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ABSTRACT

Deep neural networks often exhibit overconfidence despite their high accuracy.
Such miscalibration limits reliability in safety-critical domains where trustwor-
thiness are crucial. Post-hoc calibration methods offer a practical solution where
popular approaches like Temperature Scaling (TS) apply a single corrective param-
eter to all samples, failing to address the sample-dependent nature of miscalibration.
While more advanced methods attempt to adapt to sample difficulty, they often
rely on complex and indirectly learned proxies. In this work, we first identify
the logit margin as a direct, simple, and principled indicator of sample hard-
ness. We provide substantial empirical and theoretical evidence that it serves
as a more effective indicator of sample hardness than existing proxies. Mean-
while, we identify a fundamental flaw in current methods that optimizing Negative
Log-Likelihood (NLL) can paradoxically degrade calibration. To resolve this, we
introduce Charbonnier—SoftECE, a novel and theoretically guaranteed objective
that directly minimizes calibration error. Building on these insights, we propose
Sample Margin-Aware Recalibration of Temperature (SMART), a lightweight post-
hoc method that learns a minimalistic sample-wise mapping from the logit margin
to an optimal temperature, guided by our calibration-centric objective. Extensive
experiments show state-of-the-art performance for calibration across diverse archi-
tectures and datasets with a minimal inference-time data consumption. The code is
available at: https://anonymous.4open.science/r/SMART-8B11.

1 INTRODUCTION

Deep neural networks have achieved remarkable success across diverse domains, yet their deploy-
ment in safety-critical applications such as autonomous driving [Feng et al.| (2019) and medical
diagnosis (Chen et al.| (2018)) demands more than just high predictive accuracy. These high-stakes
scenarios require models to provide reliable uncertainty estimates that accurately reflect the true
likelihood of prediction correctness, i.e., calibration |Guo et al.| (2017). A well-calibrated model
ensures informed decision-making and appropriate deferral to human experts when uncertainty is high.
However, current models commonly suffer from severe miscalibration |Guo et al.|(2017), primarily
overconfidence |Guo et al.| (2017); [Wei et al.| (2022); [Luo et al.| (2025)), where models assign high
confidence scores to predictions that are frequently incorrect. The real-world consequences of such
overconfident behavior can be catastrophic, such as wrong diagnostic decisions with high confidence.

To address miscalibration, the research community has developed two primary streams of solutions.
Train-time calibration methods integrate calibration directly into the learning process via specialized
data|[Wang et al.| (2023)); Hendrycks et al.| (2020), training framework [Tao et al.| (2023), regulariza-
tions Miiller et al.[(2019); |Pereyra et al.|(2017)), and designed loss objectives Mukhoti et al.| (2020);
Tao et al.| (2023). However, these methods hardly apply to trained models. In contrast, post-hoc
calibration methods |Zadrozny & Elkan|(2002;|2001) operate easily on large pretrained models. Due
to its simplicity and effectiveness, Temperature Scaling (TS)|Guo et al.[(2017) has become the most
widespread post-hoc method that learns a single scaling value on the validation set.However, this
one-size-fits-all approach is inherently problematic, as miscalibration is not uniform across samples.
To address this, several methods have been proposed to learn separate temperatures per class |[Frenkel
& Goldberger (2021)) or semantic-aware groupings through clustering |Yang et al.|(2024). To facilitete
more fine-grained temperature scaling, sample-adaptive methods propose to operate on distinctive
sample-wise information Ding et al.[(2021); Tomani et al.[(2022).
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Figure 1: Relationship between min perturbation of FGSM [Goodfellow et al.| (2015) and logit margin
on CIFAR-10, with reliability diagrams for various margin groups from left to right.

Xiong et al.|(2024)) calibrate predictions based on sample proximity, assigning larger temperatures to

less proximate samples; (2024) apply larger temperatures to groups that are harder to
distinguish (e.g., birds and airplanes sharing the same background in CIFAR-10); and
exploit feature-space sparsity to adaptively guide temperature. Despite their methodological
differences, these approaches share the same underlying motivation: sample hardness drives cali-
bration. However, they rely on indirectly learned proxies of difficulty. In contrast, we propose a
direct and simple measure—the logit margin, defined as the gap between the largest and second-
largest logits. Empirical results (Figure [Ipb—d) show that larger-margin samples are systematically
easier and more under-confident, even when their confidence levels are identical. Moreover, the
strong correlation between the margin and the minimum perturbation required to reach the decision
boundary under attack (Figure [Th) highlights the margin’s reliability as a hardness indicator. Finally,
our theoretical analysis in Appendix [A.T]demonstrates that the optimal temperature for any target
confidence is tightly bounded by the margin, underscoring its effectiveness as a principled signal of
sample difficulty for post-hoc calibration.

Another limitation inherent in current scaling-based methods is that they focus on optimizing the NLL
loss, which theoretically does not guarantee a reduction in the calibration errors. In fact, as we prove
in Appendix[A23] certain scenarios can lead to a paradoxical outcome where NLL decreases while
ECE simultaneously increases, thereby defeating the primary goal of calibration. To address this
fundamental misalignment, we adopt a novel scaling objective function, Charbonnier—SoftECE. This
new objective directly targets the calibration error. As also established by our theoretical analysis
in Appendix [A-2] optimizing with Charbonnier—SoftECE provably resolves the issue inherent in
the NLL loss, ensuring that the optimization process aligns directly with the goal of improving
calibration.

Building on these validated insights, we introduce Sample Margin-Aware Recalibration of
Temperature (SMART), a lightweight post-hoc calibration method that aims to learn a direct and
minimalistic mapping from logit margins to temperatures: 7'(-) : Rt — R*. Using Charbon-
nier—SoftECE as its learning objective, SMART is theoretically guaranteed to yield superior calibra-
tion. Experiments on various benchmarks and architectures validate the state-of-the-art effectiveness
and efficiency of SMART, even with a minimal validation set.

Contributions Our work is theory-driven and makes three key contributions: we first provide formal
and empirical analysis showing that logit margin is a principled hardness indicator that tightly bounds
the feasible temperature range, outperforming existing proxies with minimal computation; second,
we prove a fundamental mismatch between NLL optimization and calibration quality, and resolve
it through a novel Charbonnier—SoftECE objective that provably upper-bounds smooth calibration
error; finally, building on these theoretical insights, we develop SMART, a lightweight margin-aware
temperature mapping that achieves state-of-the-art calibration on CNNs and ViTs across long-tail and
out-of-distribution datasets, remaining effective with as few as 50 validation samples.

2 RELATED WORK

Post-hoc Methods Post-hoc calibration methods use hold-out validation data to learn calibration
maps without modifying trained classifiers. Non-parametric approaches include Histogram Binning
(HB) (Zadrozny & Elkan| 2001), its Bayesian extension BBQ (Naeini et all, [2013), and Spline
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calibration (Gupta et al.,|2021)), though these often require more validation data and may alter pre-
diction rankings. Parametric methods adjust outputs through predefined functional forms, including
Temperature Scaling (TS) (Guo et al.,|2017), enhanced variants PTS (Tomani et al., 2022)) and CTS
(Frenkel & Goldberger, 2021)), Dirichlet Scaling (Kull et al.,|2019) for multiclass calibration, Group
Calibration (Yang et al., 2024), ProCal (Xiong et al.,[2024) for proximity-based adjustments, and Fea-
ture Clipping (FC) (Tao et al.,2025). Ensemble-based post-hoc methods include data-augmentation
ensembles (Conde et al.| [2023)) and Ensemble-based Temperature Scaling (ETS) (Zhang et al.| [2020)),
though these demand significant computational resources. Conversely, our approach achieves superior
calibration through more efficient means.

Training Methods Training-based calibration methods modify the learning process during model
training to improve calibration, typically incurring higher computational costs. These include
Brier Loss (Brier, [1950), MMCE (Kumar et al., [2018)) with trainable calibration measures, Label
Smoothing (Szegedy et al.,|2016) that regularizes through softened target distributions, and Focal Loss
variants (Mukhoti et al.,[2020; [Tao et al.,2023) addressing calibration through reweighting strategies.
Ensemble-based training approaches include Deep ensembles (Lakshminarayanan et al., 2017)
and dropout-based methods (Gal & Ghahramani, 2016) that leverage stochasticity as approximate
Bayesian inference.

3 METHODOLOGY

We first present preliminaries in Section [3.1} then establish margin as a principled hardness indi-
cator in Section [3.2] We identify fundamental limitations of NLL-based calibration objectives in
Section [3.3] introduce our Charbonnier-SmoothSoftECE objective in Section[3.4] and present the
SMART framework in Section

3.1 PRELIMINARIES

A classification model is calibrated if its predictive confidence matches its actual accuracy. For
classifier fy, input x with true label y, and predicted class ¢, perfect calibration requires P(y = § |
pe(y | x) = p) = p for all confidence values p € [0, 1].

Expected Calibration Error (ECE). For classification model f producing logits z; € R, the

predictive probability for class k is pg(y; = k | x;) = % To quantify calibration error,
j=1€XP(Zi,j

we partition samples into B bins based on predicted confidence, compute average accuracy a; and
confidence p, within each bin b, and measure their difference:

Po — ap

. |
ECE:ZWZ’ , (1)

b=1
where [, is the set of indices in bin b and NN is the total number of samples.

Smooth Calibration Error (smCE). Beyond binned ECE which suffers from discretization artifacts,
we also consider the smooth calibration error (Blasiok et al., 2023)), defined as the worst-case
correlation between the calibration residual and 1-Lipschitz probes of predicted confidence:

smCE(f) := sup |E[(a(X) = p(X))e(p(X))]] )

where H = {¢ : [0,1] — [—1,1] | Lip(p) < 1} is the class of 1-Lipschitz continuous functions,
p(X) denotes the predicted confidence (maximum softmax probability), and a(X) = I{§(X) = y}
is the correctness indicator. This continuous metric avoids binning artifacts and provides theoretical
foundation for our objective design in Section [3.4]

Temperature Scaling. Temperature scaling (TS) (Guo et al., 2017) introduces positive scalar
exp (z7k /T)
i EXP(Zm' /T)
temperature 7' < 1 sharpens the distribution, while larger 7' > 1 flattens it. Vanilla TS finds global

T = arg minyso LNLL(Dyais fo, T) by minimizing NLL on a validation set.

T to adjust logit distribution before softmax: pg r(y; = k | x;) = . Smaller
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Figure 2: Numerical study of temperature adjustment indicators. The left three panels show joint
distributions of solved temperature 7" versus candidate indicators across 1,000 sampled logit vectors.
Right: Test ECE (dashed) and NLL (solid) during SMART training on ImageNet ViT-B/32.

3.2 MARGIN AS A PRINCIPLED HARDNESS INDICATOR

Effective post-hoc calibration requires distinguishing between easy and hard samples to apply
appropriate confidence adjustments. While existing methods (Xiong et al., 2024; Yang et al.| 2024)
recognize this need, they rely on indirectly learned proxies such as feature-space proximity or
semantic clustering. We propose using the logit margin m = 2Zyax — Zond as a direct hardness
indicator, where 2. and zoyg are the largest and second-largest logits.

As demonstrated in Figure[T] samples with different margins exhibit systematically different calibra-
tion patterns even when sharing identical predicted confidence levels. Small-margin samples tend
toward overconfidence while large-margin samples become underconfident, and margin correlates
strongly with adversarial robustness (r = 0.87), confirming it captures proximity to decision bound-
aries. We now establish theoretically why margin provides superior temperature control compared to
alternative indicators.

For a given logit vector z € R’ and target confidence p € (0, 1), the temperature-confidence
Zmax/T
Z%:l err/T
M = argmaxy, zx. Given only zp.x and target p > 1/K, we can construct configurations where all
non-maximum logits equal zy,.x — & for varying ¢ > 0, yielding T' = —§/ log(S/(K — 1)) which
sweeps (0, 00) as 0 varies. Thus maximum logit alone provides no bound on feasible temperatures.

relationship = p can be rearranged as ), AM e(#r=2max)/T = G where S := % — 1land

In contrast, margin provides tight constraints. For any non-maximum class k, we have z < zopg =
Zmax — M, leading to bounds e=™/T < § < (K — 1)e~™/T. Solving for T yields: when p > 1/2,
T € [—oam/ x> —legs) (finite interval); when 1/K < p < 1/2, T € [ 55717, T°°)
(finite lower bound). The interval width decreases as m grows, and for binary classification the
bounds coincide to uniquely determine 7". Complete derivations appear in Appendix [A.1]

Figure [2| (left three panels) validates these results empirically. We sample 1,000 random logit vectors
and numerically solve for temperatures achieving p = 0.8. Margin exhibits clear functional structure
with 7" tightly constrained, while maximum logit and normalized maximum logit display scattered
patterns spanning orders of magnitude. This establishes margin as the optimal scalar indicator for
temperature-based calibration.

3.3 THE NLL-CALIBRATION MISMATCH

Current post-hoc calibration methods optimize negative log-likelihood (NLL) under the assumption
that minimizing NLL improves calibration. We demonstrate this assumption can fail. Figure [2] (right-
most panel) illustrates the phenomenon through a controlled experiment where we train SMART’s
margin-based temperature network on ImageNet ViT-B/32 using NLL as the training objective. While
NLL decreases monotonically throughout 80 epochs, ECE begins increasing after epoch 30, creating
clear divergence between objectives. By epoch 80, NLL has decreased by 15% while ECE has
increased by 8% relative to epoch 30. This shows that following NLL gradients can actively worsen
calibration despite improving likelihood.

We formalize conditions under which NLL and calibration objectives have opposing gradients.
Consider a margin slice G C [Min, Mmax] defining sample region A := {z : m(x) € G} where
m(z) = 2z(1)(z) — 2(2)(x) is the margin between top two logits. We study local temperature scaling
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Figure 3: Post-hoc calibration on ImageNet ViT-B/16: training loss (left) and gradient norm (right)
over training epochs SoftECE, and Charbonnier-SoftECE (ours).

by factor s applied only to samples in A: T(x) = T'(z)/sif z € A and Ts(x) = T'(x) otherwise.
At baseline s = 1, analyzing how objectives change as s varies reveals their directional preferences.

e'k

Define t), := 2z, /T (scaled logit), g = S ot

scaled logit), and rx(X) = P(Y = M ZX ) | X) (pointwise top-class probability). For NLL
L (hs) and calibration functional C[¢)] = E[(a(X)—ps ) (ps)] with smooth probe v, the directional
derivatives at s = 1 are:

d

(predicted probability), (t), := >, qiti (expected

75 Lou(h) = E[la(ty — (t)q)], (€)
el =E[Laplt — 0 (@ G)rx(X) ~ p) ~ 6()] @

where [ 4 indicates the margin slice, ¢, is the scaled logit of the top class, and ty is that of the true
class. The NLL gradient depends only on whether ¢y exceeds (t),, while the calibration gradient
depends on the calibration gap rx (X) — p weighted by probe sensitivity. These different sensitivities
create potential for directional conflict.

Consider a margin slice A with underconfident region J;; having average calibration gap py :=
E[rx(X)—p(X) | X € Jy] > 0 and overconfident region Jo with gap po := E[p(X) — rx (X) |
X € Jo] > 0. Let uy, po denote relative proportions, “min, Ymax D€ bounds on margin-to-
temperature ratios in A, and Ag control logit spread. When underconfidence dominates NLL
sensitivity such that pyYminftu > YmaxpPo o + Agia, there exists a sharpening direction where
%ans:l < 0 (NLL decreases) yet %SmCE\sﬂ > 0 (calibration worsens). The condition ensures
that while sharpening helps underconfident samples in Jy/, it harms overconfident samples in Jo
more severely, causing net calibration degradation despite NLL improvement. Detailed analysis

appears in Appendix [A.3]

This fundamental misalignment explains why NLL-based methods can achieve good likelihood
while maintaining poor calibration. The mismatch occurs when calibration benefits from sharpening
underconfident predictions are outweighed by costs from further sharpening overconfident predictions,
yet NLL gradients favor overall sharpening due to different sensitivity to margin patterns. This
motivates developing objectives that directly target calibration error rather than likelihood.

3.4 CHARBONNIER-SMOOTHED SOFTECE OBJECTIVE

Section [3.3|demonstrated that NLL optimization can conflict with calibration goals. We require a
differentiable objective that directly targets calibration error while remaining statistically efficient
with limited validation data. Current approaches face a bias-variance tradeoff: binned ECE has low
variance but high bias from fixed binning, while point-wise losses have low bias but high variance
from binary correctness indicators.

Following [Karandikar et al.| (202T), we adopt soft-binned ECE which balances this tradeoff through
kernel smoothing. For sample ¢ with confidence p; and bin centers { cb}le, soft membership weights
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_ __exp(=a(Pi=cp)?) o > oo . . . .
Wih = 5= o(=alpi—en)) distribute each sample’s contribution across neighboring bins, creating

smooth gradients. In continuous formulation with Gaussian kernel &y (t) = e~ and reference
density p(u) on [0, 1], this becomes:

SOftECE(f) = Ex [ | 5033, wla) ~ ulp(adu] )

kx(p—u)
Iy Ba(p—v)p(v)dv
y} is the correctness indicator.

where K (p,u) =
a(X) = {g(X)

We enhance SoftECE with Charbonnier smoothing to achieve theoretical control over calibration
quality. Replacing the absolute value with Charbonnier function ¢s(r) = V72 + §2 yields:

is the normalized kernel, p(X) is predicted confidence, and

1
Has(f) = Ex [/0 K x(p(X),u)ps(a(X) — u)p(u)du| . (6)

The Charbonnier function provides C'*° smoothness while satisfying ¢5(r) > |r|, ensuring that
minimizing H ; never weakens calibration control compared to the absolute value formulation.
Our key theoretical contribution establishes that this objective provides an upper bound on smooth
calibration error.

Theorem 3.1 (Charbonnier-SoftECE Upper Bounds smCE). Assume reference density p satisfies
0 < pmin < p(u) < pmax < 00 for all u € [0, 1] with condition number K := pmax/Pmin- Then for
all classifiers [ and smoothing parameters 6 > 0:

smCE(f) < Has(f) + 2B, (M
where B\ = sup,c(o ] fol [p — u|Kx\(p, u)p(u)du represents kernel approximation error. For
Gaussian kernels with A > 1, By < % where C,, := \/Eiiff(l) ~ 1.339k.

The proof (Appendix [A.2)) decomposes smCE using mollification: for any 1-Lipschitz probe ¢, we
write E[(a — p)y(p)] as a smooth term controlled by H s plus approximation error bounded by
B). The bound splits into a model-dependent term #  s( f) that can be optimized and a design-only
term 2B, that tightens as O(1/+/\). Thus minimizing H ,6 directly minimizes an upper bound on
calibration error, resolving the NLL mismatch from Section @

Figure 3| demonstrates the practical benefits of Charbonnier smoothing. On ImageNet ViT-B/16,
Charbonnier-SoftECE achieves faster training convergence (left panel) while maintaining stable
gradient norms throughout optimization (right panel). Standard SoftECE exhibits oscillations in
later training epochs. The Charbonnier enhancement thus provides both theoretical guarantees and
improved optimization stability.

In practice, we discretize Equation equation[6|using B = 15 soft bins with Gaussian kernel bandwidth
o = 0.05 (corresponding to A = 200) and Charbonnier parameter § = 10~2. The bandwidth controls
bias-variance tradeoff, the choice of hyperparameters A and § exhibits stability across a reasonable
range, as detailed in Appendix [T}

3.5 THE SMART FRAMEWORK

Building on the theoretical foundations established in Sections [3.2H3.4] we introduce SMART
(Sample Margin-Aware Recalibration of Temperature), which learns a direct mapping from margin to
temperature. The framework combines margin as the input indicator (Section [3.2) with Charbonnier-
SoftECE as the training objective (Section [3.4).

SMART implements a lightweight two-layer MLP that maps logit margin m = 2zyax — 22nd tO
sample-specific temperature T'(m): h = ReLU(Wym + by) and T'(m) = softplus(Wah + b2) + €,
where the hidden dimension is 16 and ¢ = 10~ ensures numerical stability. The softplus activation
guarantees positive temperatures. This architecture requires only 49 trainable parameters regardless
of the number of classes K, substantially fewer than existing parametric approaches: vector scaling
requires 2K parameters, matrix scaling K2 + K, class-dependent temperature scaling (CTS) (Frenkel
& Goldberger, [2021) requires K, and spline calibration (Gupta et al., [2021) requires 13K. For
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ImageNet with K = 1000, these methods require thousands of parameters while SMART maintains
minimal constant size.

Training minimizes the Charbonnier-SoftECE objective #. s from Equation equation|6|on a validation
set using Adam optimizer with initial learning rate 5 x 10~3. For each sample, we compute its
margin, predict temperature via the network, apply temperature scaling to logits, and compute the
soft-binned calibration loss with Charbonnier smoothing. At inference, SMART computes the margin
for each test sample, predicts its temperature through the trained network, and applies temperature
scaling to obtain calibrated predictions. Complete training and inference procedures are detailed in
Algorithm[T] (Appendix D).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on several benchmark datasets, including CIFAR-10, CIFAR-
100 (Krizhevsky & Hintonl [2009), and ImageNet (Deng et al.l[2009). To probe robustness under
common corruptions and distribution shifts, we include ImageNet-C (All corruption type averaged,
severity 5) (Hendrycks & Dietterichl [2019), ImageNet-LT (a long-tailed variant with power-law class
imbalance) (Liu et al.|[2019), and ImageNet-Sketch (sketch-based OOD variant) (Wang et al.| 2019).
All experiments employ a training-time batch size of 1024. CIFAR-10 and CIFAR-100 contain
60,000 images of size 32 x 32 pixels, with 10 and 100 classes, respectively, split into 45,000 training,
5,000 for validation and 10,000 test images. For ImageNet related dataset, we use 20% of the original
test set, as the new validation set, with the remainder used as the test set. The testing batch size for all
datasets is set to 128.

Model Architectures. To demonstrate the generality of our calibration methods, we evaluate
across a diverse collection of convolutional and transformer—based networks. For CIFAR-10 and
CIFAR-100, we employ ResNet-50 and ResNet-110 (He et al., [2016), Wide-ResNet (Zagoruyko &
Komodakis| 2016), and DenseNet-121 (Huang et al.|[2017), initialized with pretrained weights from
Mukhoti et al. (Mukhoti et al., 2020). Each model is trained for 350 epochs using stochastic gradient
descent with momentum 0.9, weight decay 5 x 10~%, and a piecewise-constant learning-rate schedule
(0.1/0.01/0.001 over 150/100/100 epochs). ImageNet and its variants are evaluated on PyTorch’s
pretrained ResNet-50 and DenseNet-121 (Paszke et al.,2019), the transformer designs Swin-B (Liu
et al., [2021), ViT-B/16 and ViT-B/32 (Dosovitskiy et al., [2021), and Wide-ResNet-50. This suite
spans from compact CNNs to large-capacity transformers, allowing us to assess calibration robustness
under varying architectural inductive biases and model complexities. Calibration performance is
primarily evaluated using ECE, with additional metrics including AdaECE and top-1 accuracy. All
experiments are conducted on a NVIDIA 3090 GPU, with results averaged over 5 seeds.

4.2 CALIBRATION PERFORMANCE

We evaluate SMART against leading post-hoc calibration approaches including TS (Guo et al., [2017),
PTS (Tomani et al., [2022), CTS (Frenkel & Goldberger, |2021)), and spline-based calibration (Gupta
et al.}2021), Group Calibration (Yang et al., [2024)), ProCal (Xiong et al.,|2024])) , Feature Clipping
(FC) (Tao et al.} [2025)), as well as uncalibrated (Vanilla) models across both standard settings and
distribution shift scenarios.

Calibration on Standard Datasets SMART consistently outperforms these methods across CI-
FAR10, CIFAR-100, and ImageNet-1K (Table[I), significantly reducing calibration error. The most
notable improvement is seen in CIFAR-100, where SMART excels while Spline, despite its strong
performance on other datasets, struggles. This highlights SMART’s robustness across datasets with
varying complexities. CNNs, which often suffer from overconfidence, are generally well-calibrated
with TS-based methods. However, transformers see limited calibration improvements from TS-based
methods, with SMART outperforming them by a large margin. On larger datasets like ImageNet-1K,
SMART maintains its advantage with consistently lower ECE values. SMART works well on bith
CNN and ViTs where GC and FC failed.
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Table 1: Comparison of Post-Hoc Calibration Methods in ECE (%, |, 15 bins) Across Various
Datasets and Models (mean across 5 runs). The best-performing method for each dataset-model
combination is in bold, and our method is highlighted. Full results with std are in App. E

Dataset Model Vanilla TS PTS CTS Spline GC ProCal FC SMART
2017 2022 2021 [2021] (2024 [2024] [2025 ours

ResNet-50 434 138 110 0.83 1.52 1.37 4.17 1.66 0.76
Wide-ResNet 3.24 093 090 081 174 0.89 281 1.12 0.43

ResNet-50 1753 5.61 196 3.67 348 570 9.71 291 1.37
Wide-ResNet  15.34 450 1.96 3.01 3.76 4.55 9.44 4.49 1.80

ResNet-50 3.65 217 095 217 0.62 244 1.08 1.71 0.52
DenseNet-121  2.53 1.85 1.02 1.86 0.81 220 1.52 1.35 0.57
Wide-ResNet 543 289 1.14 3.27 0.66 3.66 1.57 1.62 0.52

Swin-B 505 391 1.05 1.53 088 495 1.00 5.05 0.46

ViT-B-16 5.62 3.60 123 4.65 091 439 097 5.65 0.48

ViT-B-32 6.39 393 127 212 081 4.67 0.88 6.39 0.71

ResNet-50 13.82 197 1.12 1.69 5.61 2.69 5.79 2.51 0.62

DenseNet-121  12.57 1.58 1.19 1.44 5.18 2.01 9.88 9.44 0.63

ImageNet-C Swin-B 12.03 5.82 1.53 3.05 258 6.92 2.53 5.18 1.23
ViT-B-16 828 524 127 276 1.71 595 1.96 5.37 1.06

ViT-B-32 7.69 510 1.07 297 143 6.40 1.55 5.50 0.96

ResNet-50 3.63 2.01 099 217 056 220 1.12 1.80 0.56

DenseNet-121  2.50 1.80 1.20 1.88 0.79 2.05 1.79 1.76 0.81

ImageNet-LT Wide-ResNet 540 299 1.21 287 081 359 1.28 1.68 0.53
Swin-B 469 398 121 150 0.79 479 0.95 4.82 0.58

ViT-B-16 558 3.73 114 143 066 4.34 0.77 5.72 0.56

ViT-B-32 6.28 398 135 212 072 476 0.83 6.26 0.60

ResNet-50 2232 206 1.69 148 976 199 952 1258 0.92

DenseNet-121  20.13 1.67 193 1.16 9.20 1.77 1293 22.67 0.59

ImageNet-S Swin-B 2461 6.50 1.53 3.62 8.66 6.92 8.05 1.70 1.26
ViT-B-16 16.57 575 133 284 570 6.36 5.67 1.93 0.98

ViT-B-32 14.22 499 1.67 3.25 4.07 623 444 1.56 0.87
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Figure 4: Comparison of calibration methods using AdaECE] across various datasets and
models. From left to right: CIFAR-10 (ResNet-50), CIFAR-100 (ResNet-50), ImageNet (ResNet-50),
ImageNet (ViT-B-16), ImageNet-C (ResNet-50), and ImageNet-C (ViT-B-16). Results are averaged.

Robustness under Class Imbalance and Distribution Shift Across long-tailed (ImageNet-LT) and
corrupted scenarios (ImageNet-Sketch, ImageNet-C), SMART’s sample-wise temperature adaptation
consistently outperforms global and class-wise scalers. Uniform approaches such as TS struggle
to accommodate underrepresented classes or severe input degradations, leading to pronounced
calibration drift. Spline, FC and ProCal failed on Imagenet-S with CNNs where SMART still
performs robustly.

Calibration Performance on AdaECE We also evaluate SMART using Adaptive Expected Cali-
bration Error (AdaECE) to provide a comprehensive view of its performance, shown in Figure [ with
additional results available in Appendix [} SMART demonstrates superior performance on AdaECE
compared to traditional calibration methods across diverse settings. AdaECE addresses limitations of
standard ECE by accounting for uneven confidence distributions, providing a more reliable measure
of calibration quality. SMART consistently achieves the lowest AdaECE values and variance across
CNN and ViT architectures and datasets (CIFAR and ImageNet variants), demonstrating its robustness
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to dataset shifts and model architectures. Notably, SMART outperforms more complex methods like
Spline calibration and CTS in calibration error and variance while requiring fewer parameters.

By leveraging instance-level temperature through logit margins, SMART yields stable calibration
gains across diverse distribution shifts. Its lightweight per-sample inference preserves efficiency while
delivering robustness that neither fixed nor ensemble temperature schemes can match. In contrast,
Spline collapses on particularly challenging shifts such as ImageNet-S and ImageNet-C — whereas
our method consistently sustains the lowest and most stable calibration error even under these adverse
conditions.

4.3 COMPARISON WITH TRAINING-TIME CALIBRATION METHODS

We evaluate SMART alongside training-time calibration techniques in Table [2] including Brier
Loss (Brier, |1950), Maximum Mean Calibration Error (MMCE) (Kumar et al.| 2018)), Label Smooth-
ing (LS-0.05) (Szegedy et al.| |2016)), and Focal Loss variants (FLSD-53 and FL-3) (Mukhoti et al.|
2020). This shows that combining SMART with these methods consistently enhances calibration
performance across various models and datasets, further validating SMART’s effectiveness alongside
training-time approaches. Moreover, as seen in Table [[, SMART alone, as a post-hoc calibration
method, already outperforms these train-time techniques with minimal computational overhead, while
train-time methods require significantly more resources.

Table 2: Comparison of Train-time Calibration Methods Using ECE(], %, 15 bins) Across
Various Datasets and Models. The best-performing method for each dataset-model combination is
in bold, and our method (SMART) is highlighted. Results are averaged over 5 runs.

Dataset Model NLL Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours
ResNet-50 4.34 0.75 1.81 0.96 4.57 0.53 2.97 0.51 1.56 0.42 1.47 0.43

ResNet-110 4.41 044 256  0.60 5.07 0.38 2.09 0.28 1.87 0.45 1.54  0.54

CIFARIO b ceNet-121 451 053 152 031 510 066 180 051 123 062 131 102
Wide-ResNet 324 030 125 038 330 034 425 036 158 039 168  0.54
ResNet-50 1753 099 654 101 1531 0.86 781 150 449 126 516 0.6
clFarige  ReNe-ll0 1906 098 787 087 1913 142 1103 101 854 085 865 073

DenseNet-121 20.99 1.86 522 059 19.10 1.34 12.87 1.02 370 091 414 098
Wide-ResNet 15.34 1.38 435 1.00 13.17 0.98 4.88 1.24 302 079 214 1.12

4.4 SCALABILITY WITH VALIDATION DATA

Scalability with Validation Data SMART demonstrates

superior ability to leverage increasing validation sample sizes BT —
compared to competing calibration methods, shown in Figure . i
[5l While all approaches struggle with minimal validation ra

data, SMART exhibits continuous performance improvement =
throughout the entire range of sample sizes tested, ultimately
achieving the lowest calibration error. In contrast, the alter- Y N T
native methods display more limited utilization of additional
validation samples. TS reaches a performance plateau at mod- o
erate sample sizes and fails to improve further, while PTS
exhibits concerning instability in the mid-range sample sizes, .
implicitly reflecting the NLL mismatch. GC demonstrates Figure 5: ECE(], %, 15 bins) versus
the most problematic behavior, with significant performance Yalidation sample size. Comparison
spikes that indicate poor robustness to varying validation set ©f calibration methods on ImageNet
sizes. The consistent improvement trajectory of SMART man- (ViT-B/32), averaged over five runs.
ifests the margin provides a robust signal that enables more

effective temperature estimation as additional validation samples become available. This superior
sample utilization capability makes SMART particularly valuable in practical applications where
validation data availability may vary.

2 2 8 32 64 128 256 512

16
Validation Samples
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4.5 ABLATION STUDIES

Choice of Calibration Objective We compare how various calibration objective influence
SMART’s calibration performance (Table [3). While all tested objectives enable significant im-
provements over vanilla, they exhibit distinct behavior patterns across architectures. NLL and label
smoothing losses, despite their prevalence in classification tasks, demonstrate suboptimal calibration
performance due to their indirect relationship with confidence estimation objectives. MSE and Brier
score offer more reliable improvements by directly penalizing squared confidence errors, yet their
effectiveness fluctuates between CNN and transformer architectures. Charbonnier-SoftECE emerges
as the superior choice by directly optimizing the calibration metric itself, achieving both the lowest
average error and the smallest variance across diverse model architectures, making it the most stable
choice for SMART’s temperature mapping.

Table 3: Different Calibration Objective. ECE (%, |, 15 bins) on ImageNet averaged over 5 runs.

Architecture Method NLL LS MSE Brier SoftECE Charbonnier-Soft ECE

ResNeL.50 TS 204 1433 369 231 3.16 2.12
(Top-1-0761) TS 1.04 1.87 1.89  1.88 1.88 0.94
op-1=U. SMART 093  1.09 139 138 0.65 0.52
. TS 3.73  6.05 558  3.11 3.10 3.08
gg']i/ 1_60 g10) PTS 569 322 240 257 1.15 0.77
p-1=0. SMART 362 311 084  0.80 0.89 0.48

Table 4: Comparison on alternative on-the-shelf indicator on ImageNet-1K.

Model Entropy Conf. All Logits Logitmax Logitmax - Logits Margin (ours)
ResNet-50 0.87 0.97 0.87 0.91 0.85 0.58
DenseNet-121 0.62 0.89 0.79 0.80 0.84 0.56
Wide-ResNet 1.00 1.22 0.92 0.57 0.63 0.52
Swin-B 0.62 0.81 0.89 0.78 0.87 0.63
ViT-B/16 0.90 0.75 0.97 0.91 1.20 0.72

Choice of Indicators We evaluated six candidate uncertainty signals as inputs to our temperature
network on ImageNet-1K (Table [): predictive entropy, predicted confidence, full logit vectors,
maximum logit, mean-normalized logit deviation, and our proposed margin. The margin consis-
tently achieves the lowest calibration error across all tested architectures, outperforming alternative
indicators by substantial margins. While full logit vectors contain rich information, they introduce
excessive noise that degrades performance in limited-data scenarios. Simpler scalar measures like
maximum logit or predicted confidence fail to adequately capture the competitive dynamics between
top classes that drive miscalibration. The margin’s superior performance stems from its ability to
distill prediction uncertainty into a minimal yet complete representation that directly reflects decision
boundary proximity, enabling robust calibration across diverse model architectures.

5 CONCLUSION AND LIMITATION

We introduced SMART, a lightweight recalibration method leveraging the logit margin as a principled
calibration indicator for precise temp adjustment. By capturing sample hardness through this indica-
tive signal, SMART achieves SOTA calibration performance with minimal parameters compared
to existing methods. Our Charbonnier-Smoothed SoftECE objective enables stable optimization as
validation data scales. Extensive experiments confirm SMART’s robustness across diverse architec-
tures, datasets, and challenging distribution shifts, consistently outperforming current post-hoc and
even training-based methods. Future work could explore integrating SMART with other uncertainty
quantification methods or investigate other hardness indicator to further improve calibration and
robustness in safety-critical applications.

Limitation While SMART demonstrates excellent performance across tested scenarios, its effec-
tiveness may vary slightly for extremely specialized domains with highly skewed class distributions.
Additionally, though our method requires minimal validation data, performance could degrade in
zero-shot scenarios where no domain-specific calibration samples are available.

10
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A THEORETICAL PROOFS

A.1 TEMPERATURE—-CONFIDENCE RELATION AND MARGIN BOUNDS

Problem and observation. To reach a target top-class confidence p € (0, 1), how constrained is 7'?
Empirically, fixing only z, leaves T ill-determined; using the Margin m yields tight bounds. We
now prove this, step by step.

Target confidence equation. Requiring ps max = P is equivalent to

ezm/T Z ( g o
——— = =D = elzimzm)/ :——1:: . (8
Zjl‘(:l ezi/T JEM p

Because p is the maximum softmax probability, p > 1/K, hence S < K —1; moreover S > 0 since
p < 1. Thus S € (0, K—1], and if we assume a strict top-1 margin m > 0 (no top-2 ties) then
p>1/Kand S € (0, K-1).

Unboundedness if only z;; is known. Assume z; — zps = —0d for all j # M with § > 0. Then
Z ZJ ZM /T Z e—(s/T _ 1) 6—5/T — S’ (9)
J#EM Jj#EM
= T= (10)

log(—K )
When S < K—1 (equivalently p > 1/K), log(S/(K
sweeps T € (0, 00). Thus

—1)) < 0,s0as § € (0,00) varies, equation[10]

‘ Fixing zs alone leaves the feasible 7" unbounded: (0, o). ‘

m-boundedness. Let ;1 € arg max;.,s 2; denote a runner-up index and define the (nonnegative)
margin m := zp; — 2,,. Forany j ¢ {M, u},
zj—zm)/T e—m/T.

Zj—zm S Zp—aAZy = —m — el

Since eFu—2m)/T = ¢=m/T e have

3 e/ mmi Ty § (e T

Ji#EM JE{M,p}
> efm/T7 (11)
D e/ < emm/T 4 (K —2) e/ T = (K — 1) e™™/7. (12)
J#EM
Combining equation[8] equation[TT} and equation[I2]yields
e < S < (K-—1e ™", §=1—-1€(0,K-1]. (13)
Equivalently,
flog(%) > % > —logS. (14)

Solving equation[I4]for 7' > 0 gives the m-bounded feasible set:

m m . .
€ {—log(S/(Kfl))’—logS} ifo<S<1 (p>1/2),
m
00), f1<S<K-1(1/K<p<1/2),
—log(S/(K — 1)) ) (1/ /2
feasible iff m = 0, ifS=K-1 (p=1/K).

Interpretation. Knowing the Margin m pins down T tightly. When the target confidence is above
1/2, the feasible T is a finite interval whose width shrinks as m grows. For lower target confidences
(p < 1/2), one still gets a nontrivial lower bound on T'; a finite upper bound appears exactly when
S < 1 (i.e.,, p > 1/2). In particular, for K = 2 the bounds coincide and T = is uniquely

determined.

_m
—log S
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A.2 CHARBONNIER-SOFTECE UPPER-BOUNDS SMCE

Setup and goal. Let p(xz) € [0,1] denote the predicted probability of correctness (top-class
confidence) and a(x) := ¥{j(r) = y} € {0, 1} the correctness indicator. We measure calibration
via the smooth calibration error (smCE), the worst-case correlation between the residual a(X ) —p(X)
and any 1-Lipschitz probe of the prediction p(X) (cf. forecasting{Kakade & Foster|(2008))) and the
ML calibration view of |Blasiok et al.[(2023))):

smCE(f) := sup E[(a(X) - p(X)) ¢(p(X))]

H:={p:[0,1] = [-1,1] s.t. Lip(p) < 1}.

)

We study the Charbonnier—SoftECE objective (a smoothed, Huberized absolute calibration error):

1
Haolf) = EXVO EX(p(X),u) ds(a(X) = u) p(u) du}, 5(r) = /1% + 62,

where p is a reference density on [0, 1] and

Ka(pu) = 20— ka(t) == e, A>0, (15)

) ka(p— ) p(v) do”

so that fol Kx(p,u) p(u) du = 1 for every p € [0,1]. Assume boundedness and bounded-away-
Sfrom-zero of p: there exist constants 0 < ppmin < p(u) < pmax < oo for all u € [0,1], and write
KR = pmax/pmin-

Main result.

Theorem A.1 (Charbonnier—SoftECE upper-bounds smCE). Under the assumptions above, for all
classifiers f and all § > 0,

smCE(f) < Has(f) + 2By, = 51[1p / lp — u| Kx(p,u) p(u) du.  (16)
p€el0,1]
Moreover, for the Gaussian kernel kx(t) = e,
2K 1
By <mimd1, 28, > 17
r { NG ﬁerf(ﬁ)} an

and in particular for A > 1,

Cy 2k
— = — =~ 1. . 1
% C, Jr (1) 339k (18)

Proof. For brevity write p := p(X) and a := a(X). Fix any ¢ € H with ||¢||cc < 1. Introduce the
(normalized) kernel smoothing operator

By <

(Tap)(p / Kx(p,u) p(u) p(u) du.
Decomposition.
El(a —p)¢(p)] = El(a—p) (Tre)(@)] + E[(a—p){ep) — (Tre)(p)}]. (19)

Approximation (mollification) error. By Lip(p) < 1 and the triangle inequality,

!so(p)—(Tw)(p)|=‘/0 Kx(p,u) {e(p) — o(u)} p(u

Taking the supremum over p and ¢ yields

sup sup |o(p) — (Tap)(p)| < Ba. (20)
pEH pel0,1]

/m, ) p — ul p(u) du
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Hence, using |a — p| < 1,

’E[(a—p) {@(p)—(TAso)(p)}H < Ba.

Aligned main term. By Fubini/Tonelli (bounded integrands) and normalization [ K (p, u)p(u) du =
1, )
Blla =) (Tao)0)] = | o) Bl(a—p) Ka(p. ] plu) du

and since |p(u)| < 1,

[El(@ —p) (Tag)(p /]E a—p) Ka(p,u)] | p(u)d 1)

(r) >

For each u, using |z + y| < |z| + |y and |[a — p| < |a —u| + |p

|E[(a = p) Ka(p,w)] | < E[Ja — pl Ka(p,w)]
< E[¢s(a—u) Kx(p,u)] + E[lp—u| Ki(p,u)]. (22)
Integrating equation 22 against p(u) du and applying Fubini,

/Ol‘E[(a—p)KA(p,U)} ’p(U)du < E[/()lKA(p,u)cba(a—u)p(U)du

1
+ sup / 1p— ul K (p, u) plu) du,
P 0

ie.,
[E[(a —p) (Tap)(®)]] < Has(f) + Ba. (23)

Conclusion. Combining equation [20] equation 23] with equation[T9]and taking the supremum over
¢ € H gives smCE(f) < H 5(f) + 2Bi.

Explicit bounds for B). By definition,

1
—ulk — d
By — sup 40 p = ulka(p = w) plw) du
pel0,1] Jo Ea(p —v) p(v) dv

Using p(u) < pmax in the numerator and p(v) > ppiy in the denominator, and changing variables
t=p—wuort=p— v, weobtain for all p € [0, 1]:

B, < fR|t| e M dt
- ;16 A2 gy

Since p € [0, 1], the denominator integrates over a length-1 interval contained in [—1, 1]; by symmetry

and unimodality of ¢ — e~ the minimum over such intervals is attained at an endpoint, e.g. [0, 1].
Hence

o [t e dt 3 25K 1
BA S 72 p— H . ﬁi P— _—
f e~ dt merf(\/X) VT VX erf(VA)
Since [p —u| < 1and [ Kxp = 1, we also have By < 1. For A > 1, erf(\f)\) > erf(1), yielding
equation [T§] O

Interpretation and guidance. The guarantee equation[I6]decomposes into a model-dependent term
Hs(f) and a design-only kernel bias Bj, the average soft-bin radius around p. The Charbonnier
envelope obeys ¢s(r) > |r|, so replacing |a — u| with ¢5(a — u) never weakens control of smCE
and yields smooth gradients near 7 = 0. For Gaussian kernels, By = O(x/+/\) as in equation o)
increasing A monotonically tightens the bound; the cap B < 1 ensures uniform validity for all A > 0.
(Discrete soft-binned implementations—via Riemann-sum quadrature of the u-integral—inherit the
same inequality up to a standard design-only quadrature error that vanishes as the grid is refined.)

16
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A.3 CHARBONNIER-SOFTECE vs. NLL

We compare negative log-likelihood (NLL) with Charbonnier—SoftECE within the SMART family
T(z) = h(m(x)) that scales by the margin m(z) := z1)(x) — z¢2)(z) € Rxg. Throughout,
assume (1) T() € [Timin, Tmax] With 0 < Tinin < Thax < 00, (i) Elj2(X)]leo < o0, and (iii)
P(z1) = 2@2)) = 0 (no top-2 ties a.s.). Write t(x) := z(x)/T(z), q(x) := softmax(t(x)),
M (z) := argmaxy, t(z), p(z) = qrr(z)(z) € (0,1), and YT (2) := 1{Y(z) = M(z)}. Define
the pointwise top-class probability rx (z) := F(Y = M(z) | X = z) and the reliability curve
r(p) := E[rx(X) | p(X) = p]. We measure calibration by the smooth calibration error (smCE)
smCE(f) .= sup  [E[(Y" —p)(p)]]-

©:[0,1]—[—1,1]
Lip(¢)<1

Charbonnier-SoftECE and its smCE control. Charbonnier—SoftECE is the objective

Hao(f) = Ex [/O K\(p(X), u) 6s(Y T (X) — u) p(u) duy 35(r) = /12 + 62,

with normalized kernel K as in equation and a reference density p on [0, 1]. We use (proved in
Sec.[A-2) the smCE control

1
smCE(f) < Has(f) + 2By, B = sup/ P — u[ Kx(p, u) p(u) du, — (24)
» Jo
with By = O(k/+/\) for Gaussian kernels.

A SMART-feasible local scaling path. Fix a Borel margin slice G C R>g and A := {z: m(z) €
G?}. For s > 0, define the local scaling

o) T(x)/s, x€ A,
=l sea
2(x)  [st(z), x€A,
Ty(x) {t(lf% z ¢ A,

¢ = softmax(ts), ps:= QE\Z)-

ts(x) ==

Because uniform multiplication by s > 0 preserves coordinate ordering, /M is unchanged for all
s > 0; (iii) rules out measure-zero ties at the boundary.

Lemma 1 (Directional derivatives under local margin-dependent scaling). Let L(h) :=
E[—log gy (X)]. For any C! probe v : [0,1] — R with Lip(v)) < 1 and |||« < 1, the Gdteaux
derivatives at s = 1 exist and

L) = B[4 () — 1), 25)
s=1
d% E[(YT = pdve)]| = E[Lap(tu = () (00) rx —p) — ()], @6)

where (t)q == >, qpty and rx == rx(X).

Proof. On A, asq,(f) = q,(gs)(tk — (t)4+»), hence 9,(—log ¢y = (t)g — ty. Outside A the
derivative vanishes. Dominated convergence applies since |0, (— log q§f ))‘ < 2||t]| oo and E||t]| oo <
E||z]lco/Tmin < o0, yielding equation For Fy(s) == E[(YT — ps)v(ps)], with M fixed,
Osps = 8sq§&) = qE\Z)(tM — (t)y») = ps(tar — (t)4c»» ). Thus

85((YT _ps)w(ps)) = ( - w(ps) + (YT - PsW/(ps)) 55Ps~

Conditioning on X replaces Y T by rx (X ), whence equationat s = 1 after integration; dominated
convergence holds because p |ty — (t)4| < 2||t|loo and [¢'| <1, |¢p] < 1. O

17
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Lemma 2 (Margin lower bound for the top-logit advantage). On {M = argmaxt},

m

ta = (g = (L=p) (tnr —tx)) = A-p) 7 27)

Proof. (t)q =ptm + 3 ;40 2itj < pta + (1 — p)t(); rearrange. O

A correct NLL directional upper bound (multi-class). Define the runner-up gap g(xz) =
tay(x) = tay(x) = m(x)/T(x) > 0 and the non-top spread A(x) := t(o)(x) — t(x)(z) > 0.
For any = with predicted index M and confidence p = qps (),

E[(t)g —ty | X =2] < (p—rx@))g(@) + (1 —rx(z)) A=) (28)
In particular, for binary classification (X = 2) one has A = 0 and equation[28|reduces to E[(t), —ty |
X] = (p—rx) g (exact).
Derivation of equation[28] With n(z) := P(Y=k | X=x),

E[t)g —ty | X =a]=> (g —m)te = (0 —7x) (tar —t2) + Y _ (@5 — 1) (t — t(2))-
k JEM

Since tj —t2) <0and > 5 (M —qj)+ < D520 = 1 —7x, thelastsumis < (1—rx) (¢(9) —
t(K)) = (1—7”X) A D

Consequences and a mild spread control. On a slice A = {m € G}, assume the empirically
checkable spread control

Alx) < Ag < o© forall z € A. (29)
Then, combining equation 28] with LemmalT]
d
%Lnll(hS) = E[lA(<t>q - tY)] < E[lA Vs 7'X) 9] + Agpa, (30

s=1

where 14 := P{X € A}. In the binary case A = 0 and equation [30]holds with equality.

Two-slice mismatch under mild, empirically observed heterogeneity. We next give conditions
under which a single SMART-feasible local move reduces NLL yet increases smCE.

Assumptions (empirically checkable). Fix a compact margin slice G C [Mupin, Mmax] and set
A:={z: m(z) € G}. Let Ymin = infreca ’7’3((;")) and Ymax = SUPgc A 7;((;")) (finite and positive by
G compact and T’ € [Trin, Tmax))- Assume there exist disjoint compact intervals Jy, Jo C (po, 1)
with gap A > 0 and constants py, po > 0 such that

r(p)—p > pu forp € Jy, r(p)—p < —po forp e Jo.
Write py :=P{p e Ju, x € A}, po :=P{pe Jo, x € A}, pgap =P{z € A, p¢ JuUJo },
and assume additionally:

(a) (bounded conditional density of p on A) the conditional distribution of p given X € A has a
density f,4 on (0,1) with || f,l|lcc < Dg < oo. In particular, for any interval I C (0,1),
P{pel, X € A} < D¢ |I|.

(b) (slice-bounded advantage) there exists C; < oo with p(x) (tar(x) — (t(2))q(x)) < Ce for

z € A (e.g., it holds with C := 2esssup,¢ 4 ||t(2)||c Whenever ¢ is essentially bounded
on A).

(c) the spread control equation[29]holds on A with constant Ag.

Proposition A.2 (Two-slice mismatch: NLL | but smCE 1 (multi-class)). Consider the sharpening
direction s 1 1 applied on the SMART-feasible set A = {m € G}. If

PU Ymin HU > Ymax (po po + ,Ugap) + Ag KA, €1y

18
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then %Lnn(hs)‘s:l < 0 (NLL strictly decreases). Moreover, for any ¢ € (0, min{1, A}) there

exists a 1-Lipschitz probe 1) with ¢ = 0 on Jy, ¥ = —c on Jo, and with transitions confined to a
band whose A-mass is at most € > 0, such that
d _
%E[(Y—r _ps)w(ps)} > CPo (1 _pO>’Vmin po — (1 +C) Cge, (32)
s=1

030(1—170)Vrnix1
- (+9Ce
strictly positive. Because on Jo one has (r(p) — p)y(p) > ¢ po while v = 0 on Jy, the signed
functional at s = 1 obeys

E[(YT —p)¥(p)] = E[(r(p) —p)¥(p)] = cpopo — ce > 0, (33)

so a positive derivative implies a strict increase of its absolute value. Hence smCE strictly increases
along s 1 1.

where Py = inf Jo and pg := sup Jo. Choosing € < o makes the right-hand side

Proof. By equation[30]and splitting A into the three regions,

d

%Lnll<hs) < E[1angpesot(p — rx)g]
s=1

+ E[1angpesor(p — 7x)g]

+ E[Lan{pesouior (P — rx)g]
+Ag pa-

OnAN{p € Ju}, 9 > Ymm and E[p — rx | p| = p — r(p) < — pu, hence the contribution is
< = puYminku- On AN{p € Jo}, g < Ymax and E[p — rx | p| > po, giving at most YmaxpoHO-
On the gap region, [p—rx| < 1 and g < Ymax, giving at Most Ymax figap- This yields strict negativity
under equation[31] For the probe, on Jo we have ¢/ (p) = 0 and —1(p) = c, so by equation 26|and
Lemmalf2]
d
BT = pa)(ps)] > ¢pg, (1= Do) Ymin-
s=1,peJo

On Jy the contribution is 0 since 1) = 0. On the transition band (of A-mass ¢), |[¢'| < 1 and || < ¢,
hence [¢'(p)(rx —p) — ¢ (p)| < (1+ ¢) while p(tar — (t)q) < Ce on A by (b). Thus the transition
contribution is at most (1 + ¢) C¢ £ in magnitude, giving equation Finally, equationholds
since v depends only on p and E[Y' " — p | p] = r(p) — p. By (a), we can realize the 1-Lipschitz
1) with linear ramps of total width at most 2¢, whence € < 2D¢c; shrinking c if needed makes the
stated choice of ¢ feasible. O

Lemma 3 (Small-s realization for the mismatch). Under Proposition there exists sT > 1
arbitrarily close to 1 with

Lin(hgt) < Lnu(h) and smCE(fp_,) > smCE(fp).

Proof. Lun(hs)is C'ats = 1by Lemma with strictly negative derivative; hence Ly (hyt) <
Lun(h) for all sT > 1 sufficiently close to 1. For smCE, fix the ¢ from Proposition [A.2} then
Fy(s) == E[(YT — ps)(ps)] is C with Fy(1) > 0 and F,(1) > 0, so |Ey(sT)| > TFy(1)]
for all sT > 1 close enough to 1. Since smCE(f,,) > |Fy(s)], it follows that smCE(fp ) >
smCE(fr).

Takeaway. Along SMART-feasible local scalings of the temperature map T'(x) = h(m(z)),
Charbonnier—SoftECE continues to control smCE via equation [24] whereas NLL can be locally
improved (decreased) while smCE deteriorates (increases) under mild, empirically checkable het-
erogeneity of confidence slices (Proposition[A.2). The NLL directional formula is exact in binary
classification; in multi-class settings the same conclusion holds under a weak spread control on
non-top logits.
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Algorithm 1 SMART: Sample Margin-Aware Recalibration of Temperature

Input: Validation logits and labels {z;,y; } ", temperature network h(-)

Compute margins: m; = 2; max — Zi,2nd for each i € {1,..., Nyu}

Normalise: 72; = (m; — i )/0m Where pi,, = vaa] > M, O = \/vaal > (mi — pm)?

for epoch = 1, ..., Nepochs do
Predict temperatures: T; = h(172;) for each ¢
Scale logits: z; = z;/T; for each ¢
Compute loss: £; = CharbonnierSoftECE(Z;, y;) for each ¢ (Equation@)
Update: ¢ < ¢ — V4 S04 £; via SGD
end for
Return: Trained temperature network hg

YR JADINAE W N

—

B THE USE OF LARGE LANGUAGE MODELS

During the preparation of this work, we utilized a Large Language Model (LLM) to assist with
editorial refinement of the manuscript. The model’s application was limited exclusively to improv-
ing textual quality and presentation, not for generating substantive research content. The LLM’s
contributions included:

* Enhancing sentence structure and paragraph organization to improve clarity, brevity, and
scholarly tone.

* Identifying and correcting errors in grammar, spelling, and punctuation.

* Strengthening coherence and smoothing transitions throughout the text.

C RUNTIME EFFICIENCY

To verify the time efficiency of our method, we compare the inference time with baseline methods.
The result is reported in Table[5] TS optimizes a single scalar temperature via a few gradient steps or
closed-form updates, then applies this same factor to every logit, resulting in a negligible overhead
(2.42s). SMART yields a small per-sample inference cost and hence a modest total runtime (23.03 s).
Logits are input into PTS’s small neural network for each sample to predict a bespoke temperature,
incurring a larger computational cost than SMART. CTS is the most expensive at more than 1
hour with the highest variance, as it conducts an exhaustive grid search for 5 epochs over a dense
temperature grid (e.g. 0.1 -10) for each of the 1 000 classes, leading to O(C' x G x N) evaluations
(classes x grid points x samples). The spline-based calibrator precomputes a monotonic mapping on
the validation set and then applies a fast piecewise-linear transform at test time, yielding intermediate
overhead. These differences illustrate the trade-off between expressive power and efficiency: TS
is almost instantaneous, SMART adds only a small network-forward cost per sample, PTS trades
per-sample flexibility for moderate cost, and CTS’s brute-force search becomes prohibitive at scale.

Table 5: Average Runtime (s) on ImageNet over 10 runs on a ResNet-50 model.

Method TS Spline PTS CTS SMART
Runtime (s) 242+0.1 28.51+£0.9 1050.44 £+ 37.8 5457.55 £125.5 23.03 £0.41

D THE PROPOSED SMART FRAMEWORK

This section presents the detailed algorithmic implementation of SMART, providing a step-by-step
procedure for applying margin-based temperature scaling with soft-binned ECE optimization.
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E FULL CALIBRATION PERFORMANCE

Full calibration performance for Table(T]is in Table 6}

Table 6: Comparison of Post-Hoc Calibration Methods Using ECE (%, |, 15 bins) Across
Various Datasets and Models (mean =+ std across 5 seeds). The best-performing method for each
dataset-model combination is in bold, and our method is highlighted.

Dataset Model Vanilla TS PTS CTS Spline GC ProCal FC SMART (ours)
CIFAR-10 ResNet-50  4.34 1.38 +0.26 1.10 £ 0.21 0.83 £0.15 1.52+0.03 1.37 £ 0.08 4.17 +£0.12 1.66 = 0.09 0.76 £ 0.02
Wide-ResNet  3.24 0.93 + 0.20 0.90 + 0.19 0.81 + 0.17 1.74 + 0.01 0.89 £ 0.06 2.81 £ 0.11 1.12+ 0.07 0.43 £ 0.05

CIFAR-100 ResNet-50 17.53 5.61 + 1.39 1.96 + 0.48 3.67 + 0.88 3.48 £ 0.00 5.70£0.15 9.71 £0.18 2.91+0.12 1.37 £+ 0.27
Wide-ResNet  15.34 4.50 + 0.62 1.96 + 0.27 3.01 +0.42 3.76 = 0.00 4.55 £ 0.13 9.44 £ 0.16 4.49 +0.14 1.80 £ 0.10

ResNet-50 3.65 2.17 £0.03 0.95+0.36 2.17 £ 0.78 0.62+ 0.18 2.44 +0.12 1.08 £0.14 1.71 +0.08 0.52 + 0.12

DenseNet-121  2.53 1.85 4+ 0.04 1.02 £+ 0.46 1.86 £ 0.81 0.81 £ 0.35 2.20 £ 0.25 1.52+0.21 1.35+ 0.29 0.57 + 0.03

ImageNet-1K Wide-ResNet  5.43 2.89 + 0.11 1.14 + 0.24 3.27 + 0.69 0.66 £ 0.10 3.66 £ 0.16 1.57 £0.10 1.62+ 0.09 0.52 + 0.07
Swin-B 5.05 3.91 4+ 0.07 1.05+ 0.05 1.53 £0.08 0.88 +0.14 4.95+0.17 1.00 4+ 0.15 5.05+ 0.06 0.46 + 0.03

ViT-B-16 5.62 3.60+0.19 1.23 +£0.29 4.65 +1.02 0.91 £0.31 4.394+0.25 0.97 £0.30 5.65+0.06 0.48 +0.13

ViT-B-32 6.39 3.93+0.02 1.27 £0.97 2.12+1.59 0.81 £0.12 4.67 £0.13 0.88+0.32 6.39+0.06 0.71 £+ 0.18

ResNet-50  13.82 1.97 4 0.02 1.12 £+ 0.13 1.69 £ 0.20 5.61 £0.15 2.69 +0.11 5.79 £ 0.19 2.51 +0.13 0.62 £ 0.03

DenseNet-121 12.57 1.58 + 0.00 1.19 4 0.15 1.44 £ 0.19 5.18 £0.13 2.01 £ 0.09 9.88 + 0.24 9.44 +0.31 0.63 £ 0.01

ImageNet-C Swin-B 12.03 5.82 4+ 0.05 1.53 £ 0.00 3.05 £ 0.01 2.58 +£0.21 6.92+ 0.18 2.53 £0.12 5.18 +0.17 1.23 £+ 0.04
ViT-B-16 8.28 5.24 +0.01 1.27 £0.05 2.76 £ 0.10 1.71 +£0.22 5.95+0.15 1.96 £ 0.14 5.37 +£0.20 1.06 £+ 0.02

ViT-B-32 7.69 5.10 £ 0.00 1.07 £0.08 2.97 £ 0.24 1.43 +0.24 6.40+ 0.16 1.55+ 0.11 5.50+ 0.18 0.96 + 0.01

ResNet-50 3.63 2.01 £0.02 0.99 +£0.32 2.17 +£0.68 0.56 + 0.10 2.20 +0.17 1.12 £+ 0.20 1.80 + 0.23 0.56 + 0.04

DenseNet-121  2.50 1.80 £ 0.06 1.20 £ 0.26 1.88 + 0.41 0.79 + 0.07 2.05 +0.11 1.79 £ 0.09 1.76 +£0.50 0.81 &+ 0.01

ImageNet-LT Wide-ResNet  5.40 2.99 £ 0.05 1.21 £0.77 2.87 £ 1.79 0.81 +0.24 3.59 +0.18 1.28 £0.06 1.68 +0.10 0.53 + 0.02
Swin-B 4.69 3.98 +£0.12 1.21 £+ 0.45 1.50 £ 0.56 0.79 £ 0.17 4.79 £ 0.27 0.95 + 0.16 4.82+ 0.10 0.58 + 0.01

ViT-B-16 5.58 3.73 £0.13 1.14 £ 0.47 1.43 £ 0.58 0.66 = 0.05 4.34 +0.14 0.77 £0.14 5.72 4+ 0.08 0.56 + 0.14

ViT-B-32 6.28 3.98 +£0.06 1.35 +0.41 2.12+0.63 0.72 + 0.23 4.76 = 0.08 0.83 £ 0.12 6.26 = 0.03 0.60 = 0.11

ResNet-50  22.32 2.06 + 0.06 1.69 + 0.27 1.48 £ 0.23 9.76 £ 0.22 1.99+0.16 9.52 4+ 0.31 12.58 +1.35 0.92 + 0.09

DenseNet-121 20.13 1.67 £ 0.28 1.93 £0.19 1.16 £0.11 9.20+£0.32 1.77 £0.15 12.93 £ 0.23 22.67 £ 1.07 0.59 £+ 0.25

ImageNet-S Swin-B 24.61 6.50 + 0.05 1.53 +0.19 3.62 + 0.45 8.66 + 0.15 6.92 + 0.35 8.05 £+ 0.30 1.70 +0.06 1.26 £ 0.05
ViT-B-16 ~ 16.57 5.75 £ 0.08 1.33 £ 0.21 2.84 +0.43 5.70 +0.19 6.36 + 0.29 5.67 £0.38 1.93 +0.18 0.98 + 0.08

ViT-B-32  14.22 4.99 4+ 0.15 1.67 £ 0.27 3.25 + 0.50 4.07 £0.21 6.23 +0.16 4.44 +0.23 1.56 = 0.09 0.87 £+ 0.18

F CALIBRATION PERFORMANCE ON OTHER METRICS

F.1 ACCURACY PERFORMANCE

Accuracy Preservation Analysis Table [7] confirms that SMART achieves superior calibration
while perfectly preserving classification accuracy—a fundamental advantage of post-hoc methods.
Unlike CTS, which suffers accuracy drops up to 1.48 percentage points due to class-specific boundary
alterations, or Spline’s variable impacts on transformers, SMART’s design ensures zero accuracy
loss. By operating exclusively on the margin rather than full logit vectors, SMART focuses solely
on confidence scaling without disturbing the relative ordering that determines predictions. This
preservation holds even under severe distribution shifts like ImageNet-C and ImageNet-Sketch, where
SMART simultaneously maintains base model accuracy while dramatically improving calibration.
This dual guarantee makes SMART uniquely suitable for safety-critical applications requiring both
correct predictions and reliable uncertainty estimates.

F.2 ADAECE PERFORMANCE

This section provides an in-depth analysis of calibration performance using AdaECE across different
datasets and model architectures, complementing the results presented in Section[#.2] Adaptive-ECE
is a measure of calibration performance that addresses the bias of equal-width binning scheme of
ECE. It adapts the bin-size to the number of samples and ensures that each bin is evenly distributed
with samples. The formula for Adaptive-ECE is as follows:

B
Adaptive-ECE = Z

i=1

Bil\ 1~ il s Visg - 1Bi| = || (34)
N
AdaECE offers a more rigorous assessment of calibration quality than standard ECE by adapting bin
boundaries to ensure uniform sample distribution, preventing calibration errors from being masked in
sparsely populated confidence regions. Table 8] presents comprehensive AdaECE results across all
evaluated datasets and architectures. SMART consistently outperforms competing methods under
this metric, achieving the lowest AdaECE on 24 of 26 dataset-architecture combinations.

21



Under review as a conference paper at ICLR 2026

Table 7: Comparison of Classification Accuracy (%) Across Calibration Methods (Seed 1-5

Averaged).
Dataset Model Vanilla TS PTS CTS Spline SMART
CIFAR10 ResNet-50 95.05% 95.05% 95.05% 94.88% 95.05% 95.05%
- Wide-ResNet 96.13% 96.13% 96.13% 96.09% 96.13% 96.13%
CIFARL100 ResNet-50 76.69% 76.69% 76.69% 76.38% 76.69% 76.69%
. Wide-ResNet 79.29% 79.29% 79.29% 79.28% 79.29% 79.29%
ResNet-50 76.16% 76.16% 76.16% 75.32% 76.17% 76.16%
DenseNet-121 74.44% 74.44% 74.44% 73.71% 74.43% 74.44%
ImageNet 1K Wide-ResNet 78.46% 78.46% 78.46% 77.70% 78.46% 78.46%
mageRet: Swin-B 83.17% 83.17% 83.17% 82.80% 83.17% 83.17%
VIT-B-16 81.12% 81.12% 81.12% 79.64% 80.86% 81.12%
VIT-B-32 75.95% 75.95% 75.95% 75.14% 75.94% 75.95%
ResNet-50 19.16% 19.16% 19.16% 19.34% 19.16% 19.16%
DenseNet-121 21.25% 21.25% 21.25% 21.36% 40.83% 21.25%
ImageNet-C Swin-B 40.83% 40.83% 40.83% 41.22% 40.83% 40.83%
VIT-B-16 41.07% 41.07% 41.07% 41.28% 41.07% 41.07%
VIT-B-32 37.82% 37.82% 24.56% 37.96% 37.85% 37.82%
ResNet-50 76.04% 76.04% 76.04% 75.43% 76.04% 76.04%
DenseNet-121 74.34% 74.34% 74.34% 73.88% 74.40% 74.34%
ImaseNeL LT Wide-ResNet 78.39% 78.39% 78.39% 71.67% 78.40% 78.39%
mageivet- Swin-B 82.95% 82.95% 82.95% 82.55% 82.94% 82.95%
ViT-B-16 80.95% 80.95% 80.95% 80.58% 81.00% 80.95%
ViT-B-32 75.89% 75.89% 75.89% 75.14% 75.92% 75.89%
ResNet-50 24.09% 24.09% 24.09% 23.88% 24.09% 24.09%
DenseNet-121 24.30% 24.30% 24.30% 23.87% 31.55% 24.30%
ImageNet-S Swin-B 31.54% 31.54% 31.54% 31.65% 31.55% 31.54%
ViT-B-16 29.37% 29.37% 29.37% 29.51% 29.39% 29.37%
ViT-B-32 27.77% 27.77% 27.77% 27.76% 27.75% 27.77%

Table 8: Comparison of AdaECE Calibration Methods Using AdaECE({, %, 15bins) Across
Various Datasets and Models (Seed 1-5 Averaged).

Dataset Model Vanilla TS PTS CTS Spline SMART

CIFAR-10 ResNet-50  4.334+0.0% 2.144+0.0% 0.834+28.6% 1.56+26.2% 2.144+1.1% 0.99 +4.3%
Wide-ResNet  3.24 +0.0% 1.71£0.0% 0.89+21.9% 1.47+19.7% 2.30+0.4% 0.50 £12.2%
CIFAR.100  ResNet-50  17.53£0.0% 5.66 +£0.0% 1.91+35.3% 3.43+£32.0% 3.55+0.0% 2.27+252%
Wide-ResNet  15.34 +£0.0% 4.41 £0.0% 1.694+13.0% 2.95+11.6% 3.95+0.1% 1.83+2.1%

ResNet-50  3.68 +1.3% 2.13+0.5% 0.92+44.1% 2.21 £39.8% 0.81 +£28.7% 0.79 +8.7%
DenseNet-121  2.52 +1.4% 1.744+1.8% 1.054+41.3% 1.78 £38.0% 0.77 £28.0% 0.65 + 10.2%

ImageNet-1K Wide-ResNet  5.31 £0.3% 2.87 £2.8% 1.04 £20.6% 3.24 +18.0% 0.83 +36.3% 0.87 £ 14.3%
Swin-B 4.86 £ 0.6% 4.50+1.0% 1.054+4.6% 1.59+5.1% 1.04+53% 0.74+12.2%
ViT-B-16 557 +1.2% 4.104+2.3% 1.09 +29.7% 4.854+27.4% 1.07+29.2% 0.79 +15.4%

ViT-B-32 6.41+0.4% 3.924+1.7% 1.27+71.9% 1.90+66.4% 0.96+15.3% 0.78 +3.6%

ResNet-50 13.84 £0.2% 2.02+1.7% 1.06+0.7% 1.764+0.6% 5.49+2.8% 0.74+ 8.0%

DenseNet-121 12.57 +£0.1% 1.64+0.7% 1.17+9.9% 1.48+8.2% 2.57+7.9% 0.70 £+ 3.6%

ImageNet-C Swin-B 11.98 +0.1% 5.83+1.0% 1.58+0.0% 3.07+0.2% 5.13+2.3% 1.31+2.9%
ViT-B-16 8.244+0.3% 5.254+0.9% 1.27+59% 2.77+53% 2.57+7.9% 1.09+4.0%

ViT-B-32 766 +0.2% 5.11+0.0% 1.074+4.3% 297+3.7% 1.454+16.8% 1.01 +4.2%

ResNet-50  3.54 +0.9% 2.02+1.2% 0.92+4+35.5% 2.17+33.0% 0.71+20.7% 0.67 + 3.3%

DenseNet-121  2.37 +3.4% 1.744+2.1% 1.174+23.6% 1.864+21.3% 0.73 +£26.4% 0.76 £ 0.7%

ImageNet LT Wide-ResNet  5.22 +0.4% 2.984+0.9% 1.224+62.4% 2.83+£58.1% 0.79+18.1% 0.98 +4.4%
Swin-B 4.69 £0.6% 4.484+1.2% 1.43+19.1% 1.234+18.0% 0.95+6.7% 0.74+31.3%
ViT-B-16 5.57£0.8% 4.184+2.9% 1.13+43.4% 1.064+40.1% 0.95+12.9% 0.85+15.1%
ViT-B-32 6.26 £ 0.6% 3.97+1.6% 1.30+31.1% 2.044+28.2% 0.86+26.5% 0.84+10.1%
ResNet-50  22.31 +£0.3% 2.01 +2.9% 1.64+16.4% 1.51+14.7% 9.51+2.4% 0.90 + 15.8%
DenseNet-121  20.15 +0.5% 1.67 £17.0% 1.93+9.6% 1.16 +8.3% 8.74+1.92% 0.76 + 32.3%

ImageNet-S Swin-B 24.62+£0.0% 6.40+0.5% 1.53+12.2% 3.57+11.1% 9.06+4.2% 1.53 £ 3.8%
ViT-B-16  16.57 £0.2% 5.62+0.7% 1.33+8.7% 2.98+7.3% 8.66+1.9% 1.08+4.3%
VIT-B-32  14.19+0.3% 4.984+2.9% 1.66+ 16.0% 3.23+14.1% 5.644+3.3% 1.07 +19.9%

CIFAR Performance Analysis. SMART demonstrates exceptional calibration on CIFAR datasets
in Figure[6] achieving the lowest AdaECE with notably stable variance compared to competitors. The
key insight emerges when comparing CIFAR-10 to CIFAR-100: while global methods like TS suffer
dramatic degradation as class count increases, SMART maintains robust performance. PTS shows
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Figure 6: AdaECE comparison on CIFAR datasets. SMART consistently achieves superior
calibration on both CIFAR-10 and CIFAR-100 across multiple architectures. From left to right are
Cifar10 ResNet-50/Wide-ResNet, Cifar100 ResNet-50/Wide-ResNet.

competitive results but with substantially higher variance, indicating reliability issues. Spline struggles
particularly with CIFAR-100’s complex confidence landscape, revealing how non-parametric methods
become less effective as classification complexity increases.
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Figure 7: AdaECE(], %, 15bins) comparison on ImageNet-1K. SMART delivers consistent
calibration across diverse architectures, from CNNs to vision transformers. From left to right are
ResNet-50, DenseNet-121, Wide-ResNet, Swin-B, ViT-B-16, ViT-B-32.

Large-Scale Classification on ImageNet. In Figure [7] The ImageNet results reveal a crucial
architectural insight: SMART maintains consistent performance across both CNN and transformer
designs, while traditional methods like TS and CTS show pronounced degradation on transformers.
This architectural robustness highlights SMART’s ability to capture fundamental uncertainty signals
through the margin regardless of model inductive biases. PTS exhibits extreme variance, confirming
that high-dimensional parameterizations struggle with reliability when learning complex temperature
mappings, particularly on large-scale datasets.

3 10.0- 10.0-
w
3 5.0 = 5.0-
< -
0.0- MW - 0.0- MM T WK < 0.0- 0.0- 0.0-
\\9«‘9«9«"’ Q’~\ 0/\‘9/\")/\9 °<z~ \\0/\‘9/\")/\"’ % \\\?’«‘9«‘9«" Qﬁ\ \\@/\")/\‘9/\") Qf\
& G)%@ \\,bﬂ\ c) & & v v

Figure 8: AdaECE({, %, 15bins) comparison on ImageNet-C. SMART maintains exceptional
calibration under corruption, while Spline and TS-based methods demonstrate significant degradation.
From left to right are ResNet-50, DenseNet-121, Swin-B, ViT-B-16, ViT-B-32.

Robustness to Input Corruption. As shown in Figure[8] SMART’s resilience under corruption
provides compelling evidence for the stability of decision boundary information. While Spline
performs competitively on clean ImageNet, it deteriorates dramatically under corruption with values
5-7x higher than SMART. This collapse reveals a fundamental limitation: non-parametric methods
overfit to validation distributions and fail when input characteristics change. SMART’s focus on
decision boundary uncertainty via the margin remains informative even when input distributions shift
substantially.

Long-Tailed Distribution Calibration. As shown in Figure 0] The ImageNet-LT results reveal
that class imbalance presents a fundamentally different calibration challenge than input corruption.
Interestingly, Spline performs competitively here, suggesting non-parametric methods can handle
statistical imbalances better than distributional shifts. However, CTS underperforms despite being
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Figure 9: AdaECE(], %, 15bins) comparison on ImageNet-LT. SMART maintains strong calibra-
tion under long-tailed class distributions, particularly on CNN architectures. From left to right are
ResNet-50, DenseNet-121, Wide-ResNet, Swin-B, ViT-B-16, ViT-B-32.

explicitly designed for per-class variations, demonstrating that simply applying different temperatures
per class is insufficient for complex imbalanced scenarios.
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Figure 10: AdaECE({, %, 15bins) comparison on ImageNet-Sketch. SMART maintains excep-
tional calibration under extreme domain shift, while Spline struggles significantly. From left to right
are ResNet-50, DenseNet-121, Swin-B, ViT-B-16, ViT-B-32.

Extreme Domain Shift Calibration. The sketch-based domain shift represents the most challeng-
ing calibration scenario in Figure [I0], where SMART demonstrates its most dramatic advantage.
Spline’s collapse here reinforces the brittleness of non-parametric methods under distribution shifts,
while SMART’s consistent performance across all architectures provides strong evidence that mar-
gin information captures robust uncertainty signals that transcend specific input characteristics or
domains.

G COMPARISON OF VARIOUS TRAINING-TIME CALIBRATION METHODS ON
OTHER METRICS

This section presents a comprehensive evaluation of SMART when combined with various training-
time calibration methods across multiple metrics, extending the ECE analysis provided in Sec-
tion[4.3] We examine SMART’s performance using AdaECE, Classwise ECE (CECE), Negative
Log-Likelihood (NLL), and classification accuracy.

G.1 ACCURACY PRESERVATION

Dataset Model NLL Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours

ResNet-50 95.1 95.1 95.0 95.0 95.0 95.0 94.7 94.7 95.0 95.0 94.8 94.8
ResNet-110 95.1 95.1 94.5 94.5 94.6 94.6 94.5 94.5 94.6 94.6 94.9 94.9

CIFARIO o eNet-121 950 950 040 049 046 046 049 049 046 046 047 047
Wide-ResNet 961 961 959 959 961 961 958 958 960 960 959 959

ResNet50 767 767 766 166 768 768 766 166 168 768 713 713

clFaRige  ResNetll0 773 773 749 749 769 769 766 766 775 715 711 711

DenseNet-121 75.5 75.5 76.3 76.3 76.0 76.0 75.9 75.9 713 71.3 76.8 76.8
Wide-ResNet 79.3 79.3 79.4 79.4 79.3 79.3 78.8 78.8 79.9 79.9 80.3 80.3

Table 9: Comparison of Train-time Calibration Methods Using Accuracy(f, %) Across Various
Datasets and Models. Results demonstrate that SMART preserves the original model accuracy
across all training methods. Results are from the best run of 5 seeds.

Accuracy Analysis  As shown in Table[9] SMART consistently preserves the classification accuracy
of all base models across all training-time calibration methods. This is a critical property of post-hoc
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calibration methods, as improving confidence estimates should not come at the cost of predictive
performance. The perfect accuracy preservation is by design, as SMART’s temperature scaling
mechanism operates solely on the scaling of logits without altering their relative ordering, thus
maintaining the same class predictions. This contrasts with some training-time methods that may
involve trade-offs between accuracy and calibration quality during the model optimization process.
The preservation of accuracy across diverse architectures and datasets further validates SMART’s
practical utility as a calibration method that can be safely applied in real-world scenarios where
maintaining predictive performance is essential.

G.2 ADAECE PERFORMANCE

Dataset Model NLL Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours
ResNet-50 4.33 0.80 1.74 1.01 4.55 0.67 3.88 2.18 1.56 0.45 1.95 0.48

ResNet-110 4.40 1.22 261 0.56 5.07 0.93 4.46 3.66 2.07 0.40 1.64  0.52

CIFARIO o/ eNet-121 449 0.61 201 051 510 096 440 295 138 062 123 083
Wide-ResNet 324 044 170 044 320 053 427 097 152 044 184 0.59
ResNet-50 1753 100 654 141 1531 108 763 175 440 135 508 095
clparige  ReNerll0 1906 167 773 093 1913 198 1107 272 854 093 865 122

DenseNet-121 2099 223  5.04 1.02 19.10 1.73 12.83 196 354 093 414 097
Wide-ResNet 15.34 1.55 428 0.97 13.16 1.12 5.13 211 2.77 0.75  2.07 1.15

Table 10: Comparison of Train-time Calibration Methods Using AdaECE(|, %, 15bins) Across
Various Datasets and Models. The best-performing method for each dataset-model combination is
in bold, and our method (SMART) is highlighted. Results are from the best run of 5 seeds.

AdaECE Analysis The adaptive ECE results in Table[I0|provide further validation of SMART’s
effectiveness when combined with various training-time calibration methods. AdaECE, which uses
adaptive binning to ensure equal sample counts in each bin, offers a more robust calibration measure
than standard ECE by eliminating potential biases from uneven confidence distributions. SMART
consistently improves AdaECE across all training methods, with particularly dramatic improvements
for models trained with NLL and MMCE, where we observe reductions of up to 18 x (17.53% —
1.00% for CIFAR-100 ResNet-50).

The most substantial AdaECE improvements occur on CIFAR-100, which has ten times more classes
than CIFAR-10 and thus represents a more challenging calibration scenario. This suggests that
SMART’s effectiveness scales favorably with task complexity. Even for models already trained
with calibration-oriented objectives like Focal Loss or FLSD, SMART provides further substantial
improvements, indicating that its margin-based temperature adjustment captures complementary
information to these training-time approaches. Notably, the combination of SMART with FLSD-
53 achieves some of the lowest overall AdaECE values (e.g., 0.40% on CIFAR-10 ResNet-110),
suggesting a particularly effective synergy between these methods.

G.3 CLASSWISE ECE PERFORMANCE

Dataset Model NLL Brier Loss MMCE LS-0.05 FLSD-53 FL-3
base ours base ours base ours base ours base ours base ours

ResNet-50 0.91 0.43 0.46 0.40 0.94 0.51 0.71 0.51 0.42 0.37 0.43 0.38
ResNet-110 0.92 0.49 0.59 0.45 1.04 0.54 0.66 0.54 0.47 0.41 0.44 0.38

CIFARIO o eNet-121 092 045 046 041 104 059 060 050 041 038 042 035
Wide-ResNet 068 037 044 039 070 038 079 040 041 029 044 034

ResNet-50 038 021 022 020 034 020 023 021 020 020 020 020

crFarioo  ReSNetll0 041 020 024 021 042 021 026 020 024 020 024 021

DenseNet-121 0.45 0.23 0.20 0.20 0.42 0.23 0.29 0.21 0.19 0.20 0.20 0.20
Wide-ResNet 0.34 0.19 0.19 0.19 0.30 0.19 0.21 0.20 0.18 0.18 0.18 0.18

Table 11: Comparison of Train-time Calibration Methods Using Classwise ECE(],, %, 15bins)
Across Various Datasets and Models. The best-performing method for each dataset-model combi-
nation is in bold, and our method (SMART) is highlighted. Results are from the best run of 5 seeds.
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CECE Analysis Classwise ECE (CECE) provides insights into calibration performance at the
individual class level rather than aggregated across all classes. The formula for classwise ECE is:

| . 1 2 & |Bi7j| I C
Cassw1se—ECE—E;jz=; N |I; ; — Ci (35)

where the calibration error is computed separately for each class j across all bins ¢, then averaged
across all K classes. This metric is particularly valuable for understanding whether calibration
improvements are uniformly distributed across classes or concentrated in specific categories.

Table[TT]demonstrates SMART’s ability to improve per-class calibration across almost all training
methods and architectures. The improvements are particularly prominent for models trained with
NLL and MMCE, where CECE values are typically reduced by 50% or more after applying SMART
(e.g., from 0.91% to 0.43% for CIFAR-10 ResNet-50). This substantial improvement suggests
that SMART’s margin-based temperature scaling effectively addresses class-specific miscalibration
patterns that may arise during training with these standard objectives.

Interestingly, CECE values are consistently lower on CIFAR-100 compared to CIFAR-10 despite the
higher class count, which contrasts with the pattern observed for ECE and AdaECE. This phenomenon
occurs because CECE averages calibration errors across classes, and with 100 classes, individual
class miscalibrations tend to average out more effectively than with only 10 classes. Additionally, the
higher granularity of class divisions in CIFAR-100 may lead to more balanced per-class confidence
distributions, making the averaging effect more pronounced.

For models already trained with calibration-oriented losses like FLSD-53 and FL-3, SMART provides
more modest improvements in CECE, and in a few cases maintains the same level of performance.
This suggests that these training-time methods are already effective at addressing per-class calibration
issues through their specialized loss formulations that inherently consider class-wise balance. How-
ever, SMART can still provide complementary benefits in most scenarios, particularly for classes that
may remain poorly calibrated even after specialized training procedures.

G.4 NEGATIVE LOG-LIKELIHOOD PERFORMANCE

Dataset Model NLL Brier Loss MMCE LS-0.05 FLSD-53 FL-3
Base Ours Base Ours Base Ours Base Ours Base Ours Base Ours

ResNet-50 412 19.7 18.7 18.4 44.8 21.0 27.7 27.7 17.6 17.1 18.4 17.9
ResNet-110 475 22.5 20.4 19.4 55.7 23.6 29.9 294 18.5 17.9 17.8 17.3

CIFAR-I0 po eNet-121 429 208 191 186 521 241 287 287 184 181 180 179
Wide-ResNet 268 149 159 154 285 159 217 199 146 137 152 149
ResNet-50 1537 1053 996 995 1253 1007 1210 120 880 834 875 88.1
AR ResNet110 1792 1040 1107 1100 1806 1061 1331 1288 899 883 909 900

DenseNet-121 ~ 205.6  119.1  98.3 98.9 166.6 112.6 142.0 1343 855 86.5 87.1 87.3
Wide-ResNet ~ 140.1  95.2 84.6 84.9 119.6  94.1 108.1 106.5 76.9 774 747 75.8

Table 12: Comparison of Train-time Calibration Methods Using NLL(], %) Across Various
Datasets and Models. The best-performing method for each dataset-model combination is in bold,
and our method (SMART) is highlighted. Results are from the best run of 5 seeds.

NLL Analysis NLL is a probabilistic metric that measures both calibration quality and discrimina-
tive power. Table[I2]shows that SMART improves NLL for most models, with the most significant
gains observed for NLL, MMCE, and LS-0.05 trained models. The improvements are particularly
striking for CIFAR-10, where NLL is reduced by up to 60% after applying SMART (e.g., 41.22 —
19.70 for ResNet-50 with NLL).

However, a different pattern emerges for models trained with specialized losses like FLSD-53 and FL-
3 on CIFAR-100, where SMART sometimes leads to slight increases in NLL despite improvements
in calibration metrics like ECE and AdaECE. This suggests that these specialized training losses
optimize directly for NLL-like objectives, creating a scenario where SMART’s temperature scaling
might slightly disturb the carefully optimized probability distributions. Nevertheless, the overall trend
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across metrics indicates that SMART maintains or improves model performance in the vast majority
of cases.

H CALIBRATION PERFORMANCE UNDER SPECIFIC CORRUPTION TYPES

To provide deeper insights into SMART’s robustness across different corruption scenarios, we
examine the calibration error reduction achieved by various methods on individual corruption types
in ImageNet-C. We analyze performance across two architectures (ResNet-50 and ViT-B/16) and two
metrics (ECE and AdaECE), providing a comprehensive view of how different calibration approaches
respond to specific distribution shifts. This granular analysis helps understand which corruption
types pose the greatest calibration challenges and how architectural differences influence calibration

robustness.
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Figure 11: ECE reduction(f, %, 15bins) across corruption types for ResNet-50. SMART consis-
tently achieves superior calibration improvements across diverse corruption scenarios, demonstrating
exceptional robustness to distribution shifts.

ResNet-50 ECE Analysis The corruption-specific analysis reveals that SMART demonstrates
remarkable consistency, achieving the highest ECE reduction across most corruption categories with
improvements often exceeding 20%. The inclusion of Spline calibration exposes a critical limitation
of non-parametric methods: extreme brittleness under distribution shifts. While Spline achieves
competitive results on certain corruptions like Snow, it completely fails on others such as Brightness
and Contrast, highlighting how non-parametric approaches overfit to validation characteristics and
break down when faced with novel corruptions.

This contrasts sharply with SMART’s robust performance across all corruption types. The key
insight is that SMART’s margin indicator captures decision boundary information that remains
meaningful regardless of input degradation type—whether geometric distortions, noise, or digital
artifacts. Temperature Scaling and other global methods show predictable limitations on uniform
corruptions, while parametric methods like PTS exhibit moderate consistency but still significant
variability. SMART’s sample-specific adaptation based on decision boundary information provides
the most reliable calibration improvements, making it uniquely suitable for real-world scenarios
where corruption characteristics are unpredictable.

ResNet-50 AdaECE Analysis The AdaECE results closely mirror the ECE patterns, confirming
that SMART’s calibration improvements are fundamental rather than evaluation artifacts. SMART
achieves the highest reduction rates across most corruptions, with particularly strong performance on
geometric distortions approaching 25% improvement. Spline’s brittleness persists under adaptive
binning—performing reasonably on weather corruptions but failing on uniform transforms, confirming
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Figure 12: AdaECE reduction(f, %, 15bins) across corruption types for ResNet-50. SMART
maintains consistent superiority across corruption types under adaptive binning, confirming robust
calibration improvements independent of evaluation methodology.

that its limitations stem from overfitting rather than evaluation methodology. The near-identical
performance rankings across both metrics demonstrate that SMART’s margin approach captures
robust calibration signals regardless of how calibration quality is measured.
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Figure 13: ECE reduction(f, %, 15bins) across corruption types for ViT-B/16. Transformer
architectures exhibit distinct calibration challenges under corruption, with global methods often
failing while SMART maintains consistent improvements.

ViT-B/16 ECE Analysis The transformer results reveal striking architectural differences in calibra-
tion behavior under corruption. Most notably, Temperature Scaling frequently worsens calibration,
showing negative improvements on multiple corruption types including Shot Noise, Speckle Noise,
Snow, Brightness, Pixelate, Jpeg Compression, Saturate and Spatter. This demonstrates that trans-
formers’ attention mechanisms and different inductive biases make them fundamentally incompatible
with global temperature adjustments under distribution shifts.

SMART maintains consistent positive improvements across all corruption types, though generally
more modest than with ResNet-50. This architectural difference suggests that while transformers

28



Under review as a conference paper at ICLR 2026

are inherently better calibrated, they also present unique challenges that require more sophisticated
approaches than global scaling. The convergence of all methods on Fog corruption (around 25%
improvement) indicates that certain atmospheric corruptions create calibration conditions where
architectural differences become less relevant.

A key insight emerges: the margin’s decision boundary information remains meaningful across
architectures, while global statistics become unreliable for transformers under corruption. PTS
and CTS show more consistent improvements than TS, but SMART’s sample-specific adaptation
consistently outperforms all alternatives, confirming its architectural robustness.
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Figure 14: AdaECE reduction(f, %, 15bins) across corruption types for ViT-B/16. Transformer
calibration patterns remain consistent under adaptive binning, confirming architectural-specific
calibration challenges and SMART’s robustness.

ViT-B/16 AdaECE Analysis The AdaECE results closely replicate the ECE patterns, confirming
that transformer calibration behaviors are fundamental architectural characteristics rather than evalua-
tion artifacts. Temperature Scaling’s negative performance persists under adaptive binning, while
SMART maintains consistent positive improvements across all corruption types. This metric indepen-
dence demonstrates that SMART’s margin approach captures robust decision boundary information
that remains effective regardless of how calibration quality is measured.

I MARGIN PERSPECTIVE ON CALIBRATION

Traditional calibration analysis evaluates models from an overall perspective, potentially masking
important sample-specific miscalibration patterns. By examining calibration behaviour across margin
values, we uncover fundamental insights about how neural networks distribute confidence and validate
our method visually.

Figure [I5]demonstrates heterogeneity across margin groups. For ImageNet with ViT-B/16, whilst
overall calibration appears near-perfect (Figure [[5a), decomposing by margin reveals distinct pat-
terns: low margin samples achieve good calibration (Figure[T5c), whilst high margin samples show
systematic under-confidence (Figure[T5b). This pattern persists across different conditions, as shown
in CIFAR-100 with ResNet-50 (Figures [I5d| and [T5¢)), indicating that margin-based groupings re-
veal fundamental calibration characteristics transcending dataset-specific or architecture-specific
behaviors.

The Under-Confidence Paradox in High Margin Samples Perhaps the most counterintuitive
finding emerges from examining high margin samples. Despite representing easy classifications with
substantial separation between top predictions, these samples consistently exhibit under-confidence
rather than expected over-confidence. High margin samples from ImageNet ViT-B/16 show systematic
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Figure 15: Margin reveals hidden calibration patterns across the confidence spectrum. ImageNet
ViT-B/16 shows near-perfect overall calibration (a) but reveals systematic under-confidence in high
margin samples (b) and well-calibrated low margin samples (c). CIFAR-100 ResNet-50 demonstrates
that even with overall over-confidence (d), high margin samples remain under-confident (e). Panel (f)
shows SMART provides targeted adjustments whilst TS and PTS show suboptimal patterns.

under-confidence, with predicted confidence consistently lower than empirical accuracy (Figure [T5D).
This pattern persists even when overall model behaviour differs dramatically, as CIFAR-100 ResNet-
50 maintains under-confidence in high margin samples despite overall over-confidence (Figure[I5¢).

Method-Specific Failures from the Margin Perspective The confidence adjustment patterns in
Figure [T5f]expose fundamental limitations in existing approaches. Temperature Scaling’s uniform
adjustment completely ignores heterogeneous calibration needs across margin groups, applying
identical modifications regardless of sample characteristics. More critically, PTS makes substantial
adjustments to low margin samples that already achieve good calibration and require minimal
intervention. This unnecessary manipulation exemplifies how increased dimensionality introduces
noise for precise temperature parameterisation. In contrast, SMART provides minimal adjustments to
low margin samples that are already well-calibrated, whilst delivering targeted confidence increases
to high margin samples suffering from under-confidence. This adaptive behavior emerges naturally
from our lightweight margin-to-temperature mapping, demonstrating how principled architectural
choices translate into appropriate calibration strategies.

I.1 SENSITIVITY TO HYPERPARAMETERS A AND §

We examine the sensitivity of SMART’s performance to the bandwidth parameter A and Charbonnier
smoothing parameter ¢ in Equation equation[6] Tables [I3]and [I4]report ECE (15 bins) on ImageNet
for ResNet-50 and ViT-B/16 across different (A, §) combinations.

The results demonstrate that performance remains stable within a reasonable range of values. For
A € {0.01,0.05,0.10}, ECE varies by less than 0.2% across different ¢ choices, indicating robustness
to the Charbonnier smoothing parameter. Larger values (A > 0.50) lead to degraded performance
due to over-localization of kernel weights, creating high variance in calibration estimates. Our choice
of A = 0.05 and § = 0.001 (highlighted rows) provides consistent performance across both CNN
and transformer architectures, though the method is not particularly sensitive to § within the range
[0.001,0.100] when A is appropriately chosen.
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Table 13: ECE (%, |, 15 bins) on ImageNet ResNet-50 for different (A, §) combinations.

A\d 0.001 0.010 0.100 1.000

0.01  0.66 0.83 1.02 0.67
0.05 0.61 0.66 0.67 0.66
0.10  0.66 3.11 0.71 0.72
0.50 0.85 0.95 1.29 1.26
1.00  0.79 1.15 2.49 2.51

Table 14: ECE (%, |, 15 bins) on ImageNet ViT-B/16 for different (\, §) combinations.

A\d 0.001 0.010 0.100 1.000

0.01 1.32 0.84 0.78 0.85
0.05 0.84 0.80 0.89 0.86
0.10  0.99 0.97 0.81 2.26
0.50  2.09 2.02 2.06 2.05
1.00  2.04 2.48 2.56 2.56

J  ADDITIONAL ANALYSIS OF THE MARGIN-TEMPERATURE RELATIONSHIP

Figure[I6]illustrates that the learned margin—temperature mapping is not constrained to be monotonic.
For ImageNet ResNet-50, the mapping closely follows an increasing linear trend: samples with
larger logit margins receive higher temperatures (softer probabilities), while low-margin samples are
assigned temperatures closer to one. In contrast, on ImageNet with ViT-B/16 the mapping is clearly
non-monotonic, with an approximately U-shaped dependence on the margin. This behavior indicates
that the relationship between margin and miscalibration is architecture- and dataset-dependent;
SMART adapts to these differences rather than enforcing a fixed monotone form, and understanding
the underlying theoretical reasons is left for future work.
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Figure 16: Empirical margin—temperature relationship learned by Left: ImageNet with a ResNet-50
backbone, where the mapping is approximately linear and monotone increasing (Pearson r = 0.94).
Right: ImageNet with a ViT-B/16 backbone, where the mapping becomes non-monotonic with a
pronounced U-shaped pattern (Pearson » = —0.63 for the best linear fit).
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