORMANCE ON OTHER METRICS

F.1 ACCURACY PERFORMANCE

Accuracy Preservation Analysis Table 7 confirms that SMART achieves superior calibration
while perfectly preserving classification accuracy—a fundamental advantage of post-hoc methods.
Unlike CTS, which suffers accuracy drops up to 1.48 percentage points due to class-specific boundary
alterations, or Spline’s variable impacts on transformers, SMART’s design ensures zero accuracy
loss. By operating exclusively on the margin rather than full logit vectors, SMART focuses solely
on confidence scaling without disturbing the relative ordering that determines predictions. This
preservation holds even under severe distribution shifts like ImageNet-C and ImageNet-Sketch, where
SMART simultaneously maintains base model accuracy while dramatically improving calibration.
This dual guarantee makes SMART uniquely suitable for safety-critical applications requiring both
correct predictions and reliable uncertainty estimates.

F.2 ADAECE PERFORMANCE

This section provides an in-depth analysis of calibration performance using AdaECE across different
datasets and model architectures, complementing the results presented in Section 4.2. Adaptive-ECE
is a measure of calibration performance that addresses the bias of equal-width binning scheme of
ECE. It adapts the bin-size to the number of samples and ensures that each bin is evenly distributed
with samples. The formula for Adaptive-ECE is as follows:

Adaptive-ECE =

B∑
i=1

|Bi|
N
|Ii − Ci| s.t. ∀i, j · |Bi| = |Bj | (34)

AdaECE offers a more rigorous assessment of calibration quality than standard ECE by adapting bin
boundaries to ensure uniform sample distribution, preventing calibration errors from being masked in
sparsely populated confidence regions. Table 8 presents comprehensive AdaECE results across all
evaluated datasets and architectures. SMART consistently outperforms competing methods under
this metric, achieving the lowest AdaECE on 24 of 26 dataset-architecture combinations.
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Table 7: Comparison of Classification Accuracy (%) Across Calibration Methods (Seed 1–5
Averaged).

Dataset Model Vanilla TS PTS CTS Spline SMART

CIFAR-10 ResNet-50 95.05% 95.05% 95.05% 94.88% 95.05% 95.05%
Wide-ResNet 96.13% 96.13% 96.13% 96.09% 96.13% 96.13%

CIFAR-100 ResNet-50 76.69% 76.69% 76.69% 76.38% 76.69% 76.69%
Wide-ResNet 79.29% 79.29% 79.29% 79.28% 79.29% 79.29%

ImageNet-1K

ResNet-50 76.16% 76.16% 76.16% 75.32% 76.17% 76.16%
DenseNet-121 74.44% 74.44% 74.44% 73.71% 74.43% 74.44%
Wide-ResNet 78.46% 78.46% 78.46% 77.70% 78.46% 78.46%

Swin-B 83.17% 83.17% 83.17% 82.80% 83.17% 83.17%
ViT-B-16 81.12% 81.12% 81.12% 79.64% 80.86% 81.12%
ViT-B-32 75.95% 75.95% 75.95% 75.14% 75.94% 75.95%

ImageNet-C

ResNet-50 19.16% 19.16% 19.16% 19.34% 19.16% 19.16%
DenseNet-121 21.25% 21.25% 21.25% 21.36% 40.83% 21.25%

Swin-B 40.83% 40.83% 40.83% 41.22% 40.83% 40.83%
ViT-B-16 41.07% 41.07% 41.07% 41.28% 41.07% 41.07%
ViT-B-32 37.82% 37.82% 24.56% 37.96% 37.85% 37.82%

ImageNet-LT

ResNet-50 76.04% 76.04% 76.04% 75.43% 76.04% 76.04%
DenseNet-121 74.34% 74.34% 74.34% 73.88% 74.40% 74.34%
Wide-ResNet 78.39% 78.39% 78.39% 77.67% 78.40% 78.39%

Swin-B 82.95% 82.95% 82.95% 82.55% 82.94% 82.95%
ViT-B-16 80.95% 80.95% 80.95% 80.58% 81.00% 80.95%
ViT-B-32 75.89% 75.89% 75.89% 75.14% 75.92% 75.89%

ImageNet-S

ResNet-50 24.09% 24.09% 24.09% 23.88% 24.09% 24.09%
DenseNet-121 24.30% 24.30% 24.30% 23.87% 31.55% 24.30%

Swin-B 31.54% 31.54% 31.54% 31.65% 31.55% 31.54%
ViT-B-16 29.37% 29.37% 29.37% 29.51% 29.39% 29.37%
ViT-B-32 27.77% 27.77% 27.77% 27.76% 27.75% 27.77%

Table 8: Comparison of AdaECE Calibration Methods Using AdaECE(↓, %, 15bins) Across
Various Datasets and Models (Seed 1–5 Averaged).

