Adaptive Adversarial Training for Balancing Model Robustness and
Standard Performance

Anonymous ACL submission

Abstract

Adversarial training (AT) is widely used to
boost model robustness against adversarial at-
tacks, i.e., adding minor perturbations on the
clean input to fool the target model. However,
AT can also lead to degraded clean accuracy
since it changes the distribution of the train-
ing set. Using the Taylor expansion, we find
that commonly used adversarial loss functions
inherently include clean loss, making it chal-
lenging for previous methods to effectively bal-
ance accuracy and robustness. Based on this,
we establish a flexible AT framework that can
explicitly balance the model robustness and
clean accuracy by assigning learnable weights
to the decomposed adversarial loss. Compre-
hensive experimental results indicate that our
method boosts model robustness while main-
taining comparable standard performance.

1 Introduction

Adversarial training (AT) attempts to boost the ro-
bustness of classifiers against adversarial examples
by augmenting the training set with perturbed sam-
ples. While this approach effectively reduces adver-
sarial errors or boosts robust accuracies, it has been
observed to impair the standard performance on
clean test data (Tramer and Boneh, 2019; Raghu-
nathan et al., 2020; Yuan et al., 2019; Zhang and Li,
2019). Recent discussions (Yoo and Qi1, 2021; Yuan
et al., 2019; Zhang and Li, 2019) suggest a trade-
off in AT, implying the challenge of simultaneously
minimising standard and adversarial risks.

This paper focuses on AT for natural language
processing (NLP) tasks, especially for text classi-
fication. The overarching concept of AT involves
a two-level optimization process to enhance the
model robustness. On the inner level, gradient as-
cent is employed to optimize small perturbations
of the input data, aiming to maximize the model’s
loss function. On the outer level, gradient descent
is utilized to adjust the model parameters to min-

imize the classification loss of these adversarial
examples.

We note that in textual AT, the default iteration
number k is often quite small, e.g., 3 for FreeLB
(Zhu et al., 2020), TAVAT (Li and Qiu, 2021), and
InfoBERT (Wang et al., 2021a), resulting in small
perturbation sizes for these methods. Their empir-
ical results indicate that a relatively small pertur-
bation size helps boost both model robustness and
performance. Nevertheless, we doubt whether a
small perturbation size is really helpful in improv-
ing robustness. Because the inner maximization
greatly affects the effectiveness of AT (Wang et al.,
2022). A small perturbation size usually gener-
ates lower-quality adversarial data, which makes
AT useless. For example, the Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015) can
quickly generate adversarial data using one step,
but contributing little to robustness. Thus, it is
reasonable to vary the iteration number and the
adversarial step size to study how inner maximiza-
tion affects AT. To this end, we choose two widely
adopted AT methods, i.e., the projected gradient
descent (PGD) method (Madry et al., 2018) and
the FreeLLB method (Zhu et al., 2020) as our base-
lines to conduct preliminary experiments on the
BERT-base (Devlin et al., 2019) model.

We report clean and robust accuracies' equipped
with PGD and FreeLLB in Figure 1 and Figure 2.
We find that the existing AT method can hardly
improve robustness without hurting clean accuracy,
which contradicts the results in previous works. As
the perturbation size increases in AT, the robustness
increases while the accuracy decreases. Addition-
ally, AT will easily collapse and fail to converge
when the perturbation size becomes too large.

This preliminary result indicates that we must
rethink the trade-off between robustness and ac-

'In this paper, we use clean accuracy to refer to the stan-

dard test accuracy and use robust accuracy to refer to the test
accuracy on adversarial examples.
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Figure 1: The robust accuracy (RA) and the clean ac-
curacy (Clean) of the original PGD method (Madry
et al., 2018) and ours on the SST-2 dataset (Socher et al.,
2013). The backbone model is BERT-base (Devlin et al.,
2019). As the step size increases, a trade-off exists be-
tween RA and Clean. It is hard to achieve optimal
robustness and clean accuracy simultaneously.

curacy for NLP models. It also motivates us to
investigate whether there exists an optimal pertur-
bation size for the sake of balance, and how to
make AT converge in a large perturbation size to
achieve strong robustness.

To this end, we theoretically analyze the impact
of the perturbation size on the learning objective of
AT. In particular, we perform Taylor expansion on
the adversarial loss and decompose it into a clean
data loss and an adversarial one, in which the ad-
versarial one is the weighted sum of squares of all
perturbations. The clean loss corresponds to the
model’s accuracy, while the adversarial one cor-
responds to the model’s robustness. By assigning
trainable weights to all the perturbations, we can
explicitly balance the two losses to achieve compa-
rable model robustness and standard performance.

We further provide extensive experimental re-
sults. Compared with existing state-of-the-art AT
methods, our method demonstrates a remarkable
improvement in robustness without sacrificing the
standard accuracy. Our main contributions are:

* We demonstrate that existing AT methods for
NLP models either fail to improve robustness
or compromise clean accuracy.

* We conduct theoretical analysis on a series of
gradient-based AT methods. We decompose
their learning objectives into distinct adver-
sarial and clean loss components, allowing
us to explicitly balance model robustness and

accuracy on clean data.

* We establish a flexible AT framework where
one can balance adversarial loss and clean loss
by assigning learnable weights to adversar-
ial perturbations. Empirical evaluations show
that our method can improve model robust-
ness without sacrificing clean accuracy.

