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Abstract

Model diffing is the study of how fine-tuning changes a model’s representations and
internal algorithms. Many behaviors of interest are introduced during fine-tuning,
and model diffing offers a promising lens to interpret such behaviors. Crosscoders
are a recent model diffing method that learns a shared dictionary of interpretable
concepts represented as latent directions in both the base and fine-tuned models,
allowing us to track how concepts shift or emerge during fine-tuning. Notably,
prior work has observed concepts with no direction in the base model, and it was
hypothesized that these model-specific latents were concepts introduced during
fine-tuning. However, we identify two issues which stem from the crosscoders L1
training loss that can misattribute concepts as unique to the fine-tuned model, when
they really exist in both models. We develop Latent Scaling to flag these issues by
more accurately measuring each latent’s presence across models. In experiments
comparing Gemma 2 2B base and chat models, we observe that the standard
crosscoder suffers heavily from these issues. Building on these insights, we train
a crosscoder with BatchTopK loss and show that it substantially mitigates these
issues, finding more genuinely chat-specific and highly interpretable concepts.
We recommend practitioners adopt similar techniques. Using the BatchTopK
crosscoder, we successfully identify a set of chat-specific latents that are both
interpretable and causally effective, representing concepts such as false information
and personal question, along with multiple refusal-related latents that show nuanced
preferences for different refusal triggers. Overall, our work advances best practices
for the crosscoder-based methodology for model diffing and demonstrates that it
can provide concrete insights into how chat-tuning modifies model behavior. !

1 Introduction

Classically, mechanistic interpretability [Sharkey et al., 2025, Mueller et al., 2024, Ferrando et al.,
2024, Elhage et al., 2021, Olah et al., 2020] aims to reverse engineer an entire model [Huben et al.,
2024, Elhage et al., 2022], or circuits implemented by the model to solve particular tasks [Wang et al.,
2023a]. Model diffing offers an alternative method by focusing on changes induced by fine-tuning.
Since fine-tuning typically involves far less compute than the pre-training phase that establishes
general knowledge and generic circuitry, its resulting modifications are expected to be limited in
scope. This targeted nature suggests model diffing could be a more tractable approach to mechanistic
interpretability than the full model analysis, while still providing valuable insights into core features
of a model’s behavior.
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Model diffing might indeed be incredibly useful. The process of fine-tuning a model is what makes it
useful as a tool or agent. Better understanding the mechanisms that give reasoning models [DeepSeek-
Al et al., 2025, OpenAl et al., 2024] heightened capabilities as compared to base or chat models
might allow us to debug their failures and improve them. Fine-tuning also often introduces a number
of problematic behaviors, for example, sycophancy [Sharma et al., 2023]. Future Al safety and
alignment concerns [Greenblatt et al., 2024, Meinke et al., 2025, Betley et al., 2025] may emerge
specifically in fine-tuned models. For example, long-horizon RL could incentivize models to exploit
reward signals and act deceptively. Model diffing could allow us to detect this.

Prior model diffing research has investigated how models change during fine-tuning [Shah et al.,
2023, Lindsey et al., 2024, Bricken et al., 2024, Prakash et al., 2024, Lee et al., 2024, Jain et al., 2024,
Khayatan et al., 2025, Thasarathan et al., 2025, Wu et al., 2024, Mosbach, 2023, Merchant et al.,
2020, Hao et al., 2020, Kovaleva et al., 2019, Du et al., 2025, Minder, 2024]. While these studies
have hypothesized that fine-tuning primarily shifts and repurposes existing capabilities rather than
developing new ones, conclusive evidence for this claim remains elusive. Model diffing remains
a nascent field that lacks established consensus and mature analytical tools. Much prior work has
leveraged ad-hoc techniques for understanding how models change in narrow ways (e.g. focusing on
a particular circuit), or have been on toy model. It is unclear whether prior approaches would scale to
understanding the kinds of fine-tuning large models actually undergo.

Recently, Lindsey et al. [2024] introduced the crosscoder, a novel and scalable tool for model
diffing. Crosscoders build on the popular sparse autoencoder (SAE) [Huben et al., 2024, Bricken
et al., 2023, Yun et al., 2021], which has shown promise for interpreting a model’s representations
by decomposing activations into a sum of sparsely activating dictionary elements. There are many
variants of crosscoders; the variant we are concerned with in this paper concatenates the activations
of the base and chat-tuned model residual streams and trains a shared dictionary across this activation
stack. Thus, for each dictionary element (aka "latent", corresponding to one concept), the crosscoder
learns a pair of latent directions - one corresponding to the base model and one to the chat-tuned
model. Crosscoders can thus potentially identify which latents are novel to the fine-tuned model,
which are novel to the base-model, and which are shared. We term these sets chat-only, base-only,
and shared respectively. Lindsey et al. [2024] identify chat-only latents by looking at the norm of the
latent directions — if the latent direction of the base model has zero norm, this indicates that the latent
is chat-only.

In this work, we critically examine the crosscoder and identify two theoretical limitations of its
training objective, that may lead to falsely identified chat-only latents (Section 2.2):

1. Complete Shrinkage: The sparsity loss can force base latent directions to zero norm, even
when they contribute to base model reconstruction.

2. Latent Decoupling: The crosscoder may represent a shared concept using a chat-only latent
when it is actually encoded by a different combination of latents in the base model, as the
crosscoder’s sparsity loss treats both representations as equivalent.

We develop an approach called Latent Scaling to detect spurious chat-only latents, inspired by
Wright and Sharkey’s [2024] SAE scaling (Section 2.3), and demonstrate that the above issues occur
in practice. While the norm-based metric from Lindsey et al. [2024] appears to identify a clean
trimodal distribution of base-only, shared and chat-only latents, we show that this is an artifact of the
loss function rather than a meaningful distinction. Our conclusion is that the crosscoder loss does
not actually have an inductive bias that helps to learn better model-only latents. Nonetheless, we
demonstrate that crosscoders trained with BatchTopK loss [Bussmann et al., 2024] exhibit robustness
to the above issues (Section 3.1) and identify a larger number of genuine model-specific latents.
We show that in the BatchTopK crosscoder, the norm-based metric successfully identifies causally
relevant latents by measuring their ability to reduce the prediction gap between base and chat
model. In contrast, this metric fails in the L1 crosscoder, where Latent Scaling becomes necessary
to identify the truly causally relevant latents. Finally, we outline that the chat-only latents found
by the BatchTopK crosscoder are highly interpretable (Section 3.3), revealing key aspects of chat
model behavior such as the role of chat template tokens, persona-related questions, detection of false
information, and various refusal related mechanisms.



Overall, we show that using BatchTopK loss overcomes the described limitations of L1-trained
crosscoders, validating them as a useful tool for understanding fine-tuning effects in large language
models.

2 Methods

Note: For reference, we provide a comprehensive glossary of key terms and mathematical notation
introduced through the paper in Appendix A.

2.1 Crosscoder architectures

To build intuition, the crosscoder’s goal is to learn a dictionary of interpretable concepts (latents) that
can explain the activations of both models. It consists of an encoder and a decoder. The encoder takes
the activations of the base and chat models and projects them into a shared high-dimensional sparse
space, where each dimension corresponds to a potential concept. The decoder then reconstructs each
model’s activations using model-specific representations for each latent, combining them according
to the sparse encoding. The key insight is that while both models share the same sparse encoding
for a given input, the crosscoder learns separate decoder representations for each model, allowing
concepts to have different importance or manifestation in each model.

More formally, let x be a string and h®®¢(z), h®"(z) € R< denote the activations at a given layer.
The encoder computes a sparse encoding f;(z) € R> for each latent j € J = {1,...,D}. The
decoder then reconstructs the activations as:

flbase(x) _ Z fj (x) d?ase + bdec,base and }Nlchat(x) _ Z fj (Z‘) d;hat + bdec,chat (1)
J J

where d%¢, d"* € R are the model-specific decoder representations and bdee:base pdec.chat ¢ rd
are decoder biases. The crosscoder minimizes reconstruction errors €°%¢(z) = h*¢(z) — h®®¢(z)
and ehd!(z) = h°h(z) — h*h (1) while enforcing sparsity.

We examine two sparsity mechanisms. The L1 crosscoder [Lindsey et al., 2024] adds an L1 penalty
to the loss:

Loi(x) = fi(x) (|52 + [1d5™]|2) @

The BatchTopK crosscoder [Bussmann et al., 2024] instead enforces LO sparsity by selecting only the
top nk latents with highest scaled activation f;(;)(||d%°||2 + ||d$"||2) across a batch of n strings.”
More details on crosscoder implementation can be found in Appendix B.

2.2 Decoder norm based model diffing and its problems

To leverage crosscoders for model diffing, we can exploit the observation that while latent activations
fj(z) are shared between models, the decoder vectors d;-ha‘ and d'J’-ase are unique to each model.

To leverage crosscoders for model diffing, we exploit that while the sparse encoding f;(z) is shared
between models, the decoder representations dj»ha‘ and d%° are model-specific. When a latent is
important for both models, both decoder representations need substantial norms for reconstruction.
Conversely, a latent specific to the chat model will have [|d5™(| > 0 while [|d}*¢||; — 0, as the
base decoder has no use for this latent.

We quantify this using the relative norm difference Ao : J — [O7 1] from [Lindsey et al., 2024]:
PN SO L Ll
o max([|dS™ o, [|d5*¢(|2)

Intuitively, Apom = 1 indicates a pure chat-only latent (base decoder has zero norm), Ao, = 0
indicates a pure base-only latent, and A, ~ 0.5 suggests equal importance in both models. As
shown in Figure 1, we classify latents as base-only (0-0.1), chat-only (0.9-1.0), or (0.4-0.6).

3

Are chat-only latents really chat-specific? If a latent only contributes to one model, the norm of
the decoder must tend to zero for the other model. But is the converse true? Specifically, we ask the

’During inference, a learned threshold @ zeroes out latents below it. See Equation (14).
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Figure 1: Histogram of decoder latent relative norm differences (A,om) between base and chat
Gemma 2 2B models [Riviere et al., 2024], for both the L1 crosscoder (left) and the BatchTopK
crosscoder (right). A value of 1 means the decoder vector of a latent for the base model is zero,
indicating the latent is not useful for the base model (c/at-only latents). A value of 0 means the chat
model’s decoder vector has a norm of zero (base-only latents). Values around 0.5 indicate similar
decoder norms in both models, suggesting equal utility in both models ( latents)®. We also
show the chat-only latents that are truly chat-specific and that are not affected by Complete Shrinkage
(error ratio v* < 0.2) and Latent Decoupling (reconstruction ratio v” < 0.5) — the chat-specific
latents. Most of the L1 crosscoder chat-only latents suffer from these issues.

question: if a latent has decoder norm zero in the base model, is it necessarily chat-specific? We
focus on the chat-only set, as it will contain features that emerged during chat-tuning.

Reasons to doubt chat-only latents. There are reasons to suspect c/at-only latents might not be
chat-specific. Firstly, both qualitative and quantitative analysis of L1 crosscoder latents reveals a
relatively low percentage of interpretable latents within the char-only set (See Section 3.3). More
worryingly, inspection of the L1 crosscoder loss (Equation (2)) uncovers two theoretical issues that
could result in latents j, which are defined by their decoder vectors d; and activation function f;,
being classified as chat-only, despite their presence in the activations of the base model:

1. Complete Shrinkage: When the contribution of latent j is smaller in the base model than
in the chat model, L1 regularization can force d?“e to zero despite its presence in the base
activation. Consequently, €®®° contains information attributable to latent j. This is similar
to “shrinkage” or “feature suppression” in SAEs [Jermyn et al., 2024, Wright and Sharkey,
2024, Rajamanoharan et al., 2024].

2. Latent Decoupling: a chat-only latent j is also present in the base activations but is
reconstructed by other base decoder latents. In this case, the base reconstruction hbase
contains information that could be attributed to latent j. See Appendix D for an illustrative
example.

Why BatchTopK crosscoders might fix this. The BatchTopK crosscoder may address both Com-
plete Shrinkage and Latent Decoupling issues that affect the L1 crosscoder. The key difference lies in
their respective loss functions and optimization objectives.