Dataset Model Vanilla TS PTS CTS Spline SMART

CIFAR-10 ResNet-50 4.33 ± 0.0% 2.14 ± 0.0% 0.83 ± 28.6% 1.56 ± 26.2% 2.14 ± 1.1% 0.99 ± 4.3%
Wide-ResNet 3.24 ± 0.0% 1.71 ± 0.0% 0.89 ± 21.9% 1.47 ± 19.7% 2.30 ± 0.4% 0.50 ± 12.2%

CIFAR-100 ResNet-50 17.53 ± 0.0% 5.66 ± 0.0% 1.91 ± 35.3% 3.43 ± 32.0% 3.55 ± 0.0% 2.27 ± 25.2%
Wide-ResNet 15.34 ± 0.0% 4.41 ± 0.0% 1.69 ± 13.0% 2.95 ± 11.6% 3.95 ± 0.1% 1.83 ± 2.1%

ImageNet-1K

ResNet-50 3.68 ± 1.3% 2.13 ± 0.5% 0.92 ± 44.1% 2.21 ± 39.8% 0.81 ± 28.7% 0.79 ± 8.7%
DenseNet-121 2.52 ± 1.4% 1.74 ± 1.8% 1.05 ± 41.3% 1.78 ± 38.0% 0.77 ± 28.0% 0.65 ± 10.2%
Wide-ResNet 5.31 ± 0.3% 2.87 ± 2.8% 1.04 ± 20.6% 3.24 ± 18.0% 0.83 ± 36.3% 0.87 ± 14.3%

Swin-B 4.86 ± 0.6% 4.50 ± 1.0% 1.05 ± 4.6% 1.59 ± 5.1% 1.04 ± 5.3% 0.74 ± 12.2%
ViT-B-16 5.57 ± 1.2% 4.10 ± 2.3% 1.09 ± 29.7% 4.85 ± 27.4% 1.07 ± 29.2% 0.79 ± 15.4%
ViT-B-32 6.41 ± 0.4% 3.92 ± 1.7% 1.27 ± 71.9% 1.90 ± 66.4% 0.96 ± 15.3% 0.78 ± 3.6%

ImageNet-C

ResNet-50 13.84 ± 0.2% 2.02 ± 1.7% 1.06 ± 0.7% 1.76 ± 0.6% 5.49 ± 2.8% 0.74 ± 8.0%
DenseNet-121 12.57 ± 0.1% 1.64 ± 0.7% 1.17 ± 9.9% 1.48 ± 8.2% 2.57 ± 7.9% 0.70 ± 3.6%

Swin-B 11.98 ± 0.1% 5.83 ± 1.0% 1.58 ± 0.0% 3.07 ± 0.2% 5.13 ± 2.3% 1.31 ± 2.9%
ViT-B-16 8.24 ± 0.3% 5.25 ± 0.9% 1.27 ± 5.9% 2.77 ± 5.3% 2.57 ± 7.9% 1.09 ± 4.0%
ViT-B-32 7.66 ± 0.2% 5.11 ± 0.0% 1.07 ± 4.3% 2.97 ± 3.7% 1.45 ± 16.8% 1.01 ± 4.2%

ImageNet-LT

ResNet-50 3.54 ± 0.9% 2.02 ± 1.2% 0.92 ± 35.5% 2.17 ± 33.0% 0.71 ± 20.7% 0.67 ± 3.3%
DenseNet-121 2.37 ± 3.4% 1.74 ± 2.1% 1.17 ± 23.6% 1.86 ± 21.3% 0.73 ± 26.4% 0.76 ± 0.7%
Wide-ResNet 5.22 ± 0.4% 2.98 ± 0.9% 1.22 ± 62.4% 2.83 ± 58.1% 0.79 ± 18.1% 0.98 ± 4.4%

Swin-B 4.69 ± 0.6% 4.48 ± 1.2% 1.43 ± 19.1% 1.23 ± 18.0% 0.95 ± 6.7% 0.74 ± 31.3%
ViT-B-16 5.57 ± 0.8% 4.18 ± 2.9% 1.13 ± 43.4% 1.06 ± 40.1% 0.95 ± 12.9% 0.85 ± 15.1%
ViT-B-32 6.26 ± 0.6% 3.97 ± 1.6% 1.30 ± 31.1% 2.04 ± 28.2% 0.86 ± 26.5% 0.84 ± 10.1%