2 Related Work

2.1 Adversarial Training

AT is widely used to improve robustness against
malicious adversarial attacks. Let f(-) be a neural
network, © be the model parameters, X be the
input data set and Y be the corresponding label set,
with each input data z € X and label y € Y. In
practice, AT is developed to solve the following
max-min optimization problem:

minmax £(f(©,2+0,), (1)

where & denotes the minor perturbation term added
to the input.

While the outer minimization is often solved by
stochastic gradient descent, how to tackle the inner
maximization objective function is still under con-
tinuous study. Goodfellow et al. (2015) proposed
FGSM to generate perturbations in one gradient
ascent step as follows:

§ = sign(VaL(©,z,y)), )

where sign(-) is the sign function.

However, this approximation can hardly find
high-quality adversarial data that can maximize
the loss function. To seek more precise solutions,
Madry et al. (2018) proposed the Projected Gradi-
ent Descent (PGD) method to generate perturba-
tions using multi-step gradient ascent steps, i.e.,

o =« V5£<f(®7 xt—l)ay)v

Ty = Ty—1 + 0t
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Moreover, PGD initializes the search for adver-
sarial data at random starting points within the al-
lowed norm ball, improving the diversity of adver-
sarial data. Empirically, PGD and its variants are
still considered the most effective AT methods.

For NLP tasks, AT was first used to improve
the generalization of models. Miyato et al. (2017)
proposed virtual AT to enhance text classification
in a semi-supervised manner. To further improve
language understanding for pre-trained language



models, Zhu et al. (2020) proposed FreeLLB to pro-
vide a large virtual batch size in AT.

In another line of work, AT was adopted to boost
the robustness of NLP models. By adversarially
perturbing their embedding layer, NLP models
were trained to predict consistently on both clean
and adversarial data, thereby achieving better adver-
sarial robustness. For example, Li and Qiu (2021)
proposed TAVAT to generate token-level perturba-
tions accounting for the importance of tokens. Li
et al. (2021) increased the iteration numbers of AT
and found it useful for boosting robustness. Gao
et al. (2023) proposed to minimize the distribu-
tion shift risk between clean and adversarial data.
Formento et al. (2024) learned robust word embed-
dings to defend against adversarial attacks.

2.2 The Trade-off between Robustness and
Accuracy

In computer vision, while AT helps improve robust-
ness, a vast amount of empirical evidence exists
that the clean accuracy can be hurt (Madry et al.,
2018; Wang et al., 2020). Zhang et al. (2019) theo-
retically identified the trade-off between robustness
and accuracy by decomposing the prediction error
for adversarial examples (robust error) as the sum
of the natural error and boundary error. Neverthe-
less, Yang et al. (2020) proved that robustness and
accuracy should both be achievable for benchmark
datasets through locally Lipschitz functions.

For NLP models, early research generally holds
that AT improves both robustness and accuracy
(Miyato et al., 2017; Ren et al., 2019; Zhu et al.,
2020). However, few studies have focused on the
trade-off between robustness and accuracy in AT
of NLP models.

It is worth noting that several adversarial data
augmentation (ADA) methods (Ren et al., 2019; Li
etal., 2019; Jin et al., 2020; Li et al., 2020) expand
the original training set with crafted adversarial
examples. ADA methods introduce larger pertur-
bations than gradient-based AT methods, leading
to relatively low clean accuracy. It demonstrates
that there is also a trade-off between robustness and
accuracy in AT of NLP models.

In this work, we first demonstrate that with a
large perturbation size, robustness trades off clean
accuracy in gradient-based AT of NLP models. Fur-
ther, by decomposing the learning objective of AT
into a clean classification loss and an adversarial
one, we can explicitly balance clean accuracy and
robustness.
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Figure 2: The robust accuracy (RA) and clean accuracy
(Clean) of PGD and FreeLLB under different adversarial
step sizes on the SST-2 dataset. The backbone model
is BERT-base. Although PGD can achieve higher ro-
bustness than FreeLB, the clean accuracy of the model
is greatly damaged. When the perturbation is too large,
the training cannot converge.

3 On the Convergence of Adversarial
Training

It is widely pointed out that AT is more difficult
than standard training for both computer vision and
NLP models (Madry et al., 2018; Kurakin et al.,
2017). The main reason is that a distribution dif-
ference exists between adversarial data and clean
data, which makes one model unable to converge
well on two widely different data distributions. Ac-
cording to (Gao et al., 2023), one can model the
difference via Wasserstein distance. The authors
proved that the distribution shift is bounded by the
adversarial perturbation . Therefore, J is crucial
in the convergence of AT. We then vary ¢ to show
its effect’.

Figure 2 shows that as ¢ increases, the clean
accuracy drops significantly, which implies that
AT cannot converge well with large perturbations.
Furthermore, robust accuracy gradually increases,
demonstrating a trade-off between clean accuracy
and robust accuracy.