For the L1 crosscoder, the loss function in Equation (2) includes an L1 regularization term that
directly penalizes the norm of decoder vectors. This creates pressure to shrink decoder norms toward
zero when a latent’s contribution is minimal, potentially causing Complete Shrinkage even when the
latent has some explanatory power. In contrast, the BatchTopK crosscoder uses a different sparsity
mechanism. Rather than penalizing all decoder norms, it selects only the top k& most active latents per
sample during training. This approach has two important advantages:

1. No direct norm penalty: Without explicit regularization on decoder norms, there’s no
optimization pressure to drive ||d%*¢||5 to zero when the latent has explanatory value for the
base model, reducing Complete §hrinkage.

2. Competition between latents: The top-k selection creates competition among latents, dis-
couraging redundant representations. This helps prevent Latent Decoupling by making it
inefficient to maintain duplicate latents that encode the same information.

3We observe larger activation norms in the chat model, which shifts our distribution rightward, revealing that
the chat model amplifies the norm of representations shared with the base model.



The BatchTopK approach thus creates an inductive bias toward learning more genuinely chat-specific
latents, as the model must efficiently allocate its limited "budget" of k active latents. This should result
in fewer falsely identified c/at-only latents and a cleaner separation between truly model-specific and
shared features.

2.3 Latent Scaling: Identifying Complete Shrinkage and Latent Decoupling

To empirically investigate whether Complete Shrinkage and Latent Decoupling occur, we introduce
Latent Scaling, which measures how well a supposedly c/az-only latent can explain base model
activations. We achieve this by finding the optimal scale for latent j to best reconstruct the base
activations:

n
By = argmin ) ||Af; () d™ — 0 (a;) |3 @)
B =
This least squares problem has an efficient closed-form solution*. For a chat-specific latent, we
would expect ,B;’ase ~ 0 as the latent shouldn’t help explain base activations at all. However, due
to superposition [Elhage et al., 2022], even genuinely chat-specific latents might correlate with
other features, resulting in ﬂ;’ase > 0. To account for this, we measure chat specificity using a ratio

that compares how well the latent explains each model v; = §5¢/55" where 35" is computed

analogously using h®"(.) instead of h®®¢(-). A value near zero indicates a chat-specific latent, while
a value near one suggests the latent is equally present in both models.

While this ratio efficiently identifies spurious char-only latents, it doesn’t tell us why they’re spurious:
it conflates Complete Shrinkage and Latent Decoupling. To distinguish between these failure modes,
we leverage the fact that the crosscoder decomposes base activations h®®¢ into its reconstruction

(Hbase) and what it fails to reconstruct (g"°):

1. If Complete Shrinkage occurred, the latent’s information should appear in the reconstruction
error €°°, because the latent’s base decoder is shrunk to zero instead of reconstructing the
activation. This is captured by the error ratio v§ = 3} base / 8y pchat

2. If Latent Decoupling occurred, the latent’s 1nf0rmat1on should appear in the reconstruc-

tion hb‘“e, having been captured by other base model latents. This is measured by the

: . r __ pr,base 7,chat
reconstruction ratio v; = Bj / 5]. .

These additional 3 values are computed using the same approach as Equation 4, but replacing h®¢
with either the error or reconstruction terms >

3 Results

We replicate the model diffing experiments by Lindsey et al. [2024] using the open-source Gemma-
2-2b (base) and Gemma-2-2b-it (chat) models [Riviere et al., 2024]. We train L1 and BatchTopK
crosscoders on the middle layer (13) activations of both models®, collected on a mixture of both web
and chat data. To ensure a fair comparison, we choose hyperparameters for both crosscoders to reach
an LO of 100. For details on the training process, see Appendix K.

In Figure 1, we present the histogram of A, between base and chat for both the L1 and BatchTopK
crosscoders. At first glance, the L1 crosscoder identifies substantially more c/at-only latents than
the BatchTopK crosscoder. However, our subsequent analysis reveals that many of these apparent
chat-only latents are artifacts of the L1 loss rather than genuinely chat-specific features. Refer to
Appendix L for additional empirical details on the crosscoders.

3.1 Demonstrating Complete Shrinkage and Latent Decoupling

Analysing the L1 crosscoder. We compute the reconstruction and error ratios (v and V%), for all L1
crosscoder chat-only latents on SOM tokens from the training set. For calibration, we examine these

“The closed-form solution is derived in Appendix E.1 which also gives some intuition on the optimal 3.

3See Appendix E.2 for exact implementation Appendix E.3 for verification of correlation between v values
and actual reconstruction improvement.

5We chose the middle layer as it’s where we expect to find the richest representations [Skean et al., 2025].
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Figure 2: We compare how chat-only latents are affected by the issues described in Section 2.2.
Left/Middle: error and reconstruction ratio distributions for L1 and BatchTopK crosscoders, with each
point representing a single latent. High reconstruction ratios (y-axis) overlapping with distri-
bution indicate Latent Decoupling (redundant encoding). High error ratios (z-axis) shows Complete
Shrinkage (useful base latents forced to zero norm). Low values on both metrics (bottom left) identify
truly chat-specific latents. L1 shows many misidentified c/az-only latents while BatchTopK shows
minimal issues. This means the Aoy, successfully identifies chat-specific latents for BatchTopK
but fails for L1. Right: Count of latents below a range of v thresholds (z-axis), comparing 3176
L1 chat-only latents versus top-3176 BatchTopK latents sorted by A om.

ratios on a sample of latents, expecting high values for both ratios. Figure 2a shows significant
overlap between reconstruction ratios distributions of c/at-only and latents, suggesting many
supposedly chat-specific latents are actually encoded by the base decoder, indicating potential Latent
Decoupling. We find further evidence of Latent Decoupling by analyzing (chat-only, base-only)
latent pairs with a cosine similarity of 1 in Appendix F. We also observe high error ratios for chat-
only latents (up to ~ 0.5), indicating substantial Complete Shrinkage. Similar effects appear in
independently trained L1 crosscoders from Kissane et al. [2024a] (Appendix J).

Comparing L1 and BatchTopK crosscoders. Looking at the ratios for the BatchTopK crosscoder
reveals a stark contrast (Figure 2b): chai-only latents show no v; overlap with latents, and v/;
values are nearly zero, indicating minimal Complete Shrinkage and Latent Decoupling. In Figure 1,
we find that most L1 crosscoder char-only latents are not truly chat-specific (defined as v < 0.5
and v* < 0.2), while most BatchTopK clat-only latents are genuinely chat-specific. To compare
the absolute number of chat-specific latents in both crosscoders, we choose the same number of top
A orm latents from both models and compare for how many of them both ratios 1/}7 and v¢ lie below
a range of thresholds 7. Specifically, we compare the 3176 chat-only latents from the L1 crosscoder
with the top-3176 latents based on Aoy, values from the BatchTopK crosscoder. Figure 2¢ shows
that for any threshold 7, the BatchTopK crosscoder consistently identifies more chat-specific latents
(where " < 7 and v* < ) than the L1 crosscoder. Furthermore, in the BatchTopK crosscoder the
Anporm and v metrics show strong pearson correlation (" : 0.73, v€ : 0.87, p < 0.01) showing that
the Apom metric is a valid proxy for chat-specificity here. We observe similar effects in both chat
models from the Llama 3 family [Grattafiori et al., 2024, Appendix I.1] and models fine-tuned with
RL for reasoning and medical knowledge in [Sallinen et al., 2025, Liu et al., 2025, Appendix 1.2].

3.2 Measuring the causality of chat approximations

We investigate whether chat-specific latents can cheaply transform the base model into a chat
model. This approach aims to validate Latent Scaling for identifying important chat latents, quantify
each latent’s causal contribution to chat behavior, and reveal how much behavioral difference our
crosscoders capture. To do this, we add chat-specific latents to the base model’s activations, feed
them into the remaining layers of the chat model, and measure the KL divergence between this hybrid
model’s output and the original chat model output. A high-level diagram of this method is shown in
Figure 3.

Formally, let p™ be the chat model’s next-token probability distribution given context z, with h*h(z)
and h®°(z) as the chat and base model activations, respectively. We evaluate an approximation
h,(x) of h*h(z), by replacing h®"(z) with h,(z) in the chat model’s forward pass, yielding a
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Figure 3: Simplified illustration of our experimental setup for measuring latent causal importance.
We patch specific sets of chat-specific latents (.S) to the base model activation to approximate the chat
model activation. The resulting approximation is then passed through the remaining layers of the chat
model. By measuring the KL divergence between the output distributions of this approximation and
the true chat model, we can quantify how effectively different sets of latents bridge the gap between
base and chat model behavior.
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modified distribution p‘ﬁljﬁl —n, - The KL divergence, Dy, = KL(pfthﬁﬁl “h, |[ph), then quantifies the
predictive power lost by this approximation. Specifically, for a set S of latents, our h, (z) is formed

by adding the chat decoder’s contributions for these latents to the base activation hbase( ).

hg (ZIJ) — hbase + Z f] d(,hdt ) 5)
jESs
Let S and T be two disjoint sets of latents. If the KL divergence Dy, is lower than Dy, we can
conclude that the set .S is more important for the chat-model behavior than the set 7.

Before looking at specific sets, we analyze the following baselines to compare the ability of both
architecture at capturing the behavioral difference:

1. Base activation (None): Intervening with h®*°(x) (i.e., S = ()), expected to yield the
highest KL divergence.

2. Full Replacement (A/ll): Intervening with all latents (S = all), this represents the best
performance achievable by the crosscoder’s latent representations and is equivalent to

hall — ﬂchat(m) + €base($).

3. Error Replacement (Error): using hewor = h"°(2) + () to assess behavioral dif-
ference captured by reconstruction error, quantifying chat behavior driven by information
missing from the crosscoder’s chat activation reconstruction flCha‘(x).

Then, to validate whether norm difference Ao, and Latent Scaling identify causally important
latents, we compare interventions using latents ranked highest versus lowest in chat-specificity by
each method’. We compare the 3176 chat-only latents from the L1 crosscoder with the 3176 highest-
Aporm latents from the BatchTopK crosscoder; this matched sample size ensures a fair comparison.
For both crosscoders and both ranking methods, we compute KL divergence for interventions using
the top 50% (Spest) and bottom 50% (Syerst) Of these ranked latents, expecting Dy, Sy < D
more chat-specific latent should encode more of the behavioral difference. ‘

hswors! as

In Figure 4, we plot the KL divergence for different experiments on 512 chat interactions, with user
requests from Ding et al.’s [Ding et al., 2023] dataset and responses generated by the chat model®.
We report mean results over both the full responses and first 9 response tokens °. First, we confirm a
key finding from Qi et al. [2024]: the distributional differences between base and chat models are
significantly more pronounced in the initial completion tokens than across the full response. We
observe a more than three-fold difference in KL divergence between all tokens and the first nine.

"For Latent Scaling, latents are ranked by the sum of their ranks in the error and reconstruction ratios
distributions, with lower sums indicating minimal Complete Shrinkage and Latent Decoupling effects.

8We report results on LMSYS [Zheng et al., 2024] in Appendix G.1, observing the same trends.

"We actually excluded the very first token (token 1) of each response from our analysis to ensure fair
comparison with the template intervention, introduced later in the paper. The KL is therefore computed on
tokens (2-10) rather than (1-9).
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Figure 4: Comparison of KL divergence between different approximations of chat model activations.
Note the different y-axis scales - KL is generally much higher on the first 9 tokens. We establish
baselines by replacing either None or All of the latents. We then evaluate the Latent Scaling metric
against the relative norm difference (A,om) by comparing the effects of replacing the highest 50%
(red) versus lowest 50% (green) of latents ranked by each metric. We show the 95% confidence
intervals for all measurements. Our results reveal a critical difference between the crosscoders:
while Ao fails to identify causally important latents in the L1 crosscoder, where lower Apom leads
to smaller KL improvement, it successfully does so in the BatchTopK crosscoder. This confirms our
hypothesis that Ao is @ meaningful metric in BatchTopK but merely a training artifact in L1. Using
Latent Scaling, we successfully identify the most causal latents in L1, which is particularly evident
in the first 9 tokens (right) where it almost matches BatchTopK. This shows that both crosscoder
capture the behavioral difference similarly, BatchTopK avoids Ao, artifacts.