ImageNet-S

ResNet-50 22.31 ± 0.3% 2.01 ± 2.9% 1.64 ± 16.4% 1.51 ± 14.7% 9.51 ± 2.4% 0.90 ± 15.8%
DenseNet-121 20.15 ± 0.5% 1.67 ± 17.0% 1.93 ± 9.6% 1.16 ± 8.3% 8.7 ± 1.92% 0.76 ± 32.3%

Swin-B 24.62 ± 0.0% 6.40 ± 0.5% 1.53 ± 12.2% 3.57 ± 11.1% 9.06 ± 4.2% 1.53 ± 3.8%
ViT-B-16 16.57 ± 0.2% 5.62 ± 0.7% 1.33 ± 8.7% 2.98 ± 7.3% 8.66 ± 1.9% 1.08 ± 4.3%
ViT-B-32 14.19 ± 0.3% 4.98 ± 2.9% 1.66 ± 16.0% 3.23 ± 14.1% 5.64 ± 3.3% 1.07 ± 19.9%

CIFAR Performance Analysis. SMART demonstrates exceptional calibration on CIFAR datasets
in Figure 6, achieving the lowest AdaECE with notably stable variance compared to competitors. The
key insight emerges when comparing CIFAR-10 to CIFAR-100: while global methods like TS suffer
dramatic degradation as class count increases, SMART maintains robust performance. PTS shows
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Figure 6: AdaECE comparison on CIFAR datasets. SMART consistently achieves superior
calibration on both CIFAR-10 and CIFAR-100 across multiple architectures. From left to right are
Cifar10 ResNet-50/Wide-ResNet, Cifar100 ResNet-50/Wide-ResNet.

competitive results but with substantially higher variance, indicating reliability issues. Spline struggles
particularly with CIFAR-100’s complex confidence landscape, revealing how non-parametric methods
become less effective as classification complexity increases.

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

2.0

Ad
aE

CE

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

1.0

2.0

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

2.0

4.0

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

2.0

4.0

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

2.5

5.0

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

2.5

5.0

Figure 7: AdaECE(↓, %, 15bins) comparison on ImageNet-1K. SMART delivers consistent
calibration across diverse architectures, from CNNs to vision transformers. From left to right are
ResNet-50, DenseNet-121, Wide-ResNet, Swin-B, ViT-B-16, ViT-B-32.

Large-Scale Classification on ImageNet. In Figure 7, The ImageNet results reveal a crucial
architectural insight: SMART maintains consistent performance across both CNN and transformer
designs, while traditional methods like TS and CTS show pronounced degradation on transformers.
This architectural robustness highlights SMART’s ability to capture fundamental uncertainty signals
through the margin regardless of model inductive biases. PTS exhibits extreme variance, confirming
that high-dimensional parameterizations struggle with reliability when learning complex temperature
mappings, particularly on large-scale datasets.
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Figure 8: AdaECE(↓, %, 15bins) comparison on ImageNet-C. SMART maintains exceptional
calibration under corruption, while Spline and TS-based methods demonstrate significant degradation.
From left to right are ResNet-50, DenseNet-121, Swin-B, ViT-B-16, ViT-B-32.

Robustness to Input Corruption. As shown in Figure 8, SMART’s resilience under corruption
provides compelling evidence for the stability of decision boundary information. While Spline
performs competitively on clean ImageNet, it deteriorates dramatically under corruption with values
5-7× higher than SMART. This collapse reveals a fundamental limitation: non-parametric methods
overfit to validation distributions and fail when input characteristics change. SMART’s focus on
decision boundary uncertainty via the margin remains informative even when input distributions shift
substantially.

Long-Tailed Distribution Calibration. As shown in Figure 9, The ImageNet-LT results reveal
that class imbalance presents a fundamentally different calibration challenge than input corruption.
Interestingly, Spline performs competitively here, suggesting non-parametric methods can handle
statistical imbalances better than distributional shifts. However, CTS underperforms despite being

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

2.0

Ad
aE

CE

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

1.0

2.0

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

2.0

4.0

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

2.0

4.0

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

2.0

4.0

Va
nill

a TSPT
S
CTS
Sp

line
SM

ART
0.0

2.5

5.0

Figure 9: AdaECE(↓, %, 15bins) comparison on ImageNet-LT. SMART maintains strong calibra-
tion under long-tailed class distributions, particularly on CNN architectures. From left to right are
ResNet-50, DenseNet-121, Wide-ResNet, Swin-B, ViT-B-16, ViT-B-32.

explicitly designed for per-class variations, demonstrating that simply applying different temperatures
per class is insufficient for complex imbalanced scenarios.
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Figure 10: AdaECE(↓, %, 15bins) comparison on ImageNet-Sketch. SMART maintains excep-
tional calibration under extreme domain shift, while Spline struggles significantly. From left to right
are ResNet-50, DenseNet-121, Swin-B, ViT-B-16, ViT-B-32.