It is also intriguing to see that FreeLLB can con-
verge under larger perturbations than PGD. We
theoretically analyse the differences among differ-
ent AT methods to understand this phenomenon.
Recall the learning objective in AT,

Hl@inE max £L(0,X +6,Y)|, 4

(X,Y)~D
lloll<e

%In practice we vary the step size o in AT to control the
perturbation size.



where © is the model parameters; D is the data
distribution; ¢ is the added perturbation; € is the
allowed perturbation size. In the min-max process,
multi-step gradient ascent methods often solve the
inner maximisation. Take PGD as an example. We
initialize zg to x and suppose that the iteration
number is k and the adversarial step size is «, we
have

xt = proje(wi—1 + a - norm(g(z-1))),

5
1<t <k, ©®)

where g(x;_1) is the gradient of x;_1, norm(-) can
be L9 normalization. The initial value g can also
be randomly sampled within the e-neighborhood
of x. In that case, we have xg = = + dg, where g
is randomly sampled.

For simplicity, we omit the projection function
and the normalization function. The main reason
is that in (Li et al., 2021), the authors have demon-
strated that removing the norm-bounded limitation
helps achieve better model robustness.

Thus, we have

k
xt:xt—1+5t:$+25t7t21- (6)
=1

In this way, the inner maximization can be refor-
mulated as follows:

max [,(@,:L"—l—Z(St,y). 7

Considering that J; is very small relative to input
x, we perform first-order Taylor expansion on the
loss function. Thus, combining Eq. (7) and omit
the high-order terms, we have

L£(© x+25t,

k—1
LO,z+> 0+ 0k,y)

t=1

L(O, x—i—Z(St, + 5k

~ L(O,x,y)+

Z 6.
®)

Eq. (8) indicates that one can decompose the
loss of adversarial data during PGD training into
the corresponding loss of clean data and the sum
of squares of all perturbations &;.

Therefore, it is reasonable that as the perturba-
tion size increases, the adversarial loss becomes
larger and begins to dominate the training, leading
to higher robustness. For clean accuracy, as the
perturbation size enlarges, the model gets harder to
converge on the original training set, resulting in
lower clean accuracy.

Based on Eq. (8), we further study how ¢ affects
the convergence of AT. We firstly extend Eq. (8)
to FreeLB. It can also be easily extended to other
PGD-like methods such as FreeLB++.

According to the FreeLB method, the number
of iterations is k£ and the step size is «. The loss
of each iteration will be divided by k£ and accumu-
lated. The model parameters will be updated at the
end (for comparison, PGD only uses the loss of
the last iteration to update the model parameters).
Similarly, the inner maximization of FreeLB can
be formulated as follows:

max —Zﬁ(@,x+7“t,y), 9

where r! = 2521 ;. Performing first-order Taylor

expansion on Eq. (9), similar to Eq. (8), we have
k 1 k 1 t
~ = - 2
; 6m+ry~kg (©,z,y) + a;(sl)
k
1 k—i14+1
+a; 07

10)
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Eq. (10) indicates that the learning objective of
FreeLLB can also be decomposed into the clean
data loss and the weighted sum of squares of all
perturbations J;, where the weight of d; is k_,iﬂ.

At this point, we can explain more clearly in
Figure 2. Since the PGD method inherently has a
greater weight for adversarial loss, it can achieve
higher robustness than FreeLB, but the training of

PGD is more difficult to converge.

4 Adaptive Adversarial Training

4.1 A Unifying Framework for Adversarial
Training

Comparing the two learning objectives, one can
find an implicit set of weights weighing the pertur-
bation §; produced at each iteration ¢. Further, the
weights of clean classification loss and the adver-
sarial one are also implicitly given. For the PGD
method with an iteration number of k, the weights
of clean loss and the adversarial loss are 1 and k,



Algorithm 1 Adaptive Adversarial Training

Input: Model parameters O, loss function L, train-
ing set D = {x;, y; }*,, number of epochs T,
batch size m, number of iterations k£, number
of batches M, perturbation weights W

Output: robust model parameters ©

1. for epoch=1to 7T do
2:  for batch=1to M do

3: Sample a mini-batch b = {(z;, v;) }"4

4: Generate adversarial perturbations § via
Eq. (3) R

5: Compute the overall loss J (0, z,y, W)
via Eq. (12)

6 Update w via V3,7 (0, z,y, W)
7: Update © via Vo J (0, z,y, W)
8:  end for

9: end for

respectively. The FreeLB method’s weights are 1
and (k 4 1)/2, respectively.

Therefore, we summarize the learning objective
J of the two methods into the following formula:

k
_ 15 02
J@wwmﬂ—ﬂ&%w+ﬁa2¥wm

k
S.t.:E::QUi = 1,1Ui > 0,

i=1
(11)

where 3 balances the clean loss and the adversarial
loss, and w; balances all the perturbations.

However, since the derivative of the sum of
squared perturbations involves computing the
second-order derivative, we further manipulate the
above formula. We introduce a set of parameters w
and combine it with Eq. (7), yielding the following
expression:

k
J(©,2,y,W) = L(©,z+ B wids,y). (12)
i=1
By performing Taylor expansion on Eq. (12), we
can easily verify that each term corresponds one-
to-one with Eq. (11). For J to be equal to J, w
needs to satisfy the following constraint which is
the same as w:

k
S i = 1y > 0. (13)
i=1

In our experiments, we initialize it to a vector of
ones and update it automatically using its gradient.