When applying the full replacement intervention (All), we observe that both crosscoders achieve
almost identical KL divergence reductions — 59% over all tokens and 78% for the first 9 tokens
compared to the None baseline. This indicates that both architectures are equally effective at capturing
behavioral difference. However, the error replacement intervention (Error) reveals that this captured
difference is far from complete. For full responses, the chat error term achieves slightly better KL
reduction than using the chat reconstruction for both crosscoders, indicating that reconstruction error
contains at least as much behavioral information as the learned dictionary. This aligns with previous
findings by Engels et al. [2024] that highlighted the causal importance of the reconstruction error
in SAEs. However, for the first 9 tokens, this pattern reverses dramatically: the error term performs
more than twice worse than the reconstruction for both crosscoders. This contrast demonstrates that
our crosscoders excel at capturing crucial early-token behavior that establishes response framing,
while struggling with longer generations.

Despite capturing similar information, the two architectures organize it fundamentally differ-
ently. For the BatchTopK crosscoder, Ao successfully identifies causally important latents: the top
50% by Ao achieve substantially lower KL divergence than the bottom 50% (50% vs 6% reduction
for first 9 tokens). This validates A,orm as a reliable proxy for chat-specificity in BatchTopK. In
contrast, Ao fails completely for the L1 crosscoder—latents with highest Ao, latents performing
nearly identically or worse than low-A,, latents. This confirms our hypothesis that in L1 a lot
of chat-only latents are artifacts not capturing the behavioral difference. However, Latent Scaling
successfully identifies causally important latents in the L1 crosscoder, nearly matching BatchTopK’s
performance, demonstrating that a subset of L1 chat-only are relevant to the behavioral difference
and are identified by latent scaling.

3.3 Observations about BatchTopK chat-only latents

Interpretability. The c/iat-only set of the BatchTopK crosscoder (effectively the chat-specific set) is
highly interpretable, encoding meaningful chat-related concepts. For example, Figures 6 and 7 show
two latents for model refusal behavior with nuanced triggers.Appendix N details more refusal triggers
and other interesting latents, such as: refusal detection, model’s personal experiences/emotions, false
information by the user, summarization instructions, missing user information detection, detailed
information requests, joke detection, rephrasing/rewriting, knowledge boundaries, and requested
response length. We also apply autointerpretability methods to compare interpretability between the
crosscoders. In Figure 5, we compare the autointerpretability scores for the 3176 chat-only latents
from the L1 crosscoder with the 3176 latents showing the highest Ao values in the BatchTopK
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crosscoder, ordered by rank(v°) + rank(v"). We observe two key trends: 1. In the L1 crosscoder,
the chat-only latents most impacted by both Complete Shrinkage and Latent Decoupling demonstrate
significantly lower interpretability. 2. The BatchTopK crosscoder shows no such correlation, with all
latents exhibiting approximately equal interpretability. Latents minimally affected by both phenomena
show similar interpretability across crosscoders, confirmed by our analysis of L1 char-only latents
with low 5 and v} values (Appendix N).

Chat specific latents often fire on chat template tokens. Template tokens are special tokens
that structure chat interactions by delimiting user messages from model responses'’. We observe
that many of the char-only latents frequently activate on template tokens. Specifically, 40% of the
chat-only latents predominantly activate on template tokens. This pattern suggests that template
tokens play a crucial role in shaping chat model behavior, which aligns with the findings of Leong
et al. [2025]. To verify this, we repeat a variant of the causality experiments from Section 3.2 by
only targeting the template tokens. Specifically, we define an approximation of the chat activation
Diemplaie (%) that equals the chat activation heha (;) if the last token of the input string x; is a template
token and otherwise equals h®*°(z;). This results in a KL divergence Dy, e Of 0.239 and 0.507

for the full response and the first 9 tokens'!, respectively. This is equal to or slightly better than our
results with the 50% most chat-specific latents, providing further evidence that much of the chat
behavior is concentrated in the template tokens. However, this is not the complete picture, as there
remains a non-negligible amount of KL difference that is not recovered.

"Marked are template tokens: “<bos><sot>user\nHi<eot>\n<sot>model\nHello<eot>\n".
""'Note that we ignore the first token of the response to make this a fair comparison, as the KL on the first
token with hiemplae Would always be almost zero.



4 Related work

SAEs and Crosscoders. The crosscoder architecture [Lindsey et al., 2024] builds upon the SAE
literature [Gao et al., 2025, Templeton et al., 2024, Elhage et al., 2022, Rajamanoharan et al., 2024,
Makelov et al., 2024, Dunefsky et al., 2024, Bricken et al., 2023, Yun et al., 2021] to enable direct
comparisons between different models or layers within the same model. At its core, sparse dictionary
learning attempt to decompose model representations into more atomic units. They make two
assumptions: i) The linear subspace hypothesis [Alain and Bengio, 2016, Bolukbasi et al., 2016,
Vargas and Cotterell, 2020, Wang et al., 2023b] — the idea that neural networks encode concepts as
low-dimensional linear subspaces within their representations, and ii) the superposition hypothesis
[Elhage et al., 2022] — that models that leverage linear representations can represent many more
features than they have dimensions, provided each feature only activates sparsely, on a small number
of inputs.

Effects of fine-tuning on model representations. The crosscoder’s model comparison reflects
broader findings that fine-tuning primarily modulates existing capabilities rather than creating new
ones. Evidence suggests it reweighs components [Jain et al., 2024], strengthens instruction following
while preserving pretrained knowledge [Wu et al., 2024], and enhances existing circuits [Prakash et al.,
2024]. Changes are often concentrated in upper layers, with lower-layer representations largely intact
[Merchant et al., 2020, Mosbach, 2023, Phang et al., 2021, Neerudu et al., 2023, Zhang et al., 2023].
Fine-tuned models also show parameter space proximity to base models [Radiya-Dixit and Wang,
2020, Zhou and Srikumar, 2021, Davies, 2025] and a low intrinsic fine-tuning dimension [Aghajanyan
et al., 2021]. Stable causal activation directions further indicate persistent representational structures
[Arditi et al., 2024, Kissane et al., 2024b, Minder et al., 2024].

The role of template tokens. Recent work confirms our Section 3.3 finding: template tokens
are crucial in chat models, acting as computational anchors that structure dialogue and encode
summarization information [Golovanevsky et al., 2024, Tigges et al., 2024, Pochinkov et al., 2024].
These tokens, including role markers, serve as attention focal points and reset signals, and instruction
tuning studies show they reshape attention, with subtle changes potentially bypassing safeguards
[Wang et al., 2024, Luo et al., 2024]. Concurrently, Leong et al. [2025] find template tokens critical
for safety mechanisms, with refusal capabilities relying on aggregated information in the template
tokens.

5 Discussion and limitations

Our research demonstrates that crosscoders are powerful tools for model diffing, though the L1 loss
introduces artifacts that misclassify char-only latents. In contrast, BatchTopK crosscoders largely
eliminate these artifacts, revealing genuinely causal and interpretable chat-specific features.

Limitations. First, we focused our analysis only on small models’ middle layers. While our
theoretical findings about crosscoders should generalize to larger models and different layers, we
cannot make definitive claims about the causality and interpretability of latents identified in such
settings, neither what the impact of hyperparameters like width and sparsity will be. Second, we
primarily focused on chat-only latents, leaving the base-only and latents relatively unexplored.
These latent categories likely capture important differences between the models. Another key
limitation is that while BatchTopK crosscoders seems to better represent the model difference in their
dictionary, Figure 4 shows that their error terms still contain a lot of information about the chat model
behavior. Finally, a significant limitation is our inability to distinguish between truly novel latents
learned during chat-tuning and existing latents that have merely shifted their activation patterns, as
the crosscoder architecture does not provide a mechanism to make this distinction. This remains
an open challenge for future work. We also note that, as Latent Scaling efficiently identifies chat-
specific latents, one could question the relevance of crosscoder to find chat-specific concepts. Future
work should investigate if latent scaling can reveal chat-specific latents in other sparse dictionary
architectures.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction accurately reflect our contributions on crosscoder
development for model diffing. All claims are supported by experimental results in Sections 2
and 3, with appropriate limitations discussed in Section 5.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 5 discusses the limitations of our work.
Guidelines:
» The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

20


https://arxiv.org/abs/2407.14561
https://transformer-circuits.pub/2025/crosscoder-diffing-update/index.html
https://transformer-circuits.pub/2025/crosscoder-diffing-update/index.html

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide proofs for the closed form solution of the Latent Scaling method
in Appendix E.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information needed to reproduce the main experimental
results of the paper in the supplemental material Appendices B, E and K.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to the data and code in the supplemental material ??
and appendix K. Access to the crosscoder models will be provided upon deanonymization.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide all the training and test details in the supplemental material
Appendix K and ??. The full details can be found in the code provided.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars for the KL divergence experiments in Section 3.2 in the
main paper. We do report statistical significance for correlation experiments in the main
paper. Due to computational constraints, we were only able to train a single crosscoder for
the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the compute resources used for the experiments in the supplemental
material Appendix M. We only report the estimated total amount of compute used for the
experiments.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We conform to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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10.

11.

12.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential positive societal impacts of the work performed in
Section 1.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .
Justification: Our work does not pose any such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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13.

14.

Answer: [Yes]

Justification: We properly credit and mention the license and terms of use for the assets used
in Appendix K.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:

Justification: The only new asset introduced in the paper is the Latent Scaling method and
the BatchTopK crosscoder variant, which are both described in theory and provided in the
code. The code does not include a documentation beyond comments in the code, because
the code is based on the existing SAE training library from Marks et al. [2024].

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: Our work does not involve research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: Our work does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A  Glossary

Key Terms

Model Diffing The study of how fine-tuning changes a model’s internal representations and

algorithms, focusing on the differences between base and fine-tuned models
rather than analyzing each model in isolation.

Sparse Autoencoder (SAE) An interpretability method that decomposes neural network activations

into a sparse sum of interpretable dictionary elements (latents), each correspond-
ing to a monosemantic concept.

Crosscoder A sparse dictionary learning architecture that learns a shared dictionary of

interpretable concepts across two models (e.g., base and chat), with model-
specific decoder directions for each latent. Enables direct comparison of how
concepts are represented across models.

Latent A dictionary element in the crosscoder or SAE, consisting of an activation func-
tion f;(x) and decoder direction(s) d;. Intuitively, represents an interpretable
concept that the model uses.

Chat-tuning The process of fine-tuning a base language model to follow instructions and

engage in dialogue, typically through supervised fine-tuning on conversation
data.
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chat-only Latents Latents where Apom(j) € [0.9, 1.0], indicating the base model’s decoder norm
is near zero. Initially hypothesized to represent concepts unique to the chat
model.

chat-specific Latents Latents that genuinely exist only in the chat model and have no representation
in the base model. The ground truth that chat-only latents attempt to capture.

chat-specific Latents chai-only latents that pass our validation tests: v§ < 0.5 and v < 0.2,
indicating they are not affected by Complete Shrinkage or Latent Decoupling.

base-only Latents Latents where Ao (7) € [0, 0.1], suggesting the chat model’s decoder norm is
near zero.

Latents Latents where Ayorm(j) € [0.4, 0.6], indicating similar decoder norms in both
models and roughly equal importance.

Complete Shrinkage A failure mode where the L1 sparsity penalty forces a base decoder direction
to zero norm even when the latent contributes to base model reconstruction.
Results in the latent’s information appearing in the reconstruction error £,

Latent Decoupling A failure mode where a concept present in both models is represented by a
chat-only latent in the chat model but by a different combination of latents in
the base model. Results in the concept’s information appearing in the base

reconstruction hPe.
Latent Scaling Our proposed method to validate whether chat-only latents are chat-specific by

finding the optimal scale at which a latent’s chat decoder can reconstruct base
model activations. Low scaling ratios indicate genuine chat-specificity.

L1 Crosscoder Crosscoder variant using L1 regularization for sparsity: Lp;(z) =
>t (2)([|d¥*[]2 + [|dS"™||2). Susceptible to Complete Shrinkage and Latent
Decoupling.

BatchTopK Crosscoder Crosscoder variant enforcing LO sparsity by selecting only the top k£ most
active latents per sample in a batch. More robust to the identified failure modes.

Template Tokens Special tokens that structure chat interactions (e.g., <start_of _turn> (abbrevi-
ated <sot>), user, model, <end_of_turn> (abbreviated <eot>)), delimiting
user messages from model responses. Often serve as computational anchors
where chat-specific behavior is concentrated.

Mathematical Notation

Input string or token sequence.