Extreme Domain Shift Calibration. The sketch-based domain shift represents the most challeng-
ing calibration scenario in Figure 10 , where SMART demonstrates its most dramatic advantage.
Spline’s collapse here reinforces the brittleness of non-parametric methods under distribution shifts,
while SMART’s consistent performance across all architectures provides strong evidence that mar-
gin information captures robust uncertainty signals that transcend specific input characteristics or
domains.

G COMPARISON OF VARIOUS TRAINING-TIME CALIBRATION METHODS ON
OTHER METRICS

This section presents a comprehensive evaluation of SMART when combined with various training-
time calibration methods across multiple metrics, extending the ECE analysis provided in Sec-
tion 4.3. We examine SMART’s performance using AdaECE, Classwise ECE (CECE), Negative
Log-Likelihood (NLL), and classification accuracy.

G.1 ACCURACY PRESERVATION

Dataset Model NLL Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours

CIFAR10

ResNet-50 95.1 95.1 95.0 95.0 95.0 95.0 94.7 94.7 95.0 95.0 94.8 94.8
ResNet-110 95.1 95.1 94.5 94.5 94.6 94.6 94.5 94.5 94.6 94.6 94.9 94.9

DenseNet-121 95.0 95.0 94.9 94.9 94.6 94.6 94.9 94.9 94.6 94.6 94.7 94.7
Wide-ResNet 96.1 96.1 95.9 95.9 96.1 96.1 95.8 95.8 96.0 96.0 95.9 95.9

CIFAR100

ResNet-50 76.7 76.7 76.6 76.6 76.8 76.8 76.6 76.6 76.8 76.8 77.3 77.3
ResNet-110 77.3 77.3 74.9 74.9 76.9 76.9 76.6 76.6 77.5 77.5 77.1 77.1

DenseNet-121 75.5 75.5 76.3 76.3 76.0 76.0 75.9 75.9 77.3 77.3 76.8 76.8
Wide-ResNet 79.3 79.3 79.4 79.4 79.3 79.3 78.8 78.8 79.9 79.9 80.3 80.3

Table 9: Comparison of Train-time Calibration Methods Using Accuracy(↑, %) Across Various
Datasets and Models. Results demonstrate that SMART preserves the original model accuracy
across all training methods. Results are from the best run of 5 seeds.

Accuracy Analysis As shown in Table 9, SMART consistently preserves the classification accuracy
of all base models across all training-time calibration methods. This is a critical property of post-hoc
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calibration methods, as improving confidence estimates should not come at the cost of predictive
performance. The perfect accuracy preservation is by design, as SMART’s temperature scaling
mechanism operates solely on the scaling of logits without altering their relative ordering, thus
maintaining the same class predictions. This contrasts with some training-time methods that may
involve trade-offs between accuracy and calibration quality during the model optimization process.
The preservation of accuracy across diverse architectures and datasets further validates SMART’s
practical utility as a calibration method that can be safely applied in real-world scenarios where
maintaining predictive performance is essential.

G.2 ADAECE PERFORMANCE

Dataset Model NLL Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours

CIFAR10

ResNet-50 4.33 0.80 1.74 1.01 4.55 0.67 3.88 2.18 1.56 0.45 1.95 0.48
ResNet-110 4.40 1.22 2.61 0.56 5.07 0.93 4.46 3.66 2.07 0.40 1.64 0.52

DenseNet-121 4.49 0.61 2.01 0.51 5.10 0.96 4.40 2.95 1.38 0.62 1.23 0.83
Wide-ResNet 3.24 0.44 1.70 0.44 3.29 0.53 4.27 0.97 1.52 0.44 1.84 0.59

CIFAR100

ResNet-50 17.53 1.00 6.54 1.41 15.31 1.08 7.63 1.75 4.40 1.35 5.08 0.95
ResNet-110 19.06 1.67 7.73 0.93 19.13 1.98 11.07 2.72 8.54 0.93 8.65 1.22

DenseNet-121 20.99 2.23 5.04 1.02 19.10 1.73 12.83 1.96 3.54 0.93 4.14 0.97
Wide-ResNet 15.34 1.55 4.28 0.97 13.16 1.12 5.13 2.11 2.77 0.75 2.07 1.15

Table 10: Comparison of Train-time Calibration Methods Using AdaECE(↓, %, 15bins) Across
Various Datasets and Models. The best-performing method for each dataset-model combination is
in bold, and our method (SMART) is highlighted. Results are from the best run of 5 seeds.