4.2 The Rationale behind Our Framework

Next, we explain the rationale behind introducing
(5 and w. As deduced above, in the PGD method,
the weight of the clean loss is naturally set to 1,
while the weight of the adversarial loss is set to
k. In the FreeLB method, the weight of the clean
loss is also 1, but the weight of the adversarial
loss is (k + 1)/2. To ensure the extensibility of
our AT framework, we introduce the parameter
[ to balance the clean loss and adversarial loss.
Specifically, PGD and FreeLLB are two special cases
of the proposed framework.

Eq. (10) shows that while maintaining the orig-
inal ratio between clean loss and adversarial loss,
the perturbations at each time step ¢ are assigned
different weights. Therefore, we introduce a set of
parameters W, ensuring that the sum of @w; equals
1, and utilize gradients to solve for the worst-case
scenario. The weights W are continuously updated
throughout the training process, in order to find the
optimal solution across the entire training set rather
than achieve a local optimum based on a single
batch of data.

It is worth noting that, in the PGD method, al-
though different time-step perturbations are not ex-
plicitly weighted, one can assume that their weights
are uniformly set to 1.

Following the min-max optimization widely
used in AT, the final training objective can be de-
fined as:

(14)

min max j(@, x,y, W).
C) W

In this way, we build our novel framework of
adaptive AT in a constrained manner, where both
the PGD and the FreeLB methods can be consid-
ered special cases of our framework.

Notably, our framework can encompass a wider
range of PGD-based AT algorithms, not limited
to FreeLB. We show our proposed adaptive AT
method in Algorithm 1.

5 Experimental Setup
5.1 Tasks and Datasets

Following previous important works (Gao et al.,
2023; Li et al., 2021; Li and Qiu, 2021), we com-
pare our adaptive AT method with baselines on two
tasks, i.e., text classification and natural language
inference. In the main experiments, we choose the
SST-2 (Socher et al., 2013)* and the QNLI (Wang

3https://dl.fbaipublicfiles.com/glue/data/
SST-2.zip
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et al., 2019)* datasets to perform text classification
and natural language inference tasks, respectively.
For completeness, we also test the applicability of
our method on the IMDB dataset (Maas et al., 2011)
and the AGNEWS dataset (Zhang et al., 2015),
both used for text classification. Detailed char-
acteristics and examples of the four datasets are
presented in Appendix A.

5.2 Baseline Methods
5.2.1 Defence Methods

We apply our framework to various AT-based de-
fence methods, including PGD (Madry et al., 2018),
FreeLLB (Zhu et al., 2020), and TA-VAT (Li and Qiu,
2021). To comprehensively benchmark existing de-
fence methods, we report the results of InfoBERT
(Wang et al., 2021a), Flooding-X (Liu et al., 2022),
and SMART (Jiang et al., 2020) which enhance
AT by an information bottleneck, “flooding”, and
smoothness-inducing regularization, respectively.
The performance of TRADES (Zhang et al., 2019),
which is the most relevant method from the com-
puter vision domain to ours, is also presented.

DSRM (Gao et al., 2023), GAT (Zhu and Rao,
2023), and SemRoDe (Formento et al., 2024) are
not chosen. This is because DSRM introduces a
distribution shift into adversarial defence, while
GAT and SemRoDe incorporate valid adversarial
examples into the training process; none of these
can be adopted for a fair comparison.

5.2.2 Attacking Methods

Following previous works, we use TextFooler (Jin
et al., 2020), TextBugger (Li et al., 2019), and BAE
(Garg and Ramakrishnan, 2020) as our attacking
methods to dynamically generate adversarial exam-
ples during test time.

We also consider assessing AT methods against
high-quality adversarial examples pre-crafted by
human annotators. Therefore, we report the robust
accuracy of all the models on the adversarial GLUE
dataset (Wang et al., 2021b).

6 Main Results

Our proposed method can be easily extended to
PGD-like AT methods. In this part, we advance
PGD, FreeLLB and TA-VAT with adaptive perturba-
tions to assess the effectiveness of our method. We
conduct the main experiments on the BERT-base

*https://huggingface.co/datasets/nyu-mll/glue

model to provide comprehensive comparisons with
other AT methods.

Note that the value of [ is related to the methods
being extended. For example, when extending the
PGD method using our framework, the value of 3
is set to k (i.e., the number of iterations) according
to Eq. (8). We leave the exploration of the effects
of different 3 values for future work.

Table 1 reports the defence results against
different types of adversarial attacks on the
SST-2 dataset, including two word-level attacks
(TextFooler and BAE), one multi-level attack
(TextBugger), and an adversarial test dataset (Ad-
versarial GLUE). The main findings are:

* For clean accuracy, all the baseline AT meth-
ods maintain a similar level, since the adver-
sarial strength is moderate. The PGD method
has the lowest clean accuracy, which is con-
sistent with the conclusions of previous work.

* For robust accuracy against dynamic adver-
sarial attacks and human-crafted adversarial
examples, our method can boost the perfor-
mance of three AT methods. Compared with
InfoBERT and Flooding-X, our method also
maintains higher robustness.

* Our method can boost the robust accuracy of
PGD, FreeLB and TA-VAT methods while
achieving comparable clean accuracy, which
is consistent with our motivations.

We also conduct experiments on the QNLI
dataset. The main results are consistent with that
on the SST-2 dataset. Our method consistently
enhances robust accuracy across various adversar-
ial attacks and test sets. Thanks to the adaptive
strength of perturbations, the clean accuracy re-
mains at a comparable level compared to other AT
methods.