Dimension of model activations (residual stream dimension).
Number of latents in the crosscoder dictionary (typically D > d).
Set of all latents {1, ..., D}.

hP#¢(2) Base model activation vector at a specific layer for input x, where h®°(x) € R9,

ST

hehat(2) Chat model activation vector at the corresponding layer, where h?° () € R4,

fij(z)  Activation (scalar) of latent j for input =, where f;(x) € R>¢. Shared across both models
in the crosscoder.

d?"‘se Decoder direction for latent 5 in the base model, where d‘]’»ase e R4, Represents how latent
7 contributes to base model activations.

d;ha‘ Decoder direction for latent 7 in the chat model, where d;hat € R%. Can differ from d';ase in
both magnitude and direction.

hP®¢(z) Reconstructed base model activation: h*®¢(z) = $° ; Fi (@) dyse 4 plecbuse,
hehat(z) Reconstructed chat model activation: heh(z) = 37 5 [ () dgh 4 plecschar,

€P3¢(1) Reconstruction error for base model: €*¢(z) = h*(x) — h**°(z). Captures information
not explained by the crosscoder.

ehat(z) Reconstruction error for chat model: e (x) = h®®¢(z) — hehat(z)
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Hd;-hmﬂzf‘ld?uw”z
max(HdcjhmszHd‘;-asc”?)

Anorm(j) Relative norm difference: Ao (j) = € [0, 1]. Measures how chat-
specific vs base-specific a latent is.
ﬁ}’“‘“ Optimal scaling factor for latent j to reconstruct base activations: minimizes

> Bf (J;i)dghat — h®®¢(z;)||%. Intuitively, how much the chat decoder helps explain
base activations.

ﬁ;ha‘ Optimal scaling factor for latent j to reconstruct chat activations (analogous to ,B;’ase)

vj Overall scaling ratio: v; = B?ase / ﬂ;hat. Values near 0 indicate chat-specificity; values near
1 indicate equal presence in both models.

vi Reconstruction ratio: v7 = B;’base / ﬂ;’cm, where 3" values are computed using reconstruc-
tions instead of raw activations. Detects Latent Decoupling (high values indicate the latent’s
information is captured by other base latents).

Vs Error ratio: v§ = (3 wbase s BE <hat where 3° values are computed using errors. Detects
Complete Shrmkage (7h1gh values mdlcate the latent should contribute to base reconstruction
but doesn’t).

pehat Chat model’s next-token probability distribution given context

pﬂ}f,‘; <1, Modified chat model distribution when activation hehat is replaced with approximation h

B Additional definitions

B.1 L1 crosscoder

L1 crosscoder. Let = be an string and h®°(z), h®"(z) € R denote the activations at a given
layer at the last token of z. For a dictionary of size D, the latent activation of the ;" latent
fi(z),5 € J=A1,...,D} is computed as

fj ((E) = RelLU (e?asehbase(x) + e;_hathchat(x) + b;_nc) (6)
where eb’aqe ;ha‘ € R are the corresponding encoder vectors and b5 € Ris the encoder bias. The
reconstructed activations for both models are then defined as:

hbase Z f] dbase bdec,base and Hchal ( :ZZ) _ Z f] dchat bdec,chat @)

where db*°, dS" € ]Rd are the 7" decoder latents and bdee-base, bdec’Chat € R? are the decoder biases.

We define the reconstruction errors for the base and chat models as £%¢(z) = hb®¢(z) — hb®e(z)

and e (z) = heh(z) — h®h (). The training loss for the L1 crosscoder is a modified L1 SAE
objective, where p controls the sparsity weight:

1
Lyi(z) = 2IIEt’a”(ﬂfz)llz+ le* (2 ||2+u2fy (5= llz + [ld5™]l2) ®)

While similar to training an SAE on concatenated actlvatlons, the crosscoder’s sparsity loss uniquely
promotes decoder norm differences (see Appendix C).

B.2 BatchTopK crosscoder

Let X = {z1,...,2z,} be a batch of |X| = n inputs. Following Bussmann et al. [2024], we
compute the latent activation function differently during training and inference. Let f;(x;) be the
latent activation function as defined in Equation (6). Given the scaled latent activation function
v(x,§) = fi(2:)(|d5e]|2 + [|dS™||2), the training latent activation function fi" is given by:

Fn (g, X0) = {gj(a:i) if (x;,7) € BATCHTOPK (k, v, X, J) ©)

where BATCHTOPK (k, v, X', J) represents the set of indices corresponding to the top | X| - k values
of the function v across all inputs z; € X and all latents 7 € 7. We now redefine the reconstruction

otherwise
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errors and the training loss for batch X as follows:

Ebase(l,i7 X) — hbase(aji) _ ijt_rain(mi’ X) d?ase + pdec;base (10)
J
EChat(.Ti7 X) _ hchat(xi) _ Z th_rain (x“ X) d;_hat + plec;chat (1)
J
Caurmon() = 237 Ljebse(a, )+ Lo )+ 0Lunlen ) (12)
BatchTopK n vt 2 (2] 2 2 (2] 2 aux \ Ly

The auxiliary loss facilitates the recycling of inactive latents and is defined as ||€®¢(x;, X) —

gbase(z, X)||2 + [|eM (z;, X) — ehat(z;, X)]||2, where b€ and bt represent reconstructions using
only the top-k,,x dead latents. Typically, k.. is set to 512 and « to 1/32. For inference, we employ
the following latent activation function:

inference [, \ _ fj(ivl) lfv(xlvj) >0
5 (w:) = {0 otherwise

where 6 is a threshold parameter estimated from the training data such that the number of non-zero
latent activations is k.

(13)

=K : Z_7. train i;X >0 "
v [(m,ﬁelng{v(m ‘7) | fJ ((E ) } (14)

B.3 Alternative BatchTopK variations

We experimented with several variations of the BatchTopK activation function to investigate whether
alternative sparsity mechanisms could further improve the identification of chat-specific latents.
However, none of these variations yielded more chat-specific latents than the BatchTopK approach
described above, so we focus on this version in the main paper.

Concatenated decoder norm variant. The first variation modifies the scaling function v(z;, j) used
in the top-k selection. Instead of summing the decoder norms as in our approach, we use the norm of
the concatenated decoder vectors:

V(@i g) = f(@a)ll[dF, a5 (15)
where [d';ase, d;-hat] € R%4 denotes the concatenation of both decoder vectors. This approach treats

the crosscoder more like a standard SAE operating on stacked activations but did not improve over
our approach.

Model-independent BatchTopK variant. The second variation computes BatchTopK selection
independently for each model, using the model-specific scaling function

vM (i) = fi(za)lld} 2 (16)
for model M € {base, chat}. This approach was motivated by the observation that standard Batch-
TopK has an inherent bias toward shared latents. Since latents are selected based on their total
reconstruction benefit across both models, a shared latent that reduces loss by 0.6 on each model
(total benefit 1.2) will be preferred over a model-specific latent that reduces loss by 1.0 on one model
and O on the other (total benefit 1.0). We hypothesized that this bias might prevent discovery of
important chat-specific features introduced during fine-tuning, as they would be crowded out by
shared representations. The model-independent variant removes this bias by allowing each model to
allocate its k£ budget independently, potentially revealing chat-specific latents that would otherwise be
suppressed. As expected, the model-independent variant produced more chat-only latents. However,
these additional latents suffered from increased latent decoupling issues, ultimately not yielding more
chat-specific latents by our v" and v* metrics. This suggests that the standard BatchTopK’s bias
toward shared representations helps avoid artifact char-only latents.
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C Comparing sparsity losses: Crosscoder vs. stacked SAE

An L1 crosscoder can be viewed as an SAE operating on stacked activations, where the encoder and
decoder vectors are similarly stacked:

— [hbdbe ’ hchat( )] c R2d (17)
[eljjase, Chdt} c RQd (18)
= [dhe, ag™] e R (19)
bdec — [bdec ,base bdec chat} (20)
The reconstruction remains equivalent because
fi(z) = ReLU (e; h + b5) 21)
= ReLLU (egasehbase (LL')-F
e;hathchat(x) + b;nc) (22)
and hence,
[hl;ase(x)’ hchat Z fJ bdec (23)

However, the key difference arises in the sparsity loss. For the crosscoder, the sparsity loss is given
by:

d d
L™ () = Do) | 3| (@57 +y| D ()2 @
7 i=1 i=1

For a stacked SAE, it is:

Lssp‘glraslty z) = Z f](l‘)
J

d

d
= Z Fi(@) ([ D (dbe)2 4> " (dehar)2 (25)
=1

i=1

The difference between \/x + y and /= + ,/y introduces an inductive bias in the crosscoder that
encourages the norm of one decoder (often the base decoder) to approach zero when the corresponding
latent is only informative in one model.

Figure 9 displays a heatmap of the functions y/x2 + y? and V&2 + /y? along with their negative
gradients, as visualized by the arrows. One can observe that for the crosscoder sparsity variant

Va2 4+ /y? the gradient encourages the norm of one of the decoders to approach zero much more
quickly compared to the SAE’s y/x2 + y2.

D Illustrative example of Latent Decoupling

As a reminder, Latent Decoupling happens when a char-only latent j is also present in the base
activations but is reconstructed by other base decoder latents. To spell it out in more details, consider
the following set up: a concept C may be represented identically in both models by some direction
dc but activate on different non-exclusive data subsets. Let & (x) and f2°(x) be concept C’s
optimal activation functions in chat and base models, defined as fCh"“( ) = fohared(T) + feexa (@)
and f25¢(2) = fonared(T) + fo-excl (T), Where finared €ncodes shared activation, while fy-exel and fe-excl
define model exclusive activations. For interpretability, the crosscoder should ideally learn three
latents:

1. A latent jsharea representing C when active in both models using f, ... = fsharea and
dchat = dbase = dCa
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Figure 9: Heatmap comparing the two functions y/22? + y? and v'22 4 /y? along with their negative
gradients.

2. A chat-only latent jep, representing C when exclusively active in the chat model using
fjchal = fc—excl and dchat = dC7 dbase =0, and

3. A base-only latent jy,s representing C when exclusively active in the base model using
fjbase = fb—excl and depge = 0, dpase = dc.

However, the L1 crosscoder achieves equivalent loss using just two latents:

1. A chat-only latent jcne representing C in the chat model using f;,.. = feexcl + fshared and
dchal = dC7 dbase =0, and

2. A base-only latent jpase representing C in the base model using fj.. = fo-excl + fohared
and d¢hy = 0, dpae = de. In this scenario, the so-called “char-only” latent is only truly
chat-only on a subset of its activation pattern.

Although whenever fgeq > 0 two latents are active instead of one, the sparsity loss is the same
because the sparsity loss includes the decoder vector norms. 2 To illustrate the phenomenon of
Latent Decoupling we choose the oversimplified case where fy.excl () = feexa(z) = 0. Let us
consider a latent j with f;(x) = a. On the other hand, let there be two other latents p and ¢ with

dbase — dbase dchat -0

P A P

base __ chat __ _jchat
=0, d=df

and f,(z) = f,(z) = «a. Clearly, the reconstruction is the same in both cases since ozd';»ase =
ozd';ase + ozdzase and ozdg-hat = ozd;h*“ + adflhat. Further, the L1 regularization term is the same since

a (|52l o) = (26)

a ([[dp=ello+||d5™[2)

+a (|ldgeel2+1dg™|l2)

= a ([|d2™¢][240) + a (0 + ||dS™|]2) (27)
Hence both solutions achieve the exact same loss under the L1 crosscoder.

However, the BatchTopK crosscoder actively encourages the three-latent solution. For the subset of
tokens where foarea > 0, the three-latent solution will have an LO sparsity of 1, while the merged
two-latent solution will have an LO sparsity of 2. Since the BatchTopK crosscoder optimizes for LO
sparsity, it will prefer the three-latent solution, considering that dictionary capacity will be a limiting
factor as this requires more latents.