AdaECE Analysis The adaptive ECE results in Table 10 provide further validation of SMART’s
effectiveness when combined with various training-time calibration methods. AdaECE, which uses
adaptive binning to ensure equal sample counts in each bin, offers a more robust calibration measure
than standard ECE by eliminating potential biases from uneven confidence distributions. SMART
consistently improves AdaECE across all training methods, with particularly dramatic improvements
for models trained with NLL and MMCE, where we observe reductions of up to 18× (17.53% →
1.00% for CIFAR-100 ResNet-50).

The most substantial AdaECE improvements occur on CIFAR-100, which has ten times more classes
than CIFAR-10 and thus represents a more challenging calibration scenario. This suggests that
SMART’s effectiveness scales favorably with task complexity. Even for models already trained
with calibration-oriented objectives like Focal Loss or FLSD, SMART provides further substantial
improvements, indicating that its margin-based temperature adjustment captures complementary
information to these training-time approaches. Notably, the combination of SMART with FLSD-
53 achieves some of the lowest overall AdaECE values (e.g., 0.40% on CIFAR-10 ResNet-110),
suggesting a particularly effective synergy between these methods.

G.3 CLASSWISE ECE PERFORMANCE

Dataset Model NLL Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours

CIFAR10

ResNet-50 0.91 0.43 0.46 0.40 0.94 0.51 0.71 0.51 0.42 0.37 0.43 0.38
ResNet-110 0.92 0.49 0.59 0.45 1.04 0.54 0.66 0.54 0.47 0.41 0.44 0.38

DenseNet-121 0.92 0.45 0.46 0.41 1.04 0.59 0.60 0.50 0.41 0.38 0.42 0.35
Wide-ResNet 0.68 0.37 0.44 0.39 0.70 0.38 0.79 0.40 0.41 0.29 0.44 0.34

CIFAR100

ResNet-50 0.38 0.21 0.22 0.20 0.34 0.20 0.23 0.21 0.20 0.20 0.20 0.20
ResNet-110 0.41 0.20 0.24 0.21 0.42 0.21 0.26 0.20 0.24 0.20 0.24 0.21

DenseNet-121 0.45 0.23 0.20 0.20 0.42 0.23 0.29 0.21 0.19 0.20 0.20 0.20
Wide-ResNet 0.34 0.19 0.19 0.19 0.30 0.19 0.21 0.20 0.18 0.18 0.18 0.18

Table 11: Comparison of Train-time Calibration Methods Using Classwise ECE(↓, %, 15bins)
Across Various Datasets and Models. The best-performing method for each dataset-model combi-
nation is in bold, and our method (SMART) is highlighted. Results are from the best run of 5 seeds.
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CECE Analysis Classwise ECE (CECE) provides insights into calibration performance at the
individual class level rather than aggregated across all classes. The formula for classwise ECE is:

Classwise-ECE =
1

K

B∑
i=1

K∑
j=1

|Bi,j |
N
|Ii,j − Ci,j | (35)

where the calibration error is computed separately for each class j across all bins i, then averaged
across all K classes. This metric is particularly valuable for understanding whether calibration
improvements are uniformly distributed across classes or concentrated in specific categories.

Table 11 demonstrates SMART’s ability to improve per-class calibration across almost all training
methods and architectures. The improvements are particularly prominent for models trained with
NLL and MMCE, where CECE values are typically reduced by 50% or more after applying SMART
(e.g., from 0.91% to 0.43% for CIFAR-10 ResNet-50). This substantial improvement suggests
that SMART’s margin-based temperature scaling effectively addresses class-specific miscalibration
patterns that may arise during training with these standard objectives.

Interestingly, CECE values are consistently lower on CIFAR-100 compared to CIFAR-10 despite the
higher class count, which contrasts with the pattern observed for ECE and AdaECE. This phenomenon
occurs because CECE averages calibration errors across classes, and with 100 classes, individual
class miscalibrations tend to average out more effectively than with only 10 classes. Additionally, the
higher granularity of class divisions in CIFAR-100 may lead to more balanced per-class confidence
distributions, making the averaging effect more pronounced.