We note that the PGD method still has the lowest
clean accuracy. According to Eq. (8), the PGD
method implicitly places a greater weight on the
adversarial loss than FreeLLB. Since it is directly
adopted from the visual domain, no adjustments
have been made to the trade-off between robustness
and clean accuracy. As a consequence, this method
exhibits lower clean accuracy on NLP tasks.

Due to the space limit, we report the results on
the IMDB and AGNEWS datasets in Appendix B.
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SST-2 Clean % TextFooler TextBugger BAE AdvGLUE
RA % RA % RA % RA %
BERT-base (Devlin et al., 2019)  92.32 8.14 26.83 33.72 31.32
InfoBERT (Wang et al., 2021a)  91.74 10.89 32.68 37.96 32.17
Flooding-X (Liu et al., 2022) 92.32 12.60 3245 35.44 27.00
SMART (Jiang et al., 2020) 91.78 10.45 30.15 33.26 23.54
TRADES (Zhang et al., 2019) 87.19 9.46 29.53 35.41 30.99
PGD (Madry et al., 2018) 89.11 12.96 32.22 35.21 39.13
+Ours 88.99 16.06 (+3.10)  35.68 (+3.46) 40.02 (+4.81) 43.44 (+4.31)
FreeLB (Zhu et al., 2020) 92.20 9.98 34.06 37.73 30.13
+Ours 91.63 15.69 (+5.71)  38.73 (+4.67) 41.22(+3.49) 38.53 (+8.40)
TA-VAT (Li and Qiu, 2021) 91.40 11.93 35.89 37.61 32.00
+Ours 91.51 (+0.11)  18.46 (+6.53) 39.60 (+3.71) 40.94 (+3.33) 39.42 (+7.42)

Table 1: The clean accuracy (“Clean %) and the robust accuracy (“RA %) on the SST-2 dataset against TextFooler,
TextBugger, and BAE attacks. We report the robust accuracy of the models on the adversarial GLUE dataset (i.e.,
AdvGLUE) to evaluate AT methods against pre-crafted adversarial examples. The backbone model is BERT-base.

ONLI Clean % TextFooler TextBugger BAE AdvGLUE
RA % RA % RA % RA %
BERT-base (Devlin et al., 2019)  90.60 8.80 9.50 27.90 42.75
InfoBERT (Wang et al., 2021a)  89.10 5.30 6.80 30.90 44.00
Flooding-X (Liu et al., 2022) 91.50 12.00 16.60 40.30 47.00
SMART (Jiang et al., 2020) 91.77 8.50 13.22 33.46 39.02
TRADES (Zhang et al., 2019) 86.22 9.45 12.14 35.44 43.50
PGD (Madry et al., 2018) 87.00 11.30 16.80 43.60 41.50
+Ours 87.90 (+0.90)  16.80 (+5.50) 17.20 (+0.40) 41.20 48.89 (+7.39)
FreeLLB (Zhu et al., 2020) 89.60 14.40 14.10 40.50 44.75
+Ours 89.70 (+0.10)  16.60 (+2.20) 17.70 (+3.60)  43.10 (+2.60) 51.75 (+7.00)
TA-VAT (Li and Qiu, 2021) 91.51 12.60 14.30 40.94 43.00
+Ours 91.00 18.46 (+5.86)  20.30 (+6.00)  44.20 (+3.26)  51.00 (+8.00)

Table 2: The clean accuracy (“Clean %) and the robust accuracy (“RA %) on the QNLI dataset against TextFooler,
TextBugger, and BAE attacks. We report the robust accuracy of the models on the adversarial GLUE dataset (i.e.,
AdvGLUE) to evaluate AT methods against pre-crafted adversarial examples. The backbone model is BERT-base.

7 Discussions

In this section, we discuss the relationship between
our method and existing AT methods. We highlight
the importance of conducting AT on small language
models like BERT, rather than solely focusing on
large language models (LLMs). We also provide an
error analysis of the approximate loss and demon-
strate the PGD loss and approximate loss in AT in
practice.

7.1 Relation to Existing Work

We list a series of loss functions of AT methods
in Table 3 and discuss the difference between our
proposed adaptive AT and conventional AT meth-
ods, including fast gradient method (FGM) (Miyato
etal., 2017), PGD (Madry et al., 2018), TRADES
(Zhang et al., 2019), and FreeLB (Zhu et al., 2020).

Appendix C contains more detailed discussions
about these methods.

7.2 Beyond Model Parameters

Recently, LLMs have achieved remarkable results
across many NLP tasks (Achiam et al., 2023; Guo
et al., 2025). Therefore, it is necessary to reveal
the importance of conducting AT on language mod-
els with fewer parameters, such as BERT. We se-
lect a more practical task, namely spam detection,
and report the standard performance of models
with varying parameter sizes in Table 4, includ-
ing Naive Bayes (NB), Support Vector Machine
(SVM), BERT, and LLMs. The usage of deepseek
is detailed in Appendix G. We adopt the SMS Spam
Collection dataset (Almeida et al., 2011), which
contains 747 spam messages and 4,825 non-spam



Methods Loss Function Flexibility
Standard L(O,z,y) -
FGM (Miyato et al., 2017) L(O,z,y) + L(O,z+6,y) X
PGD (Madry et al., 2018) L(O,x+ 6,9) X
TRADES (Zhang et al., 2019)  £(©,z,y) + AKL(p(©, 2)||p(0, z + §)) K
FreeLB (Zhu et al., 2020) LSk L(O,2+6;,y) X
Ours L(6,z,y) + BLSF w67 v

Table 3: Comparisons of different loss functions in AT. The adversarial perturbations in TRADES are generated by
maximizing its regularization term (KL-divergence). The Flexibility indicates whether the method can explicitly
control the weighting between clean loss and adversarial loss. AXindicates that the method cannot balance clean and
adversarial losses. v indicates that the method introduces a hyperparameter to balance the two types of loss, but
lacks flexibility because the adversarial loss still contains the clean loss. v/indicates that it can explicitly balance

clean loss and adversarial loss.

Method Acc.  Pre. Recall F1

SVM (linear) 97.56 97.01 84.82 90.50
Multinomia NB 98.21 9826 8848 93.11
BERT-base 99.48 9444 9115 92.61
DeepSeek-rl-zeroshot  87.74 5271 9577  68.00
DeepSeek-rl-fewshot 9545 79.75 9130 85.14

Table 4: The performance of models with varying pa-
rameter sizes on the spam detection task. We use
deepseek-r1 (Guo et al., 2025) to demonstrate the perfor-
mance of LLMs on this dataset in zero-shot and few-shot
manners.

messages. The long-tail distribution of the data
makes it more realistic and challenging.

As can be seen, even the state-of-the-art
DeepSeek-r1 model (Guo et al., 2025) performs
poorly on this dataset, which may be related to the
data distribution. However, small models general-
ize well on this dataset.

Given the constraints of computational resources
and training efficiency, this study proposes to in-
vestigate AT for BERT-based architectures to mit-
igate vulnerabilities against adversarial perturba-
tions, rather than focusing on LLMs.

7.3 Error Analysis

It is necessary to analyze the error of our method
since we have ignored the higher-order terms in the
Taylor expansion. Taking the PGD method as an
example, we show the error between the approxi-
mate loss and the original PGD loss. The original
PGD loss is computed by Eq. (7). The approximate
is computed by Eq. (8).

In Figure 3, we observe that the approximate
loss can well match the loss curve of the PGD

0.71 The PGD Loss
The Approximate Loss
0.6
0.5
7))
wn
S04
0.3
0.2
0.1+ : : : :
0 200 400 600 800
Iterations

Figure 3: The error between the approximate loss and
the original PGD loss on the SST2 dataset over the
BERT model. This indicates that our approximation of
the experiments is quite practicable.

method. This demonstrates that our approximation
is accurate in the experiments and it can be used to
develop AT with an adaptive perturbation.

8 Conclusions

This work seeks to balance model robustness and
accuracy. To this end, we decompose the learn-
ing objective of adversarial training into a pure
adversarial loss and clean loss, which correspond
to model robustness and clean accuracy, respec-
tively. This way, we can explicitly assign learnable
weights to the two losses to balance model robust-
ness and clean accuracy. Experimental results on
four datasets over BERT, RoBERTa and DeBERTa
models show that our method can boost model ro-
bustness without sacrificing clean accuracy.



Limitations

This paper leverages Taylor expansion to decom-
pose the loss function (i.e., the cross-entropy func-
tion) of AT. The Taylor expansion is a mathematical
method used to approximate a function as a power
series around a specific point. The loss function
must have derivatives of sufficiently high order at
the point of expansion and in its vicinity. Specif-
ically, if we want to expand to the n-th order, the
function must have at least n derivatives at that
point. Although to our best knowledge, the main-
stream of loss functions used in AT meet the above
conditions, this may not be suitable for more com-
plex loss functions.
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A Statistics and Examples of the Four
Datasets

For the SST-2 dataset, an example of x and y is
“On the worst revenge-of-the-nerds clichés the film-
makers could dredge up” and “Negative”.

For the IMDB dataset, an example of x and y is
“Fred "The Hammer" Williamson delivers another
cheaply made movie. He might have set a new
standard for himself. Look for the painfully obvious
special effects mortar cannon that is visible in the
street during a chase scene. You don’t see it just
once, you see it several times. Look for the out of
focus shot in one scene and the camera operator
try to fix it as the scene rolls on. Watch this with
a group of people and make your own Mystery
Science Theater!” and “Negative”.

For the AGNEWS dataset, an example of x and
y is “Wall St. Bears Claw Back Into the Black
(Reuters) Reuters - Short-sellers, Wall Street’s
dwindling band of ultra-cynics, are seeing green
again.” and “Business”.

For the QNLI dataset, an example of = and y is
“When did the third Digimon series begin? Unlike
the two seasons before it and most of the seasons
that followed, Digimon Tamers takes a darker and
more realistic approach to its story featuring Digi-
mon who do not reincarnate after their deaths and
more complex character development in the origi-
nal Japanese” and “Not entailment”.

We list the characteristics of the four datasets
below.

Dataset #train # dev/test # words
SST-2 67,349 872 17
IMDB 25,000 25,000 201
AG news 120,000 7,600 40
QNLI 105,000 5,460 37

Table 5: Summary of the four datasets.

B Results on More Datasets

We advance the PGD, FreeLLB, and TA-VAT meth-
ods with our adaptive perturbations and report the
results on the IMDB and the AGNEWS datasets in
Table 6.

In terms of clean accuracy, our method maintains
a performance level comparable to the baseline. In
terms of robustness accuracy, our method improves
the robustness of the baseline in most scenarios.
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It is noteworthy that the improvement in robust-
ness is relatively small on these two datasets. This
may be related to the sentence length in the datasets.
Existing adversarial attack algorithms typically set
the maximum number of word replacements based
on a percentage of the sentence’s token count, such
as 20%. As the length increases, the number of
words to be replaced also increases, which may re-
sult in less significant improvements in robustness.

C Relation to Existing Work

Specifically, the standard method is designed to
minimize the clean data loss, i.e., the cross-entropy
on the clean data. The FGM (Miyato et al., 2017)
method generates adversarial examples in one gra-
dient ascent step, minimising both clean and adver-
sarial data loss. The PGD method (Madry et al.,
2018) generates adversarial examples using multi-
step gradient ascent and only minimizes the ad-
versarial data loss in the last step. Similarly, the
FreeLLB method (Zhu et al., 2020) generates adver-
sarial examples using multi-step gradient ascent.
Different from PGD, FreeLLB minimize the average
of the adversarial loss at each step.

It is important to point out that all these methods
implicitly include the clean data loss in the adver-
sarial loss. In particular, as revealed by Eq. (8) and
Eq. (10), the conventional adversarial loss can be
decomposed into a clean data loss and an adver-
sarial loss. Therefore, although we can introduce
hyperparameters to balance clean loss and adver-
sarial loss in these methods, we cannot precisely
balance the two losses.

TRADES (Zhang et al., 2019) is theoretically
designed to achieve a good trade-off between accu-
racy and robustness in the computer vision domain,
which is the most relevant AT method with our
adaptive AT. TRADES decomposes the adversar-
ial error into a natural error and a boundary error.
However, the boundary error cannot be effectively
computed. In practice, the authors introduce a sur-
rogate loss (i.e., the KL divergence between the
model output of clean data and adversarial data)
to approximate the boundary error. In this way,
TRADES cannot precisely balance the standard
performance and robustness.

Our proposed adaptive AT addresses this issue
by decomposing the conventional adversarial loss
using Taylor expansion. In our learning objective,
clean loss and adversarial loss only affect standard
performance and model robustness, respectively.
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Figure 4: The robust accuracy and clean accuracy under
different £ and «, while the maximal perturbation size
is set to ko following (Li et al., 2021).

D Impact of Adversarial Step Size

We aim to investigate the impact of the perturba-
tion size in AT. In AT, the maximum perturbation
size is typically specified. However, what effec-
tively determines the perturbation magnitude are
the number of iterations and the adversarial step
size. Therefore, given a perturbation size, we vary
the number of iterations and step size to investi-
gate their impact on robustness. In other words, we
want to find out whether increasing the perturba-
tion strength of adversarial training always helps
robustness. We conduct PGD adversarial training
on the BERT-base model. Based on our previous
experiments, the product of iteration numbers &
and adversarial step size « is empirically set to 10
and 0.4.

The main result is reported in Figure 4. It can be
seen that when the number of iterations is moderate
(5 and 6), the model achieves the best robustness.
We suggest that it is unnecessary to set a huge num-
ber of iterations during adversarial training. As
suggested in (Zhu and Rao, 2023), robust overfit-
ting hinders the AT of NLP models. Too many iter-
ations may lead to robust overfitting of the model
and reduce its robustness accuracy on the test set.

E Performance on Other Models

We choose DeBERTa-v3-base (He et al., 2021) and
RoBERTa (Liu et al., 2019), two improved versions
of BERT, as our backbone models to investigate
whether our method can boost the robustness of
more complex and larger language models. The
clean and robust accuracy of DeBERTa-v3-base
and RoBERTa-base models are reported in Table 8.



IMDB Clean % TextFooler TextBugger BAE
RA % RA % RA %

BERT (Devlin et al., 2019) 91.21 24.48 47.26 20.31
InfoBERT (Wang et al., 2021a)  91.90 23.00 37.30 22.40
Flooding-X (Liu et al., 2022) 92.30 34.50 32.30 35.42
SMART (Jiang et al., 2020) 91.90 24.50 45.40 22.32
TRADES (Zhang et al., 2019) 88.34 25.50 47.60 18.34
PGD (Madry et al., 2018) 90.43 26.31 52.37 21.44
+Ours 90.56 (+0.13)  27.12(+0.81) 53.50 (+1.13) 21.55(+0.11)
FreeLLB (Zhu et al., 2020) 92.14 27.50 50.60 31.34
+QOurs 91.80 26.82 52.74 (+2.14)  33.10 (+1.76)
TA-VAT (Li and Qiu, 2021) 91.50 27.40 51.70 23.12
+Ours 92.08 (+0.58) 25.70 51.66 24.30 (+1.18)

Table 6: The clean accuracy (“Clean %”) and the robust accuracy (“RA %) on the IMDB dataset against TextFooler,
TextBugger, and BAE attacks. The backbone model is BERT-base. The IMDB dataset does not have a corresponding
AdvGLUE version. Therefore, the robustness accuracy for this dataset is not reported.

AGNEWS Clean % TextFooler TextBugger BAE
RA % RA % RA %

BERT (Devlin et al., 2019) 91.90 20.50 42.71 16.21
InfoBERT (Wang et al., 2021a)  92.00 19.20 31.41 12.70
Flooding-X (Liu et al., 2022) 91.39 33.40 55.60 29.40
SMART (Jiang et al., 2020) 92.20 22.45 37.80 15.60
TRADES (Zhang et al., 2019) 89.42 33.90 48.65 27.61
PGD (Madry et al., 2018) 90.82 37.20 58.20 32.83
+Ours 91.10 (+0.28)  38.70 (+1.50) 57.92 35.20 (+2.37)
FreeLB (Zhu et al., 2020) 91.20 32.33 48.50 22.65
+Ours 91.07 32.10 50.10 (+1.60)  24.12 (+1.47)
TA-VAT (Li and Qiu, 2021) 92.17 39.70 55.81 23.66
+Ours 91.66 37.26 57.36 (+1.55)  23.77 (+0.11)

Table 7: The clean accuracy (“Clean %”) and the robust accuracy (“RA %) on the AGNEWS dataset against
TextFooler, TextBugger, and BAE attacks. The backbone model is BERT-base. The AGNEWS dataset does not
have a corresponding AdvGLUE version. Therefore, the robustness accuracy for this dataset is not reported.
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SST2 Clean % TextFooler AdvGLUE
RA % RA %
RoBERTa-base 95.07 6.19 39.50
+PGD 94.27 11.47 44.59
+Ours 94.95 11.82 45.22
DeBERTa-v3-base  95.99 12.60 55.41
+PGD 95.18 13.99 57.14
+Ours 95.76 14.50 67.34

Table 8: The clean and robust accuracy on RoBERTa
(Liu et al., 2019) and DeBERTa-v3-base (He et al.,
2021).

Method SST-2 QNLI
PGD (Madry et al., 2018) 902 4123
+Ours 912 4237
FreeLLB (Zhu et al., 2020) 781 3122
+Ours 920 3745
TA-VAT (Li and Qiu, 2021) 853 3455
+Ours 1013 4123

Table 9: The GPU time consumption (seconds) of train-
ing one epoch on the SST-2 and QNLI datasets. The
backbone model is BERT-base. The iteration number is
set to 5 for all the methods.

These two models can bear a larger perturbation
size than the BERT-base model to explore the im-
pact of a larger perturbation range on adversarial
training. The empirical results indicate that our
adaptive AT can generalize well on larger, more
complex models.

F Time Consumption

To further substantiate the comparative advantages
of our method, a systematic benchmarking analysis
was conducted to evaluate GPU training durations
between our proposed approach and established
adversarial training methods, with the quantitative
comparisons meticulously documented in Table 9.
Our method incurs approximately a 10% increase
in computational overhead. This empirical inves-
tigation demonstrates our method’s computational
efficiency while maintaining equivalent adversarial
robustness metrics.

G Details on the Usage of DeepSeek

We employ the DeepSeek-r1 model (Guo et al.,
2025) for spam detection and evaluate its perfor-
mance under zero-shot and few-shot settings. In the
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zero-shot setting, the model receives no examples
or labels and is prompted to classify the message
based solely on its inherent reasoning ability. The
prompt provided is: “You are a professional spam
classifier. Please analyze the following message
and determine whether it is spam. Just reply ’spam’
or ’ham’, no explanation is needed." This setup
tests the model’s ability to classify messages with-
out prior examples or labels.

In the few-shot setting, we supply the model
with two examples and their corresponding la-
bels. The first example is a spam message:
“URGENT! This is the 2nd attempt to contact
U!U have WON a£1000CALL 09071512432 b4
300603t&csBCM4235WCIN3XX.callcost150 pp-
mmobilesvary. maxat7.50", labeled as spam. The
second example is a non-spam message: ‘“Why
don’t you go tell your friend you’re not sure you
want to live with him because he smokes too much
then spend hours begging him to come smoke", la-
beled as ham. This setting aims to examine how the
model leverages the provided examples to classify
messages.

Through these two setups, we assess the model’s
generalization ability and performance when there
are no explicit labels or examples available.

H Implementation Details

We implement PGD (Madry et al., 2018), FreeLB
(Zhu et al., 2020), TA-VAT (Li and Qiu, 2021), and
InfoBERT (Wang et al., 2021a) based on TextDe-
fender (Li et al., 2021). We implement Flooding-X
(Liu et al., 2022), SMART (Jiang et al., 2020), and
TRADES (Zhang et al., 2019) following the origi-
nal paper. The weighting factor o in TRADES is
set to 0.5 to achieve the optimal performance. The
three adversarial attacks are conducted using Tex-
tAttack® (Morris et al., 2020). All experiments are
conducted using GeForce RTX 3090 GPUs. All the
settings of adversarial hyper-parameters settings
are consistent to provide a fair comparison.

Unless otherwise mentioned, the adversarial step
size is set to 0.04; the batch size is 128; the epoch
number is 10. To align with the weighting factor
of the original method, S is set to k& for PGD and
TA-VAT and (k + 1)/2 for FreeLB.

For the natural language inference task, we ad-
here to prior research (Jin et al., 2020) by allowing
the attacking methods to modify the premise while
keeping the hypothesis unchanged.

5ht’cps: //github.com/QData/TextAttack


https://github.com/QData/TextAttack
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