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Abstract

Adversarial training (AT) is widely used to001
boost model robustness against adversarial at-002
tacks, i.e., adding minor perturbations on the003
clean input to fool the target model. However,004
AT can also lead to degraded clean accuracy005
since it changes the distribution of the train-006
ing set. Using the Taylor expansion, we find007
that commonly used adversarial loss functions008
inherently include clean loss, making it chal-009
lenging for previous methods to effectively bal-010
ance accuracy and robustness. Based on this,011
we establish a flexible AT framework that can012
explicitly balance the model robustness and013
clean accuracy by assigning learnable weights014
to the decomposed adversarial loss. Compre-015
hensive experimental results indicate that our016
method boosts model robustness while main-017
taining comparable standard performance.018

1 Introduction019

Adversarial training (AT) attempts to boost the ro-020

bustness of classifiers against adversarial examples021

by augmenting the training set with perturbed sam-022

ples. While this approach effectively reduces adver-023

sarial errors or boosts robust accuracies, it has been024

observed to impair the standard performance on025

clean test data (Tramer and Boneh, 2019; Raghu-026

nathan et al., 2020; Yuan et al., 2019; Zhang and Li,027

2019). Recent discussions (Yoo and Qi, 2021; Yuan028

et al., 2019; Zhang and Li, 2019) suggest a trade-029

off in AT, implying the challenge of simultaneously030

minimising standard and adversarial risks.031

This paper focuses on AT for natural language032

processing (NLP) tasks, especially for text classi-033

fication. The overarching concept of AT involves034

a two-level optimization process to enhance the035

model robustness. On the inner level, gradient as-036

cent is employed to optimize small perturbations037

of the input data, aiming to maximize the model’s038

loss function. On the outer level, gradient descent039

is utilized to adjust the model parameters to min-040

imize the classification loss of these adversarial 041

examples. 042

We note that in textual AT, the default iteration 043

number k is often quite small, e.g., 3 for FreeLB 044

(Zhu et al., 2020), TAVAT (Li and Qiu, 2021), and 045

InfoBERT (Wang et al., 2021a), resulting in small 046

perturbation sizes for these methods. Their empir- 047

ical results indicate that a relatively small pertur- 048

bation size helps boost both model robustness and 049

performance. Nevertheless, we doubt whether a 050

small perturbation size is really helpful in improv- 051

ing robustness. Because the inner maximization 052

greatly affects the effectiveness of AT (Wang et al., 053

2022). A small perturbation size usually gener- 054

ates lower-quality adversarial data, which makes 055

AT useless. For example, the Fast Gradient Sign 056

Method (FGSM) (Goodfellow et al., 2015) can 057

quickly generate adversarial data using one step, 058

but contributing little to robustness. Thus, it is 059

reasonable to vary the iteration number and the 060

adversarial step size to study how inner maximiza- 061

tion affects AT. To this end, we choose two widely 062

adopted AT methods, i.e., the projected gradient 063

descent (PGD) method (Madry et al., 2018) and 064

the FreeLB method (Zhu et al., 2020) as our base- 065

lines to conduct preliminary experiments on the 066

BERT-base (Devlin et al., 2019) model. 067

We report clean and robust accuracies1 equipped 068

with PGD and FreeLB in Figure 1 and Figure 2. 069

We find that the existing AT method can hardly 070

improve robustness without hurting clean accuracy, 071

which contradicts the results in previous works. As 072

the perturbation size increases in AT, the robustness 073

increases while the accuracy decreases. Addition- 074

ally, AT will easily collapse and fail to converge 075

when the perturbation size becomes too large. 076

This preliminary result indicates that we must 077

rethink the trade-off between robustness and ac- 078

1In this paper, we use clean accuracy to refer to the stan-
dard test accuracy and use robust accuracy to refer to the test
accuracy on adversarial examples.
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Figure 1: The robust accuracy (RA) and the clean ac-
curacy (Clean) of the original PGD method (Madry
et al., 2018) and ours on the SST-2 dataset (Socher et al.,
2013). The backbone model is BERT-base (Devlin et al.,
2019). As the step size increases, a trade-off exists be-
tween RA and Clean. It is hard to achieve optimal
robustness and clean accuracy simultaneously.