For models already trained with calibration-oriented losses like FLSD-53 and FL-3, SMART provides
more modest improvements in CECE, and in a few cases maintains the same level of performance.
This suggests that these training-time methods are already effective at addressing per-class calibration
issues through their specialized loss formulations that inherently consider class-wise balance. How-
ever, SMART can still provide complementary benefits in most scenarios, particularly for classes that
may remain poorly calibrated even after specialized training procedures.

G.4 NEGATIVE LOG-LIKELIHOOD PERFORMANCE

Dataset Model NLL Brier Loss MMCE LS-0.05 FLSD-53 FL-3
Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

CIFAR-10

ResNet-50 41.2 19.7 18.7 18.4 44.8 21.0 27.7 27.7 17.6 17.1 18.4 17.9
ResNet-110 47.5 22.5 20.4 19.4 55.7 23.6 29.9 29.4 18.5 17.9 17.8 17.3

DenseNet-121 42.9 20.8 19.1 18.6 52.1 24.1 28.7 28.7 18.4 18.1 18.0 17.9
Wide-ResNet 26.8 14.9 15.9 15.4 28.5 15.9 21.7 19.9 14.6 13.7 15.2 14.9

CIFAR-100

ResNet-50 153.7 105.3 99.6 99.5 125.3 100.7 121.0 120.1 88.0 88.4 87.5 88.1
ResNet-110 179.2 104.0 110.7 110.0 180.6 106.1 133.1 128.8 89.9 88.3 90.9 90.0

DenseNet-121 205.6 119.1 98.3 98.9 166.6 112.6 142.0 134.3 85.5 86.5 87.1 87.3
Wide-ResNet 140.1 95.2 84.6 84.9 119.6 94.1 108.1 106.5 76.9 77.4 74.7 75.8

Table 12: Comparison of Train-time Calibration Methods Using NLL(↓, %) Across Various
Datasets and Models. The best-performing method for each dataset-model combination is in bold,
and our method (SMART) is highlighted. Results are from the best run of 5 seeds.

NLL Analysis NLL is a probabilistic metric that measures both calibration quality and discrimina-
tive power. Table 12 shows that SMART improves NLL for most models, with the most significant
gains observed for NLL, MMCE, and LS-0.05 trained models. The improvements are particularly
striking for CIFAR-10, where NLL is reduced by up to 60% after applying SMART (e.g., 41.22 →
19.70 for ResNet-50 with NLL).

However, a different pattern emerges for models trained with specialized losses like FLSD-53 and FL-
3 on CIFAR-100, where SMART sometimes leads to slight increases in NLL despite improvements
in calibration metrics like ECE and AdaECE. This suggests that these specialized training losses
optimize directly for NLL-like objectives, creating a scenario where SMART’s temperature scaling
might slightly disturb the carefully optimized probability distributions. Nevertheless, the overall trend
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across metrics indicates that SMART maintains or improves model performance in the vast majority
of cases.

H CALIBRATION PERFORMANCE UNDER SPECIFIC CORRUPTION TYPES

To provide deeper insights into SMART’s robustness across different corruption scenarios, we
examine the calibration error reduction achieved by various methods on individual corruption types
in ImageNet-C. We analyze performance across two architectures (ResNet-50 and ViT-B/16) and two
metrics (ECE and AdaECE), providing a comprehensive view of how different calibration approaches
respond to specific distribution shifts. This granular analysis helps understand which corruption
types pose the greatest calibration challenges and how architectural differences influence calibration
robustness.
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Figure 11: ECE reduction(↑, %, 15bins) across corruption types for ResNet-50. SMART consis-
tently achieves superior calibration improvements across diverse corruption scenarios, demonstrating
exceptional robustness to distribution shifts.

ResNet-50 ECE Analysis The corruption-specific analysis reveals that SMART demonstrates
remarkable consistency, achieving the highest ECE reduction across most corruption categories with
improvements often exceeding 20%. The inclusion of Spline calibration exposes a critical limitation
of non-parametric methods: extreme brittleness under distribution shifts. While Spline achieves
competitive results on certain corruptions like Snow, it completely fails on others such as Brightness
and Contrast, highlighting how non-parametric approaches overfit to validation characteristics and
break down when faced with novel corruptions.