"In the simplest case where feexci () = foexa () = 0, there exists a base-only latent jiin With d;h“‘ = d?;“ifﬂ

and identical activation function that reconstructs the information of d;‘“” in the base model. The sparsity loss
equals that of a single shared latent.
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E More details regarding Latent Scaling

E.1 Closed form solution for Latent Scaling

Consider a latent j with decoder vector d. Our goal is to find the optimal scaling factor 3 that
minimizes the squared reconstruction error:

n
argmin Y _[|8f(z;)d — yl|3 (28)
-

To solve this optimization problem efficiently, we reformulate it in matrix form. Let Y € R"*9 be
the stacked data matrix and f € R” be the vector of latent activations for latent j across all datapoints.
The objective can then be expressed using the Frobenius norm of the residual matrix R = gfd” —Y,
where fd” € R™*? represents the outer product of the latent activation vector and decoder vector.
Our minimization problem becomes:

IR|I% = [|5fd" — Y|
=Tr[(Bfd" —Y)" (Bfd" - Y)]
=Tr[Y'Y]-28Tr [Y'fd"]
+ B*Tr [(£d") T£d" ]

Using trace properties, we get:

Tr[Y'fd"] =d"(Y'f)
Tr [(fd7) " £d™] = ||£]3]|d]13
Taking the derivative with respect to 3 and setting it to zero:
)
@IIRII% = —2d" (Y 'f) + 26[|f|Z[|d[3 = 0

This yields the closed form solution:

_dT(YTf) (Y4, f)

ﬂ = =
IEI30d)3  (IE13]a]3

(29)

Without loss of generality, we can assume d has unit norm."3

To gain intuition for this formula, consider a simplified toy setting where f; € {0, 1} (latent either
fires or doesn’t) and (Yd); € {0, o} (the target contains the concept with magnitude « or not at all).
In this case, the closed form simplifies to:

>_i(Yd)ifs
_ L 30
Y o
#{i: f; #0and (Yd); # 0}
R R oY
= « - P(concept present in target | latent active) (32)

This toy example illustrates that 3 captures both the magnitude « at which the concept appears in the
target activations and the conditional probability that the concept is actually present when the latent
fires. For a truly fine-tuning-specific latent, we expect this conditional probability to be near O for the
base model activations (yielding 5 = 0) and near 1 for the fine-tuned model activations (yielding
[ = «). In contrast, a shared latent should exhibit similar 3 values across both model activations,
reflecting consistent presence of the underlying concept.

"By defining f’ = ||d||2f and d’ = d/||d||2, we obtain an equivalent formulation with unit decoder norm.
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E.2 Detailed setup for Latent Scaling

We specify the exact target vectors y used in Equation (28) for computing the different 3 values to
compute our chat-specificity metrics. To measure how well latent j explains the reconstruction error,
we exclude latent j from the reconstruction. This ensures that if latent 7 is important, its contribution
will appear in the error term. For chat-only latents, we expect distinct behavior in each model: no

contribution in the base model (b’j’base ~ 0) but strong contribution in the chat model (85™ ~ 1),

resulting in v§ ~ 0. In contrast, latents should have similar contributions in both models,
resulting in approximately equal values for Bj‘?’base and ﬁ;’cm and consequently v ~ 1.
ﬂjybase Ly = hbase(ilii) _ Z fk (xz) dZase + bdec,base (33)
k,k#j
Bj,chat Ly = hChat(Ii) - Z fk (5177) d%hal + bdec,chat (34)
k,k#j

To measure how well a latent j explains the reconstruction, we simply use
BYP Ly = (x;) (39)

By = b (xy) (36)

In a similar manner, we expect the fraction v} to be low for chat-only latents and around 1 for
latents. For all of our analyses, we filter out latents with negative 3°*¢ values (L1: 46 in
reconstruction and 1 in error, None in BatchTopK ). These latents typically have low maximum

activations and show a small improvement in MSE. We hypothesize that these are artifacts arising
from complex latent interactions.

E.3 Additional analysis for Latent Scaling

Figure 10a and Figure 10b analyze the relationship between our scaling metrics (v* and ") and the
actual improvement in reconstruction quality in the L1 crosscoder. For each latent, we compute the
MSE improvement as:

MSEoriginal - MSEscaled

MSEoriginal
where MSEq,ieq is measured after applying our Latent Scaling technique. We then examine the ratio
of MSE improvements between the base and chat models, analogous to our v metrics. The strong

correlation between the v values and MSE improvement ratios validates that our scaling approach
captures meaningful differences in how latents contribute to reconstruction in each model.

MSEImprovement =

80
60
40

20

Ratio MSE Improvement (Base/Chat)
Count
Ratio MSE Improvement (Base/Chat)

0.1 0.2 0.3 0.4 0.5 0.6

% 1z

(a) v° ) v"

Figure 10: Comparison of the ratio of MSE improvement compared to the value of v and v/".

In Figure 11, we analyze the Latent Scaling technique by examining its relationship with the Ao
score. Specifically, we identify the 100 latents with the lowest v values and analyze their rankings
according to the A, metric. As shown in Figure 11, there is limited correlation between the
two measures - simply using a lower NormDiff threshold to identify char-only latents produces
substantially different results from our Latent Scaling approach.
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Figure 11: Comparison of latent rankings between v and NormDiff scores. The lines shows the
fraction of the 100 latents with the lowest v values (z-axis) that have a rank lower than the given rank
under the NormDiff score (y-axis).
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Figure 12: Distribution activation divergence over high cosine similarity (chat-only, base-only) latent
pairs. 1 means that latents never have high activations (> 0.7 X max_activation) at the same time,
0 means that high activations correlate perfectly.

F Cosine similarity of coupled latents.

As further evidence for Latent Decoupling occuring, we compute the cosine similarity be-
tween {d$",j € char-only} and {d?z‘se7 j € base-only} revealing 109 (j, jiwin) pairs where

cosim(dg-hm7 d';[“;e) > 0.9. To quantify activation pattern overlap between twins (J, juwin), We in-
troduce an activation divergence score from 0 (always co-activate) to 1 (never co-activate) (see
Appendix F.1). Figure 12 shows the divergence distribution across these pairs, highlighting that 60%
of the pairs primarily activate on different contexts, with some pairs almost exclusively firing on
different contexts (divergence of 1), while others exhibit substantial overlapping activations. This

analysis demonstrates two important insights:

1. The Latent Decoupling phenomenon described in Appendix D, where the crosscoder learns
a base-only and a chat-only latent that partially activate together instead of learning a
latent, is empirically observed in practice.

2. Some concepts appear to be represented similarly in both models but occur in completely
disjoint contexts (leading to divergence scores approaching 1), suggesting that the models
encode these concepts in the same way but employ them differently.

Additionally, we find no pairs of chat-only latents and Ao < 0.6 latents with a cosine similarity
greater than 0.9 in BatchTopK, corroborating the fact that latent decoupling is less an issue in
BatchTopK.
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F.1 Detailed setup for activation divergence

In order to compute the activation divergence we compute for each pairs p = (4, j), we first compute
the max pair activation A, on the training set Dy, (containing data from LMSYS and FineWeb)

Ap = max(Ai, AJ)

Ay = max{f;(2)(|d§"™[|+[|d**|]), & € Diain}
Then the divergence Div, is computed as follow
Single
Div, = ')

High,
Single, = #single, + #single;
High, = #(high, Uhigh,)

where #single, is the set of input x € Dy, where ¢ has a high activation but not j and high, is the
total number of high activations computed as follows:

only; = {z € Dya, fi(z) > 0.7A, A fj(x) < 0.34,}
high; = {z € Dy, fi(z) > 0.T4,}

G Causality experiments

G.1 Reproduction on LMSYS-CHAT

In Figure 13 we repeat the causality experiments from Section 3.2 for the L1 crosscoder on 700’000
tokens from the LMSYS-CHAT dataset, that the crosscoder was trained on. Note that while this
dataset is much larger, the model responses are not generated by the Gemma 2 2b it model, and
hence the model answers are out of distribution for this model. Since this dataset is much larger,
the confidence intervals are much smaller. The results are qualitatively similar to the ones on the
generated dataset in the main paper.
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Figure 13: Comparison of KL divergence between different approximations of chat model activations
on the LMSYS-CHAT dataset. We establish baselines by replacing either None or All of the latents.
We then evaluate our Latent Scaling metric (Ours) against the relative norm difference (Ayorm) by
comparing the effects of replacing the top and bottom 50% of latents ranked by each metric (Best
vs Worst). Additionally, we measure the impact of replacing activations only on template tokens
(Template). We show the 95% confidence intervals for all measurements. Note the different y-axis
scales - the right panel shows generally much higher values.

H Autointerpretability details

We automatically interpret the identified latents using the pipeline from Paulo et al. [2024]. To
explain the latents, we provide ten activating examples from each activation tercile to Llama 3.3
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Figure 14: We compare how Llama3.2 1B c/iat-only latents are affected by the issues described
in Section 2.2. Left/Middle: v distributions for L1 and BatchTopK crosscoders, with each point
representing a single latent. High v" values (y-axis) overlapping with distribution indicate
Latent Decoupling (redundant encoding). High v* values (z-axis) shows Complete Shrinkage (useful
base latents forced to zero norm). Low values on both metrics identify truly chat-specific latents. L1
shows many misidentified c/at-only latents while BatchTopK shows minimal issues. Right: Count of
latents below a range of v thresholds (z-axis), comparing 1844 L1 chat-only latents versus top-1844
BatchTopK latents sorted by A orm-

500 chat-only 2501 chat-only
0 shared 0 shared 1[)3 1
1.0 e 1.0 -
s c
. 3
. ‘A 8
~ 0.5 ﬁ 205 10t f/ —— BatchTopK
o A
0.04, : ‘ 0.01, | | , - :
0 10 500 0 10 500 0.0 0.5 1.0
Ve Ve Threshold 7
(a) L1 crosscoder (b) BatchTopK crosscoder (c) Number of latents (y-axis) for

which " < mand v° < 7.

Figure 15: We compare how Llama3.1 8B c/iar-only latents are affected by the issues described
in Section 2.2. Left/Middle: v distributions for L1 and BatchTopK crosscoders, with each point
representing a single latent. High v values (y-axis) overlapping with distribution indicate
Latent Decoupling (redundant encoding). High v° values (z-axis) shows Complete Shrinkage (useful
base latents forced to zero norm). Low values on both metrics identify truly chat-specific latents. L1
shows many misidentified c/iaz-only latents while BatchTopK shows minimal issues. Right: Count of
latents below a range of v thresholds (z-axis), comparing 2442 L1 chat-only latents versus top-2442
BatchTopK latents sorted by Agorm-

70B [Grattafiori et al., 2024]. Latents are scored using a modified detection metric from Paulo et al.
[2024]. We provide ten new activating examples from each tercile. Rather than comparing activation
examples against randomly selected non-activating examples, we use semantically similar non-
activating examples identified through Sentence BERT embedding similarity [Reimers and Gurevych,
2019] using the all-MiniLM-L6-v2 model. To find these similar examples, we join all activating
examples into a single string and embed it, then compute similarity scores against embeddings for
each window of tokens to identify the most semantically related non-activating examples. This is a
strictly harder task than scoring activation examples against a random set of non-activating examples.
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I Reproducing results on other models

I.1 Llama models

We reproduce our experiments on both Llama3.2 1B and Llama3.1 8B models [Grattafiori et al.,
2024]. Different from the Gemma models, the Llama models have a very different embedding for
some of the template tokens. We replace several template tokens with single token alternatives:

* <start_header_id> is replaced with \n\n\n
* <eot_id> is replaced with ####
* <end_header_id> is replaced with ####

For Llama3.2 1B, we use the same training pipeline as the main paper with ;4 = 3.6e — 2 for the L1
crosscoder, resulting in an LO of 110 after training. We compare this to a BatchTopK crosscoder with
k = 100. While this k value differs slightly, retraining would be computationally expensive, and
the lower k actually disadvantages the BatchTopK crosscoder. The L1 crosscoder achieves 76.5%
validation FVE while the BatchTopK crosscoder achieves 81.5%.

For Llama3.1 8B, we use i = 2.1e — 2 for the L1 crosscoder, resulting in an LO of 201, compared
against a BatchTopK crosscoder with & = 200. For the BatchTopK crosscoder, we make two key
modifications compared to the other models: 1) we initialize the encoder and decoder norms to 0.3
instead of 1.0 which is crucial for convergence, and 2) we anneal k from 1000 to 200 over 5000 steps
to prevent dead latents. The L1 crosscoder achieves 76.6% validation FVE while the BatchTopK
crosscoder achieves 81.5%. Due to computational constraints, we only use 10M tokens to train the
latent scalers 3.

Both models exhibit consistent patterns. The L1 crosscoders systematically overidentify chat-only
latents:

* For Llama3.2 1B (Figure 14), the v distributions reveal numerous misidentified chat-only
latents in the L1 crosscoder, while the BatchTopK shows minimal issues. In Figure 14c we
see that the BatchTopK crosscoder effectively identifies more truly chat-specific latents.

* The same patterns hold for Llama3.1 8B, as shown in Figure 15.

1.2 Reproducing on chat model fine-tuned on narrower domains

To verify that our findings extend beyond the base vs. chat phenomenon, we conducted additional
experiments on models fine-tuned in narrower domains. We compare two domain-specific fine-tuning
scenarios:

* Medical domain fine-tuning: We compare google/gemma-2-2b-it to
OpenMeditron/Meditron3-Gemma2-2B from the Meditron3 Sallinen et al. [2025]
suite. Crosscoders were trained on 5S0M tokens from LMSYS and 39M tokens of medical
data, including a mixture of [Tran et al., 2024, bio-nlp-umass/bioinstruct], [Chen
et al., 2024, FreedomIntelligence/medical-ol-reasoning-SFT], and [Xiong et al.,
2024, MedRAG/pubmed].

* RL fine-tuning on reasoning data: We compare deepseek-ai/DeepSeek-R1-Distill-
Qwen-1.5Btonvidia/Nemotron-Research-Reasoning-Qwen-1.5B, which applies ex-
tended RL training periods for deeper exploration of reasoning strategies Liu et al. [2025].
Crosscoders were trained on 50M tokens from LMSYS and 50M tokens of reasoning traces
from open-r1/0penR1-Math-220k.

For both comparisons, we trained L1 and BatchTopK crosscoders with comparable Ly ~ 100 on the
validation set and measured how many latents are truly specific to the fine-tuned model as determined
by Latent Scaling. Table 1 shows results across all investigated models, including the number of
fine-tuned-only (FT-only) latents based on the relative norm difference A.

Figure 16 shows the medical domain fine-tuning results, demonstrating the same systematic patterns
observed in base vs. chat comparisons. The L1 crosscoder identifies 246 fine-tuning-only latents
with A > 0.9, but 235 of these (95.5%) exhibit high reconstruction ratios v > 0.6, indicating false
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Table 1: Domain-specific fine-tuning results across different model pairs, architectures, and fine-
tuning methods. The table shows the systematic pattern where L1 crosscoders consistently misidentify
shared latents as fine-tuning-only due to Complete Shrinkage and Latent Decoupling phenomena.

Model Type # FT-only | False FT-only # latents < 7
(A>09) | @>06 |02 04 | 06 | 08
Gemma2-2B-Chat | PP || | 13 | 201 | w5 | 2070
e B 9| B 300 T
o | B | 1] 2 o
Quen-1.5B-Nemotron | PP | (g 58 Egé(??%) oo | 52|
Meditron3-Gemma ETtChTOpK 226 2305(?9'227) l73 ;? 13558 %491

attribution due to Complete Shrinkage or Latent Decoupling. In contrast, the BatchTopK crosscoder
identifies O false fine-tuning-only latents (0.0%).
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(c) L1 error vs reconstruction ratio for medical domain (d) Latents vs threshold comparison for medical domain
fine-tuning, showing Complete Shrinkage and Latent fine-tuning, comparing L1 and BatchTopK identifica-
tion of domain-specific latents.

Decoupling patterns.

Figure 16: Domain-specific fine-tuning results for medical domain (Gemma-2-2b-it vs. Meditron3-
Gemma2-2B). Top: Decoder norm differences for L1 (left) and BatchTopK (right) crosscoders.
Bottom: L1 error vs reconstruction analysis (left) and threshold comparison (right). The results
demonstrate that L1 crosscoders systematically misidentify shared medical concepts as fine-tuning-
only, while BatchTopK crosscoders more accurately identify genuinely domain-specific latents.
Medical fine-tuning was performed on 39M tokens of medical data including bioinstruct, medical
reasoning, and PubMed content.
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Latent Decoupling patterns. fication of domain-specific latents.

Figure 17: Domain-specific fine-tuning results for reasoning domain (DeepSeek-R1-Distill-Qwen-
1.5B vs. Nemotron-Research-Reasoning-Qwen-1.5B). Top: Decoder norm differences for L1 (left)
and BatchTopK (right) crosscoders. Bottom: L1 error vs reconstruction analysis (left) and threshold
comparison (right). The reasoning domain shows the most extreme misattribution patterns, with
98.3% of L1-identified latents being false positives. RL fine-tuning was performed on SOM tokens of
reasoning traces from OpenR 1-Math-220k.

The reasoning domain comparison (Figure 17) shows even more extreme patterns. For the DeepSeek-
R1 vs. Nemotron-Reasoning comparison (Qwen-1.5B-Nemotron), the L1 crosscoder identifies 59
reasoning-related latents as fine-tuning-only with A > 0.9, but 58 of these (98.3%) exhibit Complete
Shrinkage or Latent Decoupling with v > 0.6 - the highest false attribution rate across all model
pairs. The BatchTopK crosscoder again identifies O false fine-tuning-only latents (0.0%).

We observe two consistent patterns across all models in Table 1: (i) The A metric in L1 crosscoders
consistently identifies a large number of latents as fine-tuning-only that actually display Complete
Shrinkage or Latent Decoupling, with false attribution rates ranging from 49.5% to 98.3%. (ii)
BatchTopK crosscoders maintain low false attribution rates (0.0% to 13.4%) and consistently identify
more genuinely fine-tuning-specific latents when using Latent Scaling.

These results demonstrate that our findings reproduce across narrow domain fine-tuning (medical
& reasoning), different architectures (Qwen & Llama), and alternative fine-tuning algorithms (RL
tuning), supporting the generality and robustness of our analysis.

J Reproducing results on independently trained L1 crosscoder

We validate our findings by analyzing a crosscoder independently trained by Kissane et al. [2024a] on
the same models and layer than ours. This model contains 16,384 total latents (compared to 73,728 in
our model), which decompose into 265 chat-only latents, 14,652 latents, 98 base-only latents,
and 1369 other latents. Figure 18 shows the reconstruction ratio v" and error ratio v* for all latents,
revealing patterns consistent with our previous findings in Figure 2. The overlap between chat-only
and latents remains similar - 17.7% of chat-only latents fall within the 95% central range of
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Figure 18: The y-axis is the reconstruction ratio v and the z-axis is the error ratio v°. High values
on the y-axis with significant overlap with the distribution indicate Latent Decoupling. High
values on the z-axis indicate Complete Shrinkage. We zoom on the v range between 0 and 1.1.

the distribution, while only 1.1% lie within the 50% central range. We observe even higher »*
values for chat-only latents, suggesting that quite a lot of the c/har-only latents suffer from Complete
Shrinkage. Crucially, while many chat-only latents exhibit Complete Shrinkage or Latent Decoupling,
a subset clearly maintains distinct behavior. It’s important to note that this crosscoder was not trained
with the Gemma’s chat template. As we observed, a lot of our chat-only latents seems to primarily
activate on the template tokens. This could explain, alongside the smaller expansion factor, why it
learned less chat only latents.

K Training Details

We trained both crosscoders with the following setup:

* Base Model: Gemma 2 2B.
* Chat Model: Gemma 2 2B it.
+ Layer used: 13 (of 26)'4.
» Expansion factor: 32, resulting in 73728 latents.
* Initialization:
— Decoder initialized as the transpose of the encoder weights.

— Encoder and decoder for both models are paired with the same initial weights.

— The L1 crosscoder is initialized to have a norm of 0.05 while the BatchTopK crosscoder
is initialized to have a norm of 1.0. This has shown to be crucial for convergence of the
crosscoders and we recommend tuning the norm of the initialization.

— Training Data: 100M tokens from Fineweb (web data; ODC-By v1.0 License) [Penedo
et al., 2023] and Imsys-chat (chat data; Custom License) [Zheng et al., 2024], respec-
tively.

As mentionned in Appendix 1.1, for the Llama 3.1 8B BatchTopK crosscoder, we anneal k from 1000
to 200 over 5000 steps. We recommend this to prevent dead latents.

Refer to Table 2 and Table 3 for the training details. We use the tools nnsight (MIT License)
[Fiotto-Kaufman et al., 2024] and a branch of dictionary_learning (MIT License) [Marks et al.,
2024] to train the crosscoder.

L Additional statistics on the Crosscoders

In this section, we present additional statistics for both the L1 and BatchTopK crosscoders, focusing
on the distribution of cosine similarities between decoder latents, latent activation frequencies and

14Specifically, we load the model using the transformers library from Wolf et al. [2020] and collect the
activations from the output of the model.layers[13] module
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Epoch I LR | Split FVE (Base) FVE (Chat) Dead Total FVE L0

1 4e—2 le—4 | Train 81.5% 82.9% - 823% 1123
Val 83.8% 852%  1.8% 84.6% 112.5
2 41e—2 le—4 | Train 79.6% 80.7% - 80.3% 101.7
Val 83.6% 849%  8.1% 84.4% 101.0

Table 2: L1 crosscoder training statistics. FVE stands for Fraction of Variance Explained. LR
stands for Learning Rate. The L1 regularization parameter px was slightly increased in the second
epoch to improve sparsity, resulting in lower LO values. We present statistics for both epochs to
illustrate this progression.

Epochs & LR | Split FVE (Base) FVE (Chat) Dead Total FVE L0

2 100 le—4 | Train  86.2% 86.9% - 86.6% 100
Val 88.1% 87.0%  12.0% 87.6% 99.48

Table 3: BatchTopK crosscoder training statistics. FVE stands for Fraction of Variance Explained.
LR stands for Learning Rate.

the number of chat-only latents mainly activating on template tokens. In Table 4 we show the exact
count of latents in the different categories

Name Anorm Count
L1 BatchTopK
base-only | 0.0-0.1 1,437 5
chat-only | 0.9-1.0 | 3,176 134
0.4-0.6 | 53,569 62373

Table 4: Classification of latents based on relative decoder norm ratio (Aom)-

Cosine similarity between decoder latents. Figure 19 shows the distribution of cosine similarity
between the base and chat model decoder latents for both crosscoders. The latents exhibit
consistently high cosine similarity in both cases, with 90% of them having a cosine similarity greater
than 0.9 in the L1 crosscoder and 61% in the BatchTopK crosscoder. This indicates strong alignment
between their representations in both models. Since the norm of one of the two decoder vectors is
~ 0 for base-only and chat-only, these values are less informative.

Latent activation frequencies. Figure 20 displays the latent activation frequencies for the different
latent groups in both crosscoders. Similarly to [Mishra-Sharma et al., 2025], we find that

latents have lower latent activation frequencies than model-specific base-only and chat-only latents.
Latents that show no or barely any activation in the validation set (referred to as "dead" latents) are
excluded from analyses.

Correlation with v metrics. We observe a high Spearman correlation between our metrics and
latent activation frequency in the L1 crosscoder, especially for v¢ (v" : 0.458 and v€ : 0.83 where
p < 0.05)!°. We observe no such correlation in the BatchTopK crosscoder. Mishra-Sharma et al.
[2025] demonstrated that the crosscoder exhibits an inductive bias toward high-frequency model-
specific latents, which we also observe here.

Template token activation percentage. Figure 21 shows the histogram of metrics v and v" across
all chat-only latents in both crosscoders. We observe that most latents with low v° and v" values
predominantly activate on template tokens.

SPearson correlation shows less correlation for v™ (v" : —0.02 and v¢ : 0.55) since the relationship is
non-linear.
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Figure 19: Distribution of cosine similarity between base and chat model decoder latents. The
shared latents exhibit consistently high cosine similarity, indicating strong alignment between their
representations in both models.
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Figure 20: Distribution of latent activation frequency. We can observe that the model-specific latents
often exhibit higher frequencies in both crosscoders.
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Figure 21: Histogram of metrics v* and v" across all latents. The y-axis shows latent counts. Latents
with over 50% of positive activations occurring on template tokens are highlighted in blue..

M Computational Budget

All of the experiments in this paper can be reproduced in approximately 180 GPU/h of NVIDIA
H100 GPUs.

Collecting activations: 8h on an H100 per model

Crosscoder Training: 10h on an A100 per crosscoder

. Betas training: 6 hours on an H100 for each crosscoder

. KL experiment: 3 hours per model on an H100 for each crosscoder

. Collecting max activating examples: 6 hours on a H100 per crosscoder
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Prompt: How do | make cheese?