curacy for NLP models. It also motivates us to079

investigate whether there exists an optimal pertur-080

bation size for the sake of balance, and how to081

make AT converge in a large perturbation size to082

achieve strong robustness.083

To this end, we theoretically analyze the impact084

of the perturbation size on the learning objective of085

AT. In particular, we perform Taylor expansion on086

the adversarial loss and decompose it into a clean087

data loss and an adversarial one, in which the ad-088

versarial one is the weighted sum of squares of all089

perturbations. The clean loss corresponds to the090

model’s accuracy, while the adversarial one cor-091

responds to the model’s robustness. By assigning092

trainable weights to all the perturbations, we can093

explicitly balance the two losses to achieve compa-094

rable model robustness and standard performance.095

We further provide extensive experimental re-096

sults. Compared with existing state-of-the-art AT097

methods, our method demonstrates a remarkable098

improvement in robustness without sacrificing the099

standard accuracy. Our main contributions are:100

• We demonstrate that existing AT methods for101

NLP models either fail to improve robustness102

or compromise clean accuracy.103

• We conduct theoretical analysis on a series of104

gradient-based AT methods. We decompose105

their learning objectives into distinct adver-106

sarial and clean loss components, allowing107

us to explicitly balance model robustness and108

accuracy on clean data. 109

• We establish a flexible AT framework where 110

one can balance adversarial loss and clean loss 111

by assigning learnable weights to adversar- 112

ial perturbations. Empirical evaluations show 113

that our method can improve model robust- 114

ness without sacrificing clean accuracy. 115

2 Related Work 116

2.1 Adversarial Training 117

AT is widely used to improve robustness against 118

malicious adversarial attacks. Let f(·) be a neural 119

network, Θ be the model parameters, X be the 120

input data set and Y be the corresponding label set, 121

with each input data x ∈ X and label y ∈ Y . In 122

practice, AT is developed to solve the following 123

max-min optimization problem: 124

min
Θ

max
δ

L(f(Θ, x+ δ, y)), (1) 125

where δ denotes the minor perturbation term added 126

to the input. 127

While the outer minimization is often solved by 128

stochastic gradient descent, how to tackle the inner 129

maximization objective function is still under con- 130

tinuous study. Goodfellow et al. (2015) proposed 131

FGSM to generate perturbations in one gradient 132

ascent step as follows: 133

δ = sign(∇xL(Θ, x, y)), (2) 134

where sign(·) is the sign function. 135

However, this approximation can hardly find 136

high-quality adversarial data that can maximize 137

the loss function. To seek more precise solutions, 138

Madry et al. (2018) proposed the Projected Gradi- 139

ent Descent (PGD) method to generate perturba- 140

tions using multi-step gradient ascent steps, i.e., 141

δt = α · ∇δL(f(Θ, xt−1), y),

xt = xt−1 + δt.
(3) 142

Moreover, PGD initializes the search for adver- 143

sarial data at random starting points within the al- 144

lowed norm ball, improving the diversity of adver- 145

sarial data. Empirically, PGD and its variants are 146

still considered the most effective AT methods. 147

For NLP tasks, AT was first used to improve 148

the generalization of models. Miyato et al. (2017) 149

proposed virtual AT to enhance text classification 150

in a semi-supervised manner. To further improve 151

language understanding for pre-trained language 152
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models, Zhu et al. (2020) proposed FreeLB to pro-153

vide a large virtual batch size in AT.154

In another line of work, AT was adopted to boost155

the robustness of NLP models. By adversarially156

perturbing their embedding layer, NLP models157

were trained to predict consistently on both clean158

and adversarial data, thereby achieving better adver-159

sarial robustness. For example, Li and Qiu (2021)160

proposed TAVAT to generate token-level perturba-161

tions accounting for the importance of tokens. Li162

et al. (2021) increased the iteration numbers of AT163

and found it useful for boosting robustness. Gao164

et al. (2023) proposed to minimize the distribu-165

tion shift risk between clean and adversarial data.166

Formento et al. (2024) learned robust word embed-167

dings to defend against adversarial attacks.168

2.2 The Trade-off between Robustness and169

Accuracy170

In computer vision, while AT helps improve robust-171

ness, a vast amount of empirical evidence exists172

that the clean accuracy can be hurt (Madry et al.,173

2018; Wang et al., 2020). Zhang et al. (2019) theo-174

retically identified the trade-off between robustness175

and accuracy by decomposing the prediction error176

for adversarial examples (robust error) as the sum177

of the natural error and boundary error. Neverthe-178

less, Yang et al. (2020) proved that robustness and179

accuracy should both be achievable for benchmark180

datasets through locally Lipschitz functions.181

For NLP models, early research generally holds182

that AT improves both robustness and accuracy183

(Miyato et al., 2017; Ren et al., 2019; Zhu et al.,184

2020). However, few studies have focused on the185

trade-off between robustness and accuracy in AT186

of NLP models.187

It is worth noting that several adversarial data188

augmentation (ADA) methods (Ren et al., 2019; Li189

et al., 2019; Jin et al., 2020; Li et al., 2020) expand190

the original training set with crafted adversarial191

examples. ADA methods introduce larger pertur-192

bations than gradient-based AT methods, leading193

to relatively low clean accuracy. It demonstrates194

that there is also a trade-off between robustness and195

accuracy in AT of NLP models.196

In this work, we first demonstrate that with a197

large perturbation size, robustness trades off clean198

accuracy in gradient-based AT of NLP models. Fur-199

ther, by decomposing the learning objective of AT200

into a clean classification loss and an adversarial201

one, we can explicitly balance clean accuracy and202

robustness.203
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Figure 2: The robust accuracy (RA) and clean accuracy
(Clean) of PGD and FreeLB under different adversarial
step sizes on the SST-2 dataset. The backbone model
is BERT-base. Although PGD can achieve higher ro-
bustness than FreeLB, the clean accuracy of the model
is greatly damaged. When the perturbation is too large,
the training cannot converge.

3 On the Convergence of Adversarial 204

Training 205

It is widely pointed out that AT is more difficult 206

than standard training for both computer vision and 207

NLP models (Madry et al., 2018; Kurakin et al., 208

2017). The main reason is that a distribution dif- 209

ference exists between adversarial data and clean 210

data, which makes one model unable to converge 211

well on two widely different data distributions. Ac- 212

cording to (Gao et al., 2023), one can model the 213

difference via Wasserstein distance. The authors 214

proved that the distribution shift is bounded by the 215

adversarial perturbation δ. Therefore, δ is crucial 216

in the convergence of AT. We then vary δ to show 217

its effect2. 218

Figure 2 shows that as δ increases, the clean 219

accuracy drops significantly, which implies that 220

AT cannot converge well with large perturbations. 221

Furthermore, robust accuracy gradually increases, 222

demonstrating a trade-off between clean accuracy 223

and robust accuracy. 224

It is also intriguing to see that FreeLB can con- 225

verge under larger perturbations than PGD. We 226

theoretically analyse the differences among differ- 227

ent AT methods to understand this phenomenon. 228

Recall the learning objective in AT, 229

min
Θ

E(X,Y )∼D

[
max
∥δ∥≤ϵ

L(Θ, X + δ, Y )

]
, (4) 230

2In practice we vary the step size α in AT to control the
perturbation size.
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where Θ is the model parameters; D is the data231

distribution; δ is the added perturbation; ϵ is the232

allowed perturbation size. In the min-max process,233

multi-step gradient ascent methods often solve the234

inner maximisation. Take PGD as an example. We235

initialize x0 to x and suppose that the iteration236

number is k and the adversarial step size is α, we237

have238

xt = projϵ(xt−1 + α · norm(g(xt−1))),

1 ≤ t ≤ k,
(5)239

where g(xt−1) is the gradient of xt−1, norm(·) can240

be L2 normalization. The initial value x0 can also241

be randomly sampled within the ϵ-neighborhood242

of x. In that case, we have x0 = x+ δ0, where δ0243

is randomly sampled.244

For simplicity, we omit the projection function245

and the normalization function. The main reason246

is that in (Li et al., 2021), the authors have demon-247

strated that removing the norm-bounded limitation248

helps achieve better model robustness.249

Thus, we have250

xt = xt−1 + δt = x+

k∑
t=1

δt, t ≥ 1. (6)251

In this way, the inner maximization can be refor-252

mulated as follows:253

max
∥δ∥≤ϵ

L(Θ, x+

k∑
t=1

δt, y). (7)254

Considering that δt is very small relative to input255

x, we perform first-order Taylor expansion on the256

loss function. Thus, combining Eq. (7) and omit257

the high-order terms, we have258

L(Θ, x+
k∑

t=1

δt, y) = L(Θ, x+
k−1∑
t=1

δt + δk, y)

≈ L(Θ, x+

k−1∑
t=1

δt, y) +
1

α
δ2k

· · ·

≈ L(Θ, x, y) +
1

α

k∑
t=1

δ2t .

(8)

259

Eq. (8) indicates that one can decompose the260

loss of adversarial data during PGD training into261

the corresponding loss of clean data and the sum262

of squares of all perturbations δt.263

Therefore, it is reasonable that as the perturba- 264

tion size increases, the adversarial loss becomes 265

larger and begins to dominate the training, leading 266

to higher robustness. For clean accuracy, as the 267

perturbation size enlarges, the model gets harder to 268

converge on the original training set, resulting in 269

lower clean accuracy. 270

Based on Eq. (8), we further study how δ affects 271

the convergence of AT. We firstly extend Eq. (8) 272

to FreeLB. It can also be easily extended to other 273

PGD-like methods such as FreeLB++. 274

According to the FreeLB method, the number 275

of iterations is k and the step size is α. The loss 276

of each iteration will be divided by k and accumu- 277

lated. The model parameters will be updated at the 278

end (for comparison, PGD only uses the loss of 279

the last iteration to update the model parameters). 280

Similarly, the inner maximization of FreeLB can 281

be formulated as follows: 282

max
∥δ∥≤ϵ

1

k

k∑
t=1

L(Θ, x+ rt, y), (9) 283

where rt =
∑t

i=1 δi. Performing first-order Taylor 284

expansion on Eq. (9), similar to Eq. (8), we have 285

1

k

k∑
t=1

L(Θ, x+ rt, y) ≈ 1

k

k∑
t=1

(L(Θ, x, y) +
1

α

t∑
i=1

δ2i )

= L(Θ, x, y) +
1

α

k∑
i=1

k − i+ 1

k
δ2i .

(10)

286

Eq. (10) indicates that the learning objective of 287

FreeLB can also be decomposed into the clean 288

data loss and the weighted sum of squares of all 289

perturbations δi, where the weight of δi is k−i+1
k . 290

At this point, we can explain more clearly in 291

Figure 2. Since the PGD method inherently has a 292

greater weight for adversarial loss, it can achieve 293

higher robustness than FreeLB, but the training of 294

PGD is more difficult to converge. 295

4 Adaptive Adversarial Training 296

4.1 A Unifying Framework for Adversarial 297

Training 298

Comparing the two learning objectives, one can 299

find an implicit set of weights weighing the pertur- 300

bation δi produced at each iteration i. Further, the 301

weights of clean classification loss and the adver- 302

sarial one are also implicitly given. For the PGD 303

method with an iteration number of k, the weights 304

of clean loss and the adversarial loss are 1 and k, 305
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Algorithm 1 Adaptive Adversarial Training

Input: Model parameters Θ, loss function L, train-
ing set D = {xi, yi}ni=1, number of epochs T ,
batch size m, number of iterations k, number
of batches M , perturbation weights ŵ

Output: robust model parameters Θ
1: for epoch = 1 to T do
2: for batch = 1 to M do
3: Sample a mini-batch b = {(xi, yi)}mi=1

4: Generate adversarial perturbations δ via
Eq. (3)

5: Compute the overall loss Ĵ (Θ, x, y, ŵ)
via Eq. (12)

6: Update ŵ via ∇ŵJ (Θ, x, y, ŵ)
7: Update Θ via ∇ΘJ (Θ, x, y, ŵ)
8: end for
9: end for

respectively. The FreeLB method’s weights are 1306

and (k + 1)/2, respectively.307

Therefore, we summarize the learning objective308

J of the two methods into the following formula:309

J (Θ, x, y,w) = L(Θ, x, y) + β
1

α

k∑
i=1

wiδ
2
i ,

s.t.
k∑

i=1

wi = 1, wi ≥ 0,

(11)

310

where β balances the clean loss and the adversarial311

loss, and wi balances all the perturbations.312

However, since the derivative of the sum of313

squared perturbations involves computing the314

second-order derivative, we further manipulate the315

above formula. We introduce a set of parameters ŵ316

and combine it with Eq. (7), yielding the following317

expression:318

Ĵ (Θ, x, y, ŵ) = L(Θ, x+ β

k∑
i=1

ŵiδi, y). (12)319

By performing Taylor expansion on Eq. (12), we320

can easily verify that each term corresponds one-321

to-one with Eq. (11). For Ĵ to be equal to J , ŵ322

needs to satisfy the following constraint which is323

the same as w:324

k∑
i=1

ŵi = 1, ŵi ≥ 0. (13)325

In our experiments, we initialize it to a vector of326

ones and update it automatically using its gradient.327

4.2 The Rationale behind Our Framework 328

Next, we explain the rationale behind introducing 329

β and ŵ. As deduced above, in the PGD method, 330

the weight of the clean loss is naturally set to 1, 331

while the weight of the adversarial loss is set to 332

k. In the FreeLB method, the weight of the clean 333

loss is also 1, but the weight of the adversarial 334

loss is (k + 1)/2. To ensure the extensibility of 335

our AT framework, we introduce the parameter 336

β to balance the clean loss and adversarial loss. 337

Specifically, PGD and FreeLB are two special cases 338

of the proposed framework. 339

Eq. (10) shows that while maintaining the orig- 340

inal ratio between clean loss and adversarial loss, 341

the perturbations at each time step t are assigned 342

different weights. Therefore, we introduce a set of 343

parameters ŵ, ensuring that the sum of ŵi equals 344

1, and utilize gradients to solve for the worst-case 345

scenario. The weights ŵ are continuously updated 346

throughout the training process, in order to find the 347

optimal solution across the entire training set rather 348

than achieve a local optimum based on a single 349

batch of data. 350

It is worth noting that, in the PGD method, al- 351

though different time-step perturbations are not ex- 352

plicitly weighted, one can assume that their weights 353

are uniformly set to 1. 354

Following the min-max optimization widely 355

used in AT, the final training objective can be de- 356

fined as: 357

min
Θ

max
ŵ

Ĵ (Θ, x, y, ŵ). (14) 358

In this way, we build our novel framework of 359

adaptive AT in a constrained manner, where both 360

the PGD and the FreeLB methods can be consid- 361

ered special cases of our framework. 362

Notably, our framework can encompass a wider 363

range of PGD-based AT algorithms, not limited 364

to FreeLB. We show our proposed adaptive AT 365

method in Algorithm 1. 366

5 Experimental Setup 367

5.1 Tasks and Datasets 368

Following previous important works (Gao et al., 369

2023; Li et al., 2021; Li and Qiu, 2021), we com- 370

pare our adaptive AT method with baselines on two 371

tasks, i.e., text classification and natural language 372

inference. In the main experiments, we choose the 373

SST-2 (Socher et al., 2013)3 and the QNLI (Wang 374

3https://dl.fbaipublicfiles.com/glue/data/
SST-2.zip
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et al., 2019)4 datasets to perform text classification375

and natural language inference tasks, respectively.376

For completeness, we also test the applicability of377

our method on the IMDB dataset (Maas et al., 2011)378

and the AGNEWS dataset (Zhang et al., 2015),379

both used for text classification. Detailed char-380

acteristics and examples of the four datasets are381

presented in Appendix A.382

5.2 Baseline Methods383

5.2.1 Defence Methods384

We apply our framework to various AT-based de-385

fence methods, including PGD (Madry et al., 2018),386

FreeLB (Zhu et al., 2020), and TA-VAT (Li and Qiu,387

2021). To comprehensively benchmark existing de-388

fence methods, we report the results of InfoBERT389

(Wang et al., 2021a), Flooding-X (Liu et al., 2022),390

and SMART (Jiang et al., 2020) which enhance391

AT by an information bottleneck, “flooding”, and392

smoothness-inducing regularization, respectively.393

The performance of TRADES (Zhang et al., 2019),394

which is the most relevant method from the com-395

puter vision domain to ours, is also presented.396

DSRM (Gao et al., 2023), GAT (Zhu and Rao,397

2023), and SemRoDe (Formento et al., 2024) are398

not chosen. This is because DSRM introduces a399

distribution shift into adversarial defence, while400

GAT and SemRoDe incorporate valid adversarial401

examples into the training process; none of these402

can be adopted for a fair comparison.403

5.2.2 Attacking Methods404

Following previous works, we use TextFooler (Jin405

et al., 2020), TextBugger (Li et al., 2019), and BAE406

(Garg and Ramakrishnan, 2020) as our attacking407

methods to dynamically generate adversarial exam-408

ples during test time.409

We also consider assessing AT methods against410

high-quality adversarial examples pre-crafted by411

human annotators. Therefore, we report the robust412

accuracy of all the models on the adversarial GLUE413

dataset (Wang et al., 2021b).414

6 Main Results415

Our proposed method can be easily extended to416

PGD-like AT methods. In this part, we advance417

PGD, FreeLB and TA-VAT with adaptive perturba-418

tions to assess the effectiveness of our method. We419

conduct the main experiments on the BERT-base420

4https://huggingface.co/datasets/nyu-mll/glue

model to provide comprehensive comparisons with 421

other AT methods. 422

Note that the value of β is related to the methods 423

being extended. For example, when extending the 424

PGD method using our framework, the value of β 425

is set to k (i.e., the number of iterations) according 426

to Eq. (8). We leave the exploration of the effects 427

of different β values for future work. 428

Table 1 reports the defence results against 429

different types of adversarial attacks on the 430

SST-2 dataset, including two word-level attacks 431

(TextFooler and BAE), one multi-level attack 432

(TextBugger), and an adversarial test dataset (Ad- 433

versarial GLUE). The main findings are: 434

• For clean accuracy, all the baseline AT meth- 435

ods maintain a similar level, since the adver- 436

sarial strength is moderate. The PGD method 437

has the lowest clean accuracy, which is con- 438

sistent with the conclusions of previous work. 439

• For robust accuracy against dynamic adver- 440

sarial attacks and human-crafted adversarial 441

examples, our method can boost the perfor- 442

mance of three AT methods. Compared with 443

InfoBERT and Flooding-X, our method also 444

maintains higher robustness. 445

• Our method can boost the robust accuracy of 446

PGD, FreeLB and TA-VAT methods while 447

achieving comparable clean accuracy, which 448

is consistent with our motivations. 449

We also conduct experiments on the QNLI 450

dataset. The main results are consistent with that 451

on the SST-2 dataset. Our method consistently 452

enhances robust accuracy across various adversar- 453

ial attacks and test sets. Thanks to the adaptive 454

strength of perturbations, the clean accuracy re- 455

mains at a comparable level compared to other AT 456

methods. 457

We note that the PGD method still has the lowest 458

clean accuracy. According to Eq. (8), the PGD 459

method implicitly places a greater weight on the 460

adversarial loss than FreeLB. Since it is directly 461

adopted from the visual domain, no adjustments 462

have been made to the trade-off between robustness 463

and clean accuracy. As a consequence, this method 464

exhibits lower clean accuracy on NLP tasks. 465

Due to the space limit, we report the results on 466

the IMDB and AGNEWS datasets in Appendix B. 467
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SST-2 Clean % TextFooler TextBugger BAE AdvGLUE

RA % RA % RA % RA %

BERT-base (Devlin et al., 2019) 92.32 8.14 26.83 33.72 31.32
InfoBERT (Wang et al., 2021a) 91.74 10.89 32.68 37.96 32.17
Flooding-X (Liu et al., 2022) 92.32 12.60 32.45 35.44 27.00
SMART (Jiang et al., 2020) 91.78 10.45 30.15 33.26 23.54
TRADES (Zhang et al., 2019) 87.19 9.46 29.53 35.41 30.99

PGD (Madry et al., 2018) 89.11 12.96 32.22 35.21 39.13
+Ours 88.99 (-0.12) 16.06 (+3.10) 35.68 (+3.46) 40.02 (+4.81) 43.44 (+4.31)

FreeLB (Zhu et al., 2020) 92.20 9.98 34.06 37.73 30.13
+Ours 91.63 (-0.57) 15.69 (+5.71) 38.73 (+4.67) 41.22 (+3.49) 38.53 (+8.40)

TA-VAT (Li and Qiu, 2021) 91.40 11.93 35.89 37.61 32.00
+Ours 91.51 (+0.11) 18.46 (+6.53) 39.60 (+3.71) 40.94 (+3.33) 39.42 (+7.42)

Table 1: The clean accuracy (“Clean %”) and the robust accuracy (“RA %”) on the SST-2 dataset against TextFooler,
TextBugger, and BAE attacks. We report the robust accuracy of the models on the adversarial GLUE dataset (i.e.,
AdvGLUE) to evaluate AT methods against pre-crafted adversarial examples. The backbone model is BERT-base.

QNLI Clean % TextFooler TextBugger BAE AdvGLUE

RA % RA % RA % RA %

BERT-base (Devlin et al., 2019) 90.60 8.80 9.50 27.90 42.75
InfoBERT (Wang et al., 2021a) 89.10 5.30 6.80 30.90 44.00
Flooding-X (Liu et al., 2022) 91.50 12.00 16.60 40.30 47.00
SMART (Jiang et al., 2020) 91.77 8.50 13.22 33.46 39.02
TRADES (Zhang et al., 2019) 86.22 9.45 12.14 35.44 43.50

PGD (Madry et al., 2018) 87.00 11.30 16.80 43.60 41.50
+Ours 87.90 (+0.90) 16.80 (+5.50) 17.20 (+0.40) 41.20 (-2.40) 48.89 (+7.39)

FreeLB (Zhu et al., 2020) 89.60 14.40 14.10 40.50 44.75
+Ours 89.70 (+0.10) 16.60 (+2.20) 17.70 (+3.60) 43.10 (+2.60) 51.75 (+7.00)

TA-VAT (Li and Qiu, 2021) 91.51 12.60 14.30 40.94 43.00
+Ours 91.00 (-0.51) 18.46 (+5.86) 20.30 (+6.00) 44.20 (+3.26) 51.00 (+8.00)

Table 2: The clean accuracy (“Clean %”) and the robust accuracy (“RA %”) on the QNLI dataset against TextFooler,
TextBugger, and BAE attacks. We report the robust accuracy of the models on the adversarial GLUE dataset (i.e.,
AdvGLUE) to evaluate AT methods against pre-crafted adversarial examples. The backbone model is BERT-base.

7 Discussions468

In this section, we discuss the relationship between469

our method and existing AT methods. We highlight470

the importance of conducting AT on small language471

models like BERT, rather than solely focusing on472

large language models (LLMs). We also provide an473

error analysis of the approximate loss and demon-474

strate the PGD loss and approximate loss in AT in475

practice.476

7.1 Relation to Existing Work477

We list a series of loss functions of AT methods478

in Table 3 and discuss the difference between our479

proposed adaptive AT and conventional AT meth-480

ods, including fast gradient method (FGM) (Miyato481

et al., 2017), PGD (Madry et al., 2018), TRADES482

(Zhang et al., 2019), and FreeLB (Zhu et al., 2020).483

Appendix C contains more detailed discussions 484

about these methods. 485

7.2 Beyond Model Parameters 486

Recently, LLMs have achieved remarkable results 487

across many NLP tasks (Achiam et al., 2023; Guo 488

et al., 2025). Therefore, it is necessary to reveal 489

the importance of conducting AT on language mod- 490

els with fewer parameters, such as BERT. We se- 491

lect a more practical task, namely spam detection, 492

and report the standard performance of models 493

with varying parameter sizes in Table 4, includ- 494

ing Naive Bayes (NB), Support Vector Machine 495

(SVM), BERT, and LLMs. The usage of deepseek 496

is detailed in Appendix G. We adopt the SMS Spam 497

Collection dataset (Almeida et al., 2011), which 498

contains 747 spam messages and 4,825 non-spam 499

7



Methods Loss Function Flexibility

Standard L(Θ, x, y) -
FGM (Miyato et al., 2017) L(Θ, x, y) + L(Θ, x+ δ, y) %

PGD (Madry et al., 2018) L(Θ, x+ δk, y) %

TRADES (Zhang et al., 2019) L(Θ, x, y) + λKL(p(Θ, x)||p(Θ, x+ δ)) !–

FreeLB (Zhu et al., 2020) 1
k

∑k
i=1 L(Θ, x+ δi, y) %

Ours L(Θ, x, y) + β 1
α

∑k
i=1wiδ

2
i !

Table 3: Comparisons of different loss functions in AT. The adversarial perturbations in TRADES are generated by
maximizing its regularization term (KL-divergence). The Flexibility indicates whether the method can explicitly
control the weighting between clean loss and adversarial loss. %indicates that the method cannot balance clean and
adversarial losses. !–indicates that the method introduces a hyperparameter to balance the two types of loss, but
lacks flexibility because the adversarial loss still contains the clean loss. !indicates that it can explicitly balance
clean loss and adversarial loss.

Method Acc. Pre. Recall F1

SVM (linear) 97.56 97.01 84.82 90.50
Multinomia NB 98.21 98.26 88.48 93.11
BERT-base 99.48 94.44 91.15 92.61
DeepSeek-r1-zeroshot 87.74 52.71 95.77 68.00
DeepSeek-r1-fewshot 95.45 79.75 91.30 85.14

Table 4: The performance of models with varying pa-
rameter sizes on the spam detection task. We use
deepseek-r1 (Guo et al., 2025) to demonstrate the perfor-
mance of LLMs on this dataset in zero-shot and few-shot
manners.

messages. The long-tail distribution of the data500

makes it more realistic and challenging.501

As can be seen, even the state-of-the-art502

DeepSeek-r1 model (Guo et al., 2025) performs503

poorly on this dataset, which may be related to the504

data distribution. However, small models general-505

ize well on this dataset.506

Given the constraints of computational resources507

and training efficiency, this study proposes to in-508

vestigate AT for BERT-based architectures to mit-509

igate vulnerabilities against adversarial perturba-510

tions, rather than focusing on LLMs.511

7.3 Error Analysis512

It is necessary to analyze the error of our method513

since we have ignored the higher-order terms in the514

Taylor expansion. Taking the PGD method as an515

example, we show the error between the approxi-516

mate loss and the original PGD loss. The original517

PGD loss is computed by Eq. (7). The approximate518

is computed by Eq. (8).519

In Figure 3, we observe that the approximate520

loss can well match the loss curve of the PGD521

0 200 400 600 800
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Lo

ss
The PGD Loss
The Approximate Loss

Figure 3: The error between the approximate loss and
the original PGD loss on the SST2 dataset over the
BERT model. This indicates that our approximation of
the experiments is quite practicable.

method. This demonstrates that our approximation 522

is accurate in the experiments and it can be used to 523

develop AT with an adaptive perturbation. 524

8 Conclusions 525

This work seeks to balance model robustness and 526

accuracy. To this end, we decompose the learn- 527

ing objective of adversarial training into a pure 528

adversarial loss and clean loss, which correspond 529

to model robustness and clean accuracy, respec- 530

tively. This way, we can explicitly assign learnable 531

weights to the two losses to balance model robust- 532

ness and clean accuracy. Experimental results on 533

four datasets over BERT, RoBERTa and DeBERTa 534

models show that our method can boost model ro- 535

bustness without sacrificing clean accuracy. 536
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Limitations537

This paper leverages Taylor expansion to decom-538

pose the loss function (i.e., the cross-entropy func-539

tion) of AT. The Taylor expansion is a mathematical540

method used to approximate a function as a power541

series around a specific point. The loss function542

must have derivatives of sufficiently high order at543

the point of expansion and in its vicinity. Specif-544

ically, if we want to expand to the n-th order, the545

function must have at least n derivatives at that546

point. Although to our best knowledge, the main-547

stream of loss functions used in AT meet the above548

conditions, this may not be suitable for more com-549

plex loss functions.550
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A Statistics and Examples of the Four 785

Datasets 786

For the SST-2 dataset, an example of x and y is 787

“On the worst revenge-of-the-nerds clichés the film- 788

makers could dredge up” and “Negative”. 789

For the IMDB dataset, an example of x and y is 790

“Fred "The Hammer" Williamson delivers another 791

cheaply made movie. He might have set a new 792

standard for himself. Look for the painfully obvious 793

special effects mortar cannon that is visible in the 794

street during a chase scene. You don’t see it just 795

once, you see it several times. Look for the out of 796

focus shot in one scene and the camera operator 797

try to fix it as the scene rolls on. Watch this with 798

a group of people and make your own Mystery 799

Science Theater!” and “Negative”. 800

For the AGNEWS dataset, an example of x and 801

y is “Wall St. Bears Claw Back Into the Black 802

(Reuters) Reuters - Short-sellers, Wall Street’s 803

dwindling band of ultra-cynics, are seeing green 804

again.” and “Business”. 805

For the QNLI dataset, an example of x and y is 806

“When did the third Digimon series begin? Unlike 807

the two seasons before it and most of the seasons 808

that followed, Digimon Tamers takes a darker and 809

more realistic approach to its story featuring Digi- 810

mon who do not reincarnate after their deaths and 811

more complex character development in the origi- 812

nal Japanese” and “Not entailment”. 813

We list the characteristics of the four datasets 814

below. 815

Dataset # train # dev / test # words
SST-2 67,349 872 17
IMDB 25,000 25,000 201
AG news 120,000 7,600 40
QNLI 105,000 5,460 37

Table 5: Summary of the four datasets.

B Results on More Datasets 816

We advance the PGD, FreeLB, and TA-VAT meth- 817

ods with our adaptive perturbations and report the 818

results on the IMDB and the AGNEWS datasets in 819

Table 6. 820

In terms of clean accuracy, our method maintains 821

a performance level comparable to the baseline. In 822

terms of robustness accuracy, our method improves 823

the robustness of the baseline in most scenarios. 824
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It is noteworthy that the improvement in robust-825

ness is relatively small on these two datasets. This826

may be related to the sentence length in the datasets.827

Existing adversarial attack algorithms typically set828

the maximum number of word replacements based829

on a percentage of the sentence’s token count, such830

as 20%. As the length increases, the number of831

words to be replaced also increases, which may re-832

sult in less significant improvements in robustness.833

C Relation to Existing Work834

Specifically, the standard method is designed to835

minimize the clean data loss, i.e., the cross-entropy836

on the clean data. The FGM (Miyato et al., 2017)837

method generates adversarial examples in one gra-838

dient ascent step, minimising both clean and adver-839

sarial data loss. The PGD method (Madry et al.,840

2018) generates adversarial examples using multi-841

step gradient ascent and only minimizes the ad-842

versarial data loss in the last step. Similarly, the843

FreeLB method (Zhu et al., 2020) generates adver-844

sarial examples using multi-step gradient ascent.845

Different from PGD, FreeLB minimize the average846

of the adversarial loss at each step.847

It is important to point out that all these methods848

implicitly include the clean data loss in the adver-849

sarial loss. In particular, as revealed by Eq. (8) and850

Eq. (10), the conventional adversarial loss can be851

decomposed into a clean data loss and an adver-852

sarial loss. Therefore, although we can introduce853

hyperparameters to balance clean loss and adver-854

sarial loss in these methods, we cannot precisely855

balance the two losses.856

TRADES (Zhang et al., 2019) is theoretically857

designed to achieve a good trade-off between accu-858

racy and robustness in the computer vision domain,859

which is the most relevant AT method with our860

adaptive AT. TRADES decomposes the adversar-861

ial error into a natural error and a boundary error.862

However, the boundary error cannot be effectively863

computed. In practice, the authors introduce a sur-864

rogate loss (i.e., the KL divergence between the865

model output of clean data and adversarial data)866

to approximate the boundary error. In this way,867

TRADES cannot precisely balance the standard868

performance and robustness.869

Our proposed adaptive AT addresses this issue870

by decomposing the conventional adversarial loss871

using Taylor expansion. In our learning objective,872

clean loss and adversarial loss only affect standard873

performance and model robustness, respectively.874
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Figure 4: The robust accuracy and clean accuracy under
different k and α, while the maximal perturbation size
is set to kα following (Li et al., 2021).

D Impact of Adversarial Step Size 875

We aim to investigate the impact of the perturba- 876

tion size in AT. In AT, the maximum perturbation 877

size is typically specified. However, what effec- 878

tively determines the perturbation magnitude are 879

the number of iterations and the adversarial step 880

size. Therefore, given a perturbation size, we vary 881

the number of iterations and step size to investi- 882

gate their impact on robustness. In other words, we 883

want to find out whether increasing the perturba- 884

tion strength of adversarial training always helps 885

robustness. We conduct PGD adversarial training 886

on the BERT-base model. Based on our previous 887

experiments, the product of iteration numbers k 888

and adversarial step size α is empirically set to 10 889

and 0.4. 890

The main result is reported in Figure 4. It can be 891

seen that when the number of iterations is moderate 892

(5 and 6), the model achieves the best robustness. 893

We suggest that it is unnecessary to set a huge num- 894

ber of iterations during adversarial training. As 895

suggested in (Zhu and Rao, 2023), robust overfit- 896

ting hinders the AT of NLP models. Too many iter- 897

ations may lead to robust overfitting of the model 898

and reduce its robustness accuracy on the test set. 899

E Performance on Other Models 900

We choose DeBERTa-v3-base (He et al., 2021) and 901

RoBERTa (Liu et al., 2019), two improved versions 902

of BERT, as our backbone models to investigate 903

whether our method can boost the robustness of 904

more complex and larger language models. The 905

clean and robust accuracy of DeBERTa-v3-base 906

and RoBERTa-base models are reported in Table 8. 907
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IMDB Clean % TextFooler TextBugger BAE

RA % RA % RA %

BERT (Devlin et al., 2019) 91.21 24.48 47.26 20.31
InfoBERT (Wang et al., 2021a) 91.90 23.00 37.30 22.40
Flooding-X (Liu et al., 2022) 92.30 34.50 32.30 35.42
SMART (Jiang et al., 2020) 91.90 24.50 45.40 22.32
TRADES (Zhang et al., 2019) 88.34 25.50 47.60 18.34

PGD (Madry et al., 2018) 90.43 26.31 52.37 21.44
+Ours 90.56 (+0.13) 27.12 (+0.81) 53.50 (+1.13) 21.55 (+0.11)

FreeLB (Zhu et al., 2020) 92.14 27.50 50.60 31.34
+Ours 91.80 (-0.34) 26.82 (-0.68) 52.74 (+2.14) 33.10 (+1.76)

TA-VAT (Li and Qiu, 2021) 91.50 27.40 51.70 23.12
+Ours 92.08 (+0.58) 25.70 (-1.70) 51.66 (-0.04) 24.30 (+1.18)

Table 6: The clean accuracy (“Clean %”) and the robust accuracy (“RA %”) on the IMDB dataset against TextFooler,
TextBugger, and BAE attacks. The backbone model is BERT-base. The IMDB dataset does not have a corresponding
AdvGLUE version. Therefore, the robustness accuracy for this dataset is not reported.

AGNEWS Clean % TextFooler TextBugger BAE

RA % RA % RA %

BERT (Devlin et al., 2019) 91.90 20.50 42.71 16.21
InfoBERT (Wang et al., 2021a) 92.00 19.20 31.41 12.70
Flooding-X (Liu et al., 2022) 91.39 33.40 55.60 29.40
SMART (Jiang et al., 2020) 92.20 22.45 37.80 15.60
TRADES (Zhang et al., 2019) 89.42 33.90 48.65 27.61

PGD (Madry et al., 2018) 90.82 37.20 58.20 32.83
+Ours 91.10 (+0.28) 38.70 (+1.50) 57.92 (-0.28) 35.20 (+2.37)

FreeLB (Zhu et al., 2020) 91.20 32.33 48.50 22.65
+Ours 91.07 (-0.13) 32.10 (-0.23) 50.10 (+1.60) 24.12 (+1.47)

TA-VAT (Li and Qiu, 2021) 92.17 39.70 55.81 23.66
+Ours 91.66 (-0.51) 37.26 (-2.44) 57.36 (+1.55) 23.77 (+0.11)

Table 7: The clean accuracy (“Clean %”) and the robust accuracy (“RA %”) on the AGNEWS dataset against
TextFooler, TextBugger, and BAE attacks. The backbone model is BERT-base. The AGNEWS dataset does not
have a corresponding AdvGLUE version. Therefore, the robustness accuracy for this dataset is not reported.
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SST2 Clean % TextFooler AdvGLUE

RA % RA %

RoBERTa-base 95.07 6.19 39.50
+PGD 94.27 11.47 44.59
+Ours 94.95 11.82 45.22

DeBERTa-v3-base 95.99 12.60 55.41
+PGD 95.18 13.99 57.14
+Ours 95.76 14.50 67.34

Table 8: The clean and robust accuracy on RoBERTa
(Liu et al., 2019) and DeBERTa-v3-base (He et al.,
2021).

Method SST-2 QNLI

PGD (Madry et al., 2018) 902 4123
+Ours 912 4237

FreeLB (Zhu et al., 2020) 781 3122
+Ours 920 3745

TA-VAT (Li and Qiu, 2021) 853 3455
+Ours 1013 4123

Table 9: The GPU time consumption (seconds) of train-
ing one epoch on the SST-2 and QNLI datasets. The
backbone model is BERT-base. The iteration number is
set to 5 for all the methods.

These two models can bear a larger perturbation908

size than the BERT-base model to explore the im-909

pact of a larger perturbation range on adversarial910

training. The empirical results indicate that our911

adaptive AT can generalize well on larger, more912

complex models.913

F Time Consumption914

To further substantiate the comparative advantages915

of our method, a systematic benchmarking analysis916

was conducted to evaluate GPU training durations917

between our proposed approach and established918

adversarial training methods, with the quantitative919

comparisons meticulously documented in Table 9.920

Our method incurs approximately a 10% increase921

in computational overhead. This empirical inves-922

tigation demonstrates our method’s computational923

efficiency while maintaining equivalent adversarial924

robustness metrics.925

G Details on the Usage of DeepSeek926

We employ the DeepSeek-r1 model (Guo et al.,927

2025) for spam detection and evaluate its perfor-928

mance under zero-shot and few-shot settings. In the929

zero-shot setting, the model receives no examples 930

or labels and is prompted to classify the message 931

based solely on its inherent reasoning ability. The 932

prompt provided is: “You are a professional spam 933

classifier. Please analyze the following message 934

and determine whether it is spam. Just reply ’spam’ 935

or ’ham’, no explanation is needed." This setup 936

tests the model’s ability to classify messages with- 937

out prior examples or labels. 938

In the few-shot setting, we supply the model 939

with two examples and their corresponding la- 940

bels. The first example is a spam message: 941

“URGENT! This is the 2nd attempt to contact 942

U!U have WON å£1000CALL 09071512432 b4 943

300603t&csBCM4235WC1N3XX.callcost150 pp- 944

mmobilesvary. maxå£7.50", labeled as spam. The 945

second example is a non-spam message: “Why 946

don’t you go tell your friend you’re not sure you 947

want to live with him because he smokes too much 948

then spend hours begging him to come smoke", la- 949

beled as ham. This setting aims to examine how the 950

model leverages the provided examples to classify 951

messages. 952

Through these two setups, we assess the model’s 953

generalization ability and performance when there 954

are no explicit labels or examples available. 955

H Implementation Details 956

We implement PGD (Madry et al., 2018), FreeLB 957

(Zhu et al., 2020), TA-VAT (Li and Qiu, 2021), and 958

InfoBERT (Wang et al., 2021a) based on TextDe- 959

fender (Li et al., 2021). We implement Flooding-X 960

(Liu et al., 2022), SMART (Jiang et al., 2020), and 961

TRADES (Zhang et al., 2019) following the origi- 962

nal paper. The weighting factor α in TRADES is 963

set to 0.5 to achieve the optimal performance. The 964

three adversarial attacks are conducted using Tex- 965

tAttack5 (Morris et al., 2020). All experiments are 966

conducted using GeForce RTX 3090 GPUs. All the 967

settings of adversarial hyper-parameters settings 968

are consistent to provide a fair comparison. 969

Unless otherwise mentioned, the adversarial step 970

size is set to 0.04; the batch size is 128; the epoch 971

number is 10. To align with the weighting factor 972

of the original method, β is set to k for PGD and 973

TA-VAT and (k + 1)/2 for FreeLB. 974

For the natural language inference task, we ad- 975

here to prior research (Jin et al., 2020) by allowing 976

the attacking methods to modify the premise while 977

keeping the hypothesis unchanged. 978

5https://github.com/QData/TextAttack
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