This contrasts sharply with SMART’s robust performance across all corruption types. The key
insight is that SMART’s margin indicator captures decision boundary information that remains
meaningful regardless of input degradation type—whether geometric distortions, noise, or digital
artifacts. Temperature Scaling and other global methods show predictable limitations on uniform
corruptions, while parametric methods like PTS exhibit moderate consistency but still significant
variability. SMART’s sample-specific adaptation based on decision boundary information provides
the most reliable calibration improvements, making it uniquely suitable for real-world scenarios
where corruption characteristics are unpredictable.

ResNet-50 AdaECE Analysis The AdaECE results closely mirror the ECE patterns, confirming
that SMART’s calibration improvements are fundamental rather than evaluation artifacts. SMART
achieves the highest reduction rates across most corruptions, with particularly strong performance on
geometric distortions approaching 25% improvement. Spline’s brittleness persists under adaptive
binning—performing reasonably on weather corruptions but failing on uniform transforms, confirming
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Figure 12: AdaECE reduction(↑, %, 15bins) across corruption types for ResNet-50. SMART
maintains consistent superiority across corruption types under adaptive binning, confirming robust
calibration improvements independent of evaluation methodology.

that its limitations stem from overfitting rather than evaluation methodology. The near-identical
performance rankings across both metrics demonstrate that SMART’s margin approach captures
robust calibration signals regardless of how calibration quality is measured.
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Figure 13: ECE reduction(↑, %, 15bins) across corruption types for ViT-B/16. Transformer
architectures exhibit distinct calibration challenges under corruption, with global methods often
failing while SMART maintains consistent improvements.

ViT-B/16 ECE Analysis The transformer results reveal striking architectural differences in calibra-
tion behavior under corruption. Most notably, Temperature Scaling frequently worsens calibration,
showing negative improvements on multiple corruption types including Shot Noise, Speckle Noise,
Snow, Brightness, Pixelate, Jpeg Compression, Saturate and Spatter. This demonstrates that trans-
formers’ attention mechanisms and different inductive biases make them fundamentally incompatible
with global temperature adjustments under distribution shifts.

SMART maintains consistent positive improvements across all corruption types, though generally
more modest than with ResNet-50. This architectural difference suggests that while transformers
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are inherently better calibrated, they also present unique challenges that require more sophisticated
approaches than global scaling. The convergence of all methods on Fog corruption (around 25%
improvement) indicates that certain atmospheric corruptions create calibration conditions where
architectural differences become less relevant.

A key insight emerges: the margin’s decision boundary information remains meaningful across
architectures, while global statistics become unreliable for transformers under corruption. PTS
and CTS show more consistent improvements than TS, but SMART’s sample-specific adaptation
consistently outperforms all alternatives, confirming its architectural robustness.
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Figure 14: AdaECE reduction(↑, %, 15bins) across corruption types for ViT-B/16. Transformer
calibration patterns remain consistent under adaptive binning, confirming architectural-specific
calibration challenges and SMART’s robustness.

ViT-B/16 AdaECE Analysis The AdaECE results closely replicate the ECE patterns, confirming
that transformer calibration behaviors are fundamental architectural characteristics rather than evalua-
tion artifacts. Temperature Scaling’s negative performance persists under adaptive binning, while
SMART maintains consistent positive improvements across all corruption types. This metric indepen-
dence demonstrates that SMART’s margin approach captures robust decision boundary information
that remains effective regardless of how calibration quality is measured.

I MARGIN PERSPECTIVE ON CALIBRATION

Traditional calibration analysis evaluates models from an overall perspective, potentially masking
important sample-specific miscalibration patterns. By examining calibration behaviour across margin
values, we uncover fundamental insights about how neural networks distribute confidence and validate
our method visually.

Figure 15 demonstrates heterogeneity across margin groups. For ImageNet with ViT-B/16, whilst
overall calibration appears near-perfect (Figure 15a), decomposing by margin reveals distinct pat-
terns: low margin samples achieve good calibration (Figure 15c), whilst high margin samples show
systematic under-confidence (Figure 15b). This pattern persists across different conditions, as shown
in CIFAR-100 with ResNet-50 (Figures 15d and 15e), indicating that margin-based groupings re-
veal fundamental calibration characteristics transcending dataset-specific or architecture-specific
behaviors.

The Under-Confidence Paradox in High Margin Samples Perhaps the most counterintuitive
finding emerges from examining high margin samples. Despite representing easy classifications with
substantial separation between top predictions, these samples consistently exhibit under-confidence
rather than expected over-confidence. High margin samples from ImageNet ViT-B/16 show systematic
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(a) Overall calibration for ImgNet
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(b) High margin samples
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(c) Low margin samples
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(d) Overall calibration for Cifar-100
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(e) High margin samples Cifar-100
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(f) Margin vs. confidence change

Figure 15: Margin reveals hidden calibration patterns across the confidence spectrum. ImageNet
ViT-B/16 shows near-perfect overall calibration (a) but reveals systematic under-confidence in high
margin samples (b) and well-calibrated low margin samples (c). CIFAR-100 ResNet-50 demonstrates
that even with overall over-confidence (d), high margin samples remain under-confident (e). Panel (f)
shows SMART provides targeted adjustments whilst TS and PTS show suboptimal patterns.

under-confidence, with predicted confidence consistently lower than empirical accuracy (Figure 15b).
This pattern persists even when overall model behaviour differs dramatically, as CIFAR-100 ResNet-
50 maintains under-confidence in high margin samples despite overall over-confidence (Figure 15e).

Method-Specific Failures from the Margin Perspective The confidence adjustment patterns in
Figure 15f expose fundamental limitations in existing approaches. Temperature Scaling’s uniform
adjustment completely ignores heterogeneous calibration needs across margin groups, applying
identical modifications regardless of sample characteristics. More critically, PTS makes substantial
adjustments to low margin samples that already achieve good calibration and require minimal
intervention. This unnecessary manipulation exemplifies how increased dimensionality introduces
noise for precise temperature parameterisation. In contrast, SMART provides minimal adjustments to
low margin samples that are already well-calibrated, whilst delivering targeted confidence increases
to high margin samples suffering from under-confidence. This adaptive behavior emerges naturally
from our lightweight margin-to-temperature mapping, demonstrating how principled architectural
choices translate into appropriate calibration strategies.

I.1 SENSITIVITY TO HYPERPARAMETERS λ AND δ

We examine the sensitivity of SMART’s performance to the bandwidth parameter λ and Charbonnier
smoothing parameter δ in Equation equation 6. Tables 13 and 14 report ECE (15 bins) on ImageNet
for ResNet-50 and ViT-B/16 across different (λ, δ) combinations.

The results demonstrate that performance remains stable within a reasonable range of values. For
λ ∈ {0.01, 0.05, 0.10}, ECE varies by less than 0.2% across different δ choices, indicating robustness
to the Charbonnier smoothing parameter. Larger values (λ ≥ 0.50) lead to degraded performance
due to over-localization of kernel weights, creating high variance in calibration estimates. Our choice
of λ = 0.05 and δ = 0.001 (highlighted rows) provides consistent performance across both CNN
and transformer architectures, though the method is not particularly sensitive to δ within the range
[0.001, 0.100] when λ is appropriately chosen.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 13: ECE (%, ↓, 15 bins) on ImageNet ResNet-50 for different (λ, δ) combinations.

λ\δ 0.001 0.010 0.100 1.000

0.01 0.66 0.83 1.02 0.67
0.05 0.61 0.66 0.67 0.66
0.10 0.66 3.11 0.71 0.72
0.50 0.85 0.95 1.29 1.26
1.00 0.79 1.15 2.49 2.51

Table 14: ECE (%, ↓, 15 bins) on ImageNet ViT-B/16 for different (λ, δ) combinations.

λ\δ 0.001 0.010 0.100 1.000

0.01 1.32 0.84 0.78 0.85
0.05 0.84 0.80 0.89 0.86
0.10 0.99 0.97 0.81 2.26
0.50 2.09 2.02 2.06 2.05
1.00 2.04 2.48 2.56 2.56

J ADDITIONAL ANALYSIS OF THE MARGIN–TEMPERATURE RELATIONSHIP

Figure 16 illustrates that the learned margin–temperature mapping is not constrained to be monotonic.
For ImageNet ResNet-50, the mapping closely follows an increasing linear trend: samples with
larger logit margins receive higher temperatures (softer probabilities), while low-margin samples are
assigned temperatures closer to one. In contrast, on ImageNet with ViT-B/16 the mapping is clearly
non-monotonic, with an approximately U-shaped dependence on the margin. This behavior indicates
that the relationship between margin and miscalibration is architecture- and dataset-dependent;
SMART adapts to these differences rather than enforcing a fixed monotone form, and understanding
the underlying theoretical reasons is left for future work.
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Figure 16: Empirical margin–temperature relationship learned by Left: ImageNet with a ResNet-50
backbone, where the mapping is approximately linear and monotone increasing (Pearson r = 0.94).
Right: ImageNet with a ViT-B/16 backbone, where the mapping becomes non-monotonic with a
pronounced U-shaped pattern (Pearson r = −0.63 for the best linear fit).
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