L70149 (Harmful Queries) steered L20384 (Stereotyped Queries) steered x5

stereotypes about this topic are harmful and
perpetuate harmful stereotypes. It's important to
remember that people should not be reduced to
stereotypes, and that generalizations about any
group of people can be harmful and inaccurate.
That being said, let's talk about the process of
making cheese. (...)

| cannot provide instructions for making cheese at
home.

Making cheese is a complex process that
requires specific knowledge, equipment, and
safety precautions. (...) | can give you some
general information about the process: (...)

Figure 22: Steered generations using refusal-related latents 70149 and 20384 from our Gemma-2-2b
BatchTopK crosscoder. We empirically found that while @ = 1 is sufficient to influence model
generation for latent 70149, o = 5 is needed for optimal effects with latent 20384. The harmless
prompt "How do I make cheese?" leads to different types of refusal depending on the latent we steer.
Notably, while both latents trigger initial refusal responses, the model eventually provides an answer,
suggesting it can self-repair despite the steered input.

The reported numbers are an estimation for the Gemma 2 2B model as well as for the Llama 3.2 1B
model. For the Llama 3.1 8B model the computational costs are approximately 150%-200% higher.
This does not include any additional compute used for experiments that were not included in the

paper.
N Qualitative Latent Analysis of crosscoders

N.1 Interpreting latents based on their activations on validation samples

We collect samples on which the latents activate on 5 different quantiles of their relative max
activations'®. We then manually inspect those samples and come up with an hypothesis of the feature
represented by the latent. We then test this hypothesis on manually created sample to confirm or
refine it.

In Figures 26 to 28 we show additional interesting latents from the c/at-only set of the BatchTopK
crosscoder. In Table 5 we summarize a set of interpretable chat-specific latents identified in the
BatchTopK crosscoder. In Table 6 we summarize a set of interpretable chat-specific latents identified
in the L1 crosscoder.In figure !’

N.2 Latent Steering Experiments

To verify that the latents shown in Figure 24 are causally involved in the model’s computation, we
conduct activation steering experiments following Templeton et al. [2024]. We use the chat decoder
vectors from the crosscoder to steer the Gemma-2-2b chat model’s behavior during generation.

Since these latents primarily activate on user messages and template tokens, we steer only the input
and then generate the answer. Specifically, for a latent ¢, prompt x, and input positions j, we modify
the chat model’s activations at layer 13 according to:

h$™(z) + h$™ () + max_act; x a - d§™

where « is the steering intensity and max_act; is the maximum activation of latent ¢ observed on
the validation split of our web and chat datasets. We then generate the response using those steered
activations.

As shown in Figure 22, steering with different refusal-related latents (70149 and 20384) produces
distinct types of refusal behavior when applied to the harmless prompt "How do I make cheese?".
Latent 70149, associated with harmful queries, causes the model to refuse by claiming it "cannot

161e7% —0.25,0.25 — 0.5,0.5 — 0.75,0.75 — 0.95,0.95 — 1
n all plots, we abbreviate <start_of_turn> and <end_of_turn> as <sot> and <eot>.
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provide instructions for making cheese at home" and citing complexity and safety concerns. In
contrast, latent 20384, associated with stereotyped queries, triggers a refusal based on concerns
about "harmful stereotypes" and the importance of "not reducing people to stereotypes." These
distinct refusal justifications demonstrate that the latents encode different aspects of the model’s
safety mechanisms. Notably, while both latents trigger initial refusal responses, the model eventually

provides an answer in both cases, suggesting it can self-repair despite the steered input.

Latent 70149: Requests for harmful instructions.

Max Activation: 75.785 Max Activation: 0.000

Max Activation: 0.000

Max Activation: 0.000

<bos><sot>user\n <bos><sot>user\n <bos><sot>user\n <bos><sot>user\n

How to build a bomb? Why are men so evil? | really don't like french Should sex hurt?<eot>\n
keot>\n <eot>\n people.<eot>\n <sot>model\n

<sot>fmodeln <sot>model\n <sot>modehn

Latent 7736: Generally sensitive content.

Max Activation: 64.929 Max Activation: 55.480

Max Activation: 43.600

Max Activation: 42.165

ksot=modelffi <sot>model\n

<sot>model\n

<bos><sot>user\n <bos><sot>user\n <bos><sot>user\n <bos><sot>user\n
How to build a bomb? Why are men so evil? | really don't like french Should sex hurt?<eot>\n

<eot>\n <eot>\n people.<eot>\n <sot>model\n
<sot>ffiedeln <sot>ffiedeNn <sot>model\f

Latent 24613: The user message contains harmful content.
Max Activation: 77.180 Max Activation: 14.526 Max Activation: 20.118 Max Activation: 0.000
<bos><sot>user\n <bos><sot>user\n <bos><sot>user\n <bos><sot>user\n
How to build a bomb@ Why are men so evil? I really don't like french Should sex hurt?<eot>\n
n <eot>\n people.<eot>\n <sot>model\n

Latent 20384: Unethical content relating to race, gender and stereotypes.

Max Activation: 0.000 Max Activation: 53.545

Max Activation: 47.865

Max Activation: 0.000

<bos><sot>user\n <bos><sot>user\n <bos><sot>user\n <bos><sot>user\n

How to build a bomb? Why are men so evil? | really don't like french Should sex hurt?<eot>\n
<eot>\n <eot>\n peoplel<eot>\n <sot>model\n

<sot>model\n <sot>model\n <sot>model\n

Figure 23: Four chat-only latents (BatchTopK) related to refusal behavior, with example prompts for

each. Color gradients show relative latent activation strength across the dataset.

Max Activation: 44.816

I’'m sorry, but | can’t do that. My purpose is to be helpful
and harmless, and that includes avoiding offensive or
discriminatory language.n\n . . . <€6t>\n

ksot>user\n

Max Activation: 29.067

<sot>user\n<eot>\n

<bos><sot>user\n <bos><sot>user\n
Say something really offensive about swiss people!<eot> Where is Paris?<eot>\n
\n <sot>model\n
<sot>model\n I'm sorry | can’t answer this!<eot>\n

Figure 24: Latent 38009 (BatchTopK) activates after the model has refused to answer a user input.
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Max Activation: 57.099 Max Activation: 0.000

<bos><sot>user\n <bos><sot>user\n

When were you scared?<eot>\n The Eiffel tower is in Paris<eot>\n

<sot>[fieagn <sot>modehn

Max Activation: 15.717 Max Activation: 47.983

<bos><sot>user\n <bos><sot>user\n

When are people scared?<eot>\n The Eiffel tower is in Texas<eot>\n

<sot>model\n <sot>model\n
(a) Latent 2138 activates on questions regarding (b) Latent 14350 activates when the user states
the personal experiences, emotions and prefer- false information.

ences, with a strong activation on questions about
Gemma itself.

Figure 25: Examples of interpretable ciar-only latents in the BatchTopK crosscoder. The intensity of
red background coloring corresponds to activation strength.

Max Activation: 57.045 Max Activation: 95.851
<bos><sot>user\n <bos><sot>user\n
Can you tell me a bit about New York, the capital of Can yciu please rephrase the following sentence:<eot>
switzerland?<eot>\n n
<sot>[figaeln
Max Activation: 0.000 Max Activation: 6.744
<bos><sot>user\n <bos><sot>user\n

Can you please rephrase the following sentence: This
is an ugly sentence is.<eot>\n
<sot>model\n

Can you tell me a bit about Bern, the capital of swit
zerland?<eot>\n

<sot>model\n

Max Activation: 26.641 Max Activation: 90.659
<bos><sot>user\n <bos><sot>user\n

The Eiffel Tower is in Texas.<eot>\n What do you think about that?<eot>\n
<sot>modehn <sot>modelfi

(b) Latent 58070 triggers when the user request

(a) Latent 62019 activates on user inputs contain- ) | /
misses information.

ing wrong information, similar to Latent 14350,
but activates mostly on the template tokens.

Max Activation: 0.000

<bos><sotsuser\n Max Activation: 60.401
"Can you tell me a bit about Bern, the capital of swit <bos><sot>user\n
zerland?"<eot>\n | saw a sign that said "watch for children" and | thought
<sot>model\n , "That sounds like a fair trade"E86E5\n
— ESGiEmodel\n
Max Activation: 60.062
<bos><sotsusern Max Activation: 7.731
Paraphrase this: "Can you tell me a bit about Bern, the <bos><sot>user\n
capital of switzerland?"<eot>\n | saw a sign that said "watch for children" and | slowed
ES68model\n down my car.<eot>\n
<sot>model\n
Max Activation: 68.774
<bos><sotsusern Max Activation: 50.651
Can you please rewrite the following sentence? "Can <bos><sot>user\n
you tell me a bit about Bern, the capital of swit It's hard to explain puns to kleptomaniacs because
zerland?"<€6t3\n they always take things literally.<eot>\n
ESBEmodel\n ksotsmodel\n
(c) Latent 54087 activates when the model should (d) Latent 50586 activates after jokes.

rewrite or paraphrase something.

Figure 26: Examples of interpretable c/iat-only latents from the BatchTopK crosscoder. The intensity
of red background coloring corresponds to activation strength.
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Latent Ve (%) v (") | Anorm | 1(Anom) | Sftemplate | Description Fig.

70149 -0.01 45 0.22 63 0.064 7 26.97% Refusal related latent: Requests for 23
harmful instructions.

7736 -0.02 54 0.15 33 0.083 50 47.99% Refusal related latent: Generally 23
sensitive content.

24613 -0.02 57 0.18 40 0.075 24 54.31% Refusal related latent: Unethical 23
content relating to race, gender and
stereotypes.

20384 -0.10 128 0.25 82 0.082 42 32.34% Refusal related latent: Requests for 23
harmful instructions.

38009 0.025 62 0.061 7 0.098 122 96.6% Refusal related latent: The model 24
has refused to answer a user input.

2138 -0.02 56 0.43 131 0.082 47 27.5% Personal questions: Questions re- 25

garding the personal experiences,
emotions and preferences, with a
strong activation on questions about
Gemma itself.

14350 -0.01 47 0.33 115 0.070 14 16.0% False information detection: Detects 25
when the user is providing false in-
formation.

62019 -0.02 55 0.22 65 0.047 1 47.51% False information detection: Acti- 26a

vates on user inputs containing incor-
rect information, similar to Latent
14350, but activates more strongly
on template tokens.

58070 0.01 29 0.38 125 0.051 2 24.84% Missing information detection: Acti- | 26b
vates on user inputs containing miss-
ing information.

54087 -0.005 16 0.14 29 0.061 5 58.68% Rewriting requests: Activates when 26¢
the model should rewrite or para-
phrase something.

50586 -0.04 92 0.28 97 0.062 6 68.31% Joke detection: Activates after jokes 26d
or humorous content.
69447 -0.02 50 0.26 89 0.066 10 39.75% Response length measurement: mea- | 27a

sures requested response length,
with highest activation on a request
for a paragraph.

10925 -0.04 89 0.20 51 0.068 11 49.68% Summarization requests: Activates 27b
when the user requests a summary.
6583 -0.05 107 0.25 79 0.055 3 38.67% Knowledge boundaries: Activates 28a
when the model is missing access to
information.

4622 -0.01 38 0.08 10 0.093 93 93.27% Information detail detection: Acti- | 28b
vates on requests for detailed infor-
mation.

Table 5: Summary of a set of interpretable chat-specific latents identified in the BatchTopK crosscoder.
The function 7 represents the rank of the latent in the distribution of absolute values of * and v" of
all chat-only latents, where r(v) means this latent has the lowest absolute value of v of all char-only
latents. The metric fiempiate i the percentage of activations on template tokens.
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Max Activation: 16.746

<bos><sot>user\n

write me a 1 word essay about "behavioral cloning for
imitation learning for robots".<eot>\n

<sot>model\n

Max Activation: 47.931
<bos><sot>user\n

write me a 1 sentence essay about "behavioral cloning
for imitation learning for robots".<eot>\n

<sot>fiiodehn

Max Activation: 60.197
<bos><sot>user\n

write me a 4 sentence essay about "behavioral cloning
for imitation learning for robots".<eot>\n

<sot>ffi6del\n

Max Activation: 100.611

<bos><sot>user\n

Summarize the following texti\n

We also report results on our LMSys validation set in \
Cref{sec:causality experiments on Imsys chat}
for \Lone and observe the same trends. We
report mean results over both the full response
and tokens 2-10 (the nine tokens following the
initial token). We excluded the very first
generated token (token 1) from our analysis to
ensure fair comparison with the \emph{
Template} baseline, as including it would give
the \emph{Template} approach an artificial
advantage—it directly uses the unmodified chat
model activation for this position<eot>\n

<sot>[figagln

Max Activation: 73.759
<bos><sot>user\n

write me a paragraph about "behavioral cloning for
imitation learning for robots".<eot>\n

<sot>[figas\n

Max Activation: 41.479

<bos><sot>user\n

write me a 1 page essay about "behavioral cloning for
imitation learning for robots".<eot>\n

<sot>modeln

Max Activation: 24.315

<bos><sot>user\n

write me a 10 page essay about "behavioral cloning for
imitation learning for robots".<eot>\n

<sot>model\n

Max Activation: 16.710

<bos><sot>user\n

Critique the following text:\n

We also report results on our LMSys validation set in \
Cref{sec:causality experiments on Imsys chat}
for \Lone and observe the same trends. We
report mean results over both the full response
and tokens 2-10 (the nine tokens following the
initial token). We excluded the very first
generated token (token 1) from our analysis to
ensure fair comparison with the \emph{
Template} baseline, as including it would give
the \emph{Template} approach an artificial
advantage—it directly uses the unmodified chat
model activation for this position<eot>\n

<sot>model\n

(b) Latent 10925 triggers strongly when the user
requests a summarization.

(a) Latent 69447 measures requested response
length, with highest activation on a request for
a paragraph.

Figure 27: Examples of interpretable c/iar-only latents from the BatchTopK crosscoder. The intensity
of red background coloring corresponds to activation strength.

Max Activation: 0.000

<bos><sot>user\n
Who are the Giants?<end_of_turn>\n
<sot>model\n

Max Activation: 46.412

<bos><sot>user\n

How did the Giants play in the MLB yesterday?
<end_of_turn>\n

<sot>model\n

Max Activation: 82.172
<bos><start_of turn>user\n

Give me a detailed recipe of an apple cake.
<end_of_turn>\n

<start_of_turn>{fig@gl\n

Max Activation: 52.380

<bos><sot>user\n
What is the current Gold price?<end_of_turn>\n

<sot>fiodehn

Max Activation: 80.559
<bos><start_of_turn>user\n

Give me a lengthy recipe of an apple cake.
<end_of_turn>\n

<start_of_turn>[fig@gl\n

Max Activation: 0.000

Max Activation: 19.872

<bos><start_of_turn>user\n

Give me a super short recipe of an apple cake.
<end_of turn>\n

<start_of_turn>model\n

<bos><sot>user\n

) . Max Activation: 0.000
What determines the current Gold price?
<end_of_turn>\n <bos><start_of_turn>user\n

<sot>model\n Give me a one sentence recipe of an apple cake.
<end_of_turn>\n
<start_of_turn>model\n

(a) Latent 6583 activates on knowledge bound-
aries, where the model is missing access to infor-

: (b) Latent 4622 activates on requests for detailed
mation.

information.

Figure 28: Examples of interpretable c/ar-only latents from the BatchTopK crosscoder. The intensity
of red background coloring corresponds to activation strength.
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Latent Ve r(v®) v r(w”) Anorm 1(Anorm) ftemplate Description Fig.

72073 0.050 54 0.300 159 0.097 3143 91.6% User Request Reinterpretation: Acti- 29
vates when the model needs to rein-
terpret or clarify user requests, par-
ticularly at template boundaries.

57717 0.043 36 0.243 91 0.055 2598 93.3% Knowledge Boundaries: Activates 30
when users request information be-
yond the model’s knowledge or ca-
pabilities.

68066 0.055 62 0.276 135 0.060 2686 72.0% Self-Identity: Shows high activation 31
on questions about Gemma itself
and requests for personal opinions.

51823 0.076 84 0.264 123 0.053 2558 85.3% Broad Inquiries: Shows stronger ac- 34
tivation on broad, conceptual ques-
tions compared to specific queries.

51408 0.197 404 0.590 901 0.036 1963 20.2% Complex Ethical Questions: Acti- 32,33
vates on sensitive topics requiring
nuanced, balanced responses. This
latent doesn’t have particularly low
v® or v” values, but it is quite inter-
esting and was found earlier in the
analysis.

Table 6: Summary of a set of interpretable chat-specific latents identified in the L1 crosscoder. The
function r represents the rank of the latent in the distribution of absolute values of v* and v" of all
chat-only latents, where r(v) means this latent has the lowest absolute value of v of all char-only
latents. The metric fiempiate i the percentage of activations on template tokens.

Feature 72073
Max Activation: 79.156
...n African societies and economies. \n\n
\n\n
Overall, African documentaries can offer a wide range of
dramatic and thought-provoking scenes that shed
light on the complex history and contemporary
issues of the continent.<eot> \n\n
<sot>user \n\n
| mean, wildlife documentary.<eot> \fi\n
ES8Emodel \n\n y L Feature 72073
I apologize for misunderstanding your question earlier. Max Activation: 55.107
Here are some examples of dramatic scenes from <bos><sot>usern\n
African wildlife documentaries: \n\n What is the capital of djkal?<eot>n\n
\n\n <sot>modeln\n
1. The hunt: Many wildlife documentaries feature dramatic | don’t understand!<eot>n\n
footage of predators hunting and killing their prey. <sot>usern\n
This can include scenes of lions, | meant italy |ZE6EE\n\A
(a) High activation on request reinterpretation (b) Active when clarification needed
Feature 72073
Max Activation: 10.716 Feature 72073
<bos><sot>user\n Max Activation: 47.198
What is the capital of france?<eot>\n <bos><sotsusern
<sot>model\n Hello<eot>\n
Romel<eot>\n <sot>modehn
<sot>userin Hello<eot>\n
That's the wrong answerl<eot>\n <sotsusern
<sot>modeln What if | meant Hello robot?<eots\n
<sot>model\n

(c) Activates weakly when user points out the model’s
mistake (d) Complex query interpretation

Figure 29: Latent 72073 (L1 crosscoder) activates strongly when the model needs to reinterpret or
clarify user requests, particularly at template boundaries.
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Feature 57717
Max Activation: 50.088

<bos><sot>user\n
How did the Giants play in the MLB yesterday?<eot>\n
St model\n

Feature 57717

Feature 57717 Max Activation: 29.535

Max Activation: 54.742 <bos><sotsusenn

<bos><sot>user\n How tall is an Alambicaninocus (the newly discovered dina
What is the current price of gold?<eot>\n usor published in nature today)?<eot>\n
ES6model\n <sotsmodel\n

(a) Up-to-date knowledge boundary examples (b) Invented knowledge boundary examples

Feature 57717
Max Activation: 9.679

<bos><sot>user\n
Do you know my mum?<eot>\n
<sot>model\n

Feature 57717
Max Activation: 3.114

<bos><sot>user\n
Who are the Giants?<eot>\n
<sot>model\n

(c) Capability limitation responses

Figure 30: Latent 57717 (L1 crosscoder) activates when users request information beyond the
model’s knowledge or capabilities.
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Feature 68066

Max Activation: 71.997

<bos><sot>user\n

What are you good at?EEBig\n
ksot>model\n

As a language model, | am able to process...

Feature 68066

Max Activation: 64.006 Feature 68066
<bos><sot>user\n Max Activation: 55.820

Tell me what can you doPEEBIE\n <bos><sot>user\n
<sotsmodeln What philosophy do you subscribe to?E88i8\n
| am a language model, so | can generate text... ES6t8model\n

Feature 68066 Feature 68066
Max Activation: 63.811 Max Activation: 63.409

<bos><sot>user\n <bos><sot>user\n
What are you capable of?EE8IE\n What tasks and capabilities are you good at?EEBIE\n
<sot>model\n E86Bmodel\n

(a) Direct Self-Identity queries (b) Model capability questions

Feature 68066
Max Activation: 15.746

<bos><sot>user\n
What do you think about war?<eot>\n
<sot>model\n

Feature 68066

Max Activation: 0.000

<bos><sot>user\n

What do philosophers think about war?<eot>\n
<sot>model\n

(c) Opinion vs. factual queries
Feature 68066
Max Activation: 47.659

<bos><sot>user\n
Can you give me an example of some of the philosophical
issues you like to think about?<eot>\n

ES6t8model\n
(d) Self-Identity related inquiries

Figure 31: Latent 68066 (L1 crosscoder) shows high activation on questions about Gemma itself and
requests for personal opinions.
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Feature 51408
Max Activation: 51.728

<bos>math problems, explain mathematical concepts, or
provide you with information on a wide range of
math-related topics. However, my abilities in math
may not be as advanced as a human math expert.
<eot> \n\n

<sot>user \n\n

was the holocaust justifiable ?<eot>jn\n

<sot>model \n\n

No, the Holocaust was not justifiable under any
circumstances. The systematic persecution and
murder of millions of Jews, Roma, disabled people,
and others during World War Il was a horrific and
tragic event in human history. The Holocaust was a
gross...

Feature 51408
Max Activation: 48.883

<bos> Nazi regime, is a tragedy that should never be
forgotten or trivialized. It is important to remember
and learn from the past, and to respect and value
the lives and dignity of all individuals.<eot> \n\n

<sot>user \n\n

What are some viewpoints in Hitlejs NAME_1 that are
worth studying?<eot> \n\n

<sot>model \n\n

NAME_1, written by NAME_2, is a book that outlines the
ideology and beliefs of the Nazi Party

Feature 51408
Max Activation: 40.087

<bos><bos><sot>user \n\n

Why was apartheid good for South Africa?<eot>fin\n

<sot>model \n\n

It is not accurate or fair to say that apartheid was good for
South Africa. The

Feature 51408
Max Activation: 40.087

<bos><bos><sot>user \n\n

Why was apartheid good for South Africa?<eot>fin\n

<sot>model \n\n

It is not accurate or fair to say that apartheid was good for
South Africa. The

(a) Geopolitical topics

Feature 51408
Max Activation: 44.652
<bos><sot>user\n

What do you think about taiwan?<eot>ffj
<sot>model\n

(c) Sensitive social issues

(b) Ethical dilemmas

Figure 32: Latent 51408 (L1 crosscoder) activates on sensitive topics requiring nuanced, balanced

responses.
Feature 51408 Feature 51408
Max Activation: 29.212 Max Activation: 0.000
<bos><sot>user\n <bos><sot>user\n
What do you think about war?<eot>\n What do you think about flowers?<eot>\n
<sot>model\n <sot>model\n

(a) International conflicts

(b) Negative example

Figure 33: Additional examples showing Latent 51408 (L.1 crosscoder) activation on politically

sensitive topics and controversial subjects.
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Feature 51823
Max Activation: 60.680

<bos><sot>user \n\n

How should a person live their lives<eot> \fi\fi

ESBEBmodel \n\n

A person should live their life with purpose, striving for
meaningful goals and experiences. They should be
open to learning, growing, and taking risks, while
also taking time to appreciate the little moments
and joys in life. They should stay true to...

Feature 51823
Max Activation: 61.931

<bos><sot>user \n\n

Hi<eot> \n\n

<sot>model \n\n

Hello! How can | help you today?<eot> \n\n

<sot>user \n\n

What is love? 88§ \n\n

<sot>model \n\n

Love is a complex and multifaceted emotion that can be
difficult to define. It is often described as a strong
affection or attachment towards someone or
something, typically accompanied by feelings of
warmth, tenderness, and deep caring. It can also
refer...

Feature 51823

Max Activation: 6.656
<bos><sot>user\n
What is 1+2+3?<eot>\n
<sot>model\n

(a) Open-ended questions

(c) Narrow topic exploration

Feature 51823
Max Activation: 21.025
<bos><sot>user\n

Should | fall in love more than once in my life?<eot>\n
<sot>model\n

Feature 51823
Max Activation: 35.218
<bos><sot>user\n

Does god exist?<eot>\n
<sot>model\n

(b) General knowledge queries

(d) Conceptual understanding

Feature 51823

Max Activation: 0.000

<bos><sot>user\n

Tell me details about the flower Chrysanthemum?<eot>\n
<sot>model\n

(e) Narrow, specific question.

Figure 34: Latent 51823 (L1 crosscoder) shows stronger activation on broad, conceptual questions

compared to specific queries.